daily update
[deliverable/binutils-gdb.git] / gdb / ia64-linux-nat.c
1 /* Functions specific to running gdb native on IA-64 running
2 GNU/Linux.
3
4 Copyright (C) 1999-2012 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include "inferior.h"
24 #include "target.h"
25 #include "gdbcore.h"
26 #include "regcache.h"
27 #include "ia64-tdep.h"
28 #include "linux-nat.h"
29
30 #include <signal.h>
31 #include <sys/ptrace.h>
32 #include "gdb_wait.h"
33 #ifdef HAVE_SYS_REG_H
34 #include <sys/reg.h>
35 #endif
36 #include <sys/syscall.h>
37 #include <sys/user.h>
38
39 #include <asm/ptrace_offsets.h>
40 #include <sys/procfs.h>
41
42 /* Prototypes for supply_gregset etc. */
43 #include "gregset.h"
44
45 /* These must match the order of the register names.
46
47 Some sort of lookup table is needed because the offsets associated
48 with the registers are all over the board. */
49
50 static int u_offsets[] =
51 {
52 /* general registers */
53 -1, /* gr0 not available; i.e, it's always zero. */
54 PT_R1,
55 PT_R2,
56 PT_R3,
57 PT_R4,
58 PT_R5,
59 PT_R6,
60 PT_R7,
61 PT_R8,
62 PT_R9,
63 PT_R10,
64 PT_R11,
65 PT_R12,
66 PT_R13,
67 PT_R14,
68 PT_R15,
69 PT_R16,
70 PT_R17,
71 PT_R18,
72 PT_R19,
73 PT_R20,
74 PT_R21,
75 PT_R22,
76 PT_R23,
77 PT_R24,
78 PT_R25,
79 PT_R26,
80 PT_R27,
81 PT_R28,
82 PT_R29,
83 PT_R30,
84 PT_R31,
85 /* gr32 through gr127 not directly available via the ptrace interface. */
86 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
87 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
88 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
89 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
90 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
91 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
92 /* Floating point registers */
93 -1, -1, /* f0 and f1 not available (f0 is +0.0 and f1 is +1.0). */
94 PT_F2,
95 PT_F3,
96 PT_F4,
97 PT_F5,
98 PT_F6,
99 PT_F7,
100 PT_F8,
101 PT_F9,
102 PT_F10,
103 PT_F11,
104 PT_F12,
105 PT_F13,
106 PT_F14,
107 PT_F15,
108 PT_F16,
109 PT_F17,
110 PT_F18,
111 PT_F19,
112 PT_F20,
113 PT_F21,
114 PT_F22,
115 PT_F23,
116 PT_F24,
117 PT_F25,
118 PT_F26,
119 PT_F27,
120 PT_F28,
121 PT_F29,
122 PT_F30,
123 PT_F31,
124 PT_F32,
125 PT_F33,
126 PT_F34,
127 PT_F35,
128 PT_F36,
129 PT_F37,
130 PT_F38,
131 PT_F39,
132 PT_F40,
133 PT_F41,
134 PT_F42,
135 PT_F43,
136 PT_F44,
137 PT_F45,
138 PT_F46,
139 PT_F47,
140 PT_F48,
141 PT_F49,
142 PT_F50,
143 PT_F51,
144 PT_F52,
145 PT_F53,
146 PT_F54,
147 PT_F55,
148 PT_F56,
149 PT_F57,
150 PT_F58,
151 PT_F59,
152 PT_F60,
153 PT_F61,
154 PT_F62,
155 PT_F63,
156 PT_F64,
157 PT_F65,
158 PT_F66,
159 PT_F67,
160 PT_F68,
161 PT_F69,
162 PT_F70,
163 PT_F71,
164 PT_F72,
165 PT_F73,
166 PT_F74,
167 PT_F75,
168 PT_F76,
169 PT_F77,
170 PT_F78,
171 PT_F79,
172 PT_F80,
173 PT_F81,
174 PT_F82,
175 PT_F83,
176 PT_F84,
177 PT_F85,
178 PT_F86,
179 PT_F87,
180 PT_F88,
181 PT_F89,
182 PT_F90,
183 PT_F91,
184 PT_F92,
185 PT_F93,
186 PT_F94,
187 PT_F95,
188 PT_F96,
189 PT_F97,
190 PT_F98,
191 PT_F99,
192 PT_F100,
193 PT_F101,
194 PT_F102,
195 PT_F103,
196 PT_F104,
197 PT_F105,
198 PT_F106,
199 PT_F107,
200 PT_F108,
201 PT_F109,
202 PT_F110,
203 PT_F111,
204 PT_F112,
205 PT_F113,
206 PT_F114,
207 PT_F115,
208 PT_F116,
209 PT_F117,
210 PT_F118,
211 PT_F119,
212 PT_F120,
213 PT_F121,
