27fc2062b7eac403db782dcd3a5717eada606e50
[deliverable/binutils-gdb.git] / gdb / i960-tdep.c
1 /* Target-machine dependent code for the Intel 960
2 Copyright 1991, 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
3 Contributed by Intel Corporation.
4 examine_prologue and other parts contributed by Wind River Systems.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "value.h"
26 #include "frame.h"
27 #include "floatformat.h"
28 #include "target.h"
29 #include "gdbcore.h"
30 #include "inferior.h"
31
32 static CORE_ADDR next_insn (CORE_ADDR memaddr,
33 unsigned int *pword1, unsigned int *pword2);
34
35 /* Does the specified function use the "struct returning" convention
36 or the "value returning" convention? The "value returning" convention
37 almost invariably returns the entire value in registers. The
38 "struct returning" convention often returns the entire value in
39 memory, and passes a pointer (out of or into the function) saying
40 where the value (is or should go).
41
42 Since this sometimes depends on whether it was compiled with GCC,
43 this is also an argument. This is used in call_function to build a
44 stack, and in value_being_returned to print return values.
45
46 On i960, a structure is returned in registers g0-g3, if it will fit.
47 If it's more than 16 bytes long, g13 pointed to it on entry. */
48
49 int
50 i960_use_struct_convention (int gcc_p, struct type *type)
51 {
52 return (TYPE_LENGTH (type) > 16);
53 }
54
55 /* gdb960 is always running on a non-960 host. Check its characteristics.
56 This routine must be called as part of gdb initialization. */
57
58 static void
59 check_host (void)
60 {
61 int i;
62
63 static struct typestruct
64 {
65 int hostsize; /* Size of type on host */
66 int i960size; /* Size of type on i960 */
67 char *typename; /* Name of type, for error msg */
68 }
69 types[] =
70 {
71 {
72 sizeof (short), 2, "short"
73 }
74 ,
75 {
76 sizeof (int), 4, "int"
77 }
78 ,
79 {
80 sizeof (long), 4, "long"
81 }
82 ,
83 {
84 sizeof (float), 4, "float"
85 }
86 ,
87 {
88 sizeof (double), 8, "double"
89 }
90 ,
91 {
92 sizeof (char *), 4, "pointer"
93 }
94 ,
95 };
96 #define TYPELEN (sizeof(types) / sizeof(struct typestruct))
97
98 /* Make sure that host type sizes are same as i960
99 */
100 for (i = 0; i < TYPELEN; i++)
101 {
102 if (types[i].hostsize != types[i].i960size)
103 {
104 printf_unfiltered ("sizeof(%s) != %d: PROCEED AT YOUR OWN RISK!\n",
105 types[i].typename, types[i].i960size);
106 }
107
108 }
109 }
110 \f
111 /* Examine an i960 function prologue, recording the addresses at which
112 registers are saved explicitly by the prologue code, and returning
113 the address of the first instruction after the prologue (but not
114 after the instruction at address LIMIT, as explained below).
115
116 LIMIT places an upper bound on addresses of the instructions to be
117 examined. If the prologue code scan reaches LIMIT, the scan is
118 aborted and LIMIT is returned. This is used, when examining the
119 prologue for the current frame, to keep examine_prologue () from
120 claiming that a given register has been saved when in fact the
121 instruction that saves it has not yet been executed. LIMIT is used
122 at other times to stop the scan when we hit code after the true
123 function prologue (e.g. for the first source line) which might
124 otherwise be mistaken for function prologue.
125
126 The format of the function prologue matched by this routine is
127 derived from examination of the source to gcc960 1.21, particularly
128 the routine i960_function_prologue (). A "regular expression" for
129 the function prologue is given below:
130
131 (lda LRn, g14
132 mov g14, g[0-7]
133 (mov 0, g14) | (lda 0, g14))?
134
135 (mov[qtl]? g[0-15], r[4-15])*
136 ((addo [1-31], sp, sp) | (lda n(sp), sp))?
