Clear non-significant bits of address on memory access
[deliverable/binutils-gdb.git] / gdb / infcall.c
1 /* Perform an inferior function call, for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "infcall.h"
22 #include "breakpoint.h"
23 #include "tracepoint.h"
24 #include "target.h"
25 #include "regcache.h"
26 #include "inferior.h"
27 #include "infrun.h"
28 #include "block.h"
29 #include "gdbcore.h"
30 #include "language.h"
31 #include "objfiles.h"
32 #include "gdbcmd.h"
33 #include "command.h"
34 #include "dummy-frame.h"
35 #include "ada-lang.h"
36 #include "gdbthread.h"
37 #include "event-top.h"
38 #include "observer.h"
39 #include "top.h"
40 #include "interps.h"
41 #include "thread-fsm.h"
42
43 /* If we can't find a function's name from its address,
44 we print this instead. */
45 #define RAW_FUNCTION_ADDRESS_FORMAT "at 0x%s"
46 #define RAW_FUNCTION_ADDRESS_SIZE (sizeof (RAW_FUNCTION_ADDRESS_FORMAT) \
47 + 2 * sizeof (CORE_ADDR))
48
49 /* NOTE: cagney/2003-04-16: What's the future of this code?
50
51 GDB needs an asynchronous expression evaluator, that means an
52 asynchronous inferior function call implementation, and that in
53 turn means restructuring the code so that it is event driven. */
54
55 /* How you should pass arguments to a function depends on whether it
56 was defined in K&R style or prototype style. If you define a
57 function using the K&R syntax that takes a `float' argument, then
58 callers must pass that argument as a `double'. If you define the
59 function using the prototype syntax, then you must pass the
60 argument as a `float', with no promotion.
61
62 Unfortunately, on certain older platforms, the debug info doesn't
63 indicate reliably how each function was defined. A function type's
64 TYPE_PROTOTYPED flag may be clear, even if the function was defined
65 in prototype style. When calling a function whose TYPE_PROTOTYPED
66 flag is clear, GDB consults this flag to decide what to do.
67
68 For modern targets, it is proper to assume that, if the prototype
69 flag is clear, that can be trusted: `float' arguments should be
70 promoted to `double'. For some older targets, if the prototype
71 flag is clear, that doesn't tell us anything. The default is to
72 trust the debug information; the user can override this behavior
73 with "set coerce-float-to-double 0". */
74
75 static int coerce_float_to_double_p = 1;
76 static void
77 show_coerce_float_to_double_p (struct ui_file *file, int from_tty,
78 struct cmd_list_element *c, const char *value)
79 {
80 fprintf_filtered (file,
81 _("Coercion of floats to doubles "
82 "when calling functions is %s.\n"),
83 value);
84 }
85
86 /* This boolean tells what gdb should do if a signal is received while
87 in a function called from gdb (call dummy). If set, gdb unwinds
88 the stack and restore the context to what as it was before the
89 call.
90
91 The default is to stop in the frame where the signal was received. */
92
93 static int unwind_on_signal_p = 0;
94 static void
95 show_unwind_on_signal_p (struct ui_file *file, int from_tty,
96 struct cmd_list_element *c, const char *value)
97 {
98 fprintf_filtered (file,
99 _("Unwinding of stack if a signal is "
100 "received while in a call dummy is %s.\n"),
101 value);
102 }
103
104 /* This boolean tells what gdb should do if a std::terminate call is
105 made while in a function called from gdb (call dummy).
106 As the confines of a single dummy stack prohibit out-of-frame
107 handlers from handling a raised exception, and as out-of-frame
108 handlers are common in C++, this can lead to no handler being found
109 by the unwinder, and a std::terminate call. This is a false positive.
110 If set, gdb unwinds the stack and restores the context to what it
111 was before the call.
112
113 The default is to unwind the frame if a std::terminate call is
114 made. */
115
116 static int unwind_on_terminating_exception_p = 1;
117
118 static void
119 show_unwind_on_terminating_exception_p (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c,
121 const char *value)
122
123 {
124 fprintf_filtered (file,
125 _("Unwind stack if a C++ exception is "
126 "unhandled while in a call dummy is %s.\n"),
127 value);
128 }
129
130 /* Perform the standard coercions that are specified
131 for arguments to be passed to C or Ada functions.
132
133 If PARAM_TYPE is non-NULL, it is the expected parameter type.
134 IS_PROTOTYPED is non-zero if the function declaration is prototyped.
135 SP is the stack pointer were additional data can be pushed (updating
136 its value as needed). */
137
138 static struct value *
139 value_arg_coerce (struct gdbarch *gdbarch, struct value *arg,
140 struct type *param_type, int is_prototyped, CORE_ADDR *sp)
141 {
142 const struct builtin_type *builtin = builtin_type (gdbarch);
143 struct type *arg_type = check_typedef (value_type (arg));
144 struct type *type
145 = param_type ? check_typedef (param_type) : arg_type;
146
147 /* Perform any Ada-specific coercion first. */
148 if (current_language->la_language == language_ada)
149 arg = ada_convert_actual (arg, type);
150
151 /* Force the value to the target if we will need its address. At
152 this point, we could allocate arguments on the stack instead of
153 calling malloc if we knew that their addresses would not be
154 saved by the called function. */
155 arg = value_coerce_to_target (arg);
156
157 switch (TYPE_CODE (type))
158 {
159 case TYPE_CODE_REF:
160 case TYPE_CODE_RVALUE_REF:
161 {
162 struct value *new_value;
163
164 if (TYPE_IS_REFERENCE (arg_type))
165 return value_cast_pointers (type, arg, 0);
166
167 /* Cast the value to the reference's target type, and then
168 convert it back to a reference. This will issue an error
169 if the value was not previously in memory - in some cases
170 we should clearly be allowing this, but how? */
171 new_value = value_cast (TYPE_TARGET_TYPE (type), arg);
172 new_value = value_ref (new_value, TYPE_CODE (type));
173 return new_value;
174 }
175 case TYPE_CODE_INT:
176 case TYPE_CODE_CHAR:
177 case TYPE_CODE_BOOL:
178 case TYPE_CODE_ENUM:
179 /* If we don't have a prototype, coerce to integer type if necessary. */
180 if (!is_prototyped)
181 {
182 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_int))
183 type = builtin->builtin_int;
184 }
185 /* Currently all target ABIs require at least the width of an integer
186 type for an argument. We may have to conditionalize the following
187 type coercion for future targets. */
188 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_int))
189 type = builtin->builtin_int;
190 break;
191 case TYPE_CODE_FLT:
192 if (!is_prototyped && coerce_float_to_double_p)
193 {
194 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_double))
195 type = builtin->builtin_double;
196 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin->builtin_double))
197 type = builtin->builtin_long_double;
198 }
199 break;
200 case TYPE_CODE_FUNC:
201 type = lookup_pointer_type (type);
202 break;
203 case TYPE_CODE_ARRAY:
204 /* Arrays are coerced to pointers to their first element, unless
205 they are vectors, in which case we want to leave them alone,
206 because they are passed by value. */
207 if (current_language->c_style_arrays)
208 if (!TYPE_VECTOR (type))
209 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
210 break;
211 case TYPE_CODE_UNDEF:
212 case TYPE_CODE_PTR:
213 case TYPE_CODE_STRUCT:
214 case TYPE_CODE_UNION:
215 case TYPE_CODE_VOID:
216 case TYPE_CODE_SET:
217 case TYPE_CODE_RANGE:
218 case TYPE_CODE_STRING:
219 case TYPE_CODE_ERROR:
220 case TYPE_CODE_MEMBERPTR:
221 case TYPE_CODE_METHODPTR:
222 case TYPE_CODE_METHOD:
223 case TYPE_CODE_COMPLEX:
224 default:
225 break;
226 }
227
228 return value_cast (type, arg);
229 }
230
231 /* Return the return type of a function with its first instruction exactly at
232 the PC address. Return NULL otherwise. */
233
234 static struct type *
235 find_function_return_type (CORE_ADDR pc)
236 {
237 struct symbol *sym = find_pc_function (pc);
238
239 if (sym != NULL && BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) == pc
240 && SYMBOL_TYPE (sym) != NULL)
241 return TYPE_TARGET_TYPE (SYMBOL_TYPE (sym));
242
243 return NULL;
244 }
245
246 /* Determine a function's address and its return type from its value.
