* xm-sun3os4.h, xm-sun4os4.h: Enable HAVE_MMAP.
[deliverable/binutils-gdb.git] / gdb / i960-tdep.c
1 /* Target-machine dependent code for the Intel 960
2 Copyright (C) 1991 Free Software Foundation, Inc.
3 Contributed by Intel Corporation.
4 examine_prologue and other parts contributed by Wind River Systems.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22 /* Miscellaneous i80960-dependent routines.
23 Most are called from macros defined in "tm-i960.h". */
24
25 #include <stdio.h>
26 #include <signal.h>
27 #include "defs.h"
28 #include "symtab.h"
29 #include "value.h"
30 #include "frame.h"
31 #include "signame.h"
32 #include "ieee-float.h"
33
34 /* Structure of i960 extended floating point format. */
35
36 const struct ext_format ext_format_i960 = {
37 /* tot sbyte smask expbyte manbyte */
38 12, 9, 0x80, 9,8, 4,0, /* i960 */
39 };
40
41 /* gdb960 is always running on a non-960 host. Check its characteristics.
42 This routine must be called as part of gdb initialization. */
43
44 static void
45 check_host()
46 {
47 int i;
48
49 static struct typestruct {
50 int hostsize; /* Size of type on host */
51 int i960size; /* Size of type on i960 */
52 char *typename; /* Name of type, for error msg */
53 } types[] = {
54 { sizeof(short), 2, "short" },
55 { sizeof(int), 4, "int" },
56 { sizeof(long), 4, "long" },
57 { sizeof(float), 4, "float" },
58 { sizeof(double), 8, "double" },
59 { sizeof(char *), 4, "pointer" },
60 };
61 #define TYPELEN (sizeof(types) / sizeof(struct typestruct))
62
63 /* Make sure that host type sizes are same as i960
64 */
65 for ( i = 0; i < TYPELEN; i++ ){
66 if ( types[i].hostsize != types[i].i960size ){
67 printf("sizeof(%s) != %d: PROCEED AT YOUR OWN RISK!\n",
68 types[i].typename, types[i].i960size );
69 }
70
71 }
72 }
73 \f
74 /* Examine an i960 function prologue, recording the addresses at which
75 registers are saved explicitly by the prologue code, and returning
76 the address of the first instruction after the prologue (but not
77 after the instruction at address LIMIT, as explained below).
78
79 LIMIT places an upper bound on addresses of the instructions to be
80 examined. If the prologue code scan reaches LIMIT, the scan is
81 aborted and LIMIT is returned. This is used, when examining the
82 prologue for the current frame, to keep examine_prologue () from
83 claiming that a given register has been saved when in fact the
84 instruction that saves it has not yet been executed. LIMIT is used
85 at other times to stop the scan when we hit code after the true
86 function prologue (e.g. for the first source line) which might
87 otherwise be mistaken for function prologue.
88
89 The format of the function prologue matched by this routine is
90 derived from examination of the source to gcc960 1.21, particularly
91 the routine i960_function_prologue (). A "regular expression" for
92 the function prologue is given below:
93
94 (lda LRn, g14
95 mov g14, g[0-7]
96 (mov 0, g14) | (lda 0, g14))?
97
98 (mov[qtl]? g[0-15], r[4-15])*
99 ((addo [1-31], sp, sp) | (lda n(sp), sp))?
100 (st[qtl]? g[0-15], n(fp))*
101
102 (cmpobne 0, g14, LFn
103 mov sp, g14
104 lda 0x30(sp), sp
105 LFn: stq g0, (g14)
106 stq g4, 0x10(g14)
107 stq g8, 0x20(g14))?
108
109 (st g14, n(fp))?
110 (mov g13,r[4-15])?
