1 /* Functions specific to running gdb native on IA-64 running
4 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "gdb_string.h"
28 #include "ia64-tdep.h"
29 #include "linux-nat.h"
32 #include <sys/ptrace.h>
37 #include <sys/syscall.h>
40 #include <asm/ptrace_offsets.h>
41 #include <sys/procfs.h>
43 /* Prototypes for supply_gregset etc. */
46 /* These must match the order of the register names.
48 Some sort of lookup table is needed because the offsets associated
49 with the registers are all over the board. */
51 static int u_offsets
[] =
53 /* general registers */
54 -1, /* gr0 not available; i.e, it's always zero */
86 /* gr32 through gr127 not directly available via the ptrace interface */
87 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
88 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
89 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
90 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
91 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
92 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
93 /* Floating point registers */
94 -1, -1, /* f0 and f1 not available (f0 is +0.0 and f1 is +1.0) */
221 /* predicate registers - we don't fetch these individually */
222 -1, -1, -1, -1, -1, -1, -1, -1,
223 -1, -1, -1, -1, -1, -1, -1, -1,
224 -1, -1, -1, -1, -1, -1, -1, -1,
225 -1, -1, -1, -1, -1, -1, -1, -1,
226 -1, -1, -1, -1, -1, -1, -1, -1,
227 -1, -1, -1, -1, -1, -1, -1, -1,
228 -1, -1, -1, -1, -1, -1, -1, -1,
229 -1, -1, -1, -1, -1, -1, -1, -1,
230 /* branch registers */
239 /* virtual frame pointer and virtual return address pointer */
241 /* other registers */
244 PT_CR_IPSR
, /* psr */
246 /* kernel registers not visible via ptrace interface (?) */
247 -1, -1, -1, -1, -1, -1, -1, -1,
249 -1, -1, -1, -1, -1, -1, -1, -1,
255 -1, /* Not available: FCR, IA32 floating control register */
257 -1, /* Not available: EFLAG */
258 -1, /* Not available: CSD */
259 -1, /* Not available: SSD */
260 -1, /* Not available: CFLG */
261 -1, /* Not available: FSR */
262 -1, /* Not available: FIR */
263 -1, /* Not available: FDR */
271 -1, /* Not available: ITC */
272 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
273 -1, -1, -1, -1, -1, -1, -1, -1, -1,
276 -1, /* Not available: EC, the Epilog Count register */
277 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
278 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
279 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
280 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
281 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
282 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
284 /* nat bits - not fetched directly; instead we obtain these bits from
285 either rnat or unat or from memory. */
286 -1, -1, -1, -1, -1, -1, -1, -1,
287 -1, -1, -1, -1, -1, -1, -1, -1,
288 -1, -1, -1, -1, -1, -1, -1, -1,
289 -1, -1, -1, -1, -1, -1, -1, -1,
290 -1, -1, -1, -1, -1, -1, -1, -1,
291 -1, -1, -1, -1, -1, -1, -1, -1,
292 -1, -1, -1, -1, -1, -1, -1, -1,
293 -1, -1, -1, -1, -1, -1, -1, -1,
294 -1, -1, -1, -1, -1, -1, -1, -1,
295 -1, -1, -1, -1, -1, -1, -1, -1,
296 -1, -1, -1, -1, -1, -1, -1, -1,
297 -1, -1, -1, -1, -1, -1, -1, -1,
298 -1, -1, -1, -1, -1, -1, -1, -1,
299 -1, -1, -1, -1, -1, -1, -1, -1,
300 -1, -1, -1, -1, -1, -1, -1, -1,
301 -1, -1, -1, -1, -1, -1, -1, -1,
305 ia64_register_addr (struct gdbarch
*gdbarch
, int regno
)
309 if (regno
< 0 || regno
>= gdbarch_num_regs (gdbarch
))
310 error (_("Invalid register number %d."), regno
);
312 if (u_offsets
[regno
] == -1)
315 addr
= (CORE_ADDR
) u_offsets
[regno
];
321 ia64_cannot_fetch_register (struct gdbarch
*gdbarch
, int regno
)
324 || regno
>= gdbarch_num_regs (gdbarch
)
325 || u_offsets
[regno
] == -1;
329 ia64_cannot_store_register (struct gdbarch
*gdbarch
, int regno
)
331 /* Rationale behind not permitting stores to bspstore...