137 (st[qtl]? g[0-15], n(fp))*
138
139 (cmpobne 0, g14, LFn
140 mov sp, g14
141 lda 0x30(sp), sp
142 LFn: stq g0, (g14)
143 stq g4, 0x10(g14)
144 stq g8, 0x20(g14))?
145
146 (st g14, n(fp))?
147 (mov g13,r[4-15])?
148 */
149
150 /* Macros for extracting fields from i960 instructions. */
151
152 #define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
153 #define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
154
155 #define REG_SRC1(insn) EXTRACT_FIELD (insn, 0, 5)
156 #define REG_SRC2(insn) EXTRACT_FIELD (insn, 14, 5)
157 #define REG_SRCDST(insn) EXTRACT_FIELD (insn, 19, 5)
158 #define MEM_SRCDST(insn) EXTRACT_FIELD (insn, 19, 5)
159 #define MEMA_OFFSET(insn) EXTRACT_FIELD (insn, 0, 12)
160
161 /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
162 is not the address of a valid instruction, the address of the next
163 instruction beyond ADDR otherwise. *PWORD1 receives the first word
164 of the instruction, and (for two-word instructions), *PWORD2 receives
165 the second. */
166
167 #define NEXT_PROLOGUE_INSN(addr, lim, pword1, pword2) \
168 (((addr) < (lim)) ? next_insn (addr, pword1, pword2) : 0)
169
170 static CORE_ADDR
171 examine_prologue (register CORE_ADDR ip, register CORE_ADDR limit,
172 CORE_ADDR frame_addr, struct frame_saved_regs *fsr)
173 {
174 register CORE_ADDR next_ip;
175 register int src, dst;
176 register unsigned int *pcode;
177 unsigned int insn1, insn2;
178 int size;
179 int within_leaf_prologue;
180 CORE_ADDR save_addr;
181 static unsigned int varargs_prologue_code[] =
182 {
183 0x3507a00c, /* cmpobne 0x0, g14, LFn */
184 0x5cf01601, /* mov sp, g14 */
185 0x8c086030, /* lda 0x30(sp), sp */
186 0xb2879000, /* LFn: stq g0, (g14) */
187 0xb2a7a010, /* stq g4, 0x10(g14) */
188 0xb2c7a020 /* stq g8, 0x20(g14) */
189 };
190
191 /* Accept a leaf procedure prologue code fragment if present.
192 Note that ip might point to either the leaf or non-leaf
193 entry point; we look for the non-leaf entry point first: */
194
195 within_leaf_prologue = 0;
196 if ((next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2))
197 && ((insn1 & 0xfffff000) == 0x8cf00000 /* lda LRx, g14 (MEMA) */
198 || (insn1 & 0xfffffc60) == 0x8cf03000)) /* lda LRx, g14 (MEMB) */
199 {
200 within_leaf_prologue = 1;
201 next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn1, &insn2);
202 }
203
204 /* Now look for the prologue code at a leaf entry point: */
205
206 if (next_ip
207 && (insn1 & 0xff87ffff) == 0x5c80161e /* mov g14, gx */
208 && REG_SRCDST (insn1) <= G0_REGNUM + 7)
209 {
210 within_leaf_prologue = 1;
211 if ((next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn1, &insn2))
212 && (insn1 == 0x8cf00000 /* lda 0, g14 */
213 || insn1 == 0x5cf01e00)) /* mov 0, g14 */
214 {
215 ip = next_ip;
216 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
217 within_leaf_prologue = 0;
218 }
219 }
220
221 /* If something that looks like the beginning of a leaf prologue
222 has been seen, but the remainder of the prologue is missing, bail.
223 We don't know what we've got. */
224
225 if (within_leaf_prologue)
226 return (ip);
227
228 /* Accept zero or more instances of "mov[qtl]? gx, ry", where y >= 4.
