Remove unused variables from gdbserver
[deliverable/binutils-gdb.git] / gdb / ia64-tdep.c
1 /* Target-dependent code for the IA-64 for GDB, the GNU debugger.
2
3 Copyright (C) 1999-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "gdbcore.h"
23 #include "arch-utils.h"
24 #include "floatformat.h"
25 #include "gdbtypes.h"
26 #include "regcache.h"
27 #include "reggroups.h"
28 #include "frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
31 #include "target-float.h"
32 #include "value.h"
33 #include "objfiles.h"
34 #include "elf/common.h" /* for DT_PLTGOT value */
35 #include "elf-bfd.h"
36 #include "dis-asm.h"
37 #include "infcall.h"
38 #include "osabi.h"
39 #include "ia64-tdep.h"
40 #include "cp-abi.h"
41
42 #ifdef HAVE_LIBUNWIND_IA64_H
43 #include "elf/ia64.h" /* for PT_IA_64_UNWIND value */
44 #include "ia64-libunwind-tdep.h"
45
46 /* Note: KERNEL_START is supposed to be an address which is not going
47 to ever contain any valid unwind info. For ia64 linux, the choice
48 of 0xc000000000000000 is fairly safe since that's uncached space.
49
50 We use KERNEL_START as follows: after obtaining the kernel's
51 unwind table via getunwind(), we project its unwind data into
52 address-range KERNEL_START-(KERNEL_START+ktab_size) and then
53 when ia64_access_mem() sees a memory access to this
54 address-range, we redirect it to ktab instead.
55
56 None of this hackery is needed with a modern kernel/libcs
57 which uses the kernel virtual DSO to provide access to the
58 kernel's unwind info. In that case, ktab_size remains 0 and
59 hence the value of KERNEL_START doesn't matter. */
60
61 #define KERNEL_START 0xc000000000000000ULL
62
63 static size_t ktab_size = 0;
64 struct ia64_table_entry
65 {
66 uint64_t start_offset;
67 uint64_t end_offset;
68 uint64_t info_offset;
69 };
70
71 static struct ia64_table_entry *ktab = NULL;
72 static gdb::optional<gdb::byte_vector> ktab_buf;
73
74 #endif
75
76 /* An enumeration of the different IA-64 instruction types. */
77
78 typedef enum instruction_type
79 {
80 A, /* Integer ALU ; I-unit or M-unit */
81 I, /* Non-ALU integer; I-unit */
82 M, /* Memory ; M-unit */
83 F, /* Floating-point ; F-unit */
84 B, /* Branch ; B-unit */
85 L, /* Extended (L+X) ; I-unit */
86 X, /* Extended (L+X) ; I-unit */
87 undefined /* undefined or reserved */
88 } instruction_type;
89
90 /* We represent IA-64 PC addresses as the value of the instruction
91 pointer or'd with some bit combination in the low nibble which
92 represents the slot number in the bundle addressed by the
93 instruction pointer. The problem is that the Linux kernel
94 multiplies its slot numbers (for exceptions) by one while the
95 disassembler multiplies its slot numbers by 6. In addition, I've
96 heard it said that the simulator uses 1 as the multiplier.
97
98 I've fixed the disassembler so that the bytes_per_line field will
99 be the slot multiplier. If bytes_per_line comes in as zero, it
100 is set to six (which is how it was set up initially). -- objdump
101 displays pretty disassembly dumps with this value. For our purposes,
102 we'll set bytes_per_line to SLOT_MULTIPLIER. This is okay since we
103 never want to also display the raw bytes the way objdump does. */
104
105 #define SLOT_MULTIPLIER 1
106
107 /* Length in bytes of an instruction bundle. */
108
109 #define BUNDLE_LEN 16
110
111 /* See the saved memory layout comment for ia64_memory_insert_breakpoint. */
112
113 #if BREAKPOINT_MAX < BUNDLE_LEN - 2
114 # error "BREAKPOINT_MAX < BUNDLE_LEN - 2"
115 #endif
116
117 static gdbarch_init_ftype ia64_gdbarch_init;
118
119 static gdbarch_register_name_ftype ia64_register_name;
120 static gdbarch_register_type_ftype ia64_register_type;
121 static gdbarch_breakpoint_from_pc_ftype ia64_breakpoint_from_pc;
122 static gdbarch_skip_prologue_ftype ia64_skip_prologue;
123 static struct type *is_float_or_hfa_type (struct type *t);
124 static CORE_ADDR ia64_find_global_pointer (struct gdbarch *gdbarch,
125 CORE_ADDR faddr);
126
127 #define NUM_IA64_RAW_REGS 462
128
129 /* Big enough to hold a FP register in bytes. */
130 #define IA64_FP_REGISTER_SIZE 16
131
132 static int sp_regnum = IA64_GR12_REGNUM;
133
134 /* NOTE: we treat the register stack registers r32-r127 as
135 pseudo-registers because they may not be accessible via the ptrace
136 register get/set interfaces. */
137
138 enum pseudo_regs { FIRST_PSEUDO_REGNUM = NUM_IA64_RAW_REGS,
139 VBOF_REGNUM = IA64_NAT127_REGNUM + 1, V32_REGNUM,
140 V127_REGNUM = V32_REGNUM + 95,
141 VP0_REGNUM, VP16_REGNUM = VP0_REGNUM + 16,
142 VP63_REGNUM = VP0_REGNUM + 63, LAST_PSEUDO_REGNUM };
143
144 /* Array of register names; There should be ia64_num_regs strings in
145 the initializer. */
146
147 static const char *ia64_register_names[] =
148 { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
149 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
150 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
151 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
152 "", "", "", "", "", "", "", "",
153 "", "", "", "", "", "", "", "",
154 "", "", "", "", "", "", "", "",
155 "", "", "", "", "", "", "", "",
156 "", "", "", "", "", "", "", "",
157 "", "", "", "", "", "", "", "",
158 "", "", "", "", "", "", "", "",
159 "", "", "", "", "", "", "", "",
160 "", "", "", "", "", "", "", "",
161 "", "", "", "", "", "", "", "",
162 "", "", "", "", "", "", "", "",
163 "", "", "", "", "", "", "", "",
164
165 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
166 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
167 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
168 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
169 "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39",
170 "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47",
171 "f48", "f49", "f50", "f51", "f52", "f53", "f54", "f55",
172 "f56", "f57", "f58", "f59", "f60", "f61", "f62", "f63",
173 "f64", "f65", "f66", "f67", "f68", "f69", "f70", "f71",
174 "f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79",
175 "f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87",
176 "f88", "f89", "f90", "f91", "f92", "f93", "f94", "f95",
177 "f96", "f97", "f98", "f99", "f100", "f101", "f102", "f103",
178 "f104", "f105", "f106", "f107", "f108", "f109", "f110", "f111",
179 "f112", "f113", "f114", "f115", "f116", "f117", "f118", "f119",
180 "f120", "f121", "f122", "f123", "f124", "f125", "f126", "f127",
181
182 "", "", "", "", "", "", "", "",
183 "", "", "", "", "", "", "", "",
184 "", "", "", "", "", "", "", "",
185 "", "", "", "", "", "", "", "",
186 "", "", "", "", "", "", "", "",
187 "", "", "", "", "", "", "", "",
188 "", "", "", "", "", "", "", "",
189 "", "", "", "", "", "", "", "",
190
191 "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7",
192
193 "vfp", "vrap",
194
195 "pr", "ip", "psr", "cfm",
196
197 "kr0", "kr1", "kr2", "kr3", "kr4", "kr5", "kr6", "kr7",
198 "", "", "", "", "", "", "", "",
199 "rsc", "bsp", "bspstore", "rnat",
200 "", "fcr", "", "",
201 "eflag", "csd", "ssd", "cflg", "fsr", "fir", "fdr", "",
202 "ccv", "", "", "", "unat", "", "", "",
203 "fpsr", "", "", "", "itc",
204 "", "", "", "", "", "", "", "", "", "",
205 "", "", "", "", "", "", "", "", "",
206 "pfs", "lc", "ec",
207 "", "", "", "", "", "", "", "", "", "",
208 "", "", "", "", "", "", "", "", "", "",
209 "", "", "", "", "", "", "", "", "", "",
210 "", "", "", "", "", "", "", "", "", "",
211 "", "", "", "", "", "", "", "", "", "",
212 "", "", "", "", "", "", "", "", "", "",
213 "",
214 "nat0", "nat1", "nat2", "nat3", "nat4", "nat5", "nat6", "nat7",
215 "nat8", "nat9", "nat10", "nat11", "nat12", "nat13", "nat14", "nat15",
216 "nat16", "nat17", "nat18", "nat19", "nat20", "nat21", "nat22", "nat23",
217 "nat24", "nat25", "nat26", "nat27", "nat28", "nat29", "nat30", "nat31",
218 "nat32", "nat33", "nat34", "nat35", "nat36", "nat37", "nat38", "nat39",
219 "nat40", "nat41", "nat42", "nat43", "nat44", "nat45", "nat46", "nat47",
220 "nat48", "nat49", "nat50", "nat51", "nat52", "nat53", "nat54", "nat55",
221 "nat56", "nat57", "nat58", "nat59", "nat60", "nat61", "nat62", "nat63",
222 "nat64", "nat65", "nat66", "nat67", "nat68", "nat69", "nat70", "nat71",
223 "nat72", "nat73", "nat74", "nat75", "nat76", "nat77", "nat78", "nat79",
224 "nat80", "nat81", "nat82", "nat83", "nat84", "nat85", "nat86", "nat87",
225 "nat88", "nat89", "nat90", "nat91", "nat92", "nat93", "nat94", "nat95",
226 "nat96", "nat97", "nat98", "nat99", "nat100","nat101","nat102","nat103",
227 "nat104","nat105","nat106","nat107","nat108","nat109","nat110","nat111",
228 "nat112","nat113","nat114","nat115","nat116","nat117","nat118","nat119",
229 "nat120","nat121","nat122","nat123","nat124","nat125","nat126","nat127",
230
231 "bof",
232
233 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
234 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
235 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
236 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
237 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
238 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
239 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
240 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
241 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
242 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
243 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
244 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
245
246 "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7",
247 "p8", "p9", "p10", "p11", "p12", "p13", "p14", "p15",
248 "p16", "p17", "p18", "p19", "p20", "p21", "p22", "p23",
249 "p24", "p25", "p26", "p27", "p28", "p29", "p30", "p31",
250 "p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39",
251 "p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47",
252 "p48", "p49", "p50", "p51", "p52", "p53", "p54", "p55",
253 "p56", "p57", "p58", "p59", "p60", "p61", "p62", "p63",
254 };
255
256 struct ia64_frame_cache
257 {
258 CORE_ADDR base; /* frame pointer base for frame */
259 CORE_ADDR pc; /* function start pc for frame */
260 CORE_ADDR saved_sp; /* stack pointer for frame */
261 CORE_ADDR bsp; /* points at r32 for the current frame */
262 CORE_ADDR cfm; /* cfm value for current frame */
263 CORE_ADDR prev_cfm; /* cfm value for previous frame */
264 int frameless;
265 int sof; /* Size of frame (decoded from cfm value). */
266 int sol; /* Size of locals (decoded from cfm value). */
267 int sor; /* Number of rotating registers (decoded from
268 cfm value). */
269 CORE_ADDR after_prologue;
270 /* Address of first instruction after the last
271 prologue instruction; Note that there may
272 be instructions from the function's body
273 intermingled with the prologue. */
274 int mem_stack_frame_size;
275 /* Size of the memory stack frame (may be zero),
276 or -1 if it has not been determined yet. */
277 int fp_reg; /* Register number (if any) used a frame pointer
278 for this frame. 0 if no register is being used
279 as the frame pointer. */
280
281 /* Saved registers. */
282 CORE_ADDR saved_regs[NUM_IA64_RAW_REGS];
283
284 };
285
286 static int
287 floatformat_valid (const struct floatformat *fmt, const void *from)
288 {
289 return 1;
290 }
291
292 static const struct floatformat floatformat_ia64_ext_little =
293 {
294 floatformat_little, 82, 0, 1, 17, 65535, 0x1ffff, 18, 64,
295 floatformat_intbit_yes, "floatformat_ia64_ext_little", floatformat_valid, NULL
296 };
297
298 static const struct floatformat floatformat_ia64_ext_big =
299 {
300 floatformat_big, 82, 46, 47, 17, 65535, 0x1ffff, 64, 64,
301 floatformat_intbit_yes, "floatformat_ia64_ext_big", floatformat_valid
302 };
303
304 static const struct floatformat *floatformats_ia64_ext[2] =
305 {
306 &floatformat_ia64_ext_big,
307 &floatformat_ia64_ext_little
308 };
309
310 static struct type *
311 ia64_ext_type (struct gdbarch *gdbarch)
312 {
313 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
314
315 if (!tdep->ia64_ext_type)
316 tdep->ia64_ext_type
317 = arch_float_type (gdbarch, 128, "builtin_type_ia64_ext",
318 floatformats_ia64_ext);
319
320 return tdep->ia64_ext_type;
321 }
322
323 static int
324 ia64_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
325 struct reggroup *group)
326 {
327 int vector_p;
328 int float_p;
329 int raw_p;
330 if (group == all_reggroup)
331 return 1;
332 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
333 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
334 raw_p = regnum < NUM_IA64_RAW_REGS;
335 if (group == float_reggroup)
336 return float_p;
337 if (group == vector_reggroup)
338 return vector_p;
339 if (group == general_reggroup)
340 return (!vector_p && !float_p);
341 if (group == save_reggroup || group == restore_reggroup)
342 return raw_p;
343 return 0;
344 }
345
346 static const char *
347 ia64_register_name (struct gdbarch *gdbarch, int reg)
348 {
349 return ia64_register_names[reg];
350 }
351
352 struct type *
353 ia64_register_type (struct gdbarch *arch, int reg)
354 {
355 if (reg >= IA64_FR0_REGNUM && reg <= IA64_FR127_REGNUM)
356 return ia64_ext_type (arch);
357 else
358 return builtin_type (arch)->builtin_long;
359 }
360
361 static int
362 ia64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
363 {
364 if (reg >= IA64_GR32_REGNUM && reg <= IA64_GR127_REGNUM)
365 return V32_REGNUM + (reg - IA64_GR32_REGNUM);
366 return reg;
367 }
368
369
370 /* Extract ``len'' bits from an instruction bundle starting at
371 bit ``from''. */
372
373 static long long
374 extract_bit_field (const gdb_byte *bundle, int from, int len)
375 {
376 long long result = 0LL;
377 int to = from + len;
378 int from_byte = from / 8;
379 int to_byte = to / 8;
380 unsigned char *b = (unsigned char *) bundle;
381 unsigned char c;
382 int lshift;
383 int i;
384
385 c = b[from_byte];
386 if (from_byte == to_byte)
387 c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8);
388 result = c >> (from % 8);
389 lshift = 8 - (from % 8);
390
391 for (i = from_byte+1; i < to_byte; i++)
392 {
393 result |= ((long long) b[i]) << lshift;
394 lshift += 8;
395 }
396
397 if (from_byte < to_byte && (to % 8 != 0))
398 {
399 c = b[to_byte];
400 c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8);
401 result |= ((long long) c) << lshift;
402 }
403
404 return result;
405 }
406
407 /* Replace the specified bits in an instruction bundle. */
408
409 static void
410 replace_bit_field (gdb_byte *bundle, long long val, int from, int len)
411 {
412 int to = from + len;
413 int from_byte = from / 8;
414 int to_byte = to / 8;
415 unsigned char *b = (unsigned char *) bundle;
416 unsigned char c;
417
418 if (from_byte == to_byte)
419 {
420 unsigned char left, right;
421 c = b[from_byte];
422 left = (c >> (to % 8)) << (to % 8);
423 right = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8);
424 c = (unsigned char) (val & 0xff);
425 c = (unsigned char) (c << (from % 8 + 8 - to % 8)) >> (8 - to % 8);
426 c |= right | left;
427 b[from_byte] = c;
428 }
429 else
430 {
431 int i;
432 c = b[from_byte];
433 c = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8);
434 c = c | (val << (from % 8));
435 b[from_byte] = c;
436 val >>= 8 - from % 8;
437
438 for (i = from_byte+1; i < to_byte; i++)
439 {
440 c = val & 0xff;
441 val >>= 8;
442 b[i] = c;
443 }
444
445 if (to % 8 != 0)
446 {
447 unsigned char cv = (unsigned char) val;
448 c = b[to_byte];
449 c = c >> (to % 8) << (to % 8);
450 c |= ((unsigned char) (cv << (8 - to % 8))) >> (8 - to % 8);
451 b[to_byte] = c;
452 }
453 }
454 }
455
456 /* Return the contents of slot N (for N = 0, 1, or 2) in
457 and instruction bundle. */
458
459 static long long
460 slotN_contents (gdb_byte *bundle, int slotnum)
461 {
462 return extract_bit_field (bundle, 5+41*slotnum, 41);
463 }
464
465 /* Store an instruction in an instruction bundle. */
466
467 static void
468 replace_slotN_contents (gdb_byte *bundle, long long instr, int slotnum)
469 {
470 replace_bit_field (bundle, instr, 5+41*slotnum, 41);
471 }
472
473 static const enum instruction_type template_encoding_table[32][3] =
474 {
475 { M, I, I }, /* 00 */
476 { M, I, I }, /* 01 */
477 { M, I, I }, /* 02 */
478 { M, I, I }, /* 03 */
479 { M, L, X }, /* 04 */
480 { M, L, X }, /* 05 */
481 { undefined, undefined, undefined }, /* 06 */
482 { undefined, undefined, undefined }, /* 07 */
483 { M, M, I }, /* 08 */
484 { M, M, I }, /* 09 */
485 { M, M, I }, /* 0A */
486 { M, M, I }, /* 0B */
487 { M, F, I }, /* 0C */
488 { M, F, I }, /* 0D */
489 { M, M, F }, /* 0E */
490 { M, M, F }, /* 0F */
491 { M, I, B }, /* 10 */
492 { M, I, B }, /* 11 */
493 { M, B, B }, /* 12 */
494 { M, B, B }, /* 13 */
495 { undefined, undefined, undefined }, /* 14 */
496 { undefined, undefined, undefined }, /* 15 */
497 { B, B, B }, /* 16 */
498 { B, B, B }, /* 17 */
499 { M, M, B }, /* 18 */
500 { M, M, B }, /* 19 */
501 { undefined, undefined, undefined }, /* 1A */
502 { undefined, undefined, undefined }, /* 1B */
503 { M, F, B }, /* 1C */
504 { M, F, B }, /* 1D */
505 { undefined, undefined, undefined }, /* 1E */
506 { undefined, undefined, undefined }, /* 1F */
507 };
508
509 /* Fetch and (partially) decode an instruction at ADDR and return the
510 address of the next instruction to fetch. */
511
512 static CORE_ADDR
513 fetch_instruction (CORE_ADDR addr, instruction_type *it, long long *instr)
514 {
515 gdb_byte bundle[BUNDLE_LEN];
516 int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER;
517 long long templ;
518 int val;
519
520 /* Warn about slot numbers greater than 2. We used to generate
521 an error here on the assumption that the user entered an invalid
522 address. But, sometimes GDB itself requests an invalid address.
523 This can (easily) happen when execution stops in a function for
524 which there are no symbols. The prologue scanner will attempt to
525 find the beginning of the function - if the nearest symbol
526 happens to not be aligned on a bundle boundary (16 bytes), the
527 resulting starting address will cause GDB to think that the slot
528 number is too large.
