2678be2479c1b0a57c2ecf2afab3f5989aeced30
[deliverable/binutils-gdb.git] / gdb / ia64-tdep.c
1 /* Target-dependent code for the IA-64 for GDB, the GNU debugger.
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include "defs.h"
24 #include "inferior.h"
25 #include "gdbcore.h"
26 #include "arch-utils.h"
27 #include "floatformat.h"
28 #include "gdbtypes.h"
29 #include "regcache.h"
30 #include "reggroups.h"
31 #include "frame.h"
32 #include "frame-base.h"
33 #include "frame-unwind.h"
34 #include "doublest.h"
35 #include "value.h"
36 #include "gdb_assert.h"
37 #include "objfiles.h"
38 #include "elf/common.h" /* for DT_PLTGOT value */
39 #include "elf-bfd.h"
40 #include "dis-asm.h"
41 #include "infcall.h"
42 #include "osabi.h"
43 #include "ia64-tdep.h"
44 #include "cp-abi.h"
45
46 #ifdef HAVE_LIBUNWIND_IA64_H
47 #include "elf/ia64.h" /* for PT_IA_64_UNWIND value */
48 #include "libunwind-frame.h"
49 #include "libunwind-ia64.h"
50
51 /* Note: KERNEL_START is supposed to be an address which is not going
52 to ever contain any valid unwind info. For ia64 linux, the choice
53 of 0xc000000000000000 is fairly safe since that's uncached space.
54
55 We use KERNEL_START as follows: after obtaining the kernel's
56 unwind table via getunwind(), we project its unwind data into
57 address-range KERNEL_START-(KERNEL_START+ktab_size) and then
58 when ia64_access_mem() sees a memory access to this
59 address-range, we redirect it to ktab instead.
60
61 None of this hackery is needed with a modern kernel/libcs
62 which uses the kernel virtual DSO to provide access to the
63 kernel's unwind info. In that case, ktab_size remains 0 and
64 hence the value of KERNEL_START doesn't matter. */
65
66 #define KERNEL_START 0xc000000000000000ULL
67
68 static size_t ktab_size = 0;
69 struct ia64_table_entry
70 {
71 uint64_t start_offset;
72 uint64_t end_offset;
73 uint64_t info_offset;
74 };
75
76 static struct ia64_table_entry *ktab = NULL;
77
78 #endif
79
80 /* An enumeration of the different IA-64 instruction types. */
81
82 typedef enum instruction_type
83 {
84 A, /* Integer ALU ; I-unit or M-unit */
85 I, /* Non-ALU integer; I-unit */
86 M, /* Memory ; M-unit */
87 F, /* Floating-point ; F-unit */
88 B, /* Branch ; B-unit */
89 L, /* Extended (L+X) ; I-unit */
90 X, /* Extended (L+X) ; I-unit */
91 undefined /* undefined or reserved */
92 } instruction_type;
93
94 /* We represent IA-64 PC addresses as the value of the instruction
95 pointer or'd with some bit combination in the low nibble which
96 represents the slot number in the bundle addressed by the
97 instruction pointer. The problem is that the Linux kernel
98 multiplies its slot numbers (for exceptions) by one while the
99 disassembler multiplies its slot numbers by 6. In addition, I've
100 heard it said that the simulator uses 1 as the multiplier.
101
102 I've fixed the disassembler so that the bytes_per_line field will
103 be the slot multiplier. If bytes_per_line comes in as zero, it
104 is set to six (which is how it was set up initially). -- objdump
105 displays pretty disassembly dumps with this value. For our purposes,
106 we'll set bytes_per_line to SLOT_MULTIPLIER. This is okay since we
107 never want to also display the raw bytes the way objdump does. */
108
109 #define SLOT_MULTIPLIER 1
110
111 /* Length in bytes of an instruction bundle */
112
113 #define BUNDLE_LEN 16
114
115 static gdbarch_init_ftype ia64_gdbarch_init;
116
117 static gdbarch_register_name_ftype ia64_register_name;
118 static gdbarch_register_type_ftype ia64_register_type;
119 static gdbarch_breakpoint_from_pc_ftype ia64_breakpoint_from_pc;
120 static gdbarch_skip_prologue_ftype ia64_skip_prologue;
121 static struct type *is_float_or_hfa_type (struct type *t);
122 static CORE_ADDR ia64_find_global_pointer (CORE_ADDR faddr);
123
124 static struct type *builtin_type_ia64_ext;
125
126 #define NUM_IA64_RAW_REGS 462
127
128 static int sp_regnum = IA64_GR12_REGNUM;
129 static int fp_regnum = IA64_VFP_REGNUM;
130 static int lr_regnum = IA64_VRAP_REGNUM;
131
132 /* NOTE: we treat the register stack registers r32-r127 as pseudo-registers because
133 they may not be accessible via the ptrace register get/set interfaces. */
134 enum pseudo_regs { FIRST_PSEUDO_REGNUM = NUM_IA64_RAW_REGS, VBOF_REGNUM = IA64_NAT127_REGNUM + 1, V32_REGNUM,
135 V127_REGNUM = V32_REGNUM + 95,
136 VP0_REGNUM, VP16_REGNUM = VP0_REGNUM + 16, VP63_REGNUM = VP0_REGNUM + 63, LAST_PSEUDO_REGNUM };
137
138 /* Array of register names; There should be ia64_num_regs strings in
139 the initializer. */
140
141 static char *ia64_register_names[] =
142 { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
143 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
144 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
145 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
146 "", "", "", "", "", "", "", "",
147 "", "", "", "", "", "", "", "",
148 "", "", "", "", "", "", "", "",
149 "", "", "", "", "", "", "", "",
150 "", "", "", "", "", "", "", "",
151 "", "", "", "", "", "", "", "",
152 "", "", "", "", "", "", "", "",
153 "", "", "", "", "", "", "", "",
154 "", "", "", "", "", "", "", "",
155 "", "", "", "", "", "", "", "",
156 "", "", "", "", "", "", "", "",
157 "", "", "", "", "", "", "", "",
158
159 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
160 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
161 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
162 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
163 "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39",
164 "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47",
165 "f48", "f49", "f50", "f51", "f52", "f53", "f54", "f55",
166 "f56", "f57", "f58", "f59", "f60", "f61", "f62", "f63",
167 "f64", "f65", "f66", "f67", "f68", "f69", "f70", "f71",
168 "f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79",
169 "f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87",
170 "f88", "f89", "f90", "f91", "f92", "f93", "f94", "f95",
171 "f96", "f97", "f98", "f99", "f100", "f101", "f102", "f103",
172 "f104", "f105", "f106", "f107", "f108", "f109", "f110", "f111",
173 "f112", "f113", "f114", "f115", "f116", "f117", "f118", "f119",
174 "f120", "f121", "f122", "f123", "f124", "f125", "f126", "f127",
175
176 "", "", "", "", "", "", "", "",
177 "", "", "", "", "", "", "", "",
178 "", "", "", "", "", "", "", "",
179 "", "", "", "", "", "", "", "",
180 "", "", "", "", "", "", "", "",
181 "", "", "", "", "", "", "", "",
182 "", "", "", "", "", "", "", "",
183 "", "", "", "", "", "", "", "",
184
185 "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7",
186
187 "vfp", "vrap",
188
189 "pr", "ip", "psr", "cfm",
190
191 "kr0", "kr1", "kr2", "kr3", "kr4", "kr5", "kr6", "kr7",
192 "", "", "", "", "", "", "", "",
193 "rsc", "bsp", "bspstore", "rnat",
194 "", "fcr", "", "",
195 "eflag", "csd", "ssd", "cflg", "fsr", "fir", "fdr", "",
196 "ccv", "", "", "", "unat", "", "", "",
197 "fpsr", "", "", "", "itc",
198 "", "", "", "", "", "", "", "", "", "",
199 "", "", "", "", "", "", "", "", "",
200 "pfs", "lc", "ec",
201 "", "", "", "", "", "", "", "", "", "",
202 "", "", "", "", "", "", "", "", "", "",
203 "", "", "", "", "", "", "", "", "", "",
204 "", "", "", "", "", "", "", "", "", "",
205 "", "", "", "", "", "", "", "", "", "",
206 "", "", "", "", "", "", "", "", "", "",
207 "",
208 "nat0", "nat1", "nat2", "nat3", "nat4", "nat5", "nat6", "nat7",
209 "nat8", "nat9", "nat10", "nat11", "nat12", "nat13", "nat14", "nat15",
210 "nat16", "nat17", "nat18", "nat19", "nat20", "nat21", "nat22", "nat23",
211 "nat24", "nat25", "nat26", "nat27", "nat28", "nat29", "nat30", "nat31",
212 "nat32", "nat33", "nat34", "nat35", "nat36", "nat37", "nat38", "nat39",
213 "nat40", "nat41", "nat42", "nat43", "nat44", "nat45", "nat46", "nat47",
214 "nat48", "nat49", "nat50", "nat51", "nat52", "nat53", "nat54", "nat55",
215 "nat56", "nat57", "nat58", "nat59", "nat60", "nat61", "nat62", "nat63",
216 "nat64", "nat65", "nat66", "nat67", "nat68", "nat69", "nat70", "nat71",
217 "nat72", "nat73", "nat74", "nat75", "nat76", "nat77", "nat78", "nat79",
218 "nat80", "nat81", "nat82", "nat83", "nat84", "nat85", "nat86", "nat87",
219 "nat88", "nat89", "nat90", "nat91", "nat92", "nat93", "nat94", "nat95",
220 "nat96", "nat97", "nat98", "nat99", "nat100","nat101","nat102","nat103",
221 "nat104","nat105","nat106","nat107","nat108","nat109","nat110","nat111",
222 "nat112","nat113","nat114","nat115","nat116","nat117","nat118","nat119",
223 "nat120","nat121","nat122","nat123","nat124","nat125","nat126","nat127",
224
225 "bof",
226
227 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
228 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
229 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
230 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
231 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
232 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
233 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
234 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
235 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
236 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
237 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
238 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
239
240 "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7",
241 "p8", "p9", "p10", "p11", "p12", "p13", "p14", "p15",
242 "p16", "p17", "p18", "p19", "p20", "p21", "p22", "p23",
243 "p24", "p25", "p26", "p27", "p28", "p29", "p30", "p31",
244 "p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39",
245 "p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47",
246 "p48", "p49", "p50", "p51", "p52", "p53", "p54", "p55",
247 "p56", "p57", "p58", "p59", "p60", "p61", "p62", "p63",
248 };
249
250 struct ia64_frame_cache
251 {
252 CORE_ADDR base; /* frame pointer base for frame */
253 CORE_ADDR pc; /* function start pc for frame */
254 CORE_ADDR saved_sp; /* stack pointer for frame */
255 CORE_ADDR bsp; /* points at r32 for the current frame */
256 CORE_ADDR cfm; /* cfm value for current frame */
257 CORE_ADDR prev_cfm; /* cfm value for previous frame */
258 int frameless;
259 int sof; /* Size of frame (decoded from cfm value) */
260 int sol; /* Size of locals (decoded from cfm value) */
261 int sor; /* Number of rotating registers. (decoded from cfm value) */
262 CORE_ADDR after_prologue;
263 /* Address of first instruction after the last
264 prologue instruction; Note that there may
265 be instructions from the function's body
266 intermingled with the prologue. */
267 int mem_stack_frame_size;
268 /* Size of the memory stack frame (may be zero),
269 or -1 if it has not been determined yet. */
270 int fp_reg; /* Register number (if any) used a frame pointer
271 for this frame. 0 if no register is being used
272 as the frame pointer. */
273
274 /* Saved registers. */
275 CORE_ADDR saved_regs[NUM_IA64_RAW_REGS];
276
277 };
278
279 #define SIGCONTEXT_REGISTER_ADDRESS \
280 (gdbarch_tdep (current_gdbarch)->sigcontext_register_address)
281
282 int
283 ia64_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
284 struct reggroup *group)
285 {
286 int vector_p;
287 int float_p;
288 int raw_p;
289 if (group == all_reggroup)
290 return 1;
291 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
292 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
293 raw_p = regnum < NUM_IA64_RAW_REGS;
294 if (group == float_reggroup)
295 return float_p;
296 if (group == vector_reggroup)
297 return vector_p;
298 if (group == general_reggroup)
299 return (!vector_p && !float_p);
300 if (group == save_reggroup || group == restore_reggroup)
301 return raw_p;
302 return 0;
303 }
304
305 static const char *
306 ia64_register_name (int reg)
307 {
308 return ia64_register_names[reg];
309 }
310
311 struct type *
312 ia64_register_type (struct gdbarch *arch, int reg)
313 {
314 if (reg >= IA64_FR0_REGNUM && reg <= IA64_FR127_REGNUM)
315 return builtin_type_ia64_ext;
316 else
317 return builtin_type_long;
318 }
319
320 static int
321 ia64_dwarf_reg_to_regnum (int reg)
322 {
323 if (reg >= IA64_GR32_REGNUM && reg <= IA64_GR127_REGNUM)
324 return V32_REGNUM + (reg - IA64_GR32_REGNUM);
325 return reg;
326 }
327
328 static int
329 floatformat_valid (const struct floatformat *fmt, const void *from)
330 {
331 return 1;
332 }
333
334 const struct floatformat floatformat_ia64_ext =
335 {
336 floatformat_little, 82, 0, 1, 17, 65535, 0x1ffff, 18, 64,
337 floatformat_intbit_yes, "floatformat_ia64_ext", floatformat_valid
338 };
339
340 const struct floatformat *floatformats_ia64_ext[2] =
341 {
342 &floatformat_ia64_ext,
343 &floatformat_ia64_ext
344 };
345
346
347 /* Extract ``len'' bits from an instruction bundle starting at
348 bit ``from''. */
349
350 static long long
351 extract_bit_field (char *bundle, int from, int len)
352 {
353 long long result = 0LL;
354 int to = from + len;
355 int from_byte = from / 8;
356 int to_byte = to / 8;
357 unsigned char *b = (unsigned char *) bundle;
358 unsigned char c;
359 int lshift;
360 int i;
361
362 c = b[from_byte];
363 if (from_byte == to_byte)
364 c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8);
365 result = c >> (from % 8);
366 lshift = 8 - (from % 8);
367
368 for (i = from_byte+1; i < to_byte; i++)
369 {
370 result |= ((long long) b[i]) << lshift;
371 lshift += 8;
372 }
373
374 if (from_byte < to_byte && (to % 8 != 0))
375 {
376 c = b[to_byte];
377 c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8);
378 result |= ((long long) c) << lshift;
379 }
380
381 return result;
382 }
383
384 /* Replace the specified bits in an instruction bundle */
385
386 static void
387 replace_bit_field (char *bundle, long long val, int from, int len)
388 {
389 int to = from + len;
390 int from_byte = from / 8;
391 int to_byte = to / 8;
392 unsigned char *b = (unsigned char *) bundle;
393 unsigned char c;
394
395 if (from_byte == to_byte)
396 {
397 unsigned char left, right;
398 c = b[from_byte];
399 left = (c >> (to % 8)) << (to % 8);
400 right = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8);
401 c = (unsigned char) (val & 0xff);
402 c = (unsigned char) (c << (from % 8 + 8 - to % 8)) >> (8 - to % 8);
403 c |= right | left;
404 b[from_byte] = c;
405 }
406 else
407 {
408 int i;
409 c = b[from_byte];
410 c = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8);
411 c = c | (val << (from % 8));
412 b[from_byte] = c;
413 val >>= 8 - from % 8;
414
415 for (i = from_byte+1; i < to_byte; i++)
416 {
417 c = val & 0xff;
418 val >>= 8;
419 b[i] = c;
420 }
421
422 if (to % 8 != 0)
423 {
424 unsigned char cv = (unsigned char) val;
425 c = b[to_byte];
426 c = c >> (to % 8) << (to % 8);
427 c |= ((unsigned char) (cv << (8 - to % 8))) >> (8 - to % 8);
428 b[to_byte] = c;
429 }
430 }
431 }
432
433 /* Return the contents of slot N (for N = 0, 1, or 2) in
434 and instruction bundle */
435
436 static long long
437 slotN_contents (char *bundle, int slotnum)
438 {
439 return extract_bit_field (bundle, 5+41*slotnum, 41);
440 }
441
442 /* Store an instruction in an instruction bundle */
443
444 static void
445 replace_slotN_contents (char *bundle, long long instr, int slotnum)
446 {
447 replace_bit_field (bundle, instr, 5+41*slotnum, 41);
448 }
449
450 static enum instruction_type template_encoding_table[32][3] =
451 {
452 { M, I, I }, /* 00 */
453 { M, I, I }, /* 01 */
454 { M, I, I }, /* 02 */
455 { M, I, I }, /* 03 */
456 { M, L, X }, /* 04 */
457 { M, L, X }, /* 05 */
458 { undefined, undefined, undefined }, /* 06 */
459 { undefined, undefined, undefined }, /* 07 */
460 { M, M, I }, /* 08 */
461 { M, M, I }, /* 09 */
462 { M, M, I }, /* 0A */
463 { M, M, I }, /* 0B */
464 { M, F, I }, /* 0C */
465 { M, F, I }, /* 0D */
466 { M, M, F }, /* 0E */
467 { M, M, F }, /* 0F */
468 { M, I, B }, /* 10 */
469 { M, I, B }, /* 11 */
470 { M, B, B }, /* 12 */
471 { M, B, B }, /* 13 */
472 { undefined, undefined, undefined }, /* 14 */
473 { undefined, undefined, undefined }, /* 15 */
474 { B, B, B }, /* 16 */
475 { B, B, B }, /* 17 */
476 { M, M, B }, /* 18 */
477 { M, M, B }, /* 19 */
478 { undefined, undefined, undefined }, /* 1A */
479 { undefined, undefined, undefined }, /* 1B */
480 { M, F, B }, /* 1C */
481 { M, F, B }, /* 1D */
482 { undefined, undefined, undefined }, /* 1E */
483 { undefined, undefined, undefined }, /* 1F */
484 };
485
486 /* Fetch and (partially) decode an instruction at ADDR and return the
487 address of the next instruction to fetch. */
488
489 static CORE_ADDR
490 fetch_instruction (CORE_ADDR addr, instruction_type *it, long long *instr)
491 {
492 char bundle[BUNDLE_LEN];
493 int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER;
494 long long template;
495 int val;
496
497 /* Warn about slot numbers greater than 2. We used to generate
498 an error here on the assumption that the user entered an invalid
499 address. But, sometimes GDB itself requests an invalid address.
