df9f04a615e8522f0f3a467dfd9b9e6d907ee371
[deliverable/binutils-gdb.git] / gdb / i960-tdep.c
1 /* Target-machine dependent code for the Intel 960
2 Copyright (C) 1991 Free Software Foundation, Inc.
3 Contributed by Intel Corporation.
4 examine_prologue and other parts contributed by Wind River Systems.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 /* Miscellaneous i80960-dependent routines.
23 Most are called from macros defined in "tm-i960.h". */
24
25 #include "defs.h"
26 #include <signal.h>
27 #include "symtab.h"
28 #include "value.h"
29 #include "frame.h"
30 #include "ieee-float.h"
31
32 /* Structure of i960 extended floating point format. */
33
34 const struct ext_format ext_format_i960 = {
35 /* tot sbyte smask expbyte manbyte */
36 12, 9, 0x80, 9,8, 4,0, /* i960 */
37 };
38
39 /* gdb960 is always running on a non-960 host. Check its characteristics.
40 This routine must be called as part of gdb initialization. */
41
42 static void
43 check_host()
44 {
45 int i;
46
47 static struct typestruct {
48 int hostsize; /* Size of type on host */
49 int i960size; /* Size of type on i960 */
50 char *typename; /* Name of type, for error msg */
51 } types[] = {
52 { sizeof(short), 2, "short" },
53 { sizeof(int), 4, "int" },
54 { sizeof(long), 4, "long" },
55 { sizeof(float), 4, "float" },
56 { sizeof(double), 8, "double" },
57 { sizeof(char *), 4, "pointer" },
58 };
59 #define TYPELEN (sizeof(types) / sizeof(struct typestruct))
60
61 /* Make sure that host type sizes are same as i960
62 */
63 for ( i = 0; i < TYPELEN; i++ ){
64 if ( types[i].hostsize != types[i].i960size ){
65 printf("sizeof(%s) != %d: PROCEED AT YOUR OWN RISK!\n",
66 types[i].typename, types[i].i960size );
67 }
68
69 }
70 }
71 \f
72 /* Examine an i960 function prologue, recording the addresses at which
73 registers are saved explicitly by the prologue code, and returning
74 the address of the first instruction after the prologue (but not
75 after the instruction at address LIMIT, as explained below).
76
77 LIMIT places an upper bound on addresses of the instructions to be
78 examined. If the prologue code scan reaches LIMIT, the scan is
79 aborted and LIMIT is returned. This is used, when examining the
80 prologue for the current frame, to keep examine_prologue () from
81 claiming that a given register has been saved when in fact the
82 instruction that saves it has not yet been executed. LIMIT is used
83 at other times to stop the scan when we hit code after the true
84 function prologue (e.g. for the first source line) which might
85 otherwise be mistaken for function prologue.
86
87 The format of the function prologue matched by this routine is
88 derived from examination of the source to gcc960 1.21, particularly
89 the routine i960_function_prologue (). A "regular expression" for
90 the function prologue is given below:
91
92 (lda LRn, g14
93 mov g14, g[0-7]
94 (mov 0, g14) | (lda 0, g14))?
95
96 (mov[qtl]? g[0-15], r[4-15])*
97 ((addo [1-31], sp, sp) | (lda n(sp), sp))?
98 (st[qtl]? g[0-15], n(fp))*
99
100 (cmpobne 0, g14, LFn
101 mov sp, g14
102 lda 0x30(sp), sp
103 LFn: stq g0, (g14)
104 stq g4, 0x10(g14)
105 stq g8, 0x20(g14))?
106
107 (st g14, n(fp))?
108 (mov g13,r[4-15])?