529
530 So we warn about it and set the slot number to zero. It is
531 not necessarily a fatal condition, particularly if debugging
532 at the assembly language level. */
533 if (slotnum > 2)
534 {
535 warning (_("Can't fetch instructions for slot numbers greater than 2.\n"
536 "Using slot 0 instead"));
537 slotnum = 0;
538 }
539
540 addr &= ~0x0f;
541
542 val = target_read_memory (addr, bundle, BUNDLE_LEN);
543
544 if (val != 0)
545 return 0;
546
547 *instr = slotN_contents (bundle, slotnum);
548 templ = extract_bit_field (bundle, 0, 5);
549 *it = template_encoding_table[(int)templ][slotnum];
550
551 if (slotnum == 2 || (slotnum == 1 && *it == L))
552 addr += 16;
553 else
554 addr += (slotnum + 1) * SLOT_MULTIPLIER;
555
556 return addr;
557 }
558
559 /* There are 5 different break instructions (break.i, break.b,
560 break.m, break.f, and break.x), but they all have the same
561 encoding. (The five bit template in the low five bits of the
562 instruction bundle distinguishes one from another.)
563
564 The runtime architecture manual specifies that break instructions
565 used for debugging purposes must have the upper two bits of the 21
566 bit immediate set to a 0 and a 1 respectively. A breakpoint
567 instruction encodes the most significant bit of its 21 bit
568 immediate at bit 36 of the 41 bit instruction. The penultimate msb
569 is at bit 25 which leads to the pattern below.
570
571 Originally, I had this set up to do, e.g, a "break.i 0x80000" But
572 it turns out that 0x80000 was used as the syscall break in the early
573 simulators. So I changed the pattern slightly to do "break.i 0x080001"
574 instead. But that didn't work either (I later found out that this
575 pattern was used by the simulator that I was using.) So I ended up
576 using the pattern seen below.
577
578 SHADOW_CONTENTS has byte-based addressing (PLACED_ADDRESS and SHADOW_LEN)
579 while we need bit-based addressing as the instructions length is 41 bits and
580 we must not modify/corrupt the adjacent slots in the same bundle.
581 Fortunately we may store larger memory incl. the adjacent bits with the
582 original memory content (not the possibly already stored breakpoints there).
583 We need to be careful in ia64_memory_remove_breakpoint to always restore
584 only the specific bits of this instruction ignoring any adjacent stored
585 bits.
586
587 We use the original addressing with the low nibble in the range <0..2> which
588 gets incorrectly interpreted by generic non-ia64 breakpoint_restore_shadows
589 as the direct byte offset of SHADOW_CONTENTS. We store whole BUNDLE_LEN
590 bytes just without these two possibly skipped bytes to not to exceed to the
591 next bundle.
592
593 If we would like to store the whole bundle to SHADOW_CONTENTS we would have
594 to store already the base address (`address & ~0x0f') into PLACED_ADDRESS.
595 In such case there is no other place where to store
596 SLOTNUM (`adress & 0x0f', value in the range <0..2>). We need to know
597 SLOTNUM in ia64_memory_remove_breakpoint.
598
599 There is one special case where we need to be extra careful:
600 L-X instructions, which are instructions that occupy 2 slots
601 (The L part is always in slot 1, and the X part is always in
602 slot 2). We must refuse to insert breakpoints for an address
603 that points at slot 2 of a bundle where an L-X instruction is
604 present, since there is logically no instruction at that address.
605 However, to make things more interesting, the opcode of L-X
606 instructions is located in slot 2. This means that, to insert
607 a breakpoint at an address that points to slot 1, we actually
608 need to write the breakpoint in slot 2! Slot 1 is actually
609 the extended operand, so writing the breakpoint there would not
610 have the desired effect. Another side-effect of this issue
611 is that we need to make sure that the shadow contents buffer
612 does save byte 15 of our instruction bundle (this is the tail
613 end of slot 2, which wouldn't be saved if we were to insert
614 the breakpoint in slot 1).
615
616 ia64 16-byte bundle layout:
617 | 5 bits | slot 0 with 41 bits | slot 1 with 41 bits | slot 2 with 41 bits |
618
619 The current addressing used by the code below:
620 original PC placed_address placed_size required covered
621 == bp_tgt->shadow_len reqd \subset covered
622 0xABCDE0 0xABCDE0 0x10 <0x0...0x5> <0x0..0xF>
623 0xABCDE1 0xABCDE1 0xF <0x5...0xA> <0x1..0xF>
624 0xABCDE2 0xABCDE2 0xE <0xA...0xF> <0x2..0xF>
625
626 L-X instructions are treated a little specially, as explained above:
627 0xABCDE1 0xABCDE1 0xF <0xA...0xF> <0x1..0xF>
628
629 `objdump -d' and some other tools show a bit unjustified offsets:
630 original PC byte where starts the instruction objdump offset
631 0xABCDE0 0xABCDE0 0xABCDE0
632 0xABCDE1 0xABCDE5 0xABCDE6
633 0xABCDE2 0xABCDEA 0xABCDEC
634 */
635
636 #define IA64_BREAKPOINT 0x00003333300LL
637
638 static int
639 ia64_memory_insert_breakpoint (struct gdbarch *gdbarch,
640 struct bp_target_info *bp_tgt)
641 {
642 CORE_ADDR addr = bp_tgt->placed_address = bp_tgt->reqstd_address;
643 gdb_byte bundle[BUNDLE_LEN];
644 int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER, shadow_slotnum;
645 long long instr_breakpoint;
646 int val;
647 int templ;
648
649 if (slotnum > 2)
650 error (_("Can't insert breakpoint for slot numbers greater than 2."));
651
652 addr &= ~0x0f;
653
654 /* Enable the automatic memory restoration from breakpoints while
655 we read our instruction bundle for the purpose of SHADOW_CONTENTS.
656 Otherwise, we could possibly store into the shadow parts of the adjacent
657 placed breakpoints. It is due to our SHADOW_CONTENTS overlapping the real
658 breakpoint instruction bits region. */
659 scoped_restore restore_memory_0
660 = make_scoped_restore_show_memory_breakpoints (0);
661 val = target_read_memory (addr, bundle, BUNDLE_LEN);
662 if (val != 0)
663 return val;
664
665 /* SHADOW_SLOTNUM saves the original slot number as expected by the caller
666 for addressing the SHADOW_CONTENTS placement. */
667 shadow_slotnum = slotnum;
668
669 /* Always cover the last byte of the bundle in case we are inserting
670 a breakpoint on an L-X instruction. */
671 bp_tgt->shadow_len = BUNDLE_LEN - shadow_slotnum;
672
673 templ = extract_bit_field (bundle, 0, 5);
674 if (template_encoding_table[templ][slotnum] == X)
675 {
676 /* X unit types can only be used in slot 2, and are actually
677 part of a 2-slot L-X instruction. We cannot break at this
678 address, as this is the second half of an instruction that
679 lives in slot 1 of that bundle. */
680 gdb_assert (slotnum == 2);
681 error (_("Can't insert breakpoint for non-existing slot X"));
682 }
683 if (template_encoding_table[templ][slotnum] == L)
684 {
685 /* L unit types can only be used in slot 1. But the associated
686 opcode for that instruction is in slot 2, so bump the slot number
687 accordingly. */
688 gdb_assert (slotnum == 1);
689 slotnum = 2;
690 }
691
692 /* Store the whole bundle, except for the initial skipped bytes by the slot
693 number interpreted as bytes offset in PLACED_ADDRESS. */
694 memcpy (bp_tgt->shadow_contents, bundle + shadow_slotnum,
695 bp_tgt->shadow_len);
696
697 /* Re-read the same bundle as above except that, this time, read it in order
698 to compute the new bundle inside which we will be inserting the
699 breakpoint. Therefore, disable the automatic memory restoration from
700 breakpoints while we read our instruction bundle. Otherwise, the general
701 restoration mechanism kicks in and we would possibly remove parts of the
702 adjacent placed breakpoints. It is due to our SHADOW_CONTENTS overlapping
703 the real breakpoint instruction bits region. */
704 scoped_restore restore_memory_1
705 = make_scoped_restore_show_memory_breakpoints (1);
706 val = target_read_memory (addr, bundle, BUNDLE_LEN);
707 if (val != 0)
708 return val;
709
710 /* Breakpoints already present in the code will get deteacted and not get
711 reinserted by bp_loc_is_permanent. Multiple breakpoints at the same
712 location cannot induce the internal error as they are optimized into
713 a single instance by update_global_location_list. */
714 instr_breakpoint = slotN_contents (bundle, slotnum);
715 if (instr_breakpoint == IA64_BREAKPOINT)
716 internal_error (__FILE__, __LINE__,
717 _("Address %s already contains a breakpoint."),
718 paddress (gdbarch, bp_tgt->placed_address));
719 replace_slotN_contents (bundle, IA64_BREAKPOINT, slotnum);
720
721 val = target_write_memory (addr + shadow_slotnum, bundle + shadow_slotnum,
722 bp_tgt->shadow_len);
723
724 return val;
725 }
726
727 static int
728 ia64_memory_remove_breakpoint (struct gdbarch *gdbarch,
729 struct bp_target_info *bp_tgt)
730 {
731 CORE_ADDR addr = bp_tgt->placed_address;
732 gdb_byte bundle_mem[BUNDLE_LEN], bundle_saved[BUNDLE_LEN];
733 int slotnum = (addr & 0x0f) / SLOT_MULTIPLIER, shadow_slotnum;
734 long long instr_breakpoint, instr_saved;
735 int val;
736 int templ;
737
738 addr &= ~0x0f;
739
740 /* Disable the automatic memory restoration from breakpoints while
741 we read our instruction bundle. Otherwise, the general restoration
742 mechanism kicks in and we would possibly remove parts of the adjacent
743 placed breakpoints. It is due to our SHADOW_CONTENTS overlapping the real
744 breakpoint instruction bits region. */
745 scoped_restore restore_memory_1
746 = make_scoped_restore_show_memory_breakpoints (1);
747 val = target_read_memory (addr, bundle_mem, BUNDLE_LEN);
748 if (val != 0)
749 return val;
750
751 /* SHADOW_SLOTNUM saves the original slot number as expected by the caller
752 for addressing the SHADOW_CONTENTS placement. */
753 shadow_slotnum = slotnum;
754
755 templ = extract_bit_field (bundle_mem, 0, 5);
756 if (template_encoding_table[templ][slotnum] == X)
757 {
758 /* X unit types can only be used in slot 2, and are actually
759 part of a 2-slot L-X instruction. We refuse to insert
760 breakpoints at this address, so there should be no reason
761 for us attempting to remove one there, except if the program's
762 code somehow got modified in memory. */
763 gdb_assert (slotnum == 2);
764 warning (_("Cannot remove breakpoint at address %s from non-existing "
765 "X-type slot, memory has changed underneath"),
766 paddress (gdbarch, bp_tgt->placed_address));
767 return -1;
768 }
769 if (template_encoding_table[templ][slotnum] == L)
770 {
771 /* L unit types can only be used in slot 1. But the breakpoint
772 was actually saved using slot 2, so update the slot number
773 accordingly. */
774 gdb_assert (slotnum == 1);
775 slotnum = 2;
776 }
777
778 gdb_assert (bp_tgt->shadow_len == BUNDLE_LEN - shadow_slotnum);
779
780 instr_breakpoint = slotN_contents (bundle_mem, slotnum);
781 if (instr_breakpoint != IA64_BREAKPOINT)
782 {
783 warning (_("Cannot remove breakpoint at address %s, "
784 "no break instruction at such address."),
785 paddress (gdbarch, bp_tgt->placed_address));
786 return -1;
787 }
788
789 /* Extract the original saved instruction from SLOTNUM normalizing its
790 bit-shift for INSTR_SAVED. */
791 memcpy (bundle_saved, bundle_mem, BUNDLE_LEN);
792 memcpy (bundle_saved + shadow_slotnum, bp_tgt->shadow_contents,
793 bp_tgt->shadow_len);
794 instr_saved = slotN_contents (bundle_saved, slotnum);
795
796 /* In BUNDLE_MEM, be careful to modify only the bits belonging to SLOTNUM
797 and not any of the other ones that are stored in SHADOW_CONTENTS. */
798 replace_slotN_contents (bundle_mem, instr_saved, slotnum);
799 val = target_write_raw_memory (addr, bundle_mem, BUNDLE_LEN);
800
801 return val;
802 }
803
804 /* Implement the breakpoint_kind_from_pc gdbarch method. */
805
806 static int
807 ia64_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
808 {
809 /* A place holder of gdbarch method breakpoint_kind_from_pc. */
810 return 0;
811 }
812
813 /* As gdbarch_breakpoint_from_pc ranges have byte granularity and ia64
814 instruction slots ranges are bit-granular (41 bits) we have to provide an
815 extended range as described for ia64_memory_insert_breakpoint. We also take
816 care of preserving the `break' instruction 21-bit (or 62-bit) parameter to
817 make a match for permanent breakpoints. */
818
819 static const gdb_byte *
820 ia64_breakpoint_from_pc (struct gdbarch *gdbarch,
821 CORE_ADDR *pcptr, int *lenptr)
822 {
823 CORE_ADDR addr = *pcptr;
824 static gdb_byte bundle[BUNDLE_LEN];
825 int slotnum = (int) (*pcptr & 0x0f) / SLOT_MULTIPLIER, shadow_slotnum;
826 long long instr_fetched;
827 int val;
828 int templ;
829
830 if (slotnum > 2)
831 error (_("Can't insert breakpoint for slot numbers greater than 2."));
832
833 addr &= ~0x0f;
834
835 /* Enable the automatic memory restoration from breakpoints while
836 we read our instruction bundle to match bp_loc_is_permanent. */
837 {
838 scoped_restore restore_memory_0
839 = make_scoped_restore_show_memory_breakpoints (0);
840 val = target_read_memory (addr, bundle, BUNDLE_LEN);
841 }
842
843 /* The memory might be unreachable. This can happen, for instance,
844 when the user inserts a breakpoint at an invalid address. */
845 if (val != 0)
846 return NULL;
847
848 /* SHADOW_SLOTNUM saves the original slot number as expected by the caller
849 for addressing the SHADOW_CONTENTS placement. */
850 shadow_slotnum = slotnum;
851
852 /* Cover always the last byte of the bundle for the L-X slot case. */
853 *lenptr = BUNDLE_LEN - shadow_slotnum;
854
855 /* Check for L type instruction in slot 1, if present then bump up the slot
856 number to the slot 2. */
857 templ = extract_bit_field (bundle, 0, 5);
858 if (template_encoding_table[templ][slotnum] == X)
859 {
860 gdb_assert (slotnum == 2);
861 error (_("Can't insert breakpoint for non-existing slot X"));
862 }
863 if (template_encoding_table[templ][slotnum] == L)
864 {
865 gdb_assert (slotnum == 1);
866 slotnum = 2;
867 }
868
869 /* A break instruction has its all its opcode bits cleared except for
870 the parameter value. For L+X slot pair we are at the X slot (slot 2) so
871 we should not touch the L slot - the upper 41 bits of the parameter. */
872 instr_fetched = slotN_contents (bundle, slotnum);
873 instr_fetched &= 0x1003ffffc0LL;
874 replace_slotN_contents (bundle, instr_fetched, slotnum);
875
876 return bundle + shadow_slotnum;
877 }
878
879 static CORE_ADDR
880 ia64_read_pc (readable_regcache *regcache)
881 {
882 ULONGEST psr_value, pc_value;
883 int slot_num;
884
885 regcache->cooked_read (IA64_PSR_REGNUM, &psr_value);
886 regcache->cooked_read (IA64_IP_REGNUM, &pc_value);
887 slot_num = (psr_value >> 41) & 3;
888
889 return pc_value | (slot_num * SLOT_MULTIPLIER);
890 }
891
892 void
893 ia64_write_pc (struct regcache *regcache, CORE_ADDR new_pc)
894 {
895 int slot_num = (int) (new_pc & 0xf) / SLOT_MULTIPLIER;
896 ULONGEST psr_value;
897
898 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr_value);
899 psr_value &= ~(3LL << 41);
900 psr_value |= (ULONGEST)(slot_num & 0x3) << 41;
901
902 new_pc &= ~0xfLL;
903
904 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr_value);
905 regcache_cooked_write_unsigned (regcache, IA64_IP_REGNUM, new_pc);
906 }
907
908 #define IS_NaT_COLLECTION_ADDR(addr) ((((addr) >> 3) & 0x3f) == 0x3f)
909
910 /* Returns the address of the slot that's NSLOTS slots away from
911 the address ADDR. NSLOTS may be positive or negative. */
912 static CORE_ADDR
913 rse_address_add(CORE_ADDR addr, int nslots)
914 {
915 CORE_ADDR new_addr;
916 int mandatory_nat_slots = nslots / 63;
917 int direction = nslots < 0 ? -1 : 1;
918
919 new_addr = addr + 8 * (nslots + mandatory_nat_slots);
920
921 if ((new_addr >> 9) != ((addr + 8 * 64 * mandatory_nat_slots) >> 9))
922 new_addr += 8 * direction;
923
924 if (IS_NaT_COLLECTION_ADDR(new_addr))
925 new_addr += 8 * direction;
926
927 return new_addr;
928 }
929
930 static enum register_status
931 ia64_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
932 int regnum, gdb_byte *buf)
933 {
934 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
935 enum register_status status;
936
937 if (regnum >= V32_REGNUM && regnum <= V127_REGNUM)
938 {
939 #ifdef HAVE_LIBUNWIND_IA64_H
940 /* First try and use the libunwind special reg accessor,
941 otherwise fallback to standard logic. */
942 if (!libunwind_is_initialized ()
943 || libunwind_get_reg_special (gdbarch, regcache, regnum, buf) != 0)
944 #endif
945 {
946 /* The fallback position is to assume that r32-r127 are
947 found sequentially in memory starting at $bof. This
948 isn't always true, but without libunwind, this is the
949 best we can do. */
950 enum register_status status;
951 ULONGEST cfm;
952 ULONGEST bsp;
953 CORE_ADDR reg;
954
955 status = regcache->cooked_read (IA64_BSP_REGNUM, &bsp);
956 if (status != REG_VALID)
957 return status;
958
959 status = regcache->cooked_read (IA64_CFM_REGNUM, &cfm);
960 if (status != REG_VALID)
961 return status;
962
963 /* The bsp points at the end of the register frame so we
964 subtract the size of frame from it to get start of
965 register frame. */
966 bsp = rse_address_add (bsp, -(cfm & 0x7f));
967
968 if ((cfm & 0x7f) > regnum - V32_REGNUM)
969 {
970 ULONGEST reg_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
971 reg = read_memory_integer ((CORE_ADDR)reg_addr, 8, byte_order);
972 store_unsigned_integer (buf, register_size (gdbarch, regnum),
973 byte_order, reg);
974 }
975 else
976 store_unsigned_integer (buf, register_size (gdbarch, regnum),
977 byte_order, 0);
978 }
979 }
980 else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM)
981 {
982 ULONGEST unatN_val;
983 ULONGEST unat;
984
985 status = regcache->cooked_read (IA64_UNAT_REGNUM, &unat);
986 if (status != REG_VALID)
987 return status;
988 unatN_val = (unat & (1LL << (regnum - IA64_NAT0_REGNUM))) != 0;
989 store_unsigned_integer (buf, register_size (gdbarch, regnum),
990 byte_order, unatN_val);
991 }
992 else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
993 {
994 ULONGEST natN_val = 0;
995 ULONGEST bsp;
996 ULONGEST cfm;
997 CORE_ADDR gr_addr = 0;
998
999 status = regcache->cooked_read (IA64_BSP_REGNUM, &bsp);
1000 if (status != REG_VALID)
1001 return status;
1002
1003 status = regcache->cooked_read (IA64_CFM_REGNUM, &cfm);
1004 if (status != REG_VALID)
1005 return status;
1006
1007 /* The bsp points at the end of the register frame so we
1008 subtract the size of frame from it to get start of register frame. */
1009 bsp = rse_address_add (bsp, -(cfm & 0x7f));
1010
1011 if ((cfm & 0x7f) > regnum - V32_REGNUM)
1012 gr_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
1013
1014 if (gr_addr != 0)
1015 {
1016 /* Compute address of nat collection bits. */
1017 CORE_ADDR nat_addr = gr_addr | 0x1f8;
1018 ULONGEST nat_collection;
1019 int nat_bit;
1020 /* If our nat collection address is bigger than bsp, we have to get
1021 the nat collection from rnat. Otherwise, we fetch the nat
1022 collection from the computed address. */
1023 if (nat_addr >= bsp)
1024 regcache->cooked_read (IA64_RNAT_REGNUM, &nat_collection);
1025 else
1026 nat_collection = read_memory_integer (nat_addr, 8, byte_order);
1027 nat_bit = (gr_addr >> 3) & 0x3f;
1028 natN_val = (nat_collection >> nat_bit) & 1;
1029 }
1030
1031 store_unsigned_integer (buf, register_size (gdbarch, regnum),
1032 byte_order, natN_val);
1033 }
1034 else if (regnum == VBOF_REGNUM)
1035 {
1036 /* A virtual register frame start is provided for user convenience.
