* serial.h (SERIAL_SET_TTY_STATE): Comment return value.
[deliverable/binutils-gdb.git] / gdb / i960-tdep.c
1 /* Target-machine dependent code for the Intel 960
2 Copyright (C) 1991 Free Software Foundation, Inc.
3 Contributed by Intel Corporation.
4 examine_prologue and other parts contributed by Wind River Systems.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 /* Miscellaneous i80960-dependent routines.
23 Most are called from macros defined in "tm-i960.h". */
24
25 #include "defs.h"
26 #include <signal.h>
27 #include "symtab.h"
28 #include "value.h"
29 #include "frame.h"
30 #include "ieee-float.h"
31 #include "target.h"
32
33 /* Structure of i960 extended floating point format. */
34
35 const struct ext_format ext_format_i960 = {
36 /* tot sbyte smask expbyte manbyte */
37 12, 9, 0x80, 9,8, 4,0, /* i960 */
38 };
39
40 /* gdb960 is always running on a non-960 host. Check its characteristics.
41 This routine must be called as part of gdb initialization. */
42
43 static void
44 check_host()
45 {
46 int i;
47
48 static struct typestruct {
49 int hostsize; /* Size of type on host */
50 int i960size; /* Size of type on i960 */
51 char *typename; /* Name of type, for error msg */
52 } types[] = {
53 { sizeof(short), 2, "short" },
54 { sizeof(int), 4, "int" },
55 { sizeof(long), 4, "long" },
56 { sizeof(float), 4, "float" },
57 { sizeof(double), 8, "double" },
58 { sizeof(char *), 4, "pointer" },
59 };
60 #define TYPELEN (sizeof(types) / sizeof(struct typestruct))
61
62 /* Make sure that host type sizes are same as i960
63 */
64 for ( i = 0; i < TYPELEN; i++ ){
65 if ( types[i].hostsize != types[i].i960size ){
66 printf_unfiltered("sizeof(%s) != %d: PROCEED AT YOUR OWN RISK!\n",
67 types[i].typename, types[i].i960size );
68 }
69
70 }
71 }
72 \f
73 /* Examine an i960 function prologue, recording the addresses at which
74 registers are saved explicitly by the prologue code, and returning
75 the address of the first instruction after the prologue (but not
76 after the instruction at address LIMIT, as explained below).
77
78 LIMIT places an upper bound on addresses of the instructions to be
79 examined. If the prologue code scan reaches LIMIT, the scan is
80 aborted and LIMIT is returned. This is used, when examining the
81 prologue for the current frame, to keep examine_prologue () from
82 claiming that a given register has been saved when in fact the
83 instruction that saves it has not yet been executed. LIMIT is used
84 at other times to stop the scan when we hit code after the true
85 function prologue (e.g. for the first source line) which might
86 otherwise be mistaken for function prologue.
87
88 The format of the function prologue matched by this routine is
89 derived from examination of the source to gcc960 1.21, particularly
90 the routine i960_function_prologue (). A "regular expression" for
91 the function prologue is given below:
92
93 (lda LRn, g14
94 mov g14, g[0-7]
95 (mov 0, g14) | (lda 0, g14))?
96
97 (mov[qtl]? g[0-15], r[4-15])*
98 ((addo [1-31], sp, sp) | (lda n(sp), sp))?
99 (st[qtl]? g[0-15], n(fp))*
100
101 (cmpobne 0, g14, LFn
102 mov sp, g14
103 lda 0x30(sp), sp
104 LFn: stq g0, (g14)
105 stq g4, 0x10(g14)
106 stq g8, 0x20(g14))?
107
108 (st g14, n(fp))?
109 (mov g13,r[4-15])?
