Simplify exception handling
[deliverable/binutils-gdb.git] / gdb / infcall.c
1 /* Perform an inferior function call, for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "infcall.h"
22 #include "breakpoint.h"
23 #include "tracepoint.h"
24 #include "target.h"
25 #include "regcache.h"
26 #include "inferior.h"
27 #include "infrun.h"
28 #include "block.h"
29 #include "gdbcore.h"
30 #include "language.h"
31 #include "objfiles.h"
32 #include "gdbcmd.h"
33 #include "command.h"
34 #include "dummy-frame.h"
35 #include "ada-lang.h"
36 #include "f-lang.h"
37 #include "gdbthread.h"
38 #include "event-top.h"
39 #include "observable.h"
40 #include "top.h"
41 #include "interps.h"
42 #include "thread-fsm.h"
43 #include <algorithm>
44 #include "common/scope-exit.h"
45
46 /* If we can't find a function's name from its address,
47 we print this instead. */
48 #define RAW_FUNCTION_ADDRESS_FORMAT "at 0x%s"
49 #define RAW_FUNCTION_ADDRESS_SIZE (sizeof (RAW_FUNCTION_ADDRESS_FORMAT) \
50 + 2 * sizeof (CORE_ADDR))
51
52 /* NOTE: cagney/2003-04-16: What's the future of this code?
53
54 GDB needs an asynchronous expression evaluator, that means an
55 asynchronous inferior function call implementation, and that in
56 turn means restructuring the code so that it is event driven. */
57
58 /* How you should pass arguments to a function depends on whether it
59 was defined in K&R style or prototype style. If you define a
60 function using the K&R syntax that takes a `float' argument, then
61 callers must pass that argument as a `double'. If you define the
62 function using the prototype syntax, then you must pass the
63 argument as a `float', with no promotion.
64
65 Unfortunately, on certain older platforms, the debug info doesn't
66 indicate reliably how each function was defined. A function type's
67 TYPE_PROTOTYPED flag may be clear, even if the function was defined
68 in prototype style. When calling a function whose TYPE_PROTOTYPED
69 flag is clear, GDB consults this flag to decide what to do.
70
71 For modern targets, it is proper to assume that, if the prototype
72 flag is clear, that can be trusted: `float' arguments should be
73 promoted to `double'. For some older targets, if the prototype
74 flag is clear, that doesn't tell us anything. The default is to
75 trust the debug information; the user can override this behavior
76 with "set coerce-float-to-double 0". */
77
78 static int coerce_float_to_double_p = 1;
79 static void
80 show_coerce_float_to_double_p (struct ui_file *file, int from_tty,
81 struct cmd_list_element *c, const char *value)
82 {
83 fprintf_filtered (file,
84 _("Coercion of floats to doubles "
85 "when calling functions is %s.\n"),
86 value);
87 }
88
89 /* This boolean tells what gdb should do if a signal is received while
90 in a function called from gdb (call dummy). If set, gdb unwinds
91 the stack and restore the context to what as it was before the
92 call.
93
94 The default is to stop in the frame where the signal was received. */
95
96 static int unwind_on_signal_p = 0;
97 static void
98 show_unwind_on_signal_p (struct ui_file *file, int from_tty,
99 struct cmd_list_element *c, const char *value)
100 {
101 fprintf_filtered (file,
102 _("Unwinding of stack if a signal is "
103 "received while in a call dummy is %s.\n"),
104 value);
105 }
106
107 /* This boolean tells what gdb should do if a std::terminate call is
108 made while in a function called from gdb (call dummy).
109 As the confines of a single dummy stack prohibit out-of-frame
110 handlers from handling a raised exception, and as out-of-frame
111 handlers are common in C++, this can lead to no handler being found
112 by the unwinder, and a std::terminate call. This is a false positive.
113 If set, gdb unwinds the stack and restores the context to what it
114 was before the call.
115
116 The default is to unwind the frame if a std::terminate call is
117 made. */
118
119 static int unwind_on_terminating_exception_p = 1;
120
121 static void
122 show_unwind_on_terminating_exception_p (struct ui_file *file, int from_tty,
123 struct cmd_list_element *c,
124 const char *value)
125
126 {
127 fprintf_filtered (file,
128 _("Unwind stack if a C++ exception is "
129 "unhandled while in a call dummy is %s.\n"),
130 value);
131 }
132
133 /* Perform the standard coercions that are specified
134 for arguments to be passed to C, Ada or Fortran functions.
