Fix ia64 breakpoints in the L-X slot.
[deliverable/binutils-gdb.git] / gdb / ia64-tdep.c
1 /* Target-dependent code for the IA-64 for GDB, the GNU debugger.
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "gdbcore.h"
24 #include "arch-utils.h"
25 #include "floatformat.h"
26 #include "gdbtypes.h"
27 #include "regcache.h"
28 #include "reggroups.h"
29 #include "frame.h"
30 #include "frame-base.h"
31 #include "frame-unwind.h"
32 #include "doublest.h"
33 #include "value.h"
34 #include "gdb_assert.h"
35 #include "objfiles.h"
36 #include "elf/common.h" /* for DT_PLTGOT value */
37 #include "elf-bfd.h"
38 #include "dis-asm.h"
39 #include "infcall.h"
40 #include "osabi.h"
41 #include "ia64-tdep.h"
42 #include "cp-abi.h"
43
44 #ifdef HAVE_LIBUNWIND_IA64_H
45 #include "elf/ia64.h" /* for PT_IA_64_UNWIND value */
46 #include "libunwind-frame.h"
47 #include "libunwind-ia64.h"
48
49 /* Note: KERNEL_START is supposed to be an address which is not going
50 to ever contain any valid unwind info. For ia64 linux, the choice
51 of 0xc000000000000000 is fairly safe since that's uncached space.
52
53 We use KERNEL_START as follows: after obtaining the kernel's
54 unwind table via getunwind(), we project its unwind data into
55 address-range KERNEL_START-(KERNEL_START+ktab_size) and then
56 when ia64_access_mem() sees a memory access to this
57 address-range, we redirect it to ktab instead.
58
59 None of this hackery is needed with a modern kernel/libcs
60 which uses the kernel virtual DSO to provide access to the
61 kernel's unwind info. In that case, ktab_size remains 0 and
62 hence the value of KERNEL_START doesn't matter. */
63
64 #define KERNEL_START 0xc000000000000000ULL
65
66 static size_t ktab_size = 0;
67 struct ia64_table_entry
68 {
69 uint64_t start_offset;
70 uint64_t end_offset;
71 uint64_t info_offset;
72 };
73
74 static struct ia64_table_entry *ktab = NULL;
75
76 #endif
77
78 /* An enumeration of the different IA-64 instruction types. */
79
80 typedef enum instruction_type
81 {
82 A, /* Integer ALU ; I-unit or M-unit */
83 I, /* Non-ALU integer; I-unit */
84 M, /* Memory ; M-unit */
85 F, /* Floating-point ; F-unit */
86 B, /* Branch ; B-unit */
87 L, /* Extended (L+X) ; I-unit */
88 X, /* Extended (L+X) ; I-unit */
89 undefined /* undefined or reserved */
90 } instruction_type;
91
92 /* We represent IA-64 PC addresses as the value of the instruction
93 pointer or'd with some bit combination in the low nibble which
94 represents the slot number in the bundle addressed by the
95 instruction pointer. The problem is that the Linux kernel
96 multiplies its slot numbers (for exceptions) by one while the
97 disassembler multiplies its slot numbers by 6. In addition, I've
98 heard it said that the simulator uses 1 as the multiplier.
99
100 I've fixed the disassembler so that the bytes_per_line field will
101 be the slot multiplier. If bytes_per_line comes in as zero, it
102 is set to six (which is how it was set up initially). -- objdump
103 displays pretty disassembly dumps with this value. For our purposes,
104 we'll set bytes_per_line to SLOT_MULTIPLIER. This is okay since we
105 never want to also display the raw bytes the way objdump does. */
106
107 #define SLOT_MULTIPLIER 1
108
109 /* Length in bytes of an instruction bundle */
110
111 #define BUNDLE_LEN 16
112
113 /* See the saved memory layout comment for ia64_memory_insert_breakpoint. */
114
115 #if BREAKPOINT_MAX < BUNDLE_LEN - 2
116 # error "BREAKPOINT_MAX < BUNDLE_LEN - 2"
117 #endif
118
119 static gdbarch_init_ftype ia64_gdbarch_init;
120
121 static gdbarch_register_name_ftype ia64_register_name;
122 static gdbarch_register_type_ftype ia64_register_type;
123 static gdbarch_breakpoint_from_pc_ftype ia64_breakpoint_from_pc;
124 static gdbarch_skip_prologue_ftype ia64_skip_prologue;
125 static struct type *is_float_or_hfa_type (struct type *t);
126 static CORE_ADDR ia64_find_global_pointer (struct gdbarch *gdbarch,
127 CORE_ADDR faddr);
128
129 #define NUM_IA64_RAW_REGS 462
130
131 static int sp_regnum = IA64_GR12_REGNUM;
132 static int fp_regnum = IA64_VFP_REGNUM;
133 static int lr_regnum = IA64_VRAP_REGNUM;
134
135 /* NOTE: we treat the register stack registers r32-r127 as pseudo-registers because
136 they may not be accessible via the ptrace register get/set interfaces. */
137 enum pseudo_regs { FIRST_PSEUDO_REGNUM = NUM_IA64_RAW_REGS, VBOF_REGNUM = IA64_NAT127_REGNUM + 1, V32_REGNUM,
138 V127_REGNUM = V32_REGNUM + 95,
139 VP0_REGNUM, VP16_REGNUM = VP0_REGNUM + 16, VP63_REGNUM = VP0_REGNUM + 63, LAST_PSEUDO_REGNUM };
140
141 /* Array of register names; There should be ia64_num_regs strings in
142 the initializer. */
143
144 static char *ia64_register_names[] =
145 { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
146 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
147 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
148 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
149 "", "", "", "", "", "", "", "",
150 "", "", "", "", "", "", "", "",
151 "", "", "", "", "", "", "", "",
152 "", "", "", "", "", "", "", "",
153 "", "", "", "", "", "", "", "",
154 "", "", "", "", "", "", "", "",
155 "", "", "", "", "", "", "", "",
156 "", "", "", "", "", "", "", "",
157 "", "", "", "", "", "", "", "",
158 "", "", "", "", "", "", "", "",
159 "", "", "", "", "", "", "", "",
160 "", "", "", "", "", "", "", "",
161
162 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
163 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
164 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
165 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
166 "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39",
167 "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47",
168 "f48", "f49", "f50", "f51", "f52", "f53", "f54", "f55",
169 "f56", "f57", "f58", "f59", "f60", "f61", "f62", "f63",
170 "f64", "f65", "f66", "f67", "f68", "f69", "f70", "f71",
171 "f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79",
172 "f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87",
173 "f88", "f89", "f90", "f91", "f92", "f93", "f94", "f95",
174 "f96", "f97", "f98", "f99", "f100", "f101", "f102", "f103",
175 "f104", "f105", "f106", "f107", "f108", "f109", "f110", "f111",
176 "f112", "f113", "f114", "f115", "f116", "f117", "f118", "f119",
177 "f120", "f121", "f122", "f123", "f124", "f125", "f126", "f127",
178
179 "", "", "", "", "", "", "", "",
180 "", "", "", "", "", "", "", "",
181 "", "", "", "", "", "", "", "",
182 "", "", "", "", "", "", "", "",
183 "", "", "", "", "", "", "", "",
184 "", "", "", "", "", "", "", "",
185 "", "", "", "", "", "", "", "",
186 "", "", "", "", "", "", "", "",
187
188 "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7",
189
190 "vfp", "vrap",
191
192 "pr", "ip", "psr", "cfm",
193
194 "kr0", "kr1", "kr2", "kr3", "kr4", "kr5", "kr6", "kr7",
195 "", "", "", "", "", "", "", "",
196 "rsc", "bsp", "bspstore", "rnat",
197 "", "fcr", "", "",
198 "eflag", "csd", "ssd", "cflg", "fsr", "fir", "fdr", "",
199 "ccv", "", "", "", "unat", "", "", "",
200 "fpsr", "", "", "", "itc",
201 "", "", "", "", "", "", "", "", "", "",
202 "", "", "", "", "", "", "", "", "",
203 "pfs", "lc", "ec",
204 "", "", "", "", "", "", "", "", "", "",
205 "", "", "", "", "", "", "", "", "", "",
206 "", "", "", "", "", "", "", "", "", "",
207 "", "", "", "", "", "", "", "", "", "",
208 "", "", "", "", "", "", "", "", "", "",
209 "", "", "", "", "", "", "", "", "", "",
210 "",
211 "nat0", "nat1", "nat2", "nat3", "nat4", "nat5", "nat6", "nat7",
212 "nat8", "nat9", "nat10", "nat11", "nat12", "nat13", "nat14", "nat15",
213 "nat16", "nat17", "nat18", "nat19", "nat20", "nat21", "nat22", "nat23",
214 "nat24", "nat25", "nat26", "nat27", "nat28", "nat29", "nat30", "nat31",
215 "nat32", "nat33", "nat34", "nat35", "nat36", "nat37", "nat38", "nat39",
216 "nat40", "nat41", "nat42", "nat43", "nat44", "nat45", "nat46", "nat47",
217 "nat48", "nat49", "nat50", "nat51", "nat52", "nat53", "nat54", "nat55",
218 "nat56", "nat57", "nat58", "nat59", "nat60", "nat61", "nat62", "nat63",
219 "nat64", "nat65", "nat66", "nat67", "nat68", "nat69", "nat70", "nat71",
220 "nat72", "nat73", "nat74", "nat75", "nat76", "nat77", "nat78", "nat79",
221 "nat80", "nat81", "nat82", "nat83", "nat84", "nat85", "nat86", "nat87",
222 "nat88", "nat89", "nat90", "nat91", "nat92", "nat93", "nat94", "nat95",
223 "nat96", "nat97", "nat98", "nat99", "nat100","nat101","nat102","nat103",
224 "nat104","nat105","nat106","nat107","nat108","nat109","nat110","nat111",
225 "nat112","nat113","nat114","nat115","nat116","nat117","nat118","nat119",
226 "nat120","nat121","nat122","nat123","nat124","nat125","nat126","nat127",
227
228 "bof",
229
230 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
231 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
232 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
233 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
234 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
235 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
236 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
237 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
238 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
239 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
240 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
241 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
242
243 "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7",
244 "p8", "p9", "p10", "p11", "p12", "p13", "p14", "p15",
245 "p16", "p17", "p18", "p19", "p20", "p21", "p22", "p23",
246 "p24", "p25", "p26", "p27", "p28", "p29", "p30", "p31",
247 "p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39",
248 "p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47",
249 "p48", "p49", "p50", "p51", "p52", "p53", "p54", "p55",
250 "p56", "p57", "p58", "p59", "p60", "p61", "p62", "p63",
251 };
252
253 struct ia64_frame_cache
254 {
255 CORE_ADDR base; /* frame pointer base for frame */
256 CORE_ADDR pc; /* function start pc for frame */
257 CORE_ADDR saved_sp; /* stack pointer for frame */
258 CORE_ADDR bsp; /* points at r32 for the current frame */
259 CORE_ADDR cfm; /* cfm value for current frame */
260 CORE_ADDR prev_cfm; /* cfm value for previous frame */
261 int frameless;
262 int sof; /* Size of frame (decoded from cfm value) */
263 int sol; /* Size of locals (decoded from cfm value) */
264 int sor; /* Number of rotating registers. (decoded from cfm value) */
265 CORE_ADDR after_prologue;
266 /* Address of first instruction after the last
267 prologue instruction; Note that there may
268 be instructions from the function's body
269 intermingled with the prologue. */
270 int mem_stack_frame_size;
271 /* Size of the memory stack frame (may be zero),
272 or -1 if it has not been determined yet. */
273 int fp_reg; /* Register number (if any) used a frame pointer
274 for this frame. 0 if no register is being used
275 as the frame pointer. */
276
277 /* Saved registers. */
278 CORE_ADDR saved_regs[NUM_IA64_RAW_REGS];
279
280 };
281
282 static int
283 floatformat_valid (const struct floatformat *fmt, const void *from)
284 {
285 return 1;
286 }
287
288 static const struct floatformat floatformat_ia64_ext =
289 {
290 floatformat_little, 82, 0, 1, 17, 65535, 0x1ffff, 18, 64,
291 floatformat_intbit_yes, "floatformat_ia64_ext", floatformat_valid, NULL
292 };
293
294 static const struct floatformat *floatformats_ia64_ext[2] =
295 {
296 &floatformat_ia64_ext,
297 &floatformat_ia64_ext
298 };
299
300 static struct type *
301 ia64_ext_type (struct gdbarch *gdbarch)
302 {
303 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
304
305 if (!tdep->ia64_ext_type)
306 tdep->ia64_ext_type
307 = arch_float_type (gdbarch, 128, "builtin_type_ia64_ext",
308 floatformats_ia64_ext);
309
310 return tdep->ia64_ext_type;
311 }
312
313 static int
314 ia64_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
315 struct reggroup *group)
316 {
317 int vector_p;
318 int float_p;
319 int raw_p;
320 if (group == all_reggroup)
321 return 1;
322 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
323 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
324 raw_p = regnum < NUM_IA64_RAW_REGS;
325 if (group == float_reggroup)
326 return float_p;
327 if (group == vector_reggroup)
328 return vector_p;
329 if (group == general_reggroup)
330 return (!vector_p && !float_p);
331 if (group == save_reggroup || group == restore_reggroup)
332 return raw_p;
333 return 0;
334 }
335
336 static const char *
337 ia64_register_name (struct gdbarch *gdbarch, int reg)
338 {
339 return ia64_register_names[reg];
340 }
341
342 struct type *
343 ia64_register_type (struct gdbarch *arch, int reg)
344 {
345 if (reg >= IA64_FR0_REGNUM && reg <= IA64_FR127_REGNUM)
346 return ia64_ext_type (arch);
347 else
348 return builtin_type (arch)->builtin_long;
349 }
350
351 static int
352 ia64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
353 {
354 if (reg >= IA64_GR32_REGNUM && reg <= IA64_GR127_REGNUM)
355 return V32_REGNUM + (reg - IA64_GR32_REGNUM);
356 return reg;
357 }
358
359
360 /* Extract ``len'' bits from an instruction bundle starting at
361 bit ``from''. */
362
363 static long long
364 extract_bit_field (const char *bundle, int from, int len)
365 {
366 long long result = 0LL;
367 int to = from + len;
368 int from_byte = from / 8;
369 int to_byte = to / 8;
370 unsigned char *b = (unsigned char *) bundle;
371 unsigned char c;
372 int lshift;
373 int i;
374
375 c = b[from_byte];
376 if (from_byte == to_byte)
377 c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8);
378 result = c >> (from % 8);
379 lshift = 8 - (from % 8);
380
381 for (i = from_byte+1; i < to_byte; i++)
382 {
383 result |= ((long long) b[i]) << lshift;
384 lshift += 8;
385 }
386
387 if (from_byte < to_byte && (to % 8 != 0))
388 {
389 c = b[to_byte];
390 c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8);
391 result |= ((long long) c) << lshift;
392 }
393
394 return result;
395 }
396
397 /* Replace the specified bits in an instruction bundle */
398
399 static void
400 replace_bit_field (char *bundle, long long val, int from, int len)
401 {
402 int to = from + len;
403 int from_byte = from / 8;
404 int to_byte = to / 8;
405 unsigned char *b = (unsigned char *) bundle;
406 unsigned char c;
407
408 if (from_byte == to_byte)
409 {
410 unsigned char left, right;
411 c = b[from_byte];
412 left = (c >> (to % 8)) << (to % 8);
413 right = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8);
414 c = (unsigned char) (val & 0xff);
415 c = (unsigned char) (c << (from % 8 + 8 - to % 8)) >> (8 - to % 8);
416 c |= right | left;
417 b[from_byte] = c;
418 }
419 else
420 {
421 int i;
422 c = b[from_byte];
423 c = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8);
424 c = c | (val << (from % 8));
425 b[from_byte] = c;
426 val >>= 8 - from % 8;
427
428 for (i = from_byte+1; i < to_byte; i++)
429 {
430 c = val & 0xff;
431 val >>= 8;
432 b[i] = c;
433 }
434
435 if (to % 8 != 0)
436 {
437 unsigned char cv = (unsigned char) val;
438 c = b[to_byte];
439 c = c >> (to % 8) << (to % 8);
440 c |= ((unsigned char) (cv << (8 - to % 8))) >> (8 - to % 8);
441 b[to_byte] = c;
442 }
443 }
444 }
445
446 /* Return the contents of slot N (for N = 0, 1, or 2) in
447 and instruction bundle */
448
449 static long long
450 slotN_contents (char *bundle, int slotnum)
451 {
452 return extract_bit_field (bundle, 5+41*slotnum, 41);
453 }
454
455 /* Store an instruction in an instruction bundle */
456
457 static void
458 replace_slotN_contents (char *bundle, long long instr, int slotnum)
459 {
460 replace_bit_field (bundle, instr, 5+41*slotnum, 41);
461 }
462
463 static const enum instruction_type template_encoding_table[32][3] =
464 {
465 { M, I, I }, /* 00 */
466 { M, I, I }, /* 01 */
467 { M, I, I }, /* 02 */
468 { M, I, I }, /* 03 */
469 { M, L, X }, /* 04 */
470 { M, L, X }, /* 05 */
471 { undefined, undefined, undefined }, /* 06 */
472 { undefined, undefined, undefined }, /* 07 */
473 { M, M, I }, /* 08 */
474 { M, M, I }, /* 09 */
475 { M, M, I }, /* 0A */
476 { M, M, I }, /* 0B */
477 { M, F, I }, /* 0C */
478 { M, F, I }, /* 0D */
479 { M, M, F }, /* 0E */
480 { M, M, F }, /* 0F */
481 { M, I, B }, /* 10 */
482 { M, I, B }, /* 11 */
483 { M, B, B }, /* 12 */
484 { M, B, B }, /* 13 */
485 { undefined, undefined, undefined }, /* 14 */
486 { undefined, undefined, undefined }, /* 15 */
487 { B, B, B }, /* 16 */
488 { B, B, B }, /* 17 */
489 { M, M, B }, /* 18 */
490 { M, M, B }, /* 19 */
491 { undefined, undefined, undefined }, /* 1A */
492 { undefined, undefined, undefined }, /* 1B */
493 { M, F, B }, /* 1C */
494 { M, F, B }, /* 1D */
495 { undefined, undefined, undefined }, /* 1E */
496 { undefined, undefined, undefined }, /* 1F */
497 };
498
499 /* Fetch and (partially) decode an instruction at ADDR and return the
500 address of the next instruction to fetch. */
501
502 static CORE_ADDR
503 fetch_instruction (CORE_ADDR addr, instruction_type *it, long long *instr)
504 {
505 char bundle[BUNDLE_LEN];
506 int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER;
507 long long template;
508 int val;
509
510 /* Warn about slot numbers greater than 2. We used to generate
511 an error here on the assumption that the user entered an invalid
512 address. But, sometimes GDB itself requests an invalid address.
