* regcache.c (struct regcache): Add ptid_t member.
[deliverable/binutils-gdb.git] / gdb / infcall.c
1 /* Perform an inferior function call, for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
23
24 #include "defs.h"
25 #include "breakpoint.h"
26 #include "target.h"
27 #include "regcache.h"
28 #include "inferior.h"
29 #include "gdb_assert.h"
30 #include "block.h"
31 #include "gdbcore.h"
32 #include "language.h"
33 #include "objfiles.h"
34 #include "gdbcmd.h"
35 #include "command.h"
36 #include "gdb_string.h"
37 #include "infcall.h"
38 #include "dummy-frame.h"
39
40 /* NOTE: cagney/2003-04-16: What's the future of this code?
41
42 GDB needs an asynchronous expression evaluator, that means an
43 asynchronous inferior function call implementation, and that in
44 turn means restructuring the code so that it is event driven. */
45
46 /* How you should pass arguments to a function depends on whether it
47 was defined in K&R style or prototype style. If you define a
48 function using the K&R syntax that takes a `float' argument, then
49 callers must pass that argument as a `double'. If you define the
50 function using the prototype syntax, then you must pass the
51 argument as a `float', with no promotion.
52
53 Unfortunately, on certain older platforms, the debug info doesn't
54 indicate reliably how each function was defined. A function type's
55 TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
56 defined in prototype style. When calling a function whose
57 TYPE_FLAG_PROTOTYPED flag is clear, GDB consults this flag to
58 decide what to do.
59
60 For modern targets, it is proper to assume that, if the prototype
61 flag is clear, that can be trusted: `float' arguments should be
62 promoted to `double'. For some older targets, if the prototype
63 flag is clear, that doesn't tell us anything. The default is to
64 trust the debug information; the user can override this behavior
65 with "set coerce-float-to-double 0". */
66
67 static int coerce_float_to_double_p = 1;
68 static void
69 show_coerce_float_to_double_p (struct ui_file *file, int from_tty,
70 struct cmd_list_element *c, const char *value)
71 {
72 fprintf_filtered (file, _("\
73 Coercion of floats to doubles when calling functions is %s.\n"),
74 value);
75 }
76
77 /* This boolean tells what gdb should do if a signal is received while
78 in a function called from gdb (call dummy). If set, gdb unwinds
79 the stack and restore the context to what as it was before the
80 call.
81
82 The default is to stop in the frame where the signal was received. */
83
84 int unwind_on_signal_p = 0;
85 static void
86 show_unwind_on_signal_p (struct ui_file *file, int from_tty,
87 struct cmd_list_element *c, const char *value)
88 {
89 fprintf_filtered (file, _("\
90 Unwinding of stack if a signal is received while in a call dummy is %s.\n"),
91 value);
92 }
93
94
95 /* Perform the standard coercions that are specified
96 for arguments to be passed to C functions.
97
98 If PARAM_TYPE is non-NULL, it is the expected parameter type.
99 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
100
101 static struct value *
102 value_arg_coerce (struct value *arg, struct type *param_type,
103 int is_prototyped)
104 {
105 struct type *arg_type = check_typedef (value_type (arg));
106 struct type *type
107 = param_type ? check_typedef (param_type) : arg_type;
108
109 switch (TYPE_CODE (type))
110 {
111 case TYPE_CODE_REF:
112 {
113 struct value *new_value;
114
115 if (TYPE_CODE (arg_type) == TYPE_CODE_REF)
116 return value_cast_pointers (type, arg);
117
118 /* Cast the value to the reference's target type, and then
119 convert it back to a reference. This will issue an error
120 if the value was not previously in memory - in some cases
121 we should clearly be allowing this, but how? */
122 new_value = value_cast (TYPE_TARGET_TYPE (type), arg);
123 new_value = value_ref (new_value);
124 return new_value;
125 }
126 case TYPE_CODE_INT:
127 case TYPE_CODE_CHAR:
128 case TYPE_CODE_BOOL:
129 case TYPE_CODE_ENUM:
130 /* If we don't have a prototype, coerce to integer type if necessary. */
131 if (!is_prototyped)
132 {
133 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
134 type = builtin_type_int;
135 }