109 */
110
111 /* Macros for extracting fields from i960 instructions. */
112
113 #define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
114 #define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
115
116 #define REG_SRC1(insn) EXTRACT_FIELD (insn, 0, 5)
117 #define REG_SRC2(insn) EXTRACT_FIELD (insn, 14, 5)
118 #define REG_SRCDST(insn) EXTRACT_FIELD (insn, 19, 5)
119 #define MEM_SRCDST(insn) EXTRACT_FIELD (insn, 19, 5)
120 #define MEMA_OFFSET(insn) EXTRACT_FIELD (insn, 0, 12)
121
122 /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
123 is not the address of a valid instruction, the address of the next
124 instruction beyond ADDR otherwise. *PWORD1 receives the first word
125 of the instruction, and (for two-word instructions), *PWORD2 receives
126 the second. */
127
128 #define NEXT_PROLOGUE_INSN(addr, lim, pword1, pword2) \
129 (((addr) < (lim)) ? next_insn (addr, pword1, pword2) : 0)
130
131 static CORE_ADDR
132 examine_prologue (ip, limit, frame_addr, fsr)
133 register CORE_ADDR ip;
134 register CORE_ADDR limit;
135 FRAME_ADDR frame_addr;
136 struct frame_saved_regs *fsr;
137 {
138 register CORE_ADDR next_ip;
139 register int src, dst;
140 register unsigned int *pcode;
141 unsigned int insn1, insn2;
142 int size;
143 int within_leaf_prologue;
144 CORE_ADDR save_addr;
145 static unsigned int varargs_prologue_code [] =
146 {
147 0x3507a00c, /* cmpobne 0x0, g14, LFn */
148 0x5cf01601, /* mov sp, g14 */
149 0x8c086030, /* lda 0x30(sp), sp */
150 0xb2879000, /* LFn: stq g0, (g14) */
151 0xb2a7a010, /* stq g4, 0x10(g14) */
152 0xb2c7a020 /* stq g8, 0x20(g14) */
153 };
154
155 /* Accept a leaf procedure prologue code fragment if present.
156 Note that ip might point to either the leaf or non-leaf
157 entry point; we look for the non-leaf entry point first: */
158
159 within_leaf_prologue = 0;
160 if ((next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2))
161 && ((insn1 & 0xfffff000) == 0x8cf00000 /* lda LRx, g14 (MEMA) */
162 || (insn1 & 0xfffffc60) == 0x8cf03000)) /* lda LRx, g14 (MEMB) */
163 {
164 within_leaf_prologue = 1;
165 next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn1, &insn2);
166 }
167
168 /* Now look for the prologue code at a leaf entry point: */
169
170 if (next_ip
171 && (insn1 & 0xff87ffff) == 0x5c80161e /* mov g14, gx */
172 && REG_SRCDST (insn1) <= G0_REGNUM + 7)
173 {
174 within_leaf_prologue = 1;
175 if ((next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn1, &insn2))
176 && (insn1 == 0x8cf00000 /* lda 0, g14 */
177 || insn1 == 0x5cf01e00)) /* mov 0, g14 */
178 {
179 ip = next_ip;
180 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
181 within_leaf_prologue = 0;
182 }
183 }
184
185 /* If something that looks like the beginning of a leaf prologue
186 has been seen, but the remainder of the prologue is missing, bail.
187 We don't know what we've got. */
188
189 if (within_leaf_prologue)
190 return (ip);
191
192 /* Accept zero or more instances of "mov[qtl]? gx, ry", where y >= 4.
193 This may cause us to mistake the moving of a register
194 parameter to a local register for the saving of a callee-saved
195 register, but that can't be helped, since with the
196 "-fcall-saved" flag, any register can be made callee-saved. */
197
198 while (next_ip
199 && (insn1 & 0xfc802fb0) == 0x5c000610
200 && (dst = REG_SRCDST (insn1)) >= (R0_REGNUM + 4))
201 {
202 src = REG_SRC1 (insn1);
203 size = EXTRACT_FIELD (insn1, 24, 2) + 1;
204 save_addr = frame_addr + ((dst - R0_REGNUM) * 4);
205 while (size--)
206 {
207 fsr->regs[src++] = save_addr;
208 save_addr += 4;
209 }
210 ip = next_ip;
211 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
212 }
213
214 /* Accept an optional "addo n, sp, sp" or "lda n(sp), sp". */
215
216 if (next_ip &&
217 ((insn1 & 0xffffffe0) == 0x59084800 /* addo n, sp, sp */
218 || (insn1 & 0xfffff000) == 0x8c086000 /* lda n(sp), sp (MEMA) */
219 || (insn1 & 0xfffffc60) == 0x8c087400)) /* lda n(sp), sp (MEMB) */
220 {
221 ip = next_ip;
222 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
223 }
224
225 /* Accept zero or more instances of "st[qtl]? gx, n(fp)".