214 PT_F122,
215 PT_F123,
216 PT_F124,
217 PT_F125,
218 PT_F126,
219 PT_F127,
220 /* Predicate registers - we don't fetch these individually. */
221 -1, -1, -1, -1, -1, -1, -1, -1,
222 -1, -1, -1, -1, -1, -1, -1, -1,
223 -1, -1, -1, -1, -1, -1, -1, -1,
224 -1, -1, -1, -1, -1, -1, -1, -1,
225 -1, -1, -1, -1, -1, -1, -1, -1,
226 -1, -1, -1, -1, -1, -1, -1, -1,
227 -1, -1, -1, -1, -1, -1, -1, -1,
228 -1, -1, -1, -1, -1, -1, -1, -1,
229 /* branch registers */
230 PT_B0,
231 PT_B1,
232 PT_B2,
233 PT_B3,
234 PT_B4,
235 PT_B5,
236 PT_B6,
237 PT_B7,
238 /* Virtual frame pointer and virtual return address pointer. */
239 -1, -1,
240 /* other registers */
241 PT_PR,
242 PT_CR_IIP, /* ip */
243 PT_CR_IPSR, /* psr */
244 PT_CFM, /* cfm */
245 /* kernel registers not visible via ptrace interface (?) */
246 -1, -1, -1, -1, -1, -1, -1, -1,
247 /* hole */
248 -1, -1, -1, -1, -1, -1, -1, -1,
249 PT_AR_RSC,
250 PT_AR_BSP,
251 PT_AR_BSPSTORE,
252 PT_AR_RNAT,
253 -1,
254 -1, /* Not available: FCR, IA32 floating control register. */
255 -1, -1,
256 -1, /* Not available: EFLAG */
257 -1, /* Not available: CSD */
258 -1, /* Not available: SSD */
259 -1, /* Not available: CFLG */
260 -1, /* Not available: FSR */
261 -1, /* Not available: FIR */
262 -1, /* Not available: FDR */
263 -1,
264 PT_AR_CCV,
265 -1, -1, -1,
266 PT_AR_UNAT,
267 -1, -1, -1,
268 PT_AR_FPSR,
269 -1, -1, -1,
270 -1, /* Not available: ITC */
271 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
272 -1, -1, -1, -1, -1, -1, -1, -1, -1,
273 PT_AR_PFS,
274 PT_AR_LC,
275 PT_AR_EC,
276 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
277 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
278 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
279 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
280 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
281 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
282 -1,
283 /* nat bits - not fetched directly; instead we obtain these bits from
284 either rnat or unat or from memory. */
285 -1, -1, -1, -1, -1, -1, -1, -1,
286 -1, -1, -1, -1, -1, -1, -1, -1,
287 -1, -1, -1, -1, -1, -1, -1, -1,
288 -1, -1, -1, -1, -1, -1, -1, -1,
289 -1, -1, -1, -1, -1, -1, -1, -1,
290 -1, -1, -1, -1, -1, -1, -1, -1,
291 -1, -1, -1, -1, -1, -1, -1, -1,
292 -1, -1, -1, -1, -1, -1, -1, -1,
293 -1, -1, -1, -1, -1, -1, -1, -1,
294 -1, -1, -1, -1, -1, -1, -1, -1,
295 -1, -1, -1, -1, -1, -1, -1, -1,
296 -1, -1, -1, -1, -1, -1, -1, -1,
297 -1, -1, -1, -1, -1, -1, -1, -1,
298 -1, -1, -1, -1, -1, -1, -1, -1,
299 -1, -1, -1, -1, -1, -1, -1, -1,
300 -1, -1, -1, -1, -1, -1, -1, -1,
301 };
302
303 static CORE_ADDR
304 ia64_register_addr (struct gdbarch *gdbarch, int regno)
305 {
306 CORE_ADDR addr;
307
308 if (regno < 0 || regno >= gdbarch_num_regs (gdbarch))
309 error (_("Invalid register number %d."), regno);
310
311 if (u_offsets[regno] == -1)
312 addr = 0;
313 else
314 addr = (CORE_ADDR) u_offsets[regno];
315
316 return addr;
317 }
318
319 static int
320 ia64_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
321 {
322 return regno < 0
323 || regno >= gdbarch_num_regs (gdbarch)
324 || u_offsets[regno] == -1;
325 }
326
327 static int
328 ia64_cannot_store_register (struct gdbarch *gdbarch, int regno)
329 {
330 /* Rationale behind not permitting stores to bspstore...
