* elf.c (_bfd_elf_make_section_from_shdr): Only set SEC_DATA if
[deliverable/binutils-gdb.git] / gdb / i960-tdep.c
1 /* Target-machine dependent code for the Intel 960
2 Copyright (C) 1991 Free Software Foundation, Inc.
3 Contributed by Intel Corporation.
4 examine_prologue and other parts contributed by Wind River Systems.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 /* Miscellaneous i80960-dependent routines.
23 Most are called from macros defined in "tm-i960.h". */
24
25 #include "defs.h"
26 #include <signal.h>
27 #include "symtab.h"
28 #include "value.h"
29 #include "frame.h"
30 #include "floatformat.h"
31 #include "target.h"
32
33 /* gdb960 is always running on a non-960 host. Check its characteristics.
34 This routine must be called as part of gdb initialization. */
35
36 static void
37 check_host()
38 {
39 int i;
40
41 static struct typestruct {
42 int hostsize; /* Size of type on host */
43 int i960size; /* Size of type on i960 */
44 char *typename; /* Name of type, for error msg */
45 } types[] = {
46 { sizeof(short), 2, "short" },
47 { sizeof(int), 4, "int" },
48 { sizeof(long), 4, "long" },
49 { sizeof(float), 4, "float" },
50 { sizeof(double), 8, "double" },
51 { sizeof(char *), 4, "pointer" },
52 };
53 #define TYPELEN (sizeof(types) / sizeof(struct typestruct))
54
55 /* Make sure that host type sizes are same as i960
56 */
57 for ( i = 0; i < TYPELEN; i++ ){
58 if ( types[i].hostsize != types[i].i960size ){
59 printf_unfiltered("sizeof(%s) != %d: PROCEED AT YOUR OWN RISK!\n",
60 types[i].typename, types[i].i960size );
61 }
62
63 }
64 }
65 \f
66 /* Examine an i960 function prologue, recording the addresses at which
67 registers are saved explicitly by the prologue code, and returning
68 the address of the first instruction after the prologue (but not
69 after the instruction at address LIMIT, as explained below).
70
71 LIMIT places an upper bound on addresses of the instructions to be
72 examined. If the prologue code scan reaches LIMIT, the scan is
73 aborted and LIMIT is returned. This is used, when examining the
74 prologue for the current frame, to keep examine_prologue () from
75 claiming that a given register has been saved when in fact the
76 instruction that saves it has not yet been executed. LIMIT is used
77 at other times to stop the scan when we hit code after the true
78 function prologue (e.g. for the first source line) which might
79 otherwise be mistaken for function prologue.
80
81 The format of the function prologue matched by this routine is
82 derived from examination of the source to gcc960 1.21, particularly
83 the routine i960_function_prologue (). A "regular expression" for
84 the function prologue is given below:
85
86 (lda LRn, g14
87 mov g14, g[0-7]
88 (mov 0, g14) | (lda 0, g14))?
89
90 (mov[qtl]? g[0-15], r[4-15])*
91 ((addo [1-31], sp, sp) | (lda n(sp), sp))?
92 (st[qtl]? g[0-15], n(fp))*
93
94 (cmpobne 0, g14, LFn
95 mov sp, g14
96 lda 0x30(sp), sp
97 LFn: stq g0, (g14)
98 stq g4, 0x10(g14)
99 stq g8, 0x20(g14))?
100
101 (st g14, n(fp))?
102 (mov g13,r[4-15])?