247 Calls error() if the function is not valid for calling. */
248
249 CORE_ADDR
250 find_function_addr (struct value *function, struct type **retval_type)
251 {
252 struct type *ftype = check_typedef (value_type (function));
253 struct gdbarch *gdbarch = get_type_arch (ftype);
254 struct type *value_type = NULL;
255 /* Initialize it just to avoid a GCC false warning. */
256 CORE_ADDR funaddr = 0;
257
258 /* If it's a member function, just look at the function
259 part of it. */
260
261 /* Determine address to call. */
262 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
263 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
264 funaddr = value_address (function);
265 else if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
266 {
267 funaddr = value_as_address (function);
268 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
269 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
270 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
271 funaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funaddr,
272 &current_target);
273 }
274 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
275 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
276 {
277 value_type = TYPE_TARGET_TYPE (ftype);
278
279 if (TYPE_GNU_IFUNC (ftype))
280 {
281 funaddr = gnu_ifunc_resolve_addr (gdbarch, funaddr);
282
283 /* Skip querying the function symbol if no RETVAL_TYPE has been
284 asked for. */
285 if (retval_type)
286 value_type = find_function_return_type (funaddr);
287 }
288 }
289 else if (TYPE_CODE (ftype) == TYPE_CODE_INT)
290 {
291 /* Handle the case of functions lacking debugging info.
292 Their values are characters since their addresses are char. */
293 if (TYPE_LENGTH (ftype) == 1)
294 funaddr = value_as_address (value_addr (function));
295 else
296 {
297 /* Handle function descriptors lacking debug info. */
298 int found_descriptor = 0;
299
300 funaddr = 0; /* pacify "gcc -Werror" */
301 if (VALUE_LVAL (function) == lval_memory)
302 {
303 CORE_ADDR nfunaddr;
304
305 funaddr = value_as_address (value_addr (function));
306 nfunaddr = funaddr;
307 funaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funaddr,
308 &current_target);
309 if (funaddr != nfunaddr)
310 found_descriptor = 1;
311 }
312 if (!found_descriptor)
313 /* Handle integer used as address of a function. */
314 funaddr = (CORE_ADDR) value_as_long (function);
315 }
316 }
317 else
318 error (_("Invalid data type for function to be called."));
319
320 if (retval_type != NULL)
321 *retval_type = value_type;
322 return funaddr + gdbarch_deprecated_function_start_offset (gdbarch);
323 }
324
325 /* For CALL_DUMMY_ON_STACK, push a breakpoint sequence that the called
326 function returns to. */
327
328 static CORE_ADDR
329 push_dummy_code (struct gdbarch *gdbarch,
330 CORE_ADDR sp, CORE_ADDR funaddr,
331 struct value **args, int nargs,
332 struct type *value_type,
333 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
334 struct regcache *regcache)
335 {
336 gdb_assert (gdbarch_push_dummy_code_p (gdbarch));
337
338 return gdbarch_push_dummy_code (gdbarch, sp, funaddr,
339 args, nargs, value_type, real_pc, bp_addr,
340 regcache);
341 }
342
343 /* See infcall.h. */
344
345 void
346 error_call_unknown_return_type (const char *func_name)
347 {
348 if (func_name != NULL)
349 error (_("'%s' has unknown return type; "
350 "cast the call to its declared return type"),
351 func_name);
352 else
353 error (_("function has unknown return type; "
354 "cast the call to its declared return type"));
355 }
356
357 /* Fetch the name of the function at FUNADDR.