333 The IA-64 architecture provides bspstore and bsp which refer
334 memory locations in the RSE's backing store. bspstore is the
335 next location which will be written when the RSE needs to write
336 to memory. bsp is the address at which r32 in the current frame
337 would be found if it were written to the backing store.
339 The IA-64 architecture provides read-only access to bsp and
340 read/write access to bspstore (but only when the RSE is in
341 the enforced lazy mode). It should be noted that stores
342 to bspstore also affect the value of bsp. Changing bspstore
343 does not affect the number of dirty entries between bspstore
344 and bsp, so changing bspstore by N words will also cause bsp
345 to be changed by (roughly) N as well. (It could be N-1 or N+1
346 depending upon where the NaT collection bits fall.)
348 OTOH, the Linux kernel provides read/write access to bsp (and
349 currently read/write access to bspstore as well). But it
350 is definitely the case that if you change one, the other
351 will change at the same time. It is more useful to gdb to
352 be able to change bsp. So in order to prevent strange and
353 undesirable things from happening when a dummy stack frame
354 is popped (after calling an inferior function), we allow
355 bspstore to be read, but not written. (Note that popping
356 a (generic) dummy stack frame causes all registers that
357 were previously read from the inferior process to be written
361 || regno
>= gdbarch_num_regs (gdbarch
)
362 || u_offsets
[regno
] == -1
363 || regno
== IA64_BSPSTORE_REGNUM
;
367 supply_gregset (struct regcache
*regcache
, const gregset_t
*gregsetp
)
370 const greg_t
*regp
= (const greg_t
*) gregsetp
;
372 for (regi
= IA64_GR0_REGNUM
; regi
<= IA64_GR31_REGNUM
; regi
++)
374 regcache_raw_supply (regcache
, regi
, regp
+ (regi
- IA64_GR0_REGNUM
));
377 /* FIXME: NAT collection bits are at index 32; gotta deal with these
380 regcache_raw_supply (regcache
, IA64_PR_REGNUM
, regp
+ 33);
382 for (regi
= IA64_BR0_REGNUM
; regi
<= IA64_BR7_REGNUM
; regi
++)
384 regcache_raw_supply (regcache
, regi
,
385 regp
+ 34 + (regi
- IA64_BR0_REGNUM
));
388 regcache_raw_supply (regcache
, IA64_IP_REGNUM
, regp
+ 42);
389 regcache_raw_supply (regcache
, IA64_CFM_REGNUM
, regp
+ 43);
390 regcache_raw_supply (regcache
, IA64_PSR_REGNUM
, regp
+ 44);
391 regcache_raw_supply (regcache
, IA64_RSC_REGNUM
, regp
+ 45);
392 regcache_raw_supply (regcache
, IA64_BSP_REGNUM
, regp
+ 46);
393 regcache_raw_supply (regcache
, IA64_BSPSTORE_REGNUM
, regp
+ 47);
394 regcache_raw_supply (regcache
, IA64_RNAT_REGNUM
, regp
+ 48);
395 regcache_raw_supply (regcache
, IA64_CCV_REGNUM
, regp
+ 49);
396 regcache_raw_supply (regcache
, IA64_UNAT_REGNUM
, regp
+ 50);
397 regcache_raw_supply (regcache
, IA64_FPSR_REGNUM
, regp
+ 51);
398 regcache_raw_supply (regcache
, IA64_PFS_REGNUM
, regp
+ 52);
399 regcache_raw_supply (regcache
, IA64_LC_REGNUM
, regp
+ 53);
400 regcache_raw_supply (regcache
, IA64_EC_REGNUM
, regp
+ 54);
404 fill_gregset (const struct regcache
*regcache
, gregset_t
*gregsetp
, int regno
)
407 greg_t
*regp
= (greg_t
*) gregsetp
;
409 #define COPY_REG(_idx_,_regi_) \
410 if ((regno == -1) || regno == _regi_) \
411 regcache_raw_collect (regcache, _regi_, regp + _idx_)
413 for (regi
= IA64_GR0_REGNUM
; regi
<= IA64_GR31_REGNUM
; regi
++)
