Switch the license of all .c files to GPLv3.
[deliverable/binutils-gdb.git] / gdb / infcall.c
1 /* Perform an inferior function call, for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "breakpoint.h"
24 #include "target.h"
25 #include "regcache.h"
26 #include "inferior.h"
27 #include "gdb_assert.h"
28 #include "block.h"
29 #include "gdbcore.h"
30 #include "language.h"
31 #include "objfiles.h"
32 #include "gdbcmd.h"
33 #include "command.h"
34 #include "gdb_string.h"
35 #include "infcall.h"
36 #include "dummy-frame.h"
37
38 /* NOTE: cagney/2003-04-16: What's the future of this code?
39
40 GDB needs an asynchronous expression evaluator, that means an
41 asynchronous inferior function call implementation, and that in
42 turn means restructuring the code so that it is event driven. */
43
44 /* How you should pass arguments to a function depends on whether it
45 was defined in K&R style or prototype style. If you define a
46 function using the K&R syntax that takes a `float' argument, then
47 callers must pass that argument as a `double'. If you define the
48 function using the prototype syntax, then you must pass the
49 argument as a `float', with no promotion.
50
51 Unfortunately, on certain older platforms, the debug info doesn't
52 indicate reliably how each function was defined. A function type's
53 TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
54 defined in prototype style. When calling a function whose
55 TYPE_FLAG_PROTOTYPED flag is clear, GDB consults this flag to
56 decide what to do.
57
58 For modern targets, it is proper to assume that, if the prototype
59 flag is clear, that can be trusted: `float' arguments should be
60 promoted to `double'. For some older targets, if the prototype
61 flag is clear, that doesn't tell us anything. The default is to
62 trust the debug information; the user can override this behavior
63 with "set coerce-float-to-double 0". */
64
65 static int coerce_float_to_double_p = 1;
66 static void
67 show_coerce_float_to_double_p (struct ui_file *file, int from_tty,
68 struct cmd_list_element *c, const char *value)
69 {
70 fprintf_filtered (file, _("\
71 Coercion of floats to doubles when calling functions is %s.\n"),
72 value);
73 }
74
75 /* This boolean tells what gdb should do if a signal is received while
76 in a function called from gdb (call dummy). If set, gdb unwinds
77 the stack and restore the context to what as it was before the
78 call.
79
80 The default is to stop in the frame where the signal was received. */
81
82 int unwind_on_signal_p = 0;
83 static void
84 show_unwind_on_signal_p (struct ui_file *file, int from_tty,
85 struct cmd_list_element *c, const char *value)
86 {
87 fprintf_filtered (file, _("\
88 Unwinding of stack if a signal is received while in a call dummy is %s.\n"),
89 value);
90 }
91
92
93 /* Perform the standard coercions that are specified
94 for arguments to be passed to C functions.
95
96 If PARAM_TYPE is non-NULL, it is the expected parameter type.
97 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
98
99 static struct value *
100 value_arg_coerce (struct value *arg, struct type *param_type,
101 int is_prototyped)
102 {
103 struct type *arg_type = check_typedef (value_type (arg));
104 struct type *type
105 = param_type ? check_typedef (param_type) : arg_type;
106
107 switch (TYPE_CODE (type))
108 {
109 case TYPE_CODE_REF:
110 {
111 struct value *new_value;
112
113 if (TYPE_CODE (arg_type) == TYPE_CODE_REF)
114 return value_cast_pointers (type, arg);
115
116 /* Cast the value to the reference's target type, and then
117 convert it back to a reference. This will issue an error
118 if the value was not previously in memory - in some cases
119 we should clearly be allowing this, but how? */
120 new_value = value_cast (TYPE_TARGET_TYPE (type), arg);
121 new_value = value_ref (new_value);
122 return new_value;
123 }
124 case TYPE_CODE_INT:
125 case TYPE_CODE_CHAR:
126 case TYPE_CODE_BOOL:
127 case TYPE_CODE_ENUM:
128 /* If we don't have a prototype, coerce to integer type if necessary. */
129 if (!is_prototyped)
130 {
131 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
132 type = builtin_type_int;
133 }
134 /* Currently all target ABIs require at least the width of an integer
135 type for an argument. We may have to conditionalize the following
136 type coercion for future targets. */
137 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
138 type = builtin_type_int;
139 break;
140 case TYPE_CODE_FLT:
141 if (!is_prototyped && coerce_float_to_double_p)
142 {
143 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
144 type = builtin_type_double;
145 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
146 type = builtin_type_long_double;
147 }
148 break;
149 case TYPE_CODE_FUNC:
150 type = lookup_pointer_type (type);
151 break;
152 case TYPE_CODE_ARRAY:
153 /* Arrays are coerced to pointers to their first element, unless
154 they are vectors, in which case we want to leave them alone,
155 because they are passed by value. */
156 if (current_language->c_style_arrays)
157 if (!TYPE_VECTOR (type))
158 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
159 break;
160 case TYPE_CODE_UNDEF:
161 case TYPE_CODE_PTR:
162 case TYPE_CODE_STRUCT:
163 case TYPE_CODE_UNION:
164 case TYPE_CODE_VOID:
165 case TYPE_CODE_SET:
166 case TYPE_CODE_RANGE:
167 case TYPE_CODE_STRING:
168 case TYPE_CODE_BITSTRING:
169 case TYPE_CODE_ERROR:
170 case TYPE_CODE_MEMBERPTR:
171 case TYPE_CODE_METHODPTR:
172 case TYPE_CODE_METHOD:
173 case TYPE_CODE_COMPLEX:
174 default:
175 break;
176 }
177
178 return value_cast (type, arg);
179 }
180
181 /* Determine a function's address and its return type from its value.
182 Calls error() if the function is not valid for calling. */
183
184 CORE_ADDR
185 find_function_addr (struct value *function, struct type **retval_type)
186 {
187 struct type *ftype = check_typedef (value_type (function));
188 enum type_code code = TYPE_CODE (ftype);
189 struct type *value_type;
190 CORE_ADDR funaddr;
191
192 /* If it's a member function, just look at the function
193 part of it. */
194
195 /* Determine address to call. */
196 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
197 {
198 funaddr = VALUE_ADDRESS (function);
199 value_type = TYPE_TARGET_TYPE (ftype);
200 }
201 else if (code == TYPE_CODE_PTR)
202 {
203 funaddr = value_as_address (function);
204 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
205 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
206 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
207 {
208 funaddr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
209 funaddr,
210 &current_target);
211 value_type = TYPE_TARGET_TYPE (ftype);
212 }
213 else
214 value_type = builtin_type_int;
215 }
216 else if (code == TYPE_CODE_INT)
217 {
218 /* Handle the case of functions lacking debugging info.
219 Their values are characters since their addresses are char */
220 if (TYPE_LENGTH (ftype) == 1)
221 funaddr = value_as_address (value_addr (function));
222 else
223 {
224 /* Handle function descriptors lacking debug info. */
225 int found_descriptor = 0;
226 if (VALUE_LVAL (function) == lval_memory)
227 {
228 CORE_ADDR nfunaddr;
229 funaddr = value_as_address (value_addr (function));
230 nfunaddr = funaddr;
231 funaddr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
232 funaddr,
233 &current_target);
234 if (funaddr != nfunaddr)
235 found_descriptor = 1;
236 }
237 if (!found_descriptor)
238 /* Handle integer used as address of a function. */
239 funaddr = (CORE_ADDR) value_as_long (function);
240 }
241
242 value_type = builtin_type_int;
243 }
244 else
245 error (_("Invalid data type for function to be called."));
246
247 if (retval_type != NULL)
248 *retval_type = value_type;
249 return funaddr + gdbarch_deprecated_function_start_offset (current_gdbarch);
250 }
251
252 /* Call breakpoint_auto_delete on the current contents of the bpstat