229 This may cause us to mistake the moving of a register
230 parameter to a local register for the saving of a callee-saved
231 register, but that can't be helped, since with the
232 "-fcall-saved" flag, any register can be made callee-saved. */
233
234 while (next_ip
235 && (insn1 & 0xfc802fb0) == 0x5c000610
236 && (dst = REG_SRCDST (insn1)) >= (R0_REGNUM + 4))
237 {
238 src = REG_SRC1 (insn1);
239 size = EXTRACT_FIELD (insn1, 24, 2) + 1;
240 save_addr = frame_addr + ((dst - R0_REGNUM) * 4);
241 while (size--)
242 {
243 fsr->regs[src++] = save_addr;
244 save_addr += 4;
245 }
246 ip = next_ip;
247 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
248 }
249
250 /* Accept an optional "addo n, sp, sp" or "lda n(sp), sp". */
251
252 if (next_ip &&
253 ((insn1 & 0xffffffe0) == 0x59084800 /* addo n, sp, sp */
254 || (insn1 & 0xfffff000) == 0x8c086000 /* lda n(sp), sp (MEMA) */
255 || (insn1 & 0xfffffc60) == 0x8c087400)) /* lda n(sp), sp (MEMB) */
256 {
257 ip = next_ip;
258 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
259 }
260
261 /* Accept zero or more instances of "st[qtl]? gx, n(fp)".
262 This may cause us to mistake the copying of a register
263 parameter to the frame for the saving of a callee-saved
264 register, but that can't be helped, since with the
265 "-fcall-saved" flag, any register can be made callee-saved.
266 We can, however, refuse to accept a save of register g14,
267 since that is matched explicitly below. */
268
269 while (next_ip &&
270 ((insn1 & 0xf787f000) == 0x9287e000 /* stl? gx, n(fp) (MEMA) */
271 || (insn1 & 0xf787fc60) == 0x9287f400 /* stl? gx, n(fp) (MEMB) */
272 || (insn1 & 0xef87f000) == 0xa287e000 /* st[tq] gx, n(fp) (MEMA) */
273 || (insn1 & 0xef87fc60) == 0xa287f400) /* st[tq] gx, n(fp) (MEMB) */
274 && ((src = MEM_SRCDST (insn1)) != G14_REGNUM))
275 {
276 save_addr = frame_addr + ((insn1 & BITMASK (12, 1))
277 ? insn2 : MEMA_OFFSET (insn1));
278 size = (insn1 & BITMASK (29, 1)) ? ((insn1 & BITMASK (28, 1)) ? 4 : 3)
279 : ((insn1 & BITMASK (27, 1)) ? 2 : 1);
280 while (size--)
281 {
282 fsr->regs[src++] = save_addr;
283 save_addr += 4;
284 }
285 ip = next_ip;
286 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
287 }
288
289 /* Accept the varargs prologue code if present. */
290
291 size = sizeof (varargs_prologue_code) / sizeof (int);
292 pcode = varargs_prologue_code;
293 while (size-- && next_ip && *pcode++ == insn1)
294 {
295 ip = next_ip;
296 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
297 }
298
299 /* Accept an optional "st g14, n(fp)". */
300
301 if (next_ip &&
302 ((insn1 & 0xfffff000) == 0x92f7e000 /* st g14, n(fp) (MEMA) */
303 || (insn1 & 0xfffffc60) == 0x92f7f400)) /* st g14, n(fp) (MEMB) */
304 {
305 fsr->regs[G14_REGNUM] = frame_addr + ((insn1 & BITMASK (12, 1))
306 ? insn2 : MEMA_OFFSET (insn1));
307 ip = next_ip;
308 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
309 }
310
311 /* Accept zero or one instance of "mov g13, ry", where y >= 4.