103 */
104
105 /* Macros for extracting fields from i960 instructions. */
106
107 #define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
108 #define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
109
110 #define REG_SRC1(insn) EXTRACT_FIELD (insn, 0, 5)
111 #define REG_SRC2(insn) EXTRACT_FIELD (insn, 14, 5)
112 #define REG_SRCDST(insn) EXTRACT_FIELD (insn, 19, 5)
113 #define MEM_SRCDST(insn) EXTRACT_FIELD (insn, 19, 5)
114 #define MEMA_OFFSET(insn) EXTRACT_FIELD (insn, 0, 12)
115
116 /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
117 is not the address of a valid instruction, the address of the next
118 instruction beyond ADDR otherwise. *PWORD1 receives the first word
119 of the instruction, and (for two-word instructions), *PWORD2 receives
120 the second. */
121
122 #define NEXT_PROLOGUE_INSN(addr, lim, pword1, pword2) \
123 (((addr) < (lim)) ? next_insn (addr, pword1, pword2) : 0)
124
125 static CORE_ADDR
126 examine_prologue (ip, limit, frame_addr, fsr)
127 register CORE_ADDR ip;
128 register CORE_ADDR limit;
129 FRAME_ADDR frame_addr;
130 struct frame_saved_regs *fsr;
131 {
132 register CORE_ADDR next_ip;
133 register int src, dst;
134 register unsigned int *pcode;
135 unsigned int insn1, insn2;
136 int size;
137 int within_leaf_prologue;
138 CORE_ADDR save_addr;
139 static unsigned int varargs_prologue_code [] =
140 {
141 0x3507a00c, /* cmpobne 0x0, g14, LFn */
142 0x5cf01601, /* mov sp, g14 */
143 0x8c086030, /* lda 0x30(sp), sp */
144 0xb2879000, /* LFn: stq g0, (g14) */
145 0xb2a7a010, /* stq g4, 0x10(g14) */
146 0xb2c7a020 /* stq g8, 0x20(g14) */
147 };
148
149 /* Accept a leaf procedure prologue code fragment if present.
150 Note that ip might point to either the leaf or non-leaf
151 entry point; we look for the non-leaf entry point first: */
152
153 within_leaf_prologue = 0;
154 if ((next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2))
155 && ((insn1 & 0xfffff000) == 0x8cf00000 /* lda LRx, g14 (MEMA) */
156 || (insn1 & 0xfffffc60) == 0x8cf03000)) /* lda LRx, g14 (MEMB) */
157 {
158 within_leaf_prologue = 1;
159 next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn1, &insn2);
160 }
161
162 /* Now look for the prologue code at a leaf entry point: */
163
164 if (next_ip
165 && (insn1 & 0xff87ffff) == 0x5c80161e /* mov g14, gx */
166 && REG_SRCDST (insn1) <= G0_REGNUM + 7)
167 {
168 within_leaf_prologue = 1;
169 if ((next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn1, &insn2))
170 && (insn1 == 0x8cf00000 /* lda 0, g14 */
171 || insn1 == 0x5cf01e00)) /* mov 0, g14 */
172 {
173 ip = next_ip;
174 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
175 within_leaf_prologue = 0;
176 }
177 }
178
179 /* If something that looks like the beginning of a leaf prologue
180 has been seen, but the remainder of the prologue is missing, bail.
181 We don't know what we've got. */
182
183 if (within_leaf_prologue)
184 return (ip);
185
186 /* Accept zero or more instances of "mov[qtl]? gx, ry", where y >= 4.
187 This may cause us to mistake the moving of a register
188 parameter to a local register for the saving of a callee-saved
189 register, but that can't be helped, since with the
190 "-fcall-saved" flag, any register can be made callee-saved. */
191
192 while (next_ip
193 && (insn1 & 0xfc802fb0) == 0x5c000610
194 && (dst = REG_SRCDST (insn1)) >= (R0_REGNUM + 4))
195 {
196 src = REG_SRC1 (insn1);
197 size = EXTRACT_FIELD (insn1, 24, 2) + 1;
198 save_addr = frame_addr + ((dst - R0_REGNUM) * 4);
199 while (size--)
200 {
201 fsr->regs[src++] = save_addr;
202 save_addr += 4;
203 }
204 ip = next_ip;
205 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
206 }
207
208 /* Accept an optional "addo n, sp, sp" or "lda n(sp), sp". */
209
210 if (next_ip &&
211 ((insn1 & 0xffffffe0) == 0x59084800 /* addo n, sp, sp */
212 || (insn1 & 0xfffff000) == 0x8c086000 /* lda n(sp), sp (MEMA) */
213 || (insn1 & 0xfffffc60) == 0x8c087400)) /* lda n(sp), sp (MEMB) */
214 {
215 ip = next_ip;
216 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
217 }
218
219 /* Accept zero or more instances of "st[qtl]? gx, n(fp)".