136 /* Currently all target ABIs require at least the width of an integer
137 type for an argument. We may have to conditionalize the following
138 type coercion for future targets. */
139 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
140 type = builtin_type_int;
141 break;
142 case TYPE_CODE_FLT:
143 if (!is_prototyped && coerce_float_to_double_p)
144 {
145 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
146 type = builtin_type_double;
147 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
148 type = builtin_type_long_double;
149 }
150 break;
151 case TYPE_CODE_FUNC:
152 type = lookup_pointer_type (type);
153 break;
154 case TYPE_CODE_ARRAY:
155 /* Arrays are coerced to pointers to their first element, unless
156 they are vectors, in which case we want to leave them alone,
157 because they are passed by value. */
158 if (current_language->c_style_arrays)
159 if (!TYPE_VECTOR (type))
160 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
161 break;
162 case TYPE_CODE_UNDEF:
163 case TYPE_CODE_PTR:
164 case TYPE_CODE_STRUCT:
165 case TYPE_CODE_UNION:
166 case TYPE_CODE_VOID:
167 case TYPE_CODE_SET:
168 case TYPE_CODE_RANGE:
169 case TYPE_CODE_STRING:
170 case TYPE_CODE_BITSTRING:
171 case TYPE_CODE_ERROR:
172 case TYPE_CODE_MEMBERPTR:
173 case TYPE_CODE_METHODPTR:
174 case TYPE_CODE_METHOD:
175 case TYPE_CODE_COMPLEX:
176 default:
177 break;
178 }
179
180 return value_cast (type, arg);
181 }
182
183 /* Determine a function's address and its return type from its value.
184 Calls error() if the function is not valid for calling. */
185
186 CORE_ADDR
187 find_function_addr (struct value *function, struct type **retval_type)
188 {
189 struct type *ftype = check_typedef (value_type (function));
190 enum type_code code = TYPE_CODE (ftype);
191 struct type *value_type;
192 CORE_ADDR funaddr;
193
194 /* If it's a member function, just look at the function
195 part of it. */
196
197 /* Determine address to call. */
198 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
199 {
200 funaddr = VALUE_ADDRESS (function);
201 value_type = TYPE_TARGET_TYPE (ftype);
202 }
203 else if (code == TYPE_CODE_PTR)
204 {
205 funaddr = value_as_address (function);
206 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
207 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
208 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
209 {
210 funaddr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
211 funaddr,
212 &current_target);
213 value_type = TYPE_TARGET_TYPE (ftype);
214 }
215 else
216 value_type = builtin_type_int;
217 }
218 else if (code == TYPE_CODE_INT)
219 {
220 /* Handle the case of functions lacking debugging info.
221 Their values are characters since their addresses are char */
222 if (TYPE_LENGTH (ftype) == 1)
223 funaddr = value_as_address (value_addr (function));
224 else
225 /* Handle integer used as address of a function. */
226 funaddr = (CORE_ADDR) value_as_long (function);
227
228 value_type = builtin_type_int;
229 }
230 else
231 error (_("Invalid data type for function to be called."));
232
233 if (retval_type != NULL)
234 *retval_type = value_type;
235 return funaddr + DEPRECATED_FUNCTION_START_OFFSET;
236 }
237
238 /* Call breakpoint_auto_delete on the current contents of the bpstat
239 pointed to by arg (which is really a bpstat *). */
240
241 static void
242 breakpoint_auto_delete_contents (void *arg)
243 {
244 breakpoint_auto_delete (*(bpstat *) arg);
245 }
246
247 static CORE_ADDR
248 generic_push_dummy_code (struct gdbarch *gdbarch,
249 CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc,
250 struct value **args, int nargs,
251 struct type *value_type,
252 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
253 struct regcache *regcache)
254 {
255 /* Something here to findout the size of a breakpoint and then
256 allocate space for it on the stack. */
257 int bplen;
258 /* This code assumes frame align. */
259 gdb_assert (gdbarch_frame_align_p (gdbarch));
260 /* Force the stack's alignment. The intent is to ensure that the SP
261 is aligned to at least a breakpoint instruction's boundary. */
262 sp = gdbarch_frame_align (gdbarch, sp);
263 /* Allocate space for, and then position the breakpoint on the
264 stack. */
265 if (gdbarch_inner_than (gdbarch, 1, 2))