312 This is saving the address where a struct should be returned. */
313
314 if (next_ip
315 && (insn1 & 0xff802fbf) == 0x5c00061d
316 && (dst = REG_SRCDST (insn1)) >= (R0_REGNUM + 4))
317 {
318 save_addr = frame_addr + ((dst - R0_REGNUM) * 4);
319 fsr->regs[G0_REGNUM + 13] = save_addr;
320 ip = next_ip;
321 #if 0 /* We'll need this once there is a subsequent instruction examined. */
322 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
323 #endif
324 }
325
326 return (ip);
327 }
328
329 /* Given an ip value corresponding to the start of a function,
330 return the ip of the first instruction after the function
331 prologue. */
332
333 CORE_ADDR
334 i960_skip_prologue (CORE_ADDR ip)
335 {
336 struct frame_saved_regs saved_regs_dummy;
337 struct symtab_and_line sal;
338 CORE_ADDR limit;
339
340 sal = find_pc_line (ip, 0);
341 limit = (sal.end) ? sal.end : 0xffffffff;
342
343 return (examine_prologue (ip, limit, (CORE_ADDR) 0, &saved_regs_dummy));
344 }
345
346 /* Put here the code to store, into a struct frame_saved_regs,
347 the addresses of the saved registers of frame described by FRAME_INFO.
348 This includes special registers such as pc and fp saved in special
349 ways in the stack frame. sp is even more special:
350 the address we return for it IS the sp for the next frame.
351
352 We cache the result of doing this in the frame_obstack, since it is
353 fairly expensive. */
354
355 void
356 frame_find_saved_regs (struct frame_info *fi, struct frame_saved_regs *fsr)
357 {
358 register CORE_ADDR next_addr;
359 register CORE_ADDR *saved_regs;
360 register int regnum;
361 register struct frame_saved_regs *cache_fsr;
362 CORE_ADDR ip;
363 struct symtab_and_line sal;
364 CORE_ADDR limit;
365
366 if (!fi->fsr)
367 {
368 cache_fsr = (struct frame_saved_regs *)
369 frame_obstack_alloc (sizeof (struct frame_saved_regs));
370 memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
371 fi->fsr = cache_fsr;
372
373 /* Find the start and end of the function prologue. If the PC
374 is in the function prologue, we only consider the part that
375 has executed already. */
376
377 ip = get_pc_function_start (fi->pc);
378 sal = find_pc_line (ip, 0);
379 limit = (sal.end && sal.end < fi->pc) ? sal.end : fi->pc;
380
381 examine_prologue (ip, limit, fi->frame, cache_fsr);
382
383 /* Record the addresses at which the local registers are saved.
384 Strictly speaking, we should only do this for non-leaf procedures,
385 but no one will ever look at these values if it is a leaf procedure,
386 since local registers are always caller-saved. */
387
388 next_addr = (CORE_ADDR) fi->frame;
389 saved_regs = cache_fsr->regs;
390 for (regnum = R0_REGNUM; regnum <= R15_REGNUM; regnum++)
391 {
392 *saved_regs++ = next_addr;
393 next_addr += 4;
394 }
395
396 cache_fsr->regs[FP_REGNUM] = cache_fsr->regs[PFP_REGNUM];
397 }
398
399 *fsr = *fi->fsr;
400
401 /* Fetch the value of the sp from memory every time, since it
402 is conceivable that it has changed since the cache was flushed.
403 This unfortunately undoes much of the savings from caching the
404 saved register values. I suggest adding an argument to
405 get_frame_saved_regs () specifying the register number we're
406 interested in (or -1 for all registers). This would be passed
407 through to FRAME_FIND_SAVED_REGS (), permitting more efficient
408 computation of saved register addresses (e.g., on the i960,
409 we don't have to examine the prologue to find local registers).