500 This can (easily) happen when execution stops in a function for
501 which there are no symbols. The prologue scanner will attempt to
502 find the beginning of the function - if the nearest symbol
503 happens to not be aligned on a bundle boundary (16 bytes), the
504 resulting starting address will cause GDB to think that the slot
505 number is too large.
506
507 So we warn about it and set the slot number to zero. It is
508 not necessarily a fatal condition, particularly if debugging
509 at the assembly language level. */
510 if (slotnum > 2)
511 {
512 warning (_("Can't fetch instructions for slot numbers greater than 2.\n"
513 "Using slot 0 instead"));
514 slotnum = 0;
515 }
516
517 addr &= ~0x0f;
518
519 val = target_read_memory (addr, bundle, BUNDLE_LEN);
520
521 if (val != 0)
522 return 0;
523
524 *instr = slotN_contents (bundle, slotnum);
525 template = extract_bit_field (bundle, 0, 5);
526 *it = template_encoding_table[(int)template][slotnum];
527
528 if (slotnum == 2 || (slotnum == 1 && *it == L))
529 addr += 16;
530 else
531 addr += (slotnum + 1) * SLOT_MULTIPLIER;
532
533 return addr;
534 }
535
536 /* There are 5 different break instructions (break.i, break.b,
537 break.m, break.f, and break.x), but they all have the same
538 encoding. (The five bit template in the low five bits of the
539 instruction bundle distinguishes one from another.)
540
541 The runtime architecture manual specifies that break instructions
542 used for debugging purposes must have the upper two bits of the 21
543 bit immediate set to a 0 and a 1 respectively. A breakpoint
544 instruction encodes the most significant bit of its 21 bit
545 immediate at bit 36 of the 41 bit instruction. The penultimate msb
546 is at bit 25 which leads to the pattern below.
547
548 Originally, I had this set up to do, e.g, a "break.i 0x80000" But
549 it turns out that 0x80000 was used as the syscall break in the early
550 simulators. So I changed the pattern slightly to do "break.i 0x080001"
551 instead. But that didn't work either (I later found out that this
552 pattern was used by the simulator that I was using.) So I ended up
553 using the pattern seen below. */
554
555 #if 0
556 #define IA64_BREAKPOINT 0x00002000040LL
557 #endif
558 #define IA64_BREAKPOINT 0x00003333300LL
559
560 static int
561 ia64_memory_insert_breakpoint (struct bp_target_info *bp_tgt)
562 {
563 CORE_ADDR addr = bp_tgt->placed_address;
564 char bundle[BUNDLE_LEN];
565 int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER;
566 long long instr;
567 int val;
568 int template;
569
570 if (slotnum > 2)
571 error (_("Can't insert breakpoint for slot numbers greater than 2."));
572
573 addr &= ~0x0f;
574
575 val = target_read_memory (addr, bundle, BUNDLE_LEN);
576
577 /* Check for L type instruction in 2nd slot, if present then
578 bump up the slot number to the 3rd slot */
579 template = extract_bit_field (bundle, 0, 5);
580 if (slotnum == 1 && template_encoding_table[template][1] == L)
581 {
582 slotnum = 2;
583 }
584
585 instr = slotN_contents (bundle, slotnum);
586 memcpy (bp_tgt->shadow_contents, &instr, sizeof (instr));
587 bp_tgt->placed_size = bp_tgt->shadow_len = sizeof (instr);
588 replace_slotN_contents (bundle, IA64_BREAKPOINT, slotnum);
589 if (val == 0)
590 target_write_memory (addr, bundle, BUNDLE_LEN);
591
592 return val;
593 }
594
595 static int
596 ia64_memory_remove_breakpoint (struct bp_target_info *bp_tgt)
597 {
598 CORE_ADDR addr = bp_tgt->placed_address;
599 char bundle[BUNDLE_LEN];
600 int slotnum = (addr & 0x0f) / SLOT_MULTIPLIER;
601 long long instr;
602 int val;
603 int template;
604
605 addr &= ~0x0f;
606
607 val = target_read_memory (addr, bundle, BUNDLE_LEN);
608
609 /* Check for L type instruction in 2nd slot, if present then
610 bump up the slot number to the 3rd slot */
611 template = extract_bit_field (bundle, 0, 5);
612 if (slotnum == 1 && template_encoding_table[template][1] == L)
613 {
614 slotnum = 2;
615 }
616
617 memcpy (&instr, bp_tgt->shadow_contents, sizeof instr);
618 replace_slotN_contents (bundle, instr, slotnum);
619 if (val == 0)
620 target_write_memory (addr, bundle, BUNDLE_LEN);
621
622 return val;
623 }
624
625 /* We don't really want to use this, but remote.c needs to call it in order
626 to figure out if Z-packets are supported or not. Oh, well. */
627 const unsigned char *
628 ia64_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
629 {
630 static unsigned char breakpoint[] =
631 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
632 *lenptr = sizeof (breakpoint);
633 #if 0
634 *pcptr &= ~0x0f;
635 #endif
636 return breakpoint;
637 }
638
639 static CORE_ADDR
640 ia64_read_pc (ptid_t ptid)
641 {
642 CORE_ADDR psr_value = read_register_pid (IA64_PSR_REGNUM, ptid);
643 CORE_ADDR pc_value = read_register_pid (IA64_IP_REGNUM, ptid);
644 int slot_num = (psr_value >> 41) & 3;
645
646 return pc_value | (slot_num * SLOT_MULTIPLIER);
647 }
648
649 void
650 ia64_write_pc (CORE_ADDR new_pc, ptid_t ptid)
651 {
652 int slot_num = (int) (new_pc & 0xf) / SLOT_MULTIPLIER;
653 CORE_ADDR psr_value = read_register_pid (IA64_PSR_REGNUM, ptid);
654 psr_value &= ~(3LL << 41);
655 psr_value |= (CORE_ADDR)(slot_num & 0x3) << 41;
656
657 new_pc &= ~0xfLL;
658
659 write_register_pid (IA64_PSR_REGNUM, psr_value, ptid);
660 write_register_pid (IA64_IP_REGNUM, new_pc, ptid);
661 }
662
663 #define IS_NaT_COLLECTION_ADDR(addr) ((((addr) >> 3) & 0x3f) == 0x3f)
664
665 /* Returns the address of the slot that's NSLOTS slots away from
666 the address ADDR. NSLOTS may be positive or negative. */
667 static CORE_ADDR
668 rse_address_add(CORE_ADDR addr, int nslots)
669 {
670 CORE_ADDR new_addr;
671 int mandatory_nat_slots = nslots / 63;
672 int direction = nslots < 0 ? -1 : 1;
673
674 new_addr = addr + 8 * (nslots + mandatory_nat_slots);
675
676 if ((new_addr >> 9) != ((addr + 8 * 64 * mandatory_nat_slots) >> 9))
677 new_addr += 8 * direction;
678
679 if (IS_NaT_COLLECTION_ADDR(new_addr))
680 new_addr += 8 * direction;
681
682 return new_addr;
683 }
684
685 static void
686 ia64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
687 int regnum, gdb_byte *buf)
688 {
689 if (regnum >= V32_REGNUM && regnum <= V127_REGNUM)
690 {
691 #ifdef HAVE_LIBUNWIND_IA64_H
692 /* First try and use the libunwind special reg accessor, otherwise fallback to
693 standard logic. */
694 if (!libunwind_is_initialized ()
695 || libunwind_get_reg_special (gdbarch, regcache, regnum, buf) != 0)
696 #endif
697 {
698 /* The fallback position is to assume that r32-r127 are found sequentially
699 in memory starting at $bof. This isn't always true, but without libunwind,
700 this is the best we can do. */
701 ULONGEST cfm;
702 ULONGEST bsp;
703 CORE_ADDR reg;
704 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
705 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
706
707 /* The bsp points at the end of the register frame so we
708 subtract the size of frame from it to get start of register frame. */
709 bsp = rse_address_add (bsp, -(cfm & 0x7f));
710
711 if ((cfm & 0x7f) > regnum - V32_REGNUM)
712 {
713 ULONGEST reg_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
714 reg = read_memory_integer ((CORE_ADDR)reg_addr, 8);
715 store_unsigned_integer (buf, register_size (current_gdbarch, regnum), reg);
716 }
717 else
718 store_unsigned_integer (buf, register_size (current_gdbarch, regnum), 0);
719 }
720 }
721 else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM)
722 {
723 ULONGEST unatN_val;
724 ULONGEST unat;
725 regcache_cooked_read_unsigned (regcache, IA64_UNAT_REGNUM, &unat);
726 unatN_val = (unat & (1LL << (regnum - IA64_NAT0_REGNUM))) != 0;
727 store_unsigned_integer (buf, register_size (current_gdbarch, regnum), unatN_val);
728 }
729 else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
730 {
731 ULONGEST natN_val = 0;
732 ULONGEST bsp;
733 ULONGEST cfm;
734 CORE_ADDR gr_addr = 0;
735 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
736 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
737
738 /* The bsp points at the end of the register frame so we
739 subtract the size of frame from it to get start of register frame. */
740 bsp = rse_address_add (bsp, -(cfm & 0x7f));
741
742 if ((cfm & 0x7f) > regnum - V32_REGNUM)
743 gr_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
744
745 if (gr_addr != 0)
746 {
747 /* Compute address of nat collection bits. */
748 CORE_ADDR nat_addr = gr_addr | 0x1f8;
749 CORE_ADDR nat_collection;
750 int nat_bit;
751 /* If our nat collection address is bigger than bsp, we have to get
752 the nat collection from rnat. Otherwise, we fetch the nat
753 collection from the computed address. */
754 if (nat_addr >= bsp)
755 regcache_cooked_read_unsigned (regcache, IA64_RNAT_REGNUM, &nat_collection);
756 else
757 nat_collection = read_memory_integer (nat_addr, 8);
758 nat_bit = (gr_addr >> 3) & 0x3f;
759 natN_val = (nat_collection >> nat_bit) & 1;
760 }
761
762 store_unsigned_integer (buf, register_size (current_gdbarch, regnum), natN_val);
763 }
764 else if (regnum == VBOF_REGNUM)
765 {
766 /* A virtual register frame start is provided for user convenience.
767 It can be calculated as the bsp - sof (sizeof frame). */
768 ULONGEST bsp, vbsp;
769 ULONGEST cfm;
770 CORE_ADDR reg;
771 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
772 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
773
774 /* The bsp points at the end of the register frame so we
775 subtract the size of frame from it to get beginning of frame. */
776 vbsp = rse_address_add (bsp, -(cfm & 0x7f));
777 store_unsigned_integer (buf, register_size (current_gdbarch, regnum), vbsp);
778 }
779 else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
780 {
781 ULONGEST pr;
782 ULONGEST cfm;
783 ULONGEST prN_val;
784 CORE_ADDR reg;
785 regcache_cooked_read_unsigned (regcache, IA64_PR_REGNUM, &pr);
786 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
787
788 if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
789 {
790 /* Fetch predicate register rename base from current frame
791 marker for this frame. */
792 int rrb_pr = (cfm >> 32) & 0x3f;
793
794 /* Adjust the register number to account for register rotation. */
795 regnum = VP16_REGNUM
796 + ((regnum - VP16_REGNUM) + rrb_pr) % 48;
797 }
798 prN_val = (pr & (1LL << (regnum - VP0_REGNUM))) != 0;
799 store_unsigned_integer (buf, register_size (current_gdbarch, regnum), prN_val);
800 }
801 else
802 memset (buf, 0, register_size (current_gdbarch, regnum));
803 }
804
805 static void
806 ia64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
807 int regnum, const gdb_byte *buf)
808 {
809 if (regnum >= V32_REGNUM && regnum <= V127_REGNUM)
810 {
811 ULONGEST bsp;
812 ULONGEST cfm;
813 CORE_ADDR reg;
814 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
815 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
816
817 bsp = rse_address_add (bsp, -(cfm & 0x7f));
818
819 if ((cfm & 0x7f) > regnum - V32_REGNUM)
820 {
821 ULONGEST reg_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
822 write_memory (reg_addr, (void *)buf, 8);
823 }
824 }
825 else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM)
826 {
827 ULONGEST unatN_val, unat, unatN_mask;
828 regcache_cooked_read_unsigned (regcache, IA64_UNAT_REGNUM, &unat);
829 unatN_val = extract_unsigned_integer (buf, register_size (current_gdbarch, regnum));
830 unatN_mask = (1LL << (regnum - IA64_NAT0_REGNUM));
831 if (unatN_val == 0)
832 unat &= ~unatN_mask;
833 else if (unatN_val == 1)
834 unat |= unatN_mask;
835 regcache_cooked_write_unsigned (regcache, IA64_UNAT_REGNUM, unat);
836 }
837 else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
838 {
839 ULONGEST natN_val;
840 ULONGEST bsp;
841 ULONGEST cfm;
842 CORE_ADDR gr_addr = 0;
843 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
844 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
845
846 /* The bsp points at the end of the register frame so we
847 subtract the size of frame from it to get start of register frame. */
848 bsp = rse_address_add (bsp, -(cfm & 0x7f));
849
850 if ((cfm & 0x7f) > regnum - V32_REGNUM)
851 gr_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
852
853 natN_val = extract_unsigned_integer (buf, register_size (current_gdbarch, regnum));
854
855 if (gr_addr != 0 && (natN_val == 0 || natN_val == 1))
856 {
857 /* Compute address of nat collection bits. */
858 CORE_ADDR nat_addr = gr_addr | 0x1f8;
859 CORE_ADDR nat_collection;
860 int natN_bit = (gr_addr >> 3) & 0x3f;
861 ULONGEST natN_mask = (1LL << natN_bit);
862 /* If our nat collection address is bigger than bsp, we have to get
863 the nat collection from rnat. Otherwise, we fetch the nat
864 collection from the computed address. */
865 if (nat_addr >= bsp)
866 {
867 regcache_cooked_read_unsigned (regcache, IA64_RNAT_REGNUM, &nat_collection);
868 if (natN_val)
869 nat_collection |= natN_mask;
870 else
871 nat_collection &= ~natN_mask;
872 regcache_cooked_write_unsigned (regcache, IA64_RNAT_REGNUM, nat_collection);
873 }
874 else
875 {
876 char nat_buf[8];
877 nat_collection = read_memory_integer (nat_addr, 8);
878 if (natN_val)
879 nat_collection |= natN_mask;
880 else
881 nat_collection &= ~natN_mask;
882 store_unsigned_integer (nat_buf, register_size (current_gdbarch, regnum), nat_collection);
883 write_memory (nat_addr, nat_buf, 8);
884 }
885 }
886 }
887 else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
888 {
889 ULONGEST pr;
890 ULONGEST cfm;
891 ULONGEST prN_val;
892 ULONGEST prN_mask;
893
894 regcache_cooked_read_unsigned (regcache, IA64_PR_REGNUM, &pr);
895 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
896
897 if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
898 {
899 /* Fetch predicate register rename base from current frame
900 marker for this frame. */
901 int rrb_pr = (cfm >> 32) & 0x3f;
902
903 /* Adjust the register number to account for register rotation. */
904 regnum = VP16_REGNUM
905 + ((regnum - VP16_REGNUM) + rrb_pr) % 48;
906 }
907 prN_val = extract_unsigned_integer (buf, register_size (current_gdbarch, regnum));
908 prN_mask = (1LL << (regnum - VP0_REGNUM));
909 if (prN_val == 0)
910 pr &= ~prN_mask;
911 else if (prN_val == 1)
912 pr |= prN_mask;
913 regcache_cooked_write_unsigned (regcache, IA64_PR_REGNUM, pr);
914 }
915 }
916
917 /* The ia64 needs to convert between various ieee floating-point formats
918 and the special ia64 floating point register format. */
919
920 static int
921 ia64_convert_register_p (int regno, struct type *type)
922 {
923 return (regno >= IA64_FR0_REGNUM && regno <= IA64_FR127_REGNUM);
924 }
925
926 static void
927 ia64_register_to_value (struct frame_info *frame, int regnum,
928 struct type *valtype, gdb_byte *out)
929 {
930 char in[MAX_REGISTER_SIZE];
931 frame_register_read (frame, regnum, in);
932 convert_typed_floating (in, builtin_type_ia64_ext, out, valtype);
933 }
934
935 static void
936 ia64_value_to_register (struct frame_info *frame, int regnum,
937 struct type *valtype, const gdb_byte *in)
938 {
939 char out[MAX_REGISTER_SIZE];
940 convert_typed_floating (in, valtype, out, builtin_type_ia64_ext);
941 put_frame_register (frame, regnum, out);
942 }
943
944
945 /* Limit the number of skipped non-prologue instructions since examining
946 of the prologue is expensive. */
947 static int max_skip_non_prologue_insns = 40;
948
949 /* Given PC representing the starting address of a function, and
950 LIM_PC which is the (sloppy) limit to which to scan when looking
951 for a prologue, attempt to further refine this limit by using
952 the line data in the symbol table. If successful, a better guess
953 on where the prologue ends is returned, otherwise the previous