253 pointed to by arg (which is really a bpstat *). */
254
255 static void
256 breakpoint_auto_delete_contents (void *arg)
257 {
258 breakpoint_auto_delete (*(bpstat *) arg);
259 }
260
261 static CORE_ADDR
262 generic_push_dummy_code (struct gdbarch *gdbarch,
263 CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc,
264 struct value **args, int nargs,
265 struct type *value_type,
266 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
267 struct regcache *regcache)
268 {
269 /* Something here to findout the size of a breakpoint and then
270 allocate space for it on the stack. */
271 int bplen;
272 /* This code assumes frame align. */
273 gdb_assert (gdbarch_frame_align_p (gdbarch));
274 /* Force the stack's alignment. The intent is to ensure that the SP
275 is aligned to at least a breakpoint instruction's boundary. */
276 sp = gdbarch_frame_align (gdbarch, sp);
277 /* Allocate space for, and then position the breakpoint on the
278 stack. */
279 if (gdbarch_inner_than (gdbarch, 1, 2))
280 {
281 CORE_ADDR bppc = sp;
282 gdbarch_breakpoint_from_pc (gdbarch, &bppc, &bplen);
283 sp = gdbarch_frame_align (gdbarch, sp - bplen);
284 (*bp_addr) = sp;
285 /* Should the breakpoint size/location be re-computed here? */
286 }
287 else
288 {
289 (*bp_addr) = sp;
290 gdbarch_breakpoint_from_pc (gdbarch, bp_addr, &bplen);
291 sp = gdbarch_frame_align (gdbarch, sp + bplen);
292 }
293 /* Inferior resumes at the function entry point. */
294 (*real_pc) = funaddr;
295 return sp;
296 }
297
298 /* For CALL_DUMMY_ON_STACK, push a breakpoint sequence that the called
299 function returns to. */
300
301 static CORE_ADDR
302 push_dummy_code (struct gdbarch *gdbarch,
303 CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc,
304 struct value **args, int nargs,
305 struct type *value_type,
306 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
307 struct regcache *regcache)
308 {
309 if (gdbarch_push_dummy_code_p (gdbarch))
310 return gdbarch_push_dummy_code (gdbarch, sp, funaddr, using_gcc,
311 args, nargs, value_type, real_pc, bp_addr,
312 regcache);
313 else
314 return generic_push_dummy_code (gdbarch, sp, funaddr, using_gcc,
315 args, nargs, value_type, real_pc, bp_addr,
316 regcache);
317 }
318
319 /* All this stuff with a dummy frame may seem unnecessarily complicated
320 (why not just save registers in GDB?). The purpose of pushing a dummy
321 frame which looks just like a real frame is so that if you call a
322 function and then hit a breakpoint (get a signal, etc), "backtrace"
323 will look right. Whether the backtrace needs to actually show the
324 stack at the time the inferior function was called is debatable, but
325 it certainly needs to not display garbage. So if you are contemplating
326 making dummy frames be different from normal frames, consider that. */
327
328 /* Perform a function call in the inferior.
329 ARGS is a vector of values of arguments (NARGS of them).
330 FUNCTION is a value, the function to be called.
331 Returns a value representing what the function returned.
332 May fail to return, if a breakpoint or signal is hit
333 during the execution of the function.
334
335 ARGS is modified to contain coerced values. */
336
337 struct value *
338 call_function_by_hand (struct value *function, int nargs, struct value **args)
339 {
340 CORE_ADDR sp;
341 CORE_ADDR dummy_addr;
342 struct type *values_type;
343 unsigned char struct_return;
344 CORE_ADDR struct_addr = 0;
345 struct regcache *retbuf;
346 struct cleanup *retbuf_cleanup;
347 struct inferior_status *inf_status;
348 struct cleanup *inf_status_cleanup;
349 CORE_ADDR funaddr;
350 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
351 CORE_ADDR real_pc;
352 struct type *ftype = check_typedef (value_type (function));
353 CORE_ADDR bp_addr;
354 struct regcache *caller_regcache;
355 struct cleanup *caller_regcache_cleanup;
356 struct frame_id dummy_id;
357
