Rephrase error message in infcall.c:call_function_by_hand
[deliverable/binutils-gdb.git] / gdb / ia64-linux-nat.c
1 /* Functions specific to running gdb native on IA-64 running
2 GNU/Linux.
3
4 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009, 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "inferior.h"
25 #include "target.h"
26 #include "gdbcore.h"
27 #include "regcache.h"
28 #include "ia64-tdep.h"
29 #include "linux-nat.h"
30
31 #include <signal.h>
32 #include <sys/ptrace.h>
33 #include "gdb_wait.h"
34 #ifdef HAVE_SYS_REG_H
35 #include <sys/reg.h>
36 #endif
37 #include <sys/syscall.h>
38 #include <sys/user.h>
39
40 #include <asm/ptrace_offsets.h>
41 #include <sys/procfs.h>
42
43 /* Prototypes for supply_gregset etc. */
44 #include "gregset.h"
45
46 /* These must match the order of the register names.
47
48 Some sort of lookup table is needed because the offsets associated
49 with the registers are all over the board. */
50
51 static int u_offsets[] =
52 {
53 /* general registers */
54 -1, /* gr0 not available; i.e, it's always zero. */
55 PT_R1,
56 PT_R2,
57 PT_R3,
58 PT_R4,
59 PT_R5,
60 PT_R6,
61 PT_R7,
62 PT_R8,
63 PT_R9,
64 PT_R10,
65 PT_R11,
66 PT_R12,
67 PT_R13,
68 PT_R14,
69 PT_R15,
70 PT_R16,
71 PT_R17,
72 PT_R18,
73 PT_R19,
74 PT_R20,
75 PT_R21,
76 PT_R22,
77 PT_R23,
78 PT_R24,
79 PT_R25,
80 PT_R26,
81 PT_R27,
82 PT_R28,
83 PT_R29,
84 PT_R30,
85 PT_R31,
86 /* gr32 through gr127 not directly available via the ptrace interface. */
87 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
88 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
89 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
90 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
91 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
92 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
93 /* Floating point registers */
94 -1, -1, /* f0 and f1 not available (f0 is +0.0 and f1 is +1.0). */
95 PT_F2,
96 PT_F3,
97 PT_F4,
98 PT_F5,
99 PT_F6,
100 PT_F7,
101 PT_F8,
102 PT_F9,
103 PT_F10,
104 PT_F11,
105 PT_F12,
106 PT_F13,
107 PT_F14,
108 PT_F15,
109 PT_F16,
110 PT_F17,
111 PT_F18,
112 PT_F19,
113 PT_F20,
114 PT_F21,
115 PT_F22,
116 PT_F23,
117 PT_F24,
118 PT_F25,
119 PT_F26,
120 PT_F27,
121 PT_F28,
122 PT_F29,
123 PT_F30,
124 PT_F31,
125 PT_F32,
126 PT_F33,
127 PT_F34,
128 PT_F35,
129 PT_F36,
130 PT_F37,
131 PT_F38,
132 PT_F39,
133 PT_F40,
134 PT_F41,
135 PT_F42,
136 PT_F43,
137 PT_F44,
138 PT_F45,
139 PT_F46,
140 PT_F47,
141 PT_F48,
142 PT_F49,
143 PT_F50,
144 PT_F51,
145 PT_F52,
146 PT_F53,
147 PT_F54,
148 PT_F55,
149 PT_F56,
150 PT_F57,
151 PT_F58,
152 PT_F59,
153 PT_F60,
154 PT_F61,
155 PT_F62,
156 PT_F63,
157 PT_F64,
158 PT_F65,
159 PT_F66,
160 PT_F67,
161 PT_F68,
162 PT_F69,
163 PT_F70,
164 PT_F71,
165 PT_F72,
166 PT_F73,
167 PT_F74,
168 PT_F75,
169 PT_F76,
170 PT_F77,
171 PT_F78,
172 PT_F79,
173 PT_F80,
174 PT_F81,
175 PT_F82,
176 PT_F83,
177 PT_F84,
178 PT_F85,
179 PT_F86,
180 PT_F87,
181 PT_F88,
182 PT_F89,
183 PT_F90,
184 PT_F91,
185 PT_F92,
186 PT_F93,
187 PT_F94,
188 PT_F95,
189 PT_F96,
190 PT_F97,
191 PT_F98,
192 PT_F99,
193 PT_F100,
194 PT_F101,
195 PT_F102,
196 PT_F103,
197 PT_F104,
198 PT_F105,
199 PT_F106,
200 PT_F107,
201 PT_F108,
202 PT_F109,
203 PT_F110,
204 PT_F111,
205 PT_F112,
206 PT_F113,
207 PT_F114,
208 PT_F115,
209 PT_F116,
210 PT_F117,
211 PT_F118,
212 PT_F119,
213 PT_F120,