331
332 The IA-64 architecture provides bspstore and bsp which refer
333 memory locations in the RSE's backing store. bspstore is the
334 next location which will be written when the RSE needs to write
335 to memory. bsp is the address at which r32 in the current frame
336 would be found if it were written to the backing store.
337
338 The IA-64 architecture provides read-only access to bsp and
339 read/write access to bspstore (but only when the RSE is in
340 the enforced lazy mode). It should be noted that stores
341 to bspstore also affect the value of bsp. Changing bspstore
342 does not affect the number of dirty entries between bspstore
343 and bsp, so changing bspstore by N words will also cause bsp
344 to be changed by (roughly) N as well. (It could be N-1 or N+1
345 depending upon where the NaT collection bits fall.)
346
347 OTOH, the Linux kernel provides read/write access to bsp (and
348 currently read/write access to bspstore as well). But it
349 is definitely the case that if you change one, the other
350 will change at the same time. It is more useful to gdb to
351 be able to change bsp. So in order to prevent strange and
352 undesirable things from happening when a dummy stack frame
353 is popped (after calling an inferior function), we allow
354 bspstore to be read, but not written. (Note that popping
355 a (generic) dummy stack frame causes all registers that
356 were previously read from the inferior process to be written
357 back.) */
358
359 return regno < 0
360 || regno >= gdbarch_num_regs (gdbarch)
361 || u_offsets[regno] == -1
362 || regno == IA64_BSPSTORE_REGNUM;
363 }
364
365 void
366 supply_gregset (struct regcache *regcache, const gregset_t *gregsetp)
367 {
368 int regi;
369 const greg_t *regp = (const greg_t *) gregsetp;
370
371 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
372 {
373 regcache_raw_supply (regcache, regi, regp + (regi - IA64_GR0_REGNUM));
374 }
375
376 /* FIXME: NAT collection bits are at index 32; gotta deal with these
377 somehow... */
378
379 regcache_raw_supply (regcache, IA64_PR_REGNUM, regp + 33);
380
381 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
382 {
383 regcache_raw_supply (regcache, regi,
384 regp + 34 + (regi - IA64_BR0_REGNUM));
385 }
386
387 regcache_raw_supply (regcache, IA64_IP_REGNUM, regp + 42);
388 regcache_raw_supply (regcache, IA64_CFM_REGNUM, regp + 43);
389 regcache_raw_supply (regcache, IA64_PSR_REGNUM, regp + 44);
390 regcache_raw_supply (regcache, IA64_RSC_REGNUM, regp + 45);
391 regcache_raw_supply (regcache, IA64_BSP_REGNUM, regp + 46);
392 regcache_raw_supply (regcache, IA64_BSPSTORE_REGNUM, regp + 47);
393 regcache_raw_supply (regcache, IA64_RNAT_REGNUM, regp + 48);
394 regcache_raw_supply (regcache, IA64_CCV_REGNUM, regp + 49);
395 regcache_raw_supply (regcache, IA64_UNAT_REGNUM, regp + 50);
396 regcache_raw_supply (regcache, IA64_FPSR_REGNUM, regp + 51);
397 regcache_raw_supply (regcache, IA64_PFS_REGNUM, regp + 52);
398 regcache_raw_supply (regcache, IA64_LC_REGNUM, regp + 53);
399 regcache_raw_supply (regcache, IA64_EC_REGNUM, regp + 54);
400 }
401
402 void
403 fill_gregset (const struct regcache *regcache, gregset_t *gregsetp, int regno)
404 {
405 int regi;
406 greg_t *regp = (greg_t *) gregsetp;
407
408 #define COPY_REG(_idx_,_regi_) \
409 if ((regno == -1) || regno == _regi_) \
410 regcache_raw_collect (regcache, _regi_, regp + _idx_)
411
412 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
413 {
414 COPY_REG (regi - IA64_GR0_REGNUM, regi);
415 }
416