513 This can (easily) happen when execution stops in a function for
514 which there are no symbols. The prologue scanner will attempt to
515 find the beginning of the function - if the nearest symbol
516 happens to not be aligned on a bundle boundary (16 bytes), the
517 resulting starting address will cause GDB to think that the slot
518 number is too large.
519
520 So we warn about it and set the slot number to zero. It is
521 not necessarily a fatal condition, particularly if debugging
522 at the assembly language level. */
523 if (slotnum > 2)
524 {
525 warning (_("Can't fetch instructions for slot numbers greater than 2.\n"
526 "Using slot 0 instead"));
527 slotnum = 0;
528 }
529
530 addr &= ~0x0f;
531
532 val = target_read_memory (addr, bundle, BUNDLE_LEN);
533
534 if (val != 0)
535 return 0;
536
537 *instr = slotN_contents (bundle, slotnum);
538 template = extract_bit_field (bundle, 0, 5);
539 *it = template_encoding_table[(int)template][slotnum];
540
541 if (slotnum == 2 || (slotnum == 1 && *it == L))
542 addr += 16;
543 else
544 addr += (slotnum + 1) * SLOT_MULTIPLIER;
545
546 return addr;
547 }
548
549 /* There are 5 different break instructions (break.i, break.b,
550 break.m, break.f, and break.x), but they all have the same
551 encoding. (The five bit template in the low five bits of the
552 instruction bundle distinguishes one from another.)
553
554 The runtime architecture manual specifies that break instructions
555 used for debugging purposes must have the upper two bits of the 21
556 bit immediate set to a 0 and a 1 respectively. A breakpoint
557 instruction encodes the most significant bit of its 21 bit
558 immediate at bit 36 of the 41 bit instruction. The penultimate msb
559 is at bit 25 which leads to the pattern below.
560
561 Originally, I had this set up to do, e.g, a "break.i 0x80000" But
562 it turns out that 0x80000 was used as the syscall break in the early
563 simulators. So I changed the pattern slightly to do "break.i 0x080001"
564 instead. But that didn't work either (I later found out that this
565 pattern was used by the simulator that I was using.) So I ended up
566 using the pattern seen below.
567
568 SHADOW_CONTENTS has byte-based addressing (PLACED_ADDRESS and SHADOW_LEN)
569 while we need bit-based addressing as the instructions length is 41 bits and
570 we must not modify/corrupt the adjacent slots in the same bundle.
571 Fortunately we may store larger memory incl. the adjacent bits with the
572 original memory content (not the possibly already stored breakpoints there).
573 We need to be careful in ia64_memory_remove_breakpoint to always restore
574 only the specific bits of this instruction ignoring any adjacent stored
575 bits.
576
577 We use the original addressing with the low nibble in the range <0..2> which
578 gets incorrectly interpreted by generic non-ia64 breakpoint_restore_shadows
579 as the direct byte offset of SHADOW_CONTENTS. We store whole BUNDLE_LEN
580 bytes just without these two possibly skipped bytes to not to exceed to the
581 next bundle.
582
583 If we would like to store the whole bundle to SHADOW_CONTENTS we would have
584 to store already the base address (`address & ~0x0f') into PLACED_ADDRESS.
585 In such case there is no other place where to store
586 SLOTNUM (`adress & 0x0f', value in the range <0..2>). We need to know
587 SLOTNUM in ia64_memory_remove_breakpoint.
588
589 ia64 16-byte bundle layout:
590 | 5 bits | slot 0 with 41 bits | slot 1 with 41 bits | slot 2 with 41 bits |
591
592 The current addressing used by the code below:
593 original PC placed_address placed_size required covered
594 == bp_tgt->shadow_len reqd \subset covered
595 0xABCDE0 0xABCDE0 0x10 <0x0...0x5> <0x0..0xF>
596 0xABCDE1 0xABCDE1 0xF <0x5...0xA> <0x1..0xF>
597 0xABCDE1 L-X 0xABCDE1 L-X 0xF <0xA...0xF> <0x1..0xF>
598 L is always in slot 1 and X is always in slot 2, while the address is
599 using slot 1 the breakpoint instruction must be placed
600 to the slot 2 (requiring to shadow that last byte at 0xF).
601 0xABCDE2 0xABCDE2 0xE <0xA...0xF> <0x2..0xF>
602
603 `objdump -d' and some other tools show a bit unjustified offsets:
604 original PC byte where starts the instruction objdump offset
605 0xABCDE0 0xABCDE0 0xABCDE0
606 0xABCDE1 0xABCDE5 0xABCDE6
607 0xABCDE2 0xABCDEA 0xABCDEC
608 */
609
610 #define IA64_BREAKPOINT 0x00003333300LL
611
612 static int
613 ia64_memory_insert_breakpoint (struct gdbarch *gdbarch,
614 struct bp_target_info *bp_tgt)
615 {
616 CORE_ADDR addr = bp_tgt->placed_address;
617 gdb_byte bundle[BUNDLE_LEN];
618 int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER, shadow_slotnum;
619 long long instr_breakpoint;
620 int val;
621 int template;
622 struct cleanup *cleanup;
623
624 if (slotnum > 2)
625 error (_("Can't insert breakpoint for slot numbers greater than 2."));
626
627 addr &= ~0x0f;
628
629 /* Enable the automatic memory restoration from breakpoints while
630 we read our instruction bundle for the purpose of SHADOW_CONTENTS.
631 Otherwise, we could possibly store into the shadow parts of the adjacent
632 placed breakpoints. It is due to our SHADOW_CONTENTS overlapping the real
633 breakpoint instruction bits region. */
634 cleanup = make_show_memory_breakpoints_cleanup (0);
635 val = target_read_memory (addr, bundle, BUNDLE_LEN);
636 if (val != 0)
637 {
638 do_cleanups (cleanup);
639 return val;
640 }
641
642 /* SHADOW_SLOTNUM saves the original slot number as expected by the caller
643 for addressing the SHADOW_CONTENTS placement. */
644 shadow_slotnum = slotnum;
645
646 /* Cover always the last byte of the bundle for the L-X slot case. */
647 bp_tgt->shadow_len = BUNDLE_LEN - shadow_slotnum;
648
649 /* Check for L type instruction in slot 1, if present then bump up the slot
650 number to the slot 2. */
651 template = extract_bit_field (bundle, 0, 5);
652 if (template_encoding_table[template][slotnum] == X)
653 {
654 gdb_assert (slotnum == 2);
655 error (_("Can't insert breakpoint for non-existing slot X"));
656 }
657 if (template_encoding_table[template][slotnum] == L)
658 {
659 gdb_assert (slotnum == 1);
660 slotnum = 2;
661 }
662
663 /* Store the whole bundle, except for the initial skipped bytes by the slot
664 number interpreted as bytes offset in PLACED_ADDRESS. */
665 memcpy (bp_tgt->shadow_contents, bundle + shadow_slotnum, bp_tgt->shadow_len);
666
667 /* Re-read the same bundle as above except that, this time, read it in order
668 to compute the new bundle inside which we will be inserting the
669 breakpoint. Therefore, disable the automatic memory restoration from
670 breakpoints while we read our instruction bundle. Otherwise, the general
671 restoration mechanism kicks in and we would possibly remove parts of the
672 adjacent placed breakpoints. It is due to our SHADOW_CONTENTS overlapping
673 the real breakpoint instruction bits region. */
674 make_show_memory_breakpoints_cleanup (1);
675 val = target_read_memory (addr, bundle, BUNDLE_LEN);
676 if (val != 0)
677 {
678 do_cleanups (cleanup);
679 return val;
680 }
681
682 /* Breakpoints already present in the code will get deteacted and not get
683 reinserted by bp_loc_is_permanent. Multiple breakpoints at the same
684 location cannot induce the internal error as they are optimized into
685 a single instance by update_global_location_list. */
686 instr_breakpoint = slotN_contents (bundle, slotnum);
687 if (instr_breakpoint == IA64_BREAKPOINT)
688 internal_error (__FILE__, __LINE__,
689 _("Address %s already contains a breakpoint."),
690 paddress (gdbarch, bp_tgt->placed_address));
691 replace_slotN_contents (bundle, IA64_BREAKPOINT, slotnum);
692
693 bp_tgt->placed_size = bp_tgt->shadow_len;
694
695 val = target_write_memory (addr + shadow_slotnum, bundle + shadow_slotnum,
696 bp_tgt->shadow_len);
697
698 do_cleanups (cleanup);
699 return val;
700 }
701
702 static int
703 ia64_memory_remove_breakpoint (struct gdbarch *gdbarch,
704 struct bp_target_info *bp_tgt)
705 {
706 CORE_ADDR addr = bp_tgt->placed_address;
707 gdb_byte bundle_mem[BUNDLE_LEN], bundle_saved[BUNDLE_LEN];
708 int slotnum = (addr & 0x0f) / SLOT_MULTIPLIER, shadow_slotnum;
709 long long instr_breakpoint, instr_saved;
710 int val;
711 int template;
712 struct cleanup *cleanup;
713
714 addr &= ~0x0f;
715
716 /* Disable the automatic memory restoration from breakpoints while
717 we read our instruction bundle. Otherwise, the general restoration
718 mechanism kicks in and we would possibly remove parts of the adjacent
719 placed breakpoints. It is due to our SHADOW_CONTENTS overlapping the real
720 breakpoint instruction bits region. */
721 cleanup = make_show_memory_breakpoints_cleanup (1);
722 val = target_read_memory (addr, bundle_mem, BUNDLE_LEN);
723 if (val != 0)
724 {
725 do_cleanups (cleanup);
726 return val;
727 }
728
729 /* SHADOW_SLOTNUM saves the original slot number as expected by the caller
730 for addressing the SHADOW_CONTENTS placement. */
731 shadow_slotnum = slotnum;
732
733 /* Check for L type instruction in slot 1, if present then bump up the slot
734 number to the slot 2. */
735 template = extract_bit_field (bundle_mem, 0, 5);
736 if (template_encoding_table[template][slotnum] == X)
737 {
738 gdb_assert (slotnum == 2);
739 warning (_("Cannot remove breakpoint at address %s "
740 "from non-existing slot X, memory has changed underneath"),
741 paddress (gdbarch, bp_tgt->placed_address));
742 do_cleanups (cleanup);
743 return -1;
744 }
745 if (template_encoding_table[template][slotnum] == L)
746 {
747 gdb_assert (slotnum == 1);
748 slotnum = 2;
749 }
750
751 gdb_assert (bp_tgt->placed_size == BUNDLE_LEN - shadow_slotnum);
752 gdb_assert (bp_tgt->placed_size == bp_tgt->shadow_len);
753
754 instr_breakpoint = slotN_contents (bundle_mem, slotnum);
755 if (instr_breakpoint != IA64_BREAKPOINT)
756 {
757 warning (_("Cannot remove breakpoint at address %s, "
758 "no break instruction at such address."),
759 paddress (gdbarch, bp_tgt->placed_address));
760 do_cleanups (cleanup);
761 return -1;
762 }
763
764 /* Extract the original saved instruction from SLOTNUM normalizing its
765 bit-shift for INSTR_SAVED. */
766 memcpy (bundle_saved, bundle_mem, BUNDLE_LEN);
767 memcpy (bundle_saved + shadow_slotnum, bp_tgt->shadow_contents,
768 bp_tgt->shadow_len);
769 instr_saved = slotN_contents (bundle_saved, slotnum);
770
771 /* In BUNDLE_MEM be careful to modify only the bits belonging to SLOTNUM and
772 never any other possibly also stored in SHADOW_CONTENTS. */
773 replace_slotN_contents (bundle_mem, instr_saved, slotnum);
774 val = target_write_memory (addr, bundle_mem, BUNDLE_LEN);
775
776 do_cleanups (cleanup);
777 return val;
778 }
779
780 /* As gdbarch_breakpoint_from_pc ranges have byte granularity and ia64
781 instruction slots ranges are bit-granular (41 bits) we have to provide an
782 extended range as described for ia64_memory_insert_breakpoint. We also take
783 care of preserving the `break' instruction 21-bit (or 62-bit) parameter to
784 make a match for permanent breakpoints. */
785
786 static const gdb_byte *
787 ia64_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
788 {
789 CORE_ADDR addr = *pcptr;
790 static gdb_byte bundle[BUNDLE_LEN];
791 int slotnum = (int) (*pcptr & 0x0f) / SLOT_MULTIPLIER, shadow_slotnum;
792 long long instr_fetched;
793 int val;
794 int template;
795 struct cleanup *cleanup;
796
797 if (slotnum > 2)
798 error (_("Can't insert breakpoint for slot numbers greater than 2."));
799
800 addr &= ~0x0f;
801
802 /* Enable the automatic memory restoration from breakpoints while
803 we read our instruction bundle to match bp_loc_is_permanent. */
804 cleanup = make_show_memory_breakpoints_cleanup (0);
805 val = target_read_memory (addr, bundle, BUNDLE_LEN);
806 do_cleanups (cleanup);
807
808 /* The memory might be unreachable. This can happen, for instance,
809 when the user inserts a breakpoint at an invalid address. */
810 if (val != 0)
811 return NULL;
812
813 /* SHADOW_SLOTNUM saves the original slot number as expected by the caller
814 for addressing the SHADOW_CONTENTS placement. */
815 shadow_slotnum = slotnum;
816
817 /* Cover always the last byte of the bundle for the L-X slot case. */
818 *lenptr = BUNDLE_LEN - shadow_slotnum;
819
820 /* Check for L type instruction in slot 1, if present then bump up the slot
821 number to the slot 2. */
822 template = extract_bit_field (bundle, 0, 5);
823 if (template_encoding_table[template][slotnum] == X)
824 {
825 gdb_assert (slotnum == 2);
826 error (_("Can't insert breakpoint for non-existing slot X"));
827 }
828 if (template_encoding_table[template][slotnum] == L)
829 {
830 gdb_assert (slotnum == 1);
831 slotnum = 2;
832 }
833
834 /* A break instruction has its all its opcode bits cleared except for
835 the parameter value. For L+X slot pair we are at the X slot (slot 2) so
836 we should not touch the L slot - the upper 41 bits of the parameter. */
837 instr_fetched = slotN_contents (bundle, slotnum);
838 instr_fetched &= 0x1003ffffc0LL;
839 replace_slotN_contents (bundle, instr_fetched, slotnum);
840
841 return bundle + shadow_slotnum;
842 }
843
844 static CORE_ADDR
845 ia64_read_pc (struct regcache *regcache)
846 {
847 ULONGEST psr_value, pc_value;
848 int slot_num;
849
850 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr_value);
851 regcache_cooked_read_unsigned (regcache, IA64_IP_REGNUM, &pc_value);
852 slot_num = (psr_value >> 41) & 3;
853
854 return pc_value | (slot_num * SLOT_MULTIPLIER);
855 }
856
857 void
858 ia64_write_pc (struct regcache *regcache, CORE_ADDR new_pc)
859 {
860 int slot_num = (int) (new_pc & 0xf) / SLOT_MULTIPLIER;
861 ULONGEST psr_value;
862
863 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr_value);
864 psr_value &= ~(3LL << 41);
865 psr_value |= (ULONGEST)(slot_num & 0x3) << 41;
866
867 new_pc &= ~0xfLL;
868
869 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr_value);
870 regcache_cooked_write_unsigned (regcache, IA64_IP_REGNUM, new_pc);
871 }
872
873 #define IS_NaT_COLLECTION_ADDR(addr) ((((addr) >> 3) & 0x3f) == 0x3f)
874
875 /* Returns the address of the slot that's NSLOTS slots away from
876 the address ADDR. NSLOTS may be positive or negative. */
877 static CORE_ADDR
878 rse_address_add(CORE_ADDR addr, int nslots)
879 {
880 CORE_ADDR new_addr;
881 int mandatory_nat_slots = nslots / 63;
882 int direction = nslots < 0 ? -1 : 1;
883
884 new_addr = addr + 8 * (nslots + mandatory_nat_slots);
885
886 if ((new_addr >> 9) != ((addr + 8 * 64 * mandatory_nat_slots) >> 9))
887 new_addr += 8 * direction;
888
889 if (IS_NaT_COLLECTION_ADDR(new_addr))
890 new_addr += 8 * direction;
891
892 return new_addr;
893 }
894
895 static void
896 ia64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
897 int regnum, gdb_byte *buf)
898 {
899 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
900
901 if (regnum >= V32_REGNUM && regnum <= V127_REGNUM)
902 {
903 #ifdef HAVE_LIBUNWIND_IA64_H
904 /* First try and use the libunwind special reg accessor, otherwise fallback to
905 standard logic. */
906 if (!libunwind_is_initialized ()
907 || libunwind_get_reg_special (gdbarch, regcache, regnum, buf) != 0)
908 #endif
909 {
910 /* The fallback position is to assume that r32-r127 are found sequentially
911 in memory starting at $bof. This isn't always true, but without libunwind,
912 this is the best we can do. */
913 ULONGEST cfm;
914 ULONGEST bsp;
915 CORE_ADDR reg;
916 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
917 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
918
919 /* The bsp points at the end of the register frame so we
920 subtract the size of frame from it to get start of register frame. */
921 bsp = rse_address_add (bsp, -(cfm & 0x7f));
922
923 if ((cfm & 0x7f) > regnum - V32_REGNUM)
924 {
925 ULONGEST reg_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
926 reg = read_memory_integer ((CORE_ADDR)reg_addr, 8, byte_order);
927 store_unsigned_integer (buf, register_size (gdbarch, regnum),
928 byte_order, reg);
929 }
930 else
931 store_unsigned_integer (buf, register_size (gdbarch, regnum),
932 byte_order, 0);
933 }
934 }
935 else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM)
936 {
937 ULONGEST unatN_val;
938 ULONGEST unat;
939 regcache_cooked_read_unsigned (regcache, IA64_UNAT_REGNUM, &unat);
940 unatN_val = (unat & (1LL << (regnum - IA64_NAT0_REGNUM))) != 0;
941 store_unsigned_integer (buf, register_size (gdbarch, regnum),
942 byte_order, unatN_val);
943 }
944 else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
945 {
946 ULONGEST natN_val = 0;
947 ULONGEST bsp;
948 ULONGEST cfm;
949 CORE_ADDR gr_addr = 0;
950 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
951 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
952
953 /* The bsp points at the end of the register frame so we
954 subtract the size of frame from it to get start of register frame. */
955 bsp = rse_address_add (bsp, -(cfm & 0x7f));
956
957 if ((cfm & 0x7f) > regnum - V32_REGNUM)
958 gr_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
959
960 if (gr_addr != 0)
961 {
962 /* Compute address of nat collection bits. */
963 CORE_ADDR nat_addr = gr_addr | 0x1f8;
964 CORE_ADDR nat_collection;
965 int nat_bit;
966 /* If our nat collection address is bigger than bsp, we have to get
967 the nat collection from rnat. Otherwise, we fetch the nat
968 collection from the computed address. */
969 if (nat_addr >= bsp)
970 regcache_cooked_read_unsigned (regcache, IA64_RNAT_REGNUM, &nat_collection);
971 else
972 nat_collection = read_memory_integer (nat_addr, 8, byte_order);
973 nat_bit = (gr_addr >> 3) & 0x3f;
974 natN_val = (nat_collection >> nat_bit) & 1;
975 }
976
977 store_unsigned_integer (buf, register_size (gdbarch, regnum),
978 byte_order, natN_val);
979 }
980 else if (regnum == VBOF_REGNUM)
981 {
982 /* A virtual register frame start is provided for user convenience.