1037 It can be calculated as the bsp - sof (sizeof frame). */
1038 ULONGEST bsp, vbsp;
1039 ULONGEST cfm;
1040
1041 status = regcache->cooked_read (IA64_BSP_REGNUM, &bsp);
1042 if (status != REG_VALID)
1043 return status;
1044 status = regcache->cooked_read (IA64_CFM_REGNUM, &cfm);
1045 if (status != REG_VALID)
1046 return status;
1047
1048 /* The bsp points at the end of the register frame so we
1049 subtract the size of frame from it to get beginning of frame. */
1050 vbsp = rse_address_add (bsp, -(cfm & 0x7f));
1051 store_unsigned_integer (buf, register_size (gdbarch, regnum),
1052 byte_order, vbsp);
1053 }
1054 else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
1055 {
1056 ULONGEST pr;
1057 ULONGEST cfm;
1058 ULONGEST prN_val;
1059
1060 status = regcache->cooked_read (IA64_PR_REGNUM, &pr);
1061 if (status != REG_VALID)
1062 return status;
1063 status = regcache->cooked_read (IA64_CFM_REGNUM, &cfm);
1064 if (status != REG_VALID)
1065 return status;
1066
1067 if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
1068 {
1069 /* Fetch predicate register rename base from current frame
1070 marker for this frame. */
1071 int rrb_pr = (cfm >> 32) & 0x3f;
1072
1073 /* Adjust the register number to account for register rotation. */
1074 regnum = VP16_REGNUM
1075 + ((regnum - VP16_REGNUM) + rrb_pr) % 48;
1076 }
1077 prN_val = (pr & (1LL << (regnum - VP0_REGNUM))) != 0;
1078 store_unsigned_integer (buf, register_size (gdbarch, regnum),
1079 byte_order, prN_val);
1080 }
1081 else
1082 memset (buf, 0, register_size (gdbarch, regnum));
1083
1084 return REG_VALID;
1085 }
1086
1087 static void
1088 ia64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1089 int regnum, const gdb_byte *buf)
1090 {
1091 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1092
1093 if (regnum >= V32_REGNUM && regnum <= V127_REGNUM)
1094 {
1095 ULONGEST bsp;
1096 ULONGEST cfm;
1097 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
1098 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
1099
1100 bsp = rse_address_add (bsp, -(cfm & 0x7f));
1101
1102 if ((cfm & 0x7f) > regnum - V32_REGNUM)
1103 {
1104 ULONGEST reg_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
1105 write_memory (reg_addr, buf, 8);
1106 }
1107 }
1108 else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM)
1109 {
1110 ULONGEST unatN_val, unat, unatN_mask;
1111 regcache_cooked_read_unsigned (regcache, IA64_UNAT_REGNUM, &unat);
1112 unatN_val = extract_unsigned_integer (buf, register_size (gdbarch,
1113 regnum),
1114 byte_order);
1115 unatN_mask = (1LL << (regnum - IA64_NAT0_REGNUM));
1116 if (unatN_val == 0)
1117 unat &= ~unatN_mask;
1118 else if (unatN_val == 1)
1119 unat |= unatN_mask;
1120 regcache_cooked_write_unsigned (regcache, IA64_UNAT_REGNUM, unat);
1121 }
1122 else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
1123 {
1124 ULONGEST natN_val;
1125 ULONGEST bsp;
1126 ULONGEST cfm;
1127 CORE_ADDR gr_addr = 0;
1128 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
1129 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
1130
1131 /* The bsp points at the end of the register frame so we
1132 subtract the size of frame from it to get start of register frame. */
1133 bsp = rse_address_add (bsp, -(cfm & 0x7f));
1134
1135 if ((cfm & 0x7f) > regnum - V32_REGNUM)
1136 gr_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
1137
1138 natN_val = extract_unsigned_integer (buf, register_size (gdbarch,
1139 regnum),
1140 byte_order);
1141
1142 if (gr_addr != 0 && (natN_val == 0 || natN_val == 1))
1143 {
1144 /* Compute address of nat collection bits. */
1145 CORE_ADDR nat_addr = gr_addr | 0x1f8;
1146 CORE_ADDR nat_collection;
1147 int natN_bit = (gr_addr >> 3) & 0x3f;
1148 ULONGEST natN_mask = (1LL << natN_bit);
1149 /* If our nat collection address is bigger than bsp, we have to get
1150 the nat collection from rnat. Otherwise, we fetch the nat
1151 collection from the computed address. */
1152 if (nat_addr >= bsp)
1153 {
1154 regcache_cooked_read_unsigned (regcache,
1155 IA64_RNAT_REGNUM,
1156 &nat_collection);
1157 if (natN_val)
1158 nat_collection |= natN_mask;
1159 else
1160 nat_collection &= ~natN_mask;
1161 regcache_cooked_write_unsigned (regcache, IA64_RNAT_REGNUM,
1162 nat_collection);
1163 }
1164 else
1165 {
1166 gdb_byte nat_buf[8];
1167 nat_collection = read_memory_integer (nat_addr, 8, byte_order);
1168 if (natN_val)
1169 nat_collection |= natN_mask;
1170 else
1171 nat_collection &= ~natN_mask;
1172 store_unsigned_integer (nat_buf, register_size (gdbarch, regnum),
1173 byte_order, nat_collection);
1174 write_memory (nat_addr, nat_buf, 8);
1175 }
1176 }
1177 }
1178 else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
1179 {
1180 ULONGEST pr;
1181 ULONGEST cfm;
1182 ULONGEST prN_val;
1183 ULONGEST prN_mask;
1184
1185 regcache_cooked_read_unsigned (regcache, IA64_PR_REGNUM, &pr);
1186 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
1187
1188 if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
1189 {
1190 /* Fetch predicate register rename base from current frame
1191 marker for this frame. */
1192 int rrb_pr = (cfm >> 32) & 0x3f;
1193
1194 /* Adjust the register number to account for register rotation. */
1195 regnum = VP16_REGNUM
1196 + ((regnum - VP16_REGNUM) + rrb_pr) % 48;
1197 }
1198 prN_val = extract_unsigned_integer (buf, register_size (gdbarch, regnum),
1199 byte_order);
1200 prN_mask = (1LL << (regnum - VP0_REGNUM));
1201 if (prN_val == 0)
1202 pr &= ~prN_mask;
1203 else if (prN_val == 1)
1204 pr |= prN_mask;
1205 regcache_cooked_write_unsigned (regcache, IA64_PR_REGNUM, pr);
1206 }
1207 }
1208
1209 /* The ia64 needs to convert between various ieee floating-point formats
1210 and the special ia64 floating point register format. */
1211
1212 static int
1213 ia64_convert_register_p (struct gdbarch *gdbarch, int regno, struct type *type)
1214 {
1215 return (regno >= IA64_FR0_REGNUM && regno <= IA64_FR127_REGNUM
1216 && TYPE_CODE (type) == TYPE_CODE_FLT
1217 && type != ia64_ext_type (gdbarch));
1218 }
1219
1220 static int
1221 ia64_register_to_value (struct frame_info *frame, int regnum,
1222 struct type *valtype, gdb_byte *out,
1223 int *optimizedp, int *unavailablep)
1224 {
1225 struct gdbarch *gdbarch = get_frame_arch (frame);
1226 gdb_byte in[IA64_FP_REGISTER_SIZE];
1227
1228 /* Convert to TYPE. */
1229 if (!get_frame_register_bytes (frame, regnum, 0,
1230 register_size (gdbarch, regnum),
1231 in, optimizedp, unavailablep))
1232 return 0;
1233
1234 target_float_convert (in, ia64_ext_type (gdbarch), out, valtype);
1235 *optimizedp = *unavailablep = 0;
1236 return 1;
1237 }
1238
1239 static void
1240 ia64_value_to_register (struct frame_info *frame, int regnum,
1241 struct type *valtype, const gdb_byte *in)
1242 {
1243 struct gdbarch *gdbarch = get_frame_arch (frame);
1244 gdb_byte out[IA64_FP_REGISTER_SIZE];
1245 target_float_convert (in, valtype, out, ia64_ext_type (gdbarch));
1246 put_frame_register (frame, regnum, out);
1247 }
1248
1249
1250 /* Limit the number of skipped non-prologue instructions since examining
1251 of the prologue is expensive. */
1252 static int max_skip_non_prologue_insns = 40;
1253
1254 /* Given PC representing the starting address of a function, and
1255 LIM_PC which is the (sloppy) limit to which to scan when looking
1256 for a prologue, attempt to further refine this limit by using
1257 the line data in the symbol table. If successful, a better guess
1258 on where the prologue ends is returned, otherwise the previous
1259 value of lim_pc is returned. TRUST_LIMIT is a pointer to a flag
1260 which will be set to indicate whether the returned limit may be
1261 used with no further scanning in the event that the function is
1262 frameless. */
1263
1264 /* FIXME: cagney/2004-02-14: This function and logic have largely been
1265 superseded by skip_prologue_using_sal. */
1266
1267 static CORE_ADDR
1268 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc, int *trust_limit)
1269 {
1270 struct symtab_and_line prologue_sal;
1271 CORE_ADDR start_pc = pc;
1272 CORE_ADDR end_pc;
1273
1274 /* The prologue can not possibly go past the function end itself,
1275 so we can already adjust LIM_PC accordingly. */
1276 if (find_pc_partial_function (pc, NULL, NULL, &end_pc) && end_pc < lim_pc)
1277 lim_pc = end_pc;
1278
1279 /* Start off not trusting the limit. */
1280 *trust_limit = 0;
1281
1282 prologue_sal = find_pc_line (pc, 0);
1283 if (prologue_sal.line != 0)
1284 {
1285 int i;
1286 CORE_ADDR addr = prologue_sal.end;
1287
1288 /* Handle the case in which compiler's optimizer/scheduler
1289 has moved instructions into the prologue. We scan ahead
1290 in the function looking for address ranges whose corresponding
1291 line number is less than or equal to the first one that we
1292 found for the function. (It can be less than when the
1293 scheduler puts a body instruction before the first prologue
1294 instruction.) */
1295 for (i = 2 * max_skip_non_prologue_insns;
1296 i > 0 && (lim_pc == 0 || addr < lim_pc);
1297 i--)
1298 {
1299 struct symtab_and_line sal;
1300
1301 sal = find_pc_line (addr, 0);
1302 if (sal.line == 0)
1303 break;
1304 if (sal.line <= prologue_sal.line
1305 && sal.symtab == prologue_sal.symtab)
1306 {
1307 prologue_sal = sal;
1308 }
1309 addr = sal.end;
1310 }
1311
1312 if (lim_pc == 0 || prologue_sal.end < lim_pc)
1313 {
1314 lim_pc = prologue_sal.end;
1315 if (start_pc == get_pc_function_start (lim_pc))
1316 *trust_limit = 1;
1317 }
1318 }
1319 return lim_pc;
1320 }
1321
1322 #define isScratch(_regnum_) ((_regnum_) == 2 || (_regnum_) == 3 \
1323 || (8 <= (_regnum_) && (_regnum_) <= 11) \
1324 || (14 <= (_regnum_) && (_regnum_) <= 31))
1325 #define imm9(_instr_) \
1326 ( ((((_instr_) & 0x01000000000LL) ? -1 : 0) << 8) \
1327 | (((_instr_) & 0x00008000000LL) >> 20) \
1328 | (((_instr_) & 0x00000001fc0LL) >> 6))
1329
1330 /* Allocate and initialize a frame cache. */
1331
1332 static struct ia64_frame_cache *
1333 ia64_alloc_frame_cache (void)
1334 {
1335 struct ia64_frame_cache *cache;
1336 int i;
1337
1338 cache = FRAME_OBSTACK_ZALLOC (struct ia64_frame_cache);
1339
1340 /* Base address. */
1341 cache->base = 0;
1342 cache->pc = 0;
1343 cache->cfm = 0;
1344 cache->prev_cfm = 0;
1345 cache->sof = 0;
1346 cache->sol = 0;
1347 cache->sor = 0;
1348 cache->bsp = 0;
1349 cache->fp_reg = 0;
1350 cache->frameless = 1;
1351
1352 for (i = 0; i < NUM_IA64_RAW_REGS; i++)
1353 cache->saved_regs[i] = 0;
1354
1355 return cache;
1356 }
1357
1358 static CORE_ADDR
1359 examine_prologue (CORE_ADDR pc, CORE_ADDR lim_pc,
1360 struct frame_info *this_frame,
1361 struct ia64_frame_cache *cache)
1362 {
1363 CORE_ADDR next_pc;
1364 CORE_ADDR last_prologue_pc = pc;
1365 instruction_type it;
1366 long long instr;
1367 int cfm_reg = 0;
1368 int ret_reg = 0;
1369 int fp_reg = 0;
1370 int unat_save_reg = 0;
1371 int pr_save_reg = 0;
1372 int mem_stack_frame_size = 0;
1373 int spill_reg = 0;
1374 CORE_ADDR spill_addr = 0;
1375 char instores[8];
1376 char infpstores[8];
1377 char reg_contents[256];
1378 int trust_limit;
1379 int frameless = 1;
1380 int i;
1381 CORE_ADDR addr;
1382 gdb_byte buf[8];
1383 CORE_ADDR bof, sor, sol, sof, cfm, rrb_gr;
1384
1385 memset (instores, 0, sizeof instores);
1386 memset (infpstores, 0, sizeof infpstores);
1387 memset (reg_contents, 0, sizeof reg_contents);
1388
1389 if (cache->after_prologue != 0
1390 && cache->after_prologue <= lim_pc)
1391 return cache->after_prologue;
1392
1393 lim_pc = refine_prologue_limit (pc, lim_pc, &trust_limit);
1394 next_pc = fetch_instruction (pc, &it, &instr);
1395
1396 /* We want to check if we have a recognizable function start before we
1397 look ahead for a prologue. */
1398 if (pc < lim_pc && next_pc
1399 && it == M && ((instr & 0x1ee0000003fLL) == 0x02c00000000LL))
1400 {
1401 /* alloc - start of a regular function. */
1402 int sol = (int) ((instr & 0x00007f00000LL) >> 20);
1403 int sof = (int) ((instr & 0x000000fe000LL) >> 13);
1404 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1405
1406 /* Verify that the current cfm matches what we think is the
1407 function start. If we have somehow jumped within a function,
1408 we do not want to interpret the prologue and calculate the
1409 addresses of various registers such as the return address.
1410 We will instead treat the frame as frameless. */
1411 if (!this_frame ||
1412 (sof == (cache->cfm & 0x7f) &&
1413 sol == ((cache->cfm >> 7) & 0x7f)))
1414 frameless = 0;
1415
1416 cfm_reg = rN;
1417 last_prologue_pc = next_pc;
1418 pc = next_pc;
1419 }
1420 else
1421 {
1422 /* Look for a leaf routine. */
1423 if (pc < lim_pc && next_pc
1424 && (it == I || it == M)
1425 && ((instr & 0x1ee00000000LL) == 0x10800000000LL))
1426 {
1427 /* adds rN = imm14, rM (or mov rN, rM when imm14 is 0) */
1428 int imm = (int) ((((instr & 0x01000000000LL) ? -1 : 0) << 13)
1429 | ((instr & 0x001f8000000LL) >> 20)
1430 | ((instr & 0x000000fe000LL) >> 13));
1431 int rM = (int) ((instr & 0x00007f00000LL) >> 20);
1432 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1433 int qp = (int) (instr & 0x0000000003fLL);
1434 if (qp == 0 && rN == 2 && imm == 0 && rM == 12 && fp_reg == 0)
1435 {
1436 /* mov r2, r12 - beginning of leaf routine. */
1437 fp_reg = rN;
1438 last_prologue_pc = next_pc;
1439 }
1440 }
1441
1442 /* If we don't recognize a regular function or leaf routine, we are
1443 done. */
1444 if (!fp_reg)
1445 {
1446 pc = lim_pc;
1447 if (trust_limit)
1448 last_prologue_pc = lim_pc;
1449 }
1450 }
1451
1452 /* Loop, looking for prologue instructions, keeping track of
1453 where preserved registers were spilled. */
1454 while (pc < lim_pc)
1455 {
1456 next_pc = fetch_instruction (pc, &it, &instr);
1457 if (next_pc == 0)
1458 break;
1459
1460 if (it == B && ((instr & 0x1e1f800003fLL) != 0x04000000000LL))
1461 {
1462 /* Exit loop upon hitting a non-nop branch instruction. */
1463 if (trust_limit)
1464 lim_pc = pc;
1465 break;
1466 }
1467 else if (((instr & 0x3fLL) != 0LL) &&
1468 (frameless || ret_reg != 0))
1469 {
1470 /* Exit loop upon hitting a predicated instruction if
1471 we already have the return register or if we are frameless. */
1472 if (trust_limit)
1473 lim_pc = pc;
1474 break;
1475 }
1476 else if (it == I && ((instr & 0x1eff8000000LL) == 0x00188000000LL))
1477 {
1478 /* Move from BR */
1479 int b2 = (int) ((instr & 0x0000000e000LL) >> 13);
1480 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1481 int qp = (int) (instr & 0x0000000003f);
1482
1483 if (qp == 0 && b2 == 0 && rN >= 32 && ret_reg == 0)
1484 {
1485 ret_reg = rN;
1486 last_prologue_pc = next_pc;
1487 }
1488 }
1489 else if ((it == I || it == M)
1490 && ((instr & 0x1ee00000000LL) == 0x10800000000LL))
1491 {
1492 /* adds rN = imm14, rM (or mov rN, rM when imm14 is 0) */
1493 int imm = (int) ((((instr & 0x01000000000LL) ? -1 : 0) << 13)
1494 | ((instr & 0x001f8000000LL) >> 20)
1495 | ((instr & 0x000000fe000LL) >> 13));
1496 int rM = (int) ((instr & 0x00007f00000LL) >> 20);
1497 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1498 int qp = (int) (instr & 0x0000000003fLL);
1499
1500 if (qp == 0 && rN >= 32 && imm == 0 && rM == 12 && fp_reg == 0)
1501 {
1502 /* mov rN, r12 */
1503 fp_reg = rN;
1504 last_prologue_pc = next_pc;
1505 }
1506 else if (qp == 0 && rN == 12 && rM == 12)
1507 {
1508 /* adds r12, -mem_stack_frame_size, r12 */
1509 mem_stack_frame_size -= imm;
1510 last_prologue_pc = next_pc;
1511 }
1512 else if (qp == 0 && rN == 2
1513 && ((rM == fp_reg && fp_reg != 0) || rM == 12))