358 This is used in printing an error message for call_function_by_hand.
359 BUF is used to print FUNADDR in hex if the function name cannot be
360 determined. It must be large enough to hold formatted result of
361 RAW_FUNCTION_ADDRESS_FORMAT. */
362
363 static const char *
364 get_function_name (CORE_ADDR funaddr, char *buf, int buf_size)
365 {
366 {
367 struct symbol *symbol = find_pc_function (funaddr);
368
369 if (symbol)
370 return SYMBOL_PRINT_NAME (symbol);
371 }
372
373 {
374 /* Try the minimal symbols. */
375 struct bound_minimal_symbol msymbol = lookup_minimal_symbol_by_pc (funaddr);
376
377 if (msymbol.minsym)
378 return MSYMBOL_PRINT_NAME (msymbol.minsym);
379 }
380
381 {
382 char *tmp = xstrprintf (_(RAW_FUNCTION_ADDRESS_FORMAT),
383 hex_string (funaddr));
384
385 gdb_assert (strlen (tmp) + 1 <= buf_size);
386 strcpy (buf, tmp);
387 xfree (tmp);
388 return buf;
389 }
390 }
391
392 /* All the meta data necessary to extract the call's return value. */
393
394 struct call_return_meta_info
395 {
396 /* The caller frame's architecture. */
397 struct gdbarch *gdbarch;
398
399 /* The called function. */
400 struct value *function;
401
402 /* The return value's type. */
403 struct type *value_type;
404
405 /* Are we returning a value using a structure return or a normal
406 value return? */
407 int struct_return_p;
408
409 /* If using a structure return, this is the structure's address. */
410 CORE_ADDR struct_addr;
411
412 /* Whether stack temporaries are enabled. */
413 int stack_temporaries_enabled;
414 };
415
416 /* Extract the called function's return value. */
417
418 static struct value *
419 get_call_return_value (struct call_return_meta_info *ri)
420 {
421 struct value *retval = NULL;
422 int stack_temporaries = thread_stack_temporaries_enabled_p (inferior_ptid);
423
424 if (TYPE_CODE (ri->value_type) == TYPE_CODE_VOID)
425 retval = allocate_value (ri->value_type);
426 else if (ri->struct_return_p)
427 {
428 if (stack_temporaries)
429 {
430 retval = value_from_contents_and_address (ri->value_type, NULL,
431 ri->struct_addr);
432 push_thread_stack_temporary (inferior_ptid, retval);
433 }
434 else
435 {
436 retval = allocate_value (ri->value_type);
437 read_value_memory (retval, 0, 1, ri->struct_addr,
438 value_contents_raw (retval),
439 TYPE_LENGTH (ri->value_type));
440 }
441 }
442 else
443 {
444 retval = allocate_value (ri->value_type);
445 gdbarch_return_value (ri->gdbarch, ri->function, ri->value_type,
446 get_current_regcache (),
447 value_contents_raw (retval), NULL);
448 if (stack_temporaries && class_or_union_p (ri->value_type))
449 {
450 /* Values of class type returned in registers are copied onto
451 the stack and their lval_type set to lval_memory. This is
452 required because further evaluation of the expression
453 could potentially invoke methods on the return value
454 requiring GDB to evaluate the "this" pointer. To evaluate
455 the this pointer, GDB needs the memory address of the
456 value. */
457 value_force_lval (retval, ri->struct_addr);
458 push_thread_stack_temporary (inferior_ptid, retval);
459 }
460 }
461
462 gdb_assert (retval != NULL);
463 return retval;
464 }
465
466 /* Data for the FSM that manages an infcall. It's main job is to
467 record the called function's return value. */
468
469 struct call_thread_fsm
470 {
471 /* The base class. */
472 struct thread_fsm thread_fsm;
473
474 /* All the info necessary to be able to extract the return
475 value. */
476 struct call_return_meta_info return_meta_info;
477
478 /* The called function's return value. This is extracted from the
479 target before the dummy frame is popped. */
480 struct value *return_value;
481
482 /* The top level that started the infcall (and is synchronously
483 waiting for it to end). */
484 struct ui *waiting_ui;
485 };
486
487 static int call_thread_fsm_should_stop (struct thread_fsm *self,
488 struct thread_info *thread);
489 static int call_thread_fsm_should_notify_stop (struct thread_fsm *self);
490
491 /* call_thread_fsm's vtable. */
492
493 static struct thread_fsm_ops call_thread_fsm_ops =
494 {
495 NULL, /*dtor */
496 NULL, /* clean_up */
497 call_thread_fsm_should_stop,
498 NULL, /* return_value */
499 NULL, /* async_reply_reason*/
500 call_thread_fsm_should_notify_stop,
501 };
502
503 /* Allocate a new call_thread_fsm object. */
504
505 static struct call_thread_fsm *
506 new_call_thread_fsm (struct ui *waiting_ui, struct interp *cmd_interp,
507 struct gdbarch *gdbarch, struct value *function,
508 struct type *value_type,
509 int struct_return_p, CORE_ADDR struct_addr)
510 {
511 struct call_thread_fsm *sm;
512
513 sm = XCNEW (struct call_thread_fsm);
514 thread_fsm_ctor (&sm->thread_fsm, &call_thread_fsm_ops, cmd_interp);
515
516 sm->return_meta_info.gdbarch = gdbarch;
517 sm->return_meta_info.function = function;
518 sm->return_meta_info.value_type = value_type;
519 sm->return_meta_info.struct_return_p = struct_return_p;
520 sm->return_meta_info.struct_addr = struct_addr;
521
522 sm->waiting_ui = waiting_ui;
523
524 return sm;
525 }
526
527 /* Implementation of should_stop method for infcalls. */
528
529 static int
530 call_thread_fsm_should_stop (struct thread_fsm *self,
531 struct thread_info *thread)
532 {
533 struct call_thread_fsm *f = (struct call_thread_fsm *) self;
534
535 if (stop_stack_dummy == STOP_STACK_DUMMY)
536 {
537 /* Done. */
538 thread_fsm_set_finished (self);
539
540 /* Stash the return value before the dummy frame is popped and
541 registers are restored to what they were before the
542 call.. */
543 f->return_value = get_call_return_value (&f->return_meta_info);
544
545 /* Break out of wait_sync_command_done. */
546 scoped_restore save_ui = make_scoped_restore (&current_ui, f->waiting_ui);
547 target_terminal::ours ();
548 f->waiting_ui->prompt_state = PROMPT_NEEDED;
549 }
550
551 return 1;
552 }
553
554 /* Implementation of should_notify_stop method for infcalls. */
555
556 static int
557 call_thread_fsm_should_notify_stop (struct thread_fsm *self)
558 {
559 if (thread_fsm_finished_p (self))
560 {
561 /* Infcall succeeded. Be silent and proceed with evaluating the
562 expression. */
563 return 0;
564 }
565
566 /* Something wrong happened. E.g., an unexpected breakpoint
567 triggered, or a signal was intercepted. Notify the stop. */
568 return 1;
569 }
570
571 /* Subroutine of call_function_by_hand to simplify it.
572 Start up the inferior and wait for it to stop.
573 Return the exception if there's an error, or an exception with
574 reason >= 0 if there's no error.