410 -- markf@wrs.com
411 FIXME, we don't need to refetch this, since the cache is cleared
412 every time the child process is restarted. If GDB itself
413 modifies SP, it has to clear the cache by hand (does it?). -gnu */
414
415 fsr->regs[SP_REGNUM] = read_memory_integer (fsr->regs[SP_REGNUM], 4);
416 }
417
418 /* Return the address of the argument block for the frame
419 described by FI. Returns 0 if the address is unknown. */
420
421 CORE_ADDR
422 frame_args_address (struct frame_info *fi, int must_be_correct)
423 {
424 struct frame_saved_regs fsr;
425 CORE_ADDR ap;
426
427 /* If g14 was saved in the frame by the function prologue code, return
428 the saved value. If the frame is current and we are being sloppy,
429 return the value of g14. Otherwise, return zero. */
430
431 get_frame_saved_regs (fi, &fsr);
432 if (fsr.regs[G14_REGNUM])
433 ap = read_memory_integer (fsr.regs[G14_REGNUM], 4);
434 else
435 {
436 if (must_be_correct)
437 return 0; /* Don't cache this result */
438 if (get_next_frame (fi))
439 ap = 0;
440 else
441 ap = read_register (G14_REGNUM);
442 if (ap == 0)
443 ap = fi->frame;
444 }
445 fi->arg_pointer = ap; /* Cache it for next time */
446 return ap;
447 }
448
449 /* Return the address of the return struct for the frame
450 described by FI. Returns 0 if the address is unknown. */
451
452 CORE_ADDR
453 frame_struct_result_address (struct frame_info *fi)
454 {
455 struct frame_saved_regs fsr;
456 CORE_ADDR ap;
457
458 /* If the frame is non-current, check to see if g14 was saved in the
459 frame by the function prologue code; return the saved value if so,
460 zero otherwise. If the frame is current, return the value of g14.
461
462 FIXME, shouldn't this use the saved value as long as we are past
463 the function prologue, and only use the current value if we have
464 no saved value and are at TOS? -- gnu@cygnus.com */
465
466 if (get_next_frame (fi))
467 {
468 get_frame_saved_regs (fi, &fsr);
469 if (fsr.regs[G13_REGNUM])
470 ap = read_memory_integer (fsr.regs[G13_REGNUM], 4);
471 else
472 ap = 0;
473 }
474 else
475 ap = read_register (G13_REGNUM);
476
477 return ap;
478 }
479
480 /* Return address to which the currently executing leafproc will return,
481 or 0 if IP, the value of the instruction pointer from the currently
482 executing function, is not in a leafproc (or if we can't tell if it
483 is).
484
485 Do this by finding the starting address of the routine in which IP lies.
486 If the instruction there is "mov g14, gx" (where x is in [0,7]), this
487 is a leafproc and the return address is in register gx. Well, this is
488 true unless the return address points at a RET instruction in the current
489 procedure, which indicates that we have a 'dual entry' routine that
490 has been entered through the CALL entry point. */
491
492 CORE_ADDR
493 leafproc_return (CORE_ADDR ip)
494 {
495 register struct minimal_symbol *msymbol;
496 char *p;
497 int dst;
498 unsigned int insn1, insn2;
499 CORE_ADDR return_addr;
500
501 if ((msymbol = lookup_minimal_symbol_by_pc (ip)) != NULL)
502 {
503 if ((p = strchr (SYMBOL_NAME (msymbol), '.')) && STREQ (p, ".lf"))
504 {
505 if (next_insn (SYMBOL_VALUE_ADDRESS (msymbol), &insn1, &insn2)
506 && (insn1 & 0xff87ffff) == 0x5c80161e /* mov g14, gx */
507 && (dst = REG_SRCDST (insn1)) <= G0_REGNUM + 7)
508 {
509 /* Get the return address. If the "mov g14, gx"
510 instruction hasn't been executed yet, read
511 the return address from g14; otherwise, read it
512 from the register into which g14 was moved. */
513
514 return_addr =
515 read_register ((ip == SYMBOL_VALUE_ADDRESS (msymbol))
516 ? G14_REGNUM : dst);
517
518 /* We know we are in a leaf procedure, but we don't know
519 whether the caller actually did a "bal" to the ".lf"
520 entry point, or a normal "call" to the non-leaf entry
521 point one instruction before. In the latter case, the
522 return address will be the address of a "ret"
523 instruction within the procedure itself. We test for
524 this below. */
525
526 if (!next_insn (return_addr, &insn1, &insn2)
527 || (insn1 & 0xff000000) != 0xa000000 /* ret */
528 || lookup_minimal_symbol_by_pc (return_addr) != msymbol)
529 return (return_addr);
530 }
531 }
532 }
533
534 return (0);
535 }
536
537 /* Immediately after a function call, return the saved pc.
