doc/ChangeLog:
[deliverable/binutils-gdb.git] / gdb / ia64-tdep.c
1 /* Target-dependent code for the IA-64 for GDB, the GNU debugger.
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "gdbcore.h"
24 #include "arch-utils.h"
25 #include "floatformat.h"
26 #include "gdbtypes.h"
27 #include "regcache.h"
28 #include "reggroups.h"
29 #include "frame.h"
30 #include "frame-base.h"
31 #include "frame-unwind.h"
32 #include "doublest.h"
33 #include "value.h"
34 #include "gdb_assert.h"
35 #include "objfiles.h"
36 #include "elf/common.h" /* for DT_PLTGOT value */
37 #include "elf-bfd.h"
38 #include "dis-asm.h"
39 #include "infcall.h"
40 #include "osabi.h"
41 #include "ia64-tdep.h"
42 #include "cp-abi.h"
43
44 #ifdef HAVE_LIBUNWIND_IA64_H
45 #include "elf/ia64.h" /* for PT_IA_64_UNWIND value */
46 #include "libunwind-frame.h"
47 #include "libunwind-ia64.h"
48
49 /* Note: KERNEL_START is supposed to be an address which is not going
50 to ever contain any valid unwind info. For ia64 linux, the choice
51 of 0xc000000000000000 is fairly safe since that's uncached space.
52
53 We use KERNEL_START as follows: after obtaining the kernel's
54 unwind table via getunwind(), we project its unwind data into
55 address-range KERNEL_START-(KERNEL_START+ktab_size) and then
56 when ia64_access_mem() sees a memory access to this
57 address-range, we redirect it to ktab instead.
58
59 None of this hackery is needed with a modern kernel/libcs
60 which uses the kernel virtual DSO to provide access to the
61 kernel's unwind info. In that case, ktab_size remains 0 and
62 hence the value of KERNEL_START doesn't matter. */
63
64 #define KERNEL_START 0xc000000000000000ULL
65
66 static size_t ktab_size = 0;
67 struct ia64_table_entry
68 {
69 uint64_t start_offset;
70 uint64_t end_offset;
71 uint64_t info_offset;
72 };
73
74 static struct ia64_table_entry *ktab = NULL;
75
76 #endif
77
78 /* An enumeration of the different IA-64 instruction types. */
79
80 typedef enum instruction_type
81 {
82 A, /* Integer ALU ; I-unit or M-unit */
83 I, /* Non-ALU integer; I-unit */
84 M, /* Memory ; M-unit */
85 F, /* Floating-point ; F-unit */
86 B, /* Branch ; B-unit */
87 L, /* Extended (L+X) ; I-unit */
88 X, /* Extended (L+X) ; I-unit */
89 undefined /* undefined or reserved */
90 } instruction_type;
91
92 /* We represent IA-64 PC addresses as the value of the instruction
93 pointer or'd with some bit combination in the low nibble which
94 represents the slot number in the bundle addressed by the
95 instruction pointer. The problem is that the Linux kernel
96 multiplies its slot numbers (for exceptions) by one while the
97 disassembler multiplies its slot numbers by 6. In addition, I've
98 heard it said that the simulator uses 1 as the multiplier.
99
100 I've fixed the disassembler so that the bytes_per_line field will
101 be the slot multiplier. If bytes_per_line comes in as zero, it
102 is set to six (which is how it was set up initially). -- objdump
103 displays pretty disassembly dumps with this value. For our purposes,
104 we'll set bytes_per_line to SLOT_MULTIPLIER. This is okay since we
105 never want to also display the raw bytes the way objdump does. */
106
107 #define SLOT_MULTIPLIER 1
108
109 /* Length in bytes of an instruction bundle */
110
111 #define BUNDLE_LEN 16
112
113 static gdbarch_init_ftype ia64_gdbarch_init;
114
115 static gdbarch_register_name_ftype ia64_register_name;
116 static gdbarch_register_type_ftype ia64_register_type;
117 static gdbarch_breakpoint_from_pc_ftype ia64_breakpoint_from_pc;
118 static gdbarch_skip_prologue_ftype ia64_skip_prologue;
119 static struct type *is_float_or_hfa_type (struct type *t);
120 static CORE_ADDR ia64_find_global_pointer (CORE_ADDR faddr);
121
122 static struct type *builtin_type_ia64_ext;
123
124 #define NUM_IA64_RAW_REGS 462
125
126 static int sp_regnum = IA64_GR12_REGNUM;
127 static int fp_regnum = IA64_VFP_REGNUM;
128 static int lr_regnum = IA64_VRAP_REGNUM;
129
130 /* NOTE: we treat the register stack registers r32-r127 as pseudo-registers because
131 they may not be accessible via the ptrace register get/set interfaces. */
132 enum pseudo_regs { FIRST_PSEUDO_REGNUM = NUM_IA64_RAW_REGS, VBOF_REGNUM = IA64_NAT127_REGNUM + 1, V32_REGNUM,
133 V127_REGNUM = V32_REGNUM + 95,
134 VP0_REGNUM, VP16_REGNUM = VP0_REGNUM + 16, VP63_REGNUM = VP0_REGNUM + 63, LAST_PSEUDO_REGNUM };
135
136 /* Array of register names; There should be ia64_num_regs strings in
137 the initializer. */
138
139 static char *ia64_register_names[] =
140 { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
141 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
142 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
143 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
144 "", "", "", "", "", "", "", "",
145 "", "", "", "", "", "", "", "",
146 "", "", "", "", "", "", "", "",
147 "", "", "", "", "", "", "", "",
148 "", "", "", "", "", "", "", "",
149 "", "", "", "", "", "", "", "",
150 "", "", "", "", "", "", "", "",
151 "", "", "", "", "", "", "", "",
152 "", "", "", "", "", "", "", "",
153 "", "", "", "", "", "", "", "",
154 "", "", "", "", "", "", "", "",
155 "", "", "", "", "", "", "", "",
156
157 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
158 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
159 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
160 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
161 "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39",
162 "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47",
163 "f48", "f49", "f50", "f51", "f52", "f53", "f54", "f55",
164 "f56", "f57", "f58", "f59", "f60", "f61", "f62", "f63",
165 "f64", "f65", "f66", "f67", "f68", "f69", "f70", "f71",
166 "f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79",
167 "f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87",
168 "f88", "f89", "f90", "f91", "f92", "f93", "f94", "f95",
169 "f96", "f97", "f98", "f99", "f100", "f101", "f102", "f103",
170 "f104", "f105", "f106", "f107", "f108", "f109", "f110", "f111",
171 "f112", "f113", "f114", "f115", "f116", "f117", "f118", "f119",
172 "f120", "f121", "f122", "f123", "f124", "f125", "f126", "f127",
173
174 "", "", "", "", "", "", "", "",
175 "", "", "", "", "", "", "", "",
176 "", "", "", "", "", "", "", "",
177 "", "", "", "", "", "", "", "",
178 "", "", "", "", "", "", "", "",
179 "", "", "", "", "", "", "", "",
180 "", "", "", "", "", "", "", "",
181 "", "", "", "", "", "", "", "",
182
183 "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7",
184
185 "vfp", "vrap",
186
187 "pr", "ip", "psr", "cfm",
188
189 "kr0", "kr1", "kr2", "kr3", "kr4", "kr5", "kr6", "kr7",
190 "", "", "", "", "", "", "", "",
191 "rsc", "bsp", "bspstore", "rnat",
192 "", "fcr", "", "",
193 "eflag", "csd", "ssd", "cflg", "fsr", "fir", "fdr", "",
194 "ccv", "", "", "", "unat", "", "", "",
195 "fpsr", "", "", "", "itc",
196 "", "", "", "", "", "", "", "", "", "",
197 "", "", "", "", "", "", "", "", "",
198 "pfs", "lc", "ec",
199 "", "", "", "", "", "", "", "", "", "",
200 "", "", "", "", "", "", "", "", "", "",
201 "", "", "", "", "", "", "", "", "", "",
202 "", "", "", "", "", "", "", "", "", "",
203 "", "", "", "", "", "", "", "", "", "",
204 "", "", "", "", "", "", "", "", "", "",
205 "",
206 "nat0", "nat1", "nat2", "nat3", "nat4", "nat5", "nat6", "nat7",
207 "nat8", "nat9", "nat10", "nat11", "nat12", "nat13", "nat14", "nat15",
208 "nat16", "nat17", "nat18", "nat19", "nat20", "nat21", "nat22", "nat23",
209 "nat24", "nat25", "nat26", "nat27", "nat28", "nat29", "nat30", "nat31",
210 "nat32", "nat33", "nat34", "nat35", "nat36", "nat37", "nat38", "nat39",
211 "nat40", "nat41", "nat42", "nat43", "nat44", "nat45", "nat46", "nat47",
212 "nat48", "nat49", "nat50", "nat51", "nat52", "nat53", "nat54", "nat55",
213 "nat56", "nat57", "nat58", "nat59", "nat60", "nat61", "nat62", "nat63",
214 "nat64", "nat65", "nat66", "nat67", "nat68", "nat69", "nat70", "nat71",
215 "nat72", "nat73", "nat74", "nat75", "nat76", "nat77", "nat78", "nat79",
216 "nat80", "nat81", "nat82", "nat83", "nat84", "nat85", "nat86", "nat87",
217 "nat88", "nat89", "nat90", "nat91", "nat92", "nat93", "nat94", "nat95",
218 "nat96", "nat97", "nat98", "nat99", "nat100","nat101","nat102","nat103",
219 "nat104","nat105","nat106","nat107","nat108","nat109","nat110","nat111",
220 "nat112","nat113","nat114","nat115","nat116","nat117","nat118","nat119",
221 "nat120","nat121","nat122","nat123","nat124","nat125","nat126","nat127",
222
223 "bof",
224
225 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
226 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
227 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
228 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
229 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
230 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
231 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
232 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
233 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
234 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
235 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
236 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
237
238 "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7",
239 "p8", "p9", "p10", "p11", "p12", "p13", "p14", "p15",
240 "p16", "p17", "p18", "p19", "p20", "p21", "p22", "p23",
241 "p24", "p25", "p26", "p27", "p28", "p29", "p30", "p31",
242 "p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39",
243 "p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47",
244 "p48", "p49", "p50", "p51", "p52", "p53", "p54", "p55",
245 "p56", "p57", "p58", "p59", "p60", "p61", "p62", "p63",
246 };
247
248 struct ia64_frame_cache
249 {
250 CORE_ADDR base; /* frame pointer base for frame */
251 CORE_ADDR pc; /* function start pc for frame */
252 CORE_ADDR saved_sp; /* stack pointer for frame */
253 CORE_ADDR bsp; /* points at r32 for the current frame */
254 CORE_ADDR cfm; /* cfm value for current frame */
255 CORE_ADDR prev_cfm; /* cfm value for previous frame */
256 int frameless;
257 int sof; /* Size of frame (decoded from cfm value) */
258 int sol; /* Size of locals (decoded from cfm value) */
259 int sor; /* Number of rotating registers. (decoded from cfm value) */
260 CORE_ADDR after_prologue;
261 /* Address of first instruction after the last
262 prologue instruction; Note that there may
263 be instructions from the function's body
264 intermingled with the prologue. */
265 int mem_stack_frame_size;
266 /* Size of the memory stack frame (may be zero),
267 or -1 if it has not been determined yet. */
268 int fp_reg; /* Register number (if any) used a frame pointer
269 for this frame. 0 if no register is being used
270 as the frame pointer. */
271
272 /* Saved registers. */
273 CORE_ADDR saved_regs[NUM_IA64_RAW_REGS];
274
275 };
276
277 int
278 ia64_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
279 struct reggroup *group)
280 {
281 int vector_p;
282 int float_p;
283 int raw_p;
284 if (group == all_reggroup)
285 return 1;
286 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
287 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
288 raw_p = regnum < NUM_IA64_RAW_REGS;
289 if (group == float_reggroup)
290 return float_p;
291 if (group == vector_reggroup)
292 return vector_p;
293 if (group == general_reggroup)
294 return (!vector_p && !float_p);
295 if (group == save_reggroup || group == restore_reggroup)
296 return raw_p;
297 return 0;
298 }
299
300 static const char *
301 ia64_register_name (struct gdbarch *gdbarch, int reg)
302 {
303 return ia64_register_names[reg];
304 }
305
306 struct type *
307 ia64_register_type (struct gdbarch *arch, int reg)
308 {
309 if (reg >= IA64_FR0_REGNUM && reg <= IA64_FR127_REGNUM)
310 return builtin_type_ia64_ext;
311 else
312 return builtin_type_long;
313 }
314
315 static int
316 ia64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
317 {
318 if (reg >= IA64_GR32_REGNUM && reg <= IA64_GR127_REGNUM)
319 return V32_REGNUM + (reg - IA64_GR32_REGNUM);
320 return reg;
321 }
322
323 static int
324 floatformat_valid (const struct floatformat *fmt, const void *from)
325 {
326 return 1;
327 }
328
329 const struct floatformat floatformat_ia64_ext =
330 {
331 floatformat_little, 82, 0, 1, 17, 65535, 0x1ffff, 18, 64,
332 floatformat_intbit_yes, "floatformat_ia64_ext", floatformat_valid, NULL
333 };
334
335 const struct floatformat *floatformats_ia64_ext[2] =
336 {
337 &floatformat_ia64_ext,
338 &floatformat_ia64_ext
339 };
340
341
342 /* Extract ``len'' bits from an instruction bundle starting at
343 bit ``from''. */
344
345 static long long
346 extract_bit_field (char *bundle, int from, int len)
347 {
348 long long result = 0LL;
349 int to = from + len;
350 int from_byte = from / 8;
351 int to_byte = to / 8;
352 unsigned char *b = (unsigned char *) bundle;
353 unsigned char c;
354 int lshift;
355 int i;
356
357 c = b[from_byte];
358 if (from_byte == to_byte)
359 c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8);
360 result = c >> (from % 8);
361 lshift = 8 - (from % 8);
362
363 for (i = from_byte+1; i < to_byte; i++)
364 {
365 result |= ((long long) b[i]) << lshift;
366 lshift += 8;
367 }
368
369 if (from_byte < to_byte && (to % 8 != 0))
370 {
371 c = b[to_byte];
372 c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8);
373 result |= ((long long) c) << lshift;
374 }
375
376 return result;
377 }
378
379 /* Replace the specified bits in an instruction bundle */
380
381 static void
382 replace_bit_field (char *bundle, long long val, int from, int len)
383 {
384 int to = from + len;
385 int from_byte = from / 8;
386 int to_byte = to / 8;
387 unsigned char *b = (unsigned char *) bundle;
388 unsigned char c;
389
390 if (from_byte == to_byte)
391 {
392 unsigned char left, right;
393 c = b[from_byte];
394 left = (c >> (to % 8)) << (to % 8);
395 right = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8);
396 c = (unsigned char) (val & 0xff);
397 c = (unsigned char) (c << (from % 8 + 8 - to % 8)) >> (8 - to % 8);
398 c |= right | left;
399 b[from_byte] = c;
400 }
401 else
402 {
403 int i;
404 c = b[from_byte];
405 c = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8);
406 c = c | (val << (from % 8));
407 b[from_byte] = c;
408 val >>= 8 - from % 8;
409
410 for (i = from_byte+1; i < to_byte; i++)
411 {
412 c = val & 0xff;
413 val >>= 8;
414 b[i] = c;
415 }
416
417 if (to % 8 != 0)
418 {
419 unsigned char cv = (unsigned char) val;
420 c = b[to_byte];
421 c = c >> (to % 8) << (to % 8);
422 c |= ((unsigned char) (cv << (8 - to % 8))) >> (8 - to % 8);
423 b[to_byte] = c;
424 }
425 }
426 }
427
428 /* Return the contents of slot N (for N = 0, 1, or 2) in
429 and instruction bundle */
430
431 static long long
432 slotN_contents (char *bundle, int slotnum)
433 {
434 return extract_bit_field (bundle, 5+41*slotnum, 41);
435 }
436
437 /* Store an instruction in an instruction bundle */
438
439 static void
440 replace_slotN_contents (char *bundle, long long instr, int slotnum)
441 {
442 replace_bit_field (bundle, instr, 5+41*slotnum, 41);
443 }
444
445 static enum instruction_type template_encoding_table[32][3] =
446 {
447 { M, I, I }, /* 00 */
448 { M, I, I }, /* 01 */
449 { M, I, I }, /* 02 */
450 { M, I, I }, /* 03 */
451 { M, L, X }, /* 04 */
452 { M, L, X }, /* 05 */
453 { undefined, undefined, undefined }, /* 06 */
454 { undefined, undefined, undefined }, /* 07 */
455 { M, M, I }, /* 08 */
456 { M, M, I }, /* 09 */
457 { M, M, I }, /* 0A */
458 { M, M, I }, /* 0B */
459 { M, F, I }, /* 0C */
460 { M, F, I }, /* 0D */
461 { M, M, F }, /* 0E */
462 { M, M, F }, /* 0F */
463 { M, I, B }, /* 10 */
464 { M, I, B }, /* 11 */
465 { M, B, B }, /* 12 */
466 { M, B, B }, /* 13 */
467 { undefined, undefined, undefined }, /* 14 */
468 { undefined, undefined, undefined }, /* 15 */
469 { B, B, B }, /* 16 */
470 { B, B, B }, /* 17 */
471 { M, M, B }, /* 18 */
472 { M, M, B }, /* 19 */
473 { undefined, undefined, undefined }, /* 1A */
474 { undefined, undefined, undefined }, /* 1B */
475 { M, F, B }, /* 1C */
476 { M, F, B }, /* 1D */
477 { undefined, undefined, undefined }, /* 1E */
478 { undefined, undefined, undefined }, /* 1F */
479 };
480
481 /* Fetch and (partially) decode an instruction at ADDR and return the
482 address of the next instruction to fetch. */
483
484 static CORE_ADDR
485 fetch_instruction (CORE_ADDR addr, instruction_type *it, long long *instr)
486 {
487 char bundle[BUNDLE_LEN];
488 int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER;
489 long long template;
490 int val;
491
492 /* Warn about slot numbers greater than 2. We used to generate
493 an error here on the assumption that the user entered an invalid
494 address. But, sometimes GDB itself requests an invalid address.