220 This may cause us to mistake the copying of a register
221 parameter to the frame for the saving of a callee-saved
222 register, but that can't be helped, since with the
223 "-fcall-saved" flag, any register can be made callee-saved.
224 We can, however, refuse to accept a save of register g14,
225 since that is matched explicitly below. */
226
227 while (next_ip &&
228 ((insn1 & 0xf787f000) == 0x9287e000 /* stl? gx, n(fp) (MEMA) */
229 || (insn1 & 0xf787fc60) == 0x9287f400 /* stl? gx, n(fp) (MEMB) */
230 || (insn1 & 0xef87f000) == 0xa287e000 /* st[tq] gx, n(fp) (MEMA) */
231 || (insn1 & 0xef87fc60) == 0xa287f400) /* st[tq] gx, n(fp) (MEMB) */
232 && ((src = MEM_SRCDST (insn1)) != G14_REGNUM))
233 {
234 save_addr = frame_addr + ((insn1 & BITMASK (12, 1))
235 ? insn2 : MEMA_OFFSET (insn1));
236 size = (insn1 & BITMASK (29, 1)) ? ((insn1 & BITMASK (28, 1)) ? 4 : 3)
237 : ((insn1 & BITMASK (27, 1)) ? 2 : 1);
238 while (size--)
239 {
240 fsr->regs[src++] = save_addr;
241 save_addr += 4;
242 }
243 ip = next_ip;
244 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
245 }
246
247 /* Accept the varargs prologue code if present. */
248
249 size = sizeof (varargs_prologue_code) / sizeof (int);
250 pcode = varargs_prologue_code;
251 while (size-- && next_ip && *pcode++ == insn1)
252 {
253 ip = next_ip;
254 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
255 }
256
257 /* Accept an optional "st g14, n(fp)". */
258
259 if (next_ip &&
260 ((insn1 & 0xfffff000) == 0x92f7e000 /* st g14, n(fp) (MEMA) */
261 || (insn1 & 0xfffffc60) == 0x92f7f400)) /* st g14, n(fp) (MEMB) */
262 {
263 fsr->regs[G14_REGNUM] = frame_addr + ((insn1 & BITMASK (12, 1))
264 ? insn2 : MEMA_OFFSET (insn1));
265 ip = next_ip;
266 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
267 }
268
269 /* Accept zero or one instance of "mov g13, ry", where y >= 4.
270 This is saving the address where a struct should be returned. */
271
272 if (next_ip
273 && (insn1 & 0xff802fbf) == 0x5c00061d
274 && (dst = REG_SRCDST (insn1)) >= (R0_REGNUM + 4))
275 {
276 save_addr = frame_addr + ((dst - R0_REGNUM) * 4);
277 fsr->regs[G0_REGNUM+13] = save_addr;
278 ip = next_ip;
279 #if 0 /* We'll need this once there is a subsequent instruction examined. */
280 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
281 #endif
282 }
283
284 return (ip);
285 }
286
287 /* Given an ip value corresponding to the start of a function,
288 return the ip of the first instruction after the function
289 prologue. */
290
291 CORE_ADDR
292 skip_prologue (ip)
293 CORE_ADDR (ip);
294 {
295 struct frame_saved_regs saved_regs_dummy;
296 struct symtab_and_line sal;
297 CORE_ADDR limit;
298
299 sal = find_pc_line (ip, 0);
300 limit = (sal.end) ? sal.end : 0xffffffff;
301
302 return (examine_prologue (ip, limit, (FRAME_ADDR) 0, &saved_regs_dummy));
303 }
304
305 /* Put here the code to store, into a struct frame_saved_regs,
306 the addresses of the saved registers of frame described by FRAME_INFO.
307 This includes special registers such as pc and fp saved in special
308 ways in the stack frame. sp is even more special:
309 the address we return for it IS the sp for the next frame.
