CARP: Convert macro definitions of USE_STRUCT_CONVENTION into target
[deliverable/binutils-gdb.git] / gdb / i960-tdep.c
1 /* Target-machine dependent code for the Intel 960
2 Copyright 1991, 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
3 Contributed by Intel Corporation.
4 examine_prologue and other parts contributed by Wind River Systems.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "floatformat.h"
27 #include "target.h"
28 #include "gdbcore.h"
29
30 static CORE_ADDR next_insn PARAMS ((CORE_ADDR memaddr,
31 unsigned int *pword1,
32 unsigned int *pword2));
33
34 /* Does the specified function use the "struct returning" convention
35 or the "value returning" convention? The "value returning" convention
36 almost invariably returns the entire value in registers. The
37 "struct returning" convention often returns the entire value in
38 memory, and passes a pointer (out of or into the function) saying
39 where the value (is or should go).
40
41 Since this sometimes depends on whether it was compiled with GCC,
42 this is also an argument. This is used in call_function to build a
43 stack, and in value_being_returned to print return values.
44
45 On i960, a structure is returned in registers g0-g3, if it will fit.
46 If it's more than 16 bytes long, g13 pointed to it on entry. */
47
48 int
49 i960_use_struct_convention (gcc_p, type)
50 int gcc_p;
51 struct type *type;
52 {
53 return (TYPE_LENGTH (type) > 16);
54 }
55
56 /* gdb960 is always running on a non-960 host. Check its characteristics.
57 This routine must be called as part of gdb initialization. */
58
59 static void
60 check_host()
61 {
62 int i;
63
64 static struct typestruct {
65 int hostsize; /* Size of type on host */
66 int i960size; /* Size of type on i960 */
67 char *typename; /* Name of type, for error msg */
68 } types[] = {
69 { sizeof(short), 2, "short" },
70 { sizeof(int), 4, "int" },
71 { sizeof(long), 4, "long" },
72 { sizeof(float), 4, "float" },
73 { sizeof(double), 8, "double" },
74 { sizeof(char *), 4, "pointer" },
75 };
76 #define TYPELEN (sizeof(types) / sizeof(struct typestruct))
77
78 /* Make sure that host type sizes are same as i960
79 */
80 for ( i = 0; i < TYPELEN; i++ ){
81 if ( types[i].hostsize != types[i].i960size ){
82 printf_unfiltered("sizeof(%s) != %d: PROCEED AT YOUR OWN RISK!\n",
83 types[i].typename, types[i].i960size );
84 }
85
86 }
87 }
88 \f
89 /* Examine an i960 function prologue, recording the addresses at which
90 registers are saved explicitly by the prologue code, and returning
91 the address of the first instruction after the prologue (but not
92 after the instruction at address LIMIT, as explained below).
93
94 LIMIT places an upper bound on addresses of the instructions to be
95 examined. If the prologue code scan reaches LIMIT, the scan is
96 aborted and LIMIT is returned. This is used, when examining the
97 prologue for the current frame, to keep examine_prologue () from
98 claiming that a given register has been saved when in fact the
99 instruction that saves it has not yet been executed. LIMIT is used
100 at other times to stop the scan when we hit code after the true
101 function prologue (e.g. for the first source line) which might
102 otherwise be mistaken for function prologue.
103
104 The format of the function prologue matched by this routine is
105 derived from examination of the source to gcc960 1.21, particularly
106 the routine i960_function_prologue (). A "regular expression" for
107 the function prologue is given below:
108
109 (lda LRn, g14
110 mov g14, g[0-7]
111 (mov 0, g14) | (lda 0, g14))?
112
113 (mov[qtl]? g[0-15], r[4-15])*
114 ((addo [1-31], sp, sp) | (lda n(sp), sp))?
115 (st[qtl]? g[0-15], n(fp))*
116
117 (cmpobne 0, g14, LFn
118 mov sp, g14
119 lda 0x30(sp), sp
120 LFn: stq g0, (g14)
121 stq g4, 0x10(g14)
122 stq g8, 0x20(g14))?