495 This can (easily) happen when execution stops in a function for
496 which there are no symbols. The prologue scanner will attempt to
497 find the beginning of the function - if the nearest symbol
498 happens to not be aligned on a bundle boundary (16 bytes), the
499 resulting starting address will cause GDB to think that the slot
500 number is too large.
501
502 So we warn about it and set the slot number to zero. It is
503 not necessarily a fatal condition, particularly if debugging
504 at the assembly language level. */
505 if (slotnum > 2)
506 {
507 warning (_("Can't fetch instructions for slot numbers greater than 2.\n"
508 "Using slot 0 instead"));
509 slotnum = 0;
510 }
511
512 addr &= ~0x0f;
513
514 val = target_read_memory (addr, bundle, BUNDLE_LEN);
515
516 if (val != 0)
517 return 0;
518
519 *instr = slotN_contents (bundle, slotnum);
520 template = extract_bit_field (bundle, 0, 5);
521 *it = template_encoding_table[(int)template][slotnum];
522
523 if (slotnum == 2 || (slotnum == 1 && *it == L))
524 addr += 16;
525 else
526 addr += (slotnum + 1) * SLOT_MULTIPLIER;
527
528 return addr;
529 }
530
531 /* There are 5 different break instructions (break.i, break.b,
532 break.m, break.f, and break.x), but they all have the same
533 encoding. (The five bit template in the low five bits of the
534 instruction bundle distinguishes one from another.)
535
536 The runtime architecture manual specifies that break instructions
537 used for debugging purposes must have the upper two bits of the 21
538 bit immediate set to a 0 and a 1 respectively. A breakpoint
539 instruction encodes the most significant bit of its 21 bit
540 immediate at bit 36 of the 41 bit instruction. The penultimate msb
541 is at bit 25 which leads to the pattern below.
542
543 Originally, I had this set up to do, e.g, a "break.i 0x80000" But
544 it turns out that 0x80000 was used as the syscall break in the early
545 simulators. So I changed the pattern slightly to do "break.i 0x080001"
546 instead. But that didn't work either (I later found out that this
547 pattern was used by the simulator that I was using.) So I ended up
548 using the pattern seen below. */
549
550 #if 0
551 #define IA64_BREAKPOINT 0x00002000040LL
552 #endif
553 #define IA64_BREAKPOINT 0x00003333300LL
554
555 static int
556 ia64_memory_insert_breakpoint (struct gdbarch *gdbarch,
557 struct bp_target_info *bp_tgt)
558 {
559 CORE_ADDR addr = bp_tgt->placed_address;
560 char bundle[BUNDLE_LEN];
561 int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER;
562 long long instr;
563 int val;
564 int template;
565
566 if (slotnum > 2)
567 error (_("Can't insert breakpoint for slot numbers greater than 2."));
568
569 addr &= ~0x0f;
570
571 val = target_read_memory (addr, bundle, BUNDLE_LEN);
572
573 /* Check for L type instruction in 2nd slot, if present then
574 bump up the slot number to the 3rd slot */
575 template = extract_bit_field (bundle, 0, 5);
576 if (slotnum == 1 && template_encoding_table[template][1] == L)
577 {
578 slotnum = 2;
579 }
580
581 instr = slotN_contents (bundle, slotnum);
582 memcpy (bp_tgt->shadow_contents, &instr, sizeof (instr));
583 bp_tgt->placed_size = bp_tgt->shadow_len = sizeof (instr);
584 replace_slotN_contents (bundle, IA64_BREAKPOINT, slotnum);
585 if (val == 0)
586 target_write_memory (addr, bundle, BUNDLE_LEN);
587
588 return val;
589 }
590
591 static int
592 ia64_memory_remove_breakpoint (struct gdbarch *gdbarch,
593 struct bp_target_info *bp_tgt)
594 {
595 CORE_ADDR addr = bp_tgt->placed_address;
596 char bundle[BUNDLE_LEN];
597 int slotnum = (addr & 0x0f) / SLOT_MULTIPLIER;
598 long long instr;
599 int val;
600 int template;
601
602 addr &= ~0x0f;
603
604 val = target_read_memory (addr, bundle, BUNDLE_LEN);
605
606 /* Check for L type instruction in 2nd slot, if present then
607 bump up the slot number to the 3rd slot */
608 template = extract_bit_field (bundle, 0, 5);
609 if (slotnum == 1 && template_encoding_table[template][1] == L)
610 {
611 slotnum = 2;
612 }
613
614 memcpy (&instr, bp_tgt->shadow_contents, sizeof instr);
615 replace_slotN_contents (bundle, instr, slotnum);
616 if (val == 0)
617 target_write_memory (addr, bundle, BUNDLE_LEN);
618
619 return val;
620 }
621
622 /* We don't really want to use this, but remote.c needs to call it in order
623 to figure out if Z-packets are supported or not. Oh, well. */
624 const unsigned char *
625 ia64_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
626 {
627 static unsigned char breakpoint[] =
628 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
629 *lenptr = sizeof (breakpoint);
630 #if 0
631 *pcptr &= ~0x0f;
632 #endif
633 return breakpoint;
634 }
635
636 static CORE_ADDR
637 ia64_read_pc (struct regcache *regcache)
638 {
639 ULONGEST psr_value, pc_value;
640 int slot_num;
641
642 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr_value);
643 regcache_cooked_read_unsigned (regcache, IA64_IP_REGNUM, &pc_value);
644 slot_num = (psr_value >> 41) & 3;
645
646 return pc_value | (slot_num * SLOT_MULTIPLIER);
647 }
648
649 void
650 ia64_write_pc (struct regcache *regcache, CORE_ADDR new_pc)
651 {
652 int slot_num = (int) (new_pc & 0xf) / SLOT_MULTIPLIER;
653 ULONGEST psr_value;
654
655 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr_value);
656 psr_value &= ~(3LL << 41);
657 psr_value |= (ULONGEST)(slot_num & 0x3) << 41;
658
659 new_pc &= ~0xfLL;
660
661 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr_value);
662 regcache_cooked_write_unsigned (regcache, IA64_IP_REGNUM, new_pc);
663 }
664
665 #define IS_NaT_COLLECTION_ADDR(addr) ((((addr) >> 3) & 0x3f) == 0x3f)
666
667 /* Returns the address of the slot that's NSLOTS slots away from
668 the address ADDR. NSLOTS may be positive or negative. */
669 static CORE_ADDR
670 rse_address_add(CORE_ADDR addr, int nslots)
671 {
672 CORE_ADDR new_addr;
673 int mandatory_nat_slots = nslots / 63;
674 int direction = nslots < 0 ? -1 : 1;
675
676 new_addr = addr + 8 * (nslots + mandatory_nat_slots);
677
678 if ((new_addr >> 9) != ((addr + 8 * 64 * mandatory_nat_slots) >> 9))
679 new_addr += 8 * direction;
680
681 if (IS_NaT_COLLECTION_ADDR(new_addr))
682 new_addr += 8 * direction;
683
684 return new_addr;
685 }
686
687 static void
688 ia64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
689 int regnum, gdb_byte *buf)
690 {
691 if (regnum >= V32_REGNUM && regnum <= V127_REGNUM)
692 {
693 #ifdef HAVE_LIBUNWIND_IA64_H
694 /* First try and use the libunwind special reg accessor, otherwise fallback to
695 standard logic. */
696 if (!libunwind_is_initialized ()
697 || libunwind_get_reg_special (gdbarch, regcache, regnum, buf) != 0)
698 #endif
699 {
700 /* The fallback position is to assume that r32-r127 are found sequentially
701 in memory starting at $bof. This isn't always true, but without libunwind,
702 this is the best we can do. */
703 ULONGEST cfm;
704 ULONGEST bsp;
705 CORE_ADDR reg;
706 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
707 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
708
709 /* The bsp points at the end of the register frame so we
710 subtract the size of frame from it to get start of register frame. */
711 bsp = rse_address_add (bsp, -(cfm & 0x7f));
712
713 if ((cfm & 0x7f) > regnum - V32_REGNUM)
714 {
715 ULONGEST reg_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
716 reg = read_memory_integer ((CORE_ADDR)reg_addr, 8);
717 store_unsigned_integer (buf, register_size (gdbarch, regnum), reg);
718 }
719 else
720 store_unsigned_integer (buf, register_size (gdbarch, regnum), 0);
721 }
722 }
723 else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM)
724 {
725 ULONGEST unatN_val;
726 ULONGEST unat;
727 regcache_cooked_read_unsigned (regcache, IA64_UNAT_REGNUM, &unat);
728 unatN_val = (unat & (1LL << (regnum - IA64_NAT0_REGNUM))) != 0;
729 store_unsigned_integer (buf, register_size (gdbarch, regnum), unatN_val);
730 }
731 else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
732 {
733 ULONGEST natN_val = 0;
734 ULONGEST bsp;
735 ULONGEST cfm;
736 CORE_ADDR gr_addr = 0;
737 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
738 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
739
740 /* The bsp points at the end of the register frame so we
741 subtract the size of frame from it to get start of register frame. */
742 bsp = rse_address_add (bsp, -(cfm & 0x7f));
743
744 if ((cfm & 0x7f) > regnum - V32_REGNUM)
745 gr_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
746
747 if (gr_addr != 0)
748 {
749 /* Compute address of nat collection bits. */
750 CORE_ADDR nat_addr = gr_addr | 0x1f8;
751 CORE_ADDR nat_collection;
752 int nat_bit;
753 /* If our nat collection address is bigger than bsp, we have to get
754 the nat collection from rnat. Otherwise, we fetch the nat
755 collection from the computed address. */
756 if (nat_addr >= bsp)
757 regcache_cooked_read_unsigned (regcache, IA64_RNAT_REGNUM, &nat_collection);
758 else
759 nat_collection = read_memory_integer (nat_addr, 8);
760 nat_bit = (gr_addr >> 3) & 0x3f;
761 natN_val = (nat_collection >> nat_bit) & 1;
762 }
763
764 store_unsigned_integer (buf, register_size (gdbarch, regnum), natN_val);
765 }
766 else if (regnum == VBOF_REGNUM)
767 {
768 /* A virtual register frame start is provided for user convenience.
769 It can be calculated as the bsp - sof (sizeof frame). */
770 ULONGEST bsp, vbsp;
771 ULONGEST cfm;
772 CORE_ADDR reg;
773 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
774 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
775
776 /* The bsp points at the end of the register frame so we
777 subtract the size of frame from it to get beginning of frame. */
778 vbsp = rse_address_add (bsp, -(cfm & 0x7f));
779 store_unsigned_integer (buf, register_size (gdbarch, regnum), vbsp);
780 }
781 else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
782 {
783 ULONGEST pr;
784 ULONGEST cfm;
785 ULONGEST prN_val;
786 CORE_ADDR reg;
787 regcache_cooked_read_unsigned (regcache, IA64_PR_REGNUM, &pr);
788 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
789
790 if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
791 {
792 /* Fetch predicate register rename base from current frame
793 marker for this frame. */
794 int rrb_pr = (cfm >> 32) & 0x3f;
795
796 /* Adjust the register number to account for register rotation. */
797 regnum = VP16_REGNUM
798 + ((regnum - VP16_REGNUM) + rrb_pr) % 48;
799 }
800 prN_val = (pr & (1LL << (regnum - VP0_REGNUM))) != 0;
801 store_unsigned_integer (buf, register_size (gdbarch, regnum), prN_val);
802 }
803 else
804 memset (buf, 0, register_size (gdbarch, regnum));
805 }
806
807 static void
808 ia64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
809 int regnum, const gdb_byte *buf)
810 {
811 if (regnum >= V32_REGNUM && regnum <= V127_REGNUM)
812 {
813 ULONGEST bsp;
814 ULONGEST cfm;
815 CORE_ADDR reg;
816 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
817 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
818
819 bsp = rse_address_add (bsp, -(cfm & 0x7f));
820
821 if ((cfm & 0x7f) > regnum - V32_REGNUM)
822 {
823 ULONGEST reg_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
824 write_memory (reg_addr, (void *)buf, 8);
825 }
826 }
827 else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM)
828 {
829 ULONGEST unatN_val, unat, unatN_mask;
830 regcache_cooked_read_unsigned (regcache, IA64_UNAT_REGNUM, &unat);
831 unatN_val = extract_unsigned_integer (buf, register_size (gdbarch, regnum));
832 unatN_mask = (1LL << (regnum - IA64_NAT0_REGNUM));
833 if (unatN_val == 0)
834 unat &= ~unatN_mask;
835 else if (unatN_val == 1)
836 unat |= unatN_mask;
837 regcache_cooked_write_unsigned (regcache, IA64_UNAT_REGNUM, unat);
838 }
839 else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
840 {
841 ULONGEST natN_val;
842 ULONGEST bsp;
843 ULONGEST cfm;
844 CORE_ADDR gr_addr = 0;
845 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
846 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
847
848 /* The bsp points at the end of the register frame so we
849 subtract the size of frame from it to get start of register frame. */
850 bsp = rse_address_add (bsp, -(cfm & 0x7f));
851
852 if ((cfm & 0x7f) > regnum - V32_REGNUM)
853 gr_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
854
855 natN_val = extract_unsigned_integer (buf, register_size (gdbarch, regnum));
856
857 if (gr_addr != 0 && (natN_val == 0 || natN_val == 1))
858 {
859 /* Compute address of nat collection bits. */
860 CORE_ADDR nat_addr = gr_addr | 0x1f8;
861 CORE_ADDR nat_collection;
862 int natN_bit = (gr_addr >> 3) & 0x3f;
863 ULONGEST natN_mask = (1LL << natN_bit);
864 /* If our nat collection address is bigger than bsp, we have to get
865 the nat collection from rnat. Otherwise, we fetch the nat
866 collection from the computed address. */
867 if (nat_addr >= bsp)
868 {
869 regcache_cooked_read_unsigned (regcache, IA64_RNAT_REGNUM, &nat_collection);
870 if (natN_val)
871 nat_collection |= natN_mask;
872 else
873 nat_collection &= ~natN_mask;
874 regcache_cooked_write_unsigned (regcache, IA64_RNAT_REGNUM, nat_collection);
875 }
876 else
877 {
878 char nat_buf[8];
879 nat_collection = read_memory_integer (nat_addr, 8);
880 if (natN_val)
881 nat_collection |= natN_mask;
882 else
883 nat_collection &= ~natN_mask;
884 store_unsigned_integer (nat_buf, register_size (gdbarch, regnum), nat_collection);
885 write_memory (nat_addr, nat_buf, 8);
886 }
887 }
888 }
889 else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
890 {
891 ULONGEST pr;
892 ULONGEST cfm;
893 ULONGEST prN_val;
894 ULONGEST prN_mask;
895
896 regcache_cooked_read_unsigned (regcache, IA64_PR_REGNUM, &pr);
897 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
898
899 if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
900 {
901 /* Fetch predicate register rename base from current frame
902 marker for this frame. */
903 int rrb_pr = (cfm >> 32) & 0x3f;
904
905 /* Adjust the register number to account for register rotation. */
906 regnum = VP16_REGNUM
907 + ((regnum - VP16_REGNUM) + rrb_pr) % 48;
908 }
909 prN_val = extract_unsigned_integer (buf, register_size (gdbarch, regnum));
910 prN_mask = (1LL << (regnum - VP0_REGNUM));
911 if (prN_val == 0)
912 pr &= ~prN_mask;
913 else if (prN_val == 1)
914 pr |= prN_mask;
915 regcache_cooked_write_unsigned (regcache, IA64_PR_REGNUM, pr);
916 }
917 }
918
919 /* The ia64 needs to convert between various ieee floating-point formats
920 and the special ia64 floating point register format. */
921
922 static int
923 ia64_convert_register_p (struct gdbarch *gdbarch, int regno, struct type *type)
924 {
925 return (regno >= IA64_FR0_REGNUM && regno <= IA64_FR127_REGNUM
926 && type != builtin_type_ia64_ext);
927 }
928
929 static void
930 ia64_register_to_value (struct frame_info *frame, int regnum,
931 struct type *valtype, gdb_byte *out)
932 {
933 char in[MAX_REGISTER_SIZE];
934 frame_register_read (frame, regnum, in);
935 convert_typed_floating (in, builtin_type_ia64_ext, out, valtype);
936 }
937
938 static void
939 ia64_value_to_register (struct frame_info *frame, int regnum,
940 struct type *valtype, const gdb_byte *in)
941 {
942 char out[MAX_REGISTER_SIZE];
943 convert_typed_floating (in, valtype, out, builtin_type_ia64_ext);
944 put_frame_register (frame, regnum, out);
945 }
946
947
948 /* Limit the number of skipped non-prologue instructions since examining
949 of the prologue is expensive. */
950 static int max_skip_non_prologue_insns = 40;
951
952 /* Given PC representing the starting address of a function, and
953 LIM_PC which is the (sloppy) limit to which to scan when looking
954 for a prologue, attempt to further refine this limit by using
955 the line data in the symbol table. If successful, a better guess
956 on where the prologue ends is returned, otherwise the previous
957 value of lim_pc is returned. TRUST_LIMIT is a pointer to a flag