310
311 We cache the result of doing this in the frame_cache_obstack, since
312 it is fairly expensive. */
313
314 void
315 frame_find_saved_regs (fi, fsr)
316 struct frame_info *fi;
317 struct frame_saved_regs *fsr;
318 {
319 register CORE_ADDR next_addr;
320 register CORE_ADDR *saved_regs;
321 register int regnum;
322 register struct frame_saved_regs *cache_fsr;
323 extern struct obstack frame_cache_obstack;
324 CORE_ADDR ip;
325 struct symtab_and_line sal;
326 CORE_ADDR limit;
327
328 if (!fi->fsr)
329 {
330 cache_fsr = (struct frame_saved_regs *)
331 obstack_alloc (&frame_cache_obstack,
332 sizeof (struct frame_saved_regs));
333 memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
334 fi->fsr = cache_fsr;
335
336 /* Find the start and end of the function prologue. If the PC
337 is in the function prologue, we only consider the part that
338 has executed already. */
339
340 ip = get_pc_function_start (fi->pc);
341 sal = find_pc_line (ip, 0);
342 limit = (sal.end && sal.end < fi->pc) ? sal.end: fi->pc;
343
344 examine_prologue (ip, limit, fi->frame, cache_fsr);
345
346 /* Record the addresses at which the local registers are saved.
347 Strictly speaking, we should only do this for non-leaf procedures,
348 but no one will ever look at these values if it is a leaf procedure,
349 since local registers are always caller-saved. */
350
351 next_addr = (CORE_ADDR) fi->frame;
352 saved_regs = cache_fsr->regs;
353 for (regnum = R0_REGNUM; regnum <= R15_REGNUM; regnum++)
354 {
355 *saved_regs++ = next_addr;
356 next_addr += 4;
357 }
358
359 cache_fsr->regs[FP_REGNUM] = cache_fsr->regs[PFP_REGNUM];
360 }
361
362 *fsr = *fi->fsr;
363
364 /* Fetch the value of the sp from memory every time, since it
365 is conceivable that it has changed since the cache was flushed.
366 This unfortunately undoes much of the savings from caching the
367 saved register values. I suggest adding an argument to
368 get_frame_saved_regs () specifying the register number we're
369 interested in (or -1 for all registers). This would be passed
370 through to FRAME_FIND_SAVED_REGS (), permitting more efficient
371 computation of saved register addresses (e.g., on the i960,
372 we don't have to examine the prologue to find local registers).
373 -- markf@wrs.com
374 FIXME, we don't need to refetch this, since the cache is cleared
375 every time the child process is restarted. If GDB itself
376 modifies SP, it has to clear the cache by hand (does it?). -gnu */
377
378 fsr->regs[SP_REGNUM] = read_memory_integer (fsr->regs[SP_REGNUM], 4);
379 }
380
381 /* Return the address of the argument block for the frame
382 described by FI. Returns 0 if the address is unknown. */
383
384 CORE_ADDR
385 frame_args_address (fi, must_be_correct)
386 struct frame_info *fi;
387 {
388 register FRAME frame;
389 struct frame_saved_regs fsr;
390 CORE_ADDR ap;
391
392 /* If g14 was saved in the frame by the function prologue code, return
393 the saved value. If the frame is current and we are being sloppy,
394 return the value of g14. Otherwise, return zero. */
395
396 frame = FRAME_INFO_ID (fi);
397 get_frame_saved_regs (fi, &fsr);
398 if (fsr.regs[G14_REGNUM])
399 ap = read_memory_integer (fsr.regs[G14_REGNUM],4);
400 else {
401 if (must_be_correct)
402 return 0; /* Don't cache this result */
403 if (get_next_frame (frame))
404 ap = 0;
405 else
406 ap = read_register (G14_REGNUM);
407 if (ap == 0)
408 ap = fi->frame;
409 }
410 fi->arg_pointer = ap; /* Cache it for next time */
411 return ap;
412 }
413
414 /* Return the address of the return struct for the frame
415 described by FI. Returns 0 if the address is unknown. */
416
417 CORE_ADDR
418 frame_struct_result_address (fi)
419 struct frame_info *fi;
420 {
421 register FRAME frame;
422 struct frame_saved_regs fsr;
423 CORE_ADDR ap;
424
425 /* If the frame is non-current, check to see if g14 was saved in the
426 frame by the function prologue code; return the saved value if so,
427 zero otherwise. If the frame is current, return the value of g14.