983 It can be calculated as the bsp - sof (sizeof frame). */
984 ULONGEST bsp, vbsp;
985 ULONGEST cfm;
986 CORE_ADDR reg;
987 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
988 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
989
990 /* The bsp points at the end of the register frame so we
991 subtract the size of frame from it to get beginning of frame. */
992 vbsp = rse_address_add (bsp, -(cfm & 0x7f));
993 store_unsigned_integer (buf, register_size (gdbarch, regnum),
994 byte_order, vbsp);
995 }
996 else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
997 {
998 ULONGEST pr;
999 ULONGEST cfm;
1000 ULONGEST prN_val;
1001 CORE_ADDR reg;
1002 regcache_cooked_read_unsigned (regcache, IA64_PR_REGNUM, &pr);
1003 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
1004
1005 if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
1006 {
1007 /* Fetch predicate register rename base from current frame
1008 marker for this frame. */
1009 int rrb_pr = (cfm >> 32) & 0x3f;
1010
1011 /* Adjust the register number to account for register rotation. */
1012 regnum = VP16_REGNUM
1013 + ((regnum - VP16_REGNUM) + rrb_pr) % 48;
1014 }
1015 prN_val = (pr & (1LL << (regnum - VP0_REGNUM))) != 0;
1016 store_unsigned_integer (buf, register_size (gdbarch, regnum),
1017 byte_order, prN_val);
1018 }
1019 else
1020 memset (buf, 0, register_size (gdbarch, regnum));
1021 }
1022
1023 static void
1024 ia64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1025 int regnum, const gdb_byte *buf)
1026 {
1027 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1028
1029 if (regnum >= V32_REGNUM && regnum <= V127_REGNUM)
1030 {
1031 ULONGEST bsp;
1032 ULONGEST cfm;
1033 CORE_ADDR reg;
1034 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
1035 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
1036
1037 bsp = rse_address_add (bsp, -(cfm & 0x7f));
1038
1039 if ((cfm & 0x7f) > regnum - V32_REGNUM)
1040 {
1041 ULONGEST reg_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
1042 write_memory (reg_addr, (void *)buf, 8);
1043 }
1044 }
1045 else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM)
1046 {
1047 ULONGEST unatN_val, unat, unatN_mask;
1048 regcache_cooked_read_unsigned (regcache, IA64_UNAT_REGNUM, &unat);
1049 unatN_val = extract_unsigned_integer (buf, register_size (gdbarch, regnum),
1050 byte_order);
1051 unatN_mask = (1LL << (regnum - IA64_NAT0_REGNUM));
1052 if (unatN_val == 0)
1053 unat &= ~unatN_mask;
1054 else if (unatN_val == 1)
1055 unat |= unatN_mask;
1056 regcache_cooked_write_unsigned (regcache, IA64_UNAT_REGNUM, unat);
1057 }
1058 else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
1059 {
1060 ULONGEST natN_val;
1061 ULONGEST bsp;
1062 ULONGEST cfm;
1063 CORE_ADDR gr_addr = 0;
1064 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
1065 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
1066
1067 /* The bsp points at the end of the register frame so we
1068 subtract the size of frame from it to get start of register frame. */
1069 bsp = rse_address_add (bsp, -(cfm & 0x7f));
1070
1071 if ((cfm & 0x7f) > regnum - V32_REGNUM)
1072 gr_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
1073
1074 natN_val = extract_unsigned_integer (buf, register_size (gdbarch, regnum),
1075 byte_order);
1076
1077 if (gr_addr != 0 && (natN_val == 0 || natN_val == 1))
1078 {
1079 /* Compute address of nat collection bits. */
1080 CORE_ADDR nat_addr = gr_addr | 0x1f8;
1081 CORE_ADDR nat_collection;
1082 int natN_bit = (gr_addr >> 3) & 0x3f;
1083 ULONGEST natN_mask = (1LL << natN_bit);
1084 /* If our nat collection address is bigger than bsp, we have to get
1085 the nat collection from rnat. Otherwise, we fetch the nat
1086 collection from the computed address. */
1087 if (nat_addr >= bsp)
1088 {
1089 regcache_cooked_read_unsigned (regcache, IA64_RNAT_REGNUM, &nat_collection);
1090 if (natN_val)
1091 nat_collection |= natN_mask;
1092 else
1093 nat_collection &= ~natN_mask;
1094 regcache_cooked_write_unsigned (regcache, IA64_RNAT_REGNUM, nat_collection);
1095 }
1096 else
1097 {
1098 char nat_buf[8];
1099 nat_collection = read_memory_integer (nat_addr, 8, byte_order);
1100 if (natN_val)
1101 nat_collection |= natN_mask;
1102 else
1103 nat_collection &= ~natN_mask;
1104 store_unsigned_integer (nat_buf, register_size (gdbarch, regnum),
1105 byte_order, nat_collection);
1106 write_memory (nat_addr, nat_buf, 8);
1107 }
1108 }
1109 }
1110 else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
1111 {
1112 ULONGEST pr;
1113 ULONGEST cfm;
1114 ULONGEST prN_val;
1115 ULONGEST prN_mask;
1116
1117 regcache_cooked_read_unsigned (regcache, IA64_PR_REGNUM, &pr);
1118 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
1119
1120 if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
1121 {
1122 /* Fetch predicate register rename base from current frame
1123 marker for this frame. */
1124 int rrb_pr = (cfm >> 32) & 0x3f;
1125
1126 /* Adjust the register number to account for register rotation. */
1127 regnum = VP16_REGNUM
1128 + ((regnum - VP16_REGNUM) + rrb_pr) % 48;
1129 }
1130 prN_val = extract_unsigned_integer (buf, register_size (gdbarch, regnum),
1131 byte_order);
1132 prN_mask = (1LL << (regnum - VP0_REGNUM));
1133 if (prN_val == 0)
1134 pr &= ~prN_mask;
1135 else if (prN_val == 1)
1136 pr |= prN_mask;
1137 regcache_cooked_write_unsigned (regcache, IA64_PR_REGNUM, pr);
1138 }
1139 }
1140
1141 /* The ia64 needs to convert between various ieee floating-point formats
1142 and the special ia64 floating point register format. */
1143
1144 static int
1145 ia64_convert_register_p (struct gdbarch *gdbarch, int regno, struct type *type)
1146 {
1147 return (regno >= IA64_FR0_REGNUM && regno <= IA64_FR127_REGNUM
1148 && type != ia64_ext_type (gdbarch));
1149 }
1150
1151 static void
1152 ia64_register_to_value (struct frame_info *frame, int regnum,
1153 struct type *valtype, gdb_byte *out)
1154 {
1155 struct gdbarch *gdbarch = get_frame_arch (frame);
1156 char in[MAX_REGISTER_SIZE];
1157 frame_register_read (frame, regnum, in);
1158 convert_typed_floating (in, ia64_ext_type (gdbarch), out, valtype);
1159 }
1160
1161 static void
1162 ia64_value_to_register (struct frame_info *frame, int regnum,
1163 struct type *valtype, const gdb_byte *in)
1164 {
1165 struct gdbarch *gdbarch = get_frame_arch (frame);
1166 char out[MAX_REGISTER_SIZE];
1167 convert_typed_floating (in, valtype, out, ia64_ext_type (gdbarch));
1168 put_frame_register (frame, regnum, out);
1169 }
1170
1171
1172 /* Limit the number of skipped non-prologue instructions since examining
1173 of the prologue is expensive. */
1174 static int max_skip_non_prologue_insns = 40;
1175
1176 /* Given PC representing the starting address of a function, and
1177 LIM_PC which is the (sloppy) limit to which to scan when looking
1178 for a prologue, attempt to further refine this limit by using
1179 the line data in the symbol table. If successful, a better guess
1180 on where the prologue ends is returned, otherwise the previous
1181 value of lim_pc is returned. TRUST_LIMIT is a pointer to a flag
1182 which will be set to indicate whether the returned limit may be
1183 used with no further scanning in the event that the function is
1184 frameless. */
1185
1186 /* FIXME: cagney/2004-02-14: This function and logic have largely been
1187 superseded by skip_prologue_using_sal. */
1188
1189 static CORE_ADDR
1190 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc, int *trust_limit)
1191 {
1192 struct symtab_and_line prologue_sal;
1193 CORE_ADDR start_pc = pc;
1194 CORE_ADDR end_pc;
1195
1196 /* The prologue can not possibly go past the function end itself,
1197 so we can already adjust LIM_PC accordingly. */
1198 if (find_pc_partial_function (pc, NULL, NULL, &end_pc) && end_pc < lim_pc)
1199 lim_pc = end_pc;
1200
1201 /* Start off not trusting the limit. */
1202 *trust_limit = 0;
1203
1204 prologue_sal = find_pc_line (pc, 0);
1205 if (prologue_sal.line != 0)
1206 {
1207 int i;
1208 CORE_ADDR addr = prologue_sal.end;
1209
1210 /* Handle the case in which compiler's optimizer/scheduler
1211 has moved instructions into the prologue. We scan ahead
1212 in the function looking for address ranges whose corresponding
1213 line number is less than or equal to the first one that we
1214 found for the function. (It can be less than when the
1215 scheduler puts a body instruction before the first prologue
1216 instruction.) */
1217 for (i = 2 * max_skip_non_prologue_insns;
1218 i > 0 && (lim_pc == 0 || addr < lim_pc);
1219 i--)
1220 {
1221 struct symtab_and_line sal;
1222
1223 sal = find_pc_line (addr, 0);
1224 if (sal.line == 0)
1225 break;
1226 if (sal.line <= prologue_sal.line
1227 && sal.symtab == prologue_sal.symtab)
1228 {
1229 prologue_sal = sal;
1230 }
1231 addr = sal.end;
1232 }
1233
1234 if (lim_pc == 0 || prologue_sal.end < lim_pc)
1235 {
1236 lim_pc = prologue_sal.end;
1237 if (start_pc == get_pc_function_start (lim_pc))
1238 *trust_limit = 1;
1239 }
1240 }
1241 return lim_pc;
1242 }
1243
1244 #define isScratch(_regnum_) ((_regnum_) == 2 || (_regnum_) == 3 \
1245 || (8 <= (_regnum_) && (_regnum_) <= 11) \
1246 || (14 <= (_regnum_) && (_regnum_) <= 31))
1247 #define imm9(_instr_) \
1248 ( ((((_instr_) & 0x01000000000LL) ? -1 : 0) << 8) \
1249 | (((_instr_) & 0x00008000000LL) >> 20) \
1250 | (((_instr_) & 0x00000001fc0LL) >> 6))
1251
1252 /* Allocate and initialize a frame cache. */
1253
1254 static struct ia64_frame_cache *
1255 ia64_alloc_frame_cache (void)
1256 {
1257 struct ia64_frame_cache *cache;
1258 int i;
1259
1260 cache = FRAME_OBSTACK_ZALLOC (struct ia64_frame_cache);
1261
1262 /* Base address. */
1263 cache->base = 0;
1264 cache->pc = 0;
1265 cache->cfm = 0;
1266 cache->prev_cfm = 0;
1267 cache->sof = 0;
1268 cache->sol = 0;
1269 cache->sor = 0;
1270 cache->bsp = 0;
1271 cache->fp_reg = 0;
1272 cache->frameless = 1;
1273
1274 for (i = 0; i < NUM_IA64_RAW_REGS; i++)
1275 cache->saved_regs[i] = 0;
1276
1277 return cache;
1278 }
1279
1280 static CORE_ADDR
1281 examine_prologue (CORE_ADDR pc, CORE_ADDR lim_pc,
1282 struct frame_info *this_frame,
1283 struct ia64_frame_cache *cache)
1284 {
1285 CORE_ADDR next_pc;
1286 CORE_ADDR last_prologue_pc = pc;
1287 instruction_type it;
1288 long long instr;
1289 int cfm_reg = 0;
1290 int ret_reg = 0;
1291 int fp_reg = 0;
1292 int unat_save_reg = 0;
1293 int pr_save_reg = 0;
1294 int mem_stack_frame_size = 0;
1295 int spill_reg = 0;
1296 CORE_ADDR spill_addr = 0;
1297 char instores[8];
1298 char infpstores[8];
1299 char reg_contents[256];
1300 int trust_limit;
1301 int frameless = 1;
1302 int i;
1303 CORE_ADDR addr;
1304 char buf[8];
1305 CORE_ADDR bof, sor, sol, sof, cfm, rrb_gr;
1306
1307 memset (instores, 0, sizeof instores);
1308 memset (infpstores, 0, sizeof infpstores);
1309 memset (reg_contents, 0, sizeof reg_contents);
1310
1311 if (cache->after_prologue != 0
1312 && cache->after_prologue <= lim_pc)
1313 return cache->after_prologue;
1314
1315 lim_pc = refine_prologue_limit (pc, lim_pc, &trust_limit);
1316 next_pc = fetch_instruction (pc, &it, &instr);
1317
1318 /* We want to check if we have a recognizable function start before we
1319 look ahead for a prologue. */
1320 if (pc < lim_pc && next_pc
1321 && it == M && ((instr & 0x1ee0000003fLL) == 0x02c00000000LL))
1322 {
1323 /* alloc - start of a regular function. */
1324 int sor = (int) ((instr & 0x00078000000LL) >> 27);
1325 int sol = (int) ((instr & 0x00007f00000LL) >> 20);
1326 int sof = (int) ((instr & 0x000000fe000LL) >> 13);
1327 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1328
1329 /* Verify that the current cfm matches what we think is the
1330 function start. If we have somehow jumped within a function,
1331 we do not want to interpret the prologue and calculate the
1332 addresses of various registers such as the return address.
1333 We will instead treat the frame as frameless. */
1334 if (!this_frame ||
1335 (sof == (cache->cfm & 0x7f) &&
1336 sol == ((cache->cfm >> 7) & 0x7f)))
1337 frameless = 0;
1338
1339 cfm_reg = rN;
1340 last_prologue_pc = next_pc;
1341 pc = next_pc;
1342 }
1343 else
1344 {
1345 /* Look for a leaf routine. */
1346 if (pc < lim_pc && next_pc
1347 && (it == I || it == M)
1348 && ((instr & 0x1ee00000000LL) == 0x10800000000LL))
1349 {
1350 /* adds rN = imm14, rM (or mov rN, rM when imm14 is 0) */
1351 int imm = (int) ((((instr & 0x01000000000LL) ? -1 : 0) << 13)
1352 | ((instr & 0x001f8000000LL) >> 20)
1353 | ((instr & 0x000000fe000LL) >> 13));
1354 int rM = (int) ((instr & 0x00007f00000LL) >> 20);
1355 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1356 int qp = (int) (instr & 0x0000000003fLL);
1357 if (qp == 0 && rN == 2 && imm == 0 && rM == 12 && fp_reg == 0)
1358 {
1359 /* mov r2, r12 - beginning of leaf routine */
1360 fp_reg = rN;
1361 last_prologue_pc = next_pc;
1362 }
1363 }
1364
1365 /* If we don't recognize a regular function or leaf routine, we are
1366 done. */
1367 if (!fp_reg)
1368 {
1369 pc = lim_pc;
1370 if (trust_limit)
1371 last_prologue_pc = lim_pc;
1372 }
1373 }
1374
1375 /* Loop, looking for prologue instructions, keeping track of
1376 where preserved registers were spilled. */
1377 while (pc < lim_pc)
1378 {
1379 next_pc = fetch_instruction (pc, &it, &instr);
1380 if (next_pc == 0)
1381 break;
1382
1383 if (it == B && ((instr & 0x1e1f800003fLL) != 0x04000000000LL))
1384 {
1385 /* Exit loop upon hitting a non-nop branch instruction. */
1386 if (trust_limit)
1387 lim_pc = pc;
1388 break;
1389 }
1390 else if (((instr & 0x3fLL) != 0LL) &&
1391 (frameless || ret_reg != 0))
1392 {
1393 /* Exit loop upon hitting a predicated instruction if
1394 we already have the return register or if we are frameless. */
1395 if (trust_limit)
1396 lim_pc = pc;
1397 break;
1398 }
1399 else if (it == I && ((instr & 0x1eff8000000LL) == 0x00188000000LL))
1400 {
1401 /* Move from BR */
1402 int b2 = (int) ((instr & 0x0000000e000LL) >> 13);
1403 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1404 int qp = (int) (instr & 0x0000000003f);
1405
1406 if (qp == 0 && b2 == 0 && rN >= 32 && ret_reg == 0)
1407 {
1408 ret_reg = rN;
1409 last_prologue_pc = next_pc;
1410 }
1411 }
1412 else if ((it == I || it == M)
1413 && ((instr & 0x1ee00000000LL) == 0x10800000000LL))
1414 {
1415 /* adds rN = imm14, rM (or mov rN, rM when imm14 is 0) */
1416 int imm = (int) ((((instr & 0x01000000000LL) ? -1 : 0) << 13)
1417 | ((instr & 0x001f8000000LL) >> 20)
1418 | ((instr & 0x000000fe000LL) >> 13));
1419 int rM = (int) ((instr & 0x00007f00000LL) >> 20);
1420 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1421 int qp = (int) (instr & 0x0000000003fLL);
1422
1423 if (qp == 0 && rN >= 32 && imm == 0 && rM == 12 && fp_reg == 0)
1424 {
1425 /* mov rN, r12 */
1426 fp_reg = rN;
1427 last_prologue_pc = next_pc;
1428 }
1429 else if (qp == 0 && rN == 12 && rM == 12)
1430 {
1431 /* adds r12, -mem_stack_frame_size, r12 */
1432 mem_stack_frame_size -= imm;
1433 last_prologue_pc = next_pc;
1434 }
1435 else if (qp == 0 && rN == 2
1436 && ((rM == fp_reg && fp_reg != 0) || rM == 12))
1437 {
1438 char buf[MAX_REGISTER_SIZE];