954 value of lim_pc is returned. TRUST_LIMIT is a pointer to a flag
955 which will be set to indicate whether the returned limit may be
956 used with no further scanning in the event that the function is
957 frameless. */
958
959 /* FIXME: cagney/2004-02-14: This function and logic have largely been
960 superseded by skip_prologue_using_sal. */
961
962 static CORE_ADDR
963 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc, int *trust_limit)
964 {
965 struct symtab_and_line prologue_sal;
966 CORE_ADDR start_pc = pc;
967
968 /* Start off not trusting the limit. */
969 *trust_limit = 0;
970
971 prologue_sal = find_pc_line (pc, 0);
972 if (prologue_sal.line != 0)
973 {
974 int i;
975 CORE_ADDR addr = prologue_sal.end;
976
977 /* Handle the case in which compiler's optimizer/scheduler
978 has moved instructions into the prologue. We scan ahead
979 in the function looking for address ranges whose corresponding
980 line number is less than or equal to the first one that we
981 found for the function. (It can be less than when the
982 scheduler puts a body instruction before the first prologue
983 instruction.) */
984 for (i = 2 * max_skip_non_prologue_insns;
985 i > 0 && (lim_pc == 0 || addr < lim_pc);
986 i--)
987 {
988 struct symtab_and_line sal;
989
990 sal = find_pc_line (addr, 0);
991 if (sal.line == 0)
992 break;
993 if (sal.line <= prologue_sal.line
994 && sal.symtab == prologue_sal.symtab)
995 {
996 prologue_sal = sal;
997 }
998 addr = sal.end;
999 }
1000
1001 if (lim_pc == 0 || prologue_sal.end < lim_pc)
1002 {
1003 lim_pc = prologue_sal.end;
1004 if (start_pc == get_pc_function_start (lim_pc))
1005 *trust_limit = 1;
1006 }
1007 }
1008 return lim_pc;
1009 }
1010
1011 #define isScratch(_regnum_) ((_regnum_) == 2 || (_regnum_) == 3 \
1012 || (8 <= (_regnum_) && (_regnum_) <= 11) \
1013 || (14 <= (_regnum_) && (_regnum_) <= 31))
1014 #define imm9(_instr_) \
1015 ( ((((_instr_) & 0x01000000000LL) ? -1 : 0) << 8) \
1016 | (((_instr_) & 0x00008000000LL) >> 20) \
1017 | (((_instr_) & 0x00000001fc0LL) >> 6))
1018
1019 /* Allocate and initialize a frame cache. */
1020
1021 static struct ia64_frame_cache *
1022 ia64_alloc_frame_cache (void)
1023 {
1024 struct ia64_frame_cache *cache;
1025 int i;
1026
1027 cache = FRAME_OBSTACK_ZALLOC (struct ia64_frame_cache);
1028
1029 /* Base address. */
1030 cache->base = 0;
1031 cache->pc = 0;
1032 cache->cfm = 0;
1033 cache->prev_cfm = 0;
1034 cache->sof = 0;
1035 cache->sol = 0;
1036 cache->sor = 0;
1037 cache->bsp = 0;
1038 cache->fp_reg = 0;
1039 cache->frameless = 1;
1040
1041 for (i = 0; i < NUM_IA64_RAW_REGS; i++)
1042 cache->saved_regs[i] = 0;
1043
1044 return cache;
1045 }
1046
1047 static CORE_ADDR
1048 examine_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct frame_info *next_frame, struct ia64_frame_cache *cache)
1049 {
1050 CORE_ADDR next_pc;
1051 CORE_ADDR last_prologue_pc = pc;
1052 instruction_type it;
1053 long long instr;
1054 int cfm_reg = 0;
1055 int ret_reg = 0;
1056 int fp_reg = 0;
1057 int unat_save_reg = 0;
1058 int pr_save_reg = 0;
1059 int mem_stack_frame_size = 0;
1060 int spill_reg = 0;
1061 CORE_ADDR spill_addr = 0;
1062 char instores[8];
1063 char infpstores[8];
1064 char reg_contents[256];
1065 int trust_limit;
1066 int frameless = 1;
1067 int i;
1068 CORE_ADDR addr;
1069 char buf[8];
1070 CORE_ADDR bof, sor, sol, sof, cfm, rrb_gr;
1071
1072 memset (instores, 0, sizeof instores);
1073 memset (infpstores, 0, sizeof infpstores);
1074 memset (reg_contents, 0, sizeof reg_contents);
1075
1076 if (cache->after_prologue != 0
1077 && cache->after_prologue <= lim_pc)
1078 return cache->after_prologue;
1079
1080 lim_pc = refine_prologue_limit (pc, lim_pc, &trust_limit);
1081 next_pc = fetch_instruction (pc, &it, &instr);
1082
1083 /* We want to check if we have a recognizable function start before we
1084 look ahead for a prologue. */
1085 if (pc < lim_pc && next_pc
1086 && it == M && ((instr & 0x1ee0000003fLL) == 0x02c00000000LL))
1087 {
1088 /* alloc - start of a regular function. */
1089 int sor = (int) ((instr & 0x00078000000LL) >> 27);
1090 int sol = (int) ((instr & 0x00007f00000LL) >> 20);
1091 int sof = (int) ((instr & 0x000000fe000LL) >> 13);
1092 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1093
1094 /* Verify that the current cfm matches what we think is the
1095 function start. If we have somehow jumped within a function,
1096 we do not want to interpret the prologue and calculate the
1097 addresses of various registers such as the return address.
1098 We will instead treat the frame as frameless. */
1099 if (!next_frame ||
1100 (sof == (cache->cfm & 0x7f) &&
1101 sol == ((cache->cfm >> 7) & 0x7f)))
1102 frameless = 0;
1103
1104 cfm_reg = rN;
1105 last_prologue_pc = next_pc;
1106 pc = next_pc;
1107 }
1108 else
1109 {
1110 /* Look for a leaf routine. */
1111 if (pc < lim_pc && next_pc
1112 && (it == I || it == M)
1113 && ((instr & 0x1ee00000000LL) == 0x10800000000LL))
1114 {
1115 /* adds rN = imm14, rM (or mov rN, rM when imm14 is 0) */
1116 int imm = (int) ((((instr & 0x01000000000LL) ? -1 : 0) << 13)
1117 | ((instr & 0x001f8000000LL) >> 20)
1118 | ((instr & 0x000000fe000LL) >> 13));
1119 int rM = (int) ((instr & 0x00007f00000LL) >> 20);
1120 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1121 int qp = (int) (instr & 0x0000000003fLL);
1122 if (qp == 0 && rN == 2 && imm == 0 && rM == 12 && fp_reg == 0)
1123 {
1124 /* mov r2, r12 - beginning of leaf routine */
1125 fp_reg = rN;
1126 last_prologue_pc = next_pc;
1127 }
1128 }
1129
1130 /* If we don't recognize a regular function or leaf routine, we are
1131 done. */
1132 if (!fp_reg)
1133 {
1134 pc = lim_pc;
1135 if (trust_limit)
1136 last_prologue_pc = lim_pc;
1137 }
1138 }
1139
1140 /* Loop, looking for prologue instructions, keeping track of
1141 where preserved registers were spilled. */
1142 while (pc < lim_pc)
1143 {
1144 next_pc = fetch_instruction (pc, &it, &instr);
1145 if (next_pc == 0)
1146 break;
1147
1148 if (it == B && ((instr & 0x1e1f800003fLL) != 0x04000000000LL))
1149 {
1150 /* Exit loop upon hitting a non-nop branch instruction. */
1151 if (trust_limit)
1152 lim_pc = pc;
1153 break;
1154 }
1155 else if (((instr & 0x3fLL) != 0LL) &&
1156 (frameless || ret_reg != 0))
1157 {
1158 /* Exit loop upon hitting a predicated instruction if
1159 we already have the return register or if we are frameless. */
1160 if (trust_limit)
1161 lim_pc = pc;
1162 break;
1163 }
1164 else if (it == I && ((instr & 0x1eff8000000LL) == 0x00188000000LL))
1165 {
1166 /* Move from BR */
1167 int b2 = (int) ((instr & 0x0000000e000LL) >> 13);
1168 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1169 int qp = (int) (instr & 0x0000000003f);
1170
1171 if (qp == 0 && b2 == 0 && rN >= 32 && ret_reg == 0)
1172 {
1173 ret_reg = rN;
1174 last_prologue_pc = next_pc;
1175 }
1176 }
1177 else if ((it == I || it == M)
1178 && ((instr & 0x1ee00000000LL) == 0x10800000000LL))
1179 {
1180 /* adds rN = imm14, rM (or mov rN, rM when imm14 is 0) */
1181 int imm = (int) ((((instr & 0x01000000000LL) ? -1 : 0) << 13)
1182 | ((instr & 0x001f8000000LL) >> 20)
1183 | ((instr & 0x000000fe000LL) >> 13));
1184 int rM = (int) ((instr & 0x00007f00000LL) >> 20);
1185 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1186 int qp = (int) (instr & 0x0000000003fLL);
1187
1188 if (qp == 0 && rN >= 32 && imm == 0 && rM == 12 && fp_reg == 0)
1189 {
1190 /* mov rN, r12 */
1191 fp_reg = rN;
1192 last_prologue_pc = next_pc;
1193 }
1194 else if (qp == 0 && rN == 12 && rM == 12)
1195 {
1196 /* adds r12, -mem_stack_frame_size, r12 */
1197 mem_stack_frame_size -= imm;
1198 last_prologue_pc = next_pc;
1199 }
1200 else if (qp == 0 && rN == 2
1201 && ((rM == fp_reg && fp_reg != 0) || rM == 12))
1202 {
1203 char buf[MAX_REGISTER_SIZE];
1204 CORE_ADDR saved_sp = 0;
1205 /* adds r2, spilloffset, rFramePointer
1206 or
1207 adds r2, spilloffset, r12
1208
1209 Get ready for stf.spill or st8.spill instructions.
1210 The address to start spilling at is loaded into r2.
1211 FIXME: Why r2? That's what gcc currently uses; it
1212 could well be different for other compilers. */
1213
1214 /* Hmm... whether or not this will work will depend on
1215 where the pc is. If it's still early in the prologue
1216 this'll be wrong. FIXME */
1217 if (next_frame)
1218 {
1219 frame_unwind_register (next_frame, sp_regnum, buf);
1220 saved_sp = extract_unsigned_integer (buf, 8);
1221 }
1222 spill_addr = saved_sp
1223 + (rM == 12 ? 0 : mem_stack_frame_size)
1224 + imm;
1225 spill_reg = rN;
1226 last_prologue_pc = next_pc;
1227 }
1228 else if (qp == 0 && rM >= 32 && rM < 40 && !instores[rM] &&
1229 rN < 256 && imm == 0)
1230 {
1231 /* mov rN, rM where rM is an input register */
1232 reg_contents[rN] = rM;
1233 last_prologue_pc = next_pc;
1234 }
1235 else if (frameless && qp == 0 && rN == fp_reg && imm == 0 &&
1236 rM == 2)
1237 {
1238 /* mov r12, r2 */
1239 last_prologue_pc = next_pc;
1240 break;
1241 }
1242 }
1243 else if (it == M
1244 && ( ((instr & 0x1efc0000000LL) == 0x0eec0000000LL)
1245 || ((instr & 0x1ffc8000000LL) == 0x0cec0000000LL) ))
1246 {
1247 /* stf.spill [rN] = fM, imm9
1248 or
1249 stf.spill [rN] = fM */
1250
1251 int imm = imm9(instr);
1252 int rN = (int) ((instr & 0x00007f00000LL) >> 20);
1253 int fM = (int) ((instr & 0x000000fe000LL) >> 13);
1254 int qp = (int) (instr & 0x0000000003fLL);
1255 if (qp == 0 && rN == spill_reg && spill_addr != 0
1256 && ((2 <= fM && fM <= 5) || (16 <= fM && fM <= 31)))
1257 {
1258 cache->saved_regs[IA64_FR0_REGNUM + fM] = spill_addr;
1259
1260 if ((instr & 0x1efc0000000LL) == 0x0eec0000000LL)
1261 spill_addr += imm;
1262 else
1263 spill_addr = 0; /* last one; must be done */
1264 last_prologue_pc = next_pc;
1265 }
1266 }
1267 else if ((it == M && ((instr & 0x1eff8000000LL) == 0x02110000000LL))
1268 || (it == I && ((instr & 0x1eff8000000LL) == 0x00050000000LL)) )
1269 {
1270 /* mov.m rN = arM
1271 or
1272 mov.i rN = arM */
1273
1274 int arM = (int) ((instr & 0x00007f00000LL) >> 20);
1275 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1276 int qp = (int) (instr & 0x0000000003fLL);
1277 if (qp == 0 && isScratch (rN) && arM == 36 /* ar.unat */)
1278 {
1279 /* We have something like "mov.m r3 = ar.unat". Remember the
1280 r3 (or whatever) and watch for a store of this register... */
1281 unat_save_reg = rN;
1282 last_prologue_pc = next_pc;
1283 }
1284 }
1285 else if (it == I && ((instr & 0x1eff8000000LL) == 0x00198000000LL))
1286 {
1287 /* mov rN = pr */
1288 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1289 int qp = (int) (instr & 0x0000000003fLL);
1290 if (qp == 0 && isScratch (rN))
1291 {
1292 pr_save_reg = rN;
1293 last_prologue_pc = next_pc;
1294 }
1295 }
1296 else if (it == M
1297 && ( ((instr & 0x1ffc8000000LL) == 0x08cc0000000LL)
1298 || ((instr & 0x1efc0000000LL) == 0x0acc0000000LL)))
1299 {
1300 /* st8 [rN] = rM
1301 or
1302 st8 [rN] = rM, imm9 */
1303 int rN = (int) ((instr & 0x00007f00000LL) >> 20);
1304 int rM = (int) ((instr & 0x000000fe000LL) >> 13);
1305 int qp = (int) (instr & 0x0000000003fLL);
1306 int indirect = rM < 256 ? reg_contents[rM] : 0;
1307 if (qp == 0 && rN == spill_reg && spill_addr != 0
1308 && (rM == unat_save_reg || rM == pr_save_reg))
1309 {
1310 /* We've found a spill of either the UNAT register or the PR
1311 register. (Well, not exactly; what we've actually found is
1312 a spill of the register that UNAT or PR was moved to).
1313 Record that fact and move on... */
1314 if (rM == unat_save_reg)
1315 {
1316 /* Track UNAT register */
1317 cache->saved_regs[IA64_UNAT_REGNUM] = spill_addr;
1318 unat_save_reg = 0;
1319 }
1320 else
1321 {
1322 /* Track PR register */
1323 cache->saved_regs[IA64_PR_REGNUM] = spill_addr;
1324 pr_save_reg = 0;
1325 }
1326 if ((instr & 0x1efc0000000LL) == 0x0acc0000000LL)
1327 /* st8 [rN] = rM, imm9 */
1328 spill_addr += imm9(instr);
1329 else
1330 spill_addr = 0; /* must be done spilling */
1331 last_prologue_pc = next_pc;
1332 }
1333 else if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32])
1334 {
1335 /* Allow up to one store of each input register. */
1336 instores[rM-32] = 1;
1337 last_prologue_pc = next_pc;
1338 }
1339 else if (qp == 0 && 32 <= indirect && indirect < 40 &&
1340 !instores[indirect-32])
1341 {
1342 /* Allow an indirect store of an input register. */
1343 instores[indirect-32] = 1;
1344 last_prologue_pc = next_pc;
1345 }
1346 }
1347 else if (it == M && ((instr & 0x1ff08000000LL) == 0x08c00000000LL))
1348 {
1349 /* One of
1350 st1 [rN] = rM
1351 st2 [rN] = rM
1352 st4 [rN] = rM
1353 st8 [rN] = rM
1354 Note that the st8 case is handled in the clause above.
1355
1356 Advance over stores of input registers. One store per input
1357 register is permitted. */
1358 int rM = (int) ((instr & 0x000000fe000LL) >> 13);
1359 int qp = (int) (instr & 0x0000000003fLL);
1360 int indirect = rM < 256 ? reg_contents[rM] : 0;
1361 if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32])
1362 {
1363 instores[rM-32] = 1;
1364 last_prologue_pc = next_pc;
1365 }
1366 else if (qp == 0 && 32 <= indirect && indirect < 40 &&
1367 !instores[indirect-32])
1368 {
1369 /* Allow an indirect store of an input register. */
1370 instores[indirect-32] = 1;
1371 last_prologue_pc = next_pc;
1372 }
1373 }
1374 else if (it == M && ((instr & 0x1ff88000000LL) == 0x0cc80000000LL))
1375 {
1376 /* Either
1377 stfs [rN] = fM
1378 or
1379 stfd [rN] = fM
1380
1381 Advance over stores of floating point input registers. Again
1382 one store per register is permitted */
1383 int fM = (int) ((instr & 0x000000fe000LL) >> 13);
1384 int qp = (int) (instr & 0x0000000003fLL);
1385 if (qp == 0 && 8 <= fM && fM < 16 && !infpstores[fM - 8])
1386 {
1387 infpstores[fM-8] = 1;
1388 last_prologue_pc = next_pc;
1389 }
1390 }
1391 else if (it == M
1392 && ( ((instr & 0x1ffc8000000LL) == 0x08ec0000000LL)
1393 || ((instr & 0x1efc0000000LL) == 0x0aec0000000LL)))
1394 {
1395 /* st8.spill [rN] = rM
1396 or
1397 st8.spill [rN] = rM, imm9 */
1398 int rN = (int) ((instr & 0x00007f00000LL) >> 20);
1399 int rM = (int) ((instr & 0x000000fe000LL) >> 13);
1400 int qp = (int) (instr & 0x0000000003fLL);
1401 if (qp == 0 && rN == spill_reg && 4 <= rM && rM <= 7)
1402 {
1403 /* We've found a spill of one of the preserved general purpose
1404 regs. Record the spill address and advance the spill
1405 register if appropriate. */
1406 cache->saved_regs[IA64_GR0_REGNUM + rM] = spill_addr;
1407 if ((instr & 0x1efc0000000LL) == 0x0aec0000000LL)
1408 /* st8.spill [rN] = rM, imm9 */
1409 spill_addr += imm9(instr);
1410 else
1411 spill_addr = 0; /* Done spilling */
1412 last_prologue_pc = next_pc;
1413 }
1414 }
1415
1416 pc = next_pc;
1417 }
1418
1419 /* If not frameless and we aren't called by skip_prologue, then we need to calculate
1420 registers for the previous frame which will be needed later. */
1421
1422 if (!frameless && next_frame)
1423 {
1424 /* Extract the size of the rotating portion of the stack
1425 frame and the register rename base from the current
1426 frame marker. */
1427 cfm = cache->cfm;
1428 sor = cache->sor;
1429 sof = cache->sof;
1430 sol = cache->sol;
1431 rrb_gr = (cfm >> 18) & 0x7f;
1432
1433 /* Find the bof (beginning of frame). */
1434 bof = rse_address_add (cache->bsp, -sof);
1435
1436 for (i = 0, addr = bof;
1437 i < sof;
1438 i++, addr += 8)
1439 {
1440 if (IS_NaT_COLLECTION_ADDR (addr))
1441 {
1442 addr += 8;
1443 }
1444 if (i+32 == cfm_reg)
1445 cache->saved_regs[IA64_CFM_REGNUM] = addr;
1446 if (i+32 == ret_reg)
1447 cache->saved_regs[IA64_VRAP_REGNUM] = addr;
1448 if (i+32 == fp_reg)
1449 cache->saved_regs[IA64_VFP_REGNUM] = addr;
1450 }
1451
1452 /* For the previous argument registers we require the previous bof.