266 {
267 CORE_ADDR bppc = sp;
268 gdbarch_breakpoint_from_pc (gdbarch, &bppc, &bplen);
269 sp = gdbarch_frame_align (gdbarch, sp - bplen);
270 (*bp_addr) = sp;
271 /* Should the breakpoint size/location be re-computed here? */
272 }
273 else
274 {
275 (*bp_addr) = sp;
276 gdbarch_breakpoint_from_pc (gdbarch, bp_addr, &bplen);
277 sp = gdbarch_frame_align (gdbarch, sp + bplen);
278 }
279 /* Inferior resumes at the function entry point. */
280 (*real_pc) = funaddr;
281 return sp;
282 }
283
284 /* For CALL_DUMMY_ON_STACK, push a breakpoint sequence that the called
285 function returns to. */
286
287 static CORE_ADDR
288 push_dummy_code (struct gdbarch *gdbarch,
289 CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc,
290 struct value **args, int nargs,
291 struct type *value_type,
292 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
293 struct regcache *regcache)
294 {
295 if (gdbarch_push_dummy_code_p (gdbarch))
296 return gdbarch_push_dummy_code (gdbarch, sp, funaddr, using_gcc,
297 args, nargs, value_type, real_pc, bp_addr,
298 regcache);
299 else
300 return generic_push_dummy_code (gdbarch, sp, funaddr, using_gcc,
301 args, nargs, value_type, real_pc, bp_addr,
302 regcache);
303 }
304
305 /* All this stuff with a dummy frame may seem unnecessarily complicated
306 (why not just save registers in GDB?). The purpose of pushing a dummy
307 frame which looks just like a real frame is so that if you call a
308 function and then hit a breakpoint (get a signal, etc), "backtrace"
309 will look right. Whether the backtrace needs to actually show the
310 stack at the time the inferior function was called is debatable, but
311 it certainly needs to not display garbage. So if you are contemplating
312 making dummy frames be different from normal frames, consider that. */
313
314 /* Perform a function call in the inferior.
315 ARGS is a vector of values of arguments (NARGS of them).
316 FUNCTION is a value, the function to be called.
317 Returns a value representing what the function returned.
318 May fail to return, if a breakpoint or signal is hit
319 during the execution of the function.
320
321 ARGS is modified to contain coerced values. */
322
323 struct value *
324 call_function_by_hand (struct value *function, int nargs, struct value **args)
325 {
326 CORE_ADDR sp;
327 CORE_ADDR dummy_addr;
328 struct type *values_type;
329 unsigned char struct_return;
330 CORE_ADDR struct_addr = 0;
331 struct regcache *retbuf;
332 struct cleanup *retbuf_cleanup;
333 struct inferior_status *inf_status;
334 struct cleanup *inf_status_cleanup;
335 CORE_ADDR funaddr;
336 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
337 CORE_ADDR real_pc;
338 struct type *ftype = check_typedef (value_type (function));
339 CORE_ADDR bp_addr;
340 struct regcache *caller_regcache;
341 struct cleanup *caller_regcache_cleanup;
342 struct frame_id dummy_id;
343
344 if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
345 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
346
347 if (!target_has_execution)
348 noprocess ();
349
350 if (!gdbarch_push_dummy_call_p (current_gdbarch))
351 error (_("This target does not support function calls"));
352
353 /* Create a cleanup chain that contains the retbuf (buffer
354 containing the register values). This chain is create BEFORE the
355 inf_status chain so that the inferior status can cleaned up
356 (restored or discarded) without having the retbuf freed. */
357 retbuf = regcache_xmalloc (current_gdbarch);
358 retbuf_cleanup = make_cleanup_regcache_xfree (retbuf);
359
360 /* A cleanup for the inferior status. Create this AFTER the retbuf
361 so that this can be discarded or applied without interfering with
362 the regbuf. */
363 inf_status = save_inferior_status (1);
364 inf_status_cleanup = make_cleanup_restore_inferior_status (inf_status);
365
366 /* Save the caller's registers so that they can be restored once the
367 callee returns. To allow nested calls the registers are (further
368 down) pushed onto a dummy frame stack. Include a cleanup (which
369 is tossed once the regcache has been pushed). */
370 caller_regcache = frame_save_as_regcache (get_current_frame ());
371 caller_regcache_cleanup = make_cleanup_regcache_xfree (caller_regcache);