1439 CORE_ADDR saved_sp = 0;
1440 /* adds r2, spilloffset, rFramePointer
1441 or
1442 adds r2, spilloffset, r12
1443
1444 Get ready for stf.spill or st8.spill instructions.
1445 The address to start spilling at is loaded into r2.
1446 FIXME: Why r2? That's what gcc currently uses; it
1447 could well be different for other compilers. */
1448
1449 /* Hmm... whether or not this will work will depend on
1450 where the pc is. If it's still early in the prologue
1451 this'll be wrong. FIXME */
1452 if (this_frame)
1453 {
1454 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1455 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1456 get_frame_register (this_frame, sp_regnum, buf);
1457 saved_sp = extract_unsigned_integer (buf, 8, byte_order);
1458 }
1459 spill_addr = saved_sp
1460 + (rM == 12 ? 0 : mem_stack_frame_size)
1461 + imm;
1462 spill_reg = rN;
1463 last_prologue_pc = next_pc;
1464 }
1465 else if (qp == 0 && rM >= 32 && rM < 40 && !instores[rM-32] &&
1466 rN < 256 && imm == 0)
1467 {
1468 /* mov rN, rM where rM is an input register */
1469 reg_contents[rN] = rM;
1470 last_prologue_pc = next_pc;
1471 }
1472 else if (frameless && qp == 0 && rN == fp_reg && imm == 0 &&
1473 rM == 2)
1474 {
1475 /* mov r12, r2 */
1476 last_prologue_pc = next_pc;
1477 break;
1478 }
1479 }
1480 else if (it == M
1481 && ( ((instr & 0x1efc0000000LL) == 0x0eec0000000LL)
1482 || ((instr & 0x1ffc8000000LL) == 0x0cec0000000LL) ))
1483 {
1484 /* stf.spill [rN] = fM, imm9
1485 or
1486 stf.spill [rN] = fM */
1487
1488 int imm = imm9(instr);
1489 int rN = (int) ((instr & 0x00007f00000LL) >> 20);
1490 int fM = (int) ((instr & 0x000000fe000LL) >> 13);
1491 int qp = (int) (instr & 0x0000000003fLL);
1492 if (qp == 0 && rN == spill_reg && spill_addr != 0
1493 && ((2 <= fM && fM <= 5) || (16 <= fM && fM <= 31)))
1494 {
1495 cache->saved_regs[IA64_FR0_REGNUM + fM] = spill_addr;
1496
1497 if ((instr & 0x1efc0000000LL) == 0x0eec0000000LL)
1498 spill_addr += imm;
1499 else
1500 spill_addr = 0; /* last one; must be done */
1501 last_prologue_pc = next_pc;
1502 }
1503 }
1504 else if ((it == M && ((instr & 0x1eff8000000LL) == 0x02110000000LL))
1505 || (it == I && ((instr & 0x1eff8000000LL) == 0x00050000000LL)) )
1506 {
1507 /* mov.m rN = arM
1508 or
1509 mov.i rN = arM */
1510
1511 int arM = (int) ((instr & 0x00007f00000LL) >> 20);
1512 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1513 int qp = (int) (instr & 0x0000000003fLL);
1514 if (qp == 0 && isScratch (rN) && arM == 36 /* ar.unat */)
1515 {
1516 /* We have something like "mov.m r3 = ar.unat". Remember the
1517 r3 (or whatever) and watch for a store of this register... */
1518 unat_save_reg = rN;
1519 last_prologue_pc = next_pc;
1520 }
1521 }
1522 else if (it == I && ((instr & 0x1eff8000000LL) == 0x00198000000LL))
1523 {
1524 /* mov rN = pr */
1525 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1526 int qp = (int) (instr & 0x0000000003fLL);
1527 if (qp == 0 && isScratch (rN))
1528 {
1529 pr_save_reg = rN;
1530 last_prologue_pc = next_pc;
1531 }
1532 }
1533 else if (it == M
1534 && ( ((instr & 0x1ffc8000000LL) == 0x08cc0000000LL)
1535 || ((instr & 0x1efc0000000LL) == 0x0acc0000000LL)))
1536 {
1537 /* st8 [rN] = rM
1538 or
1539 st8 [rN] = rM, imm9 */
1540 int rN = (int) ((instr & 0x00007f00000LL) >> 20);
1541 int rM = (int) ((instr & 0x000000fe000LL) >> 13);
1542 int qp = (int) (instr & 0x0000000003fLL);
1543 int indirect = rM < 256 ? reg_contents[rM] : 0;
1544 if (qp == 0 && rN == spill_reg && spill_addr != 0
1545 && (rM == unat_save_reg || rM == pr_save_reg))
1546 {
1547 /* We've found a spill of either the UNAT register or the PR
1548 register. (Well, not exactly; what we've actually found is
1549 a spill of the register that UNAT or PR was moved to).
1550 Record that fact and move on... */
1551 if (rM == unat_save_reg)
1552 {
1553 /* Track UNAT register */
1554 cache->saved_regs[IA64_UNAT_REGNUM] = spill_addr;
1555 unat_save_reg = 0;
1556 }
1557 else
1558 {
1559 /* Track PR register */
1560 cache->saved_regs[IA64_PR_REGNUM] = spill_addr;
1561 pr_save_reg = 0;
1562 }
1563 if ((instr & 0x1efc0000000LL) == 0x0acc0000000LL)
1564 /* st8 [rN] = rM, imm9 */
1565 spill_addr += imm9(instr);
1566 else
1567 spill_addr = 0; /* must be done spilling */
1568 last_prologue_pc = next_pc;
1569 }
1570 else if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32])
1571 {
1572 /* Allow up to one store of each input register. */
1573 instores[rM-32] = 1;
1574 last_prologue_pc = next_pc;
1575 }
1576 else if (qp == 0 && 32 <= indirect && indirect < 40 &&
1577 !instores[indirect-32])
1578 {
1579 /* Allow an indirect store of an input register. */
1580 instores[indirect-32] = 1;
1581 last_prologue_pc = next_pc;
1582 }
1583 }
1584 else if (it == M && ((instr & 0x1ff08000000LL) == 0x08c00000000LL))
1585 {
1586 /* One of
1587 st1 [rN] = rM
1588 st2 [rN] = rM
1589 st4 [rN] = rM
1590 st8 [rN] = rM
1591 Note that the st8 case is handled in the clause above.
1592
1593 Advance over stores of input registers. One store per input
1594 register is permitted. */
1595 int rM = (int) ((instr & 0x000000fe000LL) >> 13);
1596 int qp = (int) (instr & 0x0000000003fLL);
1597 int indirect = rM < 256 ? reg_contents[rM] : 0;
1598 if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32])
1599 {
1600 instores[rM-32] = 1;
1601 last_prologue_pc = next_pc;
1602 }
1603 else if (qp == 0 && 32 <= indirect && indirect < 40 &&
1604 !instores[indirect-32])
1605 {
1606 /* Allow an indirect store of an input register. */
1607 instores[indirect-32] = 1;
1608 last_prologue_pc = next_pc;
1609 }
1610 }
1611 else if (it == M && ((instr & 0x1ff88000000LL) == 0x0cc80000000LL))
1612 {
1613 /* Either
1614 stfs [rN] = fM
1615 or
1616 stfd [rN] = fM
1617
1618 Advance over stores of floating point input registers. Again
1619 one store per register is permitted */
1620 int fM = (int) ((instr & 0x000000fe000LL) >> 13);
1621 int qp = (int) (instr & 0x0000000003fLL);
1622 if (qp == 0 && 8 <= fM && fM < 16 && !infpstores[fM - 8])
1623 {
1624 infpstores[fM-8] = 1;
1625 last_prologue_pc = next_pc;
1626 }
1627 }
1628 else if (it == M
1629 && ( ((instr & 0x1ffc8000000LL) == 0x08ec0000000LL)
1630 || ((instr & 0x1efc0000000LL) == 0x0aec0000000LL)))
1631 {
1632 /* st8.spill [rN] = rM
1633 or
1634 st8.spill [rN] = rM, imm9 */
1635 int rN = (int) ((instr & 0x00007f00000LL) >> 20);
1636 int rM = (int) ((instr & 0x000000fe000LL) >> 13);
1637 int qp = (int) (instr & 0x0000000003fLL);
1638 if (qp == 0 && rN == spill_reg && 4 <= rM && rM <= 7)
1639 {
1640 /* We've found a spill of one of the preserved general purpose
1641 regs. Record the spill address and advance the spill
1642 register if appropriate. */
1643 cache->saved_regs[IA64_GR0_REGNUM + rM] = spill_addr;
1644 if ((instr & 0x1efc0000000LL) == 0x0aec0000000LL)
1645 /* st8.spill [rN] = rM, imm9 */
1646 spill_addr += imm9(instr);
1647 else
1648 spill_addr = 0; /* Done spilling */
1649 last_prologue_pc = next_pc;
1650 }
1651 }
1652
1653 pc = next_pc;
1654 }
1655
1656 /* If not frameless and we aren't called by skip_prologue, then we need
1657 to calculate registers for the previous frame which will be needed
1658 later. */
1659
1660 if (!frameless && this_frame)
1661 {
1662 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1663 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1664
1665 /* Extract the size of the rotating portion of the stack
1666 frame and the register rename base from the current
1667 frame marker. */
1668 cfm = cache->cfm;
1669 sor = cache->sor;
1670 sof = cache->sof;
1671 sol = cache->sol;
1672 rrb_gr = (cfm >> 18) & 0x7f;
1673
1674 /* Find the bof (beginning of frame). */
1675 bof = rse_address_add (cache->bsp, -sof);
1676
1677 for (i = 0, addr = bof;
1678 i < sof;
1679 i++, addr += 8)
1680 {
1681 if (IS_NaT_COLLECTION_ADDR (addr))
1682 {
1683 addr += 8;
1684 }
1685 if (i+32 == cfm_reg)
1686 cache->saved_regs[IA64_CFM_REGNUM] = addr;
1687 if (i+32 == ret_reg)
1688 cache->saved_regs[IA64_VRAP_REGNUM] = addr;
1689 if (i+32 == fp_reg)
1690 cache->saved_regs[IA64_VFP_REGNUM] = addr;
1691 }
1692
1693 /* For the previous argument registers we require the previous bof.
1694 If we can't find the previous cfm, then we can do nothing. */
1695 cfm = 0;
1696 if (cache->saved_regs[IA64_CFM_REGNUM] != 0)
1697 {
1698 cfm = read_memory_integer (cache->saved_regs[IA64_CFM_REGNUM],
1699 8, byte_order);
1700 }
1701 else if (cfm_reg != 0)
1702 {
1703 get_frame_register (this_frame, cfm_reg, buf);
1704 cfm = extract_unsigned_integer (buf, 8, byte_order);
1705 }
1706 cache->prev_cfm = cfm;
1707
1708 if (cfm != 0)
1709 {
1710 sor = ((cfm >> 14) & 0xf) * 8;
1711 sof = (cfm & 0x7f);
1712 sol = (cfm >> 7) & 0x7f;
1713 rrb_gr = (cfm >> 18) & 0x7f;
1714
1715 /* The previous bof only requires subtraction of the sol (size of
1716 locals) due to the overlap between output and input of
1717 subsequent frames. */
1718 bof = rse_address_add (bof, -sol);
1719
1720 for (i = 0, addr = bof;
1721 i < sof;
1722 i++, addr += 8)
1723 {
1724 if (IS_NaT_COLLECTION_ADDR (addr))
1725 {
1726 addr += 8;
1727 }
1728 if (i < sor)
1729 cache->saved_regs[IA64_GR32_REGNUM + ((i + (sor - rrb_gr)) % sor)]
1730 = addr;
1731 else
1732 cache->saved_regs[IA64_GR32_REGNUM + i] = addr;
1733 }
1734
1735 }
1736 }
1737
1738 /* Try and trust the lim_pc value whenever possible. */
1739 if (trust_limit && lim_pc >= last_prologue_pc)
1740 last_prologue_pc = lim_pc;
1741
1742 cache->frameless = frameless;
1743 cache->after_prologue = last_prologue_pc;
1744 cache->mem_stack_frame_size = mem_stack_frame_size;
1745 cache->fp_reg = fp_reg;
1746
1747 return last_prologue_pc;
1748 }
1749
1750 CORE_ADDR
1751 ia64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1752 {
1753 struct ia64_frame_cache cache;
1754 cache.base = 0;
1755 cache.after_prologue = 0;
1756 cache.cfm = 0;
1757 cache.bsp = 0;
1758
1759 /* Call examine_prologue with - as third argument since we don't have a next frame pointer to send. */
1760 return examine_prologue (pc, pc+1024, 0, &cache);
1761 }
1762
1763
1764 /* Normal frames. */
1765
1766 static struct ia64_frame_cache *
1767 ia64_frame_cache (struct frame_info *this_frame, void **this_cache)
1768 {
1769 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1770 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1771 struct ia64_frame_cache *cache;
1772 char buf[8];
1773 CORE_ADDR cfm, sof, sol, bsp, psr;
1774 int i;
1775
1776 if (*this_cache)
1777 return *this_cache;
1778
1779 cache = ia64_alloc_frame_cache ();
1780 *this_cache = cache;
1781
1782 get_frame_register (this_frame, sp_regnum, buf);
1783 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
1784
1785 /* We always want the bsp to point to the end of frame.