226 This may cause us to mistake the copying of a register
227 parameter to the frame for the saving of a callee-saved
228 register, but that can't be helped, since with the
229 "-fcall-saved" flag, any register can be made callee-saved.
230 We can, however, refuse to accept a save of register g14,
231 since that is matched explicitly below. */
232
233 while (next_ip &&
234 ((insn1 & 0xf787f000) == 0x9287e000 /* stl? gx, n(fp) (MEMA) */
235 || (insn1 & 0xf787fc60) == 0x9287f400 /* stl? gx, n(fp) (MEMB) */
236 || (insn1 & 0xef87f000) == 0xa287e000 /* st[tq] gx, n(fp) (MEMA) */
237 || (insn1 & 0xef87fc60) == 0xa287f400) /* st[tq] gx, n(fp) (MEMB) */
238 && ((src = MEM_SRCDST (insn1)) != G14_REGNUM))
239 {
240 save_addr = frame_addr + ((insn1 & BITMASK (12, 1))
241 ? insn2 : MEMA_OFFSET (insn1));
242 size = (insn1 & BITMASK (29, 1)) ? ((insn1 & BITMASK (28, 1)) ? 4 : 3)
243 : ((insn1 & BITMASK (27, 1)) ? 2 : 1);
244 while (size--)
245 {
246 fsr->regs[src++] = save_addr;
247 save_addr += 4;
248 }
249 ip = next_ip;
250 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
251 }
252
253 /* Accept the varargs prologue code if present. */
254
255 size = sizeof (varargs_prologue_code) / sizeof (int);
256 pcode = varargs_prologue_code;
257 while (size-- && next_ip && *pcode++ == insn1)
258 {
259 ip = next_ip;
260 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
261 }
262
263 /* Accept an optional "st g14, n(fp)". */
264
265 if (next_ip &&
266 ((insn1 & 0xfffff000) == 0x92f7e000 /* st g14, n(fp) (MEMA) */
267 || (insn1 & 0xfffffc60) == 0x92f7f400)) /* st g14, n(fp) (MEMB) */
268 {
269 fsr->regs[G14_REGNUM] = frame_addr + ((insn1 & BITMASK (12, 1))
270 ? insn2 : MEMA_OFFSET (insn1));
271 ip = next_ip;
272 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
273 }
274
275 /* Accept zero or one instance of "mov g13, ry", where y >= 4.
276 This is saving the address where a struct should be returned. */
277
278 if (next_ip
279 && (insn1 & 0xff802fbf) == 0x5c00061d
280 && (dst = REG_SRCDST (insn1)) >= (R0_REGNUM + 4))
281 {
282 save_addr = frame_addr + ((dst - R0_REGNUM) * 4);
283 fsr->regs[G0_REGNUM+13] = save_addr;
284 ip = next_ip;
285 #if 0 /* We'll need this once there is a subsequent instruction examined. */
286 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
287 #endif
288 }
289
290 return (ip);
291 }
292
293 /* Given an ip value corresponding to the start of a function,
294 return the ip of the first instruction after the function
295 prologue. */
296
297 CORE_ADDR
298 skip_prologue (ip)
299 CORE_ADDR (ip);
300 {
301 struct frame_saved_regs saved_regs_dummy;
302 struct symtab_and_line sal;
303 CORE_ADDR limit;
304
305 sal = find_pc_line (ip, 0);
306 limit = (sal.end) ? sal.end : 0xffffffff;
307
308 return (examine_prologue (ip, limit, (FRAME_ADDR) 0, &saved_regs_dummy));
309 }
310
311 /* Put here the code to store, into a struct frame_saved_regs,
312 the addresses of the saved registers of frame described by FRAME_INFO.
313 This includes special registers such as pc and fp saved in special
314 ways in the stack frame. sp is even more special:
315 the address we return for it IS the sp for the next frame.