214 PT_F121,
215 PT_F122,
216 PT_F123,
217 PT_F124,
218 PT_F125,
219 PT_F126,
220 PT_F127,
221 /* Predicate registers - we don't fetch these individually. */
222 -1, -1, -1, -1, -1, -1, -1, -1,
223 -1, -1, -1, -1, -1, -1, -1, -1,
224 -1, -1, -1, -1, -1, -1, -1, -1,
225 -1, -1, -1, -1, -1, -1, -1, -1,
226 -1, -1, -1, -1, -1, -1, -1, -1,
227 -1, -1, -1, -1, -1, -1, -1, -1,
228 -1, -1, -1, -1, -1, -1, -1, -1,
229 -1, -1, -1, -1, -1, -1, -1, -1,
230 /* branch registers */
231 PT_B0,
232 PT_B1,
233 PT_B2,
234 PT_B3,
235 PT_B4,
236 PT_B5,
237 PT_B6,
238 PT_B7,
239 /* Virtual frame pointer and virtual return address pointer. */
240 -1, -1,
241 /* other registers */
242 PT_PR,
243 PT_CR_IIP, /* ip */
244 PT_CR_IPSR, /* psr */
245 PT_CFM, /* cfm */
246 /* kernel registers not visible via ptrace interface (?) */
247 -1, -1, -1, -1, -1, -1, -1, -1,
248 /* hole */
249 -1, -1, -1, -1, -1, -1, -1, -1,
250 PT_AR_RSC,
251 PT_AR_BSP,
252 PT_AR_BSPSTORE,
253 PT_AR_RNAT,
254 -1,
255 -1, /* Not available: FCR, IA32 floating control register. */
256 -1, -1,
257 -1, /* Not available: EFLAG */
258 -1, /* Not available: CSD */
259 -1, /* Not available: SSD */
260 -1, /* Not available: CFLG */
261 -1, /* Not available: FSR */
262 -1, /* Not available: FIR */
263 -1, /* Not available: FDR */
264 -1,
265 PT_AR_CCV,
266 -1, -1, -1,
267 PT_AR_UNAT,
268 -1, -1, -1,
269 PT_AR_FPSR,
270 -1, -1, -1,
271 -1, /* Not available: ITC */
272 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
273 -1, -1, -1, -1, -1, -1, -1, -1, -1,
274 PT_AR_PFS,
275 PT_AR_LC,
276 -1, /* Not available: EC, the Epilog Count register. */
277 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
278 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
279 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
280 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
281 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
282 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
283 -1,
284 /* nat bits - not fetched directly; instead we obtain these bits from
285 either rnat or unat or from memory. */
286 -1, -1, -1, -1, -1, -1, -1, -1,
287 -1, -1, -1, -1, -1, -1, -1, -1,
288 -1, -1, -1, -1, -1, -1, -1, -1,
289 -1, -1, -1, -1, -1, -1, -1, -1,
290 -1, -1, -1, -1, -1, -1, -1, -1,
291 -1, -1, -1, -1, -1, -1, -1, -1,
292 -1, -1, -1, -1, -1, -1, -1, -1,
293 -1, -1, -1, -1, -1, -1, -1, -1,
294 -1, -1, -1, -1, -1, -1, -1, -1,
295 -1, -1, -1, -1, -1, -1, -1, -1,
296 -1, -1, -1, -1, -1, -1, -1, -1,
297 -1, -1, -1, -1, -1, -1, -1, -1,
298 -1, -1, -1, -1, -1, -1, -1, -1,
299 -1, -1, -1, -1, -1, -1, -1, -1,
300 -1, -1, -1, -1, -1, -1, -1, -1,
301 -1, -1, -1, -1, -1, -1, -1, -1,
302 };
303
304 static CORE_ADDR
305 ia64_register_addr (struct gdbarch *gdbarch, int regno)
306 {
307 CORE_ADDR addr;
308
309 if (regno < 0 || regno >= gdbarch_num_regs (gdbarch))
310 error (_("Invalid register number %d."), regno);
311
312 if (u_offsets[regno] == -1)
313 addr = 0;
314 else
315 addr = (CORE_ADDR) u_offsets[regno];
316
317 return addr;
318 }
319
320 static int
321 ia64_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
322 {
323 return regno < 0
324 || regno >= gdbarch_num_regs (gdbarch)
325 || u_offsets[regno] == -1;
326 }
327
328 static int
329 ia64_cannot_store_register (struct gdbarch *gdbarch, int regno)
330 {
331 /* Rationale behind not permitting stores to bspstore...