372
373 /* Ensure that the initial SP is correctly aligned. */
374 {
375 CORE_ADDR old_sp = get_frame_sp (get_current_frame ());
376 if (gdbarch_frame_align_p (current_gdbarch))
377 {
378 sp = gdbarch_frame_align (current_gdbarch, old_sp);
379 /* NOTE: cagney/2003-08-13: Skip the "red zone". For some
380 ABIs, a function can use memory beyond the inner most stack
381 address. AMD64 called that region the "red zone". Skip at
382 least the "red zone" size before allocating any space on
383 the stack. */
384 if (gdbarch_inner_than (current_gdbarch, 1, 2))
385 sp -= gdbarch_frame_red_zone_size (current_gdbarch);
386 else
387 sp += gdbarch_frame_red_zone_size (current_gdbarch);
388 /* Still aligned? */
389 gdb_assert (sp == gdbarch_frame_align (current_gdbarch, sp));
390 /* NOTE: cagney/2002-09-18:
391
392 On a RISC architecture, a void parameterless generic dummy
393 frame (i.e., no parameters, no result) typically does not
394 need to push anything the stack and hence can leave SP and
395 FP. Similarly, a frameless (possibly leaf) function does
396 not push anything on the stack and, hence, that too can
397 leave FP and SP unchanged. As a consequence, a sequence of
398 void parameterless generic dummy frame calls to frameless
399 functions will create a sequence of effectively identical
400 frames (SP, FP and TOS and PC the same). This, not
401 suprisingly, results in what appears to be a stack in an
402 infinite loop --- when GDB tries to find a generic dummy
403 frame on the internal dummy frame stack, it will always
404 find the first one.
405
406 To avoid this problem, the code below always grows the
407 stack. That way, two dummy frames can never be identical.
408 It does burn a few bytes of stack but that is a small price
409 to pay :-). */
410 if (sp == old_sp)
411 {
412 if (gdbarch_inner_than (current_gdbarch, 1, 2))
413 /* Stack grows down. */
414 sp = gdbarch_frame_align (current_gdbarch, old_sp - 1);
415 else
416 /* Stack grows up. */
417 sp = gdbarch_frame_align (current_gdbarch, old_sp + 1);
418 }
419 gdb_assert ((gdbarch_inner_than (current_gdbarch, 1, 2)
420 && sp <= old_sp)
421 || (gdbarch_inner_than (current_gdbarch, 2, 1)
422 && sp >= old_sp));
423 }
424 else
425 /* FIXME: cagney/2002-09-18: Hey, you loose!
426
427 Who knows how badly aligned the SP is!
428
429 If the generic dummy frame ends up empty (because nothing is
430 pushed) GDB won't be able to correctly perform back traces.
431 If a target is having trouble with backtraces, first thing to
432 do is add FRAME_ALIGN() to the architecture vector. If that
433 fails, try unwind_dummy_id().
434
435 If the ABI specifies a "Red Zone" (see the doco) the code
436 below will quietly trash it. */
437 sp = old_sp;
438 }
439
440 funaddr = find_function_addr (function, &values_type);
441 CHECK_TYPEDEF (values_type);
442
443 {
444 struct block *b = block_for_pc (funaddr);
445 /* If compiled without -g, assume GCC 2. */
446 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
447 }
448
449 /* Are we returning a value using a structure return or a normal
450 value return? */
451
452 struct_return = using_struct_return (values_type, using_gcc);
453
454 /* Determine the location of the breakpoint (and possibly other
455 stuff) that the called function will return to. The SPARC, for a
456 function returning a structure or union, needs to make space for
457 not just the breakpoint but also an extra word containing the
458 size (?) of the structure being passed. */
459
460 /* The actual breakpoint (at BP_ADDR) is inserted separatly so there
461 is no need to write that out. */
462
463 switch (gdbarch_call_dummy_location (current_gdbarch))
464 {
465 case ON_STACK:
466 /* "dummy_addr" is here just to keep old targets happy. New
467 targets return that same information via "sp" and "bp_addr". */
468 if (gdbarch_inner_than (current_gdbarch, 1, 2))
469 {
470 sp = push_dummy_code (current_gdbarch, sp, funaddr,
471 using_gcc, args, nargs, values_type,
472 &real_pc, &bp_addr, get_current_regcache ());
473 dummy_addr = sp;
474 }
475 else
476 {
477 dummy_addr = sp;
478 sp = push_dummy_code (current_gdbarch, sp, funaddr,
479 using_gcc, args, nargs, values_type,
480 &real_pc, &bp_addr, get_current_regcache ());
481 }