110 */
111
112 /* Macros for extracting fields from i960 instructions. */
113
114 #define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
115 #define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
116
117 #define REG_SRC1(insn) EXTRACT_FIELD (insn, 0, 5)
118 #define REG_SRC2(insn) EXTRACT_FIELD (insn, 14, 5)
119 #define REG_SRCDST(insn) EXTRACT_FIELD (insn, 19, 5)
120 #define MEM_SRCDST(insn) EXTRACT_FIELD (insn, 19, 5)
121 #define MEMA_OFFSET(insn) EXTRACT_FIELD (insn, 0, 12)
122
123 /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
124 is not the address of a valid instruction, the address of the next
125 instruction beyond ADDR otherwise. *PWORD1 receives the first word
126 of the instruction, and (for two-word instructions), *PWORD2 receives
127 the second. */
128
129 #define NEXT_PROLOGUE_INSN(addr, lim, pword1, pword2) \
130 (((addr) < (lim)) ? next_insn (addr, pword1, pword2) : 0)
131
132 static CORE_ADDR
133 examine_prologue (ip, limit, frame_addr, fsr)
134 register CORE_ADDR ip;
135 register CORE_ADDR limit;
136 FRAME_ADDR frame_addr;
137 struct frame_saved_regs *fsr;
138 {
139 register CORE_ADDR next_ip;
140 register int src, dst;
141 register unsigned int *pcode;
142 unsigned int insn1, insn2;
143 int size;
144 int within_leaf_prologue;
145 CORE_ADDR save_addr;
146 static unsigned int varargs_prologue_code [] =
147 {
148 0x3507a00c, /* cmpobne 0x0, g14, LFn */
149 0x5cf01601, /* mov sp, g14 */
150 0x8c086030, /* lda 0x30(sp), sp */
151 0xb2879000, /* LFn: stq g0, (g14) */
152 0xb2a7a010, /* stq g4, 0x10(g14) */
153 0xb2c7a020 /* stq g8, 0x20(g14) */
154 };
155
156 /* Accept a leaf procedure prologue code fragment if present.
157 Note that ip might point to either the leaf or non-leaf
158 entry point; we look for the non-leaf entry point first: */
159
160 within_leaf_prologue = 0;
161 if ((next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2))
162 && ((insn1 & 0xfffff000) == 0x8cf00000 /* lda LRx, g14 (MEMA) */
163 || (insn1 & 0xfffffc60) == 0x8cf03000)) /* lda LRx, g14 (MEMB) */
164 {
165 within_leaf_prologue = 1;
166 next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn1, &insn2);
167 }
168
169 /* Now look for the prologue code at a leaf entry point: */
170
171 if (next_ip
172 && (insn1 & 0xff87ffff) == 0x5c80161e /* mov g14, gx */
173 && REG_SRCDST (insn1) <= G0_REGNUM + 7)
174 {
175 within_leaf_prologue = 1;
176 if ((next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn1, &insn2))
177 && (insn1 == 0x8cf00000 /* lda 0, g14 */
178 || insn1 == 0x5cf01e00)) /* mov 0, g14 */
179 {
180 ip = next_ip;
181 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
182 within_leaf_prologue = 0;
183 }
184 }
185
186 /* If something that looks like the beginning of a leaf prologue
187 has been seen, but the remainder of the prologue is missing, bail.
188 We don't know what we've got. */
189
190 if (within_leaf_prologue)
191 return (ip);
192
193 /* Accept zero or more instances of "mov[qtl]? gx, ry", where y >= 4.
194 This may cause us to mistake the moving of a register
195 parameter to a local register for the saving of a callee-saved
196 register, but that can't be helped, since with the
197 "-fcall-saved" flag, any register can be made callee-saved. */
198
199 while (next_ip
200 && (insn1 & 0xfc802fb0) == 0x5c000610
201 && (dst = REG_SRCDST (insn1)) >= (R0_REGNUM + 4))
202 {
203 src = REG_SRC1 (insn1);
204 size = EXTRACT_FIELD (insn1, 24, 2) + 1;
205 save_addr = frame_addr + ((dst - R0_REGNUM) * 4);
206 while (size--)
207 {
208 fsr->regs[src++] = save_addr;
209 save_addr += 4;
210 }
211 ip = next_ip;
212 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
213 }
214
215 /* Accept an optional "addo n, sp, sp" or "lda n(sp), sp". */
216
217 if (next_ip &&
218 ((insn1 & 0xffffffe0) == 0x59084800 /* addo n, sp, sp */
219 || (insn1 & 0xfffff000) == 0x8c086000 /* lda n(sp), sp (MEMA) */
220 || (insn1 & 0xfffffc60) == 0x8c087400)) /* lda n(sp), sp (MEMB) */
221 {
222 ip = next_ip;
223 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
224 }
225
226 /* Accept zero or more instances of "st[qtl]? gx, n(fp)".