111 */
112
113 /* Macros for extracting fields from i960 instructions. */
114
115 #define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
116 #define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
117
118 #define REG_SRC1(insn) EXTRACT_FIELD (insn, 0, 5)
119 #define REG_SRC2(insn) EXTRACT_FIELD (insn, 14, 5)
120 #define REG_SRCDST(insn) EXTRACT_FIELD (insn, 19, 5)
121 #define MEM_SRCDST(insn) EXTRACT_FIELD (insn, 19, 5)
122 #define MEMA_OFFSET(insn) EXTRACT_FIELD (insn, 0, 12)
123
124 /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
125 is not the address of a valid instruction, the address of the next
126 instruction beyond ADDR otherwise. *PWORD1 receives the first word
127 of the instruction, and (for two-word instructions), *PWORD2 receives
128 the second. */
129
130 #define NEXT_PROLOGUE_INSN(addr, lim, pword1, pword2) \
131 (((addr) < (lim)) ? next_insn (addr, pword1, pword2) : 0)
132
133 static CORE_ADDR
134 examine_prologue (ip, limit, frame_addr, fsr)
135 register CORE_ADDR ip;
136 register CORE_ADDR limit;
137 FRAME_ADDR frame_addr;
138 struct frame_saved_regs *fsr;
139 {
140 register CORE_ADDR next_ip;
141 register int src, dst;
142 register unsigned int *pcode;
143 unsigned int insn1, insn2;
144 int size;
145 int within_leaf_prologue;
146 CORE_ADDR save_addr;
147 static unsigned int varargs_prologue_code [] =
148 {
149 0x3507a00c, /* cmpobne 0x0, g14, LFn */
150 0x5cf01601, /* mov sp, g14 */
151 0x8c086030, /* lda 0x30(sp), sp */
152 0xb2879000, /* LFn: stq g0, (g14) */
153 0xb2a7a010, /* stq g4, 0x10(g14) */
154 0xb2c7a020 /* stq g8, 0x20(g14) */
155 };
156
157 /* Accept a leaf procedure prologue code fragment if present.
158 Note that ip might point to either the leaf or non-leaf
159 entry point; we look for the non-leaf entry point first: */
160
161 within_leaf_prologue = 0;
162 if ((next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2))
163 && ((insn1 & 0xfffff000) == 0x8cf00000 /* lda LRx, g14 (MEMA) */
164 || (insn1 & 0xfffffc60) == 0x8cf03000)) /* lda LRx, g14 (MEMB) */
165 {
166 within_leaf_prologue = 1;
167 next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn1, &insn2);
168 }
169
170 /* Now look for the prologue code at a leaf entry point: */
171
172 if (next_ip
173 && (insn1 & 0xff87ffff) == 0x5c80161e /* mov g14, gx */
174 && REG_SRCDST (insn1) <= G0_REGNUM + 7)
175 {
176 within_leaf_prologue = 1;
177 if ((next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn1, &insn2))
178 && (insn1 == 0x8cf00000 /* lda 0, g14 */
179 || insn1 == 0x5cf01e00)) /* mov 0, g14 */
180 {
181 ip = next_ip;
182 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
183 within_leaf_prologue = 0;
184 }
185 }
186
187 /* If something that looks like the beginning of a leaf prologue
188 has been seen, but the remainder of the prologue is missing, bail.
189 We don't know what we've got. */
190
191 if (within_leaf_prologue)
192 return (ip);
193
194 /* Accept zero or more instances of "mov[qtl]? gx, ry", where y >= 4.
195 This may cause us to mistake the moving of a register
196 parameter to a local register for the saving of a callee-saved
197 register, but that can't be helped, since with the
198 "-fcall-saved" flag, any register can be made callee-saved. */
199
200 while (next_ip
201 && (insn1 & 0xfc802fb0) == 0x5c000610
202 && (dst = REG_SRCDST (insn1)) >= (R0_REGNUM + 4))
203 {
204 src = REG_SRC1 (insn1);
205 size = EXTRACT_FIELD (insn1, 24, 2) + 1;
206 save_addr = frame_addr + ((dst - R0_REGNUM) * 4);
207 while (size--)
208 {
209 fsr->regs[src++] = save_addr;
210 save_addr += 4;
211 }
212 ip = next_ip;
213 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
214 }
215
216 /* Accept an optional "addo n, sp, sp" or "lda n(sp), sp". */
217
218 if (next_ip &&
219 ((insn1 & 0xffffffe0) == 0x59084800 /* addo n, sp, sp */
220 || (insn1 & 0xfffff000) == 0x8c086000 /* lda n(sp), sp (MEMA) */
221 || (insn1 & 0xfffffc60) == 0x8c087400)) /* lda n(sp), sp (MEMB) */
222 {
223 ip = next_ip;
224 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
225 }
226
227 /* Accept zero or more instances of "st[qtl]? gx, n(fp)".