958 which will be set to indicate whether the returned limit may be
959 used with no further scanning in the event that the function is
960 frameless. */
961
962 /* FIXME: cagney/2004-02-14: This function and logic have largely been
963 superseded by skip_prologue_using_sal. */
964
965 static CORE_ADDR
966 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc, int *trust_limit)
967 {
968 struct symtab_and_line prologue_sal;
969 CORE_ADDR start_pc = pc;
970 CORE_ADDR end_pc;
971
972 /* The prologue can not possibly go past the function end itself,
973 so we can already adjust LIM_PC accordingly. */
974 if (find_pc_partial_function (pc, NULL, NULL, &end_pc) && end_pc < lim_pc)
975 lim_pc = end_pc;
976
977 /* Start off not trusting the limit. */
978 *trust_limit = 0;
979
980 prologue_sal = find_pc_line (pc, 0);
981 if (prologue_sal.line != 0)
982 {
983 int i;
984 CORE_ADDR addr = prologue_sal.end;
985
986 /* Handle the case in which compiler's optimizer/scheduler
987 has moved instructions into the prologue. We scan ahead
988 in the function looking for address ranges whose corresponding
989 line number is less than or equal to the first one that we
990 found for the function. (It can be less than when the
991 scheduler puts a body instruction before the first prologue
992 instruction.) */
993 for (i = 2 * max_skip_non_prologue_insns;
994 i > 0 && (lim_pc == 0 || addr < lim_pc);
995 i--)
996 {
997 struct symtab_and_line sal;
998
999 sal = find_pc_line (addr, 0);
1000 if (sal.line == 0)
1001 break;
1002 if (sal.line <= prologue_sal.line
1003 && sal.symtab == prologue_sal.symtab)
1004 {
1005 prologue_sal = sal;
1006 }
1007 addr = sal.end;
1008 }
1009
1010 if (lim_pc == 0 || prologue_sal.end < lim_pc)
1011 {
1012 lim_pc = prologue_sal.end;
1013 if (start_pc == get_pc_function_start (lim_pc))
1014 *trust_limit = 1;
1015 }
1016 }
1017 return lim_pc;
1018 }
1019
1020 #define isScratch(_regnum_) ((_regnum_) == 2 || (_regnum_) == 3 \
1021 || (8 <= (_regnum_) && (_regnum_) <= 11) \
1022 || (14 <= (_regnum_) && (_regnum_) <= 31))
1023 #define imm9(_instr_) \
1024 ( ((((_instr_) & 0x01000000000LL) ? -1 : 0) << 8) \
1025 | (((_instr_) & 0x00008000000LL) >> 20) \
1026 | (((_instr_) & 0x00000001fc0LL) >> 6))
1027
1028 /* Allocate and initialize a frame cache. */
1029
1030 static struct ia64_frame_cache *
1031 ia64_alloc_frame_cache (void)
1032 {
1033 struct ia64_frame_cache *cache;
1034 int i;
1035
1036 cache = FRAME_OBSTACK_ZALLOC (struct ia64_frame_cache);
1037
1038 /* Base address. */
1039 cache->base = 0;
1040 cache->pc = 0;
1041 cache->cfm = 0;
1042 cache->prev_cfm = 0;
1043 cache->sof = 0;
1044 cache->sol = 0;
1045 cache->sor = 0;
1046 cache->bsp = 0;
1047 cache->fp_reg = 0;
1048 cache->frameless = 1;
1049
1050 for (i = 0; i < NUM_IA64_RAW_REGS; i++)
1051 cache->saved_regs[i] = 0;
1052
1053 return cache;
1054 }
1055
1056 static CORE_ADDR
1057 examine_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct frame_info *next_frame, struct ia64_frame_cache *cache)
1058 {
1059 CORE_ADDR next_pc;
1060 CORE_ADDR last_prologue_pc = pc;
1061 instruction_type it;
1062 long long instr;
1063 int cfm_reg = 0;
1064 int ret_reg = 0;
1065 int fp_reg = 0;
1066 int unat_save_reg = 0;
1067 int pr_save_reg = 0;
1068 int mem_stack_frame_size = 0;
1069 int spill_reg = 0;
1070 CORE_ADDR spill_addr = 0;
1071 char instores[8];
1072 char infpstores[8];
1073 char reg_contents[256];
1074 int trust_limit;
1075 int frameless = 1;
1076 int i;
1077 CORE_ADDR addr;
1078 char buf[8];
1079 CORE_ADDR bof, sor, sol, sof, cfm, rrb_gr;
1080
1081 memset (instores, 0, sizeof instores);
1082 memset (infpstores, 0, sizeof infpstores);
1083 memset (reg_contents, 0, sizeof reg_contents);
1084
1085 if (cache->after_prologue != 0
1086 && cache->after_prologue <= lim_pc)
1087 return cache->after_prologue;
1088
1089 lim_pc = refine_prologue_limit (pc, lim_pc, &trust_limit);
1090 next_pc = fetch_instruction (pc, &it, &instr);
1091
1092 /* We want to check if we have a recognizable function start before we
1093 look ahead for a prologue. */
1094 if (pc < lim_pc && next_pc
1095 && it == M && ((instr & 0x1ee0000003fLL) == 0x02c00000000LL))
1096 {
1097 /* alloc - start of a regular function. */
1098 int sor = (int) ((instr & 0x00078000000LL) >> 27);
1099 int sol = (int) ((instr & 0x00007f00000LL) >> 20);
1100 int sof = (int) ((instr & 0x000000fe000LL) >> 13);
1101 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1102
1103 /* Verify that the current cfm matches what we think is the
1104 function start. If we have somehow jumped within a function,
1105 we do not want to interpret the prologue and calculate the
1106 addresses of various registers such as the return address.
1107 We will instead treat the frame as frameless. */
1108 if (!next_frame ||
1109 (sof == (cache->cfm & 0x7f) &&
1110 sol == ((cache->cfm >> 7) & 0x7f)))
1111 frameless = 0;
1112
1113 cfm_reg = rN;
1114 last_prologue_pc = next_pc;
1115 pc = next_pc;
1116 }
1117 else
1118 {
1119 /* Look for a leaf routine. */
1120 if (pc < lim_pc && next_pc
1121 && (it == I || it == M)
1122 && ((instr & 0x1ee00000000LL) == 0x10800000000LL))
1123 {
1124 /* adds rN = imm14, rM (or mov rN, rM when imm14 is 0) */
1125 int imm = (int) ((((instr & 0x01000000000LL) ? -1 : 0) << 13)
1126 | ((instr & 0x001f8000000LL) >> 20)
1127 | ((instr & 0x000000fe000LL) >> 13));
1128 int rM = (int) ((instr & 0x00007f00000LL) >> 20);
1129 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1130 int qp = (int) (instr & 0x0000000003fLL);
1131 if (qp == 0 && rN == 2 && imm == 0 && rM == 12 && fp_reg == 0)
1132 {
1133 /* mov r2, r12 - beginning of leaf routine */
1134 fp_reg = rN;
1135 last_prologue_pc = next_pc;
1136 }
1137 }
1138
1139 /* If we don't recognize a regular function or leaf routine, we are
1140 done. */
1141 if (!fp_reg)
1142 {
1143 pc = lim_pc;
1144 if (trust_limit)
1145 last_prologue_pc = lim_pc;
1146 }
1147 }
1148
1149 /* Loop, looking for prologue instructions, keeping track of
1150 where preserved registers were spilled. */
1151 while (pc < lim_pc)
1152 {
1153 next_pc = fetch_instruction (pc, &it, &instr);
1154 if (next_pc == 0)
1155 break;
1156
1157 if (it == B && ((instr & 0x1e1f800003fLL) != 0x04000000000LL))
1158 {
1159 /* Exit loop upon hitting a non-nop branch instruction. */
1160 if (trust_limit)
1161 lim_pc = pc;
1162 break;
1163 }
1164 else if (((instr & 0x3fLL) != 0LL) &&
1165 (frameless || ret_reg != 0))
1166 {
1167 /* Exit loop upon hitting a predicated instruction if
1168 we already have the return register or if we are frameless. */
1169 if (trust_limit)
1170 lim_pc = pc;
1171 break;
1172 }
1173 else if (it == I && ((instr & 0x1eff8000000LL) == 0x00188000000LL))
1174 {
1175 /* Move from BR */
1176 int b2 = (int) ((instr & 0x0000000e000LL) >> 13);
1177 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1178 int qp = (int) (instr & 0x0000000003f);
1179
1180 if (qp == 0 && b2 == 0 && rN >= 32 && ret_reg == 0)
1181 {
1182 ret_reg = rN;
1183 last_prologue_pc = next_pc;
1184 }
1185 }
1186 else if ((it == I || it == M)
1187 && ((instr & 0x1ee00000000LL) == 0x10800000000LL))
1188 {
1189 /* adds rN = imm14, rM (or mov rN, rM when imm14 is 0) */
1190 int imm = (int) ((((instr & 0x01000000000LL) ? -1 : 0) << 13)
1191 | ((instr & 0x001f8000000LL) >> 20)
1192 | ((instr & 0x000000fe000LL) >> 13));
1193 int rM = (int) ((instr & 0x00007f00000LL) >> 20);
1194 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1195 int qp = (int) (instr & 0x0000000003fLL);
1196
1197 if (qp == 0 && rN >= 32 && imm == 0 && rM == 12 && fp_reg == 0)
1198 {
1199 /* mov rN, r12 */
1200 fp_reg = rN;
1201 last_prologue_pc = next_pc;
1202 }
1203 else if (qp == 0 && rN == 12 && rM == 12)
1204 {
1205 /* adds r12, -mem_stack_frame_size, r12 */
1206 mem_stack_frame_size -= imm;
1207 last_prologue_pc = next_pc;
1208 }
1209 else if (qp == 0 && rN == 2
1210 && ((rM == fp_reg && fp_reg != 0) || rM == 12))
1211 {
1212 char buf[MAX_REGISTER_SIZE];
1213 CORE_ADDR saved_sp = 0;
1214 /* adds r2, spilloffset, rFramePointer
1215 or
1216 adds r2, spilloffset, r12
1217
1218 Get ready for stf.spill or st8.spill instructions.
1219 The address to start spilling at is loaded into r2.
1220 FIXME: Why r2? That's what gcc currently uses; it
1221 could well be different for other compilers. */
1222
1223 /* Hmm... whether or not this will work will depend on
1224 where the pc is. If it's still early in the prologue
1225 this'll be wrong. FIXME */
1226 if (next_frame)
1227 {
1228 frame_unwind_register (next_frame, sp_regnum, buf);
1229 saved_sp = extract_unsigned_integer (buf, 8);
1230 }
1231 spill_addr = saved_sp
1232 + (rM == 12 ? 0 : mem_stack_frame_size)
1233 + imm;
1234 spill_reg = rN;
1235 last_prologue_pc = next_pc;
1236 }
1237 else if (qp == 0 && rM >= 32 && rM < 40 && !instores[rM-32] &&
1238 rN < 256 && imm == 0)
1239 {
1240 /* mov rN, rM where rM is an input register */
1241 reg_contents[rN] = rM;
1242 last_prologue_pc = next_pc;
1243 }
1244 else if (frameless && qp == 0 && rN == fp_reg && imm == 0 &&
1245 rM == 2)
1246 {
1247 /* mov r12, r2 */
1248 last_prologue_pc = next_pc;
1249 break;
1250 }
1251 }
1252 else if (it == M
1253 && ( ((instr & 0x1efc0000000LL) == 0x0eec0000000LL)
1254 || ((instr & 0x1ffc8000000LL) == 0x0cec0000000LL) ))
1255 {
1256 /* stf.spill [rN] = fM, imm9
1257 or
1258 stf.spill [rN] = fM */
1259
1260 int imm = imm9(instr);
1261 int rN = (int) ((instr & 0x00007f00000LL) >> 20);
1262 int fM = (int) ((instr & 0x000000fe000LL) >> 13);
1263 int qp = (int) (instr & 0x0000000003fLL);
1264 if (qp == 0 && rN == spill_reg && spill_addr != 0
1265 && ((2 <= fM && fM <= 5) || (16 <= fM && fM <= 31)))
1266 {
1267 cache->saved_regs[IA64_FR0_REGNUM + fM] = spill_addr;
1268
1269 if ((instr & 0x1efc0000000LL) == 0x0eec0000000LL)
1270 spill_addr += imm;
1271 else
1272 spill_addr = 0; /* last one; must be done */
1273 last_prologue_pc = next_pc;
1274 }
1275 }
1276 else if ((it == M && ((instr & 0x1eff8000000LL) == 0x02110000000LL))
1277 || (it == I && ((instr & 0x1eff8000000LL) == 0x00050000000LL)) )
1278 {
1279 /* mov.m rN = arM
1280 or
1281 mov.i rN = arM */
1282
1283 int arM = (int) ((instr & 0x00007f00000LL) >> 20);
1284 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1285 int qp = (int) (instr & 0x0000000003fLL);
1286 if (qp == 0 && isScratch (rN) && arM == 36 /* ar.unat */)
1287 {
1288 /* We have something like "mov.m r3 = ar.unat". Remember the
1289 r3 (or whatever) and watch for a store of this register... */
1290 unat_save_reg = rN;
1291 last_prologue_pc = next_pc;
1292 }
1293 }
1294 else if (it == I && ((instr & 0x1eff8000000LL) == 0x00198000000LL))
1295 {
1296 /* mov rN = pr */
1297 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1298 int qp = (int) (instr & 0x0000000003fLL);
1299 if (qp == 0 && isScratch (rN))
1300 {
1301 pr_save_reg = rN;
1302 last_prologue_pc = next_pc;
1303 }
1304 }
1305 else if (it == M
1306 && ( ((instr & 0x1ffc8000000LL) == 0x08cc0000000LL)
1307 || ((instr & 0x1efc0000000LL) == 0x0acc0000000LL)))
1308 {
1309 /* st8 [rN] = rM
1310 or
1311 st8 [rN] = rM, imm9 */
1312 int rN = (int) ((instr & 0x00007f00000LL) >> 20);
1313 int rM = (int) ((instr & 0x000000fe000LL) >> 13);
1314 int qp = (int) (instr & 0x0000000003fLL);
1315 int indirect = rM < 256 ? reg_contents[rM] : 0;
1316 if (qp == 0 && rN == spill_reg && spill_addr != 0
1317 && (rM == unat_save_reg || rM == pr_save_reg))
1318 {
1319 /* We've found a spill of either the UNAT register or the PR
1320 register. (Well, not exactly; what we've actually found is
1321 a spill of the register that UNAT or PR was moved to).
1322 Record that fact and move on... */
1323 if (rM == unat_save_reg)
1324 {
1325 /* Track UNAT register */
1326 cache->saved_regs[IA64_UNAT_REGNUM] = spill_addr;
1327 unat_save_reg = 0;
1328 }
1329 else
1330 {
1331 /* Track PR register */
1332 cache->saved_regs[IA64_PR_REGNUM] = spill_addr;
1333 pr_save_reg = 0;
1334 }
1335 if ((instr & 0x1efc0000000LL) == 0x0acc0000000LL)
1336 /* st8 [rN] = rM, imm9 */
1337 spill_addr += imm9(instr);
1338 else
1339 spill_addr = 0; /* must be done spilling */
1340 last_prologue_pc = next_pc;
1341 }
1342 else if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32])
1343 {
1344 /* Allow up to one store of each input register. */
1345 instores[rM-32] = 1;
1346 last_prologue_pc = next_pc;
1347 }
1348 else if (qp == 0 && 32 <= indirect && indirect < 40 &&
1349 !instores[indirect-32])
1350 {
1351 /* Allow an indirect store of an input register. */
1352 instores[indirect-32] = 1;
1353 last_prologue_pc = next_pc;
1354 }
1355 }
1356 else if (it == M && ((instr & 0x1ff08000000LL) == 0x08c00000000LL))
1357 {
1358 /* One of
1359 st1 [rN] = rM
1360 st2 [rN] = rM
1361 st4 [rN] = rM
1362 st8 [rN] = rM
1363 Note that the st8 case is handled in the clause above.
1364
1365 Advance over stores of input registers. One store per input
1366 register is permitted. */
1367 int rM = (int) ((instr & 0x000000fe000LL) >> 13);
1368 int qp = (int) (instr & 0x0000000003fLL);
1369 int indirect = rM < 256 ? reg_contents[rM] : 0;
1370 if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32])
1371 {
1372 instores[rM-32] = 1;
1373 last_prologue_pc = next_pc;
1374 }
1375 else if (qp == 0 && 32 <= indirect && indirect < 40 &&
1376 !instores[indirect-32])
1377 {
1378 /* Allow an indirect store of an input register. */
1379 instores[indirect-32] = 1;
1380 last_prologue_pc = next_pc;
1381 }
1382 }
1383 else if (it == M && ((instr & 0x1ff88000000LL) == 0x0cc80000000LL))
1384 {
1385 /* Either
1386 stfs [rN] = fM
1387 or
1388 stfd [rN] = fM
1389
1390 Advance over stores of floating point input registers. Again
1391 one store per register is permitted */
1392 int fM = (int) ((instr & 0x000000fe000LL) >> 13);
1393 int qp = (int) (instr & 0x0000000003fLL);
1394 if (qp == 0 && 8 <= fM && fM < 16 && !infpstores[fM - 8])
1395 {
1396 infpstores[fM-8] = 1;
1397 last_prologue_pc = next_pc;
1398 }
1399 }
1400 else if (it == M
1401 && ( ((instr & 0x1ffc8000000LL) == 0x08ec0000000LL)
1402 || ((instr & 0x1efc0000000LL) == 0x0aec0000000LL)))
1403 {
1404 /* st8.spill [rN] = rM
1405 or
1406 st8.spill [rN] = rM, imm9 */
1407 int rN = (int) ((instr & 0x00007f00000LL) >> 20);
1408 int rM = (int) ((instr & 0x000000fe000LL) >> 13);
1409 int qp = (int) (instr & 0x0000000003fLL);
1410 if (qp == 0 && rN == spill_reg && 4 <= rM && rM <= 7)
1411 {
1412 /* We've found a spill of one of the preserved general purpose
1413 regs. Record the spill address and advance the spill
1414 register if appropriate. */
1415 cache->saved_regs[IA64_GR0_REGNUM + rM] = spill_addr;
1416 if ((instr & 0x1efc0000000LL) == 0x0aec0000000LL)
1417 /* st8.spill [rN] = rM, imm9 */
1418 spill_addr += imm9(instr);
1419 else
1420 spill_addr = 0; /* Done spilling */
1421 last_prologue_pc = next_pc;
1422 }
1423 }
1424
1425 pc = next_pc;
1426 }
1427
1428 /* If not frameless and we aren't called by skip_prologue, then we need to calculate
1429 registers for the previous frame which will be needed later. */
1430
1431 if (!frameless && next_frame)
1432 {
1433 /* Extract the size of the rotating portion of the stack
1434 frame and the register rename base from the current
1435 frame marker. */
1436 cfm = cache->cfm;
1437 sor = cache->sor;
1438 sof = cache->sof;
1439 sol = cache->sol;
1440 rrb_gr = (cfm >> 18) & 0x7f;
1441
1442 /* Find the bof (beginning of frame). */
1443 bof = rse_address_add (cache->bsp, -sof);
1444
1445 for (i = 0, addr = bof;
1446 i < sof;
1447 i++, addr += 8)
1448 {
1449 if (IS_NaT_COLLECTION_ADDR (addr))
1450 {
1451 addr += 8;
1452 }
1453 if (i+32 == cfm_reg)
1454 cache->saved_regs[IA64_CFM_REGNUM] = addr;
1455 if (i+32 == ret_reg)
1456 cache->saved_regs[IA64_VRAP_REGNUM] = addr;
1457 if (i+32 == fp_reg)
1458 cache->saved_regs[IA64_VFP_REGNUM] = addr;
1459 }
1460
1461 /* For the previous argument registers we require the previous bof.