575
576 This is done inside a TRY_CATCH so the caller needn't worry about
577 thrown errors. The caller should rethrow if there's an error. */
578
579 static struct gdb_exception
580 run_inferior_call (struct call_thread_fsm *sm,
581 struct thread_info *call_thread, CORE_ADDR real_pc)
582 {
583 struct gdb_exception caught_error = exception_none;
584 int saved_in_infcall = call_thread->control.in_infcall;
585 ptid_t call_thread_ptid = call_thread->ptid;
586 enum prompt_state saved_prompt_state = current_ui->prompt_state;
587 int was_running = call_thread->state == THREAD_RUNNING;
588 int saved_ui_async = current_ui->async;
589
590 /* Infcalls run synchronously, in the foreground. */
591 current_ui->prompt_state = PROMPT_BLOCKED;
592 /* So that we don't print the prompt prematurely in
593 fetch_inferior_event. */
594 current_ui->async = 0;
595
596 delete_file_handler (current_ui->input_fd);
597
598 call_thread->control.in_infcall = 1;
599
600 clear_proceed_status (0);
601
602 /* Associate the FSM with the thread after clear_proceed_status
603 (otherwise it'd clear this FSM), and before anything throws, so
604 we don't leak it (and any resources it manages). */
605 call_thread->thread_fsm = &sm->thread_fsm;
606
607 disable_watchpoints_before_interactive_call_start ();
608
609 /* We want to print return value, please... */
610 call_thread->control.proceed_to_finish = 1;
611
612 TRY
613 {
614 proceed (real_pc, GDB_SIGNAL_0);
615
616 /* Inferior function calls are always synchronous, even if the
617 target supports asynchronous execution. */
618 wait_sync_command_done ();
619 }
620 CATCH (e, RETURN_MASK_ALL)
621 {
622 caught_error = e;
623 }
624 END_CATCH
625
626 /* If GDB has the prompt blocked before, then ensure that it remains
627 so. normal_stop calls async_enable_stdin, so reset the prompt
628 state again here. In other cases, stdin will be re-enabled by
629 inferior_event_handler, when an exception is thrown. */
630 current_ui->prompt_state = saved_prompt_state;
631 if (current_ui->prompt_state == PROMPT_BLOCKED)
632 delete_file_handler (current_ui->input_fd);
633 else
634 ui_register_input_event_handler (current_ui);
635 current_ui->async = saved_ui_async;
636
637 /* At this point the current thread may have changed. Refresh
638 CALL_THREAD as it could be invalid if its thread has exited. */
639 call_thread = find_thread_ptid (call_thread_ptid);
640
641 /* If the infcall does NOT succeed, normal_stop will have already
642 finished the thread states. However, on success, normal_stop
643 defers here, so that we can set back the thread states to what
644 they were before the call. Note that we must also finish the
645 state of new threads that might have spawned while the call was
646 running. The main cases to handle are:
647
648 - "(gdb) print foo ()", or any other command that evaluates an
649 expression at the prompt. (The thread was marked stopped before.)
650
651 - "(gdb) break foo if return_false()" or similar cases where we
652 do an infcall while handling an event (while the thread is still
653 marked running). In this example, whether the condition
654 evaluates true and thus we'll present a user-visible stop is
655 decided elsewhere. */
656 if (!was_running
657 && ptid_equal (call_thread_ptid, inferior_ptid)
658 && stop_stack_dummy == STOP_STACK_DUMMY)
659 finish_thread_state (user_visible_resume_ptid (0));
660
661 enable_watchpoints_after_interactive_call_stop ();
662
663 /* Call breakpoint_auto_delete on the current contents of the bpstat
664 of inferior call thread.
665 If all error()s out of proceed ended up calling normal_stop
666 (and perhaps they should; it already does in the special case
667 of error out of resume()), then we wouldn't need this. */
668 if (caught_error.reason < 0)
669 {
670 if (call_thread != NULL)
671 breakpoint_auto_delete (call_thread->control.stop_bpstat);
672 }
673
674 if (call_thread != NULL)
675 call_thread->control.in_infcall = saved_in_infcall;
676
677 return caught_error;
678 }
679
680 /* A cleanup function that calls delete_std_terminate_breakpoint. */
681 static void
682 cleanup_delete_std_terminate_breakpoint (void *ignore)
683 {
684 delete_std_terminate_breakpoint ();
685 }
686
687 /* See infcall.h. */
688
689 struct value *
690 call_function_by_hand (struct value *function,
691 type *default_return_type,
692 int nargs, struct value **args)
693 {
694 return call_function_by_hand_dummy (function, default_return_type,
695 nargs, args, NULL, NULL);
696 }
697
698 /* All this stuff with a dummy frame may seem unnecessarily complicated
699 (why not just save registers in GDB?). The purpose of pushing a dummy
700 frame which looks just like a real frame is so that if you call a
701 function and then hit a breakpoint (get a signal, etc), "backtrace"
702 will look right. Whether the backtrace needs to actually show the
703 stack at the time the inferior function was called is debatable, but
704 it certainly needs to not display garbage. So if you are contemplating
705 making dummy frames be different from normal frames, consider that. */
706
707 /* Perform a function call in the inferior.
708 ARGS is a vector of values of arguments (NARGS of them).
709 FUNCTION is a value, the function to be called.
710 Returns a value representing what the function returned.
711 May fail to return, if a breakpoint or signal is hit
712 during the execution of the function.
713
714 ARGS is modified to contain coerced values. */
715
716 struct value *
717 call_function_by_hand_dummy (struct value *function,
718 type *default_return_type,
719 int nargs, struct value **args,
720 dummy_frame_dtor_ftype *dummy_dtor,
721 void *dummy_dtor_data)
722 {
723 CORE_ADDR sp;
724 struct type *values_type, *target_values_type;
725 unsigned char struct_return = 0, hidden_first_param_p = 0;
726 CORE_ADDR struct_addr = 0;
727 struct infcall_control_state *inf_status;
728 struct cleanup *inf_status_cleanup;
729 struct infcall_suspend_state *caller_state;
730 CORE_ADDR funaddr;
731 CORE_ADDR real_pc;
732 struct type *ftype = check_typedef (value_type (function));
733 CORE_ADDR bp_addr;
734 struct frame_id dummy_id;
735 struct cleanup *args_cleanup;
736 struct frame_info *frame;
737 struct gdbarch *gdbarch;
738 struct cleanup *terminate_bp_cleanup;
739 ptid_t call_thread_ptid;
740 struct gdb_exception e;
741 char name_buf[RAW_FUNCTION_ADDRESS_SIZE];
742 int stack_temporaries = thread_stack_temporaries_enabled_p (inferior_ptid);
743
744 if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
745 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
746
747 if (!target_has_execution)
748 noprocess ();
749
750 if (get_traceframe_number () >= 0)
751 error (_("May not call functions while looking at trace frames."));
752
753 if (execution_direction == EXEC_REVERSE)
754 error (_("Cannot call functions in reverse mode."));
755
756 frame = get_current_frame ();
757 gdbarch = get_frame_arch (frame);
758
759 if (!gdbarch_push_dummy_call_p (gdbarch))
760 error (_("This target does not support function calls."));
761
762 /* A cleanup for the inferior status.