1453 If we can't find the previous cfm, then we can do nothing. */
1454 cfm = 0;
1455 if (cache->saved_regs[IA64_CFM_REGNUM] != 0)
1456 {
1457 cfm = read_memory_integer (cache->saved_regs[IA64_CFM_REGNUM], 8);
1458 }
1459 else if (cfm_reg != 0)
1460 {
1461 frame_unwind_register (next_frame, cfm_reg, buf);
1462 cfm = extract_unsigned_integer (buf, 8);
1463 }
1464 cache->prev_cfm = cfm;
1465
1466 if (cfm != 0)
1467 {
1468 sor = ((cfm >> 14) & 0xf) * 8;
1469 sof = (cfm & 0x7f);
1470 sol = (cfm >> 7) & 0x7f;
1471 rrb_gr = (cfm >> 18) & 0x7f;
1472
1473 /* The previous bof only requires subtraction of the sol (size of locals)
1474 due to the overlap between output and input of subsequent frames. */
1475 bof = rse_address_add (bof, -sol);
1476
1477 for (i = 0, addr = bof;
1478 i < sof;
1479 i++, addr += 8)
1480 {
1481 if (IS_NaT_COLLECTION_ADDR (addr))
1482 {
1483 addr += 8;
1484 }
1485 if (i < sor)
1486 cache->saved_regs[IA64_GR32_REGNUM + ((i + (sor - rrb_gr)) % sor)]
1487 = addr;
1488 else
1489 cache->saved_regs[IA64_GR32_REGNUM + i] = addr;
1490 }
1491
1492 }
1493 }
1494
1495 /* Try and trust the lim_pc value whenever possible. */
1496 if (trust_limit && lim_pc >= last_prologue_pc)
1497 last_prologue_pc = lim_pc;
1498
1499 cache->frameless = frameless;
1500 cache->after_prologue = last_prologue_pc;
1501 cache->mem_stack_frame_size = mem_stack_frame_size;
1502 cache->fp_reg = fp_reg;
1503
1504 return last_prologue_pc;
1505 }
1506
1507 CORE_ADDR
1508 ia64_skip_prologue (CORE_ADDR pc)
1509 {
1510 struct ia64_frame_cache cache;
1511 cache.base = 0;
1512 cache.after_prologue = 0;
1513 cache.cfm = 0;
1514 cache.bsp = 0;
1515
1516 /* Call examine_prologue with - as third argument since we don't have a next frame pointer to send. */
1517 return examine_prologue (pc, pc+1024, 0, &cache);
1518 }
1519
1520
1521 /* Normal frames. */
1522
1523 static struct ia64_frame_cache *
1524 ia64_frame_cache (struct frame_info *next_frame, void **this_cache)
1525 {
1526 struct ia64_frame_cache *cache;
1527 char buf[8];
1528 CORE_ADDR cfm, sof, sol, bsp, psr;
1529 int i;
1530
1531 if (*this_cache)
1532 return *this_cache;
1533
1534 cache = ia64_alloc_frame_cache ();
1535 *this_cache = cache;
1536
1537 frame_unwind_register (next_frame, sp_regnum, buf);
1538 cache->saved_sp = extract_unsigned_integer (buf, 8);
1539
1540 /* We always want the bsp to point to the end of frame.
1541 This way, we can always get the beginning of frame (bof)
1542 by subtracting frame size. */
1543 frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf);
1544 cache->bsp = extract_unsigned_integer (buf, 8);
1545
1546 frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf);
1547 psr = extract_unsigned_integer (buf, 8);
1548
1549 frame_unwind_register (next_frame, IA64_CFM_REGNUM, buf);
1550 cfm = extract_unsigned_integer (buf, 8);
1551
1552 cache->sof = (cfm & 0x7f);
1553 cache->sol = (cfm >> 7) & 0x7f;
1554 cache->sor = ((cfm >> 14) & 0xf) * 8;
1555
1556 cache->cfm = cfm;
1557
1558 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
1559
1560 if (cache->pc != 0)
1561 examine_prologue (cache->pc, frame_pc_unwind (next_frame), next_frame, cache);
1562
1563 cache->base = cache->saved_sp + cache->mem_stack_frame_size;
1564
1565 return cache;
1566 }
1567
1568 static void
1569 ia64_frame_this_id (struct frame_info *next_frame, void **this_cache,
1570 struct frame_id *this_id)
1571 {
1572 struct ia64_frame_cache *cache =
1573 ia64_frame_cache (next_frame, this_cache);
1574
1575 /* If outermost frame, mark with null frame id. */
1576 if (cache->base == 0)
1577 (*this_id) = null_frame_id;
1578 else
1579 (*this_id) = frame_id_build_special (cache->base, cache->pc, cache->bsp);
1580 if (gdbarch_debug >= 1)
1581 fprintf_unfiltered (gdb_stdlog,
1582 "regular frame id: code 0x%s, stack 0x%s, special 0x%s, next_frame %p\n",
1583 paddr_nz (this_id->code_addr),
1584 paddr_nz (this_id->stack_addr),
1585 paddr_nz (cache->bsp), next_frame);
1586 }
1587
1588 static void
1589 ia64_frame_prev_register (struct frame_info *next_frame, void **this_cache,
1590 int regnum, int *optimizedp,
1591 enum lval_type *lvalp, CORE_ADDR *addrp,
1592 int *realnump, gdb_byte *valuep)
1593 {
1594 struct ia64_frame_cache *cache =
1595 ia64_frame_cache (next_frame, this_cache);
1596 char dummy_valp[MAX_REGISTER_SIZE];
1597 char buf[8];
1598
1599 gdb_assert (regnum >= 0);
1600
1601 if (!target_has_registers)
1602 error (_("No registers."));
1603
1604 *optimizedp = 0;
1605 *addrp = 0;
1606 *lvalp = not_lval;
1607 *realnump = -1;
1608
1609 /* Rather than check each time if valuep is non-null, supply a dummy buffer
1610 when valuep is not supplied. */
1611 if (!valuep)
1612 valuep = dummy_valp;
1613
1614 memset (valuep, 0, register_size (current_gdbarch, regnum));
1615
1616 if (regnum == SP_REGNUM)
1617 {
1618 /* Handle SP values for all frames but the topmost. */
1619 store_unsigned_integer (valuep, register_size (current_gdbarch, regnum),
1620 cache->base);
1621 }
1622 else if (regnum == IA64_BSP_REGNUM)
1623 {
1624 char cfm_valuep[MAX_REGISTER_SIZE];
1625 int cfm_optim;
1626 int cfm_realnum;
1627 enum lval_type cfm_lval;
1628 CORE_ADDR cfm_addr;
1629 CORE_ADDR bsp, prev_cfm, prev_bsp;
1630
1631 /* We want to calculate the previous bsp as the end of the previous register stack frame.
1632 This corresponds to what the hardware bsp register will be if we pop the frame
1633 back which is why we might have been called. We know the beginning of the current
1634 frame is cache->bsp - cache->sof. This value in the previous frame points to
1635 the start of the output registers. We can calculate the end of that frame by adding
1636 the size of output (sof (size of frame) - sol (size of locals)). */
1637 ia64_frame_prev_register (next_frame, this_cache, IA64_CFM_REGNUM,
1638 &cfm_optim, &cfm_lval, &cfm_addr, &cfm_realnum, cfm_valuep);
1639 prev_cfm = extract_unsigned_integer (cfm_valuep, 8);
1640
1641 bsp = rse_address_add (cache->bsp, -(cache->sof));
1642 prev_bsp = rse_address_add (bsp, (prev_cfm & 0x7f) - ((prev_cfm >> 7) & 0x7f));
1643
1644 store_unsigned_integer (valuep, register_size (current_gdbarch, regnum),
1645 prev_bsp);
1646 }
1647 else if (regnum == IA64_CFM_REGNUM)
1648 {
1649 CORE_ADDR addr = cache->saved_regs[IA64_CFM_REGNUM];
1650
1651 if (addr != 0)
1652 {
1653 *lvalp = lval_memory;
1654 *addrp = addr;
1655 read_memory (addr, valuep, register_size (current_gdbarch, regnum));
1656 }
1657 else if (cache->prev_cfm)
1658 store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), cache->prev_cfm);
1659 else if (cache->frameless)
1660 {
1661 CORE_ADDR cfm = 0;
1662 frame_unwind_register (next_frame, IA64_PFS_REGNUM, valuep);
1663 }
1664 }
1665 else if (regnum == IA64_VFP_REGNUM)
1666 {
1667 /* If the function in question uses an automatic register (r32-r127)
1668 for the frame pointer, it'll be found by ia64_find_saved_register()
1669 above. If the function lacks one of these frame pointers, we can
1670 still provide a value since we know the size of the frame. */
1671 CORE_ADDR vfp = cache->base;
1672 store_unsigned_integer (valuep, register_size (current_gdbarch, IA64_VFP_REGNUM), vfp);
1673 }
1674 else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
1675 {
1676 char pr_valuep[MAX_REGISTER_SIZE];
1677 int pr_optim;
1678 int pr_realnum;
1679 enum lval_type pr_lval;
1680 CORE_ADDR pr_addr;
1681 ULONGEST prN_val;
1682 ia64_frame_prev_register (next_frame, this_cache, IA64_PR_REGNUM,
1683 &pr_optim, &pr_lval, &pr_addr, &pr_realnum, pr_valuep);
1684 if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
1685 {
1686 /* Fetch predicate register rename base from current frame
1687 marker for this frame. */
1688 int rrb_pr = (cache->cfm >> 32) & 0x3f;
1689
1690 /* Adjust the register number to account for register rotation. */
1691 regnum = VP16_REGNUM
1692 + ((regnum - VP16_REGNUM) + rrb_pr) % 48;
1693 }
1694 prN_val = extract_bit_field ((unsigned char *) pr_valuep,
1695 regnum - VP0_REGNUM, 1);
1696 store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), prN_val);
1697 }
1698 else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM)
1699 {
1700 char unat_valuep[MAX_REGISTER_SIZE];
1701 int unat_optim;
1702 int unat_realnum;
1703 enum lval_type unat_lval;
1704 CORE_ADDR unat_addr;
1705 ULONGEST unatN_val;
1706 ia64_frame_prev_register (next_frame, this_cache, IA64_UNAT_REGNUM,
1707 &unat_optim, &unat_lval, &unat_addr, &unat_realnum, unat_valuep);
1708 unatN_val = extract_bit_field ((unsigned char *) unat_valuep,
1709 regnum - IA64_NAT0_REGNUM, 1);
1710 store_unsigned_integer (valuep, register_size (current_gdbarch, regnum),
1711 unatN_val);
1712 }
1713 else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
1714 {
1715 int natval = 0;
1716 /* Find address of general register corresponding to nat bit we're
1717 interested in. */
1718 CORE_ADDR gr_addr;
1719
1720 gr_addr = cache->saved_regs[regnum - IA64_NAT0_REGNUM
1721 + IA64_GR0_REGNUM];
1722 if (gr_addr != 0)
1723 {
1724 /* Compute address of nat collection bits. */
1725 CORE_ADDR nat_addr = gr_addr | 0x1f8;
1726 CORE_ADDR bsp;
1727 CORE_ADDR nat_collection;
1728 int nat_bit;
1729 /* If our nat collection address is bigger than bsp, we have to get
1730 the nat collection from rnat. Otherwise, we fetch the nat
1731 collection from the computed address. */
1732 frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf);
1733 bsp = extract_unsigned_integer (buf, 8);
1734 if (nat_addr >= bsp)
1735 {
1736 frame_unwind_register (next_frame, IA64_RNAT_REGNUM, buf);
1737 nat_collection = extract_unsigned_integer (buf, 8);
1738 }
1739 else
1740 nat_collection = read_memory_integer (nat_addr, 8);
1741 nat_bit = (gr_addr >> 3) & 0x3f;
1742 natval = (nat_collection >> nat_bit) & 1;
1743 }
1744
1745 store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), natval);
1746 }
1747 else if (regnum == IA64_IP_REGNUM)
1748 {
1749 CORE_ADDR pc = 0;
1750 CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM];
1751
1752 if (addr != 0)
1753 {
1754 *lvalp = lval_memory;
1755 *addrp = addr;
1756 read_memory (addr, buf, register_size (current_gdbarch, IA64_IP_REGNUM));
1757 pc = extract_unsigned_integer (buf, 8);
1758 }
1759 else if (cache->frameless)
1760 {
1761 frame_unwind_register (next_frame, IA64_BR0_REGNUM, buf);
1762 pc = extract_unsigned_integer (buf, 8);
1763 }
1764 pc &= ~0xf;
1765 store_unsigned_integer (valuep, 8, pc);
1766 }
1767 else if (regnum == IA64_PSR_REGNUM)
1768 {
1769 /* We don't know how to get the complete previous PSR, but we need it for
1770 the slot information when we unwind the pc (pc is formed of IP register
1771 plus slot information from PSR). To get the previous slot information,
1772 we mask it off the return address. */
1773 ULONGEST slot_num = 0;
1774 CORE_ADDR pc= 0;
1775 CORE_ADDR psr = 0;
1776 CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM];
1777
1778 frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf);
1779 psr = extract_unsigned_integer (buf, 8);
1780
1781 if (addr != 0)
1782 {
1783 *lvalp = lval_memory;
1784 *addrp = addr;
1785 read_memory (addr, buf, register_size (current_gdbarch, IA64_IP_REGNUM));
1786 pc = extract_unsigned_integer (buf, 8);
1787 }
1788 else if (cache->frameless)
1789 {
1790 CORE_ADDR pc;
1791 frame_unwind_register (next_frame, IA64_BR0_REGNUM, buf);
1792 pc = extract_unsigned_integer (buf, 8);
1793 }
1794 psr &= ~(3LL << 41);
1795 slot_num = pc & 0x3LL;
1796 psr |= (CORE_ADDR)slot_num << 41;
1797 store_unsigned_integer (valuep, 8, psr);
1798 }
1799 else if (regnum == IA64_BR0_REGNUM)
1800 {
1801 CORE_ADDR br0 = 0;
1802 CORE_ADDR addr = cache->saved_regs[IA64_BR0_REGNUM];
1803 if (addr != 0)
1804 {
1805 *lvalp = lval_memory;
1806 *addrp = addr;
1807 read_memory (addr, buf, register_size (current_gdbarch, IA64_BR0_REGNUM));
1808 br0 = extract_unsigned_integer (buf, 8);
1809 }
1810 store_unsigned_integer (valuep, 8, br0);
1811 }
1812 else if ((regnum >= IA64_GR32_REGNUM && regnum <= IA64_GR127_REGNUM) ||
1813 (regnum >= V32_REGNUM && regnum <= V127_REGNUM))
1814 {
1815 CORE_ADDR addr = 0;
1816 if (regnum >= V32_REGNUM)
1817 regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM);
1818 addr = cache->saved_regs[regnum];
1819 if (addr != 0)
1820 {
1821 *lvalp = lval_memory;
1822 *addrp = addr;
1823 read_memory (addr, valuep, register_size (current_gdbarch, regnum));
1824 }
1825 else if (cache->frameless)
1826 {
1827 char r_valuep[MAX_REGISTER_SIZE];
1828 int r_optim;
1829 int r_realnum;
1830 enum lval_type r_lval;
1831 CORE_ADDR r_addr;
1832 CORE_ADDR prev_cfm, prev_bsp, prev_bof;
1833 CORE_ADDR addr = 0;
1834 if (regnum >= V32_REGNUM)
1835 regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM);
1836 ia64_frame_prev_register (next_frame, this_cache, IA64_CFM_REGNUM,
1837 &r_optim, &r_lval, &r_addr, &r_realnum, r_valuep);
1838 prev_cfm = extract_unsigned_integer (r_valuep, 8);
1839 ia64_frame_prev_register (next_frame, this_cache, IA64_BSP_REGNUM,
1840 &r_optim, &r_lval, &r_addr, &r_realnum, r_valuep);
1841 prev_bsp = extract_unsigned_integer (r_valuep, 8);
1842 prev_bof = rse_address_add (prev_bsp, -(prev_cfm & 0x7f));
1843
1844 addr = rse_address_add (prev_bof, (regnum - IA64_GR32_REGNUM));
1845 *lvalp = lval_memory;
1846 *addrp = addr;
1847 read_memory (addr, valuep, register_size (current_gdbarch, regnum));
1848 }
1849 }
1850 else