1462 If we can't find the previous cfm, then we can do nothing. */
1463 cfm = 0;
1464 if (cache->saved_regs[IA64_CFM_REGNUM] != 0)
1465 {
1466 cfm = read_memory_integer (cache->saved_regs[IA64_CFM_REGNUM], 8);
1467 }
1468 else if (cfm_reg != 0)
1469 {
1470 frame_unwind_register (next_frame, cfm_reg, buf);
1471 cfm = extract_unsigned_integer (buf, 8);
1472 }
1473 cache->prev_cfm = cfm;
1474
1475 if (cfm != 0)
1476 {
1477 sor = ((cfm >> 14) & 0xf) * 8;
1478 sof = (cfm & 0x7f);
1479 sol = (cfm >> 7) & 0x7f;
1480 rrb_gr = (cfm >> 18) & 0x7f;
1481
1482 /* The previous bof only requires subtraction of the sol (size of locals)
1483 due to the overlap between output and input of subsequent frames. */
1484 bof = rse_address_add (bof, -sol);
1485
1486 for (i = 0, addr = bof;
1487 i < sof;
1488 i++, addr += 8)
1489 {
1490 if (IS_NaT_COLLECTION_ADDR (addr))
1491 {
1492 addr += 8;
1493 }
1494 if (i < sor)
1495 cache->saved_regs[IA64_GR32_REGNUM + ((i + (sor - rrb_gr)) % sor)]
1496 = addr;
1497 else
1498 cache->saved_regs[IA64_GR32_REGNUM + i] = addr;
1499 }
1500
1501 }
1502 }
1503
1504 /* Try and trust the lim_pc value whenever possible. */
1505 if (trust_limit && lim_pc >= last_prologue_pc)
1506 last_prologue_pc = lim_pc;
1507
1508 cache->frameless = frameless;
1509 cache->after_prologue = last_prologue_pc;
1510 cache->mem_stack_frame_size = mem_stack_frame_size;
1511 cache->fp_reg = fp_reg;
1512
1513 return last_prologue_pc;
1514 }
1515
1516 CORE_ADDR
1517 ia64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1518 {
1519 struct ia64_frame_cache cache;
1520 cache.base = 0;
1521 cache.after_prologue = 0;
1522 cache.cfm = 0;
1523 cache.bsp = 0;
1524
1525 /* Call examine_prologue with - as third argument since we don't have a next frame pointer to send. */
1526 return examine_prologue (pc, pc+1024, 0, &cache);
1527 }
1528
1529
1530 /* Normal frames. */
1531
1532 static struct ia64_frame_cache *
1533 ia64_frame_cache (struct frame_info *next_frame, void **this_cache)
1534 {
1535 struct ia64_frame_cache *cache;
1536 char buf[8];
1537 CORE_ADDR cfm, sof, sol, bsp, psr;
1538 int i;
1539
1540 if (*this_cache)
1541 return *this_cache;
1542
1543 cache = ia64_alloc_frame_cache ();
1544 *this_cache = cache;
1545
1546 frame_unwind_register (next_frame, sp_regnum, buf);
1547 cache->saved_sp = extract_unsigned_integer (buf, 8);
1548
1549 /* We always want the bsp to point to the end of frame.
1550 This way, we can always get the beginning of frame (bof)
1551 by subtracting frame size. */
1552 frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf);
1553 cache->bsp = extract_unsigned_integer (buf, 8);
1554
1555 frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf);
1556 psr = extract_unsigned_integer (buf, 8);
1557
1558 frame_unwind_register (next_frame, IA64_CFM_REGNUM, buf);
1559 cfm = extract_unsigned_integer (buf, 8);
1560
1561 cache->sof = (cfm & 0x7f);
1562 cache->sol = (cfm >> 7) & 0x7f;
1563 cache->sor = ((cfm >> 14) & 0xf) * 8;
1564
1565 cache->cfm = cfm;
1566
1567 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
1568
1569 if (cache->pc != 0)
1570 examine_prologue (cache->pc, frame_pc_unwind (next_frame), next_frame, cache);
1571
1572 cache->base = cache->saved_sp + cache->mem_stack_frame_size;
1573
1574 return cache;
1575 }
1576
1577 static void
1578 ia64_frame_this_id (struct frame_info *next_frame, void **this_cache,
1579 struct frame_id *this_id)
1580 {
1581 struct ia64_frame_cache *cache =
1582 ia64_frame_cache (next_frame, this_cache);
1583
1584 /* If outermost frame, mark with null frame id. */
1585 if (cache->base == 0)
1586 (*this_id) = null_frame_id;
1587 else
1588 (*this_id) = frame_id_build_special (cache->base, cache->pc, cache->bsp);
1589 if (gdbarch_debug >= 1)
1590 fprintf_unfiltered (gdb_stdlog,
1591 "regular frame id: code 0x%s, stack 0x%s, special 0x%s, next_frame %p\n",
1592 paddr_nz (this_id->code_addr),
1593 paddr_nz (this_id->stack_addr),
1594 paddr_nz (cache->bsp), next_frame);
1595 }
1596
1597 static void
1598 ia64_frame_prev_register (struct frame_info *next_frame, void **this_cache,
1599 int regnum, int *optimizedp,
1600 enum lval_type *lvalp, CORE_ADDR *addrp,
1601 int *realnump, gdb_byte *valuep)
1602 {
1603 struct gdbarch *gdbarch = get_frame_arch (next_frame);
1604 struct ia64_frame_cache *cache =
1605 ia64_frame_cache (next_frame, this_cache);
1606 char dummy_valp[MAX_REGISTER_SIZE];
1607 char buf[8];
1608
1609 gdb_assert (regnum >= 0);
1610
1611 if (!target_has_registers)
1612 error (_("No registers."));
1613
1614 *optimizedp = 0;
1615 *addrp = 0;
1616 *lvalp = not_lval;
1617 *realnump = -1;
1618
1619 /* Rather than check each time if valuep is non-null, supply a dummy buffer
1620 when valuep is not supplied. */
1621 if (!valuep)
1622 valuep = dummy_valp;
1623
1624 memset (valuep, 0, register_size (gdbarch, regnum));
1625
1626 if (regnum == gdbarch_sp_regnum (gdbarch))
1627 {
1628 /* Handle SP values for all frames but the topmost. */
1629 store_unsigned_integer (valuep, register_size (gdbarch, regnum),
1630 cache->base);
1631 }
1632 else if (regnum == IA64_BSP_REGNUM)
1633 {
1634 char cfm_valuep[MAX_REGISTER_SIZE];
1635 int cfm_optim;
1636 int cfm_realnum;
1637 enum lval_type cfm_lval;
1638 CORE_ADDR cfm_addr;
1639 CORE_ADDR bsp, prev_cfm, prev_bsp;
1640
1641 /* We want to calculate the previous bsp as the end of the previous register stack frame.
1642 This corresponds to what the hardware bsp register will be if we pop the frame
1643 back which is why we might have been called. We know the beginning of the current
1644 frame is cache->bsp - cache->sof. This value in the previous frame points to
1645 the start of the output registers. We can calculate the end of that frame by adding
1646 the size of output (sof (size of frame) - sol (size of locals)). */
1647 ia64_frame_prev_register (next_frame, this_cache, IA64_CFM_REGNUM,
1648 &cfm_optim, &cfm_lval, &cfm_addr, &cfm_realnum, cfm_valuep);
1649 prev_cfm = extract_unsigned_integer (cfm_valuep, 8);
1650
1651 bsp = rse_address_add (cache->bsp, -(cache->sof));
1652 prev_bsp = rse_address_add (bsp, (prev_cfm & 0x7f) - ((prev_cfm >> 7) & 0x7f));
1653
1654 store_unsigned_integer (valuep, register_size (gdbarch, regnum),
1655 prev_bsp);
1656 }
1657 else if (regnum == IA64_CFM_REGNUM)
1658 {
1659 CORE_ADDR addr = cache->saved_regs[IA64_CFM_REGNUM];
1660
1661 if (addr != 0)
1662 {
1663 *lvalp = lval_memory;
1664 *addrp = addr;
1665 read_memory (addr, valuep, register_size (gdbarch, regnum));
1666 }
1667 else if (cache->prev_cfm)
1668 store_unsigned_integer (valuep, register_size (gdbarch, regnum), cache->prev_cfm);
1669 else if (cache->frameless)
1670 {
1671 CORE_ADDR cfm = 0;
1672 frame_unwind_register (next_frame, IA64_PFS_REGNUM, valuep);
1673 }
1674 }
1675 else if (regnum == IA64_VFP_REGNUM)
1676 {
1677 /* If the function in question uses an automatic register (r32-r127)
1678 for the frame pointer, it'll be found by ia64_find_saved_register()
1679 above. If the function lacks one of these frame pointers, we can
1680 still provide a value since we know the size of the frame. */
1681 CORE_ADDR vfp = cache->base;
1682 store_unsigned_integer (valuep, register_size (gdbarch, IA64_VFP_REGNUM), vfp);
1683 }
1684 else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
1685 {
1686 char pr_valuep[MAX_REGISTER_SIZE];
1687 int pr_optim;
1688 int pr_realnum;
1689 enum lval_type pr_lval;
1690 CORE_ADDR pr_addr;
1691 ULONGEST prN_val;
1692 ia64_frame_prev_register (next_frame, this_cache, IA64_PR_REGNUM,
1693 &pr_optim, &pr_lval, &pr_addr, &pr_realnum, pr_valuep);
1694 if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
1695 {
1696 /* Fetch predicate register rename base from current frame
1697 marker for this frame. */
1698 int rrb_pr = (cache->cfm >> 32) & 0x3f;
1699
1700 /* Adjust the register number to account for register rotation. */
1701 regnum = VP16_REGNUM
1702 + ((regnum - VP16_REGNUM) + rrb_pr) % 48;
1703 }
1704 prN_val = extract_bit_field ((unsigned char *) pr_valuep,
1705 regnum - VP0_REGNUM, 1);
1706 store_unsigned_integer (valuep, register_size (gdbarch, regnum), prN_val);
1707 }
1708 else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM)
1709 {
1710 char unat_valuep[MAX_REGISTER_SIZE];
1711 int unat_optim;
1712 int unat_realnum;
1713 enum lval_type unat_lval;
1714 CORE_ADDR unat_addr;
1715 ULONGEST unatN_val;
1716 ia64_frame_prev_register (next_frame, this_cache, IA64_UNAT_REGNUM,
1717 &unat_optim, &unat_lval, &unat_addr, &unat_realnum, unat_valuep);
1718 unatN_val = extract_bit_field ((unsigned char *) unat_valuep,
1719 regnum - IA64_NAT0_REGNUM, 1);
1720 store_unsigned_integer (valuep, register_size (gdbarch, regnum),
1721 unatN_val);
1722 }
1723 else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
1724 {
1725 int natval = 0;
1726 /* Find address of general register corresponding to nat bit we're
1727 interested in. */
1728 CORE_ADDR gr_addr;
1729
1730 gr_addr = cache->saved_regs[regnum - IA64_NAT0_REGNUM
1731 + IA64_GR0_REGNUM];
1732 if (gr_addr != 0)
1733 {
1734 /* Compute address of nat collection bits. */
1735 CORE_ADDR nat_addr = gr_addr | 0x1f8;
1736 CORE_ADDR bsp;
1737 CORE_ADDR nat_collection;
1738 int nat_bit;
1739 /* If our nat collection address is bigger than bsp, we have to get
1740 the nat collection from rnat. Otherwise, we fetch the nat
1741 collection from the computed address. */
1742 frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf);
1743 bsp = extract_unsigned_integer (buf, 8);
1744 if (nat_addr >= bsp)
1745 {
1746 frame_unwind_register (next_frame, IA64_RNAT_REGNUM, buf);
1747 nat_collection = extract_unsigned_integer (buf, 8);
1748 }
1749 else
1750 nat_collection = read_memory_integer (nat_addr, 8);
1751 nat_bit = (gr_addr >> 3) & 0x3f;
1752 natval = (nat_collection >> nat_bit) & 1;
1753 }
1754
1755 store_unsigned_integer (valuep, register_size (gdbarch, regnum), natval);
1756 }
1757 else if (regnum == IA64_IP_REGNUM)
1758 {
1759 CORE_ADDR pc = 0;
1760 CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM];
1761
1762 if (addr != 0)
1763 {
1764 *lvalp = lval_memory;
1765 *addrp = addr;
1766 read_memory (addr, buf, register_size (gdbarch, IA64_IP_REGNUM));
1767 pc = extract_unsigned_integer (buf, 8);
1768 }
1769 else if (cache->frameless)
1770 {
1771 frame_unwind_register (next_frame, IA64_BR0_REGNUM, buf);
1772 pc = extract_unsigned_integer (buf, 8);
1773 }
1774 pc &= ~0xf;
1775 store_unsigned_integer (valuep, 8, pc);
1776 }
1777 else if (regnum == IA64_PSR_REGNUM)
1778 {
1779 /* We don't know how to get the complete previous PSR, but we need it for
1780 the slot information when we unwind the pc (pc is formed of IP register
1781 plus slot information from PSR). To get the previous slot information,
1782 we mask it off the return address. */
1783 ULONGEST slot_num = 0;
1784 CORE_ADDR pc= 0;
1785 CORE_ADDR psr = 0;
1786 CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM];
1787
1788 frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf);
1789 psr = extract_unsigned_integer (buf, 8);
1790
1791 if (addr != 0)
1792 {
1793 *lvalp = lval_memory;
1794 *addrp = addr;
1795 read_memory (addr, buf, register_size (gdbarch, IA64_IP_REGNUM));
1796 pc = extract_unsigned_integer (buf, 8);
1797 }
1798 else if (cache->frameless)
1799 {
1800 CORE_ADDR pc;
1801 frame_unwind_register (next_frame, IA64_BR0_REGNUM, buf);
1802 pc = extract_unsigned_integer (buf, 8);
1803 }
1804 psr &= ~(3LL << 41);
1805 slot_num = pc & 0x3LL;
1806 psr |= (CORE_ADDR)slot_num << 41;
1807 store_unsigned_integer (valuep, 8, psr);
1808 }
1809 else if (regnum == IA64_BR0_REGNUM)
1810 {
1811 CORE_ADDR br0 = 0;
1812 CORE_ADDR addr = cache->saved_regs[IA64_BR0_REGNUM];
1813 if (addr != 0)
1814 {
1815 *lvalp = lval_memory;
1816 *addrp = addr;
1817 read_memory (addr, buf, register_size (gdbarch, IA64_BR0_REGNUM));
1818 br0 = extract_unsigned_integer (buf, 8);
1819 }
1820 store_unsigned_integer (valuep, 8, br0);
1821 }
1822 else if ((regnum >= IA64_GR32_REGNUM && regnum <= IA64_GR127_REGNUM) ||
1823 (regnum >= V32_REGNUM && regnum <= V127_REGNUM))
1824 {
1825 CORE_ADDR addr = 0;
1826 if (regnum >= V32_REGNUM)
1827 regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM);
1828 addr = cache->saved_regs[regnum];
1829 if (addr != 0)
1830 {
1831 *lvalp = lval_memory;
1832 *addrp = addr;
1833 read_memory (addr, valuep, register_size (gdbarch, regnum));
1834 }
1835 else if (cache->frameless)
1836 {
1837 char r_valuep[MAX_REGISTER_SIZE];
1838 int r_optim;
1839 int r_realnum;
1840 enum lval_type r_lval;
1841 CORE_ADDR r_addr;
1842 CORE_ADDR prev_cfm, prev_bsp, prev_bof;
1843 CORE_ADDR addr = 0;
1844 if (regnum >= V32_REGNUM)
1845 regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM);
1846 ia64_frame_prev_register (next_frame, this_cache, IA64_CFM_REGNUM,
1847 &r_optim, &r_lval, &r_addr, &r_realnum, r_valuep);
1848 prev_cfm = extract_unsigned_integer (r_valuep, 8);
1849 ia64_frame_prev_register (next_frame, this_cache, IA64_BSP_REGNUM,
1850 &r_optim, &r_lval, &r_addr, &r_realnum, r_valuep);
1851 prev_bsp = extract_unsigned_integer (r_valuep, 8);
1852 prev_bof = rse_address_add (prev_bsp, -(prev_cfm & 0x7f));
1853
1854 addr = rse_address_add (prev_bof, (regnum - IA64_GR32_REGNUM));
1855 *lvalp = lval_memory;
1856 *addrp = addr;
1857 read_memory (addr, valuep, register_size (gdbarch, regnum));
1858 }
1859 }
1860 else
1861 {
1862 CORE_ADDR addr = 0;