227 This may cause us to mistake the copying of a register
228 parameter to the frame for the saving of a callee-saved
229 register, but that can't be helped, since with the
230 "-fcall-saved" flag, any register can be made callee-saved.
231 We can, however, refuse to accept a save of register g14,
232 since that is matched explicitly below. */
233
234 while (next_ip &&
235 ((insn1 & 0xf787f000) == 0x9287e000 /* stl? gx, n(fp) (MEMA) */
236 || (insn1 & 0xf787fc60) == 0x9287f400 /* stl? gx, n(fp) (MEMB) */
237 || (insn1 & 0xef87f000) == 0xa287e000 /* st[tq] gx, n(fp) (MEMA) */
238 || (insn1 & 0xef87fc60) == 0xa287f400) /* st[tq] gx, n(fp) (MEMB) */
239 && ((src = MEM_SRCDST (insn1)) != G14_REGNUM))
240 {
241 save_addr = frame_addr + ((insn1 & BITMASK (12, 1))
242 ? insn2 : MEMA_OFFSET (insn1));
243 size = (insn1 & BITMASK (29, 1)) ? ((insn1 & BITMASK (28, 1)) ? 4 : 3)
244 : ((insn1 & BITMASK (27, 1)) ? 2 : 1);
245 while (size--)
246 {
247 fsr->regs[src++] = save_addr;
248 save_addr += 4;
249 }
250 ip = next_ip;
251 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
252 }
253
254 /* Accept the varargs prologue code if present. */
255
256 size = sizeof (varargs_prologue_code) / sizeof (int);
257 pcode = varargs_prologue_code;
258 while (size-- && next_ip && *pcode++ == insn1)
259 {
260 ip = next_ip;
261 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
262 }
263
264 /* Accept an optional "st g14, n(fp)". */
265
266 if (next_ip &&
267 ((insn1 & 0xfffff000) == 0x92f7e000 /* st g14, n(fp) (MEMA) */
268 || (insn1 & 0xfffffc60) == 0x92f7f400)) /* st g14, n(fp) (MEMB) */
269 {
270 fsr->regs[G14_REGNUM] = frame_addr + ((insn1 & BITMASK (12, 1))
271 ? insn2 : MEMA_OFFSET (insn1));
272 ip = next_ip;
273 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
274 }
275
276 /* Accept zero or one instance of "mov g13, ry", where y >= 4.
277 This is saving the address where a struct should be returned. */
278
279 if (next_ip
280 && (insn1 & 0xff802fbf) == 0x5c00061d
281 && (dst = REG_SRCDST (insn1)) >= (R0_REGNUM + 4))
282 {
283 save_addr = frame_addr + ((dst - R0_REGNUM) * 4);
284 fsr->regs[G0_REGNUM+13] = save_addr;
285 ip = next_ip;
286 #if 0 /* We'll need this once there is a subsequent instruction examined. */
287 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
288 #endif
289 }
290
291 return (ip);
292 }
293
294 /* Given an ip value corresponding to the start of a function,
295 return the ip of the first instruction after the function
296 prologue. */
297
298 CORE_ADDR
299 skip_prologue (ip)
300 CORE_ADDR (ip);
301 {
302 struct frame_saved_regs saved_regs_dummy;
303 struct symtab_and_line sal;
304 CORE_ADDR limit;
305
306 sal = find_pc_line (ip, 0);
307 limit = (sal.end) ? sal.end : 0xffffffff;
308
309 return (examine_prologue (ip, limit, (FRAME_ADDR) 0, &saved_regs_dummy));
310 }
311
312 /* Put here the code to store, into a struct frame_saved_regs,
313 the addresses of the saved registers of frame described by FRAME_INFO.
314 This includes special registers such as pc and fp saved in special
315 ways in the stack frame. sp is even more special:
316 the address we return for it IS the sp for the next frame.