316
317 We cache the result of doing this in the frame_cache_obstack, since
318 it is fairly expensive. */
319
320 void
321 frame_find_saved_regs (fi, fsr)
322 struct frame_info *fi;
323 struct frame_saved_regs *fsr;
324 {
325 register CORE_ADDR next_addr;
326 register CORE_ADDR *saved_regs;
327 register int regnum;
328 register struct frame_saved_regs *cache_fsr;
329 extern struct obstack frame_cache_obstack;
330 CORE_ADDR ip;
331 struct symtab_and_line sal;
332 CORE_ADDR limit;
333
334 if (!fi->fsr)
335 {
336 cache_fsr = (struct frame_saved_regs *)
337 obstack_alloc (&frame_cache_obstack,
338 sizeof (struct frame_saved_regs));
339 memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
340 fi->fsr = cache_fsr;
341
342 /* Find the start and end of the function prologue. If the PC
343 is in the function prologue, we only consider the part that
344 has executed already. */
345
346 ip = get_pc_function_start (fi->pc);
347 sal = find_pc_line (ip, 0);
348 limit = (sal.end && sal.end < fi->pc) ? sal.end: fi->pc;
349
350 examine_prologue (ip, limit, fi->frame, cache_fsr);
351
352 /* Record the addresses at which the local registers are saved.
353 Strictly speaking, we should only do this for non-leaf procedures,
354 but no one will ever look at these values if it is a leaf procedure,
355 since local registers are always caller-saved. */
356
357 next_addr = (CORE_ADDR) fi->frame;
358 saved_regs = cache_fsr->regs;
359 for (regnum = R0_REGNUM; regnum <= R15_REGNUM; regnum++)
360 {
361 *saved_regs++ = next_addr;
362 next_addr += 4;
363 }
364
365 cache_fsr->regs[FP_REGNUM] = cache_fsr->regs[PFP_REGNUM];
366 }
367
368 *fsr = *fi->fsr;
369
370 /* Fetch the value of the sp from memory every time, since it
371 is conceivable that it has changed since the cache was flushed.
372 This unfortunately undoes much of the savings from caching the
373 saved register values. I suggest adding an argument to
374 get_frame_saved_regs () specifying the register number we're
375 interested in (or -1 for all registers). This would be passed
376 through to FRAME_FIND_SAVED_REGS (), permitting more efficient
377 computation of saved register addresses (e.g., on the i960,
378 we don't have to examine the prologue to find local registers).
379 -- markf@wrs.com
380 FIXME, we don't need to refetch this, since the cache is cleared
381 every time the child process is restarted. If GDB itself
382 modifies SP, it has to clear the cache by hand (does it?). -gnu */
383
384 fsr->regs[SP_REGNUM] = read_memory_integer (fsr->regs[SP_REGNUM], 4);
385 }
386
387 /* Return the address of the argument block for the frame
388 described by FI. Returns 0 if the address is unknown. */
389
390 CORE_ADDR
391 frame_args_address (fi, must_be_correct)
392 struct frame_info *fi;
393 {
394 register FRAME frame;
395 struct frame_saved_regs fsr;
396 CORE_ADDR ap;
397
398 /* If g14 was saved in the frame by the function prologue code, return
399 the saved value. If the frame is current and we are being sloppy,
400 return the value of g14. Otherwise, return zero. */
401
402 frame = FRAME_INFO_ID (fi);
403 get_frame_saved_regs (fi, &fsr);
404 if (fsr.regs[G14_REGNUM])
405 ap = read_memory_integer (fsr.regs[G14_REGNUM],4);
406 else {
407 if (must_be_correct)
408 return 0; /* Don't cache this result */
409 if (get_next_frame (frame))
410 ap = 0;
411 else
412 ap = read_register (G14_REGNUM);
413 if (ap == 0)
414 ap = fi->frame;
415 }
416 fi->arg_pointer = ap; /* Cache it for next time */
417 return ap;
418 }
419
420 /* Return the address of the return struct for the frame
421 described by FI. Returns 0 if the address is unknown. */
422
423 CORE_ADDR
424 frame_struct_result_address (fi)
425 struct frame_info *fi;
426 {
427 register FRAME frame;
428 struct frame_saved_regs fsr;
429 CORE_ADDR ap;
430
431 /* If the frame is non-current, check to see if g14 was saved in the
432 frame by the function prologue code; return the saved value if so,
433 zero otherwise. If the frame is current, return the value of g14.