1786 This way, we can always get the beginning of frame (bof)
1787 by subtracting frame size. */
1788 get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
1789 cache->bsp = extract_unsigned_integer (buf, 8, byte_order);
1790
1791 get_frame_register (this_frame, IA64_PSR_REGNUM, buf);
1792 psr = extract_unsigned_integer (buf, 8, byte_order);
1793
1794 get_frame_register (this_frame, IA64_CFM_REGNUM, buf);
1795 cfm = extract_unsigned_integer (buf, 8, byte_order);
1796
1797 cache->sof = (cfm & 0x7f);
1798 cache->sol = (cfm >> 7) & 0x7f;
1799 cache->sor = ((cfm >> 14) & 0xf) * 8;
1800
1801 cache->cfm = cfm;
1802
1803 cache->pc = get_frame_func (this_frame);
1804
1805 if (cache->pc != 0)
1806 examine_prologue (cache->pc, get_frame_pc (this_frame), this_frame, cache);
1807
1808 cache->base = cache->saved_sp + cache->mem_stack_frame_size;
1809
1810 return cache;
1811 }
1812
1813 static void
1814 ia64_frame_this_id (struct frame_info *this_frame, void **this_cache,
1815 struct frame_id *this_id)
1816 {
1817 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1818 struct ia64_frame_cache *cache =
1819 ia64_frame_cache (this_frame, this_cache);
1820
1821 /* If outermost frame, mark with null frame id. */
1822 if (cache->base != 0)
1823 (*this_id) = frame_id_build_special (cache->base, cache->pc, cache->bsp);
1824 if (gdbarch_debug >= 1)
1825 fprintf_unfiltered (gdb_stdlog,
1826 "regular frame id: code %s, stack %s, special %s, this_frame %s\n",
1827 paddress (gdbarch, this_id->code_addr),
1828 paddress (gdbarch, this_id->stack_addr),
1829 paddress (gdbarch, cache->bsp),
1830 host_address_to_string (this_frame));
1831 }
1832
1833 static struct value *
1834 ia64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1835 int regnum)
1836 {
1837 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1838 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1839 struct ia64_frame_cache *cache = ia64_frame_cache (this_frame, this_cache);
1840 char buf[8];
1841
1842 gdb_assert (regnum >= 0);
1843
1844 if (!target_has_registers)
1845 error (_("No registers."));
1846
1847 if (regnum == gdbarch_sp_regnum (gdbarch))
1848 return frame_unwind_got_constant (this_frame, regnum, cache->base);
1849
1850 else if (regnum == IA64_BSP_REGNUM)
1851 {
1852 struct value *val;
1853 CORE_ADDR prev_cfm, bsp, prev_bsp;
1854
1855 /* We want to calculate the previous bsp as the end of the previous
1856 register stack frame. This corresponds to what the hardware bsp
1857 register will be if we pop the frame back which is why we might
1858 have been called. We know the beginning of the current frame is
1859 cache->bsp - cache->sof. This value in the previous frame points
1860 to the start of the output registers. We can calculate the end of
1861 that frame by adding the size of output:
1862 (sof (size of frame) - sol (size of locals)). */
1863 val = ia64_frame_prev_register (this_frame, this_cache, IA64_CFM_REGNUM);
1864 prev_cfm = extract_unsigned_integer (value_contents_all (val),
1865 8, byte_order);
1866 bsp = rse_address_add (cache->bsp, -(cache->sof));
1867 prev_bsp =
1868 rse_address_add (bsp, (prev_cfm & 0x7f) - ((prev_cfm >> 7) & 0x7f));
1869
1870 return frame_unwind_got_constant (this_frame, regnum, prev_bsp);
1871 }
1872
1873 else if (regnum == IA64_CFM_REGNUM)
1874 {
1875 CORE_ADDR addr = cache->saved_regs[IA64_CFM_REGNUM];
1876
1877 if (addr != 0)
1878 return frame_unwind_got_memory (this_frame, regnum, addr);
1879
1880 if (cache->prev_cfm)
1881 return frame_unwind_got_constant (this_frame, regnum, cache->prev_cfm);
1882
1883 if (cache->frameless)
1884 return frame_unwind_got_register (this_frame, IA64_PFS_REGNUM,
1885 IA64_PFS_REGNUM);
1886 return frame_unwind_got_register (this_frame, regnum, 0);
1887 }
1888
1889 else if (regnum == IA64_VFP_REGNUM)
1890 {
1891 /* If the function in question uses an automatic register (r32-r127)
1892 for the frame pointer, it'll be found by ia64_find_saved_register()
1893 above. If the function lacks one of these frame pointers, we can
1894 still provide a value since we know the size of the frame. */
1895 return frame_unwind_got_constant (this_frame, regnum, cache->base);
1896 }
1897
1898 else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
1899 {
1900 struct value *pr_val;
1901 ULONGEST prN;
1902
1903 pr_val = ia64_frame_prev_register (this_frame, this_cache,
1904 IA64_PR_REGNUM);
1905 if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
1906 {
1907 /* Fetch predicate register rename base from current frame
1908 marker for this frame. */
1909 int rrb_pr = (cache->cfm >> 32) & 0x3f;
1910
1911 /* Adjust the register number to account for register rotation. */
1912 regnum = VP16_REGNUM + ((regnum - VP16_REGNUM) + rrb_pr) % 48;
1913 }
1914 prN = extract_bit_field (value_contents_all (pr_val),
1915 regnum - VP0_REGNUM, 1);
1916 return frame_unwind_got_constant (this_frame, regnum, prN);
1917 }
1918
1919 else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM)
1920 {
1921 struct value *unat_val;
1922 ULONGEST unatN;
1923 unat_val = ia64_frame_prev_register (this_frame, this_cache,
1924 IA64_UNAT_REGNUM);
1925 unatN = extract_bit_field (value_contents_all (unat_val),
1926 regnum - IA64_NAT0_REGNUM, 1);
1927 return frame_unwind_got_constant (this_frame, regnum, unatN);
1928 }
1929
1930 else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
1931 {
1932 int natval = 0;
1933 /* Find address of general register corresponding to nat bit we're
1934 interested in. */
1935 CORE_ADDR gr_addr;
1936
1937 gr_addr = cache->saved_regs[regnum - IA64_NAT0_REGNUM + IA64_GR0_REGNUM];
1938
1939 if (gr_addr != 0)
1940 {
1941 /* Compute address of nat collection bits. */
1942 CORE_ADDR nat_addr = gr_addr | 0x1f8;
1943 CORE_ADDR bsp;
1944 CORE_ADDR nat_collection;
1945 int nat_bit;
1946
1947 /* If our nat collection address is bigger than bsp, we have to get
1948 the nat collection from rnat. Otherwise, we fetch the nat
1949 collection from the computed address. */
1950 get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
1951 bsp = extract_unsigned_integer (buf, 8, byte_order);
1952 if (nat_addr >= bsp)
1953 {
1954 get_frame_register (this_frame, IA64_RNAT_REGNUM, buf);
1955 nat_collection = extract_unsigned_integer (buf, 8, byte_order);
1956 }
1957 else
1958 nat_collection = read_memory_integer (nat_addr, 8, byte_order);
1959 nat_bit = (gr_addr >> 3) & 0x3f;
1960 natval = (nat_collection >> nat_bit) & 1;
1961 }
1962
1963 return frame_unwind_got_constant (this_frame, regnum, natval);
1964 }
1965
1966 else if (regnum == IA64_IP_REGNUM)
1967 {
1968 CORE_ADDR pc = 0;
1969 CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM];
1970
1971 if (addr != 0)
1972 {
1973 read_memory (addr, buf, register_size (gdbarch, IA64_IP_REGNUM));
1974 pc = extract_unsigned_integer (buf, 8, byte_order);
1975 }
1976 else if (cache->frameless)
1977 {
1978 get_frame_register (this_frame, IA64_BR0_REGNUM, buf);
1979 pc = extract_unsigned_integer (buf, 8, byte_order);
1980 }
1981 pc &= ~0xf;
1982 return frame_unwind_got_constant (this_frame, regnum, pc);
1983 }
1984
1985 else if (regnum == IA64_PSR_REGNUM)
1986 {
1987 /* We don't know how to get the complete previous PSR, but we need it
1988 for the slot information when we unwind the pc (pc is formed of IP
1989 register plus slot information from PSR). To get the previous
1990 slot information, we mask it off the return address. */
1991 ULONGEST slot_num = 0;
1992 CORE_ADDR pc = 0;
1993 CORE_ADDR psr = 0;
1994 CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM];
1995
1996 get_frame_register (this_frame, IA64_PSR_REGNUM, buf);
1997 psr = extract_unsigned_integer (buf, 8, byte_order);
1998
1999 if (addr != 0)
2000 {
2001 read_memory (addr, buf, register_size (gdbarch, IA64_IP_REGNUM));
2002 pc = extract_unsigned_integer (buf, 8, byte_order);
2003 }
2004 else if (cache->frameless)
2005 {
2006 get_frame_register (this_frame, IA64_BR0_REGNUM, buf);
2007 pc = extract_unsigned_integer (buf, 8, byte_order);
2008 }
2009 psr &= ~(3LL << 41);
2010 slot_num = pc & 0x3LL;
2011 psr |= (CORE_ADDR)slot_num << 41;
2012 return frame_unwind_got_constant (this_frame, regnum, psr);
2013 }
2014
2015 else if (regnum == IA64_BR0_REGNUM)
2016 {
2017 CORE_ADDR addr = cache->saved_regs[IA64_BR0_REGNUM];
2018
2019 if (addr != 0)
2020 return frame_unwind_got_memory (this_frame, regnum, addr);
2021
2022 return frame_unwind_got_constant (this_frame, regnum, 0);
2023 }
2024
2025 else if ((regnum >= IA64_GR32_REGNUM && regnum <= IA64_GR127_REGNUM)
2026 || (regnum >= V32_REGNUM && regnum <= V127_REGNUM))
2027 {
2028 CORE_ADDR addr = 0;
2029
2030 if (regnum >= V32_REGNUM)
2031 regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM);
2032 addr = cache->saved_regs[regnum];
2033 if (addr != 0)
2034 return frame_unwind_got_memory (this_frame, regnum, addr);
2035
2036 if (cache->frameless)
2037 {
2038 struct value *reg_val;
2039 CORE_ADDR prev_cfm, prev_bsp, prev_bof;
2040
2041 /* FIXME: brobecker/2008-05-01: Doesn't this seem redundant
2042 with the same code above? */
2043 if (regnum >= V32_REGNUM)
2044 regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM);
2045 reg_val = ia64_frame_prev_register (this_frame, this_cache,
2046 IA64_CFM_REGNUM);
2047 prev_cfm = extract_unsigned_integer (value_contents_all (reg_val),
2048 8, byte_order);
2049 reg_val = ia64_frame_prev_register (this_frame, this_cache,
2050 IA64_BSP_REGNUM);
2051 prev_bsp = extract_unsigned_integer (value_contents_all (reg_val),
2052 8, byte_order);
2053 prev_bof = rse_address_add (prev_bsp, -(prev_cfm & 0x7f));
2054
2055 addr = rse_address_add (prev_bof, (regnum - IA64_GR32_REGNUM));
2056 return frame_unwind_got_memory (this_frame, regnum, addr);
2057 }
2058
2059 return frame_unwind_got_constant (this_frame, regnum, 0);
2060 }
2061
2062 else /* All other registers. */
2063 {
2064 CORE_ADDR addr = 0;
2065
2066 if (IA64_FR32_REGNUM <= regnum && regnum <= IA64_FR127_REGNUM)
2067 {
2068 /* Fetch floating point register rename base from current
2069 frame marker for this frame. */
2070 int rrb_fr = (cache->cfm >> 25) & 0x7f;
2071
2072 /* Adjust the floating point register number to account for
2073 register rotation. */
2074 regnum = IA64_FR32_REGNUM
2075 + ((regnum - IA64_FR32_REGNUM) + rrb_fr) % 96;
2076 }
2077
2078 /* If we have stored a memory address, access the register. */
2079 addr = cache->saved_regs[regnum];
2080 if (addr != 0)
2081 return frame_unwind_got_memory (this_frame, regnum, addr);
2082 /* Otherwise, punt and get the current value of the register. */
2083 else
2084 return frame_unwind_got_register (this_frame, regnum, regnum);
2085 }
2086 }
2087
2088 static const struct frame_unwind ia64_frame_unwind =
2089 {
2090 NORMAL_FRAME,
2091 &ia64_frame_this_id,
2092 &ia64_frame_prev_register,
2093 NULL,
2094 default_frame_sniffer
2095 };
2096
2097 /* Signal trampolines. */
2098
2099 static void
2100 ia64_sigtramp_frame_init_saved_regs (struct frame_info *this_frame,
2101 struct ia64_frame_cache *cache)
2102 {
2103 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2104 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2105
2106 if (tdep->sigcontext_register_address)
2107 {
2108 int regno;
2109
2110 cache->saved_regs[IA64_VRAP_REGNUM] =
2111 tdep->sigcontext_register_address (gdbarch, cache->base, IA64_IP_REGNUM);
2112 cache->saved_regs[IA64_CFM_REGNUM] =
2113 tdep->sigcontext_register_address (gdbarch, cache->base, IA64_CFM_REGNUM);
2114 cache->saved_regs[IA64_PSR_REGNUM] =
2115 tdep->sigcontext_register_address (gdbarch, cache->base, IA64_PSR_REGNUM);
2116 cache->saved_regs[IA64_BSP_REGNUM] =
2117 tdep->sigcontext_register_address (gdbarch, cache->base, IA64_BSP_REGNUM);
2118 cache->saved_regs[IA64_RNAT_REGNUM] =
2119 tdep->sigcontext_register_address (gdbarch, cache->base, IA64_RNAT_REGNUM);
2120 cache->saved_regs[IA64_CCV_REGNUM] =
2121 tdep->sigcontext_register_address (gdbarch, cache->base, IA64_CCV_REGNUM);
2122 cache->saved_regs[IA64_UNAT_REGNUM] =
2123 tdep->sigcontext_register_address (gdbarch, cache->base, IA64_UNAT_REGNUM);
2124 cache->saved_regs[IA64_FPSR_REGNUM] =
2125 tdep->sigcontext_register_address (gdbarch, cache->base, IA64_FPSR_REGNUM);
2126 cache->saved_regs[IA64_PFS_REGNUM] =
2127 tdep->sigcontext_register_address (gdbarch, cache->base, IA64_PFS_REGNUM);
2128 cache->saved_regs[IA64_LC_REGNUM] =
2129 tdep->sigcontext_register_address (gdbarch, cache->base, IA64_LC_REGNUM);
2130 for (regno = IA64_GR1_REGNUM; regno <= IA64_GR31_REGNUM; regno++)
2131 cache->saved_regs[regno] =
2132 tdep->sigcontext_register_address (gdbarch, cache->base, regno);
2133 for (regno = IA64_BR0_REGNUM; regno <= IA64_BR7_REGNUM; regno++)
2134 cache->saved_regs[regno] =
2135 tdep->sigcontext_register_address (gdbarch, cache->base, regno);
2136 for (regno = IA64_FR2_REGNUM; regno <= IA64_FR31_REGNUM; regno++)
2137 cache->saved_regs[regno] =
2138 tdep->sigcontext_register_address (gdbarch, cache->base, regno);
2139 }
2140 }
2141
2142 static struct ia64_frame_cache *
2143 ia64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2144 {
2145 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2146 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2147 struct ia64_frame_cache *cache;
2148 CORE_ADDR addr;
2149 char buf[8];
2150 int i;
2151
2152 if (*this_cache)
2153 return *this_cache;
2154
2155 cache = ia64_alloc_frame_cache ();
2156
2157 get_frame_register (this_frame, sp_regnum, buf);
2158 /* Note that frame size is hard-coded below. We cannot calculate it
2159 via prologue examination. */
2160 cache->base = extract_unsigned_integer (buf, 8, byte_order) + 16;
2161
2162 get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
2163 cache->bsp = extract_unsigned_integer (buf, 8, byte_order);
2164
2165 get_frame_register (this_frame, IA64_CFM_REGNUM, buf);
2166 cache->cfm = extract_unsigned_integer (buf, 8, byte_order);
2167 cache->sof = cache->cfm & 0x7f;
2168
2169 ia64_sigtramp_frame_init_saved_regs (this_frame, cache);
2170
2171 *this_cache = cache;
2172 return cache;
2173 }
2174
2175 static void
2176 ia64_sigtramp_frame_this_id (struct frame_info *this_frame,
2177 void **this_cache, struct frame_id *this_id)
2178 {
2179 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2180 struct ia64_frame_cache *cache =
2181 ia64_sigtramp_frame_cache (this_frame, this_cache);
2182
2183 (*this_id) = frame_id_build_special (cache->base,
2184 get_frame_pc (this_frame),
2185 cache->bsp);
2186 if (gdbarch_debug >= 1)
2187 fprintf_unfiltered (gdb_stdlog,
2188 "sigtramp frame id: code %s, stack %s, special %s, this_frame %s\n",
2189 paddress (gdbarch, this_id->code_addr),
2190 paddress (gdbarch, this_id->stack_addr),
2191 paddress (gdbarch, cache->bsp),
2192 host_address_to_string (this_frame));
2193 }
2194
2195 static struct value *
2196 ia64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2197 void **this_cache, int regnum)
2198 {
2199 char buf[MAX_REGISTER_SIZE];
2200
2201 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2202 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2203 struct ia64_frame_cache *cache =
2204 ia64_sigtramp_frame_cache (this_frame, this_cache);
2205
2206 gdb_assert (regnum >= 0);
2207
2208 if (!target_has_registers)
2209 error (_("No registers."));
2210
2211 if (regnum == IA64_IP_REGNUM)
2212 {
2213 CORE_ADDR pc = 0;
2214 CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM];
2215
2216 if (addr != 0)
2217 {
2218 read_memory (addr, buf, register_size (gdbarch, IA64_IP_REGNUM));
2219 pc = extract_unsigned_integer (buf, 8, byte_order);
2220 }
2221 pc &= ~0xf;
2222 return frame_unwind_got_constant (this_frame, regnum, pc);
2223 }
2224
2225 else if ((regnum >= IA64_GR32_REGNUM && regnum <= IA64_GR127_REGNUM)
2226 || (regnum >= V32_REGNUM && regnum <= V127_REGNUM))
2227 {
2228 CORE_ADDR addr = 0;
2229
2230 if (regnum >= V32_REGNUM)
2231 regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM);
2232 addr = cache->saved_regs[regnum];
2233 if (addr != 0)
2234 return frame_unwind_got_memory (this_frame, regnum, addr);
2235
2236 return frame_unwind_got_constant (this_frame, regnum, 0);
2237 }
2238
2239 else /* All other registers not listed above. */
2240 {
2241 CORE_ADDR addr = cache->saved_regs[regnum];
2242
2243 if (addr != 0)
2244 return frame_unwind_got_memory (this_frame, regnum, addr);
2245
2246 return frame_unwind_got_constant (this_frame, regnum, 0);
2247 }
2248 }
2249
2250 static int
2251 ia64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2252 struct frame_info *this_frame,
2253 void **this_cache)
2254 {
2255 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2256 if (tdep->pc_in_sigtramp)
2257 {
2258 CORE_ADDR pc = get_frame_pc (this_frame);
2259
2260 if (tdep->pc_in_sigtramp (pc))
2261 return 1;
2262 }
2263
2264 return 0;
2265 }
2266
2267 static const struct frame_unwind ia64_sigtramp_frame_unwind =
2268 {
2269 SIGTRAMP_FRAME,
2270 ia64_sigtramp_frame_this_id,
2271 ia64_sigtramp_frame_prev_register,
2272 NULL,
2273 ia64_sigtramp_frame_sniffer
2274 };
2275
2276 \f
2277
2278 static CORE_ADDR
2279 ia64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2280 {
2281 struct ia64_frame_cache *cache = ia64_frame_cache (this_frame, this_cache);
2282
2283 return cache->base;
2284 }
2285
2286 static const struct frame_base ia64_frame_base =
2287 {
2288 &ia64_frame_unwind,
2289 ia64_frame_base_address,
2290 ia64_frame_base_address,
2291 ia64_frame_base_address
2292 };
2293
2294 #ifdef HAVE_LIBUNWIND_IA64_H
2295
2296 struct ia64_unwind_table_entry
2297 {
2298 unw_word_t start_offset;
2299 unw_word_t end_offset;
2300 unw_word_t info_offset;
2301 };
2302
2303 static __inline__ uint64_t
2304 ia64_rse_slot_num (uint64_t addr)
2305 {
2306 return (addr >> 3) & 0x3f;
2307 }
2308
2309 /* Skip over a designated number of registers in the backing
2310 store, remembering every 64th position is for NAT. */
2311 static __inline__ uint64_t
2312 ia64_rse_skip_regs (uint64_t addr, long num_regs)
2313 {
2314 long delta = ia64_rse_slot_num(addr) + num_regs;
2315
2316 if (num_regs < 0)
2317 delta -= 0x3e;
2318 return addr + ((num_regs + delta/0x3f) << 3);
2319 }
2320
2321 /* Gdb libunwind-frame callback function to convert from an ia64 gdb register
2322 number to a libunwind register number. */
2323 static int
2324 ia64_gdb2uw_regnum (int regnum)
2325 {
2326 if (regnum == sp_regnum)
2327 return UNW_IA64_SP;
2328 else if (regnum == IA64_BSP_REGNUM)
2329 return UNW_IA64_BSP;
2330 else if ((unsigned) (regnum - IA64_GR0_REGNUM) < 128)
2331 return UNW_IA64_GR + (regnum - IA64_GR0_REGNUM);
2332 else if ((unsigned) (regnum - V32_REGNUM) < 95)
2333 return UNW_IA64_GR + 32 + (regnum - V32_REGNUM);
2334 else if ((unsigned) (regnum - IA64_FR0_REGNUM) < 128)
2335 return UNW_IA64_FR + (regnum - IA64_FR0_REGNUM);
2336 else if ((unsigned) (regnum - IA64_PR0_REGNUM) < 64)
2337 return -1;
2338 else if ((unsigned) (regnum - IA64_BR0_REGNUM) < 8)
2339 return UNW_IA64_BR + (regnum - IA64_BR0_REGNUM);
2340 else if (regnum == IA64_PR_REGNUM)
2341 return UNW_IA64_PR;
2342 else if (regnum == IA64_IP_REGNUM)
2343 return UNW_REG_IP;
2344 else if (regnum == IA64_CFM_REGNUM)
2345 return UNW_IA64_CFM;
2346 else if ((unsigned) (regnum - IA64_AR0_REGNUM) < 128)
2347 return UNW_IA64_AR + (regnum - IA64_AR0_REGNUM);
2348 else if ((unsigned) (regnum - IA64_NAT0_REGNUM) < 128)
2349 return UNW_IA64_NAT + (regnum - IA64_NAT0_REGNUM);
2350 else
2351 return -1;
2352 }
2353
2354 /* Gdb libunwind-frame callback function to convert from a libunwind register
2355 number to a ia64 gdb register number. */
2356 static int
2357 ia64_uw2gdb_regnum (int uw_regnum)
2358 {
2359 if (uw_regnum == UNW_IA64_SP)
2360 return sp_regnum;
2361 else if (uw_regnum == UNW_IA64_BSP)
2362 return IA64_BSP_REGNUM;
2363 else if ((unsigned) (uw_regnum - UNW_IA64_GR) < 32)
2364 return IA64_GR0_REGNUM + (uw_regnum - UNW_IA64_GR);
2365 else if ((unsigned) (uw_regnum - UNW_IA64_GR) < 128)
2366 return V32_REGNUM + (uw_regnum - (IA64_GR0_REGNUM + 32));
2367 else if ((unsigned) (uw_regnum - UNW_IA64_FR) < 128)
2368 return IA64_FR0_REGNUM + (uw_regnum - UNW_IA64_FR);
2369 else if ((unsigned) (uw_regnum - UNW_IA64_BR) < 8)
2370 return IA64_BR0_REGNUM + (uw_regnum - UNW_IA64_BR);
2371 else if (uw_regnum == UNW_IA64_PR)
2372 return IA64_PR_REGNUM;
2373 else if (uw_regnum == UNW_REG_IP)
2374 return IA64_IP_REGNUM;
2375 else if (uw_regnum == UNW_IA64_CFM)
2376 return IA64_CFM_REGNUM;
2377 else if ((unsigned) (uw_regnum - UNW_IA64_AR) < 128)
2378 return IA64_AR0_REGNUM + (uw_regnum - UNW_IA64_AR);
2379 else if ((unsigned) (uw_regnum - UNW_IA64_NAT) < 128)
2380 return IA64_NAT0_REGNUM + (uw_regnum - UNW_IA64_NAT);
2381 else
2382 return -1;
2383 }
2384
2385 /* Gdb libunwind-frame callback function to reveal if register is a float
2386 register or not. */
2387 static int
2388 ia64_is_fpreg (int uw_regnum)
2389 {
2390 return unw_is_fpreg (uw_regnum);
2391 }
2392
2393 /* Libunwind callback accessor function for general registers. */
2394 static int
2395 ia64_access_reg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_word_t *val,
2396 int write, void *arg)
2397 {
2398 int regnum = ia64_uw2gdb_regnum (uw_regnum);
2399 unw_word_t bsp, sof, sol, cfm, psr, ip;
2400 struct frame_info *this_frame = arg;
2401 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2402 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2403 long new_sof, old_sof;
2404 char buf[MAX_REGISTER_SIZE];
2405
2406 /* We never call any libunwind routines that need to write registers. */
2407 gdb_assert (!write);
2408
2409 switch (uw_regnum)
2410 {
2411 case UNW_REG_IP:
2412 /* Libunwind expects to see the pc value which means the slot number
2413 from the psr must be merged with the ip word address. */
2414 get_frame_register (this_frame, IA64_IP_REGNUM, buf);
2415 ip = extract_unsigned_integer (buf, 8, byte_order);
2416 get_frame_register (this_frame, IA64_PSR_REGNUM, buf);
2417 psr = extract_unsigned_integer (buf, 8, byte_order);
2418 *val = ip | ((psr >> 41) & 0x3);
2419 break;
2420
2421 case UNW_IA64_AR_BSP:
2422 /* Libunwind expects to see the beginning of the current register
2423 frame so we must account for the fact that ptrace() will return a value
2424 for bsp that points *after* the current register frame. */
2425 get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
2426 bsp = extract_unsigned_integer (buf, 8, byte_order);
2427 get_frame_register (this_frame, IA64_CFM_REGNUM, buf);
2428 cfm = extract_unsigned_integer (buf, 8, byte_order);
2429 sof = (cfm & 0x7f);
2430 *val = ia64_rse_skip_regs (bsp, -sof);
2431 break;
2432
2433 case UNW_IA64_AR_BSPSTORE:
2434 /* Libunwind wants bspstore to be after the current register frame.