1851 {
1852 CORE_ADDR addr = 0;
1853 if (IA64_FR32_REGNUM <= regnum && regnum <= IA64_FR127_REGNUM)
1854 {
1855 /* Fetch floating point register rename base from current
1856 frame marker for this frame. */
1857 int rrb_fr = (cache->cfm >> 25) & 0x7f;
1858
1859 /* Adjust the floating point register number to account for
1860 register rotation. */
1861 regnum = IA64_FR32_REGNUM
1862 + ((regnum - IA64_FR32_REGNUM) + rrb_fr) % 96;
1863 }
1864
1865 /* If we have stored a memory address, access the register. */
1866 addr = cache->saved_regs[regnum];
1867 if (addr != 0)
1868 {
1869 *lvalp = lval_memory;
1870 *addrp = addr;
1871 read_memory (addr, valuep, register_size (current_gdbarch, regnum));
1872 }
1873 /* Otherwise, punt and get the current value of the register. */
1874 else
1875 frame_unwind_register (next_frame, regnum, valuep);
1876 }
1877
1878 if (gdbarch_debug >= 1)
1879 fprintf_unfiltered (gdb_stdlog,
1880 "regular prev register <%d> <%s> is 0x%s\n", regnum,
1881 (((unsigned) regnum <= IA64_NAT127_REGNUM)
1882 ? ia64_register_names[regnum] : "r??"),
1883 paddr_nz (extract_unsigned_integer (valuep, 8)));
1884 }
1885
1886 static const struct frame_unwind ia64_frame_unwind =
1887 {
1888 NORMAL_FRAME,
1889 &ia64_frame_this_id,
1890 &ia64_frame_prev_register
1891 };
1892
1893 static const struct frame_unwind *
1894 ia64_frame_sniffer (struct frame_info *next_frame)
1895 {
1896 return &ia64_frame_unwind;
1897 }
1898
1899 /* Signal trampolines. */
1900
1901 static void
1902 ia64_sigtramp_frame_init_saved_regs (struct ia64_frame_cache *cache)
1903 {
1904 if (SIGCONTEXT_REGISTER_ADDRESS)
1905 {
1906 int regno;
1907
1908 cache->saved_regs[IA64_VRAP_REGNUM] =
1909 SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_IP_REGNUM);
1910 cache->saved_regs[IA64_CFM_REGNUM] =
1911 SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_CFM_REGNUM);
1912 cache->saved_regs[IA64_PSR_REGNUM] =
1913 SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_PSR_REGNUM);
1914 cache->saved_regs[IA64_BSP_REGNUM] =
1915 SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_BSP_REGNUM);
1916 cache->saved_regs[IA64_RNAT_REGNUM] =
1917 SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_RNAT_REGNUM);
1918 cache->saved_regs[IA64_CCV_REGNUM] =
1919 SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_CCV_REGNUM);
1920 cache->saved_regs[IA64_UNAT_REGNUM] =
1921 SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_UNAT_REGNUM);
1922 cache->saved_regs[IA64_FPSR_REGNUM] =
1923 SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_FPSR_REGNUM);
1924 cache->saved_regs[IA64_PFS_REGNUM] =
1925 SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_PFS_REGNUM);
1926 cache->saved_regs[IA64_LC_REGNUM] =
1927 SIGCONTEXT_REGISTER_ADDRESS (cache->base, IA64_LC_REGNUM);
1928 for (regno = IA64_GR1_REGNUM; regno <= IA64_GR31_REGNUM; regno++)
1929 cache->saved_regs[regno] =
1930 SIGCONTEXT_REGISTER_ADDRESS (cache->base, regno);
1931 for (regno = IA64_BR0_REGNUM; regno <= IA64_BR7_REGNUM; regno++)
1932 cache->saved_regs[regno] =
1933 SIGCONTEXT_REGISTER_ADDRESS (cache->base, regno);
1934 for (regno = IA64_FR2_REGNUM; regno <= IA64_FR31_REGNUM; regno++)
1935 cache->saved_regs[regno] =
1936 SIGCONTEXT_REGISTER_ADDRESS (cache->base, regno);
1937 }
1938 }
1939
1940 static struct ia64_frame_cache *
1941 ia64_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
1942 {
1943 struct ia64_frame_cache *cache;
1944 CORE_ADDR addr;
1945 char buf[8];
1946 int i;
1947
1948 if (*this_cache)
1949 return *this_cache;
1950
1951 cache = ia64_alloc_frame_cache ();
1952
1953 frame_unwind_register (next_frame, sp_regnum, buf);
1954 /* Note that frame size is hard-coded below. We cannot calculate it
1955 via prologue examination. */
1956 cache->base = extract_unsigned_integer (buf, 8) + 16;
1957
1958 frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf);
1959 cache->bsp = extract_unsigned_integer (buf, 8);
1960
1961 frame_unwind_register (next_frame, IA64_CFM_REGNUM, buf);
1962 cache->cfm = extract_unsigned_integer (buf, 8);
1963 cache->sof = cache->cfm & 0x7f;
1964
1965 ia64_sigtramp_frame_init_saved_regs (cache);
1966
1967 *this_cache = cache;
1968 return cache;
1969 }
1970
1971 static void
1972 ia64_sigtramp_frame_this_id (struct frame_info *next_frame,
1973 void **this_cache, struct frame_id *this_id)
1974 {
1975 struct ia64_frame_cache *cache =
1976 ia64_sigtramp_frame_cache (next_frame, this_cache);
1977
1978 (*this_id) = frame_id_build_special (cache->base, frame_pc_unwind (next_frame), cache->bsp);
1979 if (gdbarch_debug >= 1)
1980 fprintf_unfiltered (gdb_stdlog,
1981 "sigtramp frame id: code 0x%s, stack 0x%s, special 0x%s, next_frame %p\n",
1982 paddr_nz (this_id->code_addr),
1983 paddr_nz (this_id->stack_addr),
1984 paddr_nz (cache->bsp), next_frame);
1985 }
1986
1987 static void
1988 ia64_sigtramp_frame_prev_register (struct frame_info *next_frame,
1989 void **this_cache,
1990 int regnum, int *optimizedp,
1991 enum lval_type *lvalp, CORE_ADDR *addrp,
1992 int *realnump, gdb_byte *valuep)
1993 {
1994 char dummy_valp[MAX_REGISTER_SIZE];
1995 char buf[MAX_REGISTER_SIZE];
1996
1997 struct ia64_frame_cache *cache =
1998 ia64_sigtramp_frame_cache (next_frame, this_cache);
1999
2000 gdb_assert (regnum >= 0);
2001
2002 if (!target_has_registers)
2003 error (_("No registers."));
2004
2005 *optimizedp = 0;
2006 *addrp = 0;
2007 *lvalp = not_lval;
2008 *realnump = -1;
2009
2010 /* Rather than check each time if valuep is non-null, supply a dummy buffer
2011 when valuep is not supplied. */
2012 if (!valuep)
2013 valuep = dummy_valp;
2014
2015 memset (valuep, 0, register_size (current_gdbarch, regnum));
2016
2017 if (regnum == IA64_IP_REGNUM)
2018 {
2019 CORE_ADDR pc = 0;
2020 CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM];
2021
2022 if (addr != 0)
2023 {
2024 *lvalp = lval_memory;
2025 *addrp = addr;
2026 read_memory (addr, buf, register_size (current_gdbarch, IA64_IP_REGNUM));
2027 pc = extract_unsigned_integer (buf, 8);
2028 }
2029 pc &= ~0xf;
2030 store_unsigned_integer (valuep, 8, pc);
2031 }
2032 else if ((regnum >= IA64_GR32_REGNUM && regnum <= IA64_GR127_REGNUM) ||
2033 (regnum >= V32_REGNUM && regnum <= V127_REGNUM))
2034 {
2035 CORE_ADDR addr = 0;
2036 if (regnum >= V32_REGNUM)
2037 regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM);
2038 addr = cache->saved_regs[regnum];
2039 if (addr != 0)
2040 {
2041 *lvalp = lval_memory;
2042 *addrp = addr;
2043 read_memory (addr, valuep, register_size (current_gdbarch, regnum));
2044 }
2045 }
2046 else
2047 {
2048 /* All other registers not listed above. */
2049 CORE_ADDR addr = cache->saved_regs[regnum];
2050 if (addr != 0)
2051 {
2052 *lvalp = lval_memory;
2053 *addrp = addr;
2054 read_memory (addr, valuep, register_size (current_gdbarch, regnum));
2055 }
2056 }
2057
2058 if (gdbarch_debug >= 1)
2059 fprintf_unfiltered (gdb_stdlog,
2060 "sigtramp prev register <%s> is 0x%s\n",
2061 (regnum < IA64_GR32_REGNUM
2062 || (regnum > IA64_GR127_REGNUM
2063 && regnum < LAST_PSEUDO_REGNUM))
2064 ? ia64_register_names[regnum]
2065 : (regnum < LAST_PSEUDO_REGNUM
2066 ? ia64_register_names[regnum-IA64_GR32_REGNUM+V32_REGNUM]
2067 : "OUT_OF_RANGE"),
2068 paddr_nz (extract_unsigned_integer (valuep, 8)));
2069 }
2070
2071 static const struct frame_unwind ia64_sigtramp_frame_unwind =
2072 {
2073 SIGTRAMP_FRAME,
2074 ia64_sigtramp_frame_this_id,
2075 ia64_sigtramp_frame_prev_register
2076 };
2077
2078 static const struct frame_unwind *
2079 ia64_sigtramp_frame_sniffer (struct frame_info *next_frame)
2080 {
2081 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
2082 if (tdep->pc_in_sigtramp)
2083 {
2084 CORE_ADDR pc = frame_pc_unwind (next_frame);
2085
2086 if (tdep->pc_in_sigtramp (pc))
2087 return &ia64_sigtramp_frame_unwind;
2088 }
2089
2090 return NULL;
2091 }
2092 \f
2093
2094 static CORE_ADDR
2095 ia64_frame_base_address (struct frame_info *next_frame, void **this_cache)
2096 {
2097 struct ia64_frame_cache *cache =
2098 ia64_frame_cache (next_frame, this_cache);
2099
2100 return cache->base;
2101 }
2102
2103 static const struct frame_base ia64_frame_base =
2104 {
2105 &ia64_frame_unwind,
2106 ia64_frame_base_address,
2107 ia64_frame_base_address,
2108 ia64_frame_base_address
2109 };
2110
2111 #ifdef HAVE_LIBUNWIND_IA64_H
2112
2113 struct ia64_unwind_table_entry
2114 {
2115 unw_word_t start_offset;
2116 unw_word_t end_offset;
2117 unw_word_t info_offset;
2118 };
2119
2120 static __inline__ uint64_t
2121 ia64_rse_slot_num (uint64_t addr)
2122 {
2123 return (addr >> 3) & 0x3f;
2124 }
2125
2126 /* Skip over a designated number of registers in the backing
2127 store, remembering every 64th position is for NAT. */
2128 static __inline__ uint64_t
2129 ia64_rse_skip_regs (uint64_t addr, long num_regs)
2130 {
2131 long delta = ia64_rse_slot_num(addr) + num_regs;
2132
2133 if (num_regs < 0)
2134 delta -= 0x3e;
2135 return addr + ((num_regs + delta/0x3f) << 3);
2136 }
2137
2138 /* Gdb libunwind-frame callback function to convert from an ia64 gdb register
2139 number to a libunwind register number. */
2140 static int
2141 ia64_gdb2uw_regnum (int regnum)
2142 {
2143 if (regnum == sp_regnum)
2144 return UNW_IA64_SP;
2145 else if (regnum == IA64_BSP_REGNUM)
2146 return UNW_IA64_BSP;
2147 else if ((unsigned) (regnum - IA64_GR0_REGNUM) < 128)
2148 return UNW_IA64_GR + (regnum - IA64_GR0_REGNUM);
2149 else if ((unsigned) (regnum - V32_REGNUM) < 95)
2150 return UNW_IA64_GR + 32 + (regnum - V32_REGNUM);
2151 else if ((unsigned) (regnum - IA64_FR0_REGNUM) < 128)
2152 return UNW_IA64_FR + (regnum - IA64_FR0_REGNUM);
2153 else if ((unsigned) (regnum - IA64_PR0_REGNUM) < 64)
2154 return -1;
2155 else if ((unsigned) (regnum - IA64_BR0_REGNUM) < 8)
2156 return UNW_IA64_BR + (regnum - IA64_BR0_REGNUM);
2157 else if (regnum == IA64_PR_REGNUM)
2158 return UNW_IA64_PR;
2159 else if (regnum == IA64_IP_REGNUM)
2160 return UNW_REG_IP;
2161 else if (regnum == IA64_CFM_REGNUM)
2162 return UNW_IA64_CFM;
2163 else if ((unsigned) (regnum - IA64_AR0_REGNUM) < 128)
2164 return UNW_IA64_AR + (regnum - IA64_AR0_REGNUM);
2165 else if ((unsigned) (regnum - IA64_NAT0_REGNUM) < 128)
2166 return UNW_IA64_NAT + (regnum - IA64_NAT0_REGNUM);
2167 else
2168 return -1;
2169 }
2170
2171 /* Gdb libunwind-frame callback function to convert from a libunwind register
2172 number to a ia64 gdb register number. */
2173 static int
2174 ia64_uw2gdb_regnum (int uw_regnum)
2175 {
2176 if (uw_regnum == UNW_IA64_SP)
2177 return sp_regnum;
2178 else if (uw_regnum == UNW_IA64_BSP)
2179 return IA64_BSP_REGNUM;
2180 else if ((unsigned) (uw_regnum - UNW_IA64_GR) < 32)
2181 return IA64_GR0_REGNUM + (uw_regnum - UNW_IA64_GR);
2182 else if ((unsigned) (uw_regnum - UNW_IA64_GR) < 128)
2183 return V32_REGNUM + (uw_regnum - (IA64_GR0_REGNUM + 32));
2184 else if ((unsigned) (uw_regnum - UNW_IA64_FR) < 128)
2185 return IA64_FR0_REGNUM + (uw_regnum - UNW_IA64_FR);
2186 else if ((unsigned) (uw_regnum - UNW_IA64_BR) < 8)
2187 return IA64_BR0_REGNUM + (uw_regnum - UNW_IA64_BR);
2188 else if (uw_regnum == UNW_IA64_PR)
2189 return IA64_PR_REGNUM;
2190 else if (uw_regnum == UNW_REG_IP)
2191 return IA64_IP_REGNUM;
2192 else if (uw_regnum == UNW_IA64_CFM)
2193 return IA64_CFM_REGNUM;
2194 else if ((unsigned) (uw_regnum - UNW_IA64_AR) < 128)
2195 return IA64_AR0_REGNUM + (uw_regnum - UNW_IA64_AR);
2196 else if ((unsigned) (uw_regnum - UNW_IA64_NAT) < 128)
2197 return IA64_NAT0_REGNUM + (uw_regnum - UNW_IA64_NAT);
2198 else
2199 return -1;
2200 }
2201
2202 /* Gdb libunwind-frame callback function to reveal if register is a float
2203 register or not. */
2204 static int
2205 ia64_is_fpreg (int uw_regnum)
2206 {
2207 return unw_is_fpreg (uw_regnum);
2208 }
2209
2210 /* Libunwind callback accessor function for general registers. */
2211 static int
2212 ia64_access_reg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_word_t *val,
2213 int write, void *arg)
2214 {
2215 int regnum = ia64_uw2gdb_regnum (uw_regnum);
2216 unw_word_t bsp, sof, sol, cfm, psr, ip;
2217 struct frame_info *next_frame = arg;
2218 long new_sof, old_sof;
2219 char buf[MAX_REGISTER_SIZE];
2220
2221 /* We never call any libunwind routines that need to write registers. */
2222 gdb_assert (!write);
2223
2224 switch (uw_regnum)
2225 {
2226 case UNW_REG_IP:
2227 /* Libunwind expects to see the pc value which means the slot number
2228 from the psr must be merged with the ip word address. */
2229 frame_unwind_register (next_frame, IA64_IP_REGNUM, buf);
2230 ip = extract_unsigned_integer (buf, 8);
2231 frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf);
2232 psr = extract_unsigned_integer (buf, 8);
2233 *val = ip | ((psr >> 41) & 0x3);
2234 break;
2235
2236 case UNW_IA64_AR_BSP:
2237 /* Libunwind expects to see the beginning of the current register
2238 frame so we must account for the fact that ptrace() will return a value
2239 for bsp that points *after* the current register frame. */
2240 frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf);
2241 bsp = extract_unsigned_integer (buf, 8);
2242 frame_unwind_register (next_frame, IA64_CFM_REGNUM, buf);
2243 cfm = extract_unsigned_integer (buf, 8);
2244 sof = (cfm & 0x7f);
2245 *val = ia64_rse_skip_regs (bsp, -sof);
2246 break;
2247
2248 case UNW_IA64_AR_BSPSTORE:
2249 /* Libunwind wants bspstore to be after the current register frame.