332
333 The IA-64 architecture provides bspstore and bsp which refer
334 memory locations in the RSE's backing store. bspstore is the
335 next location which will be written when the RSE needs to write
336 to memory. bsp is the address at which r32 in the current frame
337 would be found if it were written to the backing store.
338
339 The IA-64 architecture provides read-only access to bsp and
340 read/write access to bspstore (but only when the RSE is in
341 the enforced lazy mode). It should be noted that stores
342 to bspstore also affect the value of bsp. Changing bspstore
343 does not affect the number of dirty entries between bspstore
344 and bsp, so changing bspstore by N words will also cause bsp
345 to be changed by (roughly) N as well. (It could be N-1 or N+1
346 depending upon where the NaT collection bits fall.)
347
348 OTOH, the Linux kernel provides read/write access to bsp (and
349 currently read/write access to bspstore as well). But it
350 is definitely the case that if you change one, the other
351 will change at the same time. It is more useful to gdb to
352 be able to change bsp. So in order to prevent strange and
353 undesirable things from happening when a dummy stack frame
354 is popped (after calling an inferior function), we allow
355 bspstore to be read, but not written. (Note that popping
356 a (generic) dummy stack frame causes all registers that
357 were previously read from the inferior process to be written
358 back.) */
359
360 return regno < 0
361 || regno >= gdbarch_num_regs (gdbarch)
362 || u_offsets[regno] == -1
363 || regno == IA64_BSPSTORE_REGNUM;
364 }
365
366 void
367 supply_gregset (struct regcache *regcache, const gregset_t *gregsetp)
368 {
369 int regi;
370 const greg_t *regp = (const greg_t *) gregsetp;
371
372 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
373 {
374 regcache_raw_supply (regcache, regi, regp + (regi - IA64_GR0_REGNUM));
375 }
376
377 /* FIXME: NAT collection bits are at index 32; gotta deal with these
378 somehow... */
379
380 regcache_raw_supply (regcache, IA64_PR_REGNUM, regp + 33);
381
382 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
383 {
384 regcache_raw_supply (regcache, regi,
385 regp + 34 + (regi - IA64_BR0_REGNUM));
386 }
387
388 regcache_raw_supply (regcache, IA64_IP_REGNUM, regp + 42);
389 regcache_raw_supply (regcache, IA64_CFM_REGNUM, regp + 43);
390 regcache_raw_supply (regcache, IA64_PSR_REGNUM, regp + 44);
391 regcache_raw_supply (regcache, IA64_RSC_REGNUM, regp + 45);
392 regcache_raw_supply (regcache, IA64_BSP_REGNUM, regp + 46);
393 regcache_raw_supply (regcache, IA64_BSPSTORE_REGNUM, regp + 47);
394 regcache_raw_supply (regcache, IA64_RNAT_REGNUM, regp + 48);
395 regcache_raw_supply (regcache, IA64_CCV_REGNUM, regp + 49);
396 regcache_raw_supply (regcache, IA64_UNAT_REGNUM, regp + 50);
397 regcache_raw_supply (regcache, IA64_FPSR_REGNUM, regp + 51);
398 regcache_raw_supply (regcache, IA64_PFS_REGNUM, regp + 52);
399 regcache_raw_supply (regcache, IA64_LC_REGNUM, regp + 53);
400 regcache_raw_supply (regcache, IA64_EC_REGNUM, regp + 54);
401 }
402
403 void
404 fill_gregset (const struct regcache *regcache, gregset_t *gregsetp, int regno)
405 {
406 int regi;
407 greg_t *regp = (greg_t *) gregsetp;