763 This is only needed while we're preparing the inferior function call. */
764 inf_status = save_infcall_control_state ();
765 inf_status_cleanup
766 = make_cleanup_restore_infcall_control_state (inf_status);
767
768 /* Save the caller's registers and other state associated with the
769 inferior itself so that they can be restored once the
770 callee returns. To allow nested calls the registers are (further
771 down) pushed onto a dummy frame stack. Include a cleanup (which
772 is tossed once the regcache has been pushed). */
773 caller_state = save_infcall_suspend_state ();
774 make_cleanup_restore_infcall_suspend_state (caller_state);
775
776 /* Ensure that the initial SP is correctly aligned. */
777 {
778 CORE_ADDR old_sp = get_frame_sp (frame);
779
780 if (gdbarch_frame_align_p (gdbarch))
781 {
782 sp = gdbarch_frame_align (gdbarch, old_sp);
783 /* NOTE: cagney/2003-08-13: Skip the "red zone". For some
784 ABIs, a function can use memory beyond the inner most stack
785 address. AMD64 called that region the "red zone". Skip at
786 least the "red zone" size before allocating any space on
787 the stack. */
788 if (gdbarch_inner_than (gdbarch, 1, 2))
789 sp -= gdbarch_frame_red_zone_size (gdbarch);
790 else
791 sp += gdbarch_frame_red_zone_size (gdbarch);
792 /* Still aligned? */
793 gdb_assert (sp == gdbarch_frame_align (gdbarch, sp));
794 /* NOTE: cagney/2002-09-18:
795
796 On a RISC architecture, a void parameterless generic dummy
797 frame (i.e., no parameters, no result) typically does not
798 need to push anything the stack and hence can leave SP and
799 FP. Similarly, a frameless (possibly leaf) function does
800 not push anything on the stack and, hence, that too can
801 leave FP and SP unchanged. As a consequence, a sequence of
802 void parameterless generic dummy frame calls to frameless
803 functions will create a sequence of effectively identical
804 frames (SP, FP and TOS and PC the same). This, not
805 suprisingly, results in what appears to be a stack in an
806 infinite loop --- when GDB tries to find a generic dummy
807 frame on the internal dummy frame stack, it will always
808 find the first one.
809
810 To avoid this problem, the code below always grows the
811 stack. That way, two dummy frames can never be identical.
812 It does burn a few bytes of stack but that is a small price
813 to pay :-). */
814 if (sp == old_sp)
815 {
816 if (gdbarch_inner_than (gdbarch, 1, 2))
817 /* Stack grows down. */
818 sp = gdbarch_frame_align (gdbarch, old_sp - 1);
819 else
820 /* Stack grows up. */
821 sp = gdbarch_frame_align (gdbarch, old_sp + 1);
822 }
823 /* SP may have underflown address zero here from OLD_SP. Memory access
824 functions will probably fail in such case but that is a target's
825 problem. */
826 }
827 else
828 /* FIXME: cagney/2002-09-18: Hey, you loose!
829
830 Who knows how badly aligned the SP is!
831
832 If the generic dummy frame ends up empty (because nothing is
833 pushed) GDB won't be able to correctly perform back traces.
834 If a target is having trouble with backtraces, first thing to
835 do is add FRAME_ALIGN() to the architecture vector. If that
836 fails, try dummy_id().
837
838 If the ABI specifies a "Red Zone" (see the doco) the code
839 below will quietly trash it. */
840 sp = old_sp;
841
842 /* Skip over the stack temporaries that might have been generated during
843 the evaluation of an expression. */
844 if (stack_temporaries)
845 {
846 struct value *lastval;
847
848 lastval = get_last_thread_stack_temporary (inferior_ptid);
849 if (lastval != NULL)
850 {
851 CORE_ADDR lastval_addr = value_address (lastval);
852
853 if (gdbarch_inner_than (gdbarch, 1, 2))
854 {
855 gdb_assert (sp >= lastval_addr);
856 sp = lastval_addr;
857 }
858 else
859 {
860 gdb_assert (sp <= lastval_addr);
861 sp = lastval_addr + TYPE_LENGTH (value_type (lastval));
862 }
863
864 if (gdbarch_frame_align_p (gdbarch))
865 sp = gdbarch_frame_align (gdbarch, sp);
866 }
867 }
868 }
869
870 funaddr = find_function_addr (function, &values_type);
871 if (values_type == NULL)
872 values_type = default_return_type;
873 if (values_type == NULL)
874 {
875 const char *name = get_function_name (funaddr,
876 name_buf, sizeof (name_buf));
877 error (_("'%s' has unknown return type; "
878 "cast the call to its declared return type"),
879 name);
880 }
881
882 values_type = check_typedef (values_type);
883
884 /* Are we returning a value using a structure return (passing a
885 hidden argument pointing to storage) or a normal value return?
886 There are two cases: language-mandated structure return and
887 target ABI structure return. The variable STRUCT_RETURN only
888 describes the latter. The language version is handled by passing
889 the return location as the first parameter to the function,
890 even preceding "this". This is different from the target
891 ABI version, which is target-specific; for instance, on ia64
892 the first argument is passed in out0 but the hidden structure
893 return pointer would normally be passed in r8. */
894
895 if (gdbarch_return_in_first_hidden_param_p (gdbarch, values_type))
896 {
897 hidden_first_param_p = 1;
898
899 /* Tell the target specific argument pushing routine not to
900 expect a value. */
901 target_values_type = builtin_type (gdbarch)->builtin_void;
902 }
903 else
904 {
905 struct_return = using_struct_return (gdbarch, function, values_type);
906 target_values_type = values_type;
907 }
908
909 observer_notify_inferior_call_pre (inferior_ptid, funaddr);
910
911 /* Determine the location of the breakpoint (and possibly other
912 stuff) that the called function will return to. The SPARC, for a
913 function returning a structure or union, needs to make space for
914 not just the breakpoint but also an extra word containing the
915 size (?) of the structure being passed. */
916
917 switch (gdbarch_call_dummy_location (gdbarch))
918 {
919 case ON_STACK:
920 {
921 const gdb_byte *bp_bytes;
922 CORE_ADDR bp_addr_as_address;
923 int bp_size;
924
925 /* Be careful BP_ADDR is in inferior PC encoding while
926 BP_ADDR_AS_ADDRESS is a plain memory address. */
927
928 sp = push_dummy_code (gdbarch, sp, funaddr, args, nargs,
929 target_values_type, &real_pc, &bp_addr,
930 get_current_regcache ());
931
932 /* Write a legitimate instruction at the point where the infcall
933 breakpoint is going to be inserted. While this instruction
934 is never going to be executed, a user investigating the
935 memory from GDB would see this instruction instead of random
936 uninitialized bytes. We chose the breakpoint instruction
937 as it may look as the most logical one to the user and also
938 valgrind 3.7.0 needs it for proper vgdb inferior calls.
939
940 If software breakpoints are unsupported for this target we
941 leave the user visible memory content uninitialized. */
942
943 bp_addr_as_address = bp_addr;
944 bp_bytes = gdbarch_breakpoint_from_pc (gdbarch, &bp_addr_as_address,
945 &bp_size);
946 if (bp_bytes != NULL)
947 write_memory (bp_addr_as_address, bp_bytes, bp_size);
948 }
949 break;
950 case AT_ENTRY_POINT:
951 {
952 CORE_ADDR dummy_addr;
953
954 real_pc = funaddr;
955 dummy_addr = entry_point_address ();
956
957 /* A call dummy always consists of just a single breakpoint, so
958 its address is the same as the address of the dummy.