2250 This is what ptrace() and gdb treats as the regular bsp value. */
2251 frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf);
2252 *val = extract_unsigned_integer (buf, 8);
2253 break;
2254
2255 default:
2256 /* For all other registers, just unwind the value directly. */
2257 frame_unwind_register (next_frame, regnum, buf);
2258 *val = extract_unsigned_integer (buf, 8);
2259 break;
2260 }
2261
2262 if (gdbarch_debug >= 1)
2263 fprintf_unfiltered (gdb_stdlog,
2264 " access_reg: from cache: %4s=0x%s\n",
2265 (((unsigned) regnum <= IA64_NAT127_REGNUM)
2266 ? ia64_register_names[regnum] : "r??"),
2267 paddr_nz (*val));
2268 return 0;
2269 }
2270
2271 /* Libunwind callback accessor function for floating-point registers. */
2272 static int
2273 ia64_access_fpreg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_fpreg_t *val,
2274 int write, void *arg)
2275 {
2276 int regnum = ia64_uw2gdb_regnum (uw_regnum);
2277 struct frame_info *next_frame = arg;
2278
2279 /* We never call any libunwind routines that need to write registers. */
2280 gdb_assert (!write);
2281
2282 frame_unwind_register (next_frame, regnum, (char *) val);
2283
2284 return 0;
2285 }
2286
2287 /* Libunwind callback accessor function for top-level rse registers. */
2288 static int
2289 ia64_access_rse_reg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_word_t *val,
2290 int write, void *arg)
2291 {
2292 int regnum = ia64_uw2gdb_regnum (uw_regnum);
2293 unw_word_t bsp, sof, sol, cfm, psr, ip;
2294 struct regcache *regcache = arg;
2295 long new_sof, old_sof;
2296 char buf[MAX_REGISTER_SIZE];
2297
2298 /* We never call any libunwind routines that need to write registers. */
2299 gdb_assert (!write);
2300
2301 switch (uw_regnum)
2302 {
2303 case UNW_REG_IP:
2304 /* Libunwind expects to see the pc value which means the slot number
2305 from the psr must be merged with the ip word address. */
2306 regcache_cooked_read (regcache, IA64_IP_REGNUM, buf);
2307 ip = extract_unsigned_integer (buf, 8);
2308 regcache_cooked_read (regcache, IA64_PSR_REGNUM, buf);
2309 psr = extract_unsigned_integer (buf, 8);
2310 *val = ip | ((psr >> 41) & 0x3);
2311 break;
2312
2313 case UNW_IA64_AR_BSP:
2314 /* Libunwind expects to see the beginning of the current register
2315 frame so we must account for the fact that ptrace() will return a value
2316 for bsp that points *after* the current register frame. */
2317 regcache_cooked_read (regcache, IA64_BSP_REGNUM, buf);
2318 bsp = extract_unsigned_integer (buf, 8);
2319 regcache_cooked_read (regcache, IA64_CFM_REGNUM, buf);
2320 cfm = extract_unsigned_integer (buf, 8);
2321 sof = (cfm & 0x7f);
2322 *val = ia64_rse_skip_regs (bsp, -sof);
2323 break;
2324
2325 case UNW_IA64_AR_BSPSTORE:
2326 /* Libunwind wants bspstore to be after the current register frame.
2327 This is what ptrace() and gdb treats as the regular bsp value. */
2328 regcache_cooked_read (regcache, IA64_BSP_REGNUM, buf);
2329 *val = extract_unsigned_integer (buf, 8);
2330 break;
2331
2332 default:
2333 /* For all other registers, just unwind the value directly. */
2334 regcache_cooked_read (regcache, regnum, buf);
2335 *val = extract_unsigned_integer (buf, 8);
2336 break;
2337 }
2338
2339 if (gdbarch_debug >= 1)
2340 fprintf_unfiltered (gdb_stdlog,
2341 " access_rse_reg: from cache: %4s=0x%s\n",
2342 (((unsigned) regnum <= IA64_NAT127_REGNUM)
2343 ? ia64_register_names[regnum] : "r??"),
2344 paddr_nz (*val));
2345
2346 return 0;
2347 }
2348
2349 /* Libunwind callback accessor function for top-level fp registers. */
2350 static int
2351 ia64_access_rse_fpreg (unw_addr_space_t as, unw_regnum_t uw_regnum,
2352 unw_fpreg_t *val, int write, void *arg)
2353 {
2354 int regnum = ia64_uw2gdb_regnum (uw_regnum);
2355 struct regcache *regcache = arg;
2356
2357 /* We never call any libunwind routines that need to write registers. */
2358 gdb_assert (!write);
2359
2360 regcache_cooked_read (regcache, regnum, (char *) val);
2361
2362 return 0;
2363 }
2364
2365 /* Libunwind callback accessor function for accessing memory. */
2366 static int
2367 ia64_access_mem (unw_addr_space_t as,
2368 unw_word_t addr, unw_word_t *val,
2369 int write, void *arg)
2370 {
2371 if (addr - KERNEL_START < ktab_size)
2372 {
2373 unw_word_t *laddr = (unw_word_t*) ((char *) ktab
2374 + (addr - KERNEL_START));
2375
2376 if (write)
2377 *laddr = *val;
2378 else
2379 *val = *laddr;
2380 return 0;
2381 }
2382
2383 /* XXX do we need to normalize byte-order here? */
2384 if (write)
2385 return target_write_memory (addr, (char *) val, sizeof (unw_word_t));
2386 else
2387 return target_read_memory (addr, (char *) val, sizeof (unw_word_t));
2388 }
2389
2390 /* Call low-level function to access the kernel unwind table. */
2391 static LONGEST
2392 getunwind_table (gdb_byte **buf_p)
2393 {
2394 LONGEST x;
2395
2396 /* FIXME drow/2005-09-10: This code used to call
2397 ia64_linux_xfer_unwind_table directly to fetch the unwind table
2398 for the currently running ia64-linux kernel. That data should
2399 come from the core file and be accessed via the auxv vector; if
2400 we want to preserve fall back to the running kernel's table, then
2401 we should find a way to override the corefile layer's
2402 xfer_partial method. */
2403
2404 x = target_read_alloc (&current_target, TARGET_OBJECT_UNWIND_TABLE,
2405 NULL, buf_p);
2406
2407 return x;
2408 }
2409
2410 /* Get the kernel unwind table. */
2411 static int
2412 get_kernel_table (unw_word_t ip, unw_dyn_info_t *di)
2413 {
2414 static struct ia64_table_entry *etab;
2415
2416 if (!ktab)
2417 {
2418 gdb_byte *ktab_buf;
2419 LONGEST size;
2420
2421 size = getunwind_table (&ktab_buf);
2422 if (size <= 0)
2423 return -UNW_ENOINFO;
2424
2425 ktab = (struct ia64_table_entry *) ktab_buf;
2426 ktab_size = size;
2427
2428 for (etab = ktab; etab->start_offset; ++etab)
2429 etab->info_offset += KERNEL_START;
2430 }
2431
2432 if (ip < ktab[0].start_offset || ip >= etab[-1].end_offset)
2433 return -UNW_ENOINFO;
2434
2435 di->format = UNW_INFO_FORMAT_TABLE;
2436 di->gp = 0;
2437 di->start_ip = ktab[0].start_offset;
2438 di->end_ip = etab[-1].end_offset;
2439 di->u.ti.name_ptr = (unw_word_t) "<kernel>";
2440 di->u.ti.segbase = 0;
2441 di->u.ti.table_len = ((char *) etab - (char *) ktab) / sizeof (unw_word_t);
2442 di->u.ti.table_data = (unw_word_t *) ktab;
2443
2444 if (gdbarch_debug >= 1)
2445 fprintf_unfiltered (gdb_stdlog, "get_kernel_table: found table `%s': "
2446 "segbase=0x%s, length=%s, gp=0x%s\n",
2447 (char *) di->u.ti.name_ptr,
2448 paddr_nz (di->u.ti.segbase),
2449 paddr_u (di->u.ti.table_len),
2450 paddr_nz (di->gp));
2451 return 0;
2452 }
2453
2454 /* Find the unwind table entry for a specified address. */
2455 static int
2456 ia64_find_unwind_table (struct objfile *objfile, unw_word_t ip,
2457 unw_dyn_info_t *dip, void **buf)
2458 {
2459 Elf_Internal_Phdr *phdr, *p_text = NULL, *p_unwind = NULL;
2460 Elf_Internal_Ehdr *ehdr;
2461 unw_word_t segbase = 0;
2462 CORE_ADDR load_base;
2463 bfd *bfd;
2464 int i;
2465
2466 bfd = objfile->obfd;
2467
2468 ehdr = elf_tdata (bfd)->elf_header;
2469 phdr = elf_tdata (bfd)->phdr;
2470
2471 load_base = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2472
2473 for (i = 0; i < ehdr->e_phnum; ++i)
2474 {
2475 switch (phdr[i].p_type)
2476 {
2477 case PT_LOAD:
2478 if ((unw_word_t) (ip - load_base - phdr[i].p_vaddr)
2479 < phdr[i].p_memsz)
2480 p_text = phdr + i;
2481 break;
2482
2483 case PT_IA_64_UNWIND:
2484 p_unwind = phdr + i;
2485 break;
2486
2487 default:
2488 break;
2489 }
2490 }
2491
2492 if (!p_text || !p_unwind)
2493 return -UNW_ENOINFO;
2494
2495 /* Verify that the segment that contains the IP also contains
2496 the static unwind table. If not, we may be in the Linux kernel's
2497 DSO gate page in which case the unwind table is another segment.
2498 Otherwise, we are dealing with runtime-generated code, for which we
2499 have no info here. */
2500 segbase = p_text->p_vaddr + load_base;
2501
2502 if ((p_unwind->p_vaddr - p_text->p_vaddr) >= p_text->p_memsz)
2503 {
2504 int ok = 0;
2505 for (i = 0; i < ehdr->e_phnum; ++i)
2506 {
2507 if (phdr[i].p_type == PT_LOAD
2508 && (p_unwind->p_vaddr - phdr[i].p_vaddr) < phdr[i].p_memsz)
2509 {
2510 ok = 1;
2511 /* Get the segbase from the section containing the
2512 libunwind table. */
2513 segbase = phdr[i].p_vaddr + load_base;
2514 }
2515 }
2516 if (!ok)
2517 return -UNW_ENOINFO;
2518 }
2519
2520 dip->start_ip = p_text->p_vaddr + load_base;
2521 dip->end_ip = dip->start_ip + p_text->p_memsz;
2522 dip->gp = ia64_find_global_pointer (ip);
2523 dip->format = UNW_INFO_FORMAT_REMOTE_TABLE;
2524 dip->u.rti.name_ptr = (unw_word_t) bfd_get_filename (bfd);
2525 dip->u.rti.segbase = segbase;
2526 dip->u.rti.table_len = p_unwind->p_memsz / sizeof (unw_word_t);
2527 dip->u.rti.table_data = p_unwind->p_vaddr + load_base;
2528
2529 return 0;
2530 }
2531
2532 /* Libunwind callback accessor function to acquire procedure unwind-info. */
2533 static int
2534 ia64_find_proc_info_x (unw_addr_space_t as, unw_word_t ip, unw_proc_info_t *pi,
2535 int need_unwind_info, void *arg)
2536 {
2537 struct obj_section *sec = find_pc_section (ip);
2538 unw_dyn_info_t di;
2539 int ret;
2540 void *buf = NULL;
2541
2542 if (!sec)
2543 {
2544 /* XXX This only works if the host and the target architecture are
2545 both ia64 and if the have (more or less) the same kernel
2546 version. */
2547 if (get_kernel_table (ip, &di) < 0)
2548 return -UNW_ENOINFO;
2549
2550 if (gdbarch_debug >= 1)
2551 fprintf_unfiltered (gdb_stdlog, "ia64_find_proc_info_x: 0x%s -> "
2552 "(name=`%s',segbase=0x%s,start=0x%s,end=0x%s,gp=0x%s,"
2553 "length=%s,data=0x%s)\n",
2554 paddr_nz (ip), (char *)di.u.ti.name_ptr,
2555 paddr_nz (di.u.ti.segbase),
2556 paddr_nz (di.start_ip), paddr_nz (di.end_ip),
2557 paddr_nz (di.gp),
2558 paddr_u (di.u.ti.table_len),
2559 paddr_nz ((CORE_ADDR)di.u.ti.table_data));
2560 }
2561 else
2562 {
2563 ret = ia64_find_unwind_table (sec->objfile, ip, &di, &buf);
2564 if (ret < 0)
2565 return ret;
2566
2567 if (gdbarch_debug >= 1)
2568 fprintf_unfiltered (gdb_stdlog, "ia64_find_proc_info_x: 0x%s -> "
2569 "(name=`%s',segbase=0x%s,start=0x%s,end=0x%s,gp=0x%s,"
2570 "length=%s,data=0x%s)\n",
2571 paddr_nz (ip), (char *)di.u.rti.name_ptr,
2572 paddr_nz (di.u.rti.segbase),
2573 paddr_nz (di.start_ip), paddr_nz (di.end_ip),
2574 paddr_nz (di.gp),
2575 paddr_u (di.u.rti.table_len),
2576 paddr_nz (di.u.rti.table_data));
2577 }
2578
2579 ret = libunwind_search_unwind_table (&as, ip, &di, pi, need_unwind_info,
2580 arg);
2581
2582 /* We no longer need the dyn info storage so free it. */
2583 xfree (buf);
2584
2585 return ret;
2586 }
2587
2588 /* Libunwind callback accessor function for cleanup. */
2589 static void
2590 ia64_put_unwind_info (unw_addr_space_t as,
2591 unw_proc_info_t *pip, void *arg)
2592 {
2593 /* Nothing required for now. */
2594 }
2595
2596 /* Libunwind callback accessor function to get head of the dynamic
2597 unwind-info registration list. */
2598 static int
2599 ia64_get_dyn_info_list (unw_addr_space_t as,
2600 unw_word_t *dilap, void *arg)
2601 {
2602 struct obj_section *text_sec;
2603 struct objfile *objfile;
2604 unw_word_t ip, addr;
2605 unw_dyn_info_t di;
2606 int ret;
2607
2608 if (!libunwind_is_initialized ())
2609 return -UNW_ENOINFO;
2610
2611 for (objfile = object_files; objfile; objfile = objfile->next)
2612 {
2613 void *buf = NULL;
2614
2615 text_sec = objfile->sections + SECT_OFF_TEXT (objfile);
2616 ip = text_sec->addr;
2617 ret = ia64_find_unwind_table (objfile, ip, &di, &buf);
2618 if (ret >= 0)
2619 {
2620 addr = libunwind_find_dyn_list (as, &di, arg);
2621 /* We no longer need the dyn info storage so free it. */
2622 xfree (buf);
2623
2624 if (addr)
2625 {
2626 if (gdbarch_debug >= 1)
2627 fprintf_unfiltered (gdb_stdlog,
2628 "dynamic unwind table in objfile %s "
2629 "at 0x%s (gp=0x%s)\n",
2630 bfd_get_filename (objfile->obfd),
2631 paddr_nz (addr), paddr_nz (di.gp));
2632 *dilap = addr;
2633 return 0;
2634 }
2635 }
2636 }
2637 return -UNW_ENOINFO;
2638 }
2639
2640
2641 /* Frame interface functions for libunwind. */
2642
2643 static void
2644 ia64_libunwind_frame_this_id (struct frame_info *next_frame, void **this_cache,
2645 struct frame_id *this_id)
2646 {
2647 char buf[8];
2648 CORE_ADDR bsp;
2649 struct frame_id id;
2650 CORE_ADDR prev_ip, addr;
2651 int realnum, optimized;
2652 enum lval_type lval;
2653
2654
2655 libunwind_frame_this_id (next_frame, this_cache, &id);
2656 if (frame_id_eq (id, null_frame_id))
2657 {
2658 (*this_id) = null_frame_id;
2659 return;
2660 }
2661
2662 /* We must add the bsp as the special address for frame comparison
2663 purposes. */
2664 frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf);
2665 bsp = extract_unsigned_integer (buf, 8);
2666
2667 /* If the previous frame pc value is 0, then we are at the end of the stack
2668 and don't want to unwind past this frame. We return a null frame_id to
2669 indicate this. */
2670 libunwind_frame_prev_register (next_frame, this_cache, IA64_IP_REGNUM,
2671 &optimized, &lval, &addr, &realnum, buf);
2672 prev_ip = extract_unsigned_integer (buf, 8);
2673
2674 if (prev_ip != 0)
2675 (*this_id) = frame_id_build_special (id.stack_addr, id.code_addr, bsp);
2676 else
2677 (*this_id) = null_frame_id;
2678
2679 if (gdbarch_debug >= 1)
2680 fprintf_unfiltered (gdb_stdlog,
2681 "libunwind frame id: code 0x%s, stack 0x%s, special 0x%s, next_frame %p\n",
2682 paddr_nz (id.code_addr), paddr_nz (id.stack_addr),
2683 paddr_nz (bsp), next_frame);
2684 }
2685
2686 static void
2687 ia64_libunwind_frame_prev_register (struct frame_info *next_frame,
2688 void **this_cache,
2689 int regnum, int *optimizedp,
2690 enum lval_type *lvalp, CORE_ADDR *addrp,
2691 int *realnump, gdb_byte *valuep)
2692 {
2693 int reg = regnum;
2694
2695 if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
2696 reg = IA64_PR_REGNUM;
2697 else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
2698 reg = IA64_UNAT_REGNUM;
2699
2700 /* Let libunwind do most of the work. */
2701 libunwind_frame_prev_register (next_frame, this_cache, reg,
2702 optimizedp, lvalp, addrp, realnump, valuep);
2703
2704 /* No more to do if the value is not supposed to be supplied. */
2705 if (!valuep)
2706 return;
2707
2708 if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
2709 {
2710 ULONGEST prN_val;
2711
2712 if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
2713 {
2714 int rrb_pr = 0;
2715 ULONGEST cfm;
2716 unsigned char buf[MAX_REGISTER_SIZE];
2717
2718 /* Fetch predicate register rename base from current frame
2719 marker for this frame. */
2720 frame_unwind_register (next_frame, IA64_CFM_REGNUM, buf);
2721 cfm = extract_unsigned_integer (buf, 8);
2722 rrb_pr = (cfm >> 32) & 0x3f;
2723
2724 /* Adjust the register number to account for register rotation. */
2725 regnum = VP16_REGNUM
2726 + ((regnum - VP16_REGNUM) + rrb_pr) % 48;
2727 }
2728 prN_val = extract_bit_field ((unsigned char *) valuep,
2729 regnum - VP0_REGNUM, 1);
2730 store_unsigned_integer (valuep, register_size (current_gdbarch, regnum), prN_val);
2731 }
2732 else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
2733 {
2734 ULONGEST unatN_val;
2735
2736 unatN_val = extract_bit_field ((unsigned char *) valuep,
2737 regnum - IA64_NAT0_REGNUM, 1);
2738 store_unsigned_integer (valuep, register_size (current_gdbarch, regnum),
2739 unatN_val);
2740 }
2741 else if (regnum == IA64_BSP_REGNUM)
2742 {
2743 char cfm_valuep[MAX_REGISTER_SIZE];
2744 int cfm_optim;
2745 int cfm_realnum;
2746 enum lval_type cfm_lval;
2747 CORE_ADDR cfm_addr;
2748 CORE_ADDR bsp, prev_cfm, prev_bsp;
2749
2750 /* We want to calculate the previous bsp as the end of the previous register stack frame.