123
124 (st g14, n(fp))?
125 (mov g13,r[4-15])?
126 */
127
128 /* Macros for extracting fields from i960 instructions. */
129
130 #define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
131 #define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
132
133 #define REG_SRC1(insn) EXTRACT_FIELD (insn, 0, 5)
134 #define REG_SRC2(insn) EXTRACT_FIELD (insn, 14, 5)
135 #define REG_SRCDST(insn) EXTRACT_FIELD (insn, 19, 5)
136 #define MEM_SRCDST(insn) EXTRACT_FIELD (insn, 19, 5)
137 #define MEMA_OFFSET(insn) EXTRACT_FIELD (insn, 0, 12)
138
139 /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
140 is not the address of a valid instruction, the address of the next
141 instruction beyond ADDR otherwise. *PWORD1 receives the first word
142 of the instruction, and (for two-word instructions), *PWORD2 receives
143 the second. */
144
145 #define NEXT_PROLOGUE_INSN(addr, lim, pword1, pword2) \
146 (((addr) < (lim)) ? next_insn (addr, pword1, pword2) : 0)
147
148 static CORE_ADDR
149 examine_prologue (ip, limit, frame_addr, fsr)
150 register CORE_ADDR ip;
151 register CORE_ADDR limit;
152 CORE_ADDR frame_addr;
153 struct frame_saved_regs *fsr;
154 {
155 register CORE_ADDR next_ip;
156 register int src, dst;
157 register unsigned int *pcode;
158 unsigned int insn1, insn2;
159 int size;
160 int within_leaf_prologue;
161 CORE_ADDR save_addr;
162 static unsigned int varargs_prologue_code [] =
163 {
164 0x3507a00c, /* cmpobne 0x0, g14, LFn */
165 0x5cf01601, /* mov sp, g14 */
166 0x8c086030, /* lda 0x30(sp), sp */
167 0xb2879000, /* LFn: stq g0, (g14) */
168 0xb2a7a010, /* stq g4, 0x10(g14) */
169 0xb2c7a020 /* stq g8, 0x20(g14) */
170 };
171
172 /* Accept a leaf procedure prologue code fragment if present.
173 Note that ip might point to either the leaf or non-leaf
174 entry point; we look for the non-leaf entry point first: */
175
176 within_leaf_prologue = 0;
177 if ((next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2))
178 && ((insn1 & 0xfffff000) == 0x8cf00000 /* lda LRx, g14 (MEMA) */
179 || (insn1 & 0xfffffc60) == 0x8cf03000)) /* lda LRx, g14 (MEMB) */
180 {
181 within_leaf_prologue = 1;
182 next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn1, &insn2);
183 }
184
185 /* Now look for the prologue code at a leaf entry point: */
186
187 if (next_ip
188 && (insn1 & 0xff87ffff) == 0x5c80161e /* mov g14, gx */
189 && REG_SRCDST (insn1) <= G0_REGNUM + 7)
190 {
191 within_leaf_prologue = 1;
192 if ((next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn1, &insn2))
193 && (insn1 == 0x8cf00000 /* lda 0, g14 */
194 || insn1 == 0x5cf01e00)) /* mov 0, g14 */
195 {
196 ip = next_ip;
197 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
198 within_leaf_prologue = 0;
199 }
200 }
201
202 /* If something that looks like the beginning of a leaf prologue
203 has been seen, but the remainder of the prologue is missing, bail.
204 We don't know what we've got. */
205
206 if (within_leaf_prologue)
207 return (ip);
208
209 /* Accept zero or more instances of "mov[qtl]? gx, ry", where y >= 4.