959
960 The actual breakpoint is inserted separatly so there is no need to
961 write that out. */
962 bp_addr = dummy_addr;
963 break;
964 }
965 default:
966 internal_error (__FILE__, __LINE__, _("bad switch"));
967 }
968
969 if (nargs < TYPE_NFIELDS (ftype))
970 error (_("Too few arguments in function call."));
971
972 {
973 int i;
974
975 for (i = nargs - 1; i >= 0; i--)
976 {
977 int prototyped;
978 struct type *param_type;
979
980 /* FIXME drow/2002-05-31: Should just always mark methods as
981 prototyped. Can we respect TYPE_VARARGS? Probably not. */
982 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
983 prototyped = 1;
984 if (TYPE_TARGET_TYPE (ftype) == NULL && TYPE_NFIELDS (ftype) == 0
985 && default_return_type != NULL)
986 {
987 /* Calling a no-debug function with the return type
988 explicitly cast. Assume the function is prototyped,
989 with a prototype matching the types of the arguments.
990 E.g., with:
991 float mult (float v1, float v2) { return v1 * v2; }
992 This:
993 (gdb) p (float) mult (2.0f, 3.0f)
994 Is a simpler alternative to:
995 (gdb) p ((float (*) (float, float)) mult) (2.0f, 3.0f)
996 */
997 prototyped = 1;
998 }
999 else if (i < TYPE_NFIELDS (ftype))
1000 prototyped = TYPE_PROTOTYPED (ftype);
1001 else
1002 prototyped = 0;
1003
1004 if (i < TYPE_NFIELDS (ftype))
1005 param_type = TYPE_FIELD_TYPE (ftype, i);
1006 else
1007 param_type = NULL;
1008
1009 args[i] = value_arg_coerce (gdbarch, args[i],
1010 param_type, prototyped, &sp);
1011
1012 if (param_type != NULL && language_pass_by_reference (param_type))
1013 args[i] = value_addr (args[i]);
1014 }
1015 }
1016
1017 /* Reserve space for the return structure to be written on the
1018 stack, if necessary. Make certain that the value is correctly
1019 aligned.
1020
1021 While evaluating expressions, we reserve space on the stack for
1022 return values of class type even if the language ABI and the target
1023 ABI do not require that the return value be passed as a hidden first
1024 argument. This is because we want to store the return value as an
1025 on-stack temporary while the expression is being evaluated. This
1026 enables us to have chained function calls in expressions.
1027
1028 Keeping the return values as on-stack temporaries while the expression
1029 is being evaluated is OK because the thread is stopped until the
1030 expression is completely evaluated. */
1031
1032 if (struct_return || hidden_first_param_p
1033 || (stack_temporaries && class_or_union_p (values_type)))
1034 {
1035 if (gdbarch_inner_than (gdbarch, 1, 2))
1036 {
1037 /* Stack grows downward. Align STRUCT_ADDR and SP after
1038 making space for the return value. */
1039 sp -= TYPE_LENGTH (values_type);
1040 if (gdbarch_frame_align_p (gdbarch))
1041 sp = gdbarch_frame_align (gdbarch, sp);
1042 struct_addr = sp;
1043 }
1044 else
1045 {
1046 /* Stack grows upward. Align the frame, allocate space, and
1047 then again, re-align the frame??? */
1048 if (gdbarch_frame_align_p (gdbarch))
1049 sp = gdbarch_frame_align (gdbarch, sp);
1050 struct_addr = sp;
1051 sp += TYPE_LENGTH (values_type);
1052 if (gdbarch_frame_align_p (gdbarch))
1053 sp = gdbarch_frame_align (gdbarch, sp);
1054 }
1055 }
1056
1057 if (hidden_first_param_p)
1058 {
1059 struct value **new_args;
1060
1061 /* Add the new argument to the front of the argument list. */
1062 new_args = XNEWVEC (struct value *, nargs + 1);
1063 new_args[0] = value_from_pointer (lookup_pointer_type (values_type),
1064 struct_addr);
1065 memcpy (&new_args[1], &args[0], sizeof (struct value *) * nargs);
1066 args = new_args;
1067 nargs++;
1068 args_cleanup = make_cleanup (xfree, args);
1069 }
1070 else
1071 args_cleanup = make_cleanup (null_cleanup, NULL);
1072
1073 /* Create the dummy stack frame. Pass in the call dummy address as,
1074 presumably, the ABI code knows where, in the call dummy, the
1075 return address should be pointed. */
1076 sp = gdbarch_push_dummy_call (gdbarch, function, get_current_regcache (),
1077 bp_addr, nargs, args,
1078 sp, struct_return, struct_addr);
1079
1080 do_cleanups (args_cleanup);
1081
1082 /* Set up a frame ID for the dummy frame so we can pass it to
1083 set_momentary_breakpoint. We need to give the breakpoint a frame
1084 ID so that the breakpoint code can correctly re-identify the
1085 dummy breakpoint. */
1086 /* Sanity. The exact same SP value is returned by PUSH_DUMMY_CALL,
1087 saved as the dummy-frame TOS, and used by dummy_id to form
1088 the frame ID's stack address. */
1089 dummy_id = frame_id_build (sp, bp_addr);
1090
1091 /* Create a momentary breakpoint at the return address of the
1092 inferior. That way it breaks when it returns. */
1093
1094 {
1095 symtab_and_line sal;
1096 sal.pspace = current_program_space;
1097 sal.pc = bp_addr;
1098 sal.section = find_pc_overlay (sal.pc);
1099
1100 /* Sanity. The exact same SP value is returned by
1101 PUSH_DUMMY_CALL, saved as the dummy-frame TOS, and used by
1102 dummy_id to form the frame ID's stack address. */
1103 breakpoint *bpt
1104 = set_momentary_breakpoint (gdbarch, sal,
1105 dummy_id, bp_call_dummy).release ();
1106
1107 /* set_momentary_breakpoint invalidates FRAME. */
1108 frame = NULL;
1109
1110 bpt->disposition = disp_del;
1111 gdb_assert (bpt->related_breakpoint == bpt);
1112
1113 breakpoint *longjmp_b = set_longjmp_breakpoint_for_call_dummy ();
1114 if (longjmp_b)
1115 {
1116 /* Link BPT into the chain of LONGJMP_B. */
1117 bpt->related_breakpoint = longjmp_b;
1118 while (longjmp_b->related_breakpoint != bpt->related_breakpoint)
1119 longjmp_b = longjmp_b->related_breakpoint;
1120 longjmp_b->related_breakpoint = bpt;
1121 }
1122 }
1123
1124 /* Create a breakpoint in std::terminate.