1863 if (IA64_FR32_REGNUM <= regnum && regnum <= IA64_FR127_REGNUM)
1864 {
1865 /* Fetch floating point register rename base from current
1866 frame marker for this frame. */
1867 int rrb_fr = (cache->cfm >> 25) & 0x7f;
1868
1869 /* Adjust the floating point register number to account for
1870 register rotation. */
1871 regnum = IA64_FR32_REGNUM
1872 + ((regnum - IA64_FR32_REGNUM) + rrb_fr) % 96;
1873 }
1874
1875 /* If we have stored a memory address, access the register. */
1876 addr = cache->saved_regs[regnum];
1877 if (addr != 0)
1878 {
1879 *lvalp = lval_memory;
1880 *addrp = addr;
1881 read_memory (addr, valuep, register_size (gdbarch, regnum));
1882 }
1883 /* Otherwise, punt and get the current value of the register. */
1884 else
1885 frame_unwind_register (next_frame, regnum, valuep);
1886 }
1887
1888 if (gdbarch_debug >= 1)
1889 fprintf_unfiltered (gdb_stdlog,
1890 "regular prev register <%d> <%s> is 0x%s\n", regnum,
1891 (((unsigned) regnum <= IA64_NAT127_REGNUM)
1892 ? ia64_register_names[regnum] : "r??"),
1893 paddr_nz (extract_unsigned_integer (valuep, 8)));
1894 }
1895
1896 static const struct frame_unwind ia64_frame_unwind =
1897 {
1898 NORMAL_FRAME,
1899 &ia64_frame_this_id,
1900 &ia64_frame_prev_register
1901 };
1902
1903 static const struct frame_unwind *
1904 ia64_frame_sniffer (struct frame_info *next_frame)
1905 {
1906 return &ia64_frame_unwind;
1907 }
1908
1909 /* Signal trampolines. */
1910
1911 static void
1912 ia64_sigtramp_frame_init_saved_regs (struct frame_info *next_frame,
1913 struct ia64_frame_cache *cache)
1914 {
1915 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
1916
1917 if (tdep->sigcontext_register_address)
1918 {
1919 int regno;
1920
1921 cache->saved_regs[IA64_VRAP_REGNUM] =
1922 tdep->sigcontext_register_address (cache->base, IA64_IP_REGNUM);
1923 cache->saved_regs[IA64_CFM_REGNUM] =
1924 tdep->sigcontext_register_address (cache->base, IA64_CFM_REGNUM);
1925 cache->saved_regs[IA64_PSR_REGNUM] =
1926 tdep->sigcontext_register_address (cache->base, IA64_PSR_REGNUM);
1927 cache->saved_regs[IA64_BSP_REGNUM] =
1928 tdep->sigcontext_register_address (cache->base, IA64_BSP_REGNUM);
1929 cache->saved_regs[IA64_RNAT_REGNUM] =
1930 tdep->sigcontext_register_address (cache->base, IA64_RNAT_REGNUM);
1931 cache->saved_regs[IA64_CCV_REGNUM] =
1932 tdep->sigcontext_register_address (cache->base, IA64_CCV_REGNUM);
1933 cache->saved_regs[IA64_UNAT_REGNUM] =
1934 tdep->sigcontext_register_address (cache->base, IA64_UNAT_REGNUM);
1935 cache->saved_regs[IA64_FPSR_REGNUM] =
1936 tdep->sigcontext_register_address (cache->base, IA64_FPSR_REGNUM);
1937 cache->saved_regs[IA64_PFS_REGNUM] =
1938 tdep->sigcontext_register_address (cache->base, IA64_PFS_REGNUM);
1939 cache->saved_regs[IA64_LC_REGNUM] =
1940 tdep->sigcontext_register_address (cache->base, IA64_LC_REGNUM);
1941 for (regno = IA64_GR1_REGNUM; regno <= IA64_GR31_REGNUM; regno++)
1942 cache->saved_regs[regno] =
1943 tdep->sigcontext_register_address (cache->base, regno);
1944 for (regno = IA64_BR0_REGNUM; regno <= IA64_BR7_REGNUM; regno++)
1945 cache->saved_regs[regno] =
1946 tdep->sigcontext_register_address (cache->base, regno);
1947 for (regno = IA64_FR2_REGNUM; regno <= IA64_FR31_REGNUM; regno++)
1948 cache->saved_regs[regno] =
1949 tdep->sigcontext_register_address (cache->base, regno);
1950 }
1951 }
1952
1953 static struct ia64_frame_cache *
1954 ia64_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
1955 {
1956 struct ia64_frame_cache *cache;
1957 CORE_ADDR addr;
1958 char buf[8];
1959 int i;
1960
1961 if (*this_cache)
1962 return *this_cache;
1963
1964 cache = ia64_alloc_frame_cache ();
1965
1966 frame_unwind_register (next_frame, sp_regnum, buf);
1967 /* Note that frame size is hard-coded below. We cannot calculate it
1968 via prologue examination. */
1969 cache->base = extract_unsigned_integer (buf, 8) + 16;
1970
1971 frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf);
1972 cache->bsp = extract_unsigned_integer (buf, 8);
1973
1974 frame_unwind_register (next_frame, IA64_CFM_REGNUM, buf);
1975 cache->cfm = extract_unsigned_integer (buf, 8);
1976 cache->sof = cache->cfm & 0x7f;
1977
1978 ia64_sigtramp_frame_init_saved_regs (next_frame, cache);
1979
1980 *this_cache = cache;
1981 return cache;
1982 }
1983
1984 static void
1985 ia64_sigtramp_frame_this_id (struct frame_info *next_frame,
1986 void **this_cache, struct frame_id *this_id)
1987 {
1988 struct ia64_frame_cache *cache =
1989 ia64_sigtramp_frame_cache (next_frame, this_cache);
1990
1991 (*this_id) = frame_id_build_special (cache->base, frame_pc_unwind (next_frame), cache->bsp);
1992 if (gdbarch_debug >= 1)
1993 fprintf_unfiltered (gdb_stdlog,
1994 "sigtramp frame id: code 0x%s, stack 0x%s, special 0x%s, next_frame %p\n",
1995 paddr_nz (this_id->code_addr),
1996 paddr_nz (this_id->stack_addr),
1997 paddr_nz (cache->bsp), next_frame);
1998 }
1999
2000 static void
2001 ia64_sigtramp_frame_prev_register (struct frame_info *next_frame,
2002 void **this_cache,
2003 int regnum, int *optimizedp,
2004 enum lval_type *lvalp, CORE_ADDR *addrp,
2005 int *realnump, gdb_byte *valuep)
2006 {
2007 char dummy_valp[MAX_REGISTER_SIZE];
2008 char buf[MAX_REGISTER_SIZE];
2009
2010 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2011 struct ia64_frame_cache *cache =
2012 ia64_sigtramp_frame_cache (next_frame, this_cache);
2013
2014 gdb_assert (regnum >= 0);
2015
2016 if (!target_has_registers)
2017 error (_("No registers."));
2018
2019 *optimizedp = 0;
2020 *addrp = 0;
2021 *lvalp = not_lval;
2022 *realnump = -1;
2023
2024 /* Rather than check each time if valuep is non-null, supply a dummy buffer
2025 when valuep is not supplied. */
2026 if (!valuep)
2027 valuep = dummy_valp;
2028
2029 memset (valuep, 0, register_size (gdbarch, regnum));
2030
2031 if (regnum == IA64_IP_REGNUM)
2032 {
2033 CORE_ADDR pc = 0;
2034 CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM];
2035
2036 if (addr != 0)
2037 {
2038 *lvalp = lval_memory;
2039 *addrp = addr;
2040 read_memory (addr, buf, register_size (gdbarch, IA64_IP_REGNUM));
2041 pc = extract_unsigned_integer (buf, 8);
2042 }
2043 pc &= ~0xf;
2044 store_unsigned_integer (valuep, 8, pc);
2045 }
2046 else if ((regnum >= IA64_GR32_REGNUM && regnum <= IA64_GR127_REGNUM) ||
2047 (regnum >= V32_REGNUM && regnum <= V127_REGNUM))
2048 {
2049 CORE_ADDR addr = 0;
2050 if (regnum >= V32_REGNUM)
2051 regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM);
2052 addr = cache->saved_regs[regnum];
2053 if (addr != 0)
2054 {
2055 *lvalp = lval_memory;
2056 *addrp = addr;
2057 read_memory (addr, valuep, register_size (gdbarch, regnum));
2058 }
2059 }
2060 else
2061 {
2062 /* All other registers not listed above. */
2063 CORE_ADDR addr = cache->saved_regs[regnum];
2064 if (addr != 0)
2065 {
2066 *lvalp = lval_memory;
2067 *addrp = addr;
2068 read_memory (addr, valuep, register_size (gdbarch, regnum));
2069 }
2070 }
2071
2072 if (gdbarch_debug >= 1)
2073 fprintf_unfiltered (gdb_stdlog,
2074 "sigtramp prev register <%s> is 0x%s\n",
2075 (regnum < IA64_GR32_REGNUM
2076 || (regnum > IA64_GR127_REGNUM
2077 && regnum < LAST_PSEUDO_REGNUM))
2078 ? ia64_register_names[regnum]
2079 : (regnum < LAST_PSEUDO_REGNUM
2080 ? ia64_register_names[regnum-IA64_GR32_REGNUM+V32_REGNUM]
2081 : "OUT_OF_RANGE"),
2082 paddr_nz (extract_unsigned_integer (valuep, 8)));
2083 }
2084
2085 static const struct frame_unwind ia64_sigtramp_frame_unwind =
2086 {
2087 SIGTRAMP_FRAME,
2088 ia64_sigtramp_frame_this_id,
2089 ia64_sigtramp_frame_prev_register
2090 };
2091
2092 static const struct frame_unwind *
2093 ia64_sigtramp_frame_sniffer (struct frame_info *next_frame)
2094 {
2095 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
2096 if (tdep->pc_in_sigtramp)
2097 {
2098 CORE_ADDR pc = frame_pc_unwind (next_frame);
2099
2100 if (tdep->pc_in_sigtramp (pc))
2101 return &ia64_sigtramp_frame_unwind;
2102 }
2103
2104 return NULL;
2105 }
2106 \f
2107
2108 static CORE_ADDR
2109 ia64_frame_base_address (struct frame_info *next_frame, void **this_cache)
2110 {
2111 struct ia64_frame_cache *cache =
2112 ia64_frame_cache (next_frame, this_cache);
2113
2114 return cache->base;
2115 }
2116
2117 static const struct frame_base ia64_frame_base =
2118 {
2119 &ia64_frame_unwind,
2120 ia64_frame_base_address,
2121 ia64_frame_base_address,
2122 ia64_frame_base_address
2123 };
2124
2125 #ifdef HAVE_LIBUNWIND_IA64_H
2126
2127 struct ia64_unwind_table_entry
2128 {
2129 unw_word_t start_offset;
2130 unw_word_t end_offset;
2131 unw_word_t info_offset;
2132 };
2133
2134 static __inline__ uint64_t
2135 ia64_rse_slot_num (uint64_t addr)
2136 {
2137 return (addr >> 3) & 0x3f;
2138 }
2139
2140 /* Skip over a designated number of registers in the backing
2141 store, remembering every 64th position is for NAT. */
2142 static __inline__ uint64_t
2143 ia64_rse_skip_regs (uint64_t addr, long num_regs)
2144 {
2145 long delta = ia64_rse_slot_num(addr) + num_regs;
2146
2147 if (num_regs < 0)
2148 delta -= 0x3e;
2149 return addr + ((num_regs + delta/0x3f) << 3);
2150 }
2151
2152 /* Gdb libunwind-frame callback function to convert from an ia64 gdb register
2153 number to a libunwind register number. */
2154 static int
2155 ia64_gdb2uw_regnum (int regnum)
2156 {
2157 if (regnum == sp_regnum)
2158 return UNW_IA64_SP;
2159 else if (regnum == IA64_BSP_REGNUM)
2160 return UNW_IA64_BSP;
2161 else if ((unsigned) (regnum - IA64_GR0_REGNUM) < 128)
2162 return UNW_IA64_GR + (regnum - IA64_GR0_REGNUM);
2163 else if ((unsigned) (regnum - V32_REGNUM) < 95)
2164 return UNW_IA64_GR + 32 + (regnum - V32_REGNUM);
2165 else if ((unsigned) (regnum - IA64_FR0_REGNUM) < 128)
2166 return UNW_IA64_FR + (regnum - IA64_FR0_REGNUM);
2167 else if ((unsigned) (regnum - IA64_PR0_REGNUM) < 64)
2168 return -1;
2169 else if ((unsigned) (regnum - IA64_BR0_REGNUM) < 8)
2170 return UNW_IA64_BR + (regnum - IA64_BR0_REGNUM);
2171 else if (regnum == IA64_PR_REGNUM)
2172 return UNW_IA64_PR;
2173 else if (regnum == IA64_IP_REGNUM)
2174 return UNW_REG_IP;
2175 else if (regnum == IA64_CFM_REGNUM)
2176 return UNW_IA64_CFM;
2177 else if ((unsigned) (regnum - IA64_AR0_REGNUM) < 128)
2178 return UNW_IA64_AR + (regnum - IA64_AR0_REGNUM);
2179 else if ((unsigned) (regnum - IA64_NAT0_REGNUM) < 128)
2180 return UNW_IA64_NAT + (regnum - IA64_NAT0_REGNUM);
2181 else
2182 return -1;
2183 }
2184
2185 /* Gdb libunwind-frame callback function to convert from a libunwind register
2186 number to a ia64 gdb register number. */
2187 static int
2188 ia64_uw2gdb_regnum (int uw_regnum)
2189 {
2190 if (uw_regnum == UNW_IA64_SP)
2191 return sp_regnum;
2192 else if (uw_regnum == UNW_IA64_BSP)
2193 return IA64_BSP_REGNUM;
2194 else if ((unsigned) (uw_regnum - UNW_IA64_GR) < 32)
2195 return IA64_GR0_REGNUM + (uw_regnum - UNW_IA64_GR);
2196 else if ((unsigned) (uw_regnum - UNW_IA64_GR) < 128)
2197 return V32_REGNUM + (uw_regnum - (IA64_GR0_REGNUM + 32));
2198 else if ((unsigned) (uw_regnum - UNW_IA64_FR) < 128)
2199 return IA64_FR0_REGNUM + (uw_regnum - UNW_IA64_FR);
2200 else if ((unsigned) (uw_regnum - UNW_IA64_BR) < 8)
2201 return IA64_BR0_REGNUM + (uw_regnum - UNW_IA64_BR);
2202 else if (uw_regnum == UNW_IA64_PR)
2203 return IA64_PR_REGNUM;
2204 else if (uw_regnum == UNW_REG_IP)
2205 return IA64_IP_REGNUM;
2206 else if (uw_regnum == UNW_IA64_CFM)
2207 return IA64_CFM_REGNUM;
2208 else if ((unsigned) (uw_regnum - UNW_IA64_AR) < 128)
2209 return IA64_AR0_REGNUM + (uw_regnum - UNW_IA64_AR);
2210 else if ((unsigned) (uw_regnum - UNW_IA64_NAT) < 128)
2211 return IA64_NAT0_REGNUM + (uw_regnum - UNW_IA64_NAT);
2212 else
2213 return -1;
2214 }
2215
2216 /* Gdb libunwind-frame callback function to reveal if register is a float
2217 register or not. */
2218 static int
2219 ia64_is_fpreg (int uw_regnum)
2220 {
2221 return unw_is_fpreg (uw_regnum);
2222 }
2223
2224 /* Libunwind callback accessor function for general registers. */
2225 static int
2226 ia64_access_reg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_word_t *val,
2227 int write, void *arg)
2228 {
2229 int regnum = ia64_uw2gdb_regnum (uw_regnum);
2230 unw_word_t bsp, sof, sol, cfm, psr, ip;
2231 struct frame_info *next_frame = arg;
2232 long new_sof, old_sof;
2233 char buf[MAX_REGISTER_SIZE];
2234
2235 /* We never call any libunwind routines that need to write registers. */
2236 gdb_assert (!write);
2237
2238 switch (uw_regnum)
2239 {
2240 case UNW_REG_IP:
2241 /* Libunwind expects to see the pc value which means the slot number
2242 from the psr must be merged with the ip word address. */
2243 frame_unwind_register (next_frame, IA64_IP_REGNUM, buf);
2244 ip = extract_unsigned_integer (buf, 8);
2245 frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf);
2246 psr = extract_unsigned_integer (buf, 8);
2247 *val = ip | ((psr >> 41) & 0x3);
2248 break;
2249
2250 case UNW_IA64_AR_BSP:
2251 /* Libunwind expects to see the beginning of the current register
2252 frame so we must account for the fact that ptrace() will return a value
2253 for bsp that points *after* the current register frame. */
2254 frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf);
2255 bsp = extract_unsigned_integer (buf, 8);
2256 frame_unwind_register (next_frame, IA64_CFM_REGNUM, buf);
2257 cfm = extract_unsigned_integer (buf, 8);
2258 sof = (cfm & 0x7f);
2259 *val = ia64_rse_skip_regs (bsp, -sof);
2260 break;
2261
2262 case UNW_IA64_AR_BSPSTORE:
2263 /* Libunwind wants bspstore to be after the current register frame.