1514 {
1515 CORE_ADDR saved_sp = 0;
1516 /* adds r2, spilloffset, rFramePointer
1517 or
1518 adds r2, spilloffset, r12
1519
1520 Get ready for stf.spill or st8.spill instructions.
1521 The address to start spilling at is loaded into r2.
1522 FIXME: Why r2? That's what gcc currently uses; it
1523 could well be different for other compilers. */
1524
1525 /* Hmm... whether or not this will work will depend on
1526 where the pc is. If it's still early in the prologue
1527 this'll be wrong. FIXME */
1528 if (this_frame)
1529 saved_sp = get_frame_register_unsigned (this_frame,
1530 sp_regnum);
1531 spill_addr = saved_sp
1532 + (rM == 12 ? 0 : mem_stack_frame_size)
1533 + imm;
1534 spill_reg = rN;
1535 last_prologue_pc = next_pc;
1536 }
1537 else if (qp == 0 && rM >= 32 && rM < 40 && !instores[rM-32] &&
1538 rN < 256 && imm == 0)
1539 {
1540 /* mov rN, rM where rM is an input register. */
1541 reg_contents[rN] = rM;
1542 last_prologue_pc = next_pc;
1543 }
1544 else if (frameless && qp == 0 && rN == fp_reg && imm == 0 &&
1545 rM == 2)
1546 {
1547 /* mov r12, r2 */
1548 last_prologue_pc = next_pc;
1549 break;
1550 }
1551 }
1552 else if (it == M
1553 && ( ((instr & 0x1efc0000000LL) == 0x0eec0000000LL)
1554 || ((instr & 0x1ffc8000000LL) == 0x0cec0000000LL) ))
1555 {
1556 /* stf.spill [rN] = fM, imm9
1557 or
1558 stf.spill [rN] = fM */
1559
1560 int imm = imm9(instr);
1561 int rN = (int) ((instr & 0x00007f00000LL) >> 20);
1562 int fM = (int) ((instr & 0x000000fe000LL) >> 13);
1563 int qp = (int) (instr & 0x0000000003fLL);
1564 if (qp == 0 && rN == spill_reg && spill_addr != 0
1565 && ((2 <= fM && fM <= 5) || (16 <= fM && fM <= 31)))
1566 {
1567 cache->saved_regs[IA64_FR0_REGNUM + fM] = spill_addr;
1568
1569 if ((instr & 0x1efc0000000LL) == 0x0eec0000000LL)
1570 spill_addr += imm;
1571 else
1572 spill_addr = 0; /* last one; must be done. */
1573 last_prologue_pc = next_pc;
1574 }
1575 }
1576 else if ((it == M && ((instr & 0x1eff8000000LL) == 0x02110000000LL))
1577 || (it == I && ((instr & 0x1eff8000000LL) == 0x00050000000LL)) )
1578 {
1579 /* mov.m rN = arM
1580 or
1581 mov.i rN = arM */
1582
1583 int arM = (int) ((instr & 0x00007f00000LL) >> 20);
1584 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1585 int qp = (int) (instr & 0x0000000003fLL);
1586 if (qp == 0 && isScratch (rN) && arM == 36 /* ar.unat */)
1587 {
1588 /* We have something like "mov.m r3 = ar.unat". Remember the
1589 r3 (or whatever) and watch for a store of this register... */
1590 unat_save_reg = rN;
1591 last_prologue_pc = next_pc;
1592 }
1593 }
1594 else if (it == I && ((instr & 0x1eff8000000LL) == 0x00198000000LL))
1595 {
1596 /* mov rN = pr */
1597 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1598 int qp = (int) (instr & 0x0000000003fLL);
1599 if (qp == 0 && isScratch (rN))
1600 {
1601 pr_save_reg = rN;
1602 last_prologue_pc = next_pc;
1603 }
1604 }
1605 else if (it == M
1606 && ( ((instr & 0x1ffc8000000LL) == 0x08cc0000000LL)
1607 || ((instr & 0x1efc0000000LL) == 0x0acc0000000LL)))
1608 {
1609 /* st8 [rN] = rM
1610 or
1611 st8 [rN] = rM, imm9 */
1612 int rN = (int) ((instr & 0x00007f00000LL) >> 20);
1613 int rM = (int) ((instr & 0x000000fe000LL) >> 13);
1614 int qp = (int) (instr & 0x0000000003fLL);
1615 int indirect = rM < 256 ? reg_contents[rM] : 0;
1616 if (qp == 0 && rN == spill_reg && spill_addr != 0
1617 && (rM == unat_save_reg || rM == pr_save_reg))
1618 {
1619 /* We've found a spill of either the UNAT register or the PR
1620 register. (Well, not exactly; what we've actually found is
1621 a spill of the register that UNAT or PR was moved to).
1622 Record that fact and move on... */
1623 if (rM == unat_save_reg)
1624 {
1625 /* Track UNAT register. */
1626 cache->saved_regs[IA64_UNAT_REGNUM] = spill_addr;
1627 unat_save_reg = 0;
1628 }
1629 else
1630 {
1631 /* Track PR register. */
1632 cache->saved_regs[IA64_PR_REGNUM] = spill_addr;
1633 pr_save_reg = 0;
1634 }
1635 if ((instr & 0x1efc0000000LL) == 0x0acc0000000LL)
1636 /* st8 [rN] = rM, imm9 */
1637 spill_addr += imm9(instr);
1638 else
1639 spill_addr = 0; /* Must be done spilling. */
1640 last_prologue_pc = next_pc;
1641 }
1642 else if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32])
1643 {
1644 /* Allow up to one store of each input register. */
1645 instores[rM-32] = 1;
1646 last_prologue_pc = next_pc;
1647 }
1648 else if (qp == 0 && 32 <= indirect && indirect < 40 &&
1649 !instores[indirect-32])
1650 {
1651 /* Allow an indirect store of an input register. */
1652 instores[indirect-32] = 1;
1653 last_prologue_pc = next_pc;
1654 }
1655 }
1656 else if (it == M && ((instr & 0x1ff08000000LL) == 0x08c00000000LL))
1657 {
1658 /* One of
1659 st1 [rN] = rM
1660 st2 [rN] = rM
1661 st4 [rN] = rM
1662 st8 [rN] = rM
1663 Note that the st8 case is handled in the clause above.
1664
1665 Advance over stores of input registers. One store per input
1666 register is permitted. */
1667 int rM = (int) ((instr & 0x000000fe000LL) >> 13);
1668 int qp = (int) (instr & 0x0000000003fLL);
1669 int indirect = rM < 256 ? reg_contents[rM] : 0;
1670 if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32])
1671 {
1672 instores[rM-32] = 1;
1673 last_prologue_pc = next_pc;
1674 }
1675 else if (qp == 0 && 32 <= indirect && indirect < 40 &&
1676 !instores[indirect-32])
1677 {
1678 /* Allow an indirect store of an input register. */
1679 instores[indirect-32] = 1;
1680 last_prologue_pc = next_pc;
1681 }
1682 }
1683 else if (it == M && ((instr & 0x1ff88000000LL) == 0x0cc80000000LL))
1684 {
1685 /* Either
1686 stfs [rN] = fM
1687 or
1688 stfd [rN] = fM
1689
1690 Advance over stores of floating point input registers. Again
1691 one store per register is permitted. */
1692 int fM = (int) ((instr & 0x000000fe000LL) >> 13);
1693 int qp = (int) (instr & 0x0000000003fLL);
1694 if (qp == 0 && 8 <= fM && fM < 16 && !infpstores[fM - 8])
1695 {
1696 infpstores[fM-8] = 1;
1697 last_prologue_pc = next_pc;
1698 }
1699 }
1700 else if (it == M
1701 && ( ((instr & 0x1ffc8000000LL) == 0x08ec0000000LL)
1702 || ((instr & 0x1efc0000000LL) == 0x0aec0000000LL)))
1703 {
1704 /* st8.spill [rN] = rM
1705 or
1706 st8.spill [rN] = rM, imm9 */
1707 int rN = (int) ((instr & 0x00007f00000LL) >> 20);
1708 int rM = (int) ((instr & 0x000000fe000LL) >> 13);
1709 int qp = (int) (instr & 0x0000000003fLL);
1710 if (qp == 0 && rN == spill_reg && 4 <= rM && rM <= 7)
1711 {
1712 /* We've found a spill of one of the preserved general purpose
1713 regs. Record the spill address and advance the spill
1714 register if appropriate. */
1715 cache->saved_regs[IA64_GR0_REGNUM + rM] = spill_addr;
1716 if ((instr & 0x1efc0000000LL) == 0x0aec0000000LL)
1717 /* st8.spill [rN] = rM, imm9 */
1718 spill_addr += imm9(instr);
1719 else
1720 spill_addr = 0; /* Done spilling. */
1721 last_prologue_pc = next_pc;
1722 }
1723 }
1724
1725 pc = next_pc;
1726 }
1727
1728 /* If not frameless and we aren't called by skip_prologue, then we need
1729 to calculate registers for the previous frame which will be needed
1730 later. */
1731
1732 if (!frameless && this_frame)
1733 {
1734 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1735 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1736
1737 /* Extract the size of the rotating portion of the stack
1738 frame and the register rename base from the current
1739 frame marker. */
1740 cfm = cache->cfm;
1741 sor = cache->sor;
1742 sof = cache->sof;
1743 sol = cache->sol;
1744 rrb_gr = (cfm >> 18) & 0x7f;
1745
1746 /* Find the bof (beginning of frame). */
1747 bof = rse_address_add (cache->bsp, -sof);
1748
1749 for (i = 0, addr = bof;
1750 i < sof;
1751 i++, addr += 8)
1752 {
1753 if (IS_NaT_COLLECTION_ADDR (addr))
1754 {
1755 addr += 8;
1756 }
1757 if (i+32 == cfm_reg)
1758 cache->saved_regs[IA64_CFM_REGNUM] = addr;
1759 if (i+32 == ret_reg)
1760 cache->saved_regs[IA64_VRAP_REGNUM] = addr;
1761 if (i+32 == fp_reg)
1762 cache->saved_regs[IA64_VFP_REGNUM] = addr;
1763 }
1764
1765 /* For the previous argument registers we require the previous bof.
1766 If we can't find the previous cfm, then we can do nothing. */
1767 cfm = 0;
1768 if (cache->saved_regs[IA64_CFM_REGNUM] != 0)
1769 {
1770 cfm = read_memory_integer (cache->saved_regs[IA64_CFM_REGNUM],
1771 8, byte_order);
1772 }
1773 else if (cfm_reg != 0)
1774 {
1775 get_frame_register (this_frame, cfm_reg, buf);
1776 cfm = extract_unsigned_integer (buf, 8, byte_order);
1777 }
1778 cache->prev_cfm = cfm;
1779
1780 if (cfm != 0)
1781 {
1782 sor = ((cfm >> 14) & 0xf) * 8;
1783 sof = (cfm & 0x7f);
1784 sol = (cfm >> 7) & 0x7f;
1785 rrb_gr = (cfm >> 18) & 0x7f;
1786
1787 /* The previous bof only requires subtraction of the sol (size of
1788 locals) due to the overlap between output and input of
1789 subsequent frames. */
1790 bof = rse_address_add (bof, -sol);
1791
1792 for (i = 0, addr = bof;
1793 i < sof;
1794 i++, addr += 8)
1795 {
1796 if (IS_NaT_COLLECTION_ADDR (addr))
1797 {
1798 addr += 8;
1799 }
1800 if (i < sor)
1801 cache->saved_regs[IA64_GR32_REGNUM
1802 + ((i + (sor - rrb_gr)) % sor)]
1803 = addr;
1804 else
1805 cache->saved_regs[IA64_GR32_REGNUM + i] = addr;
1806 }
1807
1808 }
1809 }
1810
1811 /* Try and trust the lim_pc value whenever possible. */
1812 if (trust_limit && lim_pc >= last_prologue_pc)
1813 last_prologue_pc = lim_pc;
1814
1815 cache->frameless = frameless;
1816 cache->after_prologue = last_prologue_pc;
1817 cache->mem_stack_frame_size = mem_stack_frame_size;
1818 cache->fp_reg = fp_reg;
1819
1820 return last_prologue_pc;
1821 }
1822
1823 CORE_ADDR
1824 ia64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1825 {
1826 struct ia64_frame_cache cache;
1827 cache.base = 0;
1828 cache.after_prologue = 0;
1829 cache.cfm = 0;
1830 cache.bsp = 0;
1831
1832 /* Call examine_prologue with - as third argument since we don't
1833 have a next frame pointer to send. */
1834 return examine_prologue (pc, pc+1024, 0, &cache);
1835 }
1836
1837
1838 /* Normal frames. */
1839
1840 static struct ia64_frame_cache *
1841 ia64_frame_cache (struct frame_info *this_frame, void **this_cache)
1842 {
1843 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1844 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1845 struct ia64_frame_cache *cache;
1846 gdb_byte buf[8];
1847 CORE_ADDR cfm;
1848
1849 if (*this_cache)
1850 return (struct ia64_frame_cache *) *this_cache;
1851
1852 cache = ia64_alloc_frame_cache ();
1853 *this_cache = cache;
1854
1855 get_frame_register (this_frame, sp_regnum, buf);
1856 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
1857
1858 /* We always want the bsp to point to the end of frame.