135
136 If PARAM_TYPE is non-NULL, it is the expected parameter type.
137 IS_PROTOTYPED is non-zero if the function declaration is prototyped.
138 SP is the stack pointer were additional data can be pushed (updating
139 its value as needed). */
140
141 static struct value *
142 value_arg_coerce (struct gdbarch *gdbarch, struct value *arg,
143 struct type *param_type, int is_prototyped, CORE_ADDR *sp)
144 {
145 const struct builtin_type *builtin = builtin_type (gdbarch);
146 struct type *arg_type = check_typedef (value_type (arg));
147 struct type *type
148 = param_type ? check_typedef (param_type) : arg_type;
149
150 /* Perform any Ada- and Fortran-specific coercion first. */
151 if (current_language->la_language == language_ada)
152 arg = ada_convert_actual (arg, type);
153 else if (current_language->la_language == language_fortran)
154 type = fortran_preserve_arg_pointer (arg, type);
155
156 /* Force the value to the target if we will need its address. At
157 this point, we could allocate arguments on the stack instead of
158 calling malloc if we knew that their addresses would not be
159 saved by the called function. */
160 arg = value_coerce_to_target (arg);
161
162 switch (TYPE_CODE (type))
163 {
164 case TYPE_CODE_REF:
165 case TYPE_CODE_RVALUE_REF:
166 {
167 struct value *new_value;
168
169 if (TYPE_IS_REFERENCE (arg_type))
170 return value_cast_pointers (type, arg, 0);
171
172 /* Cast the value to the reference's target type, and then
173 convert it back to a reference. This will issue an error
174 if the value was not previously in memory - in some cases
175 we should clearly be allowing this, but how? */
176 new_value = value_cast (TYPE_TARGET_TYPE (type), arg);
177 new_value = value_ref (new_value, TYPE_CODE (type));
178 return new_value;
179 }
180 case TYPE_CODE_INT:
181 case TYPE_CODE_CHAR:
182 case TYPE_CODE_BOOL:
183 case TYPE_CODE_ENUM:
184 /* If we don't have a prototype, coerce to integer type if necessary. */
185 if (!is_prototyped)
186 {
187 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_int))
188 type = builtin->builtin_int;
189 }
190 /* Currently all target ABIs require at least the width of an integer
191 type for an argument. We may have to conditionalize the following
192 type coercion for future targets. */
193 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_int))
194 type = builtin->builtin_int;
195 break;
196 case TYPE_CODE_FLT:
197 if (!is_prototyped && coerce_float_to_double_p)
198 {
199 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_double))
200 type = builtin->builtin_double;
201 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin->builtin_double))
202 type = builtin->builtin_long_double;
203 }
204 break;
205 case TYPE_CODE_FUNC:
206 type = lookup_pointer_type (type);
207 break;
208 case TYPE_CODE_ARRAY:
209 /* Arrays are coerced to pointers to their first element, unless
210 they are vectors, in which case we want to leave them alone,
211 because they are passed by value. */
212 if (current_language->c_style_arrays)
213 if (!TYPE_VECTOR (type))
214 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
215 break;
216 case TYPE_CODE_UNDEF:
217 case TYPE_CODE_PTR:
218 case TYPE_CODE_STRUCT:
219 case TYPE_CODE_UNION:
220 case TYPE_CODE_VOID:
221 case TYPE_CODE_SET:
222 case TYPE_CODE_RANGE:
223 case TYPE_CODE_STRING:
224 case TYPE_CODE_ERROR:
225 case TYPE_CODE_MEMBERPTR:
226 case TYPE_CODE_METHODPTR:
227 case TYPE_CODE_METHOD:
228 case TYPE_CODE_COMPLEX:
229 default:
230 break;
231 }
232
233 return value_cast (type, arg);
234 }
235
236 /* See infcall.h. */
237
238 CORE_ADDR
239 find_function_addr (struct value *function,
240 struct type **retval_type,
241 struct type **function_type)
242 {
243 struct type *ftype = check_typedef (value_type (function));
244 struct gdbarch *gdbarch = get_type_arch (ftype);
245 struct type *value_type = NULL;
246 /* Initialize it just to avoid a GCC false warning. */
247 CORE_ADDR funaddr = 0;
248
249 /* If it's a member function, just look at the function
250 part of it. */
251
252 /* Determine address to call. */
253 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
254 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
255 funaddr = value_address (function);
256 else if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
257 {
258 funaddr = value_as_address (function);
259 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
260 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
261 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
262 funaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funaddr,
263 current_top_target ());
264 }
265 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
266 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
267 {
268 if (TYPE_GNU_IFUNC (ftype))
269 {
270 CORE_ADDR resolver_addr = funaddr;
271
272 /* Resolve the ifunc. Note this may call the resolver
273 function in the inferior. */
274 funaddr = gnu_ifunc_resolve_addr (gdbarch, resolver_addr);
275
276 /* Skip querying the function symbol if no RETVAL_TYPE or
277 FUNCTION_TYPE have been asked for. */
278 if (retval_type != NULL || function_type != NULL)
279 {
280 type *target_ftype = find_function_type (funaddr);
281 /* If we don't have debug info for the target function,
282 see if we can instead extract the target function's
283 type from the type that the resolver returns. */
284 if (target_ftype == NULL)
285 target_ftype = find_gnu_ifunc_target_type (resolver_addr);
286 if (target_ftype != NULL)
287 {
288 value_type = TYPE_TARGET_TYPE (check_typedef (target_ftype));
289 ftype = target_ftype;
290 }
291 }
292 }
293 else
294 value_type = TYPE_TARGET_TYPE (ftype);
295 }
296 else if (TYPE_CODE (ftype) == TYPE_CODE_INT)
297 {
298 /* Handle the case of functions lacking debugging info.