228 This may cause us to mistake the copying of a register
229 parameter to the frame for the saving of a callee-saved
230 register, but that can't be helped, since with the
231 "-fcall-saved" flag, any register can be made callee-saved.
232 We can, however, refuse to accept a save of register g14,
233 since that is matched explicitly below. */
234
235 while (next_ip &&
236 ((insn1 & 0xf787f000) == 0x9287e000 /* stl? gx, n(fp) (MEMA) */
237 || (insn1 & 0xf787fc60) == 0x9287f400 /* stl? gx, n(fp) (MEMB) */
238 || (insn1 & 0xef87f000) == 0xa287e000 /* st[tq] gx, n(fp) (MEMA) */
239 || (insn1 & 0xef87fc60) == 0xa287f400) /* st[tq] gx, n(fp) (MEMB) */
240 && ((src = MEM_SRCDST (insn1)) != G14_REGNUM))
241 {
242 save_addr = frame_addr + ((insn1 & BITMASK (12, 1))
243 ? insn2 : MEMA_OFFSET (insn1));
244 size = (insn1 & BITMASK (29, 1)) ? ((insn1 & BITMASK (28, 1)) ? 4 : 3)
245 : ((insn1 & BITMASK (27, 1)) ? 2 : 1);
246 while (size--)
247 {
248 fsr->regs[src++] = save_addr;
249 save_addr += 4;
250 }
251 ip = next_ip;
252 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
253 }
254
255 /* Accept the varargs prologue code if present. */
256
257 size = sizeof (varargs_prologue_code) / sizeof (int);
258 pcode = varargs_prologue_code;
259 while (size-- && next_ip && *pcode++ == insn1)
260 {
261 ip = next_ip;
262 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
263 }
264
265 /* Accept an optional "st g14, n(fp)". */
266
267 if (next_ip &&
268 ((insn1 & 0xfffff000) == 0x92f7e000 /* st g14, n(fp) (MEMA) */
269 || (insn1 & 0xfffffc60) == 0x92f7f400)) /* st g14, n(fp) (MEMB) */
270 {
271 fsr->regs[G14_REGNUM] = frame_addr + ((insn1 & BITMASK (12, 1))
272 ? insn2 : MEMA_OFFSET (insn1));
273 ip = next_ip;
274 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
275 }
276
277 /* Accept zero or one instance of "mov g13, ry", where y >= 4.
278 This is saving the address where a struct should be returned. */
279
280 if (next_ip
281 && (insn1 & 0xff802fbf) == 0x5c00061d
282 && (dst = REG_SRCDST (insn1)) >= (R0_REGNUM + 4))
283 {
284 save_addr = frame_addr + ((dst - R0_REGNUM) * 4);
285 fsr->regs[G0_REGNUM+13] = save_addr;
286 ip = next_ip;
287 #if 0 /* We'll need this once there is a subsequent instruction examined. */
288 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
289 #endif
290 }
291
292 return (ip);
293 }
294
295 /* Given an ip value corresponding to the start of a function,
296 return the ip of the first instruction after the function
297 prologue. */
298
299 CORE_ADDR
300 skip_prologue (ip)
301 CORE_ADDR (ip);
302 {
303 struct frame_saved_regs saved_regs_dummy;
304 struct symtab_and_line sal;
305 CORE_ADDR limit;
306
307 sal = find_pc_line (ip, 0);
308 limit = (sal.end) ? sal.end : 0xffffffff;
309
310 return (examine_prologue (ip, limit, (FRAME_ADDR) 0, &saved_regs_dummy));
311 }
312
313 /* Put here the code to store, into a struct frame_saved_regs,
314 the addresses of the saved registers of frame described by FRAME_INFO.
315 This includes special registers such as pc and fp saved in special
316 ways in the stack frame. sp is even more special:
317 the address we return for it IS the sp for the next frame.