415 COPY_REG (regi
- IA64_GR0_REGNUM
, regi
);
418 /* FIXME: NAT collection bits at index 32? */
420 COPY_REG (33, IA64_PR_REGNUM
);
422 for (regi
= IA64_BR0_REGNUM
; regi
<= IA64_BR7_REGNUM
; regi
++)
424 COPY_REG (34 + (regi
- IA64_BR0_REGNUM
), regi
);
427 COPY_REG (42, IA64_IP_REGNUM
);
428 COPY_REG (43, IA64_CFM_REGNUM
);
429 COPY_REG (44, IA64_PSR_REGNUM
);
430 COPY_REG (45, IA64_RSC_REGNUM
);
431 COPY_REG (46, IA64_BSP_REGNUM
);
432 COPY_REG (47, IA64_BSPSTORE_REGNUM
);
433 COPY_REG (48, IA64_RNAT_REGNUM
);
434 COPY_REG (49, IA64_CCV_REGNUM
);
435 COPY_REG (50, IA64_UNAT_REGNUM
);
436 COPY_REG (51, IA64_FPSR_REGNUM
);
437 COPY_REG (52, IA64_PFS_REGNUM
);
438 COPY_REG (53, IA64_LC_REGNUM
);
439 COPY_REG (54, IA64_EC_REGNUM
);
442 /* Given a pointer to a floating point register set in /proc format
443 (fpregset_t *), unpack the register contents and supply them as gdb's
444 idea of the current floating point register values. */
447 supply_fpregset (struct regcache
*regcache
, const fpregset_t
*fpregsetp
)
452 for (regi
= IA64_FR0_REGNUM
; regi
<= IA64_FR127_REGNUM
; regi
++)
454 from
= (const char *) &((*fpregsetp
)[regi
- IA64_FR0_REGNUM
]);
455 regcache_raw_supply (regcache
, regi
, from
);
459 /* Given a pointer to a floating point register set in /proc format
460 (fpregset_t *), update the register specified by REGNO from gdb's idea
461 of the current floating point register set. If REGNO is -1, update
465 fill_fpregset (const struct regcache
*regcache
,
466 fpregset_t
*fpregsetp
, int regno
)
470 for (regi
= IA64_FR0_REGNUM
; regi
<= IA64_FR127_REGNUM
; regi
++)
472 if ((regno
== -1) || (regno
== regi
))
473 regcache_raw_collect (regcache
, regi
,
474 &((*fpregsetp
)[regi
- IA64_FR0_REGNUM
]));
478 #define IA64_PSR_DB (1UL << 24)
479 #define IA64_PSR_DD (1UL << 39)
482 enable_watchpoints_in_psr (ptid_t ptid
)
484 struct regcache
*regcache
= get_thread_regcache (ptid
);
487 regcache_cooked_read_unsigned (regcache
, IA64_PSR_REGNUM
, &psr
);
488 if (!(psr
& IA64_PSR_DB
))
490 psr
|= IA64_PSR_DB
; /* Set the db bit - this enables hardware
491 watchpoints and breakpoints. */
492 regcache_cooked_write_unsigned (regcache
, IA64_PSR_REGNUM
, psr
);
496 static long debug_registers
[8];
499 store_debug_register (ptid_t ptid
, int idx
, long val
)
507 (void) ptrace (PT_WRITE_U
, tid
, (PTRACE_TYPE_ARG3
) (PT_DBR
+ 8 * idx
), val
);
511 store_debug_register_pair (ptid_t ptid
, int idx
, long *dbr_addr
, long *dbr_mask
)
514 store_debug_register (ptid
, 2 * idx
, *dbr_addr
);
516 store_debug_register (ptid
, 2 * idx
+ 1, *dbr_mask
);
520 is_power_of_2 (int val
)
525 for (i
= 0; i
< 8 * sizeof (val
); i
++)
529 return onecount
<= 1;
533 ia64_linux_insert_watchpoint (CORE_ADDR addr
, int len
, int rw
)
538 long dbr_addr
, dbr_mask
;
539 int max_watchpoints
= 4;
541 if (len
<= 0 || !is_power_of_2 (len
))
544 for (idx
= 0; idx
< max_watchpoints
; idx
++)
546 dbr_mask
= debug_registers
[idx
* 2 + 1];
547 if ((dbr_mask
& (0x3UL
<< 62)) == 0)
549 /* Exit loop if both r and w bits clear */
554 if (idx
== max_watchpoints
)
557 dbr_addr
= (long) addr
;
558 dbr_mask
= (~(len
- 1) & 0x00ffffffffffffffL
); /* construct mask to match */
559 dbr_mask
|= 0x0800000000000000L
; /* Only match privilege level 3 */
563 dbr_mask
|= (1L << 62); /* Set w bit */
566 dbr_mask
|= (1L << 63); /* Set r bit */