1859 This way, we can always get the beginning of frame (bof)
1860 by subtracting frame size. */
1861 get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
1862 cache->bsp = extract_unsigned_integer (buf, 8, byte_order);
1863
1864 get_frame_register (this_frame, IA64_PSR_REGNUM, buf);
1865
1866 get_frame_register (this_frame, IA64_CFM_REGNUM, buf);
1867 cfm = extract_unsigned_integer (buf, 8, byte_order);
1868
1869 cache->sof = (cfm & 0x7f);
1870 cache->sol = (cfm >> 7) & 0x7f;
1871 cache->sor = ((cfm >> 14) & 0xf) * 8;
1872
1873 cache->cfm = cfm;
1874
1875 cache->pc = get_frame_func (this_frame);
1876
1877 if (cache->pc != 0)
1878 examine_prologue (cache->pc, get_frame_pc (this_frame), this_frame, cache);
1879
1880 cache->base = cache->saved_sp + cache->mem_stack_frame_size;
1881
1882 return cache;
1883 }
1884
1885 static void
1886 ia64_frame_this_id (struct frame_info *this_frame, void **this_cache,
1887 struct frame_id *this_id)
1888 {
1889 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1890 struct ia64_frame_cache *cache =
1891 ia64_frame_cache (this_frame, this_cache);
1892
1893 /* If outermost frame, mark with null frame id. */
1894 if (cache->base != 0)
1895 (*this_id) = frame_id_build_special (cache->base, cache->pc, cache->bsp);
1896 if (gdbarch_debug >= 1)
1897 fprintf_unfiltered (gdb_stdlog,
1898 "regular frame id: code %s, stack %s, "
1899 "special %s, this_frame %s\n",
1900 paddress (gdbarch, this_id->code_addr),
1901 paddress (gdbarch, this_id->stack_addr),
1902 paddress (gdbarch, cache->bsp),
1903 host_address_to_string (this_frame));
1904 }
1905
1906 static struct value *
1907 ia64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1908 int regnum)
1909 {
1910 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1911 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1912 struct ia64_frame_cache *cache = ia64_frame_cache (this_frame, this_cache);
1913 gdb_byte buf[8];
1914
1915 gdb_assert (regnum >= 0);
1916
1917 if (!target_has_registers)
1918 error (_("No registers."));
1919
1920 if (regnum == gdbarch_sp_regnum (gdbarch))
1921 return frame_unwind_got_constant (this_frame, regnum, cache->base);
1922
1923 else if (regnum == IA64_BSP_REGNUM)
1924 {
1925 struct value *val;
1926 CORE_ADDR prev_cfm, bsp, prev_bsp;
1927
1928 /* We want to calculate the previous bsp as the end of the previous
1929 register stack frame. This corresponds to what the hardware bsp
1930 register will be if we pop the frame back which is why we might
1931 have been called. We know the beginning of the current frame is
1932 cache->bsp - cache->sof. This value in the previous frame points
1933 to the start of the output registers. We can calculate the end of
1934 that frame by adding the size of output:
1935 (sof (size of frame) - sol (size of locals)). */
1936 val = ia64_frame_prev_register (this_frame, this_cache, IA64_CFM_REGNUM);
1937 prev_cfm = extract_unsigned_integer (value_contents_all (val),
1938 8, byte_order);
1939 bsp = rse_address_add (cache->bsp, -(cache->sof));
1940 prev_bsp =
1941 rse_address_add (bsp, (prev_cfm & 0x7f) - ((prev_cfm >> 7) & 0x7f));
1942
1943 return frame_unwind_got_constant (this_frame, regnum, prev_bsp);
1944 }
1945
1946 else if (regnum == IA64_CFM_REGNUM)
1947 {
1948 CORE_ADDR addr = cache->saved_regs[IA64_CFM_REGNUM];
1949
1950 if (addr != 0)
1951 return frame_unwind_got_memory (this_frame, regnum, addr);
1952
1953 if (cache->prev_cfm)
1954 return frame_unwind_got_constant (this_frame, regnum, cache->prev_cfm);
1955
1956 if (cache->frameless)
1957 return frame_unwind_got_register (this_frame, IA64_PFS_REGNUM,
1958 IA64_PFS_REGNUM);
1959 return frame_unwind_got_register (this_frame, regnum, 0);
1960 }
1961
1962 else if (regnum == IA64_VFP_REGNUM)
1963 {
1964 /* If the function in question uses an automatic register (r32-r127)
1965 for the frame pointer, it'll be found by ia64_find_saved_register()
1966 above. If the function lacks one of these frame pointers, we can
1967 still provide a value since we know the size of the frame. */
1968 return frame_unwind_got_constant (this_frame, regnum, cache->base);
1969 }
1970
1971 else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
1972 {
1973 struct value *pr_val;
1974 ULONGEST prN;
1975
1976 pr_val = ia64_frame_prev_register (this_frame, this_cache,
1977 IA64_PR_REGNUM);
1978 if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
1979 {
1980 /* Fetch predicate register rename base from current frame
1981 marker for this frame. */
1982 int rrb_pr = (cache->cfm >> 32) & 0x3f;
1983
1984 /* Adjust the register number to account for register rotation. */
1985 regnum = VP16_REGNUM + ((regnum - VP16_REGNUM) + rrb_pr) % 48;
1986 }
1987 prN = extract_bit_field (value_contents_all (pr_val),
1988 regnum - VP0_REGNUM, 1);
1989 return frame_unwind_got_constant (this_frame, regnum, prN);
1990 }
1991
1992 else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM)
1993 {
1994 struct value *unat_val;
1995 ULONGEST unatN;
1996 unat_val = ia64_frame_prev_register (this_frame, this_cache,
1997 IA64_UNAT_REGNUM);
1998 unatN = extract_bit_field (value_contents_all (unat_val),
1999 regnum - IA64_NAT0_REGNUM, 1);
2000 return frame_unwind_got_constant (this_frame, regnum, unatN);
2001 }
2002
2003 else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
2004 {
2005 int natval = 0;
2006 /* Find address of general register corresponding to nat bit we're
2007 interested in. */
2008 CORE_ADDR gr_addr;
2009
2010 gr_addr = cache->saved_regs[regnum - IA64_NAT0_REGNUM + IA64_GR0_REGNUM];
2011
2012 if (gr_addr != 0)
2013 {
2014 /* Compute address of nat collection bits. */
2015 CORE_ADDR nat_addr = gr_addr | 0x1f8;
2016 CORE_ADDR bsp;
2017 CORE_ADDR nat_collection;
2018 int nat_bit;
2019
2020 /* If our nat collection address is bigger than bsp, we have to get
2021 the nat collection from rnat. Otherwise, we fetch the nat
2022 collection from the computed address. */
2023 get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
2024 bsp = extract_unsigned_integer (buf, 8, byte_order);
2025 if (nat_addr >= bsp)
2026 {
2027 get_frame_register (this_frame, IA64_RNAT_REGNUM, buf);
2028 nat_collection = extract_unsigned_integer (buf, 8, byte_order);
2029 }
2030 else
2031 nat_collection = read_memory_integer (nat_addr, 8, byte_order);
2032 nat_bit = (gr_addr >> 3) & 0x3f;
2033 natval = (nat_collection >> nat_bit) & 1;
2034 }
2035
2036 return frame_unwind_got_constant (this_frame, regnum, natval);
2037 }
2038
2039 else if (regnum == IA64_IP_REGNUM)
2040 {
2041 CORE_ADDR pc = 0;
2042 CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM];
2043
2044 if (addr != 0)
2045 {
2046 read_memory (addr, buf, register_size (gdbarch, IA64_IP_REGNUM));
2047 pc = extract_unsigned_integer (buf, 8, byte_order);
2048 }
2049 else if (cache->frameless)
2050 {
2051 get_frame_register (this_frame, IA64_BR0_REGNUM, buf);
2052 pc = extract_unsigned_integer (buf, 8, byte_order);
2053 }
2054 pc &= ~0xf;
2055 return frame_unwind_got_constant (this_frame, regnum, pc);
2056 }
2057
2058 else if (regnum == IA64_PSR_REGNUM)
2059 {
2060 /* We don't know how to get the complete previous PSR, but we need it
2061 for the slot information when we unwind the pc (pc is formed of IP
2062 register plus slot information from PSR). To get the previous
2063 slot information, we mask it off the return address. */
2064 ULONGEST slot_num = 0;
2065 CORE_ADDR pc = 0;
2066 CORE_ADDR psr = 0;
2067 CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM];
2068
2069 get_frame_register (this_frame, IA64_PSR_REGNUM, buf);
2070 psr = extract_unsigned_integer (buf, 8, byte_order);
2071
2072 if (addr != 0)
2073 {
2074 read_memory (addr, buf, register_size (gdbarch, IA64_IP_REGNUM));
2075 pc = extract_unsigned_integer (buf, 8, byte_order);
2076 }
2077 else if (cache->frameless)
2078 {
2079 get_frame_register (this_frame, IA64_BR0_REGNUM, buf);
2080 pc = extract_unsigned_integer (buf, 8, byte_order);
2081 }
2082 psr &= ~(3LL << 41);
2083 slot_num = pc & 0x3LL;
2084 psr |= (CORE_ADDR)slot_num << 41;
2085 return frame_unwind_got_constant (this_frame, regnum, psr);
2086 }
2087
2088 else if (regnum == IA64_BR0_REGNUM)
2089 {
2090 CORE_ADDR addr = cache->saved_regs[IA64_BR0_REGNUM];
2091
2092 if (addr != 0)
2093 return frame_unwind_got_memory (this_frame, regnum, addr);
2094
2095 return frame_unwind_got_constant (this_frame, regnum, 0);
2096 }
2097
2098 else if ((regnum >= IA64_GR32_REGNUM && regnum <= IA64_GR127_REGNUM)
2099 || (regnum >= V32_REGNUM && regnum <= V127_REGNUM))
2100 {
2101 CORE_ADDR addr = 0;
2102
2103 if (regnum >= V32_REGNUM)
2104 regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM);
2105 addr = cache->saved_regs[regnum];
2106 if (addr != 0)
2107 return frame_unwind_got_memory (this_frame, regnum, addr);
2108
2109 if (cache->frameless)
2110 {
2111 struct value *reg_val;
2112 CORE_ADDR prev_cfm, prev_bsp, prev_bof;
2113
2114 /* FIXME: brobecker/2008-05-01: Doesn't this seem redundant
2115 with the same code above? */
2116 if (regnum >= V32_REGNUM)
2117 regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM);
2118 reg_val = ia64_frame_prev_register (this_frame, this_cache,
2119 IA64_CFM_REGNUM);
2120 prev_cfm = extract_unsigned_integer (value_contents_all (reg_val),
2121 8, byte_order);
2122 reg_val = ia64_frame_prev_register (this_frame, this_cache,
2123 IA64_BSP_REGNUM);
2124 prev_bsp = extract_unsigned_integer (value_contents_all (reg_val),
2125 8, byte_order);
2126 prev_bof = rse_address_add (prev_bsp, -(prev_cfm & 0x7f));
2127
2128 addr = rse_address_add (prev_bof, (regnum - IA64_GR32_REGNUM));
2129 return frame_unwind_got_memory (this_frame, regnum, addr);
2130 }
2131
2132 return frame_unwind_got_constant (this_frame, regnum, 0);
2133 }
2134
2135 else /* All other registers. */
2136 {
2137 CORE_ADDR addr = 0;
2138
2139 if (IA64_FR32_REGNUM <= regnum && regnum <= IA64_FR127_REGNUM)
2140 {
2141 /* Fetch floating point register rename base from current
2142 frame marker for this frame. */
2143 int rrb_fr = (cache->cfm >> 25) & 0x7f;
2144
2145 /* Adjust the floating point register number to account for
2146 register rotation. */
2147 regnum = IA64_FR32_REGNUM
2148 + ((regnum - IA64_FR32_REGNUM) + rrb_fr) % 96;
2149 }
2150
2151 /* If we have stored a memory address, access the register. */
2152 addr = cache->saved_regs[regnum];
2153 if (addr != 0)
2154 return frame_unwind_got_memory (this_frame, regnum, addr);
2155 /* Otherwise, punt and get the current value of the register. */
2156 else
2157 return frame_unwind_got_register (this_frame, regnum, regnum);
2158 }
2159 }
2160
2161 static const struct frame_unwind ia64_frame_unwind =
2162 {
2163 NORMAL_FRAME,
2164 default_frame_unwind_stop_reason,
2165 &ia64_frame_this_id,
2166 &ia64_frame_prev_register,
2167 NULL,
2168 default_frame_sniffer
2169 };
2170
2171 /* Signal trampolines. */
2172
2173 static void
2174 ia64_sigtramp_frame_init_saved_regs (struct frame_info *this_frame,
2175 struct ia64_frame_cache *cache)
2176 {
2177 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2178 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2179
2180 if (tdep->sigcontext_register_address)
2181 {
2182 int regno;
2183
2184 cache->saved_regs[IA64_VRAP_REGNUM]
2185 = tdep->sigcontext_register_address (gdbarch, cache->base,
2186 IA64_IP_REGNUM);
2187 cache->saved_regs[IA64_CFM_REGNUM]
2188 = tdep->sigcontext_register_address (gdbarch, cache->base,
2189 IA64_CFM_REGNUM);
2190 cache->saved_regs[IA64_PSR_REGNUM]
2191 = tdep->sigcontext_register_address (gdbarch, cache->base,
2192 IA64_PSR_REGNUM);
2193 cache->saved_regs[IA64_BSP_REGNUM]
2194 = tdep->sigcontext_register_address (gdbarch, cache->base,
2195 IA64_BSP_REGNUM);
2196 cache->saved_regs[IA64_RNAT_REGNUM]
2197 = tdep->sigcontext_register_address (gdbarch, cache->base,
2198 IA64_RNAT_REGNUM);
2199 cache->saved_regs[IA64_CCV_REGNUM]
2200 = tdep->sigcontext_register_address (gdbarch, cache->base,
2201 IA64_CCV_REGNUM);
2202 cache->saved_regs[IA64_UNAT_REGNUM]
2203 = tdep->sigcontext_register_address (gdbarch, cache->base,
2204 IA64_UNAT_REGNUM);
2205 cache->saved_regs[IA64_FPSR_REGNUM]
2206 = tdep->sigcontext_register_address (gdbarch, cache->base,
2207 IA64_FPSR_REGNUM);
2208 cache->saved_regs[IA64_PFS_REGNUM]
2209 = tdep->sigcontext_register_address (gdbarch, cache->base,
2210 IA64_PFS_REGNUM);
2211 cache->saved_regs[IA64_LC_REGNUM]
2212 = tdep->sigcontext_register_address (gdbarch, cache->base,
2213 IA64_LC_REGNUM);
2214
2215 for (regno = IA64_GR1_REGNUM; regno <= IA64_GR31_REGNUM; regno++)
2216 cache->saved_regs[regno] =
2217 tdep->sigcontext_register_address (gdbarch, cache->base, regno);
2218 for (regno = IA64_BR0_REGNUM; regno <= IA64_BR7_REGNUM; regno++)
2219 cache->saved_regs[regno] =
2220 tdep->sigcontext_register_address (gdbarch, cache->base, regno);
2221 for (regno = IA64_FR2_REGNUM; regno <= IA64_FR31_REGNUM; regno++)
2222 cache->saved_regs[regno] =
2223 tdep->sigcontext_register_address (gdbarch, cache->base, regno);
2224 }
2225 }
2226
2227 static struct ia64_frame_cache *
2228 ia64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2229 {
2230 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2231 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2232 struct ia64_frame_cache *cache;
2233 gdb_byte buf[8];
2234
2235 if (*this_cache)
2236 return (struct ia64_frame_cache *) *this_cache;
2237
2238 cache = ia64_alloc_frame_cache ();
2239
2240 get_frame_register (this_frame, sp_regnum, buf);
2241 /* Note that frame size is hard-coded below. We cannot calculate it
2242 via prologue examination. */
2243 cache->base = extract_unsigned_integer (buf, 8, byte_order) + 16;
2244
2245 get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
2246 cache->bsp = extract_unsigned_integer (buf, 8, byte_order);
2247
2248 get_frame_register (this_frame, IA64_CFM_REGNUM, buf);
2249 cache->cfm = extract_unsigned_integer (buf, 8, byte_order);
2250 cache->sof = cache->cfm & 0x7f;
2251
2252 ia64_sigtramp_frame_init_saved_regs (this_frame, cache);
2253
2254 *this_cache = cache;
2255 return cache;
2256 }
2257
2258 static void
2259 ia64_sigtramp_frame_this_id (struct frame_info *this_frame,
2260 void **this_cache, struct frame_id *this_id)
2261 {
2262 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2263 struct ia64_frame_cache *cache =
2264 ia64_sigtramp_frame_cache (this_frame, this_cache);
2265
2266 (*this_id) = frame_id_build_special (cache->base,
2267 get_frame_pc (this_frame),
2268 cache->bsp);
2269 if (gdbarch_debug >= 1)
2270 fprintf_unfiltered (gdb_stdlog,
2271 "sigtramp frame id: code %s, stack %s, "
2272 "special %s, this_frame %s\n",
2273 paddress (gdbarch, this_id->code_addr),
2274 paddress (gdbarch, this_id->stack_addr),
2275 paddress (gdbarch, cache->bsp),
2276 host_address_to_string (this_frame));
2277 }
2278
2279 static struct value *
2280 ia64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2281 void **this_cache, int regnum)
2282 {
2283 struct ia64_frame_cache *cache =
2284 ia64_sigtramp_frame_cache (this_frame, this_cache);
2285
2286 gdb_assert (regnum >= 0);
2287
2288 if (!target_has_registers)
2289 error (_("No registers."));
2290
2291 if (regnum == IA64_IP_REGNUM)
2292 {
2293 CORE_ADDR pc = 0;
2294 CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM];
2295
2296 if (addr != 0)
2297 {
2298 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2299 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2300 pc = read_memory_unsigned_integer (addr, 8, byte_order);
2301 }
2302 pc &= ~0xf;
2303 return frame_unwind_got_constant (this_frame, regnum, pc);
2304 }
2305
2306 else if ((regnum >= IA64_GR32_REGNUM && regnum <= IA64_GR127_REGNUM)
2307 || (regnum >= V32_REGNUM && regnum <= V127_REGNUM))
2308 {
2309 CORE_ADDR addr = 0;
2310
2311 if (regnum >= V32_REGNUM)
2312 regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM);
2313 addr = cache->saved_regs[regnum];
2314 if (addr != 0)
2315 return frame_unwind_got_memory (this_frame, regnum, addr);
2316
2317 return frame_unwind_got_constant (this_frame, regnum, 0);
2318 }
2319
2320 else /* All other registers not listed above. */
2321 {
2322 CORE_ADDR addr = cache->saved_regs[regnum];
2323
2324 if (addr != 0)
2325 return frame_unwind_got_memory (this_frame, regnum, addr);
2326
2327 return frame_unwind_got_constant (this_frame, regnum, 0);
2328 }
2329 }
2330
2331 static int
2332 ia64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2333 struct frame_info *this_frame,
2334 void **this_cache)
2335 {
2336 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2337 if (tdep->pc_in_sigtramp)
2338 {
2339 CORE_ADDR pc = get_frame_pc (this_frame);
2340
2341 if (tdep->pc_in_sigtramp (pc))
2342 return 1;
2343 }
2344
2345 return 0;
2346 }
2347
2348 static const struct frame_unwind ia64_sigtramp_frame_unwind =
2349 {
2350 SIGTRAMP_FRAME,
2351 default_frame_unwind_stop_reason,
2352 ia64_sigtramp_frame_this_id,
2353 ia64_sigtramp_frame_prev_register,
2354 NULL,
2355 ia64_sigtramp_frame_sniffer
2356 };
2357
2358 \f
2359
2360 static CORE_ADDR
2361 ia64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2362 {
2363 struct ia64_frame_cache *cache = ia64_frame_cache (this_frame, this_cache);
2364
2365 return cache->base;
2366 }
2367
2368 static const struct frame_base ia64_frame_base =
2369 {
2370 &ia64_frame_unwind,
2371 ia64_frame_base_address,
2372 ia64_frame_base_address,
2373 ia64_frame_base_address
2374 };
2375
2376 #ifdef HAVE_LIBUNWIND_IA64_H
2377
2378 struct ia64_unwind_table_entry
2379 {
2380 unw_word_t start_offset;
2381 unw_word_t end_offset;
2382 unw_word_t info_offset;
2383 };
2384
2385 static __inline__ uint64_t
2386 ia64_rse_slot_num (uint64_t addr)
2387 {
2388 return (addr >> 3) & 0x3f;
2389 }
2390
2391 /* Skip over a designated number of registers in the backing
2392 store, remembering every 64th position is for NAT. */
2393 static __inline__ uint64_t
2394 ia64_rse_skip_regs (uint64_t addr, long num_regs)
2395 {
2396 long delta = ia64_rse_slot_num(addr) + num_regs;
2397
2398 if (num_regs < 0)
2399 delta -= 0x3e;
2400 return addr + ((num_regs + delta/0x3f) << 3);
2401 }
2402
2403 /* Gdb ia64-libunwind-tdep callback function to convert from an ia64 gdb
2404 register number to a libunwind register number. */
2405 static int
2406 ia64_gdb2uw_regnum (int regnum)
2407 {
2408 if (regnum == sp_regnum)
2409 return UNW_IA64_SP;
2410 else if (regnum == IA64_BSP_REGNUM)
2411 return UNW_IA64_BSP;
2412 else if ((unsigned) (regnum - IA64_GR0_REGNUM) < 128)
2413 return UNW_IA64_GR + (regnum - IA64_GR0_REGNUM);
2414 else if ((unsigned) (regnum - V32_REGNUM) < 95)
2415 return UNW_IA64_GR + 32 + (regnum - V32_REGNUM);
2416 else if ((unsigned) (regnum - IA64_FR0_REGNUM) < 128)
2417 return UNW_IA64_FR + (regnum - IA64_FR0_REGNUM);
2418 else if ((unsigned) (regnum - IA64_PR0_REGNUM) < 64)
2419 return -1;
2420 else if ((unsigned) (regnum - IA64_BR0_REGNUM) < 8)
2421 return UNW_IA64_BR + (regnum - IA64_BR0_REGNUM);
2422 else if (regnum == IA64_PR_REGNUM)
2423 return UNW_IA64_PR;
2424 else if (regnum == IA64_IP_REGNUM)
2425 return UNW_REG_IP;
2426 else if (regnum == IA64_CFM_REGNUM)
2427 return UNW_IA64_CFM;
2428 else if ((unsigned) (regnum - IA64_AR0_REGNUM) < 128)
2429 return UNW_IA64_AR + (regnum - IA64_AR0_REGNUM);
2430 else if ((unsigned) (regnum - IA64_NAT0_REGNUM) < 128)
2431 return UNW_IA64_NAT + (regnum - IA64_NAT0_REGNUM);
2432 else
2433 return -1;
2434 }
2435
2436 /* Gdb ia64-libunwind-tdep callback function to convert from a libunwind
2437 register number to a ia64 gdb register number. */
2438 static int
2439 ia64_uw2gdb_regnum (int uw_regnum)
2440 {
2441 if (uw_regnum == UNW_IA64_SP)
2442 return sp_regnum;
2443 else if (uw_regnum == UNW_IA64_BSP)
2444 return IA64_BSP_REGNUM;
2445 else if ((unsigned) (uw_regnum - UNW_IA64_GR) < 32)
2446 return IA64_GR0_REGNUM + (uw_regnum - UNW_IA64_GR);
2447 else if ((unsigned) (uw_regnum - UNW_IA64_GR) < 128)
2448 return V32_REGNUM + (uw_regnum - (IA64_GR0_REGNUM + 32));
2449 else if ((unsigned) (uw_regnum - UNW_IA64_FR) < 128)
2450 return IA64_FR0_REGNUM + (uw_regnum - UNW_IA64_FR);
2451 else if ((unsigned) (uw_regnum - UNW_IA64_BR) < 8)
2452 return IA64_BR0_REGNUM + (uw_regnum - UNW_IA64_BR);
2453 else if (uw_regnum == UNW_IA64_PR)
2454 return IA64_PR_REGNUM;
2455 else if (uw_regnum == UNW_REG_IP)
2456 return IA64_IP_REGNUM;
2457 else if (uw_regnum == UNW_IA64_CFM)
2458 return IA64_CFM_REGNUM;
2459 else if ((unsigned) (uw_regnum - UNW_IA64_AR) < 128)
2460 return IA64_AR0_REGNUM + (uw_regnum - UNW_IA64_AR);
2461 else if ((unsigned) (uw_regnum - UNW_IA64_NAT) < 128)
2462 return IA64_NAT0_REGNUM + (uw_regnum - UNW_IA64_NAT);
2463 else
2464 return -1;
2465 }
2466
2467 /* Gdb ia64-libunwind-tdep callback function to reveal if register is
2468 a float register or not. */
2469 static int
2470 ia64_is_fpreg (int uw_regnum)
2471 {
2472 return unw_is_fpreg (uw_regnum);
2473 }
2474
2475 /* Libunwind callback accessor function for general registers. */
2476 static int
2477 ia64_access_reg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_word_t *val,
2478 int write, void *arg)
2479 {
2480 int regnum = ia64_uw2gdb_regnum (uw_regnum);
2481 unw_word_t bsp, sof, cfm, psr, ip;
2482 struct frame_info *this_frame = (struct frame_info *) arg;
2483 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2484
2485 /* We never call any libunwind routines that need to write registers. */
2486 gdb_assert (!write);
2487
2488 switch (uw_regnum)
2489 {
2490 case UNW_REG_IP:
2491 /* Libunwind expects to see the pc value which means the slot number
2492 from the psr must be merged with the ip word address. */
2493 ip = get_frame_register_unsigned (this_frame, IA64_IP_REGNUM);
2494 psr = get_frame_register_unsigned (this_frame, IA64_PSR_REGNUM);
2495 *val = ip | ((psr >> 41) & 0x3);
2496 break;
2497
2498 case UNW_IA64_AR_BSP:
2499 /* Libunwind expects to see the beginning of the current
2500 register frame so we must account for the fact that
2501 ptrace() will return a value for bsp that points *after*
2502 the current register frame. */
2503 bsp = get_frame_register_unsigned (this_frame, IA64_BSP_REGNUM);
2504 cfm = get_frame_register_unsigned (this_frame, IA64_CFM_REGNUM);
2505 sof = gdbarch_tdep (gdbarch)->size_of_register_frame (this_frame, cfm);
2506 *val = ia64_rse_skip_regs (bsp, -sof);
2507 break;
2508
2509 case UNW_IA64_AR_BSPSTORE:
2510 /* Libunwind wants bspstore to be after the current register frame.