2264 This is what ptrace() and gdb treats as the regular bsp value. */
2265 frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf);
2266 *val = extract_unsigned_integer (buf, 8);
2267 break;
2268
2269 default:
2270 /* For all other registers, just unwind the value directly. */
2271 frame_unwind_register (next_frame, regnum, buf);
2272 *val = extract_unsigned_integer (buf, 8);
2273 break;
2274 }
2275
2276 if (gdbarch_debug >= 1)
2277 fprintf_unfiltered (gdb_stdlog,
2278 " access_reg: from cache: %4s=0x%s\n",
2279 (((unsigned) regnum <= IA64_NAT127_REGNUM)
2280 ? ia64_register_names[regnum] : "r??"),
2281 paddr_nz (*val));
2282 return 0;
2283 }
2284
2285 /* Libunwind callback accessor function for floating-point registers. */
2286 static int
2287 ia64_access_fpreg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_fpreg_t *val,
2288 int write, void *arg)
2289 {
2290 int regnum = ia64_uw2gdb_regnum (uw_regnum);
2291 struct frame_info *next_frame = arg;
2292
2293 /* We never call any libunwind routines that need to write registers. */
2294 gdb_assert (!write);
2295
2296 frame_unwind_register (next_frame, regnum, (char *) val);
2297
2298 return 0;
2299 }
2300
2301 /* Libunwind callback accessor function for top-level rse registers. */
2302 static int
2303 ia64_access_rse_reg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_word_t *val,
2304 int write, void *arg)
2305 {
2306 int regnum = ia64_uw2gdb_regnum (uw_regnum);
2307 unw_word_t bsp, sof, sol, cfm, psr, ip;
2308 struct regcache *regcache = arg;
2309 long new_sof, old_sof;
2310 char buf[MAX_REGISTER_SIZE];
2311
2312 /* We never call any libunwind routines that need to write registers. */
2313 gdb_assert (!write);
2314
2315 switch (uw_regnum)
2316 {
2317 case UNW_REG_IP:
2318 /* Libunwind expects to see the pc value which means the slot number
2319 from the psr must be merged with the ip word address. */
2320 regcache_cooked_read (regcache, IA64_IP_REGNUM, buf);
2321 ip = extract_unsigned_integer (buf, 8);
2322 regcache_cooked_read (regcache, IA64_PSR_REGNUM, buf);
2323 psr = extract_unsigned_integer (buf, 8);
2324 *val = ip | ((psr >> 41) & 0x3);
2325 break;
2326
2327 case UNW_IA64_AR_BSP:
2328 /* Libunwind expects to see the beginning of the current register
2329 frame so we must account for the fact that ptrace() will return a value
2330 for bsp that points *after* the current register frame. */
2331 regcache_cooked_read (regcache, IA64_BSP_REGNUM, buf);
2332 bsp = extract_unsigned_integer (buf, 8);
2333 regcache_cooked_read (regcache, IA64_CFM_REGNUM, buf);
2334 cfm = extract_unsigned_integer (buf, 8);
2335 sof = (cfm & 0x7f);
2336 *val = ia64_rse_skip_regs (bsp, -sof);
2337 break;
2338
2339 case UNW_IA64_AR_BSPSTORE:
2340 /* Libunwind wants bspstore to be after the current register frame.
2341 This is what ptrace() and gdb treats as the regular bsp value. */
2342 regcache_cooked_read (regcache, IA64_BSP_REGNUM, buf);
2343 *val = extract_unsigned_integer (buf, 8);
2344 break;
2345
2346 default:
2347 /* For all other registers, just unwind the value directly. */
2348 regcache_cooked_read (regcache, regnum, buf);
2349 *val = extract_unsigned_integer (buf, 8);
2350 break;
2351 }
2352
2353 if (gdbarch_debug >= 1)
2354 fprintf_unfiltered (gdb_stdlog,
2355 " access_rse_reg: from cache: %4s=0x%s\n",
2356 (((unsigned) regnum <= IA64_NAT127_REGNUM)
2357 ? ia64_register_names[regnum] : "r??"),
2358 paddr_nz (*val));
2359
2360 return 0;
2361 }
2362
2363 /* Libunwind callback accessor function for top-level fp registers. */
2364 static int
2365 ia64_access_rse_fpreg (unw_addr_space_t as, unw_regnum_t uw_regnum,
2366 unw_fpreg_t *val, int write, void *arg)
2367 {
2368 int regnum = ia64_uw2gdb_regnum (uw_regnum);
2369 struct regcache *regcache = arg;
2370
2371 /* We never call any libunwind routines that need to write registers. */
2372 gdb_assert (!write);
2373
2374 regcache_cooked_read (regcache, regnum, (char *) val);
2375
2376 return 0;
2377 }
2378
2379 /* Libunwind callback accessor function for accessing memory. */
2380 static int
2381 ia64_access_mem (unw_addr_space_t as,
2382 unw_word_t addr, unw_word_t *val,
2383 int write, void *arg)
2384 {
2385 if (addr - KERNEL_START < ktab_size)
2386 {
2387 unw_word_t *laddr = (unw_word_t*) ((char *) ktab
2388 + (addr - KERNEL_START));
2389
2390 if (write)
2391 *laddr = *val;
2392 else
2393 *val = *laddr;
2394 return 0;
2395 }
2396
2397 /* XXX do we need to normalize byte-order here? */
2398 if (write)
2399 return target_write_memory (addr, (char *) val, sizeof (unw_word_t));
2400 else
2401 return target_read_memory (addr, (char *) val, sizeof (unw_word_t));
2402 }
2403
2404 /* Call low-level function to access the kernel unwind table. */
2405 static LONGEST
2406 getunwind_table (gdb_byte **buf_p)
2407 {
2408 LONGEST x;
2409
2410 /* FIXME drow/2005-09-10: This code used to call
2411 ia64_linux_xfer_unwind_table directly to fetch the unwind table
2412 for the currently running ia64-linux kernel. That data should
2413 come from the core file and be accessed via the auxv vector; if
2414 we want to preserve fall back to the running kernel's table, then
2415 we should find a way to override the corefile layer's
2416 xfer_partial method. */
2417
2418 x = target_read_alloc (&current_target, TARGET_OBJECT_UNWIND_TABLE,
2419 NULL, buf_p);
2420
2421 return x;
2422 }
2423
2424 /* Get the kernel unwind table. */
2425 static int
2426 get_kernel_table (unw_word_t ip, unw_dyn_info_t *di)
2427 {
2428 static struct ia64_table_entry *etab;
2429
2430 if (!ktab)
2431 {
2432 gdb_byte *ktab_buf;
2433 LONGEST size;
2434
2435 size = getunwind_table (&ktab_buf);
2436 if (size <= 0)
2437 return -UNW_ENOINFO;
2438
2439 ktab = (struct ia64_table_entry *) ktab_buf;
2440 ktab_size = size;
2441
2442 for (etab = ktab; etab->start_offset; ++etab)
2443 etab->info_offset += KERNEL_START;
2444 }
2445
2446 if (ip < ktab[0].start_offset || ip >= etab[-1].end_offset)
2447 return -UNW_ENOINFO;
2448
2449 di->format = UNW_INFO_FORMAT_TABLE;
2450 di->gp = 0;
2451 di->start_ip = ktab[0].start_offset;
2452 di->end_ip = etab[-1].end_offset;
2453 di->u.ti.name_ptr = (unw_word_t) "<kernel>";
2454 di->u.ti.segbase = 0;
2455 di->u.ti.table_len = ((char *) etab - (char *) ktab) / sizeof (unw_word_t);
2456 di->u.ti.table_data = (unw_word_t *) ktab;
2457
2458 if (gdbarch_debug >= 1)
2459 fprintf_unfiltered (gdb_stdlog, "get_kernel_table: found table `%s': "
2460 "segbase=0x%s, length=%s, gp=0x%s\n",
2461 (char *) di->u.ti.name_ptr,
2462 paddr_nz (di->u.ti.segbase),
2463 paddr_u (di->u.ti.table_len),
2464 paddr_nz (di->gp));
2465 return 0;
2466 }
2467
2468 /* Find the unwind table entry for a specified address. */
2469 static int
2470 ia64_find_unwind_table (struct objfile *objfile, unw_word_t ip,
2471 unw_dyn_info_t *dip, void **buf)
2472 {
2473 Elf_Internal_Phdr *phdr, *p_text = NULL, *p_unwind = NULL;
2474 Elf_Internal_Ehdr *ehdr;
2475 unw_word_t segbase = 0;
2476 CORE_ADDR load_base;
2477 bfd *bfd;
2478 int i;
2479
2480 bfd = objfile->obfd;
2481
2482 ehdr = elf_tdata (bfd)->elf_header;
2483 phdr = elf_tdata (bfd)->phdr;
2484
2485 load_base = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2486
2487 for (i = 0; i < ehdr->e_phnum; ++i)
2488 {
2489 switch (phdr[i].p_type)
2490 {
2491 case PT_LOAD:
2492 if ((unw_word_t) (ip - load_base - phdr[i].p_vaddr)
2493 < phdr[i].p_memsz)
2494 p_text = phdr + i;
2495 break;
2496
2497 case PT_IA_64_UNWIND:
2498 p_unwind = phdr + i;
2499 break;
2500
2501 default:
2502 break;
2503 }
2504 }
2505
2506 if (!p_text || !p_unwind)
2507 return -UNW_ENOINFO;
2508
2509 /* Verify that the segment that contains the IP also contains
2510 the static unwind table. If not, we may be in the Linux kernel's
2511 DSO gate page in which case the unwind table is another segment.
2512 Otherwise, we are dealing with runtime-generated code, for which we
2513 have no info here. */
2514 segbase = p_text->p_vaddr + load_base;
2515
2516 if ((p_unwind->p_vaddr - p_text->p_vaddr) >= p_text->p_memsz)
2517 {
2518 int ok = 0;
2519 for (i = 0; i < ehdr->e_phnum; ++i)
2520 {
2521 if (phdr[i].p_type == PT_LOAD
2522 && (p_unwind->p_vaddr - phdr[i].p_vaddr) < phdr[i].p_memsz)
2523 {
2524 ok = 1;
2525 /* Get the segbase from the section containing the
2526 libunwind table. */
2527 segbase = phdr[i].p_vaddr + load_base;
2528 }
2529 }
2530 if (!ok)
2531 return -UNW_ENOINFO;
2532 }
2533
2534 dip->start_ip = p_text->p_vaddr + load_base;
2535 dip->end_ip = dip->start_ip + p_text->p_memsz;
2536 dip->gp = ia64_find_global_pointer (ip);
2537 dip->format = UNW_INFO_FORMAT_REMOTE_TABLE;
2538 dip->u.rti.name_ptr = (unw_word_t) bfd_get_filename (bfd);
2539 dip->u.rti.segbase = segbase;
2540 dip->u.rti.table_len = p_unwind->p_memsz / sizeof (unw_word_t);
2541 dip->u.rti.table_data = p_unwind->p_vaddr + load_base;
2542
2543 return 0;
2544 }
2545
2546 /* Libunwind callback accessor function to acquire procedure unwind-info. */
2547 static int
2548 ia64_find_proc_info_x (unw_addr_space_t as, unw_word_t ip, unw_proc_info_t *pi,
2549 int need_unwind_info, void *arg)
2550 {
2551 struct obj_section *sec = find_pc_section (ip);
2552 unw_dyn_info_t di;
2553 int ret;
2554 void *buf = NULL;
2555
2556 if (!sec)
2557 {
2558 /* XXX This only works if the host and the target architecture are
2559 both ia64 and if the have (more or less) the same kernel
2560 version. */
2561 if (get_kernel_table (ip, &di) < 0)
2562 return -UNW_ENOINFO;
2563
2564 if (gdbarch_debug >= 1)
2565 fprintf_unfiltered (gdb_stdlog, "ia64_find_proc_info_x: 0x%s -> "
2566 "(name=`%s',segbase=0x%s,start=0x%s,end=0x%s,gp=0x%s,"
2567 "length=%s,data=0x%s)\n",
2568 paddr_nz (ip), (char *)di.u.ti.name_ptr,
2569 paddr_nz (di.u.ti.segbase),
2570 paddr_nz (di.start_ip), paddr_nz (di.end_ip),
2571 paddr_nz (di.gp),
2572 paddr_u (di.u.ti.table_len),
2573 paddr_nz ((CORE_ADDR)di.u.ti.table_data));
2574 }
2575 else
2576 {
2577 ret = ia64_find_unwind_table (sec->objfile, ip, &di, &buf);
2578 if (ret < 0)
2579 return ret;
2580
2581 if (gdbarch_debug >= 1)
2582 fprintf_unfiltered (gdb_stdlog, "ia64_find_proc_info_x: 0x%s -> "
2583 "(name=`%s',segbase=0x%s,start=0x%s,end=0x%s,gp=0x%s,"
2584 "length=%s,data=0x%s)\n",
2585 paddr_nz (ip), (char *)di.u.rti.name_ptr,
2586 paddr_nz (di.u.rti.segbase),
2587 paddr_nz (di.start_ip), paddr_nz (di.end_ip),
2588 paddr_nz (di.gp),
2589 paddr_u (di.u.rti.table_len),
2590 paddr_nz (di.u.rti.table_data));
2591 }
2592
2593 ret = libunwind_search_unwind_table (&as, ip, &di, pi, need_unwind_info,
2594 arg);
2595
2596 /* We no longer need the dyn info storage so free it. */
2597 xfree (buf);
2598
2599 return ret;
2600 }
2601
2602 /* Libunwind callback accessor function for cleanup. */
2603 static void
2604 ia64_put_unwind_info (unw_addr_space_t as,
2605 unw_proc_info_t *pip, void *arg)
2606 {
2607 /* Nothing required for now. */
2608 }
2609
2610 /* Libunwind callback accessor function to get head of the dynamic
2611 unwind-info registration list. */
2612 static int
2613 ia64_get_dyn_info_list (unw_addr_space_t as,
2614 unw_word_t *dilap, void *arg)
2615 {
2616 struct obj_section *text_sec;
2617 struct objfile *objfile;
2618 unw_word_t ip, addr;
2619 unw_dyn_info_t di;
2620 int ret;
2621
2622 if (!libunwind_is_initialized ())
2623 return -UNW_ENOINFO;
2624
2625 for (objfile = object_files; objfile; objfile = objfile->next)
2626 {
2627 void *buf = NULL;
2628
2629 text_sec = objfile->sections + SECT_OFF_TEXT (objfile);
2630 ip = text_sec->addr;
2631 ret = ia64_find_unwind_table (objfile, ip, &di, &buf);
2632 if (ret >= 0)
2633 {
2634 addr = libunwind_find_dyn_list (as, &di, arg);
2635 /* We no longer need the dyn info storage so free it. */
2636 xfree (buf);
2637
2638 if (addr)
2639 {
2640 if (gdbarch_debug >= 1)
2641 fprintf_unfiltered (gdb_stdlog,
2642 "dynamic unwind table in objfile %s "
2643 "at 0x%s (gp=0x%s)\n",
2644 bfd_get_filename (objfile->obfd),
2645 paddr_nz (addr), paddr_nz (di.gp));
2646 *dilap = addr;
2647 return 0;
2648 }
2649 }
2650 }
2651 return -UNW_ENOINFO;
2652 }
2653
2654
2655 /* Frame interface functions for libunwind. */
2656
2657 static void
2658 ia64_libunwind_frame_this_id (struct frame_info *next_frame, void **this_cache,
2659 struct frame_id *this_id)
2660 {
2661 char buf[8];
2662 CORE_ADDR bsp;
2663 struct frame_id id;
2664 CORE_ADDR prev_ip, addr;
2665 int realnum, optimized;
2666 enum lval_type lval;
2667
2668
2669 libunwind_frame_this_id (next_frame, this_cache, &id);
2670 if (frame_id_eq (id, null_frame_id))
2671 {
2672 (*this_id) = null_frame_id;
2673 return;
2674 }
2675
2676 /* We must add the bsp as the special address for frame comparison
2677 purposes. */
2678 frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf);
2679 bsp = extract_unsigned_integer (buf, 8);
2680
2681 /* If the previous frame pc value is 0, then we are at the end of the stack
2682 and don't want to unwind past this frame. We return a null frame_id to
2683 indicate this. */
2684 libunwind_frame_prev_register (next_frame, this_cache, IA64_IP_REGNUM,
2685 &optimized, &lval, &addr, &realnum, buf);
2686 prev_ip = extract_unsigned_integer (buf, 8);
2687
2688 if (prev_ip != 0)
2689 (*this_id) = frame_id_build_special (id.stack_addr, id.code_addr, bsp);
2690 else
2691 (*this_id) = null_frame_id;
2692
2693 if (gdbarch_debug >= 1)
2694 fprintf_unfiltered (gdb_stdlog,
2695 "libunwind frame id: code 0x%s, stack 0x%s, special 0x%s, next_frame %p\n",
2696 paddr_nz (id.code_addr), paddr_nz (id.stack_addr),
2697 paddr_nz (bsp), next_frame);
2698 }
2699
2700 static void
2701 ia64_libunwind_frame_prev_register (struct frame_info *next_frame,
2702 void **this_cache,
2703 int regnum, int *optimizedp,
2704 enum lval_type *lvalp, CORE_ADDR *addrp,
2705 int *realnump, gdb_byte *valuep)
2706 {
2707 int reg = regnum;
2708
2709 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2710 if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
2711 reg = IA64_PR_REGNUM;
2712 else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
2713 reg = IA64_UNAT_REGNUM;
2714
2715 /* Let libunwind do most of the work. */
2716 libunwind_frame_prev_register (next_frame, this_cache, reg,
2717 optimizedp, lvalp, addrp, realnump, valuep);
2718
2719 /* No more to do if the value is not supposed to be supplied. */
2720 if (!valuep)
2721 return;
2722
2723 if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
2724 {
2725 ULONGEST prN_val;
2726
2727 if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
2728 {
2729 int rrb_pr = 0;
2730 ULONGEST cfm;
2731 unsigned char buf[MAX_REGISTER_SIZE];
2732
2733 /* Fetch predicate register rename base from current frame
2734 marker for this frame. */
2735 frame_unwind_register (next_frame, IA64_CFM_REGNUM, buf);
2736 cfm = extract_unsigned_integer (buf, 8);
2737 rrb_pr = (cfm >> 32) & 0x3f;
2738
2739 /* Adjust the register number to account for register rotation. */
2740 regnum = VP16_REGNUM
2741 + ((regnum - VP16_REGNUM) + rrb_pr) % 48;
2742 }
2743 prN_val = extract_bit_field ((unsigned char *) valuep,
2744 regnum - VP0_REGNUM, 1);
2745 store_unsigned_integer (valuep, register_size (gdbarch, regnum), prN_val);
2746 }
2747 else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
2748 {
2749 ULONGEST unatN_val;
2750
2751 unatN_val = extract_bit_field ((unsigned char *) valuep,
2752 regnum - IA64_NAT0_REGNUM, 1);
2753 store_unsigned_integer (valuep, register_size (gdbarch, regnum),
2754 unatN_val);
2755 }
2756 else if (regnum == IA64_BSP_REGNUM)
2757 {
2758 char cfm_valuep[MAX_REGISTER_SIZE];
2759 int cfm_optim;
2760 int cfm_realnum;
2761 enum lval_type cfm_lval;
2762 CORE_ADDR cfm_addr;
2763 CORE_ADDR bsp, prev_cfm, prev_bsp;
2764
2765 /* We want to calculate the previous bsp as the end of the previous register stack frame.