482 break;
483 case AT_ENTRY_POINT:
484 real_pc = funaddr;
485 dummy_addr = entry_point_address ();
486 /* Make certain that the address points at real code, and not a
487 function descriptor. */
488 dummy_addr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
489 dummy_addr,
490 &current_target);
491 /* A call dummy always consists of just a single breakpoint, so
492 it's address is the same as the address of the dummy. */
493 bp_addr = dummy_addr;
494 break;
495 case AT_SYMBOL:
496 /* Some executables define a symbol __CALL_DUMMY_ADDRESS whose
497 address is the location where the breakpoint should be
498 placed. Once all targets are using the overhauled frame code
499 this can be deleted - ON_STACK is a better option. */
500 {
501 struct minimal_symbol *sym;
502
503 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
504 real_pc = funaddr;
505 if (sym)
506 dummy_addr = SYMBOL_VALUE_ADDRESS (sym);
507 else
508 dummy_addr = entry_point_address ();
509 /* Make certain that the address points at real code, and not
510 a function descriptor. */
511 dummy_addr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
512 dummy_addr,
513 &current_target);
514 /* A call dummy always consists of just a single breakpoint,
515 so it's address is the same as the address of the dummy. */
516 bp_addr = dummy_addr;
517 break;
518 }
519 default:
520 internal_error (__FILE__, __LINE__, _("bad switch"));
521 }
522
523 if (nargs < TYPE_NFIELDS (ftype))
524 error (_("too few arguments in function call"));
525
526 {
527 int i;
528 for (i = nargs - 1; i >= 0; i--)
529 {
530 int prototyped;
531 struct type *param_type;
532
533 /* FIXME drow/2002-05-31: Should just always mark methods as
534 prototyped. Can we respect TYPE_VARARGS? Probably not. */
535 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
536 prototyped = 1;
537 else if (i < TYPE_NFIELDS (ftype))
538 prototyped = TYPE_PROTOTYPED (ftype);
539 else
540 prototyped = 0;
541
542 if (i < TYPE_NFIELDS (ftype))
543 param_type = TYPE_FIELD_TYPE (ftype, i);
544 else
545 param_type = NULL;
546
547 args[i] = value_arg_coerce (args[i], param_type, prototyped);
548
549 /* elz: this code is to handle the case in which the function
550 to be called has a pointer to function as parameter and the
551 corresponding actual argument is the address of a function
552 and not a pointer to function variable. In aCC compiled
553 code, the calls through pointers to functions (in the body
554 of the function called by hand) are made via
555 $$dyncall_external which requires some registers setting,
556 this is taken care of if we call via a function pointer
557 variable, but not via a function address. In cc this is
558 not a problem. */
559
560 if (using_gcc == 0)
561 {
562 if (param_type != NULL && TYPE_CODE (ftype) != TYPE_CODE_METHOD)
563 {
564 /* if this parameter is a pointer to function. */
565 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
566 if (TYPE_CODE (TYPE_TARGET_TYPE (param_type)) == TYPE_CODE_FUNC)
567 /* elz: FIXME here should go the test about the
568 compiler used to compile the target. We want to
569 issue the error message only if the compiler
570 used was HP's aCC. If we used HP's cc, then
571 there is no problem and no need to return at
572 this point. */
573 /* Go see if the actual parameter is a variable of
574 type pointer to function or just a function. */
575 if (VALUE_LVAL (args[i]) == not_lval)
576 {
577 char *arg_name;
578 /* NOTE: cagney/2005-01-02: THIS IS BOGUS. */
579 if (find_pc_partial_function ((CORE_ADDR) value_contents (args[i])[0], &arg_name, NULL, NULL))
580 error (_("\
581 You cannot use function <%s> as argument. \n\
582 You must use a pointer to function type variable. Command ignored."), arg_name);
583 }
584 }
585 }
586 }
587 }
588
589 if (DEPRECATED_REG_STRUCT_HAS_ADDR_P ())
590 {
591 int i;
592 /* This is a machine like the sparc, where we may need to pass a
593 pointer to the structure, not the structure itself. */
594 for (i = nargs - 1; i >= 0; i--)
595 {
596 struct type *arg_type = check_typedef (value_type (args[i]));
597 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
598 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
599 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