408
409 #define COPY_REG(_idx_,_regi_) \
410 if ((regno == -1) || regno == _regi_) \
411 regcache_raw_collect (regcache, _regi_, regp + _idx_)
412
413 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
414 {
415 COPY_REG (regi - IA64_GR0_REGNUM, regi);
416 }
417
418 /* FIXME: NAT collection bits at index 32? */
419
420 COPY_REG (33, IA64_PR_REGNUM);
421
422 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
423 {
424 COPY_REG (34 + (regi - IA64_BR0_REGNUM), regi);
425 }
426
427 COPY_REG (42, IA64_IP_REGNUM);
428 COPY_REG (43, IA64_CFM_REGNUM);
429 COPY_REG (44, IA64_PSR_REGNUM);
430 COPY_REG (45, IA64_RSC_REGNUM);
431 COPY_REG (46, IA64_BSP_REGNUM);
432 COPY_REG (47, IA64_BSPSTORE_REGNUM);
433 COPY_REG (48, IA64_RNAT_REGNUM);
434 COPY_REG (49, IA64_CCV_REGNUM);
435 COPY_REG (50, IA64_UNAT_REGNUM);
436 COPY_REG (51, IA64_FPSR_REGNUM);
437 COPY_REG (52, IA64_PFS_REGNUM);
438 COPY_REG (53, IA64_LC_REGNUM);
439 COPY_REG (54, IA64_EC_REGNUM);
440 }
441
442 /* Given a pointer to a floating point register set in /proc format
443 (fpregset_t *), unpack the register contents and supply them as gdb's
444 idea of the current floating point register values. */
445
446 void
447 supply_fpregset (struct regcache *regcache, const fpregset_t *fpregsetp)
448 {
449 int regi;
450 const char *from;
451
452 for (regi = IA64_FR0_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
453 {
454 from = (const char *) &((*fpregsetp)[regi - IA64_FR0_REGNUM]);
455 regcache_raw_supply (regcache, regi, from);
456 }
457 }
458
459 /* Given a pointer to a floating point register set in /proc format
460 (fpregset_t *), update the register specified by REGNO from gdb's idea
461 of the current floating point register set. If REGNO is -1, update
462 them all. */
463
464 void
465 fill_fpregset (const struct regcache *regcache,
466 fpregset_t *fpregsetp, int regno)
467 {
468 int regi;
469
470 for (regi = IA64_FR0_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
471 {
472 if ((regno == -1) || (regno == regi))
473 regcache_raw_collect (regcache, regi,
474 &((*fpregsetp)[regi - IA64_FR0_REGNUM]));
475 }
476 }
477
478 #define IA64_PSR_DB (1UL << 24)
479 #define IA64_PSR_DD (1UL << 39)
480
481 static void
482 enable_watchpoints_in_psr (ptid_t ptid)
483 {
484 struct regcache *regcache = get_thread_regcache (ptid);
485 ULONGEST psr;
486
487 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
488 if (!(psr & IA64_PSR_DB))
489 {
490 psr |= IA64_PSR_DB; /* Set the db bit - this enables hardware
491 watchpoints and breakpoints. */
492 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
493 }
494 }
495
496 static long debug_registers[8];
497
498 static void
499 store_debug_register (ptid_t ptid, int idx, long val)
500 {
501 int tid;
502
503 tid = TIDGET (ptid);
504 if (tid == 0)
505 tid = PIDGET (ptid);
506
507 (void) ptrace (PT_WRITE_U, tid, (PTRACE_TYPE_ARG3) (PT_DBR + 8 * idx), val);
508 }
509
510 static void
511 store_debug_register_pair (ptid_t ptid, int idx, long *dbr_addr,
512 long *dbr_mask)
513 {
514 if (dbr_addr)
515 store_debug_register (ptid, 2 * idx, *dbr_addr);
516 if (dbr_mask)
517 store_debug_register (ptid, 2 * idx + 1, *dbr_mask);
518 }
519
520 static int
521 is_power_of_2 (int val)
522 {
523 int i, onecount;
524