317
318 We cache the result of doing this in the frame_cache_obstack, since
319 it is fairly expensive. */
320
321 void
322 frame_find_saved_regs (fi, fsr)
323 struct frame_info *fi;
324 struct frame_saved_regs *fsr;
325 {
326 register CORE_ADDR next_addr;
327 register CORE_ADDR *saved_regs;
328 register int regnum;
329 register struct frame_saved_regs *cache_fsr;
330 extern struct obstack frame_cache_obstack;
331 CORE_ADDR ip;
332 struct symtab_and_line sal;
333 CORE_ADDR limit;
334
335 if (!fi->fsr)
336 {
337 cache_fsr = (struct frame_saved_regs *)
338 obstack_alloc (&frame_cache_obstack,
339 sizeof (struct frame_saved_regs));
340 memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
341 fi->fsr = cache_fsr;
342
343 /* Find the start and end of the function prologue. If the PC
344 is in the function prologue, we only consider the part that
345 has executed already. */
346
347 ip = get_pc_function_start (fi->pc);
348 sal = find_pc_line (ip, 0);
349 limit = (sal.end && sal.end < fi->pc) ? sal.end: fi->pc;
350
351 examine_prologue (ip, limit, fi->frame, cache_fsr);
352
353 /* Record the addresses at which the local registers are saved.
354 Strictly speaking, we should only do this for non-leaf procedures,
355 but no one will ever look at these values if it is a leaf procedure,
356 since local registers are always caller-saved. */
357
358 next_addr = (CORE_ADDR) fi->frame;
359 saved_regs = cache_fsr->regs;
360 for (regnum = R0_REGNUM; regnum <= R15_REGNUM; regnum++)
361 {
362 *saved_regs++ = next_addr;
363 next_addr += 4;
364 }
365
366 cache_fsr->regs[FP_REGNUM] = cache_fsr->regs[PFP_REGNUM];
367 }
368
369 *fsr = *fi->fsr;
370
371 /* Fetch the value of the sp from memory every time, since it
372 is conceivable that it has changed since the cache was flushed.
373 This unfortunately undoes much of the savings from caching the
374 saved register values. I suggest adding an argument to
375 get_frame_saved_regs () specifying the register number we're
376 interested in (or -1 for all registers). This would be passed
377 through to FRAME_FIND_SAVED_REGS (), permitting more efficient
378 computation of saved register addresses (e.g., on the i960,
379 we don't have to examine the prologue to find local registers).
380 -- markf@wrs.com
381 FIXME, we don't need to refetch this, since the cache is cleared
382 every time the child process is restarted. If GDB itself
383 modifies SP, it has to clear the cache by hand (does it?). -gnu */
384
385 fsr->regs[SP_REGNUM] = read_memory_integer (fsr->regs[SP_REGNUM], 4);
386 }
387
388 /* Return the address of the argument block for the frame
389 described by FI. Returns 0 if the address is unknown. */
390
391 CORE_ADDR
392 frame_args_address (fi, must_be_correct)
393 struct frame_info *fi;
394 {
395 register FRAME frame;
396 struct frame_saved_regs fsr;
397 CORE_ADDR ap;
398
399 /* If g14 was saved in the frame by the function prologue code, return
400 the saved value. If the frame is current and we are being sloppy,
401 return the value of g14. Otherwise, return zero. */
402
403 frame = FRAME_INFO_ID (fi);
404 get_frame_saved_regs (fi, &fsr);
405 if (fsr.regs[G14_REGNUM])
406 ap = read_memory_integer (fsr.regs[G14_REGNUM],4);
407 else {
408 if (must_be_correct)
409 return 0; /* Don't cache this result */
410 if (get_next_frame (frame))
411 ap = 0;
412 else
413 ap = read_register (G14_REGNUM);
414 if (ap == 0)
415 ap = fi->frame;
416 }
417 fi->arg_pointer = ap; /* Cache it for next time */
418 return ap;
419 }
420
421 /* Return the address of the return struct for the frame
422 described by FI. Returns 0 if the address is unknown. */
423
424 CORE_ADDR
425 frame_struct_result_address (fi)
426 struct frame_info *fi;
427 {
428 register FRAME frame;
429 struct frame_saved_regs fsr;
430 CORE_ADDR ap;
431
432 /* If the frame is non-current, check to see if g14 was saved in the
433 frame by the function prologue code; return the saved value if so,
434 zero otherwise. If the frame is current, return the value of g14.