210 This may cause us to mistake the moving of a register
211 parameter to a local register for the saving of a callee-saved
212 register, but that can't be helped, since with the
213 "-fcall-saved" flag, any register can be made callee-saved. */
214
215 while (next_ip
216 && (insn1 & 0xfc802fb0) == 0x5c000610
217 && (dst = REG_SRCDST (insn1)) >= (R0_REGNUM + 4))
218 {
219 src = REG_SRC1 (insn1);
220 size = EXTRACT_FIELD (insn1, 24, 2) + 1;
221 save_addr = frame_addr + ((dst - R0_REGNUM) * 4);
222 while (size--)
223 {
224 fsr->regs[src++] = save_addr;
225 save_addr += 4;
226 }
227 ip = next_ip;
228 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
229 }
230
231 /* Accept an optional "addo n, sp, sp" or "lda n(sp), sp". */
232
233 if (next_ip &&
234 ((insn1 & 0xffffffe0) == 0x59084800 /* addo n, sp, sp */
235 || (insn1 & 0xfffff000) == 0x8c086000 /* lda n(sp), sp (MEMA) */
236 || (insn1 & 0xfffffc60) == 0x8c087400)) /* lda n(sp), sp (MEMB) */
237 {
238 ip = next_ip;
239 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
240 }
241
242 /* Accept zero or more instances of "st[qtl]? gx, n(fp)".
243 This may cause us to mistake the copying of a register
244 parameter to the frame for the saving of a callee-saved
245 register, but that can't be helped, since with the
246 "-fcall-saved" flag, any register can be made callee-saved.
247 We can, however, refuse to accept a save of register g14,
248 since that is matched explicitly below. */
249
250 while (next_ip &&
251 ((insn1 & 0xf787f000) == 0x9287e000 /* stl? gx, n(fp) (MEMA) */
252 || (insn1 & 0xf787fc60) == 0x9287f400 /* stl? gx, n(fp) (MEMB) */
253 || (insn1 & 0xef87f000) == 0xa287e000 /* st[tq] gx, n(fp) (MEMA) */
254 || (insn1 & 0xef87fc60) == 0xa287f400) /* st[tq] gx, n(fp) (MEMB) */
255 && ((src = MEM_SRCDST (insn1)) != G14_REGNUM))
256 {
257 save_addr = frame_addr + ((insn1 & BITMASK (12, 1))
258 ? insn2 : MEMA_OFFSET (insn1));
259 size = (insn1 & BITMASK (29, 1)) ? ((insn1 & BITMASK (28, 1)) ? 4 : 3)
260 : ((insn1 & BITMASK (27, 1)) ? 2 : 1);
261 while (size--)
262 {
263 fsr->regs[src++] = save_addr;
264 save_addr += 4;
265 }
266 ip = next_ip;
267 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
268 }
269
270 /* Accept the varargs prologue code if present. */
271
272 size = sizeof (varargs_prologue_code) / sizeof (int);
273 pcode = varargs_prologue_code;
274 while (size-- && next_ip && *pcode++ == insn1)
275 {
276 ip = next_ip;
277 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
278 }
279
280 /* Accept an optional "st g14, n(fp)". */
281
282 if (next_ip &&
283 ((insn1 & 0xfffff000) == 0x92f7e000 /* st g14, n(fp) (MEMA) */
284 || (insn1 & 0xfffffc60) == 0x92f7f400)) /* st g14, n(fp) (MEMB) */
285 {
286 fsr->regs[G14_REGNUM] = frame_addr + ((insn1 & BITMASK (12, 1))
287 ? insn2 : MEMA_OFFSET (insn1));
288 ip = next_ip;
289 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
290 }
291
292 /* Accept zero or one instance of "mov g13, ry", where y >= 4.