2435 This is what ptrace() and gdb treats as the regular bsp value. */
2436 get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
2437 *val = extract_unsigned_integer (buf, 8, byte_order);
2438 break;
2439
2440 default:
2441 /* For all other registers, just unwind the value directly. */
2442 get_frame_register (this_frame, regnum, buf);
2443 *val = extract_unsigned_integer (buf, 8, byte_order);
2444 break;
2445 }
2446
2447 if (gdbarch_debug >= 1)
2448 fprintf_unfiltered (gdb_stdlog,
2449 " access_reg: from cache: %4s=%s\n",
2450 (((unsigned) regnum <= IA64_NAT127_REGNUM)
2451 ? ia64_register_names[regnum] : "r??"),
2452 paddress (gdbarch, *val));
2453 return 0;
2454 }
2455
2456 /* Libunwind callback accessor function for floating-point registers. */
2457 static int
2458 ia64_access_fpreg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_fpreg_t *val,
2459 int write, void *arg)
2460 {
2461 int regnum = ia64_uw2gdb_regnum (uw_regnum);
2462 struct frame_info *this_frame = arg;
2463
2464 /* We never call any libunwind routines that need to write registers. */
2465 gdb_assert (!write);
2466
2467 get_frame_register (this_frame, regnum, (char *) val);
2468
2469 return 0;
2470 }
2471
2472 /* Libunwind callback accessor function for top-level rse registers. */
2473 static int
2474 ia64_access_rse_reg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_word_t *val,
2475 int write, void *arg)
2476 {
2477 int regnum = ia64_uw2gdb_regnum (uw_regnum);
2478 unw_word_t bsp, sof, sol, cfm, psr, ip;
2479 struct regcache *regcache = arg;
2480 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2481 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2482 long new_sof, old_sof;
2483 char buf[MAX_REGISTER_SIZE];
2484
2485 /* We never call any libunwind routines that need to write registers. */
2486 gdb_assert (!write);
2487
2488 switch (uw_regnum)
2489 {
2490 case UNW_REG_IP:
2491 /* Libunwind expects to see the pc value which means the slot number
2492 from the psr must be merged with the ip word address. */
2493 regcache_cooked_read (regcache, IA64_IP_REGNUM, buf);
2494 ip = extract_unsigned_integer (buf, 8, byte_order);
2495 regcache_cooked_read (regcache, IA64_PSR_REGNUM, buf);
2496 psr = extract_unsigned_integer (buf, 8, byte_order);
2497 *val = ip | ((psr >> 41) & 0x3);
2498 break;
2499
2500 case UNW_IA64_AR_BSP:
2501 /* Libunwind expects to see the beginning of the current register
2502 frame so we must account for the fact that ptrace() will return a value
2503 for bsp that points *after* the current register frame. */
2504 regcache_cooked_read (regcache, IA64_BSP_REGNUM, buf);
2505 bsp = extract_unsigned_integer (buf, 8, byte_order);
2506 regcache_cooked_read (regcache, IA64_CFM_REGNUM, buf);
2507 cfm = extract_unsigned_integer (buf, 8, byte_order);
2508 sof = (cfm & 0x7f);
2509 *val = ia64_rse_skip_regs (bsp, -sof);
2510 break;
2511
2512 case UNW_IA64_AR_BSPSTORE:
2513 /* Libunwind wants bspstore to be after the current register frame.
2514 This is what ptrace() and gdb treats as the regular bsp value. */
2515 regcache_cooked_read (regcache, IA64_BSP_REGNUM, buf);
2516 *val = extract_unsigned_integer (buf, 8, byte_order);
2517 break;
2518
2519 default:
2520 /* For all other registers, just unwind the value directly. */
2521 regcache_cooked_read (regcache, regnum, buf);
2522 *val = extract_unsigned_integer (buf, 8, byte_order);
2523 break;
2524 }
2525
2526 if (gdbarch_debug >= 1)
2527 fprintf_unfiltered (gdb_stdlog,
2528 " access_rse_reg: from cache: %4s=%s\n",
2529 (((unsigned) regnum <= IA64_NAT127_REGNUM)
2530 ? ia64_register_names[regnum] : "r??"),
2531 paddress (gdbarch, *val));
2532
2533 return 0;
2534 }
2535
2536 /* Libunwind callback accessor function for top-level fp registers. */
2537 static int
2538 ia64_access_rse_fpreg (unw_addr_space_t as, unw_regnum_t uw_regnum,
2539 unw_fpreg_t *val, int write, void *arg)
2540 {
2541 int regnum = ia64_uw2gdb_regnum (uw_regnum);
2542 struct regcache *regcache = arg;
2543
2544 /* We never call any libunwind routines that need to write registers. */
2545 gdb_assert (!write);
2546
2547 regcache_cooked_read (regcache, regnum, (char *) val);
2548
2549 return 0;
2550 }
2551
2552 /* Libunwind callback accessor function for accessing memory. */
2553 static int
2554 ia64_access_mem (unw_addr_space_t as,
2555 unw_word_t addr, unw_word_t *val,
2556 int write, void *arg)
2557 {
2558 if (addr - KERNEL_START < ktab_size)
2559 {
2560 unw_word_t *laddr = (unw_word_t*) ((char *) ktab
2561 + (addr - KERNEL_START));
2562
2563 if (write)
2564 *laddr = *val;
2565 else
2566 *val = *laddr;
2567 return 0;
2568 }
2569
2570 /* XXX do we need to normalize byte-order here? */
2571 if (write)
2572 return target_write_memory (addr, (char *) val, sizeof (unw_word_t));
2573 else
2574 return target_read_memory (addr, (char *) val, sizeof (unw_word_t));
2575 }
2576
2577 /* Call low-level function to access the kernel unwind table. */
2578 static LONGEST
2579 getunwind_table (gdb_byte **buf_p)
2580 {
2581 LONGEST x;
2582
2583 /* FIXME drow/2005-09-10: This code used to call
2584 ia64_linux_xfer_unwind_table directly to fetch the unwind table
2585 for the currently running ia64-linux kernel. That data should
2586 come from the core file and be accessed via the auxv vector; if
2587 we want to preserve fall back to the running kernel's table, then
2588 we should find a way to override the corefile layer's
2589 xfer_partial method. */
2590
2591 x = target_read_alloc (&current_target, TARGET_OBJECT_UNWIND_TABLE,
2592 NULL, buf_p);
2593
2594 return x;
2595 }
2596
2597 /* Get the kernel unwind table. */
2598 static int
2599 get_kernel_table (unw_word_t ip, unw_dyn_info_t *di)
2600 {
2601 static struct ia64_table_entry *etab;
2602
2603 if (!ktab)
2604 {
2605 gdb_byte *ktab_buf;
2606 LONGEST size;
2607
2608 size = getunwind_table (&ktab_buf);
2609 if (size <= 0)
2610 return -UNW_ENOINFO;
2611
2612 ktab = (struct ia64_table_entry *) ktab_buf;
2613 ktab_size = size;
2614
2615 for (etab = ktab; etab->start_offset; ++etab)
2616 etab->info_offset += KERNEL_START;
2617 }
2618
2619 if (ip < ktab[0].start_offset || ip >= etab[-1].end_offset)
2620 return -UNW_ENOINFO;
2621
2622 di->format = UNW_INFO_FORMAT_TABLE;
2623 di->gp = 0;
2624 di->start_ip = ktab[0].start_offset;
2625 di->end_ip = etab[-1].end_offset;
2626 di->u.ti.name_ptr = (unw_word_t) "<kernel>";
2627 di->u.ti.segbase = 0;
2628 di->u.ti.table_len = ((char *) etab - (char *) ktab) / sizeof (unw_word_t);
2629 di->u.ti.table_data = (unw_word_t *) ktab;
2630
2631 if (gdbarch_debug >= 1)
2632 fprintf_unfiltered (gdb_stdlog, "get_kernel_table: found table `%s': "
2633 "segbase=%s, length=%s, gp=%s\n",
2634 (char *) di->u.ti.name_ptr,
2635 hex_string (di->u.ti.segbase),
2636 pulongest (di->u.ti.table_len),
2637 hex_string (di->gp));
2638 return 0;
2639 }
2640
2641 /* Find the unwind table entry for a specified address. */
2642 static int
2643 ia64_find_unwind_table (struct objfile *objfile, unw_word_t ip,
2644 unw_dyn_info_t *dip, void **buf)
2645 {
2646 Elf_Internal_Phdr *phdr, *p_text = NULL, *p_unwind = NULL;
2647 Elf_Internal_Ehdr *ehdr;
2648 unw_word_t segbase = 0;
2649 CORE_ADDR load_base;
2650 bfd *bfd;
2651 int i;
2652
2653 bfd = objfile->obfd;
2654
2655 ehdr = elf_tdata (bfd)->elf_header;
2656 phdr = elf_tdata (bfd)->phdr;
2657
2658 load_base = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2659
2660 for (i = 0; i < ehdr->e_phnum; ++i)
2661 {
2662 switch (phdr[i].p_type)
2663 {
2664 case PT_LOAD:
2665 if ((unw_word_t) (ip - load_base - phdr[i].p_vaddr)
2666 < phdr[i].p_memsz)
2667 p_text = phdr + i;
2668 break;
2669
2670 case PT_IA_64_UNWIND:
2671 p_unwind = phdr + i;
2672 break;
2673
2674 default:
2675 break;
2676 }
2677 }
2678
2679 if (!p_text || !p_unwind)
2680 return -UNW_ENOINFO;