435
436 FIXME, shouldn't this use the saved value as long as we are past
437 the function prologue, and only use the current value if we have
438 no saved value and are at TOS? -- gnu@cygnus.com */
439
440 frame = FRAME_INFO_ID (fi);
441 if (get_next_frame (frame)) {
442 get_frame_saved_regs (fi, &fsr);
443 if (fsr.regs[G13_REGNUM])
444 ap = read_memory_integer (fsr.regs[G13_REGNUM],4);
445 else
446 ap = 0;
447 } else {
448 ap = read_register (G13_REGNUM);
449 }
450 return ap;
451 }
452
453 /* Return address to which the currently executing leafproc will return,
454 or 0 if ip is not in a leafproc (or if we can't tell if it is).
455
456 Do this by finding the starting address of the routine in which ip lies.
457 If the instruction there is "mov g14, gx" (where x is in [0,7]), this
458 is a leafproc and the return address is in register gx. Well, this is
459 true unless the return address points at a RET instruction in the current
460 procedure, which indicates that we have a 'dual entry' routine that
461 has been entered through the CALL entry point. */
462
463 CORE_ADDR
464 leafproc_return (ip)
465 CORE_ADDR ip; /* ip from currently executing function */
466 {
467 register struct minimal_symbol *msymbol;
468 char *p;
469 int dst;
470 unsigned int insn1, insn2;
471 CORE_ADDR return_addr;
472
473 if ((msymbol = lookup_minimal_symbol_by_pc (ip)) != NULL)
474 {
475 if ((p = strchr(SYMBOL_NAME (msymbol), '.')) && STREQ (p, ".lf"))
476 {
477 if (next_insn (SYMBOL_VALUE_ADDRESS (msymbol), &insn1, &insn2)
478 && (insn1 & 0xff87ffff) == 0x5c80161e /* mov g14, gx */
479 && (dst = REG_SRCDST (insn1)) <= G0_REGNUM + 7)
480 {
481 /* Get the return address. If the "mov g14, gx"
482 instruction hasn't been executed yet, read
483 the return address from g14; otherwise, read it
484 from the register into which g14 was moved. */
485
486 return_addr =
487 read_register ((ip == SYMBOL_VALUE_ADDRESS (msymbol))
488 ? G14_REGNUM : dst);
489
490 /* We know we are in a leaf procedure, but we don't know
491 whether the caller actually did a "bal" to the ".lf"
492 entry point, or a normal "call" to the non-leaf entry
493 point one instruction before. In the latter case, the
494 return address will be the address of a "ret"
495 instruction within the procedure itself. We test for
496 this below. */
497
498 if (!next_insn (return_addr, &insn1, &insn2)
499 || (insn1 & 0xff000000) != 0xa000000 /* ret */
500 || lookup_minimal_symbol_by_pc (return_addr) != msymbol)
501 return (return_addr);
502 }
503 }
504 }
505
506 return (0);
507 }
508
509 /* Immediately after a function call, return the saved pc.
510 Can't go through the frames for this because on some machines
511 the new frame is not set up until the new function executes
512 some instructions.
513 On the i960, the frame *is* set up immediately after the call,
514 unless the function is a leaf procedure. */
515
516 CORE_ADDR
517 saved_pc_after_call (frame)
518 FRAME frame;
519 {
520 CORE_ADDR saved_pc;
521 CORE_ADDR get_frame_pc ();
522
523 saved_pc = leafproc_return (get_frame_pc (frame));
524 if (!saved_pc)
525 saved_pc = FRAME_SAVED_PC (frame);
526
527 return (saved_pc);
528 }
529
530 /* Discard from the stack the innermost frame,
531 restoring all saved registers. */
532
533 pop_frame ()
534 {
535 register struct frame_info *current_fi, *prev_fi;
536 register int i;
537 CORE_ADDR save_addr;
538 CORE_ADDR leaf_return_addr;
539 struct frame_saved_regs fsr;
540 char local_regs_buf[16 * 4];
541
542 current_fi = get_frame_info (get_current_frame ());
543
544 /* First, undo what the hardware does when we return.