2751 This corresponds to what the hardware bsp register will be if we pop the frame
2752 back which is why we might have been called. We know that libunwind will pass us back
2753 the beginning of the current frame so we should just add sof to it. */
2754 prev_bsp = extract_unsigned_integer (valuep, 8);
2755 libunwind_frame_prev_register (next_frame, this_cache, IA64_CFM_REGNUM,
2756 &cfm_optim, &cfm_lval, &cfm_addr, &cfm_realnum, cfm_valuep);
2757 prev_cfm = extract_unsigned_integer (cfm_valuep, 8);
2758 prev_bsp = rse_address_add (prev_bsp, (prev_cfm & 0x7f));
2759
2760 store_unsigned_integer (valuep, register_size (current_gdbarch, regnum),
2761 prev_bsp);
2762 }
2763
2764 if (gdbarch_debug >= 1)
2765 fprintf_unfiltered (gdb_stdlog,
2766 "libunwind prev register <%s> is 0x%s\n",
2767 (regnum < IA64_GR32_REGNUM
2768 || (regnum > IA64_GR127_REGNUM
2769 && regnum < LAST_PSEUDO_REGNUM))
2770 ? ia64_register_names[regnum]
2771 : (regnum < LAST_PSEUDO_REGNUM
2772 ? ia64_register_names[regnum-IA64_GR32_REGNUM+V32_REGNUM]
2773 : "OUT_OF_RANGE"),
2774 paddr_nz (extract_unsigned_integer (valuep, 8)));
2775 }
2776
2777 static const struct frame_unwind ia64_libunwind_frame_unwind =
2778 {
2779 NORMAL_FRAME,
2780 ia64_libunwind_frame_this_id,
2781 ia64_libunwind_frame_prev_register,
2782 NULL,
2783 NULL,
2784 NULL,
2785 libunwind_frame_dealloc_cache
2786 };
2787
2788 static const struct frame_unwind *
2789 ia64_libunwind_frame_sniffer (struct frame_info *next_frame)
2790 {
2791 if (libunwind_is_initialized () && libunwind_frame_sniffer (next_frame))
2792 return &ia64_libunwind_frame_unwind;
2793
2794 return NULL;
2795 }
2796
2797 static void
2798 ia64_libunwind_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
2799 struct frame_id *this_id)
2800 {
2801 char buf[8];
2802 CORE_ADDR bsp;
2803 struct frame_id id;
2804 CORE_ADDR prev_ip;
2805
2806 libunwind_frame_this_id (next_frame, this_cache, &id);
2807 if (frame_id_eq (id, null_frame_id))
2808 {
2809 (*this_id) = null_frame_id;
2810 return;
2811 }
2812
2813 /* We must add the bsp as the special address for frame comparison
2814 purposes. */
2815 frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf);
2816 bsp = extract_unsigned_integer (buf, 8);
2817
2818 /* For a sigtramp frame, we don't make the check for previous ip being 0. */
2819 (*this_id) = frame_id_build_special (id.stack_addr, id.code_addr, bsp);
2820
2821 if (gdbarch_debug >= 1)
2822 fprintf_unfiltered (gdb_stdlog,
2823 "libunwind sigtramp frame id: code 0x%s, stack 0x%s, special 0x%s, next_frame %p\n",
2824 paddr_nz (id.code_addr), paddr_nz (id.stack_addr),
2825 paddr_nz (bsp), next_frame);
2826 }
2827
2828 static void
2829 ia64_libunwind_sigtramp_frame_prev_register (struct frame_info *next_frame,
2830 void **this_cache,
2831 int regnum, int *optimizedp,
2832 enum lval_type *lvalp, CORE_ADDR *addrp,
2833 int *realnump, gdb_byte *valuep)
2834
2835 {
2836 gdb_byte buf[8];
2837 CORE_ADDR prev_ip, addr;
2838 int realnum, optimized;
2839 enum lval_type lval;
2840
2841
2842 /* If the previous frame pc value is 0, then we want to use the SIGCONTEXT
2843 method of getting previous registers. */
2844 libunwind_frame_prev_register (next_frame, this_cache, IA64_IP_REGNUM,
2845 &optimized, &lval, &addr, &realnum, buf);
2846 prev_ip = extract_unsigned_integer (buf, 8);
2847
2848 if (prev_ip == 0)
2849 {
2850 void *tmp_cache = NULL;
2851 ia64_sigtramp_frame_prev_register (next_frame, &tmp_cache, regnum, optimizedp, lvalp,
2852 addrp, realnump, valuep);
2853 }
2854 else
2855 ia64_libunwind_frame_prev_register (next_frame, this_cache, regnum, optimizedp, lvalp,
2856 addrp, realnump, valuep);
2857 }
2858
2859 static const struct frame_unwind ia64_libunwind_sigtramp_frame_unwind =
2860 {
2861 SIGTRAMP_FRAME,
2862 ia64_libunwind_sigtramp_frame_this_id,
2863 ia64_libunwind_sigtramp_frame_prev_register
2864 };
2865
2866 static const struct frame_unwind *
2867 ia64_libunwind_sigtramp_frame_sniffer (struct frame_info *next_frame)
2868 {
2869 if (libunwind_is_initialized ())
2870 {
2871 if (libunwind_sigtramp_frame_sniffer (next_frame))
2872 return &ia64_libunwind_sigtramp_frame_unwind;
2873 return NULL;
2874 }
2875 else
2876 return ia64_sigtramp_frame_sniffer (next_frame);
2877 }
2878
2879 /* Set of libunwind callback acccessor functions. */
2880 static unw_accessors_t ia64_unw_accessors =
2881 {
2882 ia64_find_proc_info_x,
2883 ia64_put_unwind_info,
2884 ia64_get_dyn_info_list,
2885 ia64_access_mem,
2886 ia64_access_reg,
2887 ia64_access_fpreg,
2888 /* resume */
2889 /* get_proc_name */
2890 };
2891
2892 /* Set of special libunwind callback acccessor functions specific for accessing
2893 the rse registers. At the top of the stack, we want libunwind to figure out
2894 how to read r32 - r127. Though usually they are found sequentially in memory
2895 starting from $bof, this is not always true. */
2896 static unw_accessors_t ia64_unw_rse_accessors =
2897 {
2898 ia64_find_proc_info_x,
2899 ia64_put_unwind_info,
2900 ia64_get_dyn_info_list,
2901 ia64_access_mem,
2902 ia64_access_rse_reg,
2903 ia64_access_rse_fpreg,
2904 /* resume */
2905 /* get_proc_name */
2906 };
2907
2908 /* Set of ia64 gdb libunwind-frame callbacks and data for generic libunwind-frame code to use. */
2909 static struct libunwind_descr ia64_libunwind_descr =
2910 {
2911 ia64_gdb2uw_regnum,
2912 ia64_uw2gdb_regnum,
2913 ia64_is_fpreg,
2914 &ia64_unw_accessors,
2915 &ia64_unw_rse_accessors,
2916 };
2917
2918 #endif /* HAVE_LIBUNWIND_IA64_H */
2919
2920 /* Should we use DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS instead of
2921 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc and TYPE
2922 is the type (which is known to be struct, union or array). */
2923 int
2924 ia64_use_struct_convention (int gcc_p, struct type *type)
2925 {
2926 struct type *float_elt_type;
2927
2928 /* HFAs are structures (or arrays) consisting entirely of floating
2929 point values of the same length. Up to 8 of these are returned
2930 in registers. Don't use the struct convention when this is the
2931 case. */
2932 float_elt_type = is_float_or_hfa_type (type);
2933 if (float_elt_type != NULL
2934 && TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type) <= 8)
2935 return 0;
2936
2937 /* Other structs of length 32 or less are returned in r8-r11.
2938 Don't use the struct convention for those either. */
2939 return TYPE_LENGTH (type) > 32;
2940 }
2941
2942 void
2943 ia64_extract_return_value (struct type *type, struct regcache *regcache,
2944 gdb_byte *valbuf)
2945 {
2946 struct type *float_elt_type;
2947
2948 float_elt_type = is_float_or_hfa_type (type);
2949 if (float_elt_type != NULL)
2950 {
2951 char from[MAX_REGISTER_SIZE];
2952 int offset = 0;
2953 int regnum = IA64_FR8_REGNUM;
2954 int n = TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type);
2955
2956 while (n-- > 0)
2957 {
2958 regcache_cooked_read (regcache, regnum, from);
2959 convert_typed_floating (from, builtin_type_ia64_ext,
2960 (char *)valbuf + offset, float_elt_type);
2961 offset += TYPE_LENGTH (float_elt_type);
2962 regnum++;
2963 }
2964 }
2965 else
2966 {
2967 ULONGEST val;
2968 int offset = 0;
2969 int regnum = IA64_GR8_REGNUM;
2970 int reglen = TYPE_LENGTH (register_type (get_regcache_arch (regcache),
2971 IA64_GR8_REGNUM));
2972 int n = TYPE_LENGTH (type) / reglen;
2973 int m = TYPE_LENGTH (type) % reglen;
2974
2975 while (n-- > 0)
2976 {
2977 ULONGEST val;
2978 regcache_cooked_read_unsigned (regcache, regnum, &val);
2979 memcpy ((char *)valbuf + offset, &val, reglen);
2980 offset += reglen;
2981 regnum++;
2982 }
2983
2984 if (m)
2985 {
2986 regcache_cooked_read_unsigned (regcache, regnum, &val);
2987 memcpy ((char *)valbuf + offset, &val, m);
2988 }
2989 }
2990 }
2991
2992 CORE_ADDR
2993 ia64_extract_struct_value_address (struct regcache *regcache)
2994 {
2995 error (_("ia64_extract_struct_value_address called and cannot get struct value address"));
2996 return 0;
2997 }
2998
2999
3000 static int
3001 is_float_or_hfa_type_recurse (struct type *t, struct type **etp)
3002 {
3003 switch (TYPE_CODE (t))
3004 {
3005 case TYPE_CODE_FLT:
3006 if (*etp)
3007 return TYPE_LENGTH (*etp) == TYPE_LENGTH (t);
3008 else
3009 {
3010 *etp = t;
3011 return 1;
3012 }
3013 break;
3014 case TYPE_CODE_ARRAY:
3015 return
3016 is_float_or_hfa_type_recurse (check_typedef (TYPE_TARGET_TYPE (t)),
3017 etp);
3018 break;
3019 case TYPE_CODE_STRUCT:
3020 {
3021 int i;
3022
3023 for (i = 0; i < TYPE_NFIELDS (t); i++)
3024 if (!is_float_or_hfa_type_recurse
3025 (check_typedef (TYPE_FIELD_TYPE (t, i)), etp))
3026 return 0;
3027 return 1;
3028 }
3029 break;
3030 default:
3031 return 0;
3032 break;
3033 }
3034 }
3035
3036 /* Determine if the given type is one of the floating point types or
3037 and HFA (which is a struct, array, or combination thereof whose
3038 bottom-most elements are all of the same floating point type). */
3039
3040 static struct type *
3041 is_float_or_hfa_type (struct type *t)
3042 {
3043 struct type *et = 0;
3044
3045 return is_float_or_hfa_type_recurse (t, &et) ? et : 0;
3046 }
3047
3048
3049 /* Return 1 if the alignment of T is such that the next even slot
3050 should be used. Return 0, if the next available slot should
3051 be used. (See section 8.5.1 of the IA-64 Software Conventions
3052 and Runtime manual). */
3053
3054 static int
3055 slot_alignment_is_next_even (struct type *t)
3056 {
3057 switch (TYPE_CODE (t))
3058 {
3059 case TYPE_CODE_INT:
3060 case TYPE_CODE_FLT:
3061 if (TYPE_LENGTH (t) > 8)
3062 return 1;
3063 else
3064 return 0;
3065 case TYPE_CODE_ARRAY:
3066 return
3067 slot_alignment_is_next_even (check_typedef (TYPE_TARGET_TYPE (t)));
3068 case TYPE_CODE_STRUCT:
3069 {
3070 int i;
3071
3072 for (i = 0; i < TYPE_NFIELDS (t); i++)
3073 if (slot_alignment_is_next_even
3074 (check_typedef (TYPE_FIELD_TYPE (t, i))))
3075 return 1;
3076 return 0;
3077 }
3078 default:
3079 return 0;
3080 }
3081 }
3082
3083 /* Attempt to find (and return) the global pointer for the given
3084 function.