434
435 FIXME, shouldn't this use the saved value as long as we are past
436 the function prologue, and only use the current value if we have
437 no saved value and are at TOS? -- gnu@cygnus.com */
438
439 frame = FRAME_INFO_ID (fi);
440 if (get_next_frame (frame)) {
441 get_frame_saved_regs (fi, &fsr);
442 if (fsr.regs[G13_REGNUM])
443 ap = read_memory_integer (fsr.regs[G13_REGNUM],4);
444 else
445 ap = 0;
446 } else {
447 ap = read_register (G13_REGNUM);
448 }
449 return ap;
450 }
451
452 /* Return address to which the currently executing leafproc will return,
453 or 0 if ip is not in a leafproc (or if we can't tell if it is).
454
455 Do this by finding the starting address of the routine in which ip lies.
456 If the instruction there is "mov g14, gx" (where x is in [0,7]), this
457 is a leafproc and the return address is in register gx. Well, this is
458 true unless the return address points at a RET instruction in the current
459 procedure, which indicates that we have a 'dual entry' routine that
460 has been entered through the CALL entry point. */
461
462 CORE_ADDR
463 leafproc_return (ip)
464 CORE_ADDR ip; /* ip from currently executing function */
465 {
466 register struct minimal_symbol *msymbol;
467 char *p;
468 int dst;
469 unsigned int insn1, insn2;
470 CORE_ADDR return_addr;
471
472 if ((msymbol = lookup_minimal_symbol_by_pc (ip)) != NULL)
473 {
474 if ((p = strchr(SYMBOL_NAME (msymbol), '.')) && STREQ (p, ".lf"))
475 {
476 if (next_insn (SYMBOL_VALUE_ADDRESS (msymbol), &insn1, &insn2)
477 && (insn1 & 0xff87ffff) == 0x5c80161e /* mov g14, gx */
478 && (dst = REG_SRCDST (insn1)) <= G0_REGNUM + 7)
479 {
480 /* Get the return address. If the "mov g14, gx"
481 instruction hasn't been executed yet, read
482 the return address from g14; otherwise, read it
483 from the register into which g14 was moved. */
484
485 return_addr =
486 read_register ((ip == SYMBOL_VALUE_ADDRESS (msymbol))
487 ? G14_REGNUM : dst);
488
489 /* We know we are in a leaf procedure, but we don't know
490 whether the caller actually did a "bal" to the ".lf"
491 entry point, or a normal "call" to the non-leaf entry
492 point one instruction before. In the latter case, the
493 return address will be the address of a "ret"
494 instruction within the procedure itself. We test for
495 this below. */
496
497 if (!next_insn (return_addr, &insn1, &insn2)
498 || (insn1 & 0xff000000) != 0xa000000 /* ret */
499 || lookup_minimal_symbol_by_pc (return_addr) != msymbol)
500 return (return_addr);
501 }
502 }
503 }
504
505 return (0);
506 }
507
508 /* Immediately after a function call, return the saved pc.
509 Can't go through the frames for this because on some machines
510 the new frame is not set up until the new function executes
511 some instructions.
512 On the i960, the frame *is* set up immediately after the call,
513 unless the function is a leaf procedure. */
514
515 CORE_ADDR
516 saved_pc_after_call (frame)
517 FRAME frame;
518 {
519 CORE_ADDR saved_pc;
520 CORE_ADDR get_frame_pc ();
521
522 saved_pc = leafproc_return (get_frame_pc (frame));
523 if (!saved_pc)
524 saved_pc = FRAME_SAVED_PC (frame);
525
526 return (saved_pc);
527 }
528
529 /* Discard from the stack the innermost frame,
530 restoring all saved registers. */
531
532 pop_frame ()
533 {
534 register struct frame_info *current_fi, *prev_fi;
535 register int i;
536 CORE_ADDR save_addr;
537 CORE_ADDR leaf_return_addr;
538 struct frame_saved_regs fsr;
539 char local_regs_buf[16 * 4];
540
541 current_fi = get_frame_info (get_current_frame ());
542
543 /* First, undo what the hardware does when we return.