538 Can't go through the frames for this because on some machines
539 the new frame is not set up until the new function executes
540 some instructions.
541 On the i960, the frame *is* set up immediately after the call,
542 unless the function is a leaf procedure. */
543
544 CORE_ADDR
545 saved_pc_after_call (struct frame_info *frame)
546 {
547 CORE_ADDR saved_pc;
548
549 saved_pc = leafproc_return (get_frame_pc (frame));
550 if (!saved_pc)
551 saved_pc = FRAME_SAVED_PC (frame);
552
553 return saved_pc;
554 }
555
556 /* Discard from the stack the innermost frame,
557 restoring all saved registers. */
558
559 void
560 i960_pop_frame (void)
561 {
562 register struct frame_info *current_fi, *prev_fi;
563 register int i;
564 CORE_ADDR save_addr;
565 CORE_ADDR leaf_return_addr;
566 struct frame_saved_regs fsr;
567 char local_regs_buf[16 * 4];
568
569 current_fi = get_current_frame ();
570
571 /* First, undo what the hardware does when we return.
572 If this is a non-leaf procedure, restore local registers from
573 the save area in the calling frame. Otherwise, load the return
574 address obtained from leafproc_return () into the rip. */
575
576 leaf_return_addr = leafproc_return (current_fi->pc);
577 if (!leaf_return_addr)
578 {
579 /* Non-leaf procedure. Restore local registers, incl IP. */
580 prev_fi = get_prev_frame (current_fi);
581 read_memory (prev_fi->frame, local_regs_buf, sizeof (local_regs_buf));
582 write_register_bytes (REGISTER_BYTE (R0_REGNUM), local_regs_buf,
583 sizeof (local_regs_buf));
584
585 /* Restore frame pointer. */
586 write_register (FP_REGNUM, prev_fi->frame);
587 }
588 else
589 {
590 /* Leaf procedure. Just restore the return address into the IP. */
591 write_register (RIP_REGNUM, leaf_return_addr);
592 }
593
594 /* Now restore any global regs that the current function had saved. */
595 get_frame_saved_regs (current_fi, &fsr);
596 for (i = G0_REGNUM; i < G14_REGNUM; i++)
597 {
598 save_addr = fsr.regs[i];
599 if (save_addr != 0)
600 write_register (i, read_memory_integer (save_addr, 4));
601 }
602
603 /* Flush the frame cache, create a frame for the new innermost frame,
604 and make it the current frame. */
605
606 flush_cached_frames ();
607 }
608
609 /* Given a 960 stop code (fault or trace), return the signal which
610 corresponds. */
611
612 enum target_signal
613 i960_fault_to_signal (int fault)
614 {
615 switch (fault)
616 {
617 case 0:
618 return TARGET_SIGNAL_BUS; /* parallel fault */
619 case 1:
620 return TARGET_SIGNAL_UNKNOWN;
621 case 2:
622 return TARGET_SIGNAL_ILL; /* operation fault */
623 case 3:
624 return TARGET_SIGNAL_FPE; /* arithmetic fault */
625 case 4:
626 return TARGET_SIGNAL_FPE; /* floating point fault */
627
628 /* constraint fault. This appears not to distinguish between
629 a range constraint fault (which should be SIGFPE) and a privileged
630 fault (which should be SIGILL). */
631 case 5:
632 return TARGET_SIGNAL_ILL;
633
634 case 6:
635 return TARGET_SIGNAL_SEGV; /* virtual memory fault */
636
637 /* protection fault. This is for an out-of-range argument to
638 "calls". I guess it also could be SIGILL. */
639 case 7:
640 return TARGET_SIGNAL_SEGV;
641
642 case 8:
643 return TARGET_SIGNAL_BUS; /* machine fault */
644 case 9:
645 return TARGET_SIGNAL_BUS; /* structural fault */
646 case 0xa:
647 return TARGET_SIGNAL_ILL; /* type fault */
648 case 0xb:
649 return TARGET_SIGNAL_UNKNOWN; /* reserved fault */
650 case 0xc:
651 return TARGET_SIGNAL_BUS; /* process fault */
652 case 0xd:
653 return TARGET_SIGNAL_SEGV; /* descriptor fault */
654 case 0xe:
655 return TARGET_SIGNAL_BUS; /* event fault */
656 case 0xf:
657 return TARGET_SIGNAL_UNKNOWN; /* reserved fault */
658 case 0x10:
659 return TARGET_SIGNAL_TRAP; /* single-step trace */
660 case 0x11:
661 return TARGET_SIGNAL_TRAP; /* branch trace */
662 case 0x12:
663 return TARGET_SIGNAL_TRAP; /* call trace */
664 case 0x13:
665 return TARGET_SIGNAL_TRAP; /* return trace */
666 case 0x14:
667 return TARGET_SIGNAL_TRAP; /* pre-return trace */
668 case 0x15:
669 return TARGET_SIGNAL_TRAP; /* supervisor call trace */
670 case 0x16:
671 return TARGET_SIGNAL_TRAP; /* breakpoint trace */
672 default:
673 return TARGET_SIGNAL_UNKNOWN;
674 }
675 }
676
677 /****************************************/
678 /* MEM format */
679 /****************************************/
680
681 struct tabent
682 {
683 char *name;
684 char numops;
685 };
686
687 /* Return instruction length, either 4 or 8. When NOPRINT is non-zero
688 (TRUE), don't output any text. (Actually, as implemented, if NOPRINT
689 is 0, abort() is called.) */
690
691 static int
692 mem (unsigned long memaddr, unsigned long word1, unsigned long word2,
693 int noprint)
694 {
695 int i, j;
696 int len;
697 int mode;
698 int offset;
699 const char *reg1, *reg2, *reg3;
700
701 /* This lookup table is too sparse to make it worth typing in, but not
702 * so large as to make a sparse array necessary. We allocate the
703 * table at runtime, initialize all entries to empty, and copy the
704 * real ones in from an initialization table.
705 *
706 * NOTE: In this table, the meaning of 'numops' is:
707 * 1: single operand
708 * 2: 2 operands, load instruction
709 * -2: 2 operands, store instruction
710 */
711 static struct tabent *mem_tab = NULL;
712 /* Opcodes of 0x8X, 9X, aX, bX, and cX must be in the table. */
713 #define MEM_MIN 0x80
714 #define MEM_MAX 0xcf
715 #define MEM_SIZ ((MEM_MAX-MEM_MIN+1) * sizeof(struct tabent))
716
717 static struct
718 {
719 int opcode;
720 char *name;
721 char numops;
722 }
723 mem_init[] =
724 {
725 0x80, "ldob", 2,
726 0x82, "stob", -2,
727 0x84, "bx", 1,
728 0x85, "balx", 2,
729 0x86, "callx", 1,
730 0x88, "ldos", 2,
731 0x8a, "stos", -2,
732 0x8c, "lda", 2,
733 0x90, "ld", 2,
734 0x92, "st", -2,
735 0x98, "ldl", 2,
736 0x9a, "stl", -2,
737 0xa0, "ldt", 2,
738 0xa2, "stt", -2,
739 0xb0, "ldq", 2,
740 0xb2, "stq", -2,
741 0xc0, "ldib", 2,
742 0xc2, "stib", -2,
743 0xc8, "ldis", 2,
744 0xca, "stis", -2,
745 0, NULL, 0
746 };
747
748 if (mem_tab == NULL)
749 {
750 mem_tab = (struct tabent *) xmalloc (MEM_SIZ);
751 memset (mem_tab, '\0', MEM_SIZ);
752 for (i = 0; mem_init[i].opcode != 0; i++)
753 {
754 j = mem_init[i].opcode - MEM_MIN;
755 mem_tab[j].name = mem_init[i].name;
756 mem_tab[j].numops = mem_init[i].numops;
757 }
758 }
759
760 i = ((word1 >> 24) & 0xff) - MEM_MIN;
761 mode = (word1 >> 10) & 0xf;
762
763 if ((mem_tab[i].name != NULL) /* Valid instruction */
764 && ((mode == 5) || (mode >= 12)))
765 { /* With 32-bit displacement */
766 len = 8;
767 }
768 else
769 {
770 len = 4;
771 }
772
773 if (noprint)
774 {
775 return len;
776 }
777 internal_error (__FILE__, __LINE__, "failed internal consistency check");
778 }
779
780 /* Read the i960 instruction at 'memaddr' and return the address of
781 the next instruction after that, or 0 if 'memaddr' is not the
782 address of a valid instruction. The first word of the instruction
783 is stored at 'pword1', and the second word, if any, is stored at
784 'pword2'. */
785
786 static CORE_ADDR
787 next_insn (CORE_ADDR memaddr, unsigned int *pword1, unsigned int *pword2)
788 {
789 int len;
790 char buf[8];
791
792 /* Read the two (potential) words of the instruction at once,
793 to eliminate the overhead of two calls to read_memory ().