525 onecount = 0;
526 for (i = 0; i < 8 * sizeof (val); i++)
527 if (val & (1 << i))
528 onecount++;
529
530 return onecount <= 1;
531 }
532
533 static int
534 ia64_linux_insert_watchpoint (CORE_ADDR addr, int len, int rw,
535 struct expression *cond)
536 {
537 struct lwp_info *lp;
538 ptid_t ptid;
539 int idx;
540 long dbr_addr, dbr_mask;
541 int max_watchpoints = 4;
542
543 if (len <= 0 || !is_power_of_2 (len))
544 return -1;
545
546 for (idx = 0; idx < max_watchpoints; idx++)
547 {
548 dbr_mask = debug_registers[idx * 2 + 1];
549 if ((dbr_mask & (0x3UL << 62)) == 0)
550 {
551 /* Exit loop if both r and w bits clear. */
552 break;
553 }
554 }
555
556 if (idx == max_watchpoints)
557 return -1;
558
559 dbr_addr = (long) addr;
560 dbr_mask = (~(len - 1) & 0x00ffffffffffffffL); /* construct mask to match */
561 dbr_mask |= 0x0800000000000000L; /* Only match privilege level 3 */
562 switch (rw)
563 {
564 case hw_write:
565 dbr_mask |= (1L << 62); /* Set w bit */
566 break;
567 case hw_read:
568 dbr_mask |= (1L << 63); /* Set r bit */
569 break;
570 case hw_access:
571 dbr_mask |= (3L << 62); /* Set both r and w bits */
572 break;
573 default:
574 return -1;
575 }
576
577 debug_registers[2 * idx] = dbr_addr;
578 debug_registers[2 * idx + 1] = dbr_mask;
579 ALL_LWPS (lp, ptid)
580 {
581 store_debug_register_pair (ptid, idx, &dbr_addr, &dbr_mask);
582 enable_watchpoints_in_psr (ptid);
583 }
584
585 return 0;
586 }
587
588 static int
589 ia64_linux_remove_watchpoint (CORE_ADDR addr, int len, int type,
590 struct expression *cond)
591 {
592 int idx;
593 long dbr_addr, dbr_mask;
594 int max_watchpoints = 4;
595
596 if (len <= 0 || !is_power_of_2 (len))
597 return -1;
598
599 for (idx = 0; idx < max_watchpoints; idx++)
600 {
601 dbr_addr = debug_registers[2 * idx];
602 dbr_mask = debug_registers[2 * idx + 1];
603 if ((dbr_mask & (0x3UL << 62)) && addr == (CORE_ADDR) dbr_addr)
604 {
605 struct lwp_info *lp;
606 ptid_t ptid;
607
608 debug_registers[2 * idx] = 0;
609 debug_registers[2 * idx + 1] = 0;
610 dbr_addr = 0;
611 dbr_mask = 0;
612
613 ALL_LWPS (lp, ptid)
614 store_debug_register_pair (ptid, idx, &dbr_addr, &dbr_mask);
615
616 return 0;
617 }
618 }
619 return -1;
620 }
621
622 static void
623 ia64_linux_new_thread (ptid_t ptid)
624 {
625 int i, any;
626
627 any = 0;
628 for (i = 0; i < 8; i++)
629 {
630 if (debug_registers[i] != 0)
631 any = 1;
632 store_debug_register (ptid, i, debug_registers[i]);
633 }
634
635 if (any)
636 enable_watchpoints_in_psr (ptid);
637 }
638
639 static int
640 ia64_linux_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
641 {
642 CORE_ADDR psr;
643 struct siginfo *siginfo_p;
644 struct regcache *regcache = get_current_regcache ();
645
646 siginfo_p = linux_nat_get_siginfo (inferior_ptid);
647
648 if (siginfo_p->si_signo != SIGTRAP
649 || (siginfo_p->si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
650 return 0;
651
652 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
653 psr |= IA64_PSR_DD; /* Set the dd bit - this will disable the watchpoint
654 for the next instruction. */
655 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
656
657 *addr_p = (CORE_ADDR)siginfo_p->si_addr;
658 return 1;
659 }
660
661 static int
662 ia64_linux_stopped_by_watchpoint (void)