358 if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
359 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
360
361 if (!target_has_execution)
362 noprocess ();
363
364 if (!gdbarch_push_dummy_call_p (current_gdbarch))
365 error (_("This target does not support function calls"));
366
367 /* Create a cleanup chain that contains the retbuf (buffer
368 containing the register values). This chain is create BEFORE the
369 inf_status chain so that the inferior status can cleaned up
370 (restored or discarded) without having the retbuf freed. */
371 retbuf = regcache_xmalloc (current_gdbarch);
372 retbuf_cleanup = make_cleanup_regcache_xfree (retbuf);
373
374 /* A cleanup for the inferior status. Create this AFTER the retbuf
375 so that this can be discarded or applied without interfering with
376 the regbuf. */
377 inf_status = save_inferior_status (1);
378 inf_status_cleanup = make_cleanup_restore_inferior_status (inf_status);
379
380 /* Save the caller's registers so that they can be restored once the
381 callee returns. To allow nested calls the registers are (further
382 down) pushed onto a dummy frame stack. Include a cleanup (which
383 is tossed once the regcache has been pushed). */
384 caller_regcache = frame_save_as_regcache (get_current_frame ());
385 caller_regcache_cleanup = make_cleanup_regcache_xfree (caller_regcache);
386
387 /* Ensure that the initial SP is correctly aligned. */
388 {
389 CORE_ADDR old_sp = get_frame_sp (get_current_frame ());
390 if (gdbarch_frame_align_p (current_gdbarch))
391 {
392 sp = gdbarch_frame_align (current_gdbarch, old_sp);
393 /* NOTE: cagney/2003-08-13: Skip the "red zone". For some
394 ABIs, a function can use memory beyond the inner most stack
395 address. AMD64 called that region the "red zone". Skip at
396 least the "red zone" size before allocating any space on
397 the stack. */
398 if (gdbarch_inner_than (current_gdbarch, 1, 2))
399 sp -= gdbarch_frame_red_zone_size (current_gdbarch);
400 else
401 sp += gdbarch_frame_red_zone_size (current_gdbarch);
402 /* Still aligned? */
403 gdb_assert (sp == gdbarch_frame_align (current_gdbarch, sp));
404 /* NOTE: cagney/2002-09-18:
405
406 On a RISC architecture, a void parameterless generic dummy
407 frame (i.e., no parameters, no result) typically does not
408 need to push anything the stack and hence can leave SP and
409 FP. Similarly, a frameless (possibly leaf) function does
410 not push anything on the stack and, hence, that too can
411 leave FP and SP unchanged. As a consequence, a sequence of
412 void parameterless generic dummy frame calls to frameless
413 functions will create a sequence of effectively identical
414 frames (SP, FP and TOS and PC the same). This, not
415 suprisingly, results in what appears to be a stack in an
416 infinite loop --- when GDB tries to find a generic dummy
417 frame on the internal dummy frame stack, it will always
418 find the first one.
419
420 To avoid this problem, the code below always grows the
421 stack. That way, two dummy frames can never be identical.
422 It does burn a few bytes of stack but that is a small price
423 to pay :-). */
424 if (sp == old_sp)
425 {
426 if (gdbarch_inner_than (current_gdbarch, 1, 2))
427 /* Stack grows down. */
428 sp = gdbarch_frame_align (current_gdbarch, old_sp - 1);
429 else
430 /* Stack grows up. */
431 sp = gdbarch_frame_align (current_gdbarch, old_sp + 1);
432 }
433 gdb_assert ((gdbarch_inner_than (current_gdbarch, 1, 2)
434 && sp <= old_sp)
435 || (gdbarch_inner_than (current_gdbarch, 2, 1)
436 && sp >= old_sp));
437 }
438 else
439 /* FIXME: cagney/2002-09-18: Hey, you loose!
440
441 Who knows how badly aligned the SP is!
442
443 If the generic dummy frame ends up empty (because nothing is
444 pushed) GDB won't be able to correctly perform back traces.
445 If a target is having trouble with backtraces, first thing to
446 do is add FRAME_ALIGN() to the architecture vector. If that
447 fails, try unwind_dummy_id().