2681
2682 /* Verify that the segment that contains the IP also contains
2683 the static unwind table. If not, we may be in the Linux kernel's
2684 DSO gate page in which case the unwind table is another segment.
2685 Otherwise, we are dealing with runtime-generated code, for which we
2686 have no info here. */
2687 segbase = p_text->p_vaddr + load_base;
2688
2689 if ((p_unwind->p_vaddr - p_text->p_vaddr) >= p_text->p_memsz)
2690 {
2691 int ok = 0;
2692 for (i = 0; i < ehdr->e_phnum; ++i)
2693 {
2694 if (phdr[i].p_type == PT_LOAD
2695 && (p_unwind->p_vaddr - phdr[i].p_vaddr) < phdr[i].p_memsz)
2696 {
2697 ok = 1;
2698 /* Get the segbase from the section containing the
2699 libunwind table. */
2700 segbase = phdr[i].p_vaddr + load_base;
2701 }
2702 }
2703 if (!ok)
2704 return -UNW_ENOINFO;
2705 }
2706
2707 dip->start_ip = p_text->p_vaddr + load_base;
2708 dip->end_ip = dip->start_ip + p_text->p_memsz;
2709 dip->gp = ia64_find_global_pointer (get_objfile_arch (objfile), ip);
2710 dip->format = UNW_INFO_FORMAT_REMOTE_TABLE;
2711 dip->u.rti.name_ptr = (unw_word_t) bfd_get_filename (bfd);
2712 dip->u.rti.segbase = segbase;
2713 dip->u.rti.table_len = p_unwind->p_memsz / sizeof (unw_word_t);
2714 dip->u.rti.table_data = p_unwind->p_vaddr + load_base;
2715
2716 return 0;
2717 }
2718
2719 /* Libunwind callback accessor function to acquire procedure unwind-info. */
2720 static int
2721 ia64_find_proc_info_x (unw_addr_space_t as, unw_word_t ip, unw_proc_info_t *pi,
2722 int need_unwind_info, void *arg)
2723 {
2724 struct obj_section *sec = find_pc_section (ip);
2725 unw_dyn_info_t di;
2726 int ret;
2727 void *buf = NULL;
2728
2729 if (!sec)
2730 {
2731 /* XXX This only works if the host and the target architecture are
2732 both ia64 and if the have (more or less) the same kernel
2733 version. */
2734 if (get_kernel_table (ip, &di) < 0)
2735 return -UNW_ENOINFO;
2736
2737 if (gdbarch_debug >= 1)
2738 fprintf_unfiltered (gdb_stdlog, "ia64_find_proc_info_x: %s -> "
2739 "(name=`%s',segbase=%s,start=%s,end=%s,gp=%s,"
2740 "length=%s,data=%s)\n",
2741 hex_string (ip), (char *)di.u.ti.name_ptr,
2742 hex_string (di.u.ti.segbase),
2743 hex_string (di.start_ip), hex_string (di.end_ip),
2744 hex_string (di.gp),
2745 pulongest (di.u.ti.table_len),
2746 hex_string ((CORE_ADDR)di.u.ti.table_data));
2747 }
2748 else
2749 {
2750 ret = ia64_find_unwind_table (sec->objfile, ip, &di, &buf);
2751 if (ret < 0)
2752 return ret;
2753
2754 if (gdbarch_debug >= 1)
2755 fprintf_unfiltered (gdb_stdlog, "ia64_find_proc_info_x: %s -> "
2756 "(name=`%s',segbase=%s,start=%s,end=%s,gp=%s,"
2757 "length=%s,data=%s)\n",
2758 hex_string (ip), (char *)di.u.rti.name_ptr,
2759 hex_string (di.u.rti.segbase),
2760 hex_string (di.start_ip), hex_string (di.end_ip),
2761 hex_string (di.gp),
2762 pulongest (di.u.rti.table_len),
2763 hex_string (di.u.rti.table_data));
2764 }
2765
2766 ret = libunwind_search_unwind_table (&as, ip, &di, pi, need_unwind_info,
2767 arg);
2768
2769 /* We no longer need the dyn info storage so free it. */
2770 xfree (buf);
2771
2772 return ret;
2773 }
2774
2775 /* Libunwind callback accessor function for cleanup. */
2776 static void
2777 ia64_put_unwind_info (unw_addr_space_t as,
2778 unw_proc_info_t *pip, void *arg)
2779 {
2780 /* Nothing required for now. */
2781 }
2782
2783 /* Libunwind callback accessor function to get head of the dynamic
2784 unwind-info registration list. */
2785 static int
2786 ia64_get_dyn_info_list (unw_addr_space_t as,
2787 unw_word_t *dilap, void *arg)
2788 {
2789 struct obj_section *text_sec;
2790 struct objfile *objfile;
2791 unw_word_t ip, addr;
2792 unw_dyn_info_t di;
2793 int ret;
2794
2795 if (!libunwind_is_initialized ())
2796 return -UNW_ENOINFO;
2797
2798 for (objfile = object_files; objfile; objfile = objfile->next)
2799 {
2800 void *buf = NULL;
2801
2802 text_sec = objfile->sections + SECT_OFF_TEXT (objfile);
2803 ip = obj_section_addr (text_sec);
2804 ret = ia64_find_unwind_table (objfile, ip, &di, &buf);
2805 if (ret >= 0)
2806 {
2807 addr = libunwind_find_dyn_list (as, &di, arg);
2808 /* We no longer need the dyn info storage so free it. */
2809 xfree (buf);
2810
2811 if (addr)
2812 {
2813 if (gdbarch_debug >= 1)
2814 fprintf_unfiltered (gdb_stdlog,
2815 "dynamic unwind table in objfile %s "
2816 "at %s (gp=%s)\n",
2817 bfd_get_filename (objfile->obfd),
2818 hex_string (addr), hex_string (di.gp));
2819 *dilap = addr;
2820 return 0;
2821 }
2822 }
2823 }
2824 return -UNW_ENOINFO;
2825 }
2826
2827
2828 /* Frame interface functions for libunwind. */
2829
2830 static void
2831 ia64_libunwind_frame_this_id (struct frame_info *this_frame, void **this_cache,
2832 struct frame_id *this_id)
2833 {
2834 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2835 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2836 struct frame_id id = outer_frame_id;
2837 char buf[8];
2838 CORE_ADDR bsp;
2839
2840 libunwind_frame_this_id (this_frame, this_cache, &id);
2841 if (frame_id_eq (id, outer_frame_id))
2842 {
2843 (*this_id) = outer_frame_id;
2844 return;
2845 }
2846
2847 /* We must add the bsp as the special address for frame comparison
2848 purposes. */
2849 get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
2850 bsp = extract_unsigned_integer (buf, 8, byte_order);
2851
2852 (*this_id) = frame_id_build_special (id.stack_addr, id.code_addr, bsp);
2853
2854 if (gdbarch_debug >= 1)
2855 fprintf_unfiltered (gdb_stdlog,
2856 "libunwind frame id: code %s, stack %s, special %s, this_frame %s\n",
2857 paddress (gdbarch, id.code_addr),
2858 paddress (gdbarch, id.stack_addr),
2859 paddress (gdbarch, bsp),
2860 host_address_to_string (this_frame));
2861 }
2862
2863 static struct value *
2864 ia64_libunwind_frame_prev_register (struct frame_info *this_frame,
2865 void **this_cache, int regnum)
2866 {
2867 int reg = regnum;
2868 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2869 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2870 struct value *val;
2871
2872 if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
2873 reg = IA64_PR_REGNUM;
2874 else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
2875 reg = IA64_UNAT_REGNUM;
2876
2877 /* Let libunwind do most of the work. */
2878 val = libunwind_frame_prev_register (this_frame, this_cache, reg);
2879
2880 if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
2881 {
2882 ULONGEST prN_val;
2883
2884 if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
2885 {
2886 int rrb_pr = 0;
2887 ULONGEST cfm;
2888 unsigned char buf[MAX_REGISTER_SIZE];
2889
2890 /* Fetch predicate register rename base from current frame
2891 marker for this frame. */
2892 get_frame_register (this_frame, IA64_CFM_REGNUM, buf);
2893 cfm = extract_unsigned_integer (buf, 8, byte_order);
2894 rrb_pr = (cfm >> 32) & 0x3f;
2895
2896 /* Adjust the register number to account for register rotation. */
2897 regnum = VP16_REGNUM + ((regnum - VP16_REGNUM) + rrb_pr) % 48;
2898 }
2899 prN_val = extract_bit_field (value_contents_all (val),
2900 regnum - VP0_REGNUM, 1);
2901 return frame_unwind_got_constant (this_frame, regnum, prN_val);
2902 }
2903
2904 else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
2905 {
2906 ULONGEST unatN_val;
2907
2908 unatN_val = extract_bit_field (value_contents_all (val),
2909 regnum - IA64_NAT0_REGNUM, 1);
2910 return frame_unwind_got_constant (this_frame, regnum, unatN_val);
2911 }
2912
2913 else if (regnum == IA64_BSP_REGNUM)
2914 {
2915 struct value *cfm_val;
2916 CORE_ADDR prev_bsp, prev_cfm;
2917
2918 /* We want to calculate the previous bsp as the end of the previous
2919 register stack frame. This corresponds to what the hardware bsp
2920 register will be if we pop the frame back which is why we might
2921 have been called. We know that libunwind will pass us back the
2922 beginning of the current frame so we should just add sof to it. */
2923 prev_bsp = extract_unsigned_integer (value_contents_all (val),
2924 8, byte_order);
2925 cfm_val = libunwind_frame_prev_register (this_frame, this_cache,
2926 IA64_CFM_REGNUM);
2927 prev_cfm = extract_unsigned_integer (value_contents_all (cfm_val),
2928 8, byte_order);
2929 prev_bsp = rse_address_add (prev_bsp, (prev_cfm & 0x7f));
2930
2931 return frame_unwind_got_constant (this_frame, regnum, prev_bsp);
2932 }
2933 else
2934 return val;
2935 }
2936
2937 static int
2938 ia64_libunwind_frame_sniffer (const struct frame_unwind *self,
2939 struct frame_info *this_frame,
2940 void **this_cache)
2941 {
2942 if (libunwind_is_initialized ()
2943 && libunwind_frame_sniffer (self, this_frame, this_cache))
2944 return 1;
2945
2946 return 0;
2947 }
2948
2949 static const struct frame_unwind ia64_libunwind_frame_unwind =
2950 {
2951 NORMAL_FRAME,
2952 ia64_libunwind_frame_this_id,
2953 ia64_libunwind_frame_prev_register,
2954 NULL,
2955 ia64_libunwind_frame_sniffer,
2956 libunwind_frame_dealloc_cache
2957 };
2958
2959 static void
2960 ia64_libunwind_sigtramp_frame_this_id (struct frame_info *this_frame,
2961 void **this_cache,
2962 struct frame_id *this_id)
2963 {
2964 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2965 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2966 char buf[8];
2967 CORE_ADDR bsp;
2968 struct frame_id id = outer_frame_id;
2969 CORE_ADDR prev_ip;
2970
2971 libunwind_frame_this_id (this_frame, this_cache, &id);
2972 if (frame_id_eq (id, outer_frame_id))
2973 {
2974 (*this_id) = outer_frame_id;
2975 return;
2976 }
2977
2978 /* We must add the bsp as the special address for frame comparison
2979 purposes. */
2980 get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
2981 bsp = extract_unsigned_integer (buf, 8, byte_order);
2982
2983 /* For a sigtramp frame, we don't make the check for previous ip being 0. */
2984 (*this_id) = frame_id_build_special (id.stack_addr, id.code_addr, bsp);
2985
2986 if (gdbarch_debug >= 1)
2987 fprintf_unfiltered (gdb_stdlog,
2988 "libunwind sigtramp frame id: code %s, stack %s, special %s, this_frame %s\n",
2989 paddress (gdbarch, id.code_addr),
2990 paddress (gdbarch, id.stack_addr),
2991 paddress (gdbarch, bsp),
2992 host_address_to_string (this_frame));
2993 }
2994
2995 static struct value *
2996 ia64_libunwind_sigtramp_frame_prev_register (struct frame_info *this_frame,
2997 void **this_cache, int regnum)
2998 {
2999 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3000 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3001 struct value *prev_ip_val;
3002 CORE_ADDR prev_ip;
3003
3004 /* If the previous frame pc value is 0, then we want to use the SIGCONTEXT
3005 method of getting previous registers. */
3006 prev_ip_val = libunwind_frame_prev_register (this_frame, this_cache,
3007 IA64_IP_REGNUM);
3008 prev_ip = extract_unsigned_integer (value_contents_all (prev_ip_val),
3009 8, byte_order);
3010
3011 if (prev_ip == 0)
3012 {
3013 void *tmp_cache = NULL;
3014 return ia64_sigtramp_frame_prev_register (this_frame, &tmp_cache,
3015 regnum);
3016 }
3017 else
3018 return ia64_libunwind_frame_prev_register (this_frame, this_cache, regnum);
3019 }
3020
3021 static int
3022 ia64_libunwind_sigtramp_frame_sniffer (const struct frame_unwind *self,
3023 struct frame_info *this_frame,
3024 void **this_cache)
3025 {
3026 if (libunwind_is_initialized ())
3027 {
3028 if (libunwind_sigtramp_frame_sniffer (self, this_frame, this_cache))
3029 return 1;
3030 return 0;
3031 }
3032 else
3033 return ia64_sigtramp_frame_sniffer (self, this_frame, this_cache);
3034 }
3035
3036 static const struct frame_unwind ia64_libunwind_sigtramp_frame_unwind =
3037 {
3038 SIGTRAMP_FRAME,
3039 ia64_libunwind_sigtramp_frame_this_id,
3040 ia64_libunwind_sigtramp_frame_prev_register,
3041 NULL,
3042 ia64_libunwind_sigtramp_frame_sniffer
3043 };
3044
3045 /* Set of libunwind callback acccessor functions. */
3046 static unw_accessors_t ia64_unw_accessors =
3047 {
3048 ia64_find_proc_info_x,
3049 ia64_put_unwind_info,
3050 ia64_get_dyn_info_list,
3051 ia64_access_mem,
3052 ia64_access_reg,
3053 ia64_access_fpreg,
3054 /* resume */
3055 /* get_proc_name */
3056 };
3057
3058 /* Set of special libunwind callback acccessor functions specific for accessing
3059 the rse registers. At the top of the stack, we want libunwind to figure out
3060 how to read r32 - r127. Though usually they are found sequentially in memory
3061 starting from $bof, this is not always true. */
3062 static unw_accessors_t ia64_unw_rse_accessors =
3063 {
3064 ia64_find_proc_info_x,
3065 ia64_put_unwind_info,
3066 ia64_get_dyn_info_list,
3067 ia64_access_mem,
3068 ia64_access_rse_reg,
3069 ia64_access_rse_fpreg,
3070 /* resume */
3071 /* get_proc_name */
3072 };
3073
3074 /* Set of ia64 gdb libunwind-frame callbacks and data for generic libunwind-frame code to use. */
3075 static struct libunwind_descr ia64_libunwind_descr =
3076 {
3077 ia64_gdb2uw_regnum,
3078 ia64_uw2gdb_regnum,
3079 ia64_is_fpreg,
3080 &ia64_unw_accessors,
3081 &ia64_unw_rse_accessors,
3082 };
3083
3084 #endif /* HAVE_LIBUNWIND_IA64_H */
3085
3086 static int
3087 ia64_use_struct_convention (struct type *type)
3088 {
3089 struct type *float_elt_type;
3090
3091 /* Don't use the struct convention for anything but structure,
3092 union, or array types. */
3093 if (!(TYPE_CODE (type) == TYPE_CODE_STRUCT
3094 || TYPE_CODE (type) == TYPE_CODE_UNION
3095 || TYPE_CODE (type) == TYPE_CODE_ARRAY))
3096 return 0;
3097
3098 /* HFAs are structures (or arrays) consisting entirely of floating
3099 point values of the same length. Up to 8 of these are returned
3100 in registers. Don't use the struct convention when this is the
3101 case. */
3102 float_elt_type = is_float_or_hfa_type (type);
3103 if (float_elt_type != NULL
3104 && TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type) <= 8)
3105 return 0;
3106
3107 /* Other structs of length 32 or less are returned in r8-r11.
3108 Don't use the struct convention for those either. */
3109 return TYPE_LENGTH (type) > 32;
3110 }
3111
3112 static void
3113 ia64_extract_return_value (struct type *type, struct regcache *regcache,
3114 gdb_byte *valbuf)
3115 {
3116 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3117 struct type *float_elt_type;
3118
3119 float_elt_type = is_float_or_hfa_type (type);
3120 if (float_elt_type != NULL)
3121 {
3122 char from[MAX_REGISTER_SIZE];
3123 int offset = 0;
3124 int regnum = IA64_FR8_REGNUM;
3125 int n = TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type);
3126
3127 while (n-- > 0)
3128 {
3129 regcache_cooked_read (regcache, regnum, from);
3130 convert_typed_floating (from, ia64_ext_type (gdbarch),
3131 (char *)valbuf + offset, float_elt_type);
3132 offset += TYPE_LENGTH (float_elt_type);
3133 regnum++;
3134 }
3135 }
3136 else
3137 {
3138 ULONGEST val;
3139 int offset = 0;
3140 int regnum = IA64_GR8_REGNUM;
3141 int reglen = TYPE_LENGTH (register_type (gdbarch, IA64_GR8_REGNUM));
3142 int n = TYPE_LENGTH (type) / reglen;
3143 int m = TYPE_LENGTH (type) % reglen;
3144
3145 while (n-- > 0)
3146 {
3147 ULONGEST val;
3148 regcache_cooked_read_unsigned (regcache, regnum, &val);
3149 memcpy ((char *)valbuf + offset, &val, reglen);
3150 offset += reglen;
3151 regnum++;
3152 }
3153
3154 if (m)
3155 {
3156 regcache_cooked_read_unsigned (regcache, regnum, &val);
3157 memcpy ((char *)valbuf + offset, &val, m);
3158 }
3159 }
3160 }
3161
3162 static void
3163 ia64_store_return_value (struct type *type, struct regcache *regcache,
3164 const gdb_byte *valbuf)
3165 {
3166 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3167 struct type *float_elt_type;
3168
3169 float_elt_type = is_float_or_hfa_type (type);
3170 if (float_elt_type != NULL)
3171 {
3172 char to[MAX_REGISTER_SIZE];
3173 int offset = 0;
3174 int regnum = IA64_FR8_REGNUM;
3175 int n = TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type);
3176
3177 while (n-- > 0)
3178 {
3179 convert_typed_floating ((char *)valbuf + offset, float_elt_type,
3180 to, ia64_ext_type (gdbarch));
3181 regcache_cooked_write (regcache, regnum, to);
3182 offset += TYPE_LENGTH (float_elt_type);
3183 regnum++;
3184 }
3185 }
3186 else
3187 {
3188 ULONGEST val;
3189 int offset = 0;
3190 int regnum = IA64_GR8_REGNUM;
3191 int reglen = TYPE_LENGTH (register_type (gdbarch, IA64_GR8_REGNUM));
3192 int n = TYPE_LENGTH (type) / reglen;
3193 int m = TYPE_LENGTH (type) % reglen;
3194
3195 while (n-- > 0)
3196 {
3197 ULONGEST val;
3198 memcpy (&val, (char *)valbuf + offset, reglen);
3199 regcache_cooked_write_unsigned (regcache, regnum, val);
3200 offset += reglen;
3201 regnum++;
3202 }
3203
3204 if (m)
3205 {
3206 memcpy (&val, (char *)valbuf + offset, m);
3207 regcache_cooked_write_unsigned (regcache, regnum, val);
3208 }
3209 }
3210 }
3211
3212 static enum return_value_convention
3213 ia64_return_value (struct gdbarch *gdbarch, struct type *func_type,
3214 struct type *valtype, struct regcache *regcache,
3215 gdb_byte *readbuf, const gdb_byte *writebuf)
3216 {
3217 int struct_return = ia64_use_struct_convention (valtype);
3218
3219 if (writebuf != NULL)
3220 {
3221 gdb_assert (!struct_return);
3222 ia64_store_return_value (valtype, regcache, writebuf);
3223 }
3224
3225 if (readbuf != NULL)
3226 {
3227 gdb_assert (!struct_return);
3228 ia64_extract_return_value (valtype, regcache, readbuf);
3229 }
3230
3231 if (struct_return)
3232 return RETURN_VALUE_STRUCT_CONVENTION;
3233 else
3234 return RETURN_VALUE_REGISTER_CONVENTION;
3235 }
3236
3237 static int
3238 is_float_or_hfa_type_recurse (struct type *t, struct type **etp)
3239 {
3240 switch (TYPE_CODE (t))
3241 {
3242 case TYPE_CODE_FLT:
3243 if (*etp)
3244 return TYPE_LENGTH (*etp) == TYPE_LENGTH (t);
3245 else
3246 {
3247 *etp = t;
3248 return 1;
3249 }
3250 break;
3251 case TYPE_CODE_ARRAY:
3252 return
3253 is_float_or_hfa_type_recurse (check_typedef (TYPE_TARGET_TYPE (t)),
3254 etp);
3255 break;
3256 case TYPE_CODE_STRUCT:
3257 {
3258 int i;
3259
3260 for (i = 0; i < TYPE_NFIELDS (t); i++)
3261 if (!is_float_or_hfa_type_recurse
3262 (check_typedef (TYPE_FIELD_TYPE (t, i)), etp))
3263 return 0;
3264 return 1;
3265 }
3266 break;
3267 default:
3268 return 0;
3269 break;
3270 }
3271 }
3272
3273 /* Determine if the given type is one of the floating point types or
3274 and HFA (which is a struct, array, or combination thereof whose
3275 bottom-most elements are all of the same floating point type). */
3276
3277 static struct type *
3278 is_float_or_hfa_type (struct type *t)
3279 {
3280 struct type *et = 0;
3281
3282 return is_float_or_hfa_type_recurse (t, &et) ? et : 0;
3283 }
3284
3285
3286 /* Return 1 if the alignment of T is such that the next even slot
3287 should be used. Return 0, if the next available slot should
3288 be used. (See section 8.5.1 of the IA-64 Software Conventions
3289 and Runtime manual). */
3290
3291 static int
3292 slot_alignment_is_next_even (struct type *t)
3293 {
3294 switch (TYPE_CODE (t))
3295 {
3296 case TYPE_CODE_INT:
3297 case TYPE_CODE_FLT:
3298 if (TYPE_LENGTH (t) > 8)
3299 return 1;
3300 else
3301 return 0;
3302 case TYPE_CODE_ARRAY:
3303 return
3304 slot_alignment_is_next_even (check_typedef (TYPE_TARGET_TYPE (t)));
3305 case TYPE_CODE_STRUCT:
3306 {
3307 int i;
3308
3309 for (i = 0; i < TYPE_NFIELDS (t); i++)
3310 if (slot_alignment_is_next_even
3311 (check_typedef (TYPE_FIELD_TYPE (t, i))))
3312 return 1;
3313 return 0;
3314 }
3315 default:
3316 return 0;
3317 }
3318 }
3319
3320 /* Attempt to find (and return) the global pointer for the given
3321 function.