293 This is saving the address where a struct should be returned. */
294
295 if (next_ip
296 && (insn1 & 0xff802fbf) == 0x5c00061d
297 && (dst = REG_SRCDST (insn1)) >= (R0_REGNUM + 4))
298 {
299 save_addr = frame_addr + ((dst - R0_REGNUM) * 4);
300 fsr->regs[G0_REGNUM+13] = save_addr;
301 ip = next_ip;
302 #if 0 /* We'll need this once there is a subsequent instruction examined. */
303 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
304 #endif
305 }
306
307 return (ip);
308 }
309
310 /* Given an ip value corresponding to the start of a function,
311 return the ip of the first instruction after the function
312 prologue. */
313
314 CORE_ADDR
315 skip_prologue (ip)
316 CORE_ADDR (ip);
317 {
318 struct frame_saved_regs saved_regs_dummy;
319 struct symtab_and_line sal;
320 CORE_ADDR limit;
321
322 sal = find_pc_line (ip, 0);
323 limit = (sal.end) ? sal.end : 0xffffffff;
324
325 return (examine_prologue (ip, limit, (CORE_ADDR) 0, &saved_regs_dummy));
326 }
327
328 /* Put here the code to store, into a struct frame_saved_regs,
329 the addresses of the saved registers of frame described by FRAME_INFO.
330 This includes special registers such as pc and fp saved in special
331 ways in the stack frame. sp is even more special:
332 the address we return for it IS the sp for the next frame.
333
334 We cache the result of doing this in the frame_cache_obstack, since
335 it is fairly expensive. */
336
337 void
338 frame_find_saved_regs (fi, fsr)
339 struct frame_info *fi;
340 struct frame_saved_regs *fsr;
341 {
342 register CORE_ADDR next_addr;
343 register CORE_ADDR *saved_regs;
344 register int regnum;
345 register struct frame_saved_regs *cache_fsr;
346 extern struct obstack frame_cache_obstack;
347 CORE_ADDR ip;
348 struct symtab_and_line sal;
349 CORE_ADDR limit;
350
351 if (!fi->fsr)
352 {
353 cache_fsr = (struct frame_saved_regs *)
354 obstack_alloc (&frame_cache_obstack,
355 sizeof (struct frame_saved_regs));
356 memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
357 fi->fsr = cache_fsr;
358
359 /* Find the start and end of the function prologue. If the PC
360 is in the function prologue, we only consider the part that
361 has executed already. */
362
363 ip = get_pc_function_start (fi->pc);
364 sal = find_pc_line (ip, 0);
365 limit = (sal.end && sal.end < fi->pc) ? sal.end: fi->pc;
366
367 examine_prologue (ip, limit, fi->frame, cache_fsr);
368
369 /* Record the addresses at which the local registers are saved.
370 Strictly speaking, we should only do this for non-leaf procedures,
371 but no one will ever look at these values if it is a leaf procedure,
372 since local registers are always caller-saved. */
373
374 next_addr = (CORE_ADDR) fi->frame;
375 saved_regs = cache_fsr->regs;
376 for (regnum = R0_REGNUM; regnum <= R15_REGNUM; regnum++)
377 {
378 *saved_regs++ = next_addr;
379 next_addr += 4;
380 }
381
382 cache_fsr->regs[FP_REGNUM] = cache_fsr->regs[PFP_REGNUM];
383 }
384
385 *fsr = *fi->fsr;
386
387 /* Fetch the value of the sp from memory every time, since it
388 is conceivable that it has changed since the cache was flushed.
389 This unfortunately undoes much of the savings from caching the
390 saved register values. I suggest adding an argument to
391 get_frame_saved_regs () specifying the register number we're
392 interested in (or -1 for all registers). This would be passed
393 through to FRAME_FIND_SAVED_REGS (), permitting more efficient
394 computation of saved register addresses (e.g., on the i960,
395 we don't have to examine the prologue to find local registers).