600 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
601 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
602 || TYPE_CODE (arg_type) == TYPE_CODE_SET
603 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
604 && TYPE_LENGTH (arg_type) > 8)
605 )
606 && DEPRECATED_REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
607 {
608 CORE_ADDR addr;
609 int len; /* = TYPE_LENGTH (arg_type); */
610 int aligned_len;
611 arg_type = check_typedef (value_enclosing_type (args[i]));
612 len = TYPE_LENGTH (arg_type);
613
614 aligned_len = len;
615 if (gdbarch_inner_than (current_gdbarch, 1, 2))
616 {
617 /* stack grows downward */
618 sp -= aligned_len;
619 /* ... so the address of the thing we push is the
620 stack pointer after we push it. */
621 addr = sp;
622 }
623 else
624 {
625 /* The stack grows up, so the address of the thing
626 we push is the stack pointer before we push it. */
627 addr = sp;
628 sp += aligned_len;
629 }
630 /* Push the structure. */
631 write_memory (addr, value_contents_all (args[i]), len);
632 /* The value we're going to pass is the address of the
633 thing we just pushed. */
634 /*args[i] = value_from_longest (lookup_pointer_type (values_type),
635 (LONGEST) addr); */
636 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
637 addr);
638 }
639 }
640 }
641
642
643 /* Reserve space for the return structure to be written on the
644 stack, if necessary. Make certain that the value is correctly
645 aligned. */
646
647 if (struct_return)
648 {
649 int len = TYPE_LENGTH (values_type);
650 if (gdbarch_inner_than (current_gdbarch, 1, 2))
651 {
652 /* Stack grows downward. Align STRUCT_ADDR and SP after
653 making space for the return value. */
654 sp -= len;
655 if (gdbarch_frame_align_p (current_gdbarch))
656 sp = gdbarch_frame_align (current_gdbarch, sp);
657 struct_addr = sp;
658 }
659 else
660 {
661 /* Stack grows upward. Align the frame, allocate space, and
662 then again, re-align the frame??? */
663 if (gdbarch_frame_align_p (current_gdbarch))
664 sp = gdbarch_frame_align (current_gdbarch, sp);
665 struct_addr = sp;
666 sp += len;
667 if (gdbarch_frame_align_p (current_gdbarch))
668 sp = gdbarch_frame_align (current_gdbarch, sp);
669 }
670 }
671
672 /* Create the dummy stack frame. Pass in the call dummy address as,
673 presumably, the ABI code knows where, in the call dummy, the
674 return address should be pointed. */
675 sp = gdbarch_push_dummy_call (current_gdbarch, function,
676 get_current_regcache (), bp_addr, nargs, args,
677 sp, struct_return, struct_addr);
678
679 /* Set up a frame ID for the dummy frame so we can pass it to
680 set_momentary_breakpoint. We need to give the breakpoint a frame
681 ID so that the breakpoint code can correctly re-identify the
682 dummy breakpoint. */
683 /* Sanity. The exact same SP value is returned by PUSH_DUMMY_CALL,
684 saved as the dummy-frame TOS, and used by unwind_dummy_id to form
685 the frame ID's stack address. */
686 dummy_id = frame_id_build (sp, bp_addr);
687
688 /* Create a momentary breakpoint at the return address of the
689 inferior. That way it breaks when it returns. */
690
691 {
692 struct breakpoint *bpt;
693 struct symtab_and_line sal;
694 init_sal (&sal); /* initialize to zeroes */
695 sal.pc = bp_addr;
696 sal.section = find_pc_overlay (sal.pc);
697 /* Sanity. The exact same SP value is returned by
698 PUSH_DUMMY_CALL, saved as the dummy-frame TOS, and used by
699 unwind_dummy_id to form the frame ID's stack address. */
700 bpt = set_momentary_breakpoint (sal, dummy_id, bp_call_dummy);
701 bpt->disposition = disp_del;
702 }
703
704 /* Everything's ready, push all the info needed to restore the
705 caller (and identify the dummy-frame) onto the dummy-frame
706 stack. */
707 dummy_frame_push (caller_regcache, &dummy_id);
708 discard_cleanups (caller_regcache_cleanup);
709
710 /* - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP -
711 If you're looking to implement asynchronous dummy-frames, then
712 just below is the place to chop this function in two.. */
713
714 /* Now proceed, having reached the desired place. */
715 clear_proceed_status ();
716
717 /* Execute a "stack dummy", a piece of code stored in the stack by
718 the debugger to be executed in the inferior.