545 If this is a non-leaf procedure, restore local registers from
546 the save area in the calling frame. Otherwise, load the return
547 address obtained from leafproc_return () into the rip. */
548
549 leaf_return_addr = leafproc_return (current_fi->pc);
550 if (!leaf_return_addr)
551 {
552 /* Non-leaf procedure. Restore local registers, incl IP. */
553 prev_fi = get_frame_info (get_prev_frame (FRAME_INFO_ID (current_fi)));
554 read_memory (prev_fi->frame, local_regs_buf, sizeof (local_regs_buf));
555 write_register_bytes (REGISTER_BYTE (R0_REGNUM), local_regs_buf,
556 sizeof (local_regs_buf));
557
558 /* Restore frame pointer. */
559 write_register (FP_REGNUM, prev_fi->frame);
560 }
561 else
562 {
563 /* Leaf procedure. Just restore the return address into the IP. */
564 write_register (RIP_REGNUM, leaf_return_addr);
565 }
566
567 /* Now restore any global regs that the current function had saved. */
568 get_frame_saved_regs (current_fi, &fsr);
569 for (i = G0_REGNUM; i < G14_REGNUM; i++)
570 {
571 if (save_addr = fsr.regs[i])
572 write_register (i, read_memory_integer (save_addr, 4));
573 }
574
575 /* Flush the frame cache, create a frame for the new innermost frame,
576 and make it the current frame. */
577
578 flush_cached_frames ();
579 set_current_frame (create_new_frame (read_register (FP_REGNUM), read_pc ()));
580 }
581
582 /* Given a 960 stop code (fault or trace), return the signal which
583 corresponds. */
584
585 enum target_signal
586 i960_fault_to_signal (fault)
587 int fault;
588 {
589 switch (fault)
590 {
591 case 0: return TARGET_SIGNAL_BUS; /* parallel fault */
592 case 1: return TARGET_SIGNAL_UNKNOWN;
593 case 2: return TARGET_SIGNAL_ILL; /* operation fault */
594 case 3: return TARGET_SIGNAL_FPE; /* arithmetic fault */
595 case 4: return TARGET_SIGNAL_FPE; /* floating point fault */
596
597 /* constraint fault. This appears not to distinguish between
598 a range constraint fault (which should be SIGFPE) and a privileged
599 fault (which should be SIGILL). */
600 case 5: return TARGET_SIGNAL_ILL;
601
602 case 6: return TARGET_SIGNAL_SEGV; /* virtual memory fault */
603
604 /* protection fault. This is for an out-of-range argument to
605 "calls". I guess it also could be SIGILL. */
606 case 7: return TARGET_SIGNAL_SEGV;
607
608 case 8: return TARGET_SIGNAL_BUS; /* machine fault */
609 case 9: return TARGET_SIGNAL_BUS; /* structural fault */
610 case 0xa: return TARGET_SIGNAL_ILL; /* type fault */
611 case 0xb: return TARGET_SIGNAL_UNKNOWN; /* reserved fault */
612 case 0xc: return TARGET_SIGNAL_BUS; /* process fault */
613 case 0xd: return TARGET_SIGNAL_SEGV; /* descriptor fault */
614 case 0xe: return TARGET_SIGNAL_BUS; /* event fault */
615 case 0xf: return TARGET_SIGNAL_UNKNOWN; /* reserved fault */
616 case 0x10: return TARGET_SIGNAL_TRAP; /* single-step trace */
617 case 0x11: return TARGET_SIGNAL_TRAP; /* branch trace */
618 case 0x12: return TARGET_SIGNAL_TRAP; /* call trace */
619 case 0x13: return TARGET_SIGNAL_TRAP; /* return trace */
620 case 0x14: return TARGET_SIGNAL_TRAP; /* pre-return trace */
621 case 0x15: return TARGET_SIGNAL_TRAP; /* supervisor call trace */
622 case 0x16: return TARGET_SIGNAL_TRAP; /* breakpoint trace */
623 default: return TARGET_SIGNAL_UNKNOWN;
624 }
625 }
626
627 /* Initialization stub */
628
629 void
630 _initialize_i960_tdep ()
631 {
632 check_host ();
633 }
This page took 0.041874 seconds and 4 git commands to generate.