396 -- markf@wrs.com
397 FIXME, we don't need to refetch this, since the cache is cleared
398 every time the child process is restarted. If GDB itself
399 modifies SP, it has to clear the cache by hand (does it?). -gnu */
400
401 fsr->regs[SP_REGNUM] = read_memory_integer (fsr->regs[SP_REGNUM], 4);
402 }
403
404 /* Return the address of the argument block for the frame
405 described by FI. Returns 0 if the address is unknown. */
406
407 CORE_ADDR
408 frame_args_address (fi, must_be_correct)
409 struct frame_info *fi;
410 {
411 struct frame_saved_regs fsr;
412 CORE_ADDR ap;
413
414 /* If g14 was saved in the frame by the function prologue code, return
415 the saved value. If the frame is current and we are being sloppy,
416 return the value of g14. Otherwise, return zero. */
417
418 get_frame_saved_regs (fi, &fsr);
419 if (fsr.regs[G14_REGNUM])
420 ap = read_memory_integer (fsr.regs[G14_REGNUM],4);
421 else
422 {
423 if (must_be_correct)
424 return 0; /* Don't cache this result */
425 if (get_next_frame (fi))
426 ap = 0;
427 else
428 ap = read_register (G14_REGNUM);
429 if (ap == 0)
430 ap = fi->frame;
431 }
432 fi->arg_pointer = ap; /* Cache it for next time */
433 return ap;
434 }
435
436 /* Return the address of the return struct for the frame
437 described by FI. Returns 0 if the address is unknown. */
438
439 CORE_ADDR
440 frame_struct_result_address (fi)
441 struct frame_info *fi;
442 {
443 struct frame_saved_regs fsr;
444 CORE_ADDR ap;
445
446 /* If the frame is non-current, check to see if g14 was saved in the
447 frame by the function prologue code; return the saved value if so,
448 zero otherwise. If the frame is current, return the value of g14.
449
450 FIXME, shouldn't this use the saved value as long as we are past
451 the function prologue, and only use the current value if we have
452 no saved value and are at TOS? -- gnu@cygnus.com */
453
454 if (get_next_frame (fi))
455 {
456 get_frame_saved_regs (fi, &fsr);
457 if (fsr.regs[G13_REGNUM])
458 ap = read_memory_integer (fsr.regs[G13_REGNUM],4);
459 else
460 ap = 0;
461 }
462 else
463 ap = read_register (G13_REGNUM);
464
465 return ap;
466 }
467
468 /* Return address to which the currently executing leafproc will return,
469 or 0 if ip is not in a leafproc (or if we can't tell if it is).
470
471 Do this by finding the starting address of the routine in which ip lies.
472 If the instruction there is "mov g14, gx" (where x is in [0,7]), this
473 is a leafproc and the return address is in register gx. Well, this is
474 true unless the return address points at a RET instruction in the current
475 procedure, which indicates that we have a 'dual entry' routine that
476 has been entered through the CALL entry point. */
477
478 CORE_ADDR
479 leafproc_return (ip)
480 CORE_ADDR ip; /* ip from currently executing function */
481 {
482 register struct minimal_symbol *msymbol;
483 char *p;
484 int dst;
485 unsigned int insn1, insn2;
486 CORE_ADDR return_addr;
487
488 if ((msymbol = lookup_minimal_symbol_by_pc (ip)) != NULL)
489 {
490 if ((p = strchr(SYMBOL_NAME (msymbol), '.')) && STREQ (p, ".lf"))
491 {
492 if (next_insn (SYMBOL_VALUE_ADDRESS (msymbol), &insn1, &insn2)
493 && (insn1 & 0xff87ffff) == 0x5c80161e /* mov g14, gx */
494 && (dst = REG_SRCDST (insn1)) <= G0_REGNUM + 7)
495 {
496 /* Get the return address. If the "mov g14, gx"
497 instruction hasn't been executed yet, read
498 the return address from g14; otherwise, read it
499 from the register into which g14 was moved. */
500
501 return_addr =
502 read_register ((ip == SYMBOL_VALUE_ADDRESS (msymbol))
503 ? G14_REGNUM : dst);
504
505 /* We know we are in a leaf procedure, but we don't know
506 whether the caller actually did a "bal" to the ".lf"
507 entry point, or a normal "call" to the non-leaf entry
508 point one instruction before. In the latter case, the
509 return address will be the address of a "ret"
510 instruction within the procedure itself. We test for
511 this below. */
512
513 if (!next_insn (return_addr, &insn1, &insn2)
514 || (insn1 & 0xff000000) != 0xa000000 /* ret */
515 || lookup_minimal_symbol_by_pc (return_addr) != msymbol)
516 return (return_addr);
517 }
518 }
519 }
520
521 return (0);
522 }
523
524 /* Immediately after a function call, return the saved pc.