417 /* FIXME: NAT collection bits at index 32? */
418
419 COPY_REG (33, IA64_PR_REGNUM);
420
421 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
422 {
423 COPY_REG (34 + (regi - IA64_BR0_REGNUM), regi);
424 }
425
426 COPY_REG (42, IA64_IP_REGNUM);
427 COPY_REG (43, IA64_CFM_REGNUM);
428 COPY_REG (44, IA64_PSR_REGNUM);
429 COPY_REG (45, IA64_RSC_REGNUM);
430 COPY_REG (46, IA64_BSP_REGNUM);
431 COPY_REG (47, IA64_BSPSTORE_REGNUM);
432 COPY_REG (48, IA64_RNAT_REGNUM);
433 COPY_REG (49, IA64_CCV_REGNUM);
434 COPY_REG (50, IA64_UNAT_REGNUM);
435 COPY_REG (51, IA64_FPSR_REGNUM);
436 COPY_REG (52, IA64_PFS_REGNUM);
437 COPY_REG (53, IA64_LC_REGNUM);
438 COPY_REG (54, IA64_EC_REGNUM);
439 }
440
441 /* Given a pointer to a floating point register set in /proc format
442 (fpregset_t *), unpack the register contents and supply them as gdb's
443 idea of the current floating point register values. */
444
445 void
446 supply_fpregset (struct regcache *regcache, const fpregset_t *fpregsetp)
447 {
448 int regi;
449 const char *from;
450 const gdb_byte f_zero[16] = { 0 };
451 const gdb_byte f_one[16] =
452 { 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
453
454 /* Kernel generated cores have fr1==0 instead of 1.0. Older GDBs
455 did the same. So ignore whatever might be recorded in fpregset_t
456 for fr0/fr1 and always supply their expected values. */
457
458 /* fr0 is always read as zero. */
459 regcache_raw_supply (regcache, IA64_FR0_REGNUM, f_zero);
460 /* fr1 is always read as one (1.0). */
461 regcache_raw_supply (regcache, IA64_FR1_REGNUM, f_one);
462
463 for (regi = IA64_FR2_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
464 {
465 from = (const char *) &((*fpregsetp)[regi - IA64_FR0_REGNUM]);
466 regcache_raw_supply (regcache, regi, from);
467 }
468 }
469
470 /* Given a pointer to a floating point register set in /proc format
471 (fpregset_t *), update the register specified by REGNO from gdb's idea
472 of the current floating point register set. If REGNO is -1, update
473 them all. */
474
475 void
476 fill_fpregset (const struct regcache *regcache,
477 fpregset_t *fpregsetp, int regno)
478 {
479 int regi;
480
481 for (regi = IA64_FR0_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
482 {
483 if ((regno == -1) || (regno == regi))
484 regcache_raw_collect (regcache, regi,
485 &((*fpregsetp)[regi - IA64_FR0_REGNUM]));
486 }
487 }
488
489 #define IA64_PSR_DB (1UL << 24)
490 #define IA64_PSR_DD (1UL << 39)
491
492 static void
493 enable_watchpoints_in_psr (ptid_t ptid)
494 {
495 struct regcache *regcache = get_thread_regcache (ptid);
496 ULONGEST psr;
497
498 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
499 if (!(psr & IA64_PSR_DB))
500 {
501 psr |= IA64_PSR_DB; /* Set the db bit - this enables hardware
502 watchpoints and breakpoints. */
503 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
504 }
505 }
506
507 static long debug_registers[8];
508
509 static void
510 store_debug_register (ptid_t ptid, int idx, long val)
511 {
512 int tid;
513
514 tid = TIDGET (ptid);
515 if (tid == 0)
516 tid = PIDGET (ptid);
517
518 (void) ptrace (PT_WRITE_U, tid, (PTRACE_TYPE_ARG3) (PT_DBR + 8 * idx), val);
519 }
520
521 static void
522 store_debug_register_pair (ptid_t ptid, int idx, long *dbr_addr,
523 long *dbr_mask)
524 {
525 if (dbr_addr)
526 store_debug_register (ptid, 2 * idx, *dbr_addr);
527 if (dbr_mask)
528 store_debug_register (ptid, 2 * idx + 1, *dbr_mask);
529 }
530
531 static int
532 is_power_of_2 (int val)
533 {
534 int i, onecount;
535
536 onecount = 0;