448
449 If the ABI specifies a "Red Zone" (see the doco) the code
450 below will quietly trash it. */
451 sp = old_sp;
452 }
453
454 funaddr = find_function_addr (function, &values_type);
455 CHECK_TYPEDEF (values_type);
456
457 {
458 struct block *b = block_for_pc (funaddr);
459 /* If compiled without -g, assume GCC 2. */
460 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
461 }
462
463 /* Are we returning a value using a structure return or a normal
464 value return? */
465
466 struct_return = using_struct_return (values_type, using_gcc);
467
468 /* Determine the location of the breakpoint (and possibly other
469 stuff) that the called function will return to. The SPARC, for a
470 function returning a structure or union, needs to make space for
471 not just the breakpoint but also an extra word containing the
472 size (?) of the structure being passed. */
473
474 /* The actual breakpoint (at BP_ADDR) is inserted separatly so there
475 is no need to write that out. */
476
477 switch (gdbarch_call_dummy_location (current_gdbarch))
478 {
479 case ON_STACK:
480 /* "dummy_addr" is here just to keep old targets happy. New
481 targets return that same information via "sp" and "bp_addr". */
482 if (gdbarch_inner_than (current_gdbarch, 1, 2))
483 {
484 sp = push_dummy_code (current_gdbarch, sp, funaddr,
485 using_gcc, args, nargs, values_type,
486 &real_pc, &bp_addr, get_current_regcache ());
487 dummy_addr = sp;
488 }
489 else
490 {
491 dummy_addr = sp;
492 sp = push_dummy_code (current_gdbarch, sp, funaddr,
493 using_gcc, args, nargs, values_type,
494 &real_pc, &bp_addr, get_current_regcache ());
495 }
496 break;
497 case AT_ENTRY_POINT:
498 real_pc = funaddr;
499 dummy_addr = entry_point_address ();
500 /* Make certain that the address points at real code, and not a
501 function descriptor. */
502 dummy_addr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
503 dummy_addr,
504 &current_target);
505 /* A call dummy always consists of just a single breakpoint, so
506 it's address is the same as the address of the dummy. */
507 bp_addr = dummy_addr;
508 break;
509 case AT_SYMBOL:
510 /* Some executables define a symbol __CALL_DUMMY_ADDRESS whose
511 address is the location where the breakpoint should be
512 placed. Once all targets are using the overhauled frame code
513 this can be deleted - ON_STACK is a better option. */
514 {
515 struct minimal_symbol *sym;
516
517 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
518 real_pc = funaddr;
519 if (sym)
520 dummy_addr = SYMBOL_VALUE_ADDRESS (sym);
521 else
522 dummy_addr = entry_point_address ();
523 /* Make certain that the address points at real code, and not
524 a function descriptor. */
525 dummy_addr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
526 dummy_addr,
527 &current_target);
528 /* A call dummy always consists of just a single breakpoint,
529 so it's address is the same as the address of the dummy. */
530 bp_addr = dummy_addr;
531 break;
532 }
533 default:
534 internal_error (__FILE__, __LINE__, _("bad switch"));
535 }
536
537 if (nargs < TYPE_NFIELDS (ftype))
538 error (_("too few arguments in function call"));
539
540 {
541 int i;
542 for (i = nargs - 1; i >= 0; i--)
543 {
544 int prototyped;
545 struct type *param_type;
546
547 /* FIXME drow/2002-05-31: Should just always mark methods as
548 prototyped. Can we respect TYPE_VARARGS? Probably not. */
549 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
550 prototyped = 1;
551 else if (i < TYPE_NFIELDS (ftype))
552 prototyped = TYPE_PROTOTYPED (ftype);
553 else
554 prototyped = 0;
555
556 if (i < TYPE_NFIELDS (ftype))
557 param_type = TYPE_FIELD_TYPE (ftype, i);
558 else
559 param_type = NULL;
560
561 args[i] = value_arg_coerce (args[i], param_type, prototyped);
562
563 /* elz: this code is to handle the case in which the function
564 to be called has a pointer to function as parameter and the
565 corresponding actual argument is the address of a function
566 and not a pointer to function variable. In aCC compiled
567 code, the calls through pointers to functions (in the body
568 of the function called by hand) are made via
569 $$dyncall_external which requires some registers setting,
570 this is taken care of if we call via a function pointer
571 variable, but not via a function address. In cc this is
572 not a problem. */
573
574 if (using_gcc == 0)
575 {
576 if (param_type != NULL && TYPE_CODE (ftype) != TYPE_CODE_METHOD)
577 {
578 /* if this parameter is a pointer to function. */
579 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
580 if (TYPE_CODE (TYPE_TARGET_TYPE (param_type)) == TYPE_CODE_FUNC)
581 /* elz: FIXME here should go the test about the
582 compiler used to compile the target. We want to
583 issue the error message only if the compiler
584 used was HP's aCC. If we used HP's cc, then
585 there is no problem and no need to return at
586 this point. */
587 /* Go see if the actual parameter is a variable of
588 type pointer to function or just a function. */
589 if (VALUE_LVAL (args[i]) == not_lval)
590 {
591 char *arg_name;