318
319 We cache the result of doing this in the frame_cache_obstack, since
320 it is fairly expensive. */
321
322 void
323 frame_find_saved_regs (fi, fsr)
324 struct frame_info *fi;
325 struct frame_saved_regs *fsr;
326 {
327 register CORE_ADDR next_addr;
328 register CORE_ADDR *saved_regs;
329 register int regnum;
330 register struct frame_saved_regs *cache_fsr;
331 extern struct obstack frame_cache_obstack;
332 CORE_ADDR ip;
333 struct symtab_and_line sal;
334 CORE_ADDR limit;
335
336 if (!fi->fsr)
337 {
338 cache_fsr = (struct frame_saved_regs *)
339 obstack_alloc (&frame_cache_obstack,
340 sizeof (struct frame_saved_regs));
341 bzero (cache_fsr, sizeof (struct frame_saved_regs));
342 fi->fsr = cache_fsr;
343
344 /* Find the start and end of the function prologue. If the PC
345 is in the function prologue, we only consider the part that
346 has executed already. */
347
348 ip = get_pc_function_start (fi->pc);
349 sal = find_pc_line (ip, 0);
350 limit = (sal.end && sal.end < fi->pc) ? sal.end: fi->pc;
351
352 examine_prologue (ip, limit, fi->frame, cache_fsr);
353
354 /* Record the addresses at which the local registers are saved.
355 Strictly speaking, we should only do this for non-leaf procedures,
356 but no one will ever look at these values if it is a leaf procedure,
357 since local registers are always caller-saved. */
358
359 next_addr = (CORE_ADDR) fi->frame;
360 saved_regs = cache_fsr->regs;
361 for (regnum = R0_REGNUM; regnum <= R15_REGNUM; regnum++)
362 {
363 *saved_regs++ = next_addr;
364 next_addr += 4;
365 }
366
367 cache_fsr->regs[FP_REGNUM] = cache_fsr->regs[PFP_REGNUM];
368 }
369
370 *fsr = *fi->fsr;
371
372 /* Fetch the value of the sp from memory every time, since it
373 is conceivable that it has changed since the cache was flushed.
374 This unfortunately undoes much of the savings from caching the
375 saved register values. I suggest adding an argument to
376 get_frame_saved_regs () specifying the register number we're
377 interested in (or -1 for all registers). This would be passed
378 through to FRAME_FIND_SAVED_REGS (), permitting more efficient
379 computation of saved register addresses (e.g., on the i960,
380 we don't have to examine the prologue to find local registers).
381 -- markf@wrs.com
382 FIXME, we don't need to refetch this, since the cache is cleared
383 every time the child process is restarted. If GDB itself
384 modifies SP, it has to clear the cache by hand (does it?). -gnu */
385
386 fsr->regs[SP_REGNUM] = read_memory_integer (fsr->regs[SP_REGNUM], 4);
387 }
388
389 /* Return the address of the argument block for the frame
390 described by FI. Returns 0 if the address is unknown. */
391
392 CORE_ADDR
393 frame_args_address (fi, must_be_correct)
394 struct frame_info *fi;
395 {
396 register FRAME frame;
397 struct frame_saved_regs fsr;
398 CORE_ADDR ap;
399
400 /* If g14 was saved in the frame by the function prologue code, return
401 the saved value. If the frame is current and we are being sloppy,
402 return the value of g14. Otherwise, return zero. */
403
404 frame = FRAME_INFO_ID (fi);
405 get_frame_saved_regs (fi, &fsr);
406 if (fsr.regs[G14_REGNUM])
407 ap = read_memory_integer (fsr.regs[G14_REGNUM],4);
408 else {
409 if (must_be_correct)
410 return 0; /* Don't cache this result */
411 if (get_next_frame (frame))
412 ap = 0;
413 else
414 ap = read_register (G14_REGNUM);
415 }
416 fi->arg_pointer = ap; /* Cache it for next time */
417 return ap;
418 }
419
420 /* Return the address of the return struct for the frame
421 described by FI. Returns 0 if the address is unknown. */
422
423 CORE_ADDR
424 frame_struct_result_address (fi)
425 struct frame_info *fi;
426 {
427 register FRAME frame;
428 struct frame_saved_regs fsr;
429 CORE_ADDR ap;
430
431 /* If the frame is non-current, check to see if g14 was saved in the
432 frame by the function prologue code; return the saved value if so,
433 zero otherwise. If the frame is current, return the value of g14.