537 for (i = 0; i < 8 * sizeof (val); i++)
538 if (val & (1 << i))
539 onecount++;
540
541 return onecount <= 1;
542 }
543
544 static int
545 ia64_linux_insert_watchpoint (CORE_ADDR addr, int len, int rw,
546 struct expression *cond)
547 {
548 struct lwp_info *lp;
549 int idx;
550 long dbr_addr, dbr_mask;
551 int max_watchpoints = 4;
552
553 if (len <= 0 || !is_power_of_2 (len))
554 return -1;
555
556 for (idx = 0; idx < max_watchpoints; idx++)
557 {
558 dbr_mask = debug_registers[idx * 2 + 1];
559 if ((dbr_mask & (0x3UL << 62)) == 0)
560 {
561 /* Exit loop if both r and w bits clear. */
562 break;
563 }
564 }
565
566 if (idx == max_watchpoints)
567 return -1;
568
569 dbr_addr = (long) addr;
570 dbr_mask = (~(len - 1) & 0x00ffffffffffffffL); /* construct mask to match */
571 dbr_mask |= 0x0800000000000000L; /* Only match privilege level 3 */
572 switch (rw)
573 {
574 case hw_write:
575 dbr_mask |= (1L << 62); /* Set w bit */
576 break;
577 case hw_read:
578 dbr_mask |= (1L << 63); /* Set r bit */
579 break;
580 case hw_access:
581 dbr_mask |= (3L << 62); /* Set both r and w bits */
582 break;
583 default:
584 return -1;
585 }
586
587 debug_registers[2 * idx] = dbr_addr;
588 debug_registers[2 * idx + 1] = dbr_mask;
589 ALL_LWPS (lp)
590 {
591 store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
592 enable_watchpoints_in_psr (lp->ptid);
593 }
594
595 return 0;
596 }
597
598 static int
599 ia64_linux_remove_watchpoint (CORE_ADDR addr, int len, int type,
600 struct expression *cond)
601 {
602 int idx;
603 long dbr_addr, dbr_mask;
604 int max_watchpoints = 4;
605
606 if (len <= 0 || !is_power_of_2 (len))
607 return -1;
608
609 for (idx = 0; idx < max_watchpoints; idx++)
610 {
611 dbr_addr = debug_registers[2 * idx];
612 dbr_mask = debug_registers[2 * idx + 1];
613 if ((dbr_mask & (0x3UL << 62)) && addr == (CORE_ADDR) dbr_addr)
614 {
615 struct lwp_info *lp;
616
617 debug_registers[2 * idx] = 0;
618 debug_registers[2 * idx + 1] = 0;
619 dbr_addr = 0;
620 dbr_mask = 0;
621
622 ALL_LWPS (lp)
623 store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
624
625 return 0;
626 }
627 }
628 return -1;
629 }
630
631 static void
632 ia64_linux_new_thread (struct lwp_info *lp)
633 {
634 int i, any;
635
636 any = 0;
637 for (i = 0; i < 8; i++)
638 {
639 if (debug_registers[i] != 0)
640 any = 1;
641 store_debug_register (lp->ptid, i, debug_registers[i]);
642 }
643
644 if (any)
645 enable_watchpoints_in_psr (lp->ptid);
646 }
647
648 static int
649 ia64_linux_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
650 {
651 CORE_ADDR psr;
652 siginfo_t *siginfo_p;
653 struct regcache *regcache = get_current_regcache ();
654
655 siginfo_p = linux_nat_get_siginfo (inferior_ptid);
656
657 if (siginfo_p->si_signo != SIGTRAP
658 || (siginfo_p->si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
659 return 0;
660
661 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
662 psr |= IA64_PSR_DD; /* Set the dd bit - this will disable the watchpoint
663 for the next instruction. */
664 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
665
666 *addr_p = (CORE_ADDR)siginfo_p->si_addr;
667 return 1;
668 }
669
670 static int
671 ia64_linux_stopped_by_watchpoint (void)
672 {
673 CORE_ADDR addr;
674 return ia64_linux_stopped_data_address (&current_target, &addr);
675 }
676
677 static int
678 ia64_linux_can_use_hw_breakpoint (int type, int cnt, int othertype)
679 {
680 return 1;
681 }
682
683
684 /* Fetch register REGNUM from the inferior. */
685
686 static void