544 If this is a non-leaf procedure, restore local registers from
545 the save area in the calling frame. Otherwise, load the return
546 address obtained from leafproc_return () into the rip. */
547
548 leaf_return_addr = leafproc_return (current_fi->pc);
549 if (!leaf_return_addr)
550 {
551 /* Non-leaf procedure. Restore local registers, incl IP. */
552 prev_fi = get_frame_info (get_prev_frame (FRAME_INFO_ID (current_fi)));
553 read_memory (prev_fi->frame, local_regs_buf, sizeof (local_regs_buf));
554 write_register_bytes (REGISTER_BYTE (R0_REGNUM), local_regs_buf,
555 sizeof (local_regs_buf));
556
557 /* Restore frame pointer. */
558 write_register (FP_REGNUM, prev_fi->frame);
559 }
560 else
561 {
562 /* Leaf procedure. Just restore the return address into the IP. */
563 write_register (RIP_REGNUM, leaf_return_addr);
564 }
565
566 /* Now restore any global regs that the current function had saved. */
567 get_frame_saved_regs (current_fi, &fsr);
568 for (i = G0_REGNUM; i < G14_REGNUM; i++)
569 {
570 if (save_addr = fsr.regs[i])
571 write_register (i, read_memory_integer (save_addr, 4));
572 }
573
574 /* Flush the frame cache, create a frame for the new innermost frame,
575 and make it the current frame. */
576
577 flush_cached_frames ();
578 set_current_frame (create_new_frame (read_register (FP_REGNUM), read_pc ()));
579 }
580
581 /* Print out text describing a "signal number" with which the i80960 halted.
582
583 See the file "fault.c" in the nindy monitor source code for a list
584 of stop codes. */
585
586 void
587 print_fault( siggnal )
588 int siggnal; /* Signal number, as returned by target_wait() */
589 {
590 static char unknown[] = "Unknown fault or trace";
591 static char *sigmsgs[] = {
592 /* FAULTS */
593 "parallel fault", /* 0x00 */
594 unknown, /* 0x01 */
595 "operation fault", /* 0x02 */
596 "arithmetic fault", /* 0x03 */
597 "floating point fault", /* 0x04 */
598 "constraint fault", /* 0x05 */
599 "virtual memory fault", /* 0x06 */
600 "protection fault", /* 0x07 */
601 "machine fault", /* 0x08 */
602 "structural fault", /* 0x09 */
603 "type fault", /* 0x0a */
604 "reserved (0xb) fault", /* 0x0b */
605 "process fault", /* 0x0c */
606 "descriptor fault", /* 0x0d */
607 "event fault", /* 0x0e */
608 "reserved (0xf) fault", /* 0x0f */
609
610 /* TRACES */
611 "single-step trace", /* 0x10 */
612 "branch trace", /* 0x11 */
613 "call trace", /* 0x12 */
614 "return trace", /* 0x13 */
615 "pre-return trace", /* 0x14 */
616 "supervisor call trace",/* 0x15 */
617 "breakpoint trace", /* 0x16 */
618 };
619 # define NUMMSGS ((int)( sizeof(sigmsgs) / sizeof(sigmsgs[0]) ))
620
621 if (siggnal < NSIG) {
622 printf ("\nProgram received signal %d, %s\n",
623 siggnal, safe_strsignal (siggnal));
624 } else {
625 /* The various target_wait()s bias the 80960 "signal number"
626 by adding NSIG to it, so it won't get confused with any
627 of the Unix signals elsewhere in GDB. We need to
628 "unbias" it before using it. */
629 siggnal -= NSIG;
630
631 printf("Program stopped for reason #%d: %s.\n", siggnal,
632 (siggnal < NUMMSGS && siggnal >= 0)?
633 sigmsgs[siggnal] : unknown );
634 }
635 }
636
637 /* Initialization stub */
638
639 _initialize_i960_tdep ()
640 {
641 check_host ();
642 }
This page took 0.042952 seconds and 3 git commands to generate.