434
435 FIXME, shouldn't this use the saved value as long as we are past
436 the function prologue, and only use the current value if we have
437 no saved value and are at TOS? -- gnu@cygnus.com */
438
439 frame = FRAME_INFO_ID (fi);
440 if (get_next_frame (frame)) {
441 get_frame_saved_regs (fi, &fsr);
442 if (fsr.regs[G13_REGNUM])
443 ap = read_memory_integer (fsr.regs[G13_REGNUM],4);
444 else
445 ap = 0;
446 } else {
447 ap = read_register (G13_REGNUM);
448 }
449 return ap;
450 }
451
452 /* Return address to which the currently executing leafproc will return,
453 or 0 if ip is not in a leafproc (or if we can't tell if it is).
454
455 Do this by finding the starting address of the routine in which ip lies.
456 If the instruction there is "mov g14, gx" (where x is in [0,7]), this
457 is a leafproc and the return address is in register gx. Well, this is
458 true unless the return address points at a RET instruction in the current
459 procedure, which indicates that we have a 'dual entry' routine that
460 has been entered through the CALL entry point. */
461
462 CORE_ADDR
463 leafproc_return (ip)
464 CORE_ADDR ip; /* ip from currently executing function */
465 {
466 register struct minimal_symbol *msymbol;
467 char *p;
468 int dst;
469 unsigned int insn1, insn2;
470 CORE_ADDR return_addr;
471 char *index ();
472
473 if ((msymbol = lookup_minimal_symbol_by_pc (ip)) != NULL)
474 {
475 if ((p = index (msymbol -> name, '.')) && !strcmp (p, ".lf"))
476 {
477 if (next_insn (msymbol -> address, &insn1, &insn2)
478 && (insn1 & 0xff87ffff) == 0x5c80161e /* mov g14, gx */
479 && (dst = REG_SRCDST (insn1)) <= G0_REGNUM + 7)
480 {
481 /* Get the return address. If the "mov g14, gx"
482 instruction hasn't been executed yet, read
483 the return address from g14; otherwise, read it
484 from the register into which g14 was moved. */
485
486 return_addr = read_register ((ip == msymbol->address)
487 ? G14_REGNUM : dst);
488
489 /* We know we are in a leaf procedure, but we don't know
490 whether the caller actually did a "bal" to the ".lf"
491 entry point, or a normal "call" to the non-leaf entry
492 point one instruction before. In the latter case, the
493 return address will be the address of a "ret"
494 instruction within the procedure itself. We test for
495 this below. */
496
497 if (!next_insn (return_addr, &insn1, &insn2)
498 || (insn1 & 0xff000000) != 0xa000000 /* ret */
499 || lookup_minimal_symbol_by_pc (return_addr) != msymbol)
500 return (return_addr);
501 }
502 }
503 }
504
505 return (0);
506 }
507
508 /* Immediately after a function call, return the saved pc.
509 Can't go through the frames for this because on some machines
510 the new frame is not set up until the new function executes
511 some instructions.
512 On the i960, the frame *is* set up immediately after the call,
513 unless the function is a leaf procedure. */
514
515 CORE_ADDR
516 saved_pc_after_call (frame)
517 FRAME frame;
518 {
519 CORE_ADDR saved_pc;
520 CORE_ADDR get_frame_pc ();
521
522 saved_pc = leafproc_return (get_frame_pc (frame));
523 if (!saved_pc)
524 saved_pc = FRAME_SAVED_PC (frame);
525
526 return (saved_pc);
527 }
528
529 /* Discard from the stack the innermost frame,
530 restoring all saved registers. */
531
532 pop_frame ()
533 {
534 register struct frame_info *current_fi, *prev_fi;
535 register int i;
536 CORE_ADDR save_addr;
537 CORE_ADDR leaf_return_addr;
538 struct frame_saved_regs fsr;
539 char local_regs_buf[16 * 4];
540
541 current_fi = get_frame_info (get_current_frame ());
542
543 /* First, undo what the hardware does when we return.