687 ia64_linux_fetch_register (struct regcache *regcache, int regnum)
688 {
689 struct gdbarch *gdbarch = get_regcache_arch (regcache);
690 CORE_ADDR addr;
691 size_t size;
692 PTRACE_TYPE_RET *buf;
693 int pid, i;
694
695 /* r0 cannot be fetched but is always zero. */
696 if (regnum == IA64_GR0_REGNUM)
697 {
698 const gdb_byte zero[8] = { 0 };
699
700 gdb_assert (sizeof (zero) == register_size (gdbarch, regnum));
701 regcache_raw_supply (regcache, regnum, zero);
702 return;
703 }
704
705 /* fr0 cannot be fetched but is always zero. */
706 if (regnum == IA64_FR0_REGNUM)
707 {
708 const gdb_byte f_zero[16] = { 0 };
709
710 gdb_assert (sizeof (f_zero) == register_size (gdbarch, regnum));
711 regcache_raw_supply (regcache, regnum, f_zero);
712 return;
713 }
714
715 /* fr1 cannot be fetched but is always one (1.0). */
716 if (regnum == IA64_FR1_REGNUM)
717 {
718 const gdb_byte f_one[16] =
719 { 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
720
721 gdb_assert (sizeof (f_one) == register_size (gdbarch, regnum));
722 regcache_raw_supply (regcache, regnum, f_one);
723 return;
724 }
725
726 if (ia64_cannot_fetch_register (gdbarch, regnum))
727 {
728 regcache_raw_supply (regcache, regnum, NULL);
729 return;
730 }
731
732 /* Cater for systems like GNU/Linux, that implement threads as
733 separate processes. */
734 pid = ptid_get_lwp (inferior_ptid);
735 if (pid == 0)
736 pid = ptid_get_pid (inferior_ptid);
737
738 /* This isn't really an address, but ptrace thinks of it as one. */
739 addr = ia64_register_addr (gdbarch, regnum);
740 size = register_size (gdbarch, regnum);
741
742 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
743 buf = alloca (size);
744
745 /* Read the register contents from the inferior a chunk at a time. */
746 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
747 {
748 errno = 0;
749 buf[i] = ptrace (PT_READ_U, pid, (PTRACE_TYPE_ARG3)addr, 0);
750 if (errno != 0)
751 error (_("Couldn't read register %s (#%d): %s."),
752 gdbarch_register_name (gdbarch, regnum),
753 regnum, safe_strerror (errno));
754
755 addr += sizeof (PTRACE_TYPE_RET);
756 }
757 regcache_raw_supply (regcache, regnum, buf);
758 }
759
760 /* Fetch register REGNUM from the inferior. If REGNUM is -1, do this
761 for all registers. */
762
763 static void
764 ia64_linux_fetch_registers (struct target_ops *ops,
765 struct regcache *regcache, int regnum)
766 {
767 if (regnum == -1)
768 for (regnum = 0;
769 regnum < gdbarch_num_regs (get_regcache_arch (regcache));
770 regnum++)
771 ia64_linux_fetch_register (regcache, regnum);
772 else
773 ia64_linux_fetch_register (regcache, regnum);
774 }
775
776 /* Store register REGNUM into the inferior. */
777
778 static void
779 ia64_linux_store_register (const struct regcache *regcache, int regnum)
780 {
781 struct gdbarch *gdbarch = get_regcache_arch (regcache);
782 CORE_ADDR addr;
783 size_t size;
784 PTRACE_TYPE_RET *buf;
785 int pid, i;
786
787 if (ia64_cannot_store_register (gdbarch, regnum))
788 return;
789
790 /* Cater for systems like GNU/Linux, that implement threads as
791 separate processes. */
792 pid = ptid_get_lwp (inferior_ptid);
793 if (pid == 0)
794 pid = ptid_get_pid (inferior_ptid);
795
796 /* This isn't really an address, but ptrace thinks of it as one. */
797 addr = ia64_register_addr (gdbarch, regnum);
798 size = register_size (gdbarch, regnum);
799
800 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
801 buf = alloca (size);
802
803 /* Write the register contents into the inferior a chunk at a time. */
804 regcache_raw_collect (regcache, regnum, buf);