719
720 The dummy's frame is automatically popped whenever that break is
721 hit. If that is the first time the program stops,
722 call_function_by_hand returns to its caller with that frame
723 already gone and sets RC to 0.
724
725 Otherwise, set RC to a non-zero value. If the called function
726 receives a random signal, we do not allow the user to continue
727 executing it as this may not work. The dummy frame is poped and
728 we return 1. If we hit a breakpoint, we leave the frame in place
729 and return 2 (the frame will eventually be popped when we do hit
730 the dummy end breakpoint). */
731
732 {
733 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
734 int saved_async = 0;
735
736 /* If all error()s out of proceed ended up calling normal_stop
737 (and perhaps they should; it already does in the special case
738 of error out of resume()), then we wouldn't need this. */
739 make_cleanup (breakpoint_auto_delete_contents, &stop_bpstat);
740
741 disable_watchpoints_before_interactive_call_start ();
742 proceed_to_finish = 1; /* We want stop_registers, please... */
743
744 if (target_can_async_p ())
745 saved_async = target_async_mask (0);
746
747 proceed (real_pc, TARGET_SIGNAL_0, 0);
748
749 if (saved_async)
750 target_async_mask (saved_async);
751
752 enable_watchpoints_after_interactive_call_stop ();
753
754 discard_cleanups (old_cleanups);
755 }
756
757 if (stopped_by_random_signal || !stop_stack_dummy)
758 {
759 /* Find the name of the function we're about to complain about. */
760 const char *name = NULL;
761 {
762 struct symbol *symbol = find_pc_function (funaddr);
763 if (symbol)
764 name = SYMBOL_PRINT_NAME (symbol);
765 else
766 {
767 /* Try the minimal symbols. */
768 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
769 if (msymbol)
770 name = SYMBOL_PRINT_NAME (msymbol);
771 }
772 if (name == NULL)
773 {
774 /* Can't use a cleanup here. It is discarded, instead use
775 an alloca. */
776 char *tmp = xstrprintf ("at %s", hex_string (funaddr));
777 char *a = alloca (strlen (tmp) + 1);
778 strcpy (a, tmp);
779 xfree (tmp);
780 name = a;
781 }
782 }
783 if (stopped_by_random_signal)
784 {
785 /* We stopped inside the FUNCTION because of a random
786 signal. Further execution of the FUNCTION is not
787 allowed. */
788
789 if (unwind_on_signal_p)
790 {
791 /* The user wants the context restored. */
792
793 /* We must get back to the frame we were before the
794 dummy call. */
795 frame_pop (get_current_frame ());
796
797 /* FIXME: Insert a bunch of wrap_here; name can be very
798 long if it's a C++ name with arguments and stuff. */
799 error (_("\
800 The program being debugged was signaled while in a function called from GDB.\n\
801 GDB has restored the context to what it was before the call.\n\
802 To change this behavior use \"set unwindonsignal off\"\n\
803 Evaluation of the expression containing the function (%s) will be abandoned."),
804 name);
805 }
806 else
807 {
808 /* The user wants to stay in the frame where we stopped
809 (default).*/
810 /* If we restored the inferior status (via the cleanup),
811 we would print a spurious error message (Unable to
812 restore previously selected frame), would write the
813 registers from the inf_status (which is wrong), and
814 would do other wrong things. */
815 discard_cleanups (inf_status_cleanup);
816 discard_inferior_status (inf_status);
817 /* FIXME: Insert a bunch of wrap_here; name can be very
818 long if it's a C++ name with arguments and stuff. */
819 error (_("\
820 The program being debugged was signaled while in a function called from GDB.\n\
821 GDB remains in the frame where the signal was received.\n\
822 To change this behavior use \"set unwindonsignal on\"\n\
823 Evaluation of the expression containing the function (%s) will be abandoned."),
824 name);
825 }
826 }
827
828 if (!stop_stack_dummy)
829 {
830 /* We hit a breakpoint inside the FUNCTION. */
831 /* If we restored the inferior status (via the cleanup), we
832 would print a spurious error message (Unable to restore
833 previously selected frame), would write the registers
834 from the inf_status (which is wrong), and would do other
835 wrong things. */
836 discard_cleanups (inf_status_cleanup);
837 discard_inferior_status (inf_status);
838 /* The following error message used to say "The expression
839 which contained the function call has been discarded."