592 /* NOTE: cagney/2005-01-02: THIS IS BOGUS. */
593 if (find_pc_partial_function ((CORE_ADDR) value_contents (args[i])[0], &arg_name, NULL, NULL))
594 error (_("\
595 You cannot use function <%s> as argument. \n\
596 You must use a pointer to function type variable. Command ignored."), arg_name);
597 }
598 }
599 }
600 }
601 }
602
603 if (gdbarch_deprecated_reg_struct_has_addr_p (current_gdbarch))
604 {
605 int i;
606 /* This is a machine like the sparc, where we may need to pass a
607 pointer to the structure, not the structure itself. */
608 for (i = nargs - 1; i >= 0; i--)
609 {
610 struct type *arg_type = check_typedef (value_type (args[i]));
611 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
612 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
613 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
614 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
615 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
616 || TYPE_CODE (arg_type) == TYPE_CODE_SET
617 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
618 && TYPE_LENGTH (arg_type) > 8)
619 )
620 && gdbarch_deprecated_reg_struct_has_addr
621 (current_gdbarch, using_gcc, arg_type))
622 {
623 CORE_ADDR addr;
624 int len; /* = TYPE_LENGTH (arg_type); */
625 int aligned_len;
626 arg_type = check_typedef (value_enclosing_type (args[i]));
627 len = TYPE_LENGTH (arg_type);
628
629 aligned_len = len;
630 if (gdbarch_inner_than (current_gdbarch, 1, 2))
631 {
632 /* stack grows downward */
633 sp -= aligned_len;
634 /* ... so the address of the thing we push is the
635 stack pointer after we push it. */
636 addr = sp;
637 }
638 else
639 {
640 /* The stack grows up, so the address of the thing
641 we push is the stack pointer before we push it. */
642 addr = sp;
643 sp += aligned_len;
644 }
645 /* Push the structure. */
646 write_memory (addr, value_contents_all (args[i]), len);
647 /* The value we're going to pass is the address of the
648 thing we just pushed. */
649 /*args[i] = value_from_longest (lookup_pointer_type (values_type),
650 (LONGEST) addr); */
651 args[i] = value_from_pointer (lookup_pointer_type (arg_type),
652 addr);
653 }
654 }
655 }
656
657
658 /* Reserve space for the return structure to be written on the
659 stack, if necessary. Make certain that the value is correctly
660 aligned. */
661
662 if (struct_return)
663 {
664 int len = TYPE_LENGTH (values_type);
665 if (gdbarch_inner_than (current_gdbarch, 1, 2))
666 {
667 /* Stack grows downward. Align STRUCT_ADDR and SP after
668 making space for the return value. */
669 sp -= len;
670 if (gdbarch_frame_align_p (current_gdbarch))
671 sp = gdbarch_frame_align (current_gdbarch, sp);
672 struct_addr = sp;
673 }
674 else
675 {
676 /* Stack grows upward. Align the frame, allocate space, and
677 then again, re-align the frame??? */
678 if (gdbarch_frame_align_p (current_gdbarch))
679 sp = gdbarch_frame_align (current_gdbarch, sp);
680 struct_addr = sp;
681 sp += len;
682 if (gdbarch_frame_align_p (current_gdbarch))
683 sp = gdbarch_frame_align (current_gdbarch, sp);
684 }
685 }
686
687 /* Create the dummy stack frame. Pass in the call dummy address as,
688 presumably, the ABI code knows where, in the call dummy, the
689 return address should be pointed. */
690 sp = gdbarch_push_dummy_call (current_gdbarch, function,
691 get_current_regcache (), bp_addr, nargs, args,
692 sp, struct_return, struct_addr);
693
694 /* Set up a frame ID for the dummy frame so we can pass it to
695 set_momentary_breakpoint. We need to give the breakpoint a frame
696 ID so that the breakpoint code can correctly re-identify the
697 dummy breakpoint. */
698 /* Sanity. The exact same SP value is returned by PUSH_DUMMY_CALL,
699 saved as the dummy-frame TOS, and used by unwind_dummy_id to form
700 the frame ID's stack address. */
701 dummy_id = frame_id_build (sp, bp_addr);
702
703 /* Create a momentary breakpoint at the return address of the
704 inferior. That way it breaks when it returns. */
705
706 {
707 struct breakpoint *bpt;
708 struct symtab_and_line sal;
709 init_sal (&sal); /* initialize to zeroes */
710 sal.pc = bp_addr;
711 sal.section = find_pc_overlay (sal.pc);
712 /* Sanity. The exact same SP value is returned by
713 PUSH_DUMMY_CALL, saved as the dummy-frame TOS, and used by
714 unwind_dummy_id to form the frame ID's stack address. */
715 bpt = set_momentary_breakpoint (sal, dummy_id, bp_call_dummy);
716 bpt->disposition = disp_del;
717 }
718
719 /* Everything's ready, push all the info needed to restore the
720 caller (and identify the dummy-frame) onto the dummy-frame
721 stack. */
722 dummy_frame_push (caller_regcache, &dummy_id);
723 discard_cleanups (caller_regcache_cleanup);
724
725 /* - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP -
726 If you're looking to implement asynchronous dummy-frames, then
727 just below is the place to chop this function in two.. */
728
729 /* Now proceed, having reached the desired place. */
730 clear_proceed_status ();
731
732 /* Execute a "stack dummy", a piece of code stored in the stack by
733 the debugger to be executed in the inferior.