663 {
664 CORE_ADDR addr;
665 return ia64_linux_stopped_data_address (&current_target, &addr);
666 }
667
668 static int
669 ia64_linux_can_use_hw_breakpoint (int type, int cnt, int othertype)
670 {
671 return 1;
672 }
673
674
675 /* Fetch register REGNUM from the inferior. */
676
677 static void
678 ia64_linux_fetch_register (struct regcache *regcache, int regnum)
679 {
680 struct gdbarch *gdbarch = get_regcache_arch (regcache);
681 CORE_ADDR addr;
682 size_t size;
683 PTRACE_TYPE_RET *buf;
684 int pid, i;
685
686 if (ia64_cannot_fetch_register (gdbarch, regnum))
687 {
688 regcache_raw_supply (regcache, regnum, NULL);
689 return;
690 }
691
692 /* Cater for systems like GNU/Linux, that implement threads as
693 separate processes. */
694 pid = ptid_get_lwp (inferior_ptid);
695 if (pid == 0)
696 pid = ptid_get_pid (inferior_ptid);
697
698 /* This isn't really an address, but ptrace thinks of it as one. */
699 addr = ia64_register_addr (gdbarch, regnum);
700 size = register_size (gdbarch, regnum);
701
702 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
703 buf = alloca (size);
704
705 /* Read the register contents from the inferior a chunk at a time. */
706 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
707 {
708 errno = 0;
709 buf[i] = ptrace (PT_READ_U, pid, (PTRACE_TYPE_ARG3)addr, 0);
710 if (errno != 0)
711 error (_("Couldn't read register %s (#%d): %s."),
712 gdbarch_register_name (gdbarch, regnum),
713 regnum, safe_strerror (errno));
714
715 addr += sizeof (PTRACE_TYPE_RET);
716 }
717 regcache_raw_supply (regcache, regnum, buf);
718 }
719
720 /* Fetch register REGNUM from the inferior. If REGNUM is -1, do this
721 for all registers. */
722
723 static void
724 ia64_linux_fetch_registers (struct target_ops *ops,
725 struct regcache *regcache, int regnum)
726 {
727 if (regnum == -1)
728 for (regnum = 0;
729 regnum < gdbarch_num_regs (get_regcache_arch (regcache));
730 regnum++)
731 ia64_linux_fetch_register (regcache, regnum);
732 else
733 ia64_linux_fetch_register (regcache, regnum);
734 }
735
736 /* Store register REGNUM into the inferior. */
737
738 static void
739 ia64_linux_store_register (const struct regcache *regcache, int regnum)
740 {
741 struct gdbarch *gdbarch = get_regcache_arch (regcache);
742 CORE_ADDR addr;
743 size_t size;
744 PTRACE_TYPE_RET *buf;
745 int pid, i;
746
747 if (ia64_cannot_store_register (gdbarch, regnum))
748 return;
749
750 /* Cater for systems like GNU/Linux, that implement threads as
751 separate processes. */
752 pid = ptid_get_lwp (inferior_ptid);
753 if (pid == 0)
754 pid = ptid_get_pid (inferior_ptid);
755
756 /* This isn't really an address, but ptrace thinks of it as one. */
757 addr = ia64_register_addr (gdbarch, regnum);
758 size = register_size (gdbarch, regnum);
759
760 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
761 buf = alloca (size);
762
763 /* Write the register contents into the inferior a chunk at a time. */
764 regcache_raw_collect (regcache, regnum, buf);
765 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
766 {
767 errno = 0;
768 ptrace (PT_WRITE_U, pid, (PTRACE_TYPE_ARG3)addr, buf[i]);
769 if (errno != 0)
770 error (_("Couldn't write register %s (#%d): %s."),
771 gdbarch_register_name (gdbarch, regnum),