525 Can't go through the frames for this because on some machines
526 the new frame is not set up until the new function executes
527 some instructions.
528 On the i960, the frame *is* set up immediately after the call,
529 unless the function is a leaf procedure. */
530
531 CORE_ADDR
532 saved_pc_after_call (frame)
533 struct frame_info *frame;
534 {
535 CORE_ADDR saved_pc;
536
537 saved_pc = leafproc_return (get_frame_pc (frame));
538 if (!saved_pc)
539 saved_pc = FRAME_SAVED_PC (frame);
540
541 return saved_pc;
542 }
543
544 /* Discard from the stack the innermost frame,
545 restoring all saved registers. */
546
547 pop_frame ()
548 {
549 register struct frame_info *current_fi, *prev_fi;
550 register int i;
551 CORE_ADDR save_addr;
552 CORE_ADDR leaf_return_addr;
553 struct frame_saved_regs fsr;
554 char local_regs_buf[16 * 4];
555
556 current_fi = get_current_frame ();
557
558 /* First, undo what the hardware does when we return.
559 If this is a non-leaf procedure, restore local registers from
560 the save area in the calling frame. Otherwise, load the return
561 address obtained from leafproc_return () into the rip. */
562
563 leaf_return_addr = leafproc_return (current_fi->pc);
564 if (!leaf_return_addr)
565 {
566 /* Non-leaf procedure. Restore local registers, incl IP. */
567 prev_fi = get_prev_frame (current_fi);
568 read_memory (prev_fi->frame, local_regs_buf, sizeof (local_regs_buf));
569 write_register_bytes (REGISTER_BYTE (R0_REGNUM), local_regs_buf,
570 sizeof (local_regs_buf));
571
572 /* Restore frame pointer. */
573 write_register (FP_REGNUM, prev_fi->frame);
574 }
575 else
576 {
577 /* Leaf procedure. Just restore the return address into the IP. */
578 write_register (RIP_REGNUM, leaf_return_addr);
579 }
580
581 /* Now restore any global regs that the current function had saved. */
582 get_frame_saved_regs (current_fi, &fsr);
583 for (i = G0_REGNUM; i < G14_REGNUM; i++)
584 {
585 if (save_addr = fsr.regs[i])
586 write_register (i, read_memory_integer (save_addr, 4));
587 }
588
589 /* Flush the frame cache, create a frame for the new innermost frame,
590 and make it the current frame. */
591
592 flush_cached_frames ();
593 }
594
595 /* Given a 960 stop code (fault or trace), return the signal which
596 corresponds. */
597
598 enum target_signal
599 i960_fault_to_signal (fault)
600 int fault;
601 {
602 switch (fault)
603 {
604 case 0: return TARGET_SIGNAL_BUS; /* parallel fault */
605 case 1: return TARGET_SIGNAL_UNKNOWN;
606 case 2: return TARGET_SIGNAL_ILL; /* operation fault */
607 case 3: return TARGET_SIGNAL_FPE; /* arithmetic fault */
608 case 4: return TARGET_SIGNAL_FPE; /* floating point fault */
609
610 /* constraint fault. This appears not to distinguish between
611 a range constraint fault (which should be SIGFPE) and a privileged
612 fault (which should be SIGILL). */
613 case 5: return TARGET_SIGNAL_ILL;
614
615 case 6: return TARGET_SIGNAL_SEGV; /* virtual memory fault */
616
617 /* protection fault. This is for an out-of-range argument to
618 "calls". I guess it also could be SIGILL. */
619 case 7: return TARGET_SIGNAL_SEGV;
620
621 case 8: return TARGET_SIGNAL_BUS; /* machine fault */
622 case 9: return TARGET_SIGNAL_BUS; /* structural fault */
623 case 0xa: return TARGET_SIGNAL_ILL; /* type fault */
624 case 0xb: return TARGET_SIGNAL_UNKNOWN; /* reserved fault */
625 case 0xc: return TARGET_SIGNAL_BUS; /* process fault */
626 case 0xd: return TARGET_SIGNAL_SEGV; /* descriptor fault */
627 case 0xe: return TARGET_SIGNAL_BUS; /* event fault */