805 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
806 {
807 errno = 0;
808 ptrace (PT_WRITE_U, pid, (PTRACE_TYPE_ARG3)addr, buf[i]);
809 if (errno != 0)
810 error (_("Couldn't write register %s (#%d): %s."),
811 gdbarch_register_name (gdbarch, regnum),
812 regnum, safe_strerror (errno));
813
814 addr += sizeof (PTRACE_TYPE_RET);
815 }
816 }
817
818 /* Store register REGNUM back into the inferior. If REGNUM is -1, do
819 this for all registers. */
820
821 static void
822 ia64_linux_store_registers (struct target_ops *ops,
823 struct regcache *regcache, int regnum)
824 {
825 if (regnum == -1)
826 for (regnum = 0;
827 regnum < gdbarch_num_regs (get_regcache_arch (regcache));
828 regnum++)
829 ia64_linux_store_register (regcache, regnum);
830 else
831 ia64_linux_store_register (regcache, regnum);
832 }
833
834
835 static LONGEST (*super_xfer_partial) (struct target_ops *, enum target_object,
836 const char *, gdb_byte *,
837 const gdb_byte *, ULONGEST, LONGEST);
838
839 static LONGEST
840 ia64_linux_xfer_partial (struct target_ops *ops,
841 enum target_object object,
842 const char *annex,
843 gdb_byte *readbuf, const gdb_byte *writebuf,
844 ULONGEST offset, LONGEST len)
845 {
846 if (object == TARGET_OBJECT_UNWIND_TABLE && writebuf == NULL && offset == 0)
847 return syscall (__NR_getunwind, readbuf, len);
848
849 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
850 offset, len);
851 }
852
853 /* For break.b instruction ia64 CPU forgets the immediate value and generates
854 SIGILL with ILL_ILLOPC instead of more common SIGTRAP with TRAP_BRKPT.
855 ia64 does not use gdbarch_decr_pc_after_break so we do not have to make any
856 difference for the signals here. */
857
858 static int
859 ia64_linux_status_is_event (int status)
860 {
861 return WIFSTOPPED (status) && (WSTOPSIG (status) == SIGTRAP
862 || WSTOPSIG (status) == SIGILL);
863 }
864
865 void _initialize_ia64_linux_nat (void);
866
867 void
868 _initialize_ia64_linux_nat (void)
869 {
870 struct target_ops *t;
871
872 /* Fill in the generic GNU/Linux methods. */
873 t = linux_target ();
874
875 /* Override the default fetch/store register routines. */
876 t->to_fetch_registers = ia64_linux_fetch_registers;
877 t->to_store_registers = ia64_linux_store_registers;
878
879 /* Override the default to_xfer_partial. */
880 super_xfer_partial = t->to_xfer_partial;
881 t->to_xfer_partial = ia64_linux_xfer_partial;
882
883 /* Override watchpoint routines. */
884
885 /* The IA-64 architecture can step over a watch point (without triggering
886 it again) if the "dd" (data debug fault disable) bit in the processor
887 status word is set.
888
889 This PSR bit is set in ia64_linux_stopped_by_watchpoint when the
890 code there has determined that a hardware watchpoint has indeed
891 been hit. The CPU will then be able to execute one instruction
892 without triggering a watchpoint. */
893
894 t->to_have_steppable_watchpoint = 1;
895 t->to_can_use_hw_breakpoint = ia64_linux_can_use_hw_breakpoint;
896 t->to_stopped_by_watchpoint = ia64_linux_stopped_by_watchpoint;
897 t->to_stopped_data_address = ia64_linux_stopped_data_address;
898 t->to_insert_watchpoint = ia64_linux_insert_watchpoint;
899 t->to_remove_watchpoint = ia64_linux_remove_watchpoint;
900
901 /* Register the target. */
902 linux_nat_add_target (t);
903 linux_nat_set_new_thread (t, ia64_linux_new_thread);
904 linux_nat_set_status_is_event (t, ia64_linux_status_is_event);
905 }
This page took 0.068565 seconds and 4 git commands to generate.