2511 This is what ptrace() and gdb treats as the regular bsp value. */
2512 *val = get_frame_register_unsigned (this_frame, IA64_BSP_REGNUM);
2513 break;
2514
2515 default:
2516 /* For all other registers, just unwind the value directly. */
2517 *val = get_frame_register_unsigned (this_frame, regnum);
2518 break;
2519 }
2520
2521 if (gdbarch_debug >= 1)
2522 fprintf_unfiltered (gdb_stdlog,
2523 " access_reg: from cache: %4s=%s\n",
2524 (((unsigned) regnum <= IA64_NAT127_REGNUM)
2525 ? ia64_register_names[regnum] : "r??"),
2526 paddress (gdbarch, *val));
2527 return 0;
2528 }
2529
2530 /* Libunwind callback accessor function for floating-point registers. */
2531 static int
2532 ia64_access_fpreg (unw_addr_space_t as, unw_regnum_t uw_regnum,
2533 unw_fpreg_t *val, int write, void *arg)
2534 {
2535 int regnum = ia64_uw2gdb_regnum (uw_regnum);
2536 struct frame_info *this_frame = (struct frame_info *) arg;
2537
2538 /* We never call any libunwind routines that need to write registers. */
2539 gdb_assert (!write);
2540
2541 get_frame_register (this_frame, regnum, (gdb_byte *) val);
2542
2543 return 0;
2544 }
2545
2546 /* Libunwind callback accessor function for top-level rse registers. */
2547 static int
2548 ia64_access_rse_reg (unw_addr_space_t as, unw_regnum_t uw_regnum,
2549 unw_word_t *val, int write, void *arg)
2550 {
2551 int regnum = ia64_uw2gdb_regnum (uw_regnum);
2552 unw_word_t bsp, sof, cfm, psr, ip;
2553 struct regcache *regcache = (struct regcache *) arg;
2554 struct gdbarch *gdbarch = regcache->arch ();
2555
2556 /* We never call any libunwind routines that need to write registers. */
2557 gdb_assert (!write);
2558
2559 switch (uw_regnum)
2560 {
2561 case UNW_REG_IP:
2562 /* Libunwind expects to see the pc value which means the slot number
2563 from the psr must be merged with the ip word address. */
2564 regcache_cooked_read_unsigned (regcache, IA64_IP_REGNUM, &ip);
2565 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
2566 *val = ip | ((psr >> 41) & 0x3);
2567 break;
2568
2569 case UNW_IA64_AR_BSP:
2570 /* Libunwind expects to see the beginning of the current
2571 register frame so we must account for the fact that
2572 ptrace() will return a value for bsp that points *after*
2573 the current register frame. */
2574 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
2575 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
2576 sof = (cfm & 0x7f);
2577 *val = ia64_rse_skip_regs (bsp, -sof);
2578 break;
2579
2580 case UNW_IA64_AR_BSPSTORE:
2581 /* Libunwind wants bspstore to be after the current register frame.
2582 This is what ptrace() and gdb treats as the regular bsp value. */
2583 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, val);
2584 break;
2585
2586 default:
2587 /* For all other registers, just unwind the value directly. */
2588 regcache_cooked_read_unsigned (regcache, regnum, val);
2589 break;
2590 }
2591
2592 if (gdbarch_debug >= 1)
2593 fprintf_unfiltered (gdb_stdlog,
2594 " access_rse_reg: from cache: %4s=%s\n",
2595 (((unsigned) regnum <= IA64_NAT127_REGNUM)
2596 ? ia64_register_names[regnum] : "r??"),
2597 paddress (gdbarch, *val));
2598
2599 return 0;
2600 }
2601
2602 /* Libunwind callback accessor function for top-level fp registers. */
2603 static int
2604 ia64_access_rse_fpreg (unw_addr_space_t as, unw_regnum_t uw_regnum,
2605 unw_fpreg_t *val, int write, void *arg)
2606 {
2607 int regnum = ia64_uw2gdb_regnum (uw_regnum);
2608 struct regcache *regcache = (struct regcache *) arg;
2609
2610 /* We never call any libunwind routines that need to write registers. */
2611 gdb_assert (!write);
2612
2613 regcache->cooked_read (regnum, (gdb_byte *) val);
2614
2615 return 0;
2616 }
2617
2618 /* Libunwind callback accessor function for accessing memory. */
2619 static int
2620 ia64_access_mem (unw_addr_space_t as,
2621 unw_word_t addr, unw_word_t *val,
2622 int write, void *arg)
2623 {
2624 if (addr - KERNEL_START < ktab_size)
2625 {
2626 unw_word_t *laddr = (unw_word_t*) ((char *) ktab
2627 + (addr - KERNEL_START));
2628
2629 if (write)
2630 *laddr = *val;
2631 else
2632 *val = *laddr;
2633 return 0;
2634 }
2635
2636 /* XXX do we need to normalize byte-order here? */
2637 if (write)
2638 return target_write_memory (addr, (gdb_byte *) val, sizeof (unw_word_t));
2639 else
2640 return target_read_memory (addr, (gdb_byte *) val, sizeof (unw_word_t));
2641 }
2642
2643 /* Call low-level function to access the kernel unwind table. */
2644 static gdb::optional<gdb::byte_vector>
2645 getunwind_table ()
2646 {
2647 /* FIXME drow/2005-09-10: This code used to call
2648 ia64_linux_xfer_unwind_table directly to fetch the unwind table
2649 for the currently running ia64-linux kernel. That data should
2650 come from the core file and be accessed via the auxv vector; if
2651 we want to preserve fall back to the running kernel's table, then
2652 we should find a way to override the corefile layer's
2653 xfer_partial method. */
2654
2655 return target_read_alloc (current_top_target (), TARGET_OBJECT_UNWIND_TABLE,
2656 NULL);
2657 }
2658
2659 /* Get the kernel unwind table. */
2660 static int
2661 get_kernel_table (unw_word_t ip, unw_dyn_info_t *di)
2662 {
2663 static struct ia64_table_entry *etab;
2664
2665 if (!ktab)
2666 {
2667 ktab_buf = getunwind_table ();
2668 if (!ktab_buf)
2669 return -UNW_ENOINFO;
2670
2671 ktab = (struct ia64_table_entry *) ktab_buf->data ();
2672 ktab_size = ktab_buf->size ();
2673
2674 for (etab = ktab; etab->start_offset; ++etab)
2675 etab->info_offset += KERNEL_START;
2676 }
2677
2678 if (ip < ktab[0].start_offset || ip >= etab[-1].end_offset)
2679 return -UNW_ENOINFO;
2680
2681 di->format = UNW_INFO_FORMAT_TABLE;
2682 di->gp = 0;
2683 di->start_ip = ktab[0].start_offset;
2684 di->end_ip = etab[-1].end_offset;
2685 di->u.ti.name_ptr = (unw_word_t) "<kernel>";
2686 di->u.ti.segbase = 0;
2687 di->u.ti.table_len = ((char *) etab - (char *) ktab) / sizeof (unw_word_t);
2688 di->u.ti.table_data = (unw_word_t *) ktab;
2689
2690 if (gdbarch_debug >= 1)
2691 fprintf_unfiltered (gdb_stdlog, "get_kernel_table: found table `%s': "
2692 "segbase=%s, length=%s, gp=%s\n",
2693 (char *) di->u.ti.name_ptr,
2694 hex_string (di->u.ti.segbase),
2695 pulongest (di->u.ti.table_len),
2696 hex_string (di->gp));
2697 return 0;
2698 }
2699
2700 /* Find the unwind table entry for a specified address. */
2701 static int
2702 ia64_find_unwind_table (struct objfile *objfile, unw_word_t ip,
2703 unw_dyn_info_t *dip, void **buf)
2704 {
2705 Elf_Internal_Phdr *phdr, *p_text = NULL, *p_unwind = NULL;
2706 Elf_Internal_Ehdr *ehdr;
2707 unw_word_t segbase = 0;
2708 CORE_ADDR load_base;
2709 bfd *bfd;
2710 int i;
2711
2712 bfd = objfile->obfd;
2713
2714 ehdr = elf_tdata (bfd)->elf_header;
2715 phdr = elf_tdata (bfd)->phdr;
2716
2717 load_base = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2718
2719 for (i = 0; i < ehdr->e_phnum; ++i)
2720 {
2721 switch (phdr[i].p_type)
2722 {
2723 case PT_LOAD:
2724 if ((unw_word_t) (ip - load_base - phdr[i].p_vaddr)
2725 < phdr[i].p_memsz)
2726 p_text = phdr + i;
2727 break;
2728
2729 case PT_IA_64_UNWIND:
2730 p_unwind = phdr + i;
2731 break;
2732
2733 default:
2734 break;
2735 }
2736 }
2737
2738 if (!p_text || !p_unwind)
2739 return -UNW_ENOINFO;
2740
2741 /* Verify that the segment that contains the IP also contains
2742 the static unwind table. If not, we may be in the Linux kernel's
2743 DSO gate page in which case the unwind table is another segment.
2744 Otherwise, we are dealing with runtime-generated code, for which we
2745 have no info here. */
2746 segbase = p_text->p_vaddr + load_base;
2747
2748 if ((p_unwind->p_vaddr - p_text->p_vaddr) >= p_text->p_memsz)
2749 {
2750 int ok = 0;
2751 for (i = 0; i < ehdr->e_phnum; ++i)
2752 {
2753 if (phdr[i].p_type == PT_LOAD
2754 && (p_unwind->p_vaddr - phdr[i].p_vaddr) < phdr[i].p_memsz)
2755 {
2756 ok = 1;
2757 /* Get the segbase from the section containing the
2758 libunwind table. */
2759 segbase = phdr[i].p_vaddr + load_base;
2760 }
2761 }
2762 if (!ok)
2763 return -UNW_ENOINFO;
2764 }
2765
2766 dip->start_ip = p_text->p_vaddr + load_base;
2767 dip->end_ip = dip->start_ip + p_text->p_memsz;
2768 dip->gp = ia64_find_global_pointer (get_objfile_arch (objfile), ip);
2769 dip->format = UNW_INFO_FORMAT_REMOTE_TABLE;
2770 dip->u.rti.name_ptr = (unw_word_t) bfd_get_filename (bfd);
2771 dip->u.rti.segbase = segbase;
2772 dip->u.rti.table_len = p_unwind->p_memsz / sizeof (unw_word_t);
2773 dip->u.rti.table_data = p_unwind->p_vaddr + load_base;
2774
2775 return 0;
2776 }
2777
2778 /* Libunwind callback accessor function to acquire procedure unwind-info. */
2779 static int
2780 ia64_find_proc_info_x (unw_addr_space_t as, unw_word_t ip, unw_proc_info_t *pi,
2781 int need_unwind_info, void *arg)
2782 {
2783 struct obj_section *sec = find_pc_section (ip);
2784 unw_dyn_info_t di;
2785 int ret;
2786 void *buf = NULL;
2787
2788 if (!sec)
2789 {
2790 /* XXX This only works if the host and the target architecture are
2791 both ia64 and if the have (more or less) the same kernel
2792 version. */
2793 if (get_kernel_table (ip, &di) < 0)
2794 return -UNW_ENOINFO;
2795
2796 if (gdbarch_debug >= 1)
2797 fprintf_unfiltered (gdb_stdlog, "ia64_find_proc_info_x: %s -> "
2798 "(name=`%s',segbase=%s,start=%s,end=%s,gp=%s,"
2799 "length=%s,data=%s)\n",
2800 hex_string (ip), (char *)di.u.ti.name_ptr,
2801 hex_string (di.u.ti.segbase),
2802 hex_string (di.start_ip), hex_string (di.end_ip),
2803 hex_string (di.gp),
2804 pulongest (di.u.ti.table_len),
2805 hex_string ((CORE_ADDR)di.u.ti.table_data));
2806 }
2807 else
2808 {
2809 ret = ia64_find_unwind_table (sec->objfile, ip, &di, &buf);
2810 if (ret < 0)
2811 return ret;
2812
2813 if (gdbarch_debug >= 1)
2814 fprintf_unfiltered (gdb_stdlog, "ia64_find_proc_info_x: %s -> "
2815 "(name=`%s',segbase=%s,start=%s,end=%s,gp=%s,"
2816 "length=%s,data=%s)\n",
2817 hex_string (ip), (char *)di.u.rti.name_ptr,
2818 hex_string (di.u.rti.segbase),
2819 hex_string (di.start_ip), hex_string (di.end_ip),
2820 hex_string (di.gp),
2821 pulongest (di.u.rti.table_len),
2822 hex_string (di.u.rti.table_data));
2823 }
2824
2825 ret = libunwind_search_unwind_table (&as, ip, &di, pi, need_unwind_info,
2826 arg);
2827
2828 /* We no longer need the dyn info storage so free it. */
2829 xfree (buf);
2830
2831 return ret;
2832 }
2833
2834 /* Libunwind callback accessor function for cleanup. */
2835 static void
2836 ia64_put_unwind_info (unw_addr_space_t as,
2837 unw_proc_info_t *pip, void *arg)
2838 {
2839 /* Nothing required for now. */
2840 }
2841
2842 /* Libunwind callback accessor function to get head of the dynamic
2843 unwind-info registration list. */
2844 static int
2845 ia64_get_dyn_info_list (unw_addr_space_t as,
2846 unw_word_t *dilap, void *arg)
2847 {
2848 struct obj_section *text_sec;
2849 struct objfile *objfile;
2850 unw_word_t ip, addr;
2851 unw_dyn_info_t di;
2852 int ret;
2853
2854 if (!libunwind_is_initialized ())
2855 return -UNW_ENOINFO;
2856
2857 for (objfile = object_files; objfile; objfile = objfile->next)
2858 {
2859 void *buf = NULL;
2860
2861 text_sec = objfile->sections + SECT_OFF_TEXT (objfile);
2862 ip = obj_section_addr (text_sec);
2863 ret = ia64_find_unwind_table (objfile, ip, &di, &buf);
2864 if (ret >= 0)
2865 {
2866 addr = libunwind_find_dyn_list (as, &di, arg);
2867 /* We no longer need the dyn info storage so free it. */
2868 xfree (buf);
2869
2870 if (addr)
2871 {
2872 if (gdbarch_debug >= 1)
2873 fprintf_unfiltered (gdb_stdlog,
2874 "dynamic unwind table in objfile %s "
2875 "at %s (gp=%s)\n",
2876 bfd_get_filename (objfile->obfd),
2877 hex_string (addr), hex_string (di.gp));
2878 *dilap = addr;
2879 return 0;
2880 }
2881 }
2882 }
2883 return -UNW_ENOINFO;
2884 }
2885
2886
2887 /* Frame interface functions for libunwind. */
2888
2889 static void
2890 ia64_libunwind_frame_this_id (struct frame_info *this_frame, void **this_cache,
2891 struct frame_id *this_id)
2892 {
2893 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2894 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2895 struct frame_id id = outer_frame_id;
2896 gdb_byte buf[8];
2897 CORE_ADDR bsp;
2898
2899 libunwind_frame_this_id (this_frame, this_cache, &id);
2900 if (frame_id_eq (id, outer_frame_id))
2901 {
2902 (*this_id) = outer_frame_id;
2903 return;
2904 }
2905
2906 /* We must add the bsp as the special address for frame comparison
2907 purposes. */
2908 get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
2909 bsp = extract_unsigned_integer (buf, 8, byte_order);
2910
2911 (*this_id) = frame_id_build_special (id.stack_addr, id.code_addr, bsp);
2912
2913 if (gdbarch_debug >= 1)
2914 fprintf_unfiltered (gdb_stdlog,
2915 "libunwind frame id: code %s, stack %s, "
2916 "special %s, this_frame %s\n",
2917 paddress (gdbarch, id.code_addr),
2918 paddress (gdbarch, id.stack_addr),
2919 paddress (gdbarch, bsp),
2920 host_address_to_string (this_frame));
2921 }
2922
2923 static struct value *
2924 ia64_libunwind_frame_prev_register (struct frame_info *this_frame,
2925 void **this_cache, int regnum)
2926 {
2927 int reg = regnum;
2928 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2929 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2930 struct value *val;
2931
2932 if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
2933 reg = IA64_PR_REGNUM;
2934 else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
2935 reg = IA64_UNAT_REGNUM;
2936
2937 /* Let libunwind do most of the work. */
2938 val = libunwind_frame_prev_register (this_frame, this_cache, reg);
2939
2940 if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
2941 {
2942 ULONGEST prN_val;
2943
2944 if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
2945 {
2946 int rrb_pr = 0;
2947 ULONGEST cfm;
2948
2949 /* Fetch predicate register rename base from current frame
2950 marker for this frame. */
2951 cfm = get_frame_register_unsigned (this_frame, IA64_CFM_REGNUM);
2952 rrb_pr = (cfm >> 32) & 0x3f;
2953
2954 /* Adjust the register number to account for register rotation. */
2955 regnum = VP16_REGNUM + ((regnum - VP16_REGNUM) + rrb_pr) % 48;
2956 }
2957 prN_val = extract_bit_field (value_contents_all (val),
2958 regnum - VP0_REGNUM, 1);
2959 return frame_unwind_got_constant (this_frame, regnum, prN_val);
2960 }
2961
2962 else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
2963 {
2964 ULONGEST unatN_val;
2965
2966 unatN_val = extract_bit_field (value_contents_all (val),
2967 regnum - IA64_NAT0_REGNUM, 1);
2968 return frame_unwind_got_constant (this_frame, regnum, unatN_val);
2969 }
2970
2971 else if (regnum == IA64_BSP_REGNUM)
2972 {
2973 struct value *cfm_val;
2974 CORE_ADDR prev_bsp, prev_cfm;
2975
2976 /* We want to calculate the previous bsp as the end of the previous
2977 register stack frame. This corresponds to what the hardware bsp
2978 register will be if we pop the frame back which is why we might
2979 have been called. We know that libunwind will pass us back the
2980 beginning of the current frame so we should just add sof to it. */
2981 prev_bsp = extract_unsigned_integer (value_contents_all (val),
2982 8, byte_order);
2983 cfm_val = libunwind_frame_prev_register (this_frame, this_cache,
2984 IA64_CFM_REGNUM);
2985 prev_cfm = extract_unsigned_integer (value_contents_all (cfm_val),
2986 8, byte_order);
2987 prev_bsp = rse_address_add (prev_bsp, (prev_cfm & 0x7f));
2988
2989 return frame_unwind_got_constant (this_frame, regnum, prev_bsp);
2990 }
2991 else
2992 return val;
2993 }
2994
2995 static int
2996 ia64_libunwind_frame_sniffer (const struct frame_unwind *self,
2997 struct frame_info *this_frame,
2998 void **this_cache)
2999 {
3000 if (libunwind_is_initialized ()
3001 && libunwind_frame_sniffer (self, this_frame, this_cache))
3002 return 1;
3003
3004 return 0;
3005 }
3006
3007 static const struct frame_unwind ia64_libunwind_frame_unwind =
3008 {
3009 NORMAL_FRAME,
3010 default_frame_unwind_stop_reason,
3011 ia64_libunwind_frame_this_id,
3012 ia64_libunwind_frame_prev_register,
3013 NULL,
3014 ia64_libunwind_frame_sniffer,
3015 libunwind_frame_dealloc_cache
3016 };
3017
3018 static void
3019 ia64_libunwind_sigtramp_frame_this_id (struct frame_info *this_frame,
3020 void **this_cache,
3021 struct frame_id *this_id)
3022 {
3023 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3024 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3025 gdb_byte buf[8];
3026 CORE_ADDR bsp;
3027 struct frame_id id = outer_frame_id;
3028
3029 libunwind_frame_this_id (this_frame, this_cache, &id);
3030 if (frame_id_eq (id, outer_frame_id))
3031 {
3032 (*this_id) = outer_frame_id;