628 case 0xf: return TARGET_SIGNAL_UNKNOWN; /* reserved fault */
629 case 0x10: return TARGET_SIGNAL_TRAP; /* single-step trace */
630 case 0x11: return TARGET_SIGNAL_TRAP; /* branch trace */
631 case 0x12: return TARGET_SIGNAL_TRAP; /* call trace */
632 case 0x13: return TARGET_SIGNAL_TRAP; /* return trace */
633 case 0x14: return TARGET_SIGNAL_TRAP; /* pre-return trace */
634 case 0x15: return TARGET_SIGNAL_TRAP; /* supervisor call trace */
635 case 0x16: return TARGET_SIGNAL_TRAP; /* breakpoint trace */
636 default: return TARGET_SIGNAL_UNKNOWN;
637 }
638 }
639
640 /****************************************/
641 /* MEM format */
642 /****************************************/
643
644 struct tabent {
645 char *name;
646 char numops;
647 };
648
649 static int /* returns instruction length: 4 or 8 */
650 mem( memaddr, word1, word2, noprint )
651 unsigned long memaddr;
652 unsigned long word1, word2;
653 int noprint; /* If TRUE, return instruction length, but
654 don't output any text. */
655 {
656 int i, j;
657 int len;
658 int mode;
659 int offset;
660 const char *reg1, *reg2, *reg3;
661
662 /* This lookup table is too sparse to make it worth typing in, but not
663 * so large as to make a sparse array necessary. We allocate the
664 * table at runtime, initialize all entries to empty, and copy the
665 * real ones in from an initialization table.
666 *
667 * NOTE: In this table, the meaning of 'numops' is:
668 * 1: single operand
669 * 2: 2 operands, load instruction
670 * -2: 2 operands, store instruction
671 */
672 static struct tabent *mem_tab = NULL;
673 /* Opcodes of 0x8X, 9X, aX, bX, and cX must be in the table. */
674 #define MEM_MIN 0x80
675 #define MEM_MAX 0xcf
676 #define MEM_SIZ ((MEM_MAX-MEM_MIN+1) * sizeof(struct tabent))
677
678 static struct { int opcode; char *name; char numops; } mem_init[] = {
679 0x80, "ldob", 2,
680 0x82, "stob", -2,
681 0x84, "bx", 1,
682 0x85, "balx", 2,
683 0x86, "callx", 1,
684 0x88, "ldos", 2,
685 0x8a, "stos", -2,
686 0x8c, "lda", 2,
687 0x90, "ld", 2,
688 0x92, "st", -2,
689 0x98, "ldl", 2,
690 0x9a, "stl", -2,
691 0xa0, "ldt", 2,
692 0xa2, "stt", -2,
693 0xb0, "ldq", 2,
694 0xb2, "stq", -2,
695 0xc0, "ldib", 2,
696 0xc2, "stib", -2,
697 0xc8, "ldis", 2,
698 0xca, "stis", -2,
699 0, NULL, 0
700 };
701
702 if ( mem_tab == NULL ){
703 mem_tab = (struct tabent *) xmalloc( MEM_SIZ );
704 memset( mem_tab, '\0', MEM_SIZ );
705 for ( i = 0; mem_init[i].opcode != 0; i++ ){
706 j = mem_init[i].opcode - MEM_MIN;
707 mem_tab[j].name = mem_init[i].name;
708 mem_tab[j].numops = mem_init[i].numops;
709 }
710 }
711
712 i = ((word1 >> 24) & 0xff) - MEM_MIN;
713 mode = (word1 >> 10) & 0xf;
714
715 if ( (mem_tab[i].name != NULL) /* Valid instruction */
716 && ((mode == 5) || (mode >=12)) ){ /* With 32-bit displacement */
717 len = 8;
718 } else {
719 len = 4;
720 }
721
722 if ( noprint ){
723 return len;
724 }
725 abort ();
726 }
727
728 /* Read the i960 instruction at 'memaddr' and return the address of
729 the next instruction after that, or 0 if 'memaddr' is not the
730 address of a valid instruction. The first word of the instruction
731 is stored at 'pword1', and the second word, if any, is stored at
732 'pword2'. */
733
734 static CORE_ADDR
735 next_insn (memaddr, pword1, pword2)
736 unsigned int *pword1, *pword2;
737 CORE_ADDR memaddr;
738 {
739 int len;
740 char buf[8];
741
742 /* Read the two (potential) words of the instruction at once,
743 to eliminate the overhead of two calls to read_memory ().