794 FIXME: Loses if the first one is readable but the second is not
795 (e.g. last word of the segment). */
796
797 read_memory (memaddr, buf, 8);
798 *pword1 = extract_unsigned_integer (buf, 4);
799 *pword2 = extract_unsigned_integer (buf + 4, 4);
800
801 /* Divide instruction set into classes based on high 4 bits of opcode */
802
803 switch ((*pword1 >> 28) & 0xf)
804 {
805 case 0x0:
806 case 0x1: /* ctrl */
807
808 case 0x2:
809 case 0x3: /* cobr */
810
811 case 0x5:
812 case 0x6:
813 case 0x7: /* reg */
814 len = 4;
815 break;
816
817 case 0x8:
818 case 0x9:
819 case 0xa:
820 case 0xb:
821 case 0xc:
822 len = mem (memaddr, *pword1, *pword2, 1);
823 break;
824
825 default: /* invalid instruction */
826 len = 0;
827 break;
828 }
829
830 if (len)
831 return memaddr + len;
832 else
833 return 0;
834 }
835
836 /* 'start_frame' is a variable in the MON960 runtime startup routine
837 that contains the frame pointer of the 'start' routine (the routine
838 that calls 'main'). By reading its contents out of remote memory,
839 we can tell where the frame chain ends: backtraces should halt before
840 they display this frame. */
841
842 int
843 mon960_frame_chain_valid (CORE_ADDR chain, struct frame_info *curframe)
844 {
845 struct symbol *sym;
846 struct minimal_symbol *msymbol;
847
848 /* crtmon960.o is an assembler module that is assumed to be linked
849 * first in an i80960 executable. It contains the true entry point;
850 * it performs startup up initialization and then calls 'main'.
851 *
852 * 'sf' is the name of a variable in crtmon960.o that is set
853 * during startup to the address of the first frame.
854 *
855 * 'a' is the address of that variable in 80960 memory.
856 */
857 static char sf[] = "start_frame";
858 CORE_ADDR a;
859
860
861 chain &= ~0x3f; /* Zero low 6 bits because previous frame pointers
862 contain return status info in them. */
863 if (chain == 0)
864 {
865 return 0;
866 }
867
868 sym = lookup_symbol (sf, 0, VAR_NAMESPACE, (int *) NULL,
869 (struct symtab **) NULL);
870 if (sym != 0)
871 {
872 a = SYMBOL_VALUE (sym);
873 }
874 else
875 {
876 msymbol = lookup_minimal_symbol (sf, NULL, NULL);
877 if (msymbol == NULL)
878 return 0;
879 a = SYMBOL_VALUE_ADDRESS (msymbol);
880 }
881
882 return (chain != read_memory_integer (a, 4));
883 }
884
885
886 void
887 _initialize_i960_tdep (void)
888 {
889 check_host ();
890
891 tm_print_insn = print_insn_i960;
892 }
This page took 0.085669 seconds and 3 git commands to generate.