3085
3086 This is a rather nasty bit of code searchs for the .dynamic section
3087 in the objfile corresponding to the pc of the function we're trying
3088 to call. Once it finds the addresses at which the .dynamic section
3089 lives in the child process, it scans the Elf64_Dyn entries for a
3090 DT_PLTGOT tag. If it finds one of these, the corresponding
3091 d_un.d_ptr value is the global pointer. */
3092
3093 static CORE_ADDR
3094 ia64_find_global_pointer (CORE_ADDR faddr)
3095 {
3096 struct obj_section *faddr_sect;
3097
3098 faddr_sect = find_pc_section (faddr);
3099 if (faddr_sect != NULL)
3100 {
3101 struct obj_section *osect;
3102
3103 ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
3104 {
3105 if (strcmp (osect->the_bfd_section->name, ".dynamic") == 0)
3106 break;
3107 }
3108
3109 if (osect < faddr_sect->objfile->sections_end)
3110 {
3111 CORE_ADDR addr;
3112
3113 addr = osect->addr;
3114 while (addr < osect->endaddr)
3115 {
3116 int status;
3117 LONGEST tag;
3118 char buf[8];
3119
3120 status = target_read_memory (addr, buf, sizeof (buf));
3121 if (status != 0)
3122 break;
3123 tag = extract_signed_integer (buf, sizeof (buf));
3124
3125 if (tag == DT_PLTGOT)
3126 {
3127 CORE_ADDR global_pointer;
3128
3129 status = target_read_memory (addr + 8, buf, sizeof (buf));
3130 if (status != 0)
3131 break;
3132 global_pointer = extract_unsigned_integer (buf, sizeof (buf));
3133
3134 /* The payoff... */
3135 return global_pointer;
3136 }
3137
3138 if (tag == DT_NULL)
3139 break;
3140
3141 addr += 16;
3142 }
3143 }
3144 }
3145 return 0;
3146 }
3147
3148 /* Given a function's address, attempt to find (and return) the
3149 corresponding (canonical) function descriptor. Return 0 if
3150 not found. */
3151 static CORE_ADDR
3152 find_extant_func_descr (CORE_ADDR faddr)
3153 {
3154 struct obj_section *faddr_sect;
3155
3156 /* Return early if faddr is already a function descriptor. */
3157 faddr_sect = find_pc_section (faddr);
3158 if (faddr_sect && strcmp (faddr_sect->the_bfd_section->name, ".opd") == 0)
3159 return faddr;
3160
3161 if (faddr_sect != NULL)
3162 {
3163 struct obj_section *osect;
3164 ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
3165 {
3166 if (strcmp (osect->the_bfd_section->name, ".opd") == 0)
3167 break;
3168 }
3169
3170 if (osect < faddr_sect->objfile->sections_end)
3171 {
3172 CORE_ADDR addr;
3173
3174 addr = osect->addr;
3175 while (addr < osect->endaddr)
3176 {
3177 int status;
3178 LONGEST faddr2;
3179 char buf[8];
3180
3181 status = target_read_memory (addr, buf, sizeof (buf));
3182 if (status != 0)
3183 break;
3184 faddr2 = extract_signed_integer (buf, sizeof (buf));
3185
3186 if (faddr == faddr2)
3187 return addr;
3188
3189 addr += 16;
3190 }
3191 }
3192 }
3193 return 0;
3194 }
3195
3196 /* Attempt to find a function descriptor corresponding to the
3197 given address. If none is found, construct one on the
3198 stack using the address at fdaptr. */
3199
3200 static CORE_ADDR
3201 find_func_descr (struct regcache *regcache, CORE_ADDR faddr, CORE_ADDR *fdaptr)
3202 {
3203 CORE_ADDR fdesc;
3204
3205 fdesc = find_extant_func_descr (faddr);
3206
3207 if (fdesc == 0)
3208 {
3209 ULONGEST global_pointer;
3210 char buf[16];
3211
3212 fdesc = *fdaptr;
3213 *fdaptr += 16;
3214
3215 global_pointer = ia64_find_global_pointer (faddr);
3216
3217 if (global_pointer == 0)
3218 regcache_cooked_read_unsigned (regcache,
3219 IA64_GR1_REGNUM, &global_pointer);
3220
3221 store_unsigned_integer (buf, 8, faddr);
3222 store_unsigned_integer (buf + 8, 8, global_pointer);
3223
3224 write_memory (fdesc, buf, 16);
3225 }
3226
3227 return fdesc;
3228 }
3229
3230 /* Use the following routine when printing out function pointers
3231 so the user can see the function address rather than just the
3232 function descriptor. */
3233 static CORE_ADDR
3234 ia64_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
3235 struct target_ops *targ)
3236 {
3237 struct obj_section *s;
3238
3239 s = find_pc_section (addr);
3240
3241 /* check if ADDR points to a function descriptor. */
3242 if (s && strcmp (s->the_bfd_section->name, ".opd") == 0)
3243 return read_memory_unsigned_integer (addr, 8);
3244
3245 /* There are also descriptors embedded in vtables. */
3246 if (s)
3247 {
3248 struct minimal_symbol *minsym;
3249
3250 minsym = lookup_minimal_symbol_by_pc (addr);
3251
3252 if (minsym && is_vtable_name (SYMBOL_LINKAGE_NAME (minsym)))
3253 return read_memory_unsigned_integer (addr, 8);
3254 }
3255
3256 return addr;
3257 }
3258
3259 static CORE_ADDR
3260 ia64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
3261 {
3262 return sp & ~0xfLL;
3263 }
3264
3265 static CORE_ADDR
3266 ia64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3267 struct regcache *regcache, CORE_ADDR bp_addr,
3268 int nargs, struct value **args, CORE_ADDR sp,
3269 int struct_return, CORE_ADDR struct_addr)
3270 {
3271 int argno;
3272 struct value *arg;
3273 struct type *type;
3274 int len, argoffset;
3275 int nslots, rseslots, memslots, slotnum, nfuncargs;
3276 int floatreg;
3277 ULONGEST bsp, cfm, pfs, new_bsp;
3278 CORE_ADDR funcdescaddr, pc, global_pointer;
3279 CORE_ADDR func_addr = find_function_addr (function, NULL);
3280
3281 nslots = 0;
3282 nfuncargs = 0;
3283 /* Count the number of slots needed for the arguments. */
3284 for (argno = 0; argno < nargs; argno++)
3285 {
3286 arg = args[argno];
3287 type = check_typedef (value_type (arg));
3288 len = TYPE_LENGTH (type);
3289
3290 if ((nslots & 1) && slot_alignment_is_next_even (type))
3291 nslots++;
3292
3293 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
3294 nfuncargs++;
3295
3296 nslots += (len + 7) / 8;
3297 }
3298
3299 /* Divvy up the slots between the RSE and the memory stack. */
3300 rseslots = (nslots > 8) ? 8 : nslots;
3301 memslots = nslots - rseslots;
3302
3303 /* Allocate a new RSE frame. */
3304 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
3305
3306 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
3307 new_bsp = rse_address_add (bsp, rseslots);
3308 regcache_cooked_write_unsigned (regcache, IA64_BSP_REGNUM, new_bsp);
3309
3310 regcache_cooked_read_unsigned (regcache, IA64_PFS_REGNUM, &pfs);
3311 pfs &= 0xc000000000000000LL;
3312 pfs |= (cfm & 0xffffffffffffLL);
3313 regcache_cooked_write_unsigned (regcache, IA64_PFS_REGNUM, pfs);
3314
3315 cfm &= 0xc000000000000000LL;
3316 cfm |= rseslots;
3317 regcache_cooked_write_unsigned (regcache, IA64_CFM_REGNUM, cfm);
3318
3319 /* We will attempt to find function descriptors in the .opd segment,
3320 but if we can't we'll construct them ourselves. That being the
3321 case, we'll need to reserve space on the stack for them. */
3322 funcdescaddr = sp - nfuncargs * 16;
3323 funcdescaddr &= ~0xfLL;
3324
3325 /* Adjust the stack pointer to it's new value. The calling conventions
3326 require us to have 16 bytes of scratch, plus whatever space is
3327 necessary for the memory slots and our function descriptors. */
3328 sp = sp - 16 - (memslots + nfuncargs) * 8;
3329 sp &= ~0xfLL; /* Maintain 16 byte alignment. */
3330
3331 /* Place the arguments where they belong. The arguments will be
3332 either placed in the RSE backing store or on the memory stack.
3333 In addition, floating point arguments or HFAs are placed in
3334 floating point registers. */
3335 slotnum = 0;
3336 floatreg = IA64_FR8_REGNUM;
3337 for (argno = 0; argno < nargs; argno++)
3338 {
3339 struct type *float_elt_type;
3340
3341 arg = args[argno];
3342 type = check_typedef (value_type (arg));
3343 len = TYPE_LENGTH (type);
3344
3345 /* Special handling for function parameters. */
3346 if (len == 8
3347 && TYPE_CODE (type) == TYPE_CODE_PTR
3348 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
3349 {
3350 char val_buf[8];
3351 ULONGEST faddr = extract_unsigned_integer (value_contents (arg), 8);
3352 store_unsigned_integer (val_buf, 8,
3353 find_func_descr (regcache, faddr,
3354 &funcdescaddr));
3355 if (slotnum < rseslots)
3356 write_memory (rse_address_add (bsp, slotnum), val_buf, 8);
3357 else
3358 write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8);
3359 slotnum++;
3360 continue;
3361 }
3362
3363 /* Normal slots. */
3364
3365 /* Skip odd slot if necessary... */
3366 if ((slotnum & 1) && slot_alignment_is_next_even (type))
3367 slotnum++;
3368
3369 argoffset = 0;
3370 while (len > 0)
3371 {
3372 char val_buf[8];
3373
3374 memset (val_buf, 0, 8);
3375 memcpy (val_buf, value_contents (arg) + argoffset, (len > 8) ? 8 : len);
3376
3377 if (slotnum < rseslots)
3378 write_memory (rse_address_add (bsp, slotnum), val_buf, 8);
3379 else
3380 write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8);
3381
3382 argoffset += 8;
3383 len -= 8;
3384 slotnum++;
3385 }
3386
3387 /* Handle floating point types (including HFAs). */
3388 float_elt_type = is_float_or_hfa_type (type);
3389 if (float_elt_type != NULL)
3390 {
3391 argoffset = 0;
3392 len = TYPE_LENGTH (type);
3393 while (len > 0 && floatreg < IA64_FR16_REGNUM)
3394 {
3395 char to[MAX_REGISTER_SIZE];
3396 convert_typed_floating (value_contents (arg) + argoffset, float_elt_type,
3397 to, builtin_type_ia64_ext);
3398 regcache_cooked_write (regcache, floatreg, (void *)to);
3399 floatreg++;
3400 argoffset += TYPE_LENGTH (float_elt_type);
3401 len -= TYPE_LENGTH (float_elt_type);
3402 }
3403 }
3404 }
3405
3406 /* Store the struct return value in r8 if necessary. */
3407 if (struct_return)
3408 {
3409 regcache_cooked_write_unsigned (regcache, IA64_GR8_REGNUM, (ULONGEST)struct_addr);
3410 }
3411
3412 global_pointer = ia64_find_global_pointer (func_addr);
3413
3414 if (global_pointer != 0)
3415 regcache_cooked_write_unsigned (regcache, IA64_GR1_REGNUM, global_pointer);
3416
3417 regcache_cooked_write_unsigned (regcache, IA64_BR0_REGNUM, bp_addr);
3418
3419 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
3420
3421 return sp;
3422 }
3423
3424 static struct frame_id
3425 ia64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
3426 {
3427 char buf[8];
3428 CORE_ADDR sp, bsp;
3429
3430 frame_unwind_register (next_frame, sp_regnum, buf);
3431 sp = extract_unsigned_integer (buf, 8);
3432
3433 frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf);
3434 bsp = extract_unsigned_integer (buf, 8);
3435
3436 if (gdbarch_debug >= 1)
3437 fprintf_unfiltered (gdb_stdlog,
3438 "dummy frame id: code 0x%s, stack 0x%s, special 0x%s\n",
3439 paddr_nz (frame_pc_unwind (next_frame)),
3440 paddr_nz (sp), paddr_nz (bsp));
3441
3442 return frame_id_build_special (sp, frame_pc_unwind (next_frame), bsp);
3443 }
3444
3445 static CORE_ADDR
3446 ia64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
3447 {
3448 char buf[8];
3449 CORE_ADDR ip, psr, pc;
3450
3451 frame_unwind_register (next_frame, IA64_IP_REGNUM, buf);
3452 ip = extract_unsigned_integer (buf, 8);
3453 frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf);
3454 psr = extract_unsigned_integer (buf, 8);
3455
3456 pc = (ip & ~0xf) | ((psr >> 41) & 3);
3457 return pc;
3458 }
3459
3460 static void
3461 ia64_store_return_value (struct type *type, struct regcache *regcache,
3462 const gdb_byte *valbuf)
3463 {
3464 if (TYPE_CODE (type) == TYPE_CODE_FLT)
3465 {
3466 char to[MAX_REGISTER_SIZE];
3467 convert_typed_floating (valbuf, type, to, builtin_type_ia64_ext);
3468 regcache_cooked_write (regcache, IA64_FR8_REGNUM, (void *)to);
3469 target_store_registers (regcache, IA64_FR8_REGNUM);
3470 }
3471 else
3472 regcache_cooked_write (regcache, IA64_GR8_REGNUM, valbuf);
3473 }
3474
3475 static int
3476 ia64_print_insn (bfd_vma memaddr, struct disassemble_info *info)
3477 {
3478 info->bytes_per_line = SLOT_MULTIPLIER;
3479 return print_insn_ia64 (memaddr, info);
3480 }
3481
3482 static struct gdbarch *
3483 ia64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3484 {
3485 struct gdbarch *gdbarch;
3486 struct gdbarch_tdep *tdep;
3487
3488 /* If there is already a candidate, use it. */
3489 arches = gdbarch_list_lookup_by_info (arches, &info);
3490 if (arches != NULL)
3491 return arches->gdbarch;
3492
3493 tdep = xmalloc (sizeof (struct gdbarch_tdep));
3494 gdbarch = gdbarch_alloc (&info, tdep);
3495
3496 tdep->sigcontext_register_address = 0;
3497 tdep->pc_in_sigtramp = 0;
3498
3499 /* Define the ia64 floating-point format to gdb. */
3500 builtin_type_ia64_ext =
3501 init_type (TYPE_CODE_FLT, 128 / 8,
3502 0, "builtin_type_ia64_ext", NULL);
3503 TYPE_FLOATFORMAT (builtin_type_ia64_ext) = floatformats_ia64_ext;
3504
3505 /* According to the ia64 specs, instructions that store long double
3506 floats in memory use a long-double format different than that
3507 used in the floating registers. The memory format matches the
3508 x86 extended float format which is 80 bits. An OS may choose to
3509 use this format (e.g. GNU/Linux) or choose to use a different
3510 format for storing long doubles (e.g. HPUX). In the latter case,
3511 the setting of the format may be moved/overridden in an
3512 OS-specific tdep file. */
3513 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
3514
3515 set_gdbarch_short_bit (gdbarch, 16);
3516 set_gdbarch_int_bit (gdbarch, 32);
3517 set_gdbarch_long_bit (gdbarch, 64);
3518 set_gdbarch_long_long_bit (gdbarch, 64);
3519 set_gdbarch_float_bit (gdbarch, 32);
3520 set_gdbarch_double_bit (gdbarch, 64);
3521 set_gdbarch_long_double_bit (gdbarch, 128);
3522 set_gdbarch_ptr_bit (gdbarch, 64);
3523
3524 set_gdbarch_num_regs (gdbarch, NUM_IA64_RAW_REGS);
3525 set_gdbarch_num_pseudo_regs (gdbarch, LAST_PSEUDO_REGNUM - FIRST_PSEUDO_REGNUM);
3526 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
3527 set_gdbarch_fp0_regnum (gdbarch, IA64_FR0_REGNUM);
3528
3529 set_gdbarch_register_name (gdbarch, ia64_register_name);
3530 /* FIXME: Following interface should not be needed, however, without it recurse.exp
3531 gets a number of extra failures. */
3532 set_gdbarch_deprecated_register_size (gdbarch, 8);
3533 set_gdbarch_register_type (gdbarch, ia64_register_type);
3534
3535 set_gdbarch_pseudo_register_read (gdbarch, ia64_pseudo_register_read);
3536 set_gdbarch_pseudo_register_write (gdbarch, ia64_pseudo_register_write);
3537 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, ia64_dwarf_reg_to_regnum);
3538 set_gdbarch_register_reggroup_p (gdbarch, ia64_register_reggroup_p);
3539 set_gdbarch_convert_register_p (gdbarch, ia64_convert_register_p);
3540 set_gdbarch_register_to_value (gdbarch, ia64_register_to_value);
3541 set_gdbarch_value_to_register (gdbarch, ia64_value_to_register);
3542
3543 set_gdbarch_skip_prologue (gdbarch, ia64_skip_prologue);
3544
3545 set_gdbarch_deprecated_use_struct_convention (gdbarch, ia64_use_struct_convention);
3546 set_gdbarch_extract_return_value (gdbarch, ia64_extract_return_value);
3547
3548 set_gdbarch_store_return_value (gdbarch, ia64_store_return_value);
3549 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, ia64_extract_struct_value_address);
3550
3551 set_gdbarch_memory_insert_breakpoint (gdbarch, ia64_memory_insert_breakpoint);
3552 set_gdbarch_memory_remove_breakpoint (gdbarch, ia64_memory_remove_breakpoint);
3553 set_gdbarch_breakpoint_from_pc (gdbarch, ia64_breakpoint_from_pc);
3554 set_gdbarch_read_pc (gdbarch, ia64_read_pc);
3555 set_gdbarch_write_pc (gdbarch, ia64_write_pc);
3556
3557 /* Settings for calling functions in the inferior. */
3558 set_gdbarch_push_dummy_call (gdbarch, ia64_push_dummy_call);
3559 set_gdbarch_frame_align (gdbarch, ia64_frame_align);
3560 set_gdbarch_unwind_dummy_id (gdbarch, ia64_unwind_dummy_id);
3561
3562 set_gdbarch_unwind_pc (gdbarch, ia64_unwind_pc);
3563 #ifdef HAVE_LIBUNWIND_IA64_H
3564 frame_unwind_append_sniffer (gdbarch, ia64_libunwind_sigtramp_frame_sniffer);
3565 frame_unwind_append_sniffer (gdbarch, ia64_libunwind_frame_sniffer);
3566 libunwind_frame_set_descr (gdbarch, &ia64_libunwind_descr);
3567 #else
3568 frame_unwind_append_sniffer (gdbarch, ia64_sigtramp_frame_sniffer);
3569 #endif
3570 frame_unwind_append_sniffer (gdbarch, ia64_frame_sniffer);
3571 frame_base_set_default (gdbarch, &ia64_frame_base);
3572
3573 /* Settings that should be unnecessary. */
3574 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3575
3576 set_gdbarch_print_insn (gdbarch, ia64_print_insn);
3577 set_gdbarch_convert_from_func_ptr_addr (gdbarch, ia64_convert_from_func_ptr_addr);
3578
3579 /* The virtual table contains 16-byte descriptors, not pointers to
3580 descriptors. */
3581 set_gdbarch_vtable_function_descriptors (gdbarch, 1);
3582
3583 /* Hook in ABI-specific overrides, if they have been registered. */
3584 gdbarch_init_osabi (info, gdbarch);
3585
3586 return gdbarch;
3587 }
3588
3589 extern initialize_file_ftype _initialize_ia64_tdep; /* -Wmissing-prototypes */
3590
3591 void
3592 _initialize_ia64_tdep (void)
3593 {
3594 gdbarch_register (bfd_arch_ia64, ia64_gdbarch_init, NULL);
3595 }
This page took 0.103165 seconds and 3 git commands to generate.