2766 This corresponds to what the hardware bsp register will be if we pop the frame
2767 back which is why we might have been called. We know that libunwind will pass us back
2768 the beginning of the current frame so we should just add sof to it. */
2769 prev_bsp = extract_unsigned_integer (valuep, 8);
2770 libunwind_frame_prev_register (next_frame, this_cache, IA64_CFM_REGNUM,
2771 &cfm_optim, &cfm_lval, &cfm_addr, &cfm_realnum, cfm_valuep);
2772 prev_cfm = extract_unsigned_integer (cfm_valuep, 8);
2773 prev_bsp = rse_address_add (prev_bsp, (prev_cfm & 0x7f));
2774
2775 store_unsigned_integer (valuep, register_size (gdbarch, regnum),
2776 prev_bsp);
2777 }
2778
2779 if (gdbarch_debug >= 1)
2780 fprintf_unfiltered (gdb_stdlog,
2781 "libunwind prev register <%s> is 0x%s\n",
2782 (regnum < IA64_GR32_REGNUM
2783 || (regnum > IA64_GR127_REGNUM
2784 && regnum < LAST_PSEUDO_REGNUM))
2785 ? ia64_register_names[regnum]
2786 : (regnum < LAST_PSEUDO_REGNUM
2787 ? ia64_register_names[regnum-IA64_GR32_REGNUM+V32_REGNUM]
2788 : "OUT_OF_RANGE"),
2789 paddr_nz (extract_unsigned_integer (valuep, 8)));
2790 }
2791
2792 static const struct frame_unwind ia64_libunwind_frame_unwind =
2793 {
2794 NORMAL_FRAME,
2795 ia64_libunwind_frame_this_id,
2796 ia64_libunwind_frame_prev_register,
2797 NULL,
2798 NULL,
2799 NULL,
2800 libunwind_frame_dealloc_cache
2801 };
2802
2803 static const struct frame_unwind *
2804 ia64_libunwind_frame_sniffer (struct frame_info *next_frame)
2805 {
2806 if (libunwind_is_initialized () && libunwind_frame_sniffer (next_frame))
2807 return &ia64_libunwind_frame_unwind;
2808
2809 return NULL;
2810 }
2811
2812 static void
2813 ia64_libunwind_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
2814 struct frame_id *this_id)
2815 {
2816 char buf[8];
2817 CORE_ADDR bsp;
2818 struct frame_id id;
2819 CORE_ADDR prev_ip;
2820
2821 libunwind_frame_this_id (next_frame, this_cache, &id);
2822 if (frame_id_eq (id, null_frame_id))
2823 {
2824 (*this_id) = null_frame_id;
2825 return;
2826 }
2827
2828 /* We must add the bsp as the special address for frame comparison
2829 purposes. */
2830 frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf);
2831 bsp = extract_unsigned_integer (buf, 8);
2832
2833 /* For a sigtramp frame, we don't make the check for previous ip being 0. */
2834 (*this_id) = frame_id_build_special (id.stack_addr, id.code_addr, bsp);
2835
2836 if (gdbarch_debug >= 1)
2837 fprintf_unfiltered (gdb_stdlog,
2838 "libunwind sigtramp frame id: code 0x%s, stack 0x%s, special 0x%s, next_frame %p\n",
2839 paddr_nz (id.code_addr), paddr_nz (id.stack_addr),
2840 paddr_nz (bsp), next_frame);
2841 }
2842
2843 static void
2844 ia64_libunwind_sigtramp_frame_prev_register (struct frame_info *next_frame,
2845 void **this_cache,
2846 int regnum, int *optimizedp,
2847 enum lval_type *lvalp, CORE_ADDR *addrp,
2848 int *realnump, gdb_byte *valuep)
2849
2850 {
2851 gdb_byte buf[8];
2852 CORE_ADDR prev_ip, addr;
2853 int realnum, optimized;
2854 enum lval_type lval;
2855
2856
2857 /* If the previous frame pc value is 0, then we want to use the SIGCONTEXT
2858 method of getting previous registers. */
2859 libunwind_frame_prev_register (next_frame, this_cache, IA64_IP_REGNUM,
2860 &optimized, &lval, &addr, &realnum, buf);
2861 prev_ip = extract_unsigned_integer (buf, 8);
2862
2863 if (prev_ip == 0)
2864 {
2865 void *tmp_cache = NULL;
2866 ia64_sigtramp_frame_prev_register (next_frame, &tmp_cache, regnum, optimizedp, lvalp,
2867 addrp, realnump, valuep);
2868 }
2869 else
2870 ia64_libunwind_frame_prev_register (next_frame, this_cache, regnum, optimizedp, lvalp,
2871 addrp, realnump, valuep);
2872 }
2873
2874 static const struct frame_unwind ia64_libunwind_sigtramp_frame_unwind =
2875 {
2876 SIGTRAMP_FRAME,
2877 ia64_libunwind_sigtramp_frame_this_id,
2878 ia64_libunwind_sigtramp_frame_prev_register
2879 };
2880
2881 static const struct frame_unwind *
2882 ia64_libunwind_sigtramp_frame_sniffer (struct frame_info *next_frame)
2883 {
2884 if (libunwind_is_initialized ())
2885 {
2886 if (libunwind_sigtramp_frame_sniffer (next_frame))
2887 return &ia64_libunwind_sigtramp_frame_unwind;
2888 return NULL;
2889 }
2890 else
2891 return ia64_sigtramp_frame_sniffer (next_frame);
2892 }
2893
2894 /* Set of libunwind callback acccessor functions. */
2895 static unw_accessors_t ia64_unw_accessors =
2896 {
2897 ia64_find_proc_info_x,
2898 ia64_put_unwind_info,
2899 ia64_get_dyn_info_list,
2900 ia64_access_mem,
2901 ia64_access_reg,
2902 ia64_access_fpreg,
2903 /* resume */
2904 /* get_proc_name */
2905 };
2906
2907 /* Set of special libunwind callback acccessor functions specific for accessing
2908 the rse registers. At the top of the stack, we want libunwind to figure out
2909 how to read r32 - r127. Though usually they are found sequentially in memory
2910 starting from $bof, this is not always true. */
2911 static unw_accessors_t ia64_unw_rse_accessors =
2912 {
2913 ia64_find_proc_info_x,
2914 ia64_put_unwind_info,
2915 ia64_get_dyn_info_list,
2916 ia64_access_mem,
2917 ia64_access_rse_reg,
2918 ia64_access_rse_fpreg,
2919 /* resume */
2920 /* get_proc_name */
2921 };
2922
2923 /* Set of ia64 gdb libunwind-frame callbacks and data for generic libunwind-frame code to use. */
2924 static struct libunwind_descr ia64_libunwind_descr =
2925 {
2926 ia64_gdb2uw_regnum,
2927 ia64_uw2gdb_regnum,
2928 ia64_is_fpreg,
2929 &ia64_unw_accessors,
2930 &ia64_unw_rse_accessors,
2931 };
2932
2933 #endif /* HAVE_LIBUNWIND_IA64_H */
2934
2935 static int
2936 ia64_use_struct_convention (struct type *type)
2937 {
2938 struct type *float_elt_type;
2939
2940 /* Don't use the struct convention for anything but structure,
2941 union, or array types. */
2942 if (!(TYPE_CODE (type) == TYPE_CODE_STRUCT
2943 || TYPE_CODE (type) == TYPE_CODE_UNION
2944 || TYPE_CODE (type) == TYPE_CODE_ARRAY))
2945 return 0;
2946
2947 /* HFAs are structures (or arrays) consisting entirely of floating
2948 point values of the same length. Up to 8 of these are returned
2949 in registers. Don't use the struct convention when this is the
2950 case. */
2951 float_elt_type = is_float_or_hfa_type (type);
2952 if (float_elt_type != NULL
2953 && TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type) <= 8)
2954 return 0;
2955
2956 /* Other structs of length 32 or less are returned in r8-r11.
2957 Don't use the struct convention for those either. */
2958 return TYPE_LENGTH (type) > 32;
2959 }
2960
2961 static void
2962 ia64_extract_return_value (struct type *type, struct regcache *regcache,
2963 gdb_byte *valbuf)
2964 {
2965 struct type *float_elt_type;
2966
2967 float_elt_type = is_float_or_hfa_type (type);
2968 if (float_elt_type != NULL)
2969 {
2970 char from[MAX_REGISTER_SIZE];
2971 int offset = 0;
2972 int regnum = IA64_FR8_REGNUM;
2973 int n = TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type);
2974
2975 while (n-- > 0)
2976 {
2977 regcache_cooked_read (regcache, regnum, from);
2978 convert_typed_floating (from, builtin_type_ia64_ext,
2979 (char *)valbuf + offset, float_elt_type);
2980 offset += TYPE_LENGTH (float_elt_type);
2981 regnum++;
2982 }
2983 }
2984 else
2985 {
2986 ULONGEST val;
2987 int offset = 0;
2988 int regnum = IA64_GR8_REGNUM;
2989 int reglen = TYPE_LENGTH (register_type (get_regcache_arch (regcache),
2990 IA64_GR8_REGNUM));
2991 int n = TYPE_LENGTH (type) / reglen;
2992 int m = TYPE_LENGTH (type) % reglen;
2993
2994 while (n-- > 0)
2995 {
2996 ULONGEST val;
2997 regcache_cooked_read_unsigned (regcache, regnum, &val);
2998 memcpy ((char *)valbuf + offset, &val, reglen);
2999 offset += reglen;
3000 regnum++;
3001 }
3002
3003 if (m)
3004 {
3005 regcache_cooked_read_unsigned (regcache, regnum, &val);
3006 memcpy ((char *)valbuf + offset, &val, m);
3007 }
3008 }
3009 }
3010
3011 static void
3012 ia64_store_return_value (struct type *type, struct regcache *regcache,
3013 const gdb_byte *valbuf)
3014 {
3015 struct type *float_elt_type;
3016
3017 float_elt_type = is_float_or_hfa_type (type);
3018 if (float_elt_type != NULL)
3019 {
3020 char to[MAX_REGISTER_SIZE];
3021 int offset = 0;
3022 int regnum = IA64_FR8_REGNUM;
3023 int n = TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type);
3024
3025 while (n-- > 0)
3026 {
3027 convert_typed_floating ((char *)valbuf + offset, float_elt_type,
3028 to, builtin_type_ia64_ext);
3029 regcache_cooked_write (regcache, regnum, to);
3030 offset += TYPE_LENGTH (float_elt_type);
3031 regnum++;
3032 }
3033 }
3034 else
3035 {
3036 ULONGEST val;
3037 int offset = 0;
3038 int regnum = IA64_GR8_REGNUM;
3039 int reglen = TYPE_LENGTH (register_type (get_regcache_arch (regcache),
3040 IA64_GR8_REGNUM));
3041 int n = TYPE_LENGTH (type) / reglen;
3042 int m = TYPE_LENGTH (type) % reglen;
3043
3044 while (n-- > 0)
3045 {
3046 ULONGEST val;
3047 memcpy (&val, (char *)valbuf + offset, reglen);
3048 regcache_cooked_write_unsigned (regcache, regnum, val);
3049 offset += reglen;
3050 regnum++;
3051 }
3052
3053 if (m)
3054 {
3055 memcpy (&val, (char *)valbuf + offset, m);
3056 regcache_cooked_write_unsigned (regcache, regnum, val);
3057 }
3058 }
3059 }
3060
3061 static enum return_value_convention
3062 ia64_return_value (struct gdbarch *gdbarch, struct type *func_type,
3063 struct type *valtype, struct regcache *regcache,
3064 gdb_byte *readbuf, const gdb_byte *writebuf)
3065 {
3066 int struct_return = ia64_use_struct_convention (valtype);
3067
3068 if (writebuf != NULL)
3069 {
3070 gdb_assert (!struct_return);
3071 ia64_store_return_value (valtype, regcache, writebuf);
3072 }
3073
3074 if (readbuf != NULL)
3075 {
3076 gdb_assert (!struct_return);
3077 ia64_extract_return_value (valtype, regcache, readbuf);
3078 }
3079
3080 if (struct_return)
3081 return RETURN_VALUE_STRUCT_CONVENTION;
3082 else
3083 return RETURN_VALUE_REGISTER_CONVENTION;
3084 }
3085
3086 static int
3087 is_float_or_hfa_type_recurse (struct type *t, struct type **etp)
3088 {
3089 switch (TYPE_CODE (t))
3090 {
3091 case TYPE_CODE_FLT:
3092 if (*etp)
3093 return TYPE_LENGTH (*etp) == TYPE_LENGTH (t);
3094 else
3095 {
3096 *etp = t;
3097 return 1;
3098 }
3099 break;
3100 case TYPE_CODE_ARRAY:
3101 return
3102 is_float_or_hfa_type_recurse (check_typedef (TYPE_TARGET_TYPE (t)),
3103 etp);
3104 break;
3105 case TYPE_CODE_STRUCT:
3106 {
3107 int i;
3108
3109 for (i = 0; i < TYPE_NFIELDS (t); i++)
3110 if (!is_float_or_hfa_type_recurse
3111 (check_typedef (TYPE_FIELD_TYPE (t, i)), etp))
3112 return 0;
3113 return 1;
3114 }
3115 break;
3116 default:
3117 return 0;
3118 break;
3119 }
3120 }
3121
3122 /* Determine if the given type is one of the floating point types or
3123 and HFA (which is a struct, array, or combination thereof whose
3124 bottom-most elements are all of the same floating point type). */
3125
3126 static struct type *
3127 is_float_or_hfa_type (struct type *t)
3128 {
3129 struct type *et = 0;
3130
3131 return is_float_or_hfa_type_recurse (t, &et) ? et : 0;
3132 }
3133
3134
3135 /* Return 1 if the alignment of T is such that the next even slot
3136 should be used. Return 0, if the next available slot should
3137 be used. (See section 8.5.1 of the IA-64 Software Conventions
3138 and Runtime manual). */
3139
3140 static int
3141 slot_alignment_is_next_even (struct type *t)
3142 {
3143 switch (TYPE_CODE (t))
3144 {
3145 case TYPE_CODE_INT:
3146 case TYPE_CODE_FLT:
3147 if (TYPE_LENGTH (t) > 8)
3148 return 1;
3149 else
3150 return 0;
3151 case TYPE_CODE_ARRAY:
3152 return
3153 slot_alignment_is_next_even (check_typedef (TYPE_TARGET_TYPE (t)));
3154 case TYPE_CODE_STRUCT:
3155 {
3156 int i;
3157
3158 for (i = 0; i < TYPE_NFIELDS (t); i++)
3159 if (slot_alignment_is_next_even
3160 (check_typedef (TYPE_FIELD_TYPE (t, i))))
3161 return 1;
3162 return 0;
3163 }
3164 default:
3165 return 0;
3166 }
3167 }
3168
3169 /* Attempt to find (and return) the global pointer for the given
3170 function.