299 Their values are characters since their addresses are char. */
300 if (TYPE_LENGTH (ftype) == 1)
301 funaddr = value_as_address (value_addr (function));
302 else
303 {
304 /* Handle function descriptors lacking debug info. */
305 int found_descriptor = 0;
306
307 funaddr = 0; /* pacify "gcc -Werror" */
308 if (VALUE_LVAL (function) == lval_memory)
309 {
310 CORE_ADDR nfunaddr;
311
312 funaddr = value_as_address (value_addr (function));
313 nfunaddr = funaddr;
314 funaddr
315 = gdbarch_convert_from_func_ptr_addr (gdbarch, funaddr,
316 current_top_target ());
317 if (funaddr != nfunaddr)
318 found_descriptor = 1;
319 }
320 if (!found_descriptor)
321 /* Handle integer used as address of a function. */
322 funaddr = (CORE_ADDR) value_as_long (function);
323 }
324 }
325 else
326 error (_("Invalid data type for function to be called."));
327
328 if (retval_type != NULL)
329 *retval_type = value_type;
330 if (function_type != NULL)
331 *function_type = ftype;
332 return funaddr + gdbarch_deprecated_function_start_offset (gdbarch);
333 }
334
335 /* For CALL_DUMMY_ON_STACK, push a breakpoint sequence that the called
336 function returns to. */
337
338 static CORE_ADDR
339 push_dummy_code (struct gdbarch *gdbarch,
340 CORE_ADDR sp, CORE_ADDR funaddr,
341 gdb::array_view<value *> args,
342 struct type *value_type,
343 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
344 struct regcache *regcache)
345 {
346 gdb_assert (gdbarch_push_dummy_code_p (gdbarch));
347
348 return gdbarch_push_dummy_code (gdbarch, sp, funaddr,
349 args.data (), args.size (),
350 value_type, real_pc, bp_addr,
351 regcache);
352 }
353
354 /* See infcall.h. */
355
356 void
357 error_call_unknown_return_type (const char *func_name)
358 {
359 if (func_name != NULL)
360 error (_("'%s' has unknown return type; "
361 "cast the call to its declared return type"),
362 func_name);
363 else
364 error (_("function has unknown return type; "
365 "cast the call to its declared return type"));
366 }
367
368 /* Fetch the name of the function at FUNADDR.
369 This is used in printing an error message for call_function_by_hand.
370 BUF is used to print FUNADDR in hex if the function name cannot be
371 determined. It must be large enough to hold formatted result of
372 RAW_FUNCTION_ADDRESS_FORMAT. */
373
374 static const char *
375 get_function_name (CORE_ADDR funaddr, char *buf, int buf_size)
376 {
377 {
378 struct symbol *symbol = find_pc_function (funaddr);
379
380 if (symbol)
381 return SYMBOL_PRINT_NAME (symbol);
382 }
383
384 {
385 /* Try the minimal symbols. */
386 struct bound_minimal_symbol msymbol = lookup_minimal_symbol_by_pc (funaddr);
387
388 if (msymbol.minsym)
389 return MSYMBOL_PRINT_NAME (msymbol.minsym);
390 }
391
392 {
393 std::string tmp = string_printf (_(RAW_FUNCTION_ADDRESS_FORMAT),
394 hex_string (funaddr));
395
396 gdb_assert (tmp.length () + 1 <= buf_size);
397 return strcpy (buf, tmp.c_str ());
398 }
399 }
400
401 /* All the meta data necessary to extract the call's return value. */
402
403 struct call_return_meta_info
404 {
405 /* The caller frame's architecture. */
406 struct gdbarch *gdbarch;
407
408 /* The called function. */
409 struct value *function;
410
411 /* The return value's type. */
412 struct type *value_type;
413
414 /* Are we returning a value using a structure return or a normal
415 value return? */
416 int struct_return_p;
417
418 /* If using a structure return, this is the structure's address. */
419 CORE_ADDR struct_addr;
420 };
421
422 /* Extract the called function's return value. */
423
424 static struct value *
425 get_call_return_value (struct call_return_meta_info *ri)
426 {
427 struct value *retval = NULL;
428 thread_info *thr = inferior_thread ();
429 bool stack_temporaries = thread_stack_temporaries_enabled_p (thr);
430
431 if (TYPE_CODE (ri->value_type) == TYPE_CODE_VOID)
432 retval = allocate_value (ri->value_type);
433 else if (ri->struct_return_p)
434 {
435 if (stack_temporaries)
436 {
437 retval = value_from_contents_and_address (ri->value_type, NULL,
438 ri->struct_addr);
439 push_thread_stack_temporary (thr, retval);