1125 If a C++ exception is raised in the dummy-frame, and the
1126 exception handler is (normally, and expected to be) out-of-frame,
1127 the default C++ handler will (wrongly) be called in an inferior
1128 function call. This is wrong, as an exception can be normally
1129 and legally handled out-of-frame. The confines of the dummy frame
1130 prevent the unwinder from finding the correct handler (or any
1131 handler, unless it is in-frame). The default handler calls
1132 std::terminate. This will kill the inferior. Assert that
1133 terminate should never be called in an inferior function
1134 call. Place a momentary breakpoint in the std::terminate function
1135 and if triggered in the call, rewind. */
1136 if (unwind_on_terminating_exception_p)
1137 set_std_terminate_breakpoint ();
1138
1139 /* Discard both inf_status and caller_state cleanups.
1140 From this point on we explicitly restore the associated state
1141 or discard it. */
1142 discard_cleanups (inf_status_cleanup);
1143
1144 /* Everything's ready, push all the info needed to restore the
1145 caller (and identify the dummy-frame) onto the dummy-frame
1146 stack. */
1147 dummy_frame_push (caller_state, &dummy_id, inferior_ptid);
1148 if (dummy_dtor != NULL)
1149 register_dummy_frame_dtor (dummy_id, inferior_ptid,
1150 dummy_dtor, dummy_dtor_data);
1151
1152 /* Register a clean-up for unwind_on_terminating_exception_breakpoint. */
1153 terminate_bp_cleanup = make_cleanup (cleanup_delete_std_terminate_breakpoint,
1154 NULL);
1155
1156 /* - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP -
1157 If you're looking to implement asynchronous dummy-frames, then
1158 just below is the place to chop this function in two.. */
1159
1160 /* TP is invalid after run_inferior_call returns, so enclose this
1161 in a block so that it's only in scope during the time it's valid. */
1162 {
1163 struct thread_info *tp = inferior_thread ();
1164 struct thread_fsm *saved_sm;
1165 struct call_thread_fsm *sm;
1166
1167 /* Save the current FSM. We'll override it. */
1168 saved_sm = tp->thread_fsm;
1169 tp->thread_fsm = NULL;
1170
1171 /* Save this thread's ptid, we need it later but the thread
1172 may have exited. */
1173 call_thread_ptid = tp->ptid;
1174
1175 /* Run the inferior until it stops. */
1176
1177 /* Create the FSM used to manage the infcall. It tells infrun to
1178 not report the stop to the user, and captures the return value
1179 before the dummy frame is popped. run_inferior_call registers
1180 it with the thread ASAP. */
1181 sm = new_call_thread_fsm (current_ui, command_interp (),
1182 gdbarch, function,
1183 values_type,
1184 struct_return || hidden_first_param_p,
1185 struct_addr);
1186
1187 e = run_inferior_call (sm, tp, real_pc);
1188
1189 observer_notify_inferior_call_post (call_thread_ptid, funaddr);
1190
1191 tp = find_thread_ptid (call_thread_ptid);
1192 if (tp != NULL)
1193 {
1194 /* The FSM should still be the same. */
1195 gdb_assert (tp->thread_fsm == &sm->thread_fsm);
1196
1197 if (thread_fsm_finished_p (tp->thread_fsm))
1198 {
1199 struct value *retval;
1200
1201 /* The inferior call is successful. Pop the dummy frame,
1202 which runs its destructors and restores the inferior's
1203 suspend state, and restore the inferior control
1204 state. */
1205 dummy_frame_pop (dummy_id, call_thread_ptid);
1206 restore_infcall_control_state (inf_status);
1207
1208 /* Get the return value. */
1209 retval = sm->return_value;
1210
1211 /* Clean up / destroy the call FSM, and restore the
1212 original one. */
1213 thread_fsm_clean_up (tp->thread_fsm, tp);
1214 thread_fsm_delete (tp->thread_fsm);
1215 tp->thread_fsm = saved_sm;
1216
1217 maybe_remove_breakpoints ();
1218
1219 do_cleanups (terminate_bp_cleanup);
1220 gdb_assert (retval != NULL);
1221 return retval;
1222 }
1223
1224 /* Didn't complete. Restore previous state machine, and
1225 handle the error. */
1226 tp->thread_fsm = saved_sm;
1227 }
1228 }
1229
1230 /* Rethrow an error if we got one trying to run the inferior. */
1231
1232 if (e.reason < 0)
1233 {
1234 const char *name = get_function_name (funaddr,
1235 name_buf, sizeof (name_buf));
1236
1237 discard_infcall_control_state (inf_status);
1238
1239 /* We could discard the dummy frame here if the program exited,
1240 but it will get garbage collected the next time the program is
1241 run anyway. */
1242
1243 switch (e.reason)
1244 {
1245 case RETURN_ERROR:
1246 throw_error (e.error, _("%s\n\
1247 An error occurred while in a function called from GDB.\n\
1248 Evaluation of the expression containing the function\n\
1249 (%s) will be abandoned.\n\
1250 When the function is done executing, GDB will silently stop."),
1251 e.message, name);
1252 case RETURN_QUIT:
1253 default:
1254 throw_exception (e);
1255 }
1256 }
1257
1258 /* If the program has exited, or we stopped at a different thread,
1259 exit and inform the user. */
1260
1261 if (! target_has_execution)
1262 {
1263 const char *name = get_function_name (funaddr,
1264 name_buf, sizeof (name_buf));
1265
1266 /* If we try to restore the inferior status,
1267 we'll crash as the inferior is no longer running. */
1268 discard_infcall_control_state (inf_status);
1269
1270 /* We could discard the dummy frame here given that the program exited,
1271 but it will get garbage collected the next time the program is
1272 run anyway. */
1273
1274 error (_("The program being debugged exited while in a function "
1275 "called from GDB.\n"
1276 "Evaluation of the expression containing the function\n"
1277 "(%s) will be abandoned."),
1278 name);
1279 }
1280
1281 if (! ptid_equal (call_thread_ptid, inferior_ptid))
1282 {
1283 const char *name = get_function_name (funaddr,
1284 name_buf, sizeof (name_buf));
1285
1286 /* We've switched threads. This can happen if another thread gets a
1287 signal or breakpoint while our thread was running.