840 It is a hard concept to explain in a few words. Ideally,
841 GDB would be able to resume evaluation of the expression
842 when the function finally is done executing. Perhaps
843 someday this will be implemented (it would not be easy). */
844 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
845 a C++ name with arguments and stuff. */
846 error (_("\
847 The program being debugged stopped while in a function called from GDB.\n\
848 When the function (%s) is done executing, GDB will silently\n\
849 stop (instead of continuing to evaluate the expression containing\n\
850 the function call)."), name);
851 }
852
853 /* The above code errors out, so ... */
854 internal_error (__FILE__, __LINE__, _("... should not be here"));
855 }
856
857 /* If we get here the called FUNCTION run to completion. */
858
859 /* On normal return, the stack dummy has been popped already. */
860 regcache_cpy_no_passthrough (retbuf, stop_registers);
861
862 /* Restore the inferior status, via its cleanup. At this stage,
863 leave the RETBUF alone. */
864 do_cleanups (inf_status_cleanup);
865
866 /* Figure out the value returned by the function. */
867 {
868 struct value *retval = NULL;
869
870 if (TYPE_CODE (values_type) == TYPE_CODE_VOID)
871 {
872 /* If the function returns void, don't bother fetching the
873 return value. */
874 retval = allocate_value (values_type);
875 }
876 else
877 {
878 struct gdbarch *arch = current_gdbarch;
879
880 switch (gdbarch_return_value (arch, values_type, NULL, NULL, NULL))
881 {
882 case RETURN_VALUE_REGISTER_CONVENTION:
883 case RETURN_VALUE_ABI_RETURNS_ADDRESS:
884 case RETURN_VALUE_ABI_PRESERVES_ADDRESS:
885 retval = allocate_value (values_type);
886 gdbarch_return_value (current_gdbarch, values_type, retbuf,
887 value_contents_raw (retval), NULL);
888 break;
889 case RETURN_VALUE_STRUCT_CONVENTION:
890 retval = value_at (values_type, struct_addr);
891 break;
892 }
893 }
894
895 do_cleanups (retbuf_cleanup);
896
897 gdb_assert(retval);
898 return retval;
899 }
900 }
901 \f
902
903 /* Provide a prototype to silence -Wmissing-prototypes. */
904 void _initialize_infcall (void);
905
906 void
907 _initialize_infcall (void)
908 {
909 add_setshow_boolean_cmd ("coerce-float-to-double", class_obscure,
910 &coerce_float_to_double_p, _("\
911 Set coercion of floats to doubles when calling functions."), _("\
912 Show coercion of floats to doubles when calling functions"), _("\
913 Variables of type float should generally be converted to doubles before\n\
914 calling an unprototyped function, and left alone when calling a prototyped\n\
915 function. However, some older debug info formats do not provide enough\n\
916 information to determine that a function is prototyped. If this flag is\n\
917 set, GDB will perform the conversion for a function it considers\n\
918 unprototyped.\n\
919 The default is to perform the conversion.\n"),
920 NULL,
921 show_coerce_float_to_double_p,
922 &setlist, &showlist);
923
924 add_setshow_boolean_cmd ("unwindonsignal", no_class,
925 &unwind_on_signal_p, _("\
926 Set unwinding of stack if a signal is received while in a call dummy."), _("\
927 Show unwinding of stack if a signal is received while in a call dummy."), _("\
928 The unwindonsignal lets the user determine what gdb should do if a signal\n\
929 is received while in a function called from gdb (call dummy). If set, gdb\n\
930 unwinds the stack and restore the context to what as it was before the call.\n\
931 The default is to stop in the frame where the signal was received."),
932 NULL,
933 show_unwind_on_signal_p,
934 &setlist, &showlist);
935 }
This page took 0.047626 seconds and 4 git commands to generate.