428
429 FIXME, shouldn't this use the saved value as long as we are past
430 the function prologue, and only use the current value if we have
431 no saved value and are at TOS? -- gnu@cygnus.com */
432
433 frame = FRAME_INFO_ID (fi);
434 if (get_next_frame (frame)) {
435 get_frame_saved_regs (fi, &fsr);
436 if (fsr.regs[G13_REGNUM])
437 ap = read_memory_integer (fsr.regs[G13_REGNUM],4);
438 else
439 ap = 0;
440 } else {
441 ap = read_register (G13_REGNUM);
442 }
443 return ap;
444 }
445
446 /* Return address to which the currently executing leafproc will return,
447 or 0 if ip is not in a leafproc (or if we can't tell if it is).
448
449 Do this by finding the starting address of the routine in which ip lies.
450 If the instruction there is "mov g14, gx" (where x is in [0,7]), this
451 is a leafproc and the return address is in register gx. Well, this is
452 true unless the return address points at a RET instruction in the current
453 procedure, which indicates that we have a 'dual entry' routine that
454 has been entered through the CALL entry point. */
455
456 CORE_ADDR
457 leafproc_return (ip)
458 CORE_ADDR ip; /* ip from currently executing function */
459 {
460 register struct minimal_symbol *msymbol;
461 char *p;
462 int dst;
463 unsigned int insn1, insn2;
464 CORE_ADDR return_addr;
465
466 if ((msymbol = lookup_minimal_symbol_by_pc (ip)) != NULL)
467 {
468 if ((p = strchr(SYMBOL_NAME (msymbol), '.')) && STREQ (p, ".lf"))
469 {
470 if (next_insn (SYMBOL_VALUE_ADDRESS (msymbol), &insn1, &insn2)
471 && (insn1 & 0xff87ffff) == 0x5c80161e /* mov g14, gx */
472 && (dst = REG_SRCDST (insn1)) <= G0_REGNUM + 7)
473 {
474 /* Get the return address. If the "mov g14, gx"
475 instruction hasn't been executed yet, read
476 the return address from g14; otherwise, read it
477 from the register into which g14 was moved. */
478
479 return_addr =
480 read_register ((ip == SYMBOL_VALUE_ADDRESS (msymbol))
481 ? G14_REGNUM : dst);
482
483 /* We know we are in a leaf procedure, but we don't know
484 whether the caller actually did a "bal" to the ".lf"
485 entry point, or a normal "call" to the non-leaf entry
486 point one instruction before. In the latter case, the
487 return address will be the address of a "ret"
488 instruction within the procedure itself. We test for
489 this below. */
490
491 if (!next_insn (return_addr, &insn1, &insn2)
492 || (insn1 & 0xff000000) != 0xa000000 /* ret */
493 || lookup_minimal_symbol_by_pc (return_addr) != msymbol)
494 return (return_addr);
495 }
496 }
497 }
498
499 return (0);
500 }
501
502 /* Immediately after a function call, return the saved pc.
503 Can't go through the frames for this because on some machines
504 the new frame is not set up until the new function executes
505 some instructions.
506 On the i960, the frame *is* set up immediately after the call,
507 unless the function is a leaf procedure. */
508
509 CORE_ADDR
510 saved_pc_after_call (frame)
511 FRAME frame;
512 {
513 CORE_ADDR saved_pc;
514 CORE_ADDR get_frame_pc ();
515
516 saved_pc = leafproc_return (get_frame_pc (frame));
517 if (!saved_pc)
518 saved_pc = FRAME_SAVED_PC (frame);
519
520 return (saved_pc);
521 }
522
523 /* Discard from the stack the innermost frame,
524 restoring all saved registers. */
525
526 pop_frame ()
527 {
528 register struct frame_info *current_fi, *prev_fi;
529 register int i;
530 CORE_ADDR save_addr;
531 CORE_ADDR leaf_return_addr;
532 struct frame_saved_regs fsr;
533 char local_regs_buf[16 * 4];
534
535 current_fi = get_frame_info (get_current_frame ());
536
537 /* First, undo what the hardware does when we return.