569 dbr_mask
|= (3L << 62); /* Set both r and w bits */
575 debug_registers
[2 * idx
] = dbr_addr
;
576 debug_registers
[2 * idx
+ 1] = dbr_mask
;
579 store_debug_register_pair (ptid
, idx
, &dbr_addr
, &dbr_mask
);
580 enable_watchpoints_in_psr (ptid
);
587 ia64_linux_remove_watchpoint (CORE_ADDR addr
, int len
, int type
)
590 long dbr_addr
, dbr_mask
;
591 int max_watchpoints
= 4;
593 if (len
<= 0 || !is_power_of_2 (len
))
596 for (idx
= 0; idx
< max_watchpoints
; idx
++)
598 dbr_addr
= debug_registers
[2 * idx
];
599 dbr_mask
= debug_registers
[2 * idx
+ 1];
600 if ((dbr_mask
& (0x3UL
<< 62)) && addr
== (CORE_ADDR
) dbr_addr
)
605 debug_registers
[2 * idx
] = 0;
606 debug_registers
[2 * idx
+ 1] = 0;
611 store_debug_register_pair (ptid
, idx
, &dbr_addr
, &dbr_mask
);
620 ia64_linux_new_thread (ptid_t ptid
)
625 for (i
= 0; i
< 8; i
++)
627 if (debug_registers
[i
] != 0)
629 store_debug_register (ptid
, i
, debug_registers
[i
]);
633 enable_watchpoints_in_psr (ptid
);
637 ia64_linux_stopped_data_address (struct target_ops
*ops
, CORE_ADDR
*addr_p
)
640 struct siginfo
*siginfo_p
;
641 struct regcache
*regcache
= get_current_regcache ();
643 siginfo_p
= linux_nat_get_siginfo (inferior_ptid
);
645 if (siginfo_p
->si_signo
!= SIGTRAP
646 || (siginfo_p
->si_code
& 0xffff) != 0x0004 /* TRAP_HWBKPT */)
649 regcache_cooked_read_unsigned (regcache
, IA64_PSR_REGNUM
, &psr
);
650 psr
|= IA64_PSR_DD
; /* Set the dd bit - this will disable the watchpoint
651 for the next instruction */
652 regcache_cooked_write_unsigned (regcache
, IA64_PSR_REGNUM
, psr
);
654 *addr_p
= (CORE_ADDR
)siginfo_p
->si_addr
;
659 ia64_linux_stopped_by_watchpoint (void)
662 return ia64_linux_stopped_data_address (¤t_target
, &addr
);
666 ia64_linux_can_use_hw_breakpoint (int type
, int cnt
, int othertype
)
672 /* Fetch register REGNUM from the inferior. */
675 ia64_linux_fetch_register (struct regcache
*regcache
, int regnum
)
677 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
680 PTRACE_TYPE_RET
*buf
;
683 if (ia64_cannot_fetch_register (gdbarch
, regnum
))
685 regcache_raw_supply (regcache
, regnum
, NULL
);
689 /* Cater for systems like GNU/Linux, that implement threads as
690 separate processes. */
691 pid
= ptid_get_lwp (inferior_ptid
);
693 pid
= ptid_get_pid (inferior_ptid
);
695 /* This isn't really an address, but ptrace thinks of it as one. */
696 addr
= ia64_register_addr (gdbarch
, regnum
);
697 size
= register_size (gdbarch
, regnum
);
699 gdb_assert ((size
% sizeof (PTRACE_TYPE_RET
)) == 0);
702 /* Read the register contents from the inferior a chunk at a time. */
703 for (i
= 0; i
< size
/ sizeof (PTRACE_TYPE_RET
); i
++)
706 buf
[i
] = ptrace (PT_READ_U
, pid
, (PTRACE_TYPE_ARG3
)addr
, 0);
708 error (_("Couldn't read register %s (#%d): %s."),
709 gdbarch_register_name (gdbarch
, regnum
),
710 regnum
, safe_strerror (errno
));
712 addr
+= sizeof (PTRACE_TYPE_RET
);
714 regcache_raw_supply (regcache
, regnum
, buf
);
717 /* Fetch register REGNUM from the inferior. If REGNUM is -1, do this
718 for all registers. */
721 ia64_linux_fetch_registers (struct regcache
*regcache
, int regnum
)
725 regnum
< gdbarch_num_regs (get_regcache_arch (regcache
));
727 ia64_linux_fetch_register (regcache
, regnum
);
729 ia64_linux_fetch_register (regcache
, regnum
);
732 /* Store register REGNUM into the inferior. */