3033 return;
3034 }
3035
3036 /* We must add the bsp as the special address for frame comparison
3037 purposes. */
3038 get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
3039 bsp = extract_unsigned_integer (buf, 8, byte_order);
3040
3041 /* For a sigtramp frame, we don't make the check for previous ip being 0. */
3042 (*this_id) = frame_id_build_special (id.stack_addr, id.code_addr, bsp);
3043
3044 if (gdbarch_debug >= 1)
3045 fprintf_unfiltered (gdb_stdlog,
3046 "libunwind sigtramp frame id: code %s, "
3047 "stack %s, special %s, this_frame %s\n",
3048 paddress (gdbarch, id.code_addr),
3049 paddress (gdbarch, id.stack_addr),
3050 paddress (gdbarch, bsp),
3051 host_address_to_string (this_frame));
3052 }
3053
3054 static struct value *
3055 ia64_libunwind_sigtramp_frame_prev_register (struct frame_info *this_frame,
3056 void **this_cache, int regnum)
3057 {
3058 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3059 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3060 struct value *prev_ip_val;
3061 CORE_ADDR prev_ip;
3062
3063 /* If the previous frame pc value is 0, then we want to use the SIGCONTEXT
3064 method of getting previous registers. */
3065 prev_ip_val = libunwind_frame_prev_register (this_frame, this_cache,
3066 IA64_IP_REGNUM);
3067 prev_ip = extract_unsigned_integer (value_contents_all (prev_ip_val),
3068 8, byte_order);
3069
3070 if (prev_ip == 0)
3071 {
3072 void *tmp_cache = NULL;
3073 return ia64_sigtramp_frame_prev_register (this_frame, &tmp_cache,
3074 regnum);
3075 }
3076 else
3077 return ia64_libunwind_frame_prev_register (this_frame, this_cache, regnum);
3078 }
3079
3080 static int
3081 ia64_libunwind_sigtramp_frame_sniffer (const struct frame_unwind *self,
3082 struct frame_info *this_frame,
3083 void **this_cache)
3084 {
3085 if (libunwind_is_initialized ())
3086 {
3087 if (libunwind_sigtramp_frame_sniffer (self, this_frame, this_cache))
3088 return 1;
3089 return 0;
3090 }
3091 else
3092 return ia64_sigtramp_frame_sniffer (self, this_frame, this_cache);
3093 }
3094
3095 static const struct frame_unwind ia64_libunwind_sigtramp_frame_unwind =
3096 {
3097 SIGTRAMP_FRAME,
3098 default_frame_unwind_stop_reason,
3099 ia64_libunwind_sigtramp_frame_this_id,
3100 ia64_libunwind_sigtramp_frame_prev_register,
3101 NULL,
3102 ia64_libunwind_sigtramp_frame_sniffer
3103 };
3104
3105 /* Set of libunwind callback acccessor functions. */
3106 unw_accessors_t ia64_unw_accessors =
3107 {
3108 ia64_find_proc_info_x,
3109 ia64_put_unwind_info,
3110 ia64_get_dyn_info_list,
3111 ia64_access_mem,
3112 ia64_access_reg,
3113 ia64_access_fpreg,
3114 /* resume */
3115 /* get_proc_name */
3116 };
3117
3118 /* Set of special libunwind callback acccessor functions specific for accessing
3119 the rse registers. At the top of the stack, we want libunwind to figure out
3120 how to read r32 - r127. Though usually they are found sequentially in
3121 memory starting from $bof, this is not always true. */
3122 unw_accessors_t ia64_unw_rse_accessors =
3123 {
3124 ia64_find_proc_info_x,
3125 ia64_put_unwind_info,
3126 ia64_get_dyn_info_list,
3127 ia64_access_mem,
3128 ia64_access_rse_reg,
3129 ia64_access_rse_fpreg,
3130 /* resume */
3131 /* get_proc_name */
3132 };
3133
3134 /* Set of ia64-libunwind-tdep gdb callbacks and data for generic
3135 ia64-libunwind-tdep code to use. */
3136 struct libunwind_descr ia64_libunwind_descr =
3137 {
3138 ia64_gdb2uw_regnum,
3139 ia64_uw2gdb_regnum,
3140 ia64_is_fpreg,
3141 &ia64_unw_accessors,
3142 &ia64_unw_rse_accessors,
3143 };
3144
3145 #endif /* HAVE_LIBUNWIND_IA64_H */
3146
3147 static int
3148 ia64_use_struct_convention (struct type *type)
3149 {
3150 struct type *float_elt_type;
3151
3152 /* Don't use the struct convention for anything but structure,
3153 union, or array types. */
3154 if (!(TYPE_CODE (type) == TYPE_CODE_STRUCT
3155 || TYPE_CODE (type) == TYPE_CODE_UNION
3156 || TYPE_CODE (type) == TYPE_CODE_ARRAY))
3157 return 0;
3158
3159 /* HFAs are structures (or arrays) consisting entirely of floating
3160 point values of the same length. Up to 8 of these are returned
3161 in registers. Don't use the struct convention when this is the
3162 case. */
3163 float_elt_type = is_float_or_hfa_type (type);
3164 if (float_elt_type != NULL
3165 && TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type) <= 8)
3166 return 0;
3167
3168 /* Other structs of length 32 or less are returned in r8-r11.
3169 Don't use the struct convention for those either. */
3170 return TYPE_LENGTH (type) > 32;
3171 }
3172
3173 /* Return non-zero if TYPE is a structure or union type. */
3174
3175 static int
3176 ia64_struct_type_p (const struct type *type)
3177 {
3178 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
3179 || TYPE_CODE (type) == TYPE_CODE_UNION);
3180 }
3181
3182 static void
3183 ia64_extract_return_value (struct type *type, struct regcache *regcache,
3184 gdb_byte *valbuf)
3185 {
3186 struct gdbarch *gdbarch = regcache->arch ();
3187 struct type *float_elt_type;
3188
3189 float_elt_type = is_float_or_hfa_type (type);
3190 if (float_elt_type != NULL)
3191 {
3192 gdb_byte from[IA64_FP_REGISTER_SIZE];
3193 int offset = 0;
3194 int regnum = IA64_FR8_REGNUM;
3195 int n = TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type);
3196
3197 while (n-- > 0)
3198 {
3199 regcache->cooked_read (regnum, from);
3200 target_float_convert (from, ia64_ext_type (gdbarch),
3201 valbuf + offset, float_elt_type);
3202 offset += TYPE_LENGTH (float_elt_type);
3203 regnum++;
3204 }
3205 }
3206 else if (!ia64_struct_type_p (type) && TYPE_LENGTH (type) < 8)
3207 {
3208 /* This is an integral value, and its size is less than 8 bytes.
3209 These values are LSB-aligned, so extract the relevant bytes,
3210 and copy them into VALBUF. */
3211 /* brobecker/2005-12-30: Actually, all integral values are LSB aligned,
3212 so I suppose we should also add handling here for integral values
3213 whose size is greater than 8. But I wasn't able to create such
3214 a type, neither in C nor in Ada, so not worrying about these yet. */
3215 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3216 ULONGEST val;
3217
3218 regcache_cooked_read_unsigned (regcache, IA64_GR8_REGNUM, &val);
3219 store_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order, val);
3220 }
3221 else
3222 {
3223 ULONGEST val;
3224 int offset = 0;
3225 int regnum = IA64_GR8_REGNUM;
3226 int reglen = TYPE_LENGTH (register_type (gdbarch, IA64_GR8_REGNUM));
3227 int n = TYPE_LENGTH (type) / reglen;
3228 int m = TYPE_LENGTH (type) % reglen;
3229
3230 while (n-- > 0)
3231 {
3232 ULONGEST val;
3233 regcache_cooked_read_unsigned (regcache, regnum, &val);
3234 memcpy ((char *)valbuf + offset, &val, reglen);
3235 offset += reglen;
3236 regnum++;
3237 }
3238
3239 if (m)
3240 {
3241 regcache_cooked_read_unsigned (regcache, regnum, &val);
3242 memcpy ((char *)valbuf + offset, &val, m);
3243 }
3244 }
3245 }
3246
3247 static void
3248 ia64_store_return_value (struct type *type, struct regcache *regcache,
3249 const gdb_byte *valbuf)
3250 {
3251 struct gdbarch *gdbarch = regcache->arch ();
3252 struct type *float_elt_type;
3253
3254 float_elt_type = is_float_or_hfa_type (type);
3255 if (float_elt_type != NULL)
3256 {
3257 gdb_byte to[IA64_FP_REGISTER_SIZE];
3258 int offset = 0;
3259 int regnum = IA64_FR8_REGNUM;
3260 int n = TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type);
3261
3262 while (n-- > 0)
3263 {
3264 target_float_convert (valbuf + offset, float_elt_type,
3265 to, ia64_ext_type (gdbarch));
3266 regcache->cooked_write (regnum, to);
3267 offset += TYPE_LENGTH (float_elt_type);
3268 regnum++;
3269 }
3270 }
3271 else
3272 {
3273 ULONGEST val;
3274 int offset = 0;
3275 int regnum = IA64_GR8_REGNUM;
3276 int reglen = TYPE_LENGTH (register_type (gdbarch, IA64_GR8_REGNUM));
3277 int n = TYPE_LENGTH (type) / reglen;
3278 int m = TYPE_LENGTH (type) % reglen;
3279
3280 while (n-- > 0)
3281 {
3282 ULONGEST val;
3283 memcpy (&val, (char *)valbuf + offset, reglen);
3284 regcache_cooked_write_unsigned (regcache, regnum, val);
3285 offset += reglen;
3286 regnum++;
3287 }
3288
3289 if (m)
3290 {
3291 memcpy (&val, (char *)valbuf + offset, m);
3292 regcache_cooked_write_unsigned (regcache, regnum, val);
3293 }
3294 }
3295 }
3296
3297 static enum return_value_convention
3298 ia64_return_value (struct gdbarch *gdbarch, struct value *function,
3299 struct type *valtype, struct regcache *regcache,
3300 gdb_byte *readbuf, const gdb_byte *writebuf)
3301 {
3302 int struct_return = ia64_use_struct_convention (valtype);
3303
3304 if (writebuf != NULL)
3305 {
3306 gdb_assert (!struct_return);
3307 ia64_store_return_value (valtype, regcache, writebuf);
3308 }
3309
3310 if (readbuf != NULL)
3311 {
3312 gdb_assert (!struct_return);
3313 ia64_extract_return_value (valtype, regcache, readbuf);
3314 }
3315
3316 if (struct_return)
3317 return RETURN_VALUE_STRUCT_CONVENTION;
3318 else
3319 return RETURN_VALUE_REGISTER_CONVENTION;
3320 }
3321
3322 static int
3323 is_float_or_hfa_type_recurse (struct type *t, struct type **etp)
3324 {
3325 switch (TYPE_CODE (t))
3326 {
3327 case TYPE_CODE_FLT:
3328 if (*etp)
3329 return TYPE_LENGTH (*etp) == TYPE_LENGTH (t);
3330 else
3331 {
3332 *etp = t;
3333 return 1;
3334 }
3335 break;
3336 case TYPE_CODE_ARRAY:
3337 return
3338 is_float_or_hfa_type_recurse (check_typedef (TYPE_TARGET_TYPE (t)),
3339 etp);
3340 break;
3341 case TYPE_CODE_STRUCT:
3342 {
3343 int i;
3344
3345 for (i = 0; i < TYPE_NFIELDS (t); i++)
3346 if (!is_float_or_hfa_type_recurse
3347 (check_typedef (TYPE_FIELD_TYPE (t, i)), etp))
3348 return 0;
3349 return 1;
3350 }
3351 break;
3352 default:
3353 return 0;
3354 break;
3355 }
3356 }
3357
3358 /* Determine if the given type is one of the floating point types or
3359 and HFA (which is a struct, array, or combination thereof whose
3360 bottom-most elements are all of the same floating point type). */
3361
3362 static struct type *
3363 is_float_or_hfa_type (struct type *t)
3364 {
3365 struct type *et = 0;
3366
3367 return is_float_or_hfa_type_recurse (t, &et) ? et : 0;
3368 }
3369
3370
3371 /* Return 1 if the alignment of T is such that the next even slot
3372 should be used. Return 0, if the next available slot should
3373 be used. (See section 8.5.1 of the IA-64 Software Conventions
3374 and Runtime manual). */
3375
3376 static int
3377 slot_alignment_is_next_even (struct type *t)
3378 {
3379 switch (TYPE_CODE (t))
3380 {
3381 case TYPE_CODE_INT:
3382 case TYPE_CODE_FLT:
3383 if (TYPE_LENGTH (t) > 8)
3384 return 1;
3385 else
3386 return 0;
3387 case TYPE_CODE_ARRAY:
3388 return
3389 slot_alignment_is_next_even (check_typedef (TYPE_TARGET_TYPE (t)));
3390 case TYPE_CODE_STRUCT:
3391 {
3392 int i;
3393
3394 for (i = 0; i < TYPE_NFIELDS (t); i++)
3395 if (slot_alignment_is_next_even
3396 (check_typedef (TYPE_FIELD_TYPE (t, i))))
3397 return 1;
3398 return 0;
3399 }
3400 default:
3401 return 0;
3402 }
3403 }
3404
3405 /* Attempt to find (and return) the global pointer for the given
3406 function.
3407
3408 This is a rather nasty bit of code searchs for the .dynamic section
3409 in the objfile corresponding to the pc of the function we're trying
3410 to call. Once it finds the addresses at which the .dynamic section
3411 lives in the child process, it scans the Elf64_Dyn entries for a
3412 DT_PLTGOT tag. If it finds one of these, the corresponding
3413 d_un.d_ptr value is the global pointer. */
3414
3415 static CORE_ADDR
3416 ia64_find_global_pointer_from_dynamic_section (struct gdbarch *gdbarch,
3417 CORE_ADDR faddr)
3418 {
3419 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3420 struct obj_section *faddr_sect;
3421
3422 faddr_sect = find_pc_section (faddr);
3423 if (faddr_sect != NULL)
3424 {
3425 struct obj_section *osect;
3426
3427 ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
3428 {
3429 if (strcmp (osect->the_bfd_section->name, ".dynamic") == 0)
3430 break;
3431 }
3432
3433 if (osect < faddr_sect->objfile->sections_end)
3434 {
3435 CORE_ADDR addr, endaddr;
3436
3437 addr = obj_section_addr (osect);
3438 endaddr = obj_section_endaddr (osect);
3439
3440 while (addr < endaddr)
3441 {
3442 int status;
3443 LONGEST tag;
3444 gdb_byte buf[8];
3445
3446 status = target_read_memory (addr, buf, sizeof (buf));
3447 if (status != 0)
3448 break;
3449 tag = extract_signed_integer (buf, sizeof (buf), byte_order);
3450
3451 if (tag == DT_PLTGOT)
3452 {
3453 CORE_ADDR global_pointer;
3454
3455 status = target_read_memory (addr + 8, buf, sizeof (buf));
3456 if (status != 0)
3457 break;
3458 global_pointer = extract_unsigned_integer (buf, sizeof (buf),
3459 byte_order);
3460
3461 /* The payoff... */
3462 return global_pointer;
3463 }
3464
3465 if (tag == DT_NULL)
3466 break;
3467
3468 addr += 16;
3469 }
3470 }
3471 }
3472 return 0;
3473 }
3474
3475 /* Attempt to find (and return) the global pointer for the given
3476 function. We first try the find_global_pointer_from_solib routine
3477 from the gdbarch tdep vector, if provided. And if that does not
3478 work, then we try ia64_find_global_pointer_from_dynamic_section. */
3479
3480 static CORE_ADDR
3481 ia64_find_global_pointer (struct gdbarch *gdbarch, CORE_ADDR faddr)
3482 {
3483 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3484 CORE_ADDR addr = 0;
3485
3486 if (tdep->find_global_pointer_from_solib)
3487 addr = tdep->find_global_pointer_from_solib (gdbarch, faddr);
3488 if (addr == 0)
3489 addr = ia64_find_global_pointer_from_dynamic_section (gdbarch, faddr);
3490 return addr;
3491 }
3492
3493 /* Given a function's address, attempt to find (and return) the
3494 corresponding (canonical) function descriptor. Return 0 if
3495 not found. */
3496 static CORE_ADDR
3497 find_extant_func_descr (struct gdbarch *gdbarch, CORE_ADDR faddr)
3498 {
3499 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3500 struct obj_section *faddr_sect;
3501
3502 /* Return early if faddr is already a function descriptor. */
3503 faddr_sect = find_pc_section (faddr);
3504 if (faddr_sect && strcmp (faddr_sect->the_bfd_section->name, ".opd") == 0)
3505 return faddr;
3506
3507 if (faddr_sect != NULL)
3508 {
3509 struct obj_section *osect;
3510 ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
3511 {
3512 if (strcmp (osect->the_bfd_section->name, ".opd") == 0)
3513 break;
3514 }
3515
3516 if (osect < faddr_sect->objfile->sections_end)
3517 {
3518 CORE_ADDR addr, endaddr;
3519
3520 addr = obj_section_addr (osect);
3521 endaddr = obj_section_endaddr (osect);
3522
3523 while (addr < endaddr)
3524 {
3525 int status;
3526 LONGEST faddr2;
3527 gdb_byte buf[8];
3528
3529 status = target_read_memory (addr, buf, sizeof (buf));
3530 if (status != 0)
3531 break;
3532 faddr2 = extract_signed_integer (buf, sizeof (buf), byte_order);
3533
3534 if (faddr == faddr2)
3535 return addr;
3536
3537 addr += 16;
3538 }
3539 }
3540 }
3541 return 0;
3542 }
3543
3544 /* Attempt to find a function descriptor corresponding to the
3545 given address. If none is found, construct one on the
3546 stack using the address at fdaptr. */
3547
3548 static CORE_ADDR
3549 find_func_descr (struct regcache *regcache, CORE_ADDR faddr, CORE_ADDR *fdaptr)
3550 {
3551 struct gdbarch *gdbarch = regcache->arch ();
3552 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3553 CORE_ADDR fdesc;
3554
3555 fdesc = find_extant_func_descr (gdbarch, faddr);
3556
3557 if (fdesc == 0)
3558 {
3559 ULONGEST global_pointer;
3560 gdb_byte buf[16];
3561
3562 fdesc = *fdaptr;
3563 *fdaptr += 16;
3564
3565 global_pointer = ia64_find_global_pointer (gdbarch, faddr);
3566
3567 if (global_pointer == 0)
3568 regcache_cooked_read_unsigned (regcache,
3569 IA64_GR1_REGNUM, &global_pointer);
3570
3571 store_unsigned_integer (buf, 8, byte_order, faddr);
3572 store_unsigned_integer (buf + 8, 8, byte_order, global_pointer);
3573
3574 write_memory (fdesc, buf, 16);
3575 }
3576
3577 return fdesc;
3578 }
3579
3580 /* Use the following routine when printing out function pointers
3581 so the user can see the function address rather than just the
3582 function descriptor. */
3583 static CORE_ADDR
3584 ia64_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
3585 struct target_ops *targ)
3586 {
3587 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3588 struct obj_section *s;
3589 gdb_byte buf[8];
3590
3591 s = find_pc_section (addr);
3592
3593 /* check if ADDR points to a function descriptor. */
3594 if (s && strcmp (s->the_bfd_section->name, ".opd") == 0)
3595 return read_memory_unsigned_integer (addr, 8, byte_order);
3596
3597 /* Normally, functions live inside a section that is executable.