734
735 The dummy's frame is automatically popped whenever that break is
736 hit. If that is the first time the program stops,
737 call_function_by_hand returns to its caller with that frame
738 already gone and sets RC to 0.
739
740 Otherwise, set RC to a non-zero value. If the called function
741 receives a random signal, we do not allow the user to continue
742 executing it as this may not work. The dummy frame is poped and
743 we return 1. If we hit a breakpoint, we leave the frame in place
744 and return 2 (the frame will eventually be popped when we do hit
745 the dummy end breakpoint). */
746
747 {
748 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
749 int saved_async = 0;
750
751 /* If all error()s out of proceed ended up calling normal_stop
752 (and perhaps they should; it already does in the special case
753 of error out of resume()), then we wouldn't need this. */
754 make_cleanup (breakpoint_auto_delete_contents, &stop_bpstat);
755
756 disable_watchpoints_before_interactive_call_start ();
757 proceed_to_finish = 1; /* We want stop_registers, please... */
758
759 if (target_can_async_p ())
760 saved_async = target_async_mask (0);
761
762 proceed (real_pc, TARGET_SIGNAL_0, 0);
763
764 if (saved_async)
765 target_async_mask (saved_async);
766
767 enable_watchpoints_after_interactive_call_stop ();
768
769 discard_cleanups (old_cleanups);
770 }
771
772 if (stopped_by_random_signal || !stop_stack_dummy)
773 {
774 /* Find the name of the function we're about to complain about. */
775 const char *name = NULL;
776 {
777 struct symbol *symbol = find_pc_function (funaddr);
778 if (symbol)
779 name = SYMBOL_PRINT_NAME (symbol);
780 else
781 {
782 /* Try the minimal symbols. */
783 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
784 if (msymbol)
785 name = SYMBOL_PRINT_NAME (msymbol);
786 }
787 if (name == NULL)
788 {
789 /* Can't use a cleanup here. It is discarded, instead use
790 an alloca. */
791 char *tmp = xstrprintf ("at %s", hex_string (funaddr));
792 char *a = alloca (strlen (tmp) + 1);
793 strcpy (a, tmp);
794 xfree (tmp);
795 name = a;
796 }
797 }
798 if (stopped_by_random_signal)
799 {
800 /* We stopped inside the FUNCTION because of a random
801 signal. Further execution of the FUNCTION is not
802 allowed. */
803
804 if (unwind_on_signal_p)
805 {
806 /* The user wants the context restored. */
807
808 /* We must get back to the frame we were before the
809 dummy call. */
810 frame_pop (get_current_frame ());
811
812 /* FIXME: Insert a bunch of wrap_here; name can be very
813 long if it's a C++ name with arguments and stuff. */
814 error (_("\
815 The program being debugged was signaled while in a function called from GDB.\n\
816 GDB has restored the context to what it was before the call.\n\
817 To change this behavior use \"set unwindonsignal off\"\n\
818 Evaluation of the expression containing the function (%s) will be abandoned."),
819 name);
820 }
821 else
822 {
823 /* The user wants to stay in the frame where we stopped
824 (default).*/
825 /* If we restored the inferior status (via the cleanup),
826 we would print a spurious error message (Unable to
827 restore previously selected frame), would write the
828 registers from the inf_status (which is wrong), and
829 would do other wrong things. */
830 discard_cleanups (inf_status_cleanup);
831 discard_inferior_status (inf_status);
832 /* FIXME: Insert a bunch of wrap_here; name can be very
833 long if it's a C++ name with arguments and stuff. */
834 error (_("\
835 The program being debugged was signaled while in a function called from GDB.\n\
836 GDB remains in the frame where the signal was received.\n\
837 To change this behavior use \"set unwindonsignal on\"\n\
838 Evaluation of the expression containing the function (%s) will be abandoned."),
839 name);
840 }
841 }
842
843 if (!stop_stack_dummy)
844 {
845 /* We hit a breakpoint inside the FUNCTION. */
846 /* If we restored the inferior status (via the cleanup), we
847 would print a spurious error message (Unable to restore
848 previously selected frame), would write the registers
849 from the inf_status (which is wrong), and would do other
850 wrong things. */
851 discard_cleanups (inf_status_cleanup);
852 discard_inferior_status (inf_status);
853 /* The following error message used to say "The expression
854 which contained the function call has been discarded."