1288 There's no point in restoring the inferior status,
1289 we're in a different thread. */
1290 discard_infcall_control_state (inf_status);
1291 /* Keep the dummy frame record, if the user switches back to the
1292 thread with the hand-call, we'll need it. */
1293 if (stopped_by_random_signal)
1294 error (_("\
1295 The program received a signal in another thread while\n\
1296 making a function call from GDB.\n\
1297 Evaluation of the expression containing the function\n\
1298 (%s) will be abandoned.\n\
1299 When the function is done executing, GDB will silently stop."),
1300 name);
1301 else
1302 error (_("\
1303 The program stopped in another thread while making a function call from GDB.\n\
1304 Evaluation of the expression containing the function\n\
1305 (%s) will be abandoned.\n\
1306 When the function is done executing, GDB will silently stop."),
1307 name);
1308 }
1309
1310 {
1311 /* Make a copy as NAME may be in an objfile freed by dummy_frame_pop. */
1312 std::string name = get_function_name (funaddr, name_buf,
1313 sizeof (name_buf));
1314
1315 if (stopped_by_random_signal)
1316 {
1317 /* We stopped inside the FUNCTION because of a random
1318 signal. Further execution of the FUNCTION is not
1319 allowed. */
1320
1321 if (unwind_on_signal_p)
1322 {
1323 /* The user wants the context restored. */
1324
1325 /* We must get back to the frame we were before the
1326 dummy call. */
1327 dummy_frame_pop (dummy_id, call_thread_ptid);
1328
1329 /* We also need to restore inferior status to that before the
1330 dummy call. */
1331 restore_infcall_control_state (inf_status);
1332
1333 /* FIXME: Insert a bunch of wrap_here; name can be very
1334 long if it's a C++ name with arguments and stuff. */
1335 error (_("\
1336 The program being debugged was signaled while in a function called from GDB.\n\
1337 GDB has restored the context to what it was before the call.\n\
1338 To change this behavior use \"set unwindonsignal off\".\n\
1339 Evaluation of the expression containing the function\n\
1340 (%s) will be abandoned."),
1341 name.c_str ());
1342 }
1343 else
1344 {
1345 /* The user wants to stay in the frame where we stopped
1346 (default).
1347 Discard inferior status, we're not at the same point
1348 we started at. */
1349 discard_infcall_control_state (inf_status);
1350
1351 /* FIXME: Insert a bunch of wrap_here; name can be very
1352 long if it's a C++ name with arguments and stuff. */
1353 error (_("\
1354 The program being debugged was signaled while in a function called from GDB.\n\
1355 GDB remains in the frame where the signal was received.\n\
1356 To change this behavior use \"set unwindonsignal on\".\n\
1357 Evaluation of the expression containing the function\n\
1358 (%s) will be abandoned.\n\
1359 When the function is done executing, GDB will silently stop."),
1360 name.c_str ());
1361 }
1362 }
1363
1364 if (stop_stack_dummy == STOP_STD_TERMINATE)
1365 {
1366 /* We must get back to the frame we were before the dummy
1367 call. */
1368 dummy_frame_pop (dummy_id, call_thread_ptid);
1369
1370 /* We also need to restore inferior status to that before
1371 the dummy call. */
1372 restore_infcall_control_state (inf_status);
1373
1374 error (_("\
1375 The program being debugged entered a std::terminate call, most likely\n\
1376 caused by an unhandled C++ exception. GDB blocked this call in order\n\
1377 to prevent the program from being terminated, and has restored the\n\
1378 context to its original state before the call.\n\
1379 To change this behaviour use \"set unwind-on-terminating-exception off\".\n\
1380 Evaluation of the expression containing the function (%s)\n\
1381 will be abandoned."),
1382 name.c_str ());
1383 }
1384 else if (stop_stack_dummy == STOP_NONE)
1385 {
1386
1387 /* We hit a breakpoint inside the FUNCTION.
1388 Keep the dummy frame, the user may want to examine its state.
1389 Discard inferior status, we're not at the same point
1390 we started at. */
1391 discard_infcall_control_state (inf_status);
1392
1393 /* The following error message used to say "The expression
1394 which contained the function call has been discarded."
1395 It is a hard concept to explain in a few words. Ideally,
1396 GDB would be able to resume evaluation of the expression
1397 when the function finally is done executing. Perhaps
1398 someday this will be implemented (it would not be easy). */
1399 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1400 a C++ name with arguments and stuff. */
1401 error (_("\
1402 The program being debugged stopped while in a function called from GDB.\n\
1403 Evaluation of the expression containing the function\n\
1404 (%s) will be abandoned.\n\
1405 When the function is done executing, GDB will silently stop."),
1406 name.c_str ());
1407 }
1408
1409 }
1410
1411 /* The above code errors out, so ... */
1412 gdb_assert_not_reached ("... should not be here");
1413 }
1414
1415 void
1416 _initialize_infcall (void)
1417 {
1418 add_setshow_boolean_cmd ("coerce-float-to-double", class_obscure,
1419 &coerce_float_to_double_p, _("\
1420 Set coercion of floats to doubles when calling functions."), _("\
1421 Show coercion of floats to doubles when calling functions"), _("\
1422 Variables of type float should generally be converted to doubles before\n\
1423 calling an unprototyped function, and left alone when calling a prototyped\n\
1424 function. However, some older debug info formats do not provide enough\n\
1425 information to determine that a function is prototyped. If this flag is\n\
1426 set, GDB will perform the conversion for a function it considers\n\
1427 unprototyped.\n\
1428 The default is to perform the conversion.\n"),
1429 NULL,
1430 show_coerce_float_to_double_p,
1431 &setlist, &showlist);
1432
1433 add_setshow_boolean_cmd ("unwindonsignal", no_class,
1434 &unwind_on_signal_p, _("\
1435 Set unwinding of stack if a signal is received while in a call dummy."), _("\
1436 Show unwinding of stack if a signal is received while in a call dummy."), _("\
1437 The unwindonsignal lets the user determine what gdb should do if a signal\n\
1438 is received while in a function called from gdb (call dummy). If set, gdb\n\
1439 unwinds the stack and restore the context to what as it was before the call.\n\
1440 The default is to stop in the frame where the signal was received."),
1441 NULL,
1442 show_unwind_on_signal_p,
1443 &setlist, &showlist);
1444
1445 add_setshow_boolean_cmd ("unwind-on-terminating-exception", no_class,
1446 &unwind_on_terminating_exception_p, _("\
1447 Set unwinding of stack if std::terminate is called while in call dummy."), _("\
1448 Show unwinding of stack if std::terminate() is called while in a call dummy."),
1449 _("\
1450 The unwind on terminating exception flag lets the user determine\n\
1451 what gdb should do if a std::terminate() call is made from the\n\
1452 default exception handler. If set, gdb unwinds the stack and restores\n\
1453 the context to what it was before the call. If unset, gdb allows the\n\
1454 std::terminate call to proceed.\n\
1455 The default is to unwind the frame."),
1456 NULL,
1457 show_unwind_on_terminating_exception_p,
1458 &setlist, &showlist);
1459
1460 }
This page took 0.079722 seconds and 4 git commands to generate.