735 ia64_linux_store_register (const struct regcache
*regcache
, int regnum
)
737 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
740 PTRACE_TYPE_RET
*buf
;
743 if (ia64_cannot_store_register (gdbarch
, regnum
))
746 /* Cater for systems like GNU/Linux, that implement threads as
747 separate processes. */
748 pid
= ptid_get_lwp (inferior_ptid
);
750 pid
= ptid_get_pid (inferior_ptid
);
752 /* This isn't really an address, but ptrace thinks of it as one. */
753 addr
= ia64_register_addr (gdbarch
, regnum
);
754 size
= register_size (gdbarch
, regnum
);
756 gdb_assert ((size
% sizeof (PTRACE_TYPE_RET
)) == 0);
759 /* Write the register contents into the inferior a chunk at a time. */
760 regcache_raw_collect (regcache
, regnum
, buf
);
761 for (i
= 0; i
< size
/ sizeof (PTRACE_TYPE_RET
); i
++)
764 ptrace (PT_WRITE_U
, pid
, (PTRACE_TYPE_ARG3
)addr
, buf
[i
]);
766 error (_("Couldn't write register %s (#%d): %s."),
767 gdbarch_register_name (gdbarch
, regnum
),
768 regnum
, safe_strerror (errno
));
770 addr
+= sizeof (PTRACE_TYPE_RET
);
774 /* Store register REGNUM back into the inferior. If REGNUM is -1, do
775 this for all registers. */
778 ia64_linux_store_registers (struct regcache
*regcache
, int regnum
)
782 regnum
< gdbarch_num_regs (get_regcache_arch (regcache
));
784 ia64_linux_store_register (regcache
, regnum
);
786 ia64_linux_store_register (regcache
, regnum
);
790 static LONGEST (*super_xfer_partial
) (struct target_ops
*, enum target_object
,
791 const char *, gdb_byte
*, const gdb_byte
*,
795 ia64_linux_xfer_partial (struct target_ops
*ops
,
796 enum target_object object
,
798 gdb_byte
*readbuf
, const gdb_byte
*writebuf
,
799 ULONGEST offset
, LONGEST len
)
801 if (object
== TARGET_OBJECT_UNWIND_TABLE
&& writebuf
== NULL
&& offset
== 0)
802 return syscall (__NR_getunwind
, readbuf
, len
);
804 return super_xfer_partial (ops
, object
, annex
, readbuf
, writebuf
,
808 void _initialize_ia64_linux_nat (void);
811 _initialize_ia64_linux_nat (void)
813 struct target_ops
*t
;
815 /* Fill in the generic GNU/Linux methods. */
818 /* Override the default fetch/store register routines. */
819 t
->to_fetch_registers
= ia64_linux_fetch_registers
;
820 t
->to_store_registers
= ia64_linux_store_registers
;
822 /* Override the default to_xfer_partial. */
823 super_xfer_partial
= t
->to_xfer_partial
;
824 t
->to_xfer_partial
= ia64_linux_xfer_partial
;
826 /* Override watchpoint routines. */
828 /* The IA-64 architecture can step over a watch point (without triggering
829 it again) if the "dd" (data debug fault disable) bit in the processor
832 This PSR bit is set in ia64_linux_stopped_by_watchpoint when the
833 code there has determined that a hardware watchpoint has indeed
834 been hit. The CPU will then be able to execute one instruction
835 without triggering a watchpoint. */
837 t
->to_have_steppable_watchpoint
= 1;
838 t
->to_can_use_hw_breakpoint
= ia64_linux_can_use_hw_breakpoint
;
839 t
->to_stopped_by_watchpoint
= ia64_linux_stopped_by_watchpoint
;
840 t
->to_stopped_data_address
= ia64_linux_stopped_data_address
;
841 t
->to_insert_watchpoint
= ia64_linux_insert_watchpoint
;
842 t
->to_remove_watchpoint
= ia64_linux_remove_watchpoint
;
844 /* Register the target. */
845 linux_nat_add_target (t
);
846 linux_nat_set_new_thread (t
, ia64_linux_new_thread
);