855 It is a hard concept to explain in a few words. Ideally,
856 GDB would be able to resume evaluation of the expression
857 when the function finally is done executing. Perhaps
858 someday this will be implemented (it would not be easy). */
859 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
860 a C++ name with arguments and stuff. */
861 error (_("\
862 The program being debugged stopped while in a function called from GDB.\n\
863 When the function (%s) is done executing, GDB will silently\n\
864 stop (instead of continuing to evaluate the expression containing\n\
865 the function call)."), name);
866 }
867
868 /* The above code errors out, so ... */
869 internal_error (__FILE__, __LINE__, _("... should not be here"));
870 }
871
872 /* If we get here the called FUNCTION run to completion. */
873
874 /* On normal return, the stack dummy has been popped already. */
875 regcache_cpy_no_passthrough (retbuf, stop_registers);
876
877 /* Restore the inferior status, via its cleanup. At this stage,
878 leave the RETBUF alone. */
879 do_cleanups (inf_status_cleanup);
880
881 /* Figure out the value returned by the function. */
882 {
883 struct value *retval = NULL;
884
885 if (TYPE_CODE (values_type) == TYPE_CODE_VOID)
886 {
887 /* If the function returns void, don't bother fetching the
888 return value. */
889 retval = allocate_value (values_type);
890 }
891 else
892 {
893 struct gdbarch *arch = current_gdbarch;
894
895 switch (gdbarch_return_value (arch, values_type, NULL, NULL, NULL))
896 {
897 case RETURN_VALUE_REGISTER_CONVENTION:
898 case RETURN_VALUE_ABI_RETURNS_ADDRESS:
899 case RETURN_VALUE_ABI_PRESERVES_ADDRESS:
900 retval = allocate_value (values_type);
901 gdbarch_return_value (current_gdbarch, values_type, retbuf,
902 value_contents_raw (retval), NULL);
903 break;
904 case RETURN_VALUE_STRUCT_CONVENTION:
905 retval = value_at (values_type, struct_addr);
906 break;
907 }
908 }
909
910 do_cleanups (retbuf_cleanup);
911
912 gdb_assert(retval);
913 return retval;
914 }
915 }
916 \f
917
918 /* Provide a prototype to silence -Wmissing-prototypes. */
919 void _initialize_infcall (void);
920
921 void
922 _initialize_infcall (void)
923 {
924 add_setshow_boolean_cmd ("coerce-float-to-double", class_obscure,
925 &coerce_float_to_double_p, _("\
926 Set coercion of floats to doubles when calling functions."), _("\
927 Show coercion of floats to doubles when calling functions"), _("\
928 Variables of type float should generally be converted to doubles before\n\
929 calling an unprototyped function, and left alone when calling a prototyped\n\
930 function. However, some older debug info formats do not provide enough\n\
931 information to determine that a function is prototyped. If this flag is\n\
932 set, GDB will perform the conversion for a function it considers\n\
933 unprototyped.\n\
934 The default is to perform the conversion.\n"),
935 NULL,
936 show_coerce_float_to_double_p,
937 &setlist, &showlist);
938
939 add_setshow_boolean_cmd ("unwindonsignal", no_class,
940 &unwind_on_signal_p, _("\
941 Set unwinding of stack if a signal is received while in a call dummy."), _("\
942 Show unwinding of stack if a signal is received while in a call dummy."), _("\
943 The unwindonsignal lets the user determine what gdb should do if a signal\n\
944 is received while in a function called from gdb (call dummy). If set, gdb\n\
945 unwinds the stack and restore the context to what as it was before the call.\n\
946 The default is to stop in the frame where the signal was received."),
947 NULL,
948 show_unwind_on_signal_p,
949 &setlist, &showlist);
950 }
This page took 0.114523 seconds and 4 git commands to generate.