772 regnum, safe_strerror (errno));
773
774 addr += sizeof (PTRACE_TYPE_RET);
775 }
776 }
777
778 /* Store register REGNUM back into the inferior. If REGNUM is -1, do
779 this for all registers. */
780
781 static void
782 ia64_linux_store_registers (struct target_ops *ops,
783 struct regcache *regcache, int regnum)
784 {
785 if (regnum == -1)
786 for (regnum = 0;
787 regnum < gdbarch_num_regs (get_regcache_arch (regcache));
788 regnum++)
789 ia64_linux_store_register (regcache, regnum);
790 else
791 ia64_linux_store_register (regcache, regnum);
792 }
793
794
795 static LONGEST (*super_xfer_partial) (struct target_ops *, enum target_object,
796 const char *, gdb_byte *,
797 const gdb_byte *, ULONGEST, LONGEST);
798
799 static LONGEST
800 ia64_linux_xfer_partial (struct target_ops *ops,
801 enum target_object object,
802 const char *annex,
803 gdb_byte *readbuf, const gdb_byte *writebuf,
804 ULONGEST offset, LONGEST len)
805 {
806 if (object == TARGET_OBJECT_UNWIND_TABLE && writebuf == NULL && offset == 0)
807 return syscall (__NR_getunwind, readbuf, len);
808
809 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
810 offset, len);
811 }
812
813 /* For break.b instruction ia64 CPU forgets the immediate value and generates
814 SIGILL with ILL_ILLOPC instead of more common SIGTRAP with TRAP_BRKPT.
815 ia64 does not use gdbarch_decr_pc_after_break so we do not have to make any
816 difference for the signals here. */
817
818 static int
819 ia64_linux_status_is_event (int status)
820 {
821 return WIFSTOPPED (status) && (WSTOPSIG (status) == SIGTRAP
822 || WSTOPSIG (status) == SIGILL);
823 }
824
825 void _initialize_ia64_linux_nat (void);
826
827 void
828 _initialize_ia64_linux_nat (void)
829 {
830 struct target_ops *t;
831
832 /* Fill in the generic GNU/Linux methods. */
833 t = linux_target ();
834
835 /* Override the default fetch/store register routines. */
836 t->to_fetch_registers = ia64_linux_fetch_registers;
837 t->to_store_registers = ia64_linux_store_registers;
838
839 /* Override the default to_xfer_partial. */
840 super_xfer_partial = t->to_xfer_partial;
841 t->to_xfer_partial = ia64_linux_xfer_partial;
842
843 /* Override watchpoint routines. */
844
845 /* The IA-64 architecture can step over a watch point (without triggering
846 it again) if the "dd" (data debug fault disable) bit in the processor
847 status word is set.
848
849 This PSR bit is set in ia64_linux_stopped_by_watchpoint when the
850 code there has determined that a hardware watchpoint has indeed
851 been hit. The CPU will then be able to execute one instruction
852 without triggering a watchpoint. */
853
854 t->to_have_steppable_watchpoint = 1;
855 t->to_can_use_hw_breakpoint = ia64_linux_can_use_hw_breakpoint;
856 t->to_stopped_by_watchpoint = ia64_linux_stopped_by_watchpoint;
857 t->to_stopped_data_address = ia64_linux_stopped_data_address;
858 t->to_insert_watchpoint = ia64_linux_insert_watchpoint;
859 t->to_remove_watchpoint = ia64_linux_remove_watchpoint;
860
861 /* Register the target. */
862 linux_nat_add_target (t);
863 linux_nat_set_new_thread (t, ia64_linux_new_thread);
864 linux_nat_set_status_is_event (t, ia64_linux_status_is_event);
865 }
This page took 0.047954 seconds and 4 git commands to generate.