3598 So, if ADDR points to a non-executable section, then treat it
3599 as a function descriptor and return the target address iff
3600 the target address itself points to a section that is executable.
3601 Check first the memory of the whole length of 8 bytes is readable. */
3602 if (s && (s->the_bfd_section->flags & SEC_CODE) == 0
3603 && target_read_memory (addr, buf, 8) == 0)
3604 {
3605 CORE_ADDR pc = extract_unsigned_integer (buf, 8, byte_order);
3606 struct obj_section *pc_section = find_pc_section (pc);
3607
3608 if (pc_section && (pc_section->the_bfd_section->flags & SEC_CODE))
3609 return pc;
3610 }
3611
3612 /* There are also descriptors embedded in vtables. */
3613 if (s)
3614 {
3615 struct bound_minimal_symbol minsym;
3616
3617 minsym = lookup_minimal_symbol_by_pc (addr);
3618
3619 if (minsym.minsym
3620 && is_vtable_name (MSYMBOL_LINKAGE_NAME (minsym.minsym)))
3621 return read_memory_unsigned_integer (addr, 8, byte_order);
3622 }
3623
3624 return addr;
3625 }
3626
3627 static CORE_ADDR
3628 ia64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
3629 {
3630 return sp & ~0xfLL;
3631 }
3632
3633 /* The default "allocate_new_rse_frame" ia64_infcall_ops routine for ia64. */
3634
3635 static void
3636 ia64_allocate_new_rse_frame (struct regcache *regcache, ULONGEST bsp, int sof)
3637 {
3638 ULONGEST cfm, pfs, new_bsp;
3639
3640 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
3641
3642 new_bsp = rse_address_add (bsp, sof);
3643 regcache_cooked_write_unsigned (regcache, IA64_BSP_REGNUM, new_bsp);
3644
3645 regcache_cooked_read_unsigned (regcache, IA64_PFS_REGNUM, &pfs);
3646 pfs &= 0xc000000000000000LL;
3647 pfs |= (cfm & 0xffffffffffffLL);
3648 regcache_cooked_write_unsigned (regcache, IA64_PFS_REGNUM, pfs);
3649
3650 cfm &= 0xc000000000000000LL;
3651 cfm |= sof;
3652 regcache_cooked_write_unsigned (regcache, IA64_CFM_REGNUM, cfm);
3653 }
3654
3655 /* The default "store_argument_in_slot" ia64_infcall_ops routine for
3656 ia64. */
3657
3658 static void
3659 ia64_store_argument_in_slot (struct regcache *regcache, CORE_ADDR bsp,
3660 int slotnum, gdb_byte *buf)
3661 {
3662 write_memory (rse_address_add (bsp, slotnum), buf, 8);
3663 }
3664
3665 /* The default "set_function_addr" ia64_infcall_ops routine for ia64. */
3666
3667 static void
3668 ia64_set_function_addr (struct regcache *regcache, CORE_ADDR func_addr)
3669 {
3670 /* Nothing needed. */
3671 }
3672
3673 static CORE_ADDR
3674 ia64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3675 struct regcache *regcache, CORE_ADDR bp_addr,
3676 int nargs, struct value **args, CORE_ADDR sp,
3677 int struct_return, CORE_ADDR struct_addr)
3678 {
3679 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3680 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3681 int argno;
3682 struct value *arg;
3683 struct type *type;
3684 int len, argoffset;
3685 int nslots, rseslots, memslots, slotnum, nfuncargs;
3686 int floatreg;
3687 ULONGEST bsp;
3688 CORE_ADDR funcdescaddr, global_pointer;
3689 CORE_ADDR func_addr = find_function_addr (function, NULL);
3690
3691 nslots = 0;
3692 nfuncargs = 0;
3693 /* Count the number of slots needed for the arguments. */
3694 for (argno = 0; argno < nargs; argno++)
3695 {
3696 arg = args[argno];
3697 type = check_typedef (value_type (arg));
3698 len = TYPE_LENGTH (type);
3699
3700 if ((nslots & 1) && slot_alignment_is_next_even (type))
3701 nslots++;
3702
3703 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
3704 nfuncargs++;
3705
3706 nslots += (len + 7) / 8;
3707 }
3708
3709 /* Divvy up the slots between the RSE and the memory stack. */
3710 rseslots = (nslots > 8) ? 8 : nslots;
3711 memslots = nslots - rseslots;
3712
3713 /* Allocate a new RSE frame. */
3714 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
3715 tdep->infcall_ops.allocate_new_rse_frame (regcache, bsp, rseslots);
3716
3717 /* We will attempt to find function descriptors in the .opd segment,
3718 but if we can't we'll construct them ourselves. That being the
3719 case, we'll need to reserve space on the stack for them. */
3720 funcdescaddr = sp - nfuncargs * 16;
3721 funcdescaddr &= ~0xfLL;
3722
3723 /* Adjust the stack pointer to it's new value. The calling conventions
3724 require us to have 16 bytes of scratch, plus whatever space is
3725 necessary for the memory slots and our function descriptors. */
3726 sp = sp - 16 - (memslots + nfuncargs) * 8;
3727 sp &= ~0xfLL; /* Maintain 16 byte alignment. */
3728
3729 /* Place the arguments where they belong. The arguments will be
3730 either placed in the RSE backing store or on the memory stack.
3731 In addition, floating point arguments or HFAs are placed in
3732 floating point registers. */
3733 slotnum = 0;
3734 floatreg = IA64_FR8_REGNUM;
3735 for (argno = 0; argno < nargs; argno++)
3736 {
3737 struct type *float_elt_type;
3738
3739 arg = args[argno];
3740 type = check_typedef (value_type (arg));
3741 len = TYPE_LENGTH (type);
3742
3743 /* Special handling for function parameters. */
3744 if (len == 8
3745 && TYPE_CODE (type) == TYPE_CODE_PTR
3746 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
3747 {
3748 gdb_byte val_buf[8];
3749 ULONGEST faddr = extract_unsigned_integer (value_contents (arg),
3750 8, byte_order);
3751 store_unsigned_integer (val_buf, 8, byte_order,
3752 find_func_descr (regcache, faddr,
3753 &funcdescaddr));
3754 if (slotnum < rseslots)
3755 tdep->infcall_ops.store_argument_in_slot (regcache, bsp,
3756 slotnum, val_buf);
3757 else
3758 write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8);
3759 slotnum++;
3760 continue;
3761 }
3762
3763 /* Normal slots. */
3764
3765 /* Skip odd slot if necessary... */
3766 if ((slotnum & 1) && slot_alignment_is_next_even (type))
3767 slotnum++;
3768
3769 argoffset = 0;
3770 while (len > 0)
3771 {
3772 gdb_byte val_buf[8];
3773
3774 memset (val_buf, 0, 8);
3775 if (!ia64_struct_type_p (type) && len < 8)
3776 {
3777 /* Integral types are LSB-aligned, so we have to be careful
3778 to insert the argument on the correct side of the buffer.
3779 This is why we use store_unsigned_integer. */
3780 store_unsigned_integer
3781 (val_buf, 8, byte_order,
3782 extract_unsigned_integer (value_contents (arg), len,
3783 byte_order));
3784 }
3785 else
3786 {
3787 /* This is either an 8bit integral type, or an aggregate.
3788 For 8bit integral type, there is no problem, we just
3789 copy the value over.
3790
3791 For aggregates, the only potentially tricky portion
3792 is to write the last one if it is less than 8 bytes.
3793 In this case, the data is Byte0-aligned. Happy news,
3794 this means that we don't need to differentiate the
3795 handling of 8byte blocks and less-than-8bytes blocks. */
3796 memcpy (val_buf, value_contents (arg) + argoffset,
3797 (len > 8) ? 8 : len);
3798 }
3799
3800 if (slotnum < rseslots)
3801 tdep->infcall_ops.store_argument_in_slot (regcache, bsp,
3802 slotnum, val_buf);
3803 else
3804 write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8);
3805
3806 argoffset += 8;
3807 len -= 8;
3808 slotnum++;
3809 }
3810
3811 /* Handle floating point types (including HFAs). */
3812 float_elt_type = is_float_or_hfa_type (type);
3813 if (float_elt_type != NULL)
3814 {
3815 argoffset = 0;
3816 len = TYPE_LENGTH (type);
3817 while (len > 0 && floatreg < IA64_FR16_REGNUM)
3818 {
3819 gdb_byte to[IA64_FP_REGISTER_SIZE];
3820 target_float_convert (value_contents (arg) + argoffset,
3821 float_elt_type, to,
3822 ia64_ext_type (gdbarch));
3823 regcache->cooked_write (floatreg, to);
3824 floatreg++;
3825 argoffset += TYPE_LENGTH (float_elt_type);
3826 len -= TYPE_LENGTH (float_elt_type);
3827 }
3828 }
3829 }
3830
3831 /* Store the struct return value in r8 if necessary. */
3832 if (struct_return)
3833 {
3834 regcache_cooked_write_unsigned (regcache, IA64_GR8_REGNUM,
3835 (ULONGEST) struct_addr);
3836 }
3837
3838 global_pointer = ia64_find_global_pointer (gdbarch, func_addr);
3839
3840 if (global_pointer != 0)
3841 regcache_cooked_write_unsigned (regcache, IA64_GR1_REGNUM, global_pointer);
3842
3843 /* The following is not necessary on HP-UX, because we're using
3844 a dummy code sequence pushed on the stack to make the call, and
3845 this sequence doesn't need b0 to be set in order for our dummy
3846 breakpoint to be hit. Nonetheless, this doesn't interfere, and
3847 it's needed for other OSes, so we do this unconditionaly. */
3848 regcache_cooked_write_unsigned (regcache, IA64_BR0_REGNUM, bp_addr);
3849
3850 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
3851
3852 tdep->infcall_ops.set_function_addr (regcache, func_addr);
3853
3854 return sp;
3855 }
3856
3857 static const struct ia64_infcall_ops ia64_infcall_ops =
3858 {
3859 ia64_allocate_new_rse_frame,
3860 ia64_store_argument_in_slot,
3861 ia64_set_function_addr
3862 };
3863
3864 static struct frame_id
3865 ia64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
3866 {
3867 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3868 gdb_byte buf[8];
3869 CORE_ADDR sp, bsp;
3870
3871 get_frame_register (this_frame, sp_regnum, buf);
3872 sp = extract_unsigned_integer (buf, 8, byte_order);
3873
3874 get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
3875 bsp = extract_unsigned_integer (buf, 8, byte_order);
3876
3877 if (gdbarch_debug >= 1)
3878 fprintf_unfiltered (gdb_stdlog,
3879 "dummy frame id: code %s, stack %s, special %s\n",
3880 paddress (gdbarch, get_frame_pc (this_frame)),
3881 paddress (gdbarch, sp), paddress (gdbarch, bsp));
3882
3883 return frame_id_build_special (sp, get_frame_pc (this_frame), bsp);
3884 }
3885
3886 static CORE_ADDR
3887 ia64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
3888 {
3889 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3890 gdb_byte buf[8];
3891 CORE_ADDR ip, psr, pc;
3892
3893 frame_unwind_register (next_frame, IA64_IP_REGNUM, buf);
3894 ip = extract_unsigned_integer (buf, 8, byte_order);
3895 frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf);
3896 psr = extract_unsigned_integer (buf, 8, byte_order);
3897
3898 pc = (ip & ~0xf) | ((psr >> 41) & 3);
3899 return pc;
3900 }
3901
3902 static int
3903 ia64_print_insn (bfd_vma memaddr, struct disassemble_info *info)
3904 {
3905 info->bytes_per_line = SLOT_MULTIPLIER;
3906 return default_print_insn (memaddr, info);
3907 }
3908
3909 /* The default "size_of_register_frame" gdbarch_tdep routine for ia64. */
3910
3911 static int
3912 ia64_size_of_register_frame (struct frame_info *this_frame, ULONGEST cfm)
3913 {
3914 return (cfm & 0x7f);
3915 }
3916
3917 static struct gdbarch *
3918 ia64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3919 {
3920 struct gdbarch *gdbarch;
3921 struct gdbarch_tdep *tdep;
3922
3923 /* If there is already a candidate, use it. */
3924 arches = gdbarch_list_lookup_by_info (arches, &info);
3925 if (arches != NULL)
3926 return arches->gdbarch;
3927
3928 tdep = XCNEW (struct gdbarch_tdep);
3929 gdbarch = gdbarch_alloc (&info, tdep);
3930
3931 tdep->size_of_register_frame = ia64_size_of_register_frame;
3932
3933 /* According to the ia64 specs, instructions that store long double
3934 floats in memory use a long-double format different than that
3935 used in the floating registers. The memory format matches the
3936 x86 extended float format which is 80 bits. An OS may choose to
3937 use this format (e.g. GNU/Linux) or choose to use a different
3938 format for storing long doubles (e.g. HPUX). In the latter case,
3939 the setting of the format may be moved/overridden in an
3940 OS-specific tdep file. */
3941 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
3942
3943 set_gdbarch_short_bit (gdbarch, 16);
3944 set_gdbarch_int_bit (gdbarch, 32);
3945 set_gdbarch_long_bit (gdbarch, 64);
3946 set_gdbarch_long_long_bit (gdbarch, 64);
3947 set_gdbarch_float_bit (gdbarch, 32);
3948 set_gdbarch_double_bit (gdbarch, 64);
3949 set_gdbarch_long_double_bit (gdbarch, 128);
3950 set_gdbarch_ptr_bit (gdbarch, 64);
3951
3952 set_gdbarch_num_regs (gdbarch, NUM_IA64_RAW_REGS);
3953 set_gdbarch_num_pseudo_regs (gdbarch,
3954 LAST_PSEUDO_REGNUM - FIRST_PSEUDO_REGNUM);
3955 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
3956 set_gdbarch_fp0_regnum (gdbarch, IA64_FR0_REGNUM);
3957
3958 set_gdbarch_register_name (gdbarch, ia64_register_name);
3959 set_gdbarch_register_type (gdbarch, ia64_register_type);
3960
3961 set_gdbarch_pseudo_register_read (gdbarch, ia64_pseudo_register_read);
3962 set_gdbarch_pseudo_register_write (gdbarch, ia64_pseudo_register_write);
3963 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, ia64_dwarf_reg_to_regnum);
3964 set_gdbarch_register_reggroup_p (gdbarch, ia64_register_reggroup_p);
3965 set_gdbarch_convert_register_p (gdbarch, ia64_convert_register_p);
3966 set_gdbarch_register_to_value (gdbarch, ia64_register_to_value);
3967 set_gdbarch_value_to_register (gdbarch, ia64_value_to_register);
3968
3969 set_gdbarch_skip_prologue (gdbarch, ia64_skip_prologue);
3970
3971 set_gdbarch_return_value (gdbarch, ia64_return_value);
3972
3973 set_gdbarch_memory_insert_breakpoint (gdbarch,
3974 ia64_memory_insert_breakpoint);
3975 set_gdbarch_memory_remove_breakpoint (gdbarch,
3976 ia64_memory_remove_breakpoint);
3977 set_gdbarch_breakpoint_from_pc (gdbarch, ia64_breakpoint_from_pc);
3978 set_gdbarch_breakpoint_kind_from_pc (gdbarch, ia64_breakpoint_kind_from_pc);
3979 set_gdbarch_read_pc (gdbarch, ia64_read_pc);
3980 set_gdbarch_write_pc (gdbarch, ia64_write_pc);
3981
3982 /* Settings for calling functions in the inferior. */
3983 set_gdbarch_push_dummy_call (gdbarch, ia64_push_dummy_call);
3984 tdep->infcall_ops = ia64_infcall_ops;
3985 set_gdbarch_frame_align (gdbarch, ia64_frame_align);
3986 set_gdbarch_dummy_id (gdbarch, ia64_dummy_id);
3987
3988 set_gdbarch_unwind_pc (gdbarch, ia64_unwind_pc);
3989 #ifdef HAVE_LIBUNWIND_IA64_H
3990 frame_unwind_append_unwinder (gdbarch,
3991 &ia64_libunwind_sigtramp_frame_unwind);
3992 frame_unwind_append_unwinder (gdbarch, &ia64_libunwind_frame_unwind);
3993 frame_unwind_append_unwinder (gdbarch, &ia64_sigtramp_frame_unwind);
3994 libunwind_frame_set_descr (gdbarch, &ia64_libunwind_descr);
3995 #else
3996 frame_unwind_append_unwinder (gdbarch, &ia64_sigtramp_frame_unwind);
3997 #endif
3998 frame_unwind_append_unwinder (gdbarch, &ia64_frame_unwind);
3999 frame_base_set_default (gdbarch, &ia64_frame_base);
4000
4001 /* Settings that should be unnecessary. */
4002 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
4003
4004 set_gdbarch_print_insn (gdbarch, ia64_print_insn);
4005 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
4006 ia64_convert_from_func_ptr_addr);
4007
4008 /* The virtual table contains 16-byte descriptors, not pointers to
4009 descriptors. */
4010 set_gdbarch_vtable_function_descriptors (gdbarch, 1);
4011
4012 /* Hook in ABI-specific overrides, if they have been registered. */
4013 gdbarch_init_osabi (info, gdbarch);
4014
4015 return gdbarch;
4016 }
4017
4018 void
4019 _initialize_ia64_tdep (void)
4020 {
4021 gdbarch_register (bfd_arch_ia64, ia64_gdbarch_init, NULL);
4022 }
This page took 0.13549 seconds and 4 git commands to generate.