538 If this is a non-leaf procedure, restore local registers from
539 the save area in the calling frame. Otherwise, load the return
540 address obtained from leafproc_return () into the rip. */
541
542 leaf_return_addr = leafproc_return (current_fi->pc);
543 if (!leaf_return_addr)
544 {
545 /* Non-leaf procedure. Restore local registers, incl IP. */
546 prev_fi = get_frame_info (get_prev_frame (FRAME_INFO_ID (current_fi)));
547 read_memory (prev_fi->frame, local_regs_buf, sizeof (local_regs_buf));
548 write_register_bytes (REGISTER_BYTE (R0_REGNUM), local_regs_buf,
549 sizeof (local_regs_buf));
550
551 /* Restore frame pointer. */
552 write_register (FP_REGNUM, prev_fi->frame);
553 }
554 else
555 {
556 /* Leaf procedure. Just restore the return address into the IP. */
557 write_register (RIP_REGNUM, leaf_return_addr);
558 }
559
560 /* Now restore any global regs that the current function had saved. */
561 get_frame_saved_regs (current_fi, &fsr);
562 for (i = G0_REGNUM; i < G14_REGNUM; i++)
563 {
564 if (save_addr = fsr.regs[i])
565 write_register (i, read_memory_integer (save_addr, 4));
566 }
567
568 /* Flush the frame cache, create a frame for the new innermost frame,
569 and make it the current frame. */
570
571 flush_cached_frames ();
572 set_current_frame (create_new_frame (read_register (FP_REGNUM), read_pc ()));
573 }
574
575 /* Given a 960 stop code (fault or trace), return the signal which
576 corresponds. */
577
578 enum target_signal
579 i960_fault_to_signal (fault)
580 int fault;
581 {
582 switch (fault)
583 {
584 case 0: return TARGET_SIGNAL_BUS; /* parallel fault */
585 case 1: return TARGET_SIGNAL_UNKNOWN;
586 case 2: return TARGET_SIGNAL_ILL; /* operation fault */
587 case 3: return TARGET_SIGNAL_FPE; /* arithmetic fault */
588 case 4: return TARGET_SIGNAL_FPE; /* floating point fault */
589
590 /* constraint fault. This appears not to distinguish between
591 a range constraint fault (which should be SIGFPE) and a privileged
592 fault (which should be SIGILL). */
593 case 5: return TARGET_SIGNAL_ILL;
594
595 case 6: return TARGET_SIGNAL_SEGV; /* virtual memory fault */
596
597 /* protection fault. This is for an out-of-range argument to
598 "calls". I guess it also could be SIGILL. */
599 case 7: return TARGET_SIGNAL_SEGV;
600
601 case 8: return TARGET_SIGNAL_BUS; /* machine fault */
602 case 9: return TARGET_SIGNAL_BUS; /* structural fault */
603 case 0xa: return TARGET_SIGNAL_ILL; /* type fault */
604 case 0xb: return TARGET_SIGNAL_UNKNOWN; /* reserved fault */
605 case 0xc: return TARGET_SIGNAL_BUS; /* process fault */
606 case 0xd: return TARGET_SIGNAL_SEGV; /* descriptor fault */
607 case 0xe: return TARGET_SIGNAL_BUS; /* event fault */
608 case 0xf: return TARGET_SIGNAL_UNKNOWN; /* reserved fault */
609 case 0x10: return TARGET_SIGNAL_TRAP; /* single-step trace */
610 case 0x11: return TARGET_SIGNAL_TRAP; /* branch trace */
611 case 0x12: return TARGET_SIGNAL_TRAP; /* call trace */
612 case 0x13: return TARGET_SIGNAL_TRAP; /* return trace */
613 case 0x14: return TARGET_SIGNAL_TRAP; /* pre-return trace */
614 case 0x15: return TARGET_SIGNAL_TRAP; /* supervisor call trace */
615 case 0x16: return TARGET_SIGNAL_TRAP; /* breakpoint trace */
616 default: return TARGET_SIGNAL_UNKNOWN;
617 }
618 }
619
620 /* Initialization stub */
621
622 void
623 _initialize_i960_tdep ()
624 {
625 check_host ();
626 }
This page took 0.058824 seconds and 4 git commands to generate.