544 If this is a non-leaf procedure, restore local registers from
545 the save area in the calling frame. Otherwise, load the return
546 address obtained from leafproc_return () into the rip. */
547
548 leaf_return_addr = leafproc_return (current_fi->pc);
549 if (!leaf_return_addr)
550 {
551 /* Non-leaf procedure. Restore local registers, incl IP. */
552 prev_fi = get_frame_info (get_prev_frame (FRAME_INFO_ID (current_fi)));
553 read_memory (prev_fi->frame, local_regs_buf, sizeof (local_regs_buf));
554 write_register_bytes (REGISTER_BYTE (R0_REGNUM), local_regs_buf,
555 sizeof (local_regs_buf));
556
557 /* Restore frame pointer. */
558 write_register (FP_REGNUM, prev_fi->frame);
559 }
560 else
561 {
562 /* Leaf procedure. Just restore the return address into the IP. */
563 write_register (RIP_REGNUM, leaf_return_addr);
564 }
565
566 /* Now restore any global regs that the current function had saved. */
567 get_frame_saved_regs (current_fi, &fsr);
568 for (i = G0_REGNUM; i < G14_REGNUM; i++)
569 {
570 if (save_addr = fsr.regs[i])
571 write_register (i, read_memory_integer (save_addr, 4));
572 }
573
574 /* Flush the frame cache, create a frame for the new innermost frame,
575 and make it the current frame. */
576
577 flush_cached_frames ();
578 set_current_frame (create_new_frame (read_register (FP_REGNUM), read_pc ()));
579 }
580
581 /* Print out text describing a "signal number" with which the i80960 halted.
582
583 See the file "fault.c" in the nindy monitor source code for a list
584 of stop codes. */
585
586 void
587 print_fault( siggnal )
588 int siggnal; /* Signal number, as returned by target_wait() */
589 {
590 static char unknown[] = "Unknown fault or trace";
591 static char *sigmsgs[] = {
592 /* FAULTS */
593 "parallel fault", /* 0x00 */
594 unknown, /* 0x01 */
595 "operation fault", /* 0x02 */
596 "arithmetic fault", /* 0x03 */
597 "floating point fault", /* 0x04 */
598 "constraint fault", /* 0x05 */
599 "virtual memory fault", /* 0x06 */
600 "protection fault", /* 0x07 */
601 "machine fault", /* 0x08 */
602 "structural fault", /* 0x09 */
603 "type fault", /* 0x0a */
604 "reserved (0xb) fault", /* 0x0b */
605 "process fault", /* 0x0c */
606 "descriptor fault", /* 0x0d */
607 "event fault", /* 0x0e */
608 "reserved (0xf) fault", /* 0x0f */
609
610 /* TRACES */
611 "single-step trace", /* 0x10 */
612 "branch trace", /* 0x11 */
613 "call trace", /* 0x12 */
614 "return trace", /* 0x13 */
615 "pre-return trace", /* 0x14 */
616 "supervisor call trace",/* 0x15 */
617 "breakpoint trace", /* 0x16 */
618 };
619 # define NUMMSGS ((int)( sizeof(sigmsgs) / sizeof(sigmsgs[0]) ))
620
621 if (siggnal < NSIG) {
622 printf ("\nProgram received signal %d, %s\n",
623 siggnal,
624 sys_siglist[siggnal]);
625 } else {
626 /* The various target_wait()s bias the 80960 "signal number"
627 by adding NSIG to it, so it won't get confused with any
628 of the Unix signals elsewhere in GDB. We need to
629 "unbias" it before using it. */
630 siggnal -= NSIG;
631
632 printf("Program stopped for reason #%d: %s.\n", siggnal,
633 (siggnal < NUMMSGS && siggnal >= 0)?
634 sigmsgs[siggnal] : unknown );
635 }
636 }
637
638 /* Initialization stub */
639
640 _initialize_i960_tdep ()
641 {
642 check_host ();
643 }
This page took 0.042213 seconds and 4 git commands to generate.