3171
3172 This is a rather nasty bit of code searchs for the .dynamic section
3173 in the objfile corresponding to the pc of the function we're trying
3174 to call. Once it finds the addresses at which the .dynamic section
3175 lives in the child process, it scans the Elf64_Dyn entries for a
3176 DT_PLTGOT tag. If it finds one of these, the corresponding
3177 d_un.d_ptr value is the global pointer. */
3178
3179 static CORE_ADDR
3180 ia64_find_global_pointer (CORE_ADDR faddr)
3181 {
3182 struct obj_section *faddr_sect;
3183
3184 faddr_sect = find_pc_section (faddr);
3185 if (faddr_sect != NULL)
3186 {
3187 struct obj_section *osect;
3188
3189 ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
3190 {
3191 if (strcmp (osect->the_bfd_section->name, ".dynamic") == 0)
3192 break;
3193 }
3194
3195 if (osect < faddr_sect->objfile->sections_end)
3196 {
3197 CORE_ADDR addr;
3198
3199 addr = osect->addr;
3200 while (addr < osect->endaddr)
3201 {
3202 int status;
3203 LONGEST tag;
3204 char buf[8];
3205
3206 status = target_read_memory (addr, buf, sizeof (buf));
3207 if (status != 0)
3208 break;
3209 tag = extract_signed_integer (buf, sizeof (buf));
3210
3211 if (tag == DT_PLTGOT)
3212 {
3213 CORE_ADDR global_pointer;
3214
3215 status = target_read_memory (addr + 8, buf, sizeof (buf));
3216 if (status != 0)
3217 break;
3218 global_pointer = extract_unsigned_integer (buf, sizeof (buf));
3219
3220 /* The payoff... */
3221 return global_pointer;
3222 }
3223
3224 if (tag == DT_NULL)
3225 break;
3226
3227 addr += 16;
3228 }
3229 }
3230 }
3231 return 0;
3232 }
3233
3234 /* Given a function's address, attempt to find (and return) the
3235 corresponding (canonical) function descriptor. Return 0 if
3236 not found. */
3237 static CORE_ADDR
3238 find_extant_func_descr (CORE_ADDR faddr)
3239 {
3240 struct obj_section *faddr_sect;
3241
3242 /* Return early if faddr is already a function descriptor. */
3243 faddr_sect = find_pc_section (faddr);
3244 if (faddr_sect && strcmp (faddr_sect->the_bfd_section->name, ".opd") == 0)
3245 return faddr;
3246
3247 if (faddr_sect != NULL)
3248 {
3249 struct obj_section *osect;
3250 ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
3251 {
3252 if (strcmp (osect->the_bfd_section->name, ".opd") == 0)
3253 break;
3254 }
3255
3256 if (osect < faddr_sect->objfile->sections_end)
3257 {
3258 CORE_ADDR addr;
3259
3260 addr = osect->addr;
3261 while (addr < osect->endaddr)
3262 {
3263 int status;
3264 LONGEST faddr2;
3265 char buf[8];
3266
3267 status = target_read_memory (addr, buf, sizeof (buf));
3268 if (status != 0)
3269 break;
3270 faddr2 = extract_signed_integer (buf, sizeof (buf));
3271
3272 if (faddr == faddr2)
3273 return addr;
3274
3275 addr += 16;
3276 }
3277 }
3278 }
3279 return 0;
3280 }
3281
3282 /* Attempt to find a function descriptor corresponding to the
3283 given address. If none is found, construct one on the
3284 stack using the address at fdaptr. */
3285
3286 static CORE_ADDR
3287 find_func_descr (struct regcache *regcache, CORE_ADDR faddr, CORE_ADDR *fdaptr)
3288 {
3289 CORE_ADDR fdesc;
3290
3291 fdesc = find_extant_func_descr (faddr);
3292
3293 if (fdesc == 0)
3294 {
3295 ULONGEST global_pointer;
3296 char buf[16];
3297
3298 fdesc = *fdaptr;
3299 *fdaptr += 16;
3300
3301 global_pointer = ia64_find_global_pointer (faddr);
3302
3303 if (global_pointer == 0)
3304 regcache_cooked_read_unsigned (regcache,
3305 IA64_GR1_REGNUM, &global_pointer);
3306
3307 store_unsigned_integer (buf, 8, faddr);
3308 store_unsigned_integer (buf + 8, 8, global_pointer);
3309
3310 write_memory (fdesc, buf, 16);
3311 }
3312
3313 return fdesc;
3314 }
3315
3316 /* Use the following routine when printing out function pointers
3317 so the user can see the function address rather than just the
3318 function descriptor. */
3319 static CORE_ADDR
3320 ia64_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
3321 struct target_ops *targ)
3322 {
3323 struct obj_section *s;
3324
3325 s = find_pc_section (addr);
3326
3327 /* check if ADDR points to a function descriptor. */
3328 if (s && strcmp (s->the_bfd_section->name, ".opd") == 0)
3329 return read_memory_unsigned_integer (addr, 8);
3330
3331 /* There are also descriptors embedded in vtables. */
3332 if (s)
3333 {
3334 struct minimal_symbol *minsym;
3335
3336 minsym = lookup_minimal_symbol_by_pc (addr);
3337
3338 if (minsym && is_vtable_name (SYMBOL_LINKAGE_NAME (minsym)))
3339 return read_memory_unsigned_integer (addr, 8);
3340 }
3341
3342 return addr;
3343 }
3344
3345 static CORE_ADDR
3346 ia64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
3347 {
3348 return sp & ~0xfLL;
3349 }
3350
3351 static CORE_ADDR
3352 ia64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3353 struct regcache *regcache, CORE_ADDR bp_addr,
3354 int nargs, struct value **args, CORE_ADDR sp,
3355 int struct_return, CORE_ADDR struct_addr)
3356 {
3357 int argno;
3358 struct value *arg;
3359 struct type *type;
3360 int len, argoffset;
3361 int nslots, rseslots, memslots, slotnum, nfuncargs;
3362 int floatreg;
3363 ULONGEST bsp, cfm, pfs, new_bsp;
3364 CORE_ADDR funcdescaddr, pc, global_pointer;
3365 CORE_ADDR func_addr = find_function_addr (function, NULL);
3366
3367 nslots = 0;
3368 nfuncargs = 0;
3369 /* Count the number of slots needed for the arguments. */
3370 for (argno = 0; argno < nargs; argno++)
3371 {
3372 arg = args[argno];
3373 type = check_typedef (value_type (arg));
3374 len = TYPE_LENGTH (type);
3375
3376 if ((nslots & 1) && slot_alignment_is_next_even (type))
3377 nslots++;
3378
3379 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
3380 nfuncargs++;
3381
3382 nslots += (len + 7) / 8;
3383 }
3384
3385 /* Divvy up the slots between the RSE and the memory stack. */
3386 rseslots = (nslots > 8) ? 8 : nslots;
3387 memslots = nslots - rseslots;
3388
3389 /* Allocate a new RSE frame. */
3390 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
3391
3392 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
3393 new_bsp = rse_address_add (bsp, rseslots);
3394 regcache_cooked_write_unsigned (regcache, IA64_BSP_REGNUM, new_bsp);
3395
3396 regcache_cooked_read_unsigned (regcache, IA64_PFS_REGNUM, &pfs);
3397 pfs &= 0xc000000000000000LL;
3398 pfs |= (cfm & 0xffffffffffffLL);
3399 regcache_cooked_write_unsigned (regcache, IA64_PFS_REGNUM, pfs);
3400
3401 cfm &= 0xc000000000000000LL;
3402 cfm |= rseslots;
3403 regcache_cooked_write_unsigned (regcache, IA64_CFM_REGNUM, cfm);
3404
3405 /* We will attempt to find function descriptors in the .opd segment,
3406 but if we can't we'll construct them ourselves. That being the
3407 case, we'll need to reserve space on the stack for them. */
3408 funcdescaddr = sp - nfuncargs * 16;
3409 funcdescaddr &= ~0xfLL;
3410
3411 /* Adjust the stack pointer to it's new value. The calling conventions
3412 require us to have 16 bytes of scratch, plus whatever space is
3413 necessary for the memory slots and our function descriptors. */
3414 sp = sp - 16 - (memslots + nfuncargs) * 8;
3415 sp &= ~0xfLL; /* Maintain 16 byte alignment. */
3416
3417 /* Place the arguments where they belong. The arguments will be
3418 either placed in the RSE backing store or on the memory stack.
3419 In addition, floating point arguments or HFAs are placed in
3420 floating point registers. */
3421 slotnum = 0;
3422 floatreg = IA64_FR8_REGNUM;
3423 for (argno = 0; argno < nargs; argno++)
3424 {
3425 struct type *float_elt_type;
3426
3427 arg = args[argno];
3428 type = check_typedef (value_type (arg));
3429 len = TYPE_LENGTH (type);
3430
3431 /* Special handling for function parameters. */
3432 if (len == 8
3433 && TYPE_CODE (type) == TYPE_CODE_PTR
3434 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
3435 {
3436 char val_buf[8];
3437 ULONGEST faddr = extract_unsigned_integer (value_contents (arg), 8);
3438 store_unsigned_integer (val_buf, 8,
3439 find_func_descr (regcache, faddr,
3440 &funcdescaddr));
3441 if (slotnum < rseslots)
3442 write_memory (rse_address_add (bsp, slotnum), val_buf, 8);
3443 else
3444 write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8);
3445 slotnum++;
3446 continue;
3447 }
3448
3449 /* Normal slots. */
3450
3451 /* Skip odd slot if necessary... */
3452 if ((slotnum & 1) && slot_alignment_is_next_even (type))
3453 slotnum++;
3454
3455 argoffset = 0;
3456 while (len > 0)
3457 {
3458 char val_buf[8];
3459
3460 memset (val_buf, 0, 8);
3461 memcpy (val_buf, value_contents (arg) + argoffset, (len > 8) ? 8 : len);
3462
3463 if (slotnum < rseslots)
3464 write_memory (rse_address_add (bsp, slotnum), val_buf, 8);
3465 else
3466 write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8);
3467
3468 argoffset += 8;
3469 len -= 8;
3470 slotnum++;
3471 }
3472
3473 /* Handle floating point types (including HFAs). */
3474 float_elt_type = is_float_or_hfa_type (type);
3475 if (float_elt_type != NULL)
3476 {
3477 argoffset = 0;
3478 len = TYPE_LENGTH (type);
3479 while (len > 0 && floatreg < IA64_FR16_REGNUM)
3480 {
3481 char to[MAX_REGISTER_SIZE];
3482 convert_typed_floating (value_contents (arg) + argoffset, float_elt_type,
3483 to, builtin_type_ia64_ext);
3484 regcache_cooked_write (regcache, floatreg, (void *)to);
3485 floatreg++;
3486 argoffset += TYPE_LENGTH (float_elt_type);
3487 len -= TYPE_LENGTH (float_elt_type);
3488 }
3489 }
3490 }
3491
3492 /* Store the struct return value in r8 if necessary. */
3493 if (struct_return)
3494 {
3495 regcache_cooked_write_unsigned (regcache, IA64_GR8_REGNUM, (ULONGEST)struct_addr);
3496 }
3497
3498 global_pointer = ia64_find_global_pointer (func_addr);
3499
3500 if (global_pointer != 0)
3501 regcache_cooked_write_unsigned (regcache, IA64_GR1_REGNUM, global_pointer);
3502
3503 regcache_cooked_write_unsigned (regcache, IA64_BR0_REGNUM, bp_addr);
3504
3505 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
3506
3507 return sp;
3508 }
3509
3510 static struct frame_id
3511 ia64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
3512 {
3513 char buf[8];
3514 CORE_ADDR sp, bsp;
3515
3516 frame_unwind_register (next_frame, sp_regnum, buf);
3517 sp = extract_unsigned_integer (buf, 8);
3518
3519 frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf);
3520 bsp = extract_unsigned_integer (buf, 8);
3521
3522 if (gdbarch_debug >= 1)
3523 fprintf_unfiltered (gdb_stdlog,
3524 "dummy frame id: code 0x%s, stack 0x%s, special 0x%s\n",
3525 paddr_nz (frame_pc_unwind (next_frame)),
3526 paddr_nz (sp), paddr_nz (bsp));
3527
3528 return frame_id_build_special (sp, frame_pc_unwind (next_frame), bsp);
3529 }
3530
3531 static CORE_ADDR
3532 ia64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
3533 {
3534 char buf[8];
3535 CORE_ADDR ip, psr, pc;
3536
3537 frame_unwind_register (next_frame, IA64_IP_REGNUM, buf);
3538 ip = extract_unsigned_integer (buf, 8);
3539 frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf);
3540 psr = extract_unsigned_integer (buf, 8);
3541
3542 pc = (ip & ~0xf) | ((psr >> 41) & 3);
3543 return pc;
3544 }
3545
3546 static int
3547 ia64_print_insn (bfd_vma memaddr, struct disassemble_info *info)
3548 {
3549 info->bytes_per_line = SLOT_MULTIPLIER;
3550 return print_insn_ia64 (memaddr, info);
3551 }
3552
3553 static struct gdbarch *
3554 ia64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3555 {
3556 struct gdbarch *gdbarch;
3557 struct gdbarch_tdep *tdep;
3558
3559 /* If there is already a candidate, use it. */
3560 arches = gdbarch_list_lookup_by_info (arches, &info);
3561 if (arches != NULL)
3562 return arches->gdbarch;
3563
3564 tdep = xmalloc (sizeof (struct gdbarch_tdep));
3565 gdbarch = gdbarch_alloc (&info, tdep);
3566
3567 tdep->sigcontext_register_address = 0;
3568 tdep->pc_in_sigtramp = 0;
3569
3570 /* According to the ia64 specs, instructions that store long double
3571 floats in memory use a long-double format different than that
3572 used in the floating registers. The memory format matches the
3573 x86 extended float format which is 80 bits. An OS may choose to
3574 use this format (e.g. GNU/Linux) or choose to use a different
3575 format for storing long doubles (e.g. HPUX). In the latter case,
3576 the setting of the format may be moved/overridden in an
3577 OS-specific tdep file. */
3578 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
3579
3580 set_gdbarch_short_bit (gdbarch, 16);
3581 set_gdbarch_int_bit (gdbarch, 32);
3582 set_gdbarch_long_bit (gdbarch, 64);
3583 set_gdbarch_long_long_bit (gdbarch, 64);
3584 set_gdbarch_float_bit (gdbarch, 32);
3585 set_gdbarch_double_bit (gdbarch, 64);
3586 set_gdbarch_long_double_bit (gdbarch, 128);
3587 set_gdbarch_ptr_bit (gdbarch, 64);
3588
3589 set_gdbarch_num_regs (gdbarch, NUM_IA64_RAW_REGS);
3590 set_gdbarch_num_pseudo_regs (gdbarch, LAST_PSEUDO_REGNUM - FIRST_PSEUDO_REGNUM);
3591 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
3592 set_gdbarch_fp0_regnum (gdbarch, IA64_FR0_REGNUM);
3593
3594 set_gdbarch_register_name (gdbarch, ia64_register_name);
3595 set_gdbarch_register_type (gdbarch, ia64_register_type);
3596
3597 set_gdbarch_pseudo_register_read (gdbarch, ia64_pseudo_register_read);
3598 set_gdbarch_pseudo_register_write (gdbarch, ia64_pseudo_register_write);
3599 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, ia64_dwarf_reg_to_regnum);
3600 set_gdbarch_register_reggroup_p (gdbarch, ia64_register_reggroup_p);
3601 set_gdbarch_convert_register_p (gdbarch, ia64_convert_register_p);
3602 set_gdbarch_register_to_value (gdbarch, ia64_register_to_value);
3603 set_gdbarch_value_to_register (gdbarch, ia64_value_to_register);
3604
3605 set_gdbarch_skip_prologue (gdbarch, ia64_skip_prologue);
3606
3607 set_gdbarch_return_value (gdbarch, ia64_return_value);
3608
3609 set_gdbarch_memory_insert_breakpoint (gdbarch, ia64_memory_insert_breakpoint);
3610 set_gdbarch_memory_remove_breakpoint (gdbarch, ia64_memory_remove_breakpoint);
3611 set_gdbarch_breakpoint_from_pc (gdbarch, ia64_breakpoint_from_pc);
3612 set_gdbarch_read_pc (gdbarch, ia64_read_pc);
3613 set_gdbarch_write_pc (gdbarch, ia64_write_pc);
3614
3615 /* Settings for calling functions in the inferior. */
3616 set_gdbarch_push_dummy_call (gdbarch, ia64_push_dummy_call);
3617 set_gdbarch_frame_align (gdbarch, ia64_frame_align);
3618 set_gdbarch_unwind_dummy_id (gdbarch, ia64_unwind_dummy_id);
3619
3620 set_gdbarch_unwind_pc (gdbarch, ia64_unwind_pc);
3621 #ifdef HAVE_LIBUNWIND_IA64_H
3622 frame_unwind_append_sniffer (gdbarch, ia64_libunwind_sigtramp_frame_sniffer);
3623 frame_unwind_append_sniffer (gdbarch, ia64_libunwind_frame_sniffer);
3624 libunwind_frame_set_descr (gdbarch, &ia64_libunwind_descr);
3625 #else
3626 frame_unwind_append_sniffer (gdbarch, ia64_sigtramp_frame_sniffer);
3627 #endif
3628 frame_unwind_append_sniffer (gdbarch, ia64_frame_sniffer);
3629 frame_base_set_default (gdbarch, &ia64_frame_base);
3630
3631 /* Settings that should be unnecessary. */
3632 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3633
3634 set_gdbarch_print_insn (gdbarch, ia64_print_insn);
3635 set_gdbarch_convert_from_func_ptr_addr (gdbarch, ia64_convert_from_func_ptr_addr);
3636
3637 /* The virtual table contains 16-byte descriptors, not pointers to
3638 descriptors. */
3639 set_gdbarch_vtable_function_descriptors (gdbarch, 1);
3640
3641 /* Hook in ABI-specific overrides, if they have been registered. */
3642 gdbarch_init_osabi (info, gdbarch);
3643
3644 return gdbarch;
3645 }
3646
3647 extern initialize_file_ftype _initialize_ia64_tdep; /* -Wmissing-prototypes */
3648
3649 void
3650 _initialize_ia64_tdep (void)
3651 {
3652 /* Define the ia64 floating-point format to gdb. */
3653 builtin_type_ia64_ext =
3654 init_type (TYPE_CODE_FLT, 128 / 8,
3655 0, "builtin_type_ia64_ext", NULL);
3656 TYPE_FLOATFORMAT (builtin_type_ia64_ext) = floatformats_ia64_ext;
3657
3658 gdbarch_register (bfd_arch_ia64, ia64_gdbarch_init, NULL);
3659 }
This page took 0.183844 seconds and 4 git commands to generate.