3322
3323 This is a rather nasty bit of code searchs for the .dynamic section
3324 in the objfile corresponding to the pc of the function we're trying
3325 to call. Once it finds the addresses at which the .dynamic section
3326 lives in the child process, it scans the Elf64_Dyn entries for a
3327 DT_PLTGOT tag. If it finds one of these, the corresponding
3328 d_un.d_ptr value is the global pointer. */
3329
3330 static CORE_ADDR
3331 ia64_find_global_pointer (struct gdbarch *gdbarch, CORE_ADDR faddr)
3332 {
3333 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3334 struct obj_section *faddr_sect;
3335
3336 faddr_sect = find_pc_section (faddr);
3337 if (faddr_sect != NULL)
3338 {
3339 struct obj_section *osect;
3340
3341 ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
3342 {
3343 if (strcmp (osect->the_bfd_section->name, ".dynamic") == 0)
3344 break;
3345 }
3346
3347 if (osect < faddr_sect->objfile->sections_end)
3348 {
3349 CORE_ADDR addr, endaddr;
3350
3351 addr = obj_section_addr (osect);
3352 endaddr = obj_section_endaddr (osect);
3353
3354 while (addr < endaddr)
3355 {
3356 int status;
3357 LONGEST tag;
3358 char buf[8];
3359
3360 status = target_read_memory (addr, buf, sizeof (buf));
3361 if (status != 0)
3362 break;
3363 tag = extract_signed_integer (buf, sizeof (buf), byte_order);
3364
3365 if (tag == DT_PLTGOT)
3366 {
3367 CORE_ADDR global_pointer;
3368
3369 status = target_read_memory (addr + 8, buf, sizeof (buf));
3370 if (status != 0)
3371 break;
3372 global_pointer = extract_unsigned_integer (buf, sizeof (buf),
3373 byte_order);
3374
3375 /* The payoff... */
3376 return global_pointer;
3377 }
3378
3379 if (tag == DT_NULL)
3380 break;
3381
3382 addr += 16;
3383 }
3384 }
3385 }
3386 return 0;
3387 }
3388
3389 /* Given a function's address, attempt to find (and return) the
3390 corresponding (canonical) function descriptor. Return 0 if
3391 not found. */
3392 static CORE_ADDR
3393 find_extant_func_descr (struct gdbarch *gdbarch, CORE_ADDR faddr)
3394 {
3395 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3396 struct obj_section *faddr_sect;
3397
3398 /* Return early if faddr is already a function descriptor. */
3399 faddr_sect = find_pc_section (faddr);
3400 if (faddr_sect && strcmp (faddr_sect->the_bfd_section->name, ".opd") == 0)
3401 return faddr;
3402
3403 if (faddr_sect != NULL)
3404 {
3405 struct obj_section *osect;
3406 ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
3407 {
3408 if (strcmp (osect->the_bfd_section->name, ".opd") == 0)
3409 break;
3410 }
3411
3412 if (osect < faddr_sect->objfile->sections_end)
3413 {
3414 CORE_ADDR addr, endaddr;
3415
3416 addr = obj_section_addr (osect);
3417 endaddr = obj_section_endaddr (osect);
3418
3419 while (addr < endaddr)
3420 {
3421 int status;
3422 LONGEST faddr2;
3423 char buf[8];
3424
3425 status = target_read_memory (addr, buf, sizeof (buf));
3426 if (status != 0)
3427 break;
3428 faddr2 = extract_signed_integer (buf, sizeof (buf), byte_order);
3429
3430 if (faddr == faddr2)
3431 return addr;
3432
3433 addr += 16;
3434 }
3435 }
3436 }
3437 return 0;
3438 }
3439
3440 /* Attempt to find a function descriptor corresponding to the
3441 given address. If none is found, construct one on the
3442 stack using the address at fdaptr. */
3443
3444 static CORE_ADDR
3445 find_func_descr (struct regcache *regcache, CORE_ADDR faddr, CORE_ADDR *fdaptr)
3446 {
3447 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3448 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3449 CORE_ADDR fdesc;
3450
3451 fdesc = find_extant_func_descr (gdbarch, faddr);
3452
3453 if (fdesc == 0)
3454 {
3455 ULONGEST global_pointer;
3456 char buf[16];
3457
3458 fdesc = *fdaptr;
3459 *fdaptr += 16;
3460
3461 global_pointer = ia64_find_global_pointer (gdbarch, faddr);
3462
3463 if (global_pointer == 0)
3464 regcache_cooked_read_unsigned (regcache,
3465 IA64_GR1_REGNUM, &global_pointer);
3466
3467 store_unsigned_integer (buf, 8, byte_order, faddr);
3468 store_unsigned_integer (buf + 8, 8, byte_order, global_pointer);
3469
3470 write_memory (fdesc, buf, 16);
3471 }
3472
3473 return fdesc;
3474 }
3475
3476 /* Use the following routine when printing out function pointers
3477 so the user can see the function address rather than just the
3478 function descriptor. */
3479 static CORE_ADDR
3480 ia64_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
3481 struct target_ops *targ)
3482 {
3483 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3484 struct obj_section *s;
3485
3486 s = find_pc_section (addr);
3487
3488 /* check if ADDR points to a function descriptor. */
3489 if (s && strcmp (s->the_bfd_section->name, ".opd") == 0)
3490 return read_memory_unsigned_integer (addr, 8, byte_order);
3491
3492 /* Normally, functions live inside a section that is executable.
3493 So, if ADDR points to a non-executable section, then treat it
3494 as a function descriptor and return the target address iff
3495 the target address itself points to a section that is executable. */
3496 if (s && (s->the_bfd_section->flags & SEC_CODE) == 0)
3497 {
3498 CORE_ADDR pc = read_memory_unsigned_integer (addr, 8, byte_order);
3499 struct obj_section *pc_section = find_pc_section (pc);
3500
3501 if (pc_section && (pc_section->the_bfd_section->flags & SEC_CODE))
3502 return pc;
3503 }
3504
3505 /* There are also descriptors embedded in vtables. */
3506 if (s)
3507 {
3508 struct minimal_symbol *minsym;
3509
3510 minsym = lookup_minimal_symbol_by_pc (addr);
3511
3512 if (minsym && is_vtable_name (SYMBOL_LINKAGE_NAME (minsym)))
3513 return read_memory_unsigned_integer (addr, 8, byte_order);
3514 }
3515
3516 return addr;
3517 }
3518
3519 static CORE_ADDR
3520 ia64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
3521 {
3522 return sp & ~0xfLL;
3523 }
3524
3525 static CORE_ADDR
3526 ia64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3527 struct regcache *regcache, CORE_ADDR bp_addr,
3528 int nargs, struct value **args, CORE_ADDR sp,
3529 int struct_return, CORE_ADDR struct_addr)
3530 {
3531 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3532 int argno;
3533 struct value *arg;
3534 struct type *type;
3535 int len, argoffset;
3536 int nslots, rseslots, memslots, slotnum, nfuncargs;
3537 int floatreg;
3538 ULONGEST bsp, cfm, pfs, new_bsp;
3539 CORE_ADDR funcdescaddr, pc, global_pointer;
3540 CORE_ADDR func_addr = find_function_addr (function, NULL);
3541
3542 nslots = 0;
3543 nfuncargs = 0;
3544 /* Count the number of slots needed for the arguments. */
3545 for (argno = 0; argno < nargs; argno++)
3546 {
3547 arg = args[argno];
3548 type = check_typedef (value_type (arg));
3549 len = TYPE_LENGTH (type);
3550
3551 if ((nslots & 1) && slot_alignment_is_next_even (type))
3552 nslots++;
3553
3554 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
3555 nfuncargs++;
3556
3557 nslots += (len + 7) / 8;
3558 }
3559
3560 /* Divvy up the slots between the RSE and the memory stack. */
3561 rseslots = (nslots > 8) ? 8 : nslots;
3562 memslots = nslots - rseslots;
3563
3564 /* Allocate a new RSE frame. */
3565 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
3566
3567 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
3568 new_bsp = rse_address_add (bsp, rseslots);
3569 regcache_cooked_write_unsigned (regcache, IA64_BSP_REGNUM, new_bsp);
3570
3571 regcache_cooked_read_unsigned (regcache, IA64_PFS_REGNUM, &pfs);
3572 pfs &= 0xc000000000000000LL;
3573 pfs |= (cfm & 0xffffffffffffLL);
3574 regcache_cooked_write_unsigned (regcache, IA64_PFS_REGNUM, pfs);
3575
3576 cfm &= 0xc000000000000000LL;
3577 cfm |= rseslots;
3578 regcache_cooked_write_unsigned (regcache, IA64_CFM_REGNUM, cfm);
3579
3580 /* We will attempt to find function descriptors in the .opd segment,
3581 but if we can't we'll construct them ourselves. That being the
3582 case, we'll need to reserve space on the stack for them. */
3583 funcdescaddr = sp - nfuncargs * 16;
3584 funcdescaddr &= ~0xfLL;
3585
3586 /* Adjust the stack pointer to it's new value. The calling conventions
3587 require us to have 16 bytes of scratch, plus whatever space is
3588 necessary for the memory slots and our function descriptors. */
3589 sp = sp - 16 - (memslots + nfuncargs) * 8;
3590 sp &= ~0xfLL; /* Maintain 16 byte alignment. */
3591
3592 /* Place the arguments where they belong. The arguments will be
3593 either placed in the RSE backing store or on the memory stack.
3594 In addition, floating point arguments or HFAs are placed in
3595 floating point registers. */
3596 slotnum = 0;
3597 floatreg = IA64_FR8_REGNUM;
3598 for (argno = 0; argno < nargs; argno++)
3599 {
3600 struct type *float_elt_type;
3601
3602 arg = args[argno];
3603 type = check_typedef (value_type (arg));
3604 len = TYPE_LENGTH (type);
3605
3606 /* Special handling for function parameters. */
3607 if (len == 8
3608 && TYPE_CODE (type) == TYPE_CODE_PTR
3609 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
3610 {
3611 char val_buf[8];
3612 ULONGEST faddr = extract_unsigned_integer (value_contents (arg),
3613 8, byte_order);
3614 store_unsigned_integer (val_buf, 8, byte_order,
3615 find_func_descr (regcache, faddr,
3616 &funcdescaddr));
3617 if (slotnum < rseslots)
3618 write_memory (rse_address_add (bsp, slotnum), val_buf, 8);
3619 else
3620 write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8);
3621 slotnum++;
3622 continue;
3623 }
3624
3625 /* Normal slots. */
3626
3627 /* Skip odd slot if necessary... */
3628 if ((slotnum & 1) && slot_alignment_is_next_even (type))
3629 slotnum++;
3630
3631 argoffset = 0;
3632 while (len > 0)
3633 {
3634 char val_buf[8];
3635
3636 memset (val_buf, 0, 8);
3637 memcpy (val_buf, value_contents (arg) + argoffset, (len > 8) ? 8 : len);
3638
3639 if (slotnum < rseslots)
3640 write_memory (rse_address_add (bsp, slotnum), val_buf, 8);
3641 else
3642 write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8);
3643
3644 argoffset += 8;
3645 len -= 8;
3646 slotnum++;
3647 }
3648
3649 /* Handle floating point types (including HFAs). */
3650 float_elt_type = is_float_or_hfa_type (type);
3651 if (float_elt_type != NULL)
3652 {
3653 argoffset = 0;
3654 len = TYPE_LENGTH (type);
3655 while (len > 0 && floatreg < IA64_FR16_REGNUM)
3656 {
3657 char to[MAX_REGISTER_SIZE];
3658 convert_typed_floating (value_contents (arg) + argoffset, float_elt_type,
3659 to, ia64_ext_type (gdbarch));
3660 regcache_cooked_write (regcache, floatreg, (void *)to);
3661 floatreg++;
3662 argoffset += TYPE_LENGTH (float_elt_type);
3663 len -= TYPE_LENGTH (float_elt_type);
3664 }
3665 }
3666 }
3667
3668 /* Store the struct return value in r8 if necessary. */
3669 if (struct_return)
3670 {
3671 regcache_cooked_write_unsigned (regcache, IA64_GR8_REGNUM, (ULONGEST)struct_addr);
3672 }
3673
3674 global_pointer = ia64_find_global_pointer (gdbarch, func_addr);
3675
3676 if (global_pointer != 0)
3677 regcache_cooked_write_unsigned (regcache, IA64_GR1_REGNUM, global_pointer);
3678
3679 regcache_cooked_write_unsigned (regcache, IA64_BR0_REGNUM, bp_addr);
3680
3681 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
3682
3683 return sp;
3684 }
3685
3686 static struct frame_id
3687 ia64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
3688 {
3689 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3690 char buf[8];
3691 CORE_ADDR sp, bsp;
3692
3693 get_frame_register (this_frame, sp_regnum, buf);
3694 sp = extract_unsigned_integer (buf, 8, byte_order);
3695
3696 get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
3697 bsp = extract_unsigned_integer (buf, 8, byte_order);
3698
3699 if (gdbarch_debug >= 1)
3700 fprintf_unfiltered (gdb_stdlog,
3701 "dummy frame id: code %s, stack %s, special %s\n",
3702 paddress (gdbarch, get_frame_pc (this_frame)),
3703 paddress (gdbarch, sp), paddress (gdbarch, bsp));
3704
3705 return frame_id_build_special (sp, get_frame_pc (this_frame), bsp);
3706 }
3707
3708 static CORE_ADDR
3709 ia64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
3710 {
3711 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3712 char buf[8];
3713 CORE_ADDR ip, psr, pc;
3714
3715 frame_unwind_register (next_frame, IA64_IP_REGNUM, buf);
3716 ip = extract_unsigned_integer (buf, 8, byte_order);
3717 frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf);
3718 psr = extract_unsigned_integer (buf, 8, byte_order);
3719
3720 pc = (ip & ~0xf) | ((psr >> 41) & 3);
3721 return pc;
3722 }
3723
3724 static int
3725 ia64_print_insn (bfd_vma memaddr, struct disassemble_info *info)
3726 {
3727 info->bytes_per_line = SLOT_MULTIPLIER;
3728 return print_insn_ia64 (memaddr, info);
3729 }
3730
3731 static struct gdbarch *
3732 ia64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3733 {
3734 struct gdbarch *gdbarch;
3735 struct gdbarch_tdep *tdep;
3736
3737 /* If there is already a candidate, use it. */
3738 arches = gdbarch_list_lookup_by_info (arches, &info);
3739 if (arches != NULL)
3740 return arches->gdbarch;
3741
3742 tdep = xzalloc (sizeof (struct gdbarch_tdep));
3743 gdbarch = gdbarch_alloc (&info, tdep);
3744
3745 /* According to the ia64 specs, instructions that store long double
3746 floats in memory use a long-double format different than that
3747 used in the floating registers. The memory format matches the
3748 x86 extended float format which is 80 bits. An OS may choose to
3749 use this format (e.g. GNU/Linux) or choose to use a different
3750 format for storing long doubles (e.g. HPUX). In the latter case,
3751 the setting of the format may be moved/overridden in an
3752 OS-specific tdep file. */
3753 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
3754
3755 set_gdbarch_short_bit (gdbarch, 16);
3756 set_gdbarch_int_bit (gdbarch, 32);
3757 set_gdbarch_long_bit (gdbarch, 64);
3758 set_gdbarch_long_long_bit (gdbarch, 64);
3759 set_gdbarch_float_bit (gdbarch, 32);
3760 set_gdbarch_double_bit (gdbarch, 64);
3761 set_gdbarch_long_double_bit (gdbarch, 128);
3762 set_gdbarch_ptr_bit (gdbarch, 64);
3763
3764 set_gdbarch_num_regs (gdbarch, NUM_IA64_RAW_REGS);
3765 set_gdbarch_num_pseudo_regs (gdbarch, LAST_PSEUDO_REGNUM - FIRST_PSEUDO_REGNUM);
3766 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
3767 set_gdbarch_fp0_regnum (gdbarch, IA64_FR0_REGNUM);
3768
3769 set_gdbarch_register_name (gdbarch, ia64_register_name);
3770 set_gdbarch_register_type (gdbarch, ia64_register_type);
3771
3772 set_gdbarch_pseudo_register_read (gdbarch, ia64_pseudo_register_read);
3773 set_gdbarch_pseudo_register_write (gdbarch, ia64_pseudo_register_write);
3774 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, ia64_dwarf_reg_to_regnum);
3775 set_gdbarch_register_reggroup_p (gdbarch, ia64_register_reggroup_p);
3776 set_gdbarch_convert_register_p (gdbarch, ia64_convert_register_p);
3777 set_gdbarch_register_to_value (gdbarch, ia64_register_to_value);
3778 set_gdbarch_value_to_register (gdbarch, ia64_value_to_register);
3779
3780 set_gdbarch_skip_prologue (gdbarch, ia64_skip_prologue);
3781
3782 set_gdbarch_return_value (gdbarch, ia64_return_value);
3783
3784 set_gdbarch_memory_insert_breakpoint (gdbarch, ia64_memory_insert_breakpoint);
3785 set_gdbarch_memory_remove_breakpoint (gdbarch, ia64_memory_remove_breakpoint);
3786 set_gdbarch_breakpoint_from_pc (gdbarch, ia64_breakpoint_from_pc);
3787 set_gdbarch_read_pc (gdbarch, ia64_read_pc);
3788 set_gdbarch_write_pc (gdbarch, ia64_write_pc);
3789
3790 /* Settings for calling functions in the inferior. */
3791 set_gdbarch_push_dummy_call (gdbarch, ia64_push_dummy_call);
3792 set_gdbarch_frame_align (gdbarch, ia64_frame_align);
3793 set_gdbarch_dummy_id (gdbarch, ia64_dummy_id);
3794
3795 set_gdbarch_unwind_pc (gdbarch, ia64_unwind_pc);
3796 #ifdef HAVE_LIBUNWIND_IA64_H
3797 frame_unwind_append_unwinder (gdbarch,
3798 &ia64_libunwind_sigtramp_frame_unwind);
3799 frame_unwind_append_unwinder (gdbarch, &ia64_libunwind_frame_unwind);
3800 frame_unwind_append_unwinder (gdbarch, &ia64_sigtramp_frame_unwind);
3801 libunwind_frame_set_descr (gdbarch, &ia64_libunwind_descr);
3802 #else
3803 frame_unwind_append_unwinder (gdbarch, &ia64_sigtramp_frame_unwind);
3804 #endif
3805 frame_unwind_append_unwinder (gdbarch, &ia64_frame_unwind);
3806 frame_base_set_default (gdbarch, &ia64_frame_base);
3807
3808 /* Settings that should be unnecessary. */
3809 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3810
3811 set_gdbarch_print_insn (gdbarch, ia64_print_insn);
3812 set_gdbarch_convert_from_func_ptr_addr (gdbarch, ia64_convert_from_func_ptr_addr);
3813
3814 /* The virtual table contains 16-byte descriptors, not pointers to
3815 descriptors. */
3816 set_gdbarch_vtable_function_descriptors (gdbarch, 1);
3817
3818 /* Hook in ABI-specific overrides, if they have been registered. */
3819 gdbarch_init_osabi (info, gdbarch);
3820
3821 return gdbarch;
3822 }
3823
3824 extern initialize_file_ftype _initialize_ia64_tdep; /* -Wmissing-prototypes */
3825
3826 void
3827 _initialize_ia64_tdep (void)
3828 {
3829 gdbarch_register (bfd_arch_ia64, ia64_gdbarch_init, NULL);
3830 }
This page took 0.114429 seconds and 4 git commands to generate.