744 FIXME: Loses if the first one is readable but the second is not
745 (e.g. last word of the segment). */
746
747 read_memory (memaddr, buf, 8);
748 *pword1 = extract_unsigned_integer (buf, 4);
749 *pword2 = extract_unsigned_integer (buf + 4, 4);
750
751 /* Divide instruction set into classes based on high 4 bits of opcode*/
752
753 switch ((*pword1 >> 28) & 0xf)
754 {
755 case 0x0:
756 case 0x1: /* ctrl */
757
758 case 0x2:
759 case 0x3: /* cobr */
760
761 case 0x5:
762 case 0x6:
763 case 0x7: /* reg */
764 len = 4;
765 break;
766
767 case 0x8:
768 case 0x9:
769 case 0xa:
770 case 0xb:
771 case 0xc:
772 len = mem (memaddr, *pword1, *pword2, 1);
773 break;
774
775 default: /* invalid instruction */
776 len = 0;
777 break;
778 }
779
780 if (len)
781 return memaddr + len;
782 else
783 return 0;
784 }
785
786 /* 'start_frame' is a variable in the MON960 runtime startup routine
787 that contains the frame pointer of the 'start' routine (the routine
788 that calls 'main'). By reading its contents out of remote memory,
789 we can tell where the frame chain ends: backtraces should halt before
790 they display this frame. */
791
792 int
793 mon960_frame_chain_valid (chain, curframe)
794 unsigned int chain;
795 struct frame_info *curframe;
796 {
797 struct symbol *sym;
798 struct minimal_symbol *msymbol;
799
800 /* crtmon960.o is an assembler module that is assumed to be linked
801 * first in an i80960 executable. It contains the true entry point;
802 * it performs startup up initialization and then calls 'main'.
803 *
804 * 'sf' is the name of a variable in crtmon960.o that is set
805 * during startup to the address of the first frame.
806 *
807 * 'a' is the address of that variable in 80960 memory.
808 */
809 static char sf[] = "start_frame";
810 CORE_ADDR a;
811
812
813 chain &= ~0x3f; /* Zero low 6 bits because previous frame pointers
814 contain return status info in them. */
815 if ( chain == 0 ){
816 return 0;
817 }
818
819 sym = lookup_symbol(sf, 0, VAR_NAMESPACE, (int *)NULL,
820 (struct symtab **)NULL);
821 if ( sym != 0 ){
822 a = SYMBOL_VALUE (sym);
823 } else {
824 msymbol = lookup_minimal_symbol (sf, NULL, NULL);
825 if (msymbol == NULL)
826 return 0;
827 a = SYMBOL_VALUE_ADDRESS (msymbol);
828 }
829
830 return ( chain != read_memory_integer(a,4) );
831 }
832
833 void
834 _initialize_i960_tdep ()
835 {
836 check_host ();
837
838 tm_print_insn = print_insn_i960;
839 }
This page took 0.06594 seconds and 4 git commands to generate.