440 }
441 else
442 {
443 retval = allocate_value (ri->value_type);
444 read_value_memory (retval, 0, 1, ri->struct_addr,
445 value_contents_raw (retval),
446 TYPE_LENGTH (ri->value_type));
447 }
448 }
449 else
450 {
451 retval = allocate_value (ri->value_type);
452 gdbarch_return_value (ri->gdbarch, ri->function, ri->value_type,
453 get_current_regcache (),
454 value_contents_raw (retval), NULL);
455 if (stack_temporaries && class_or_union_p (ri->value_type))
456 {
457 /* Values of class type returned in registers are copied onto
458 the stack and their lval_type set to lval_memory. This is
459 required because further evaluation of the expression
460 could potentially invoke methods on the return value
461 requiring GDB to evaluate the "this" pointer. To evaluate
462 the this pointer, GDB needs the memory address of the
463 value. */
464 value_force_lval (retval, ri->struct_addr);
465 push_thread_stack_temporary (thr, retval);
466 }
467 }
468
469 gdb_assert (retval != NULL);
470 return retval;
471 }
472
473 /* Data for the FSM that manages an infcall. It's main job is to
474 record the called function's return value. */
475
476 struct call_thread_fsm : public thread_fsm
477 {
478 /* All the info necessary to be able to extract the return
479 value. */
480 struct call_return_meta_info return_meta_info;
481
482 /* The called function's return value. This is extracted from the
483 target before the dummy frame is popped. */
484 struct value *return_value = nullptr;
485
486 /* The top level that started the infcall (and is synchronously
487 waiting for it to end). */
488 struct ui *waiting_ui;
489
490 call_thread_fsm (struct ui *waiting_ui, struct interp *cmd_interp,
491 struct gdbarch *gdbarch, struct value *function,
492 struct type *value_type,
493 int struct_return_p, CORE_ADDR struct_addr);
494
495 bool should_stop (struct thread_info *thread) override;
496
497 bool should_notify_stop () override;
498 };
499
500 /* Allocate a new call_thread_fsm object. */
501
502 call_thread_fsm::call_thread_fsm (struct ui *waiting_ui,
503 struct interp *cmd_interp,
504 struct gdbarch *gdbarch,
505 struct value *function,
506 struct type *value_type,
507 int struct_return_p, CORE_ADDR struct_addr)
508 : thread_fsm (cmd_interp),
509 waiting_ui (waiting_ui)
510 {
511 return_meta_info.gdbarch = gdbarch;
512 return_meta_info.function = function;
513 return_meta_info.value_type = value_type;
514 return_meta_info.struct_return_p = struct_return_p;
515 return_meta_info.struct_addr = struct_addr;
516 }
517
518 /* Implementation of should_stop method for infcalls. */
519
520 bool
521 call_thread_fsm::should_stop (struct thread_info *thread)
522 {
523 if (stop_stack_dummy == STOP_STACK_DUMMY)
524 {
525 /* Done. */
526 set_finished ();
527
528 /* Stash the return value before the dummy frame is popped and
529 registers are restored to what they were before the
530 call.. */
531 return_value = get_call_return_value (&return_meta_info);
532
533 /* Break out of wait_sync_command_done. */
534 scoped_restore save_ui = make_scoped_restore (&current_ui, waiting_ui);
535 target_terminal::ours ();
536 waiting_ui->prompt_state = PROMPT_NEEDED;
537 }
538
539 return true;
540 }
541
542 /* Implementation of should_notify_stop method for infcalls. */
543
544 bool
545 call_thread_fsm::should_notify_stop ()
546 {
547 if (finished_p ())
548 {
549 /* Infcall succeeded. Be silent and proceed with evaluating the
550 expression. */
551 return false;
552 }
553
554 /* Something wrong happened. E.g., an unexpected breakpoint
555 triggered, or a signal was intercepted. Notify the stop. */
556 return true;
557 }
558
559 /* Subroutine of call_function_by_hand to simplify it.
560 Start up the inferior and wait for it to stop.
561 Return the exception if there's an error, or an exception with
562 reason >= 0 if there's no error.
563
564 This is done inside a TRY_CATCH so the caller needn't worry about
565 thrown errors. The caller should rethrow if there's an error. */
566
567 static struct gdb_exception
568 run_inferior_call (struct call_thread_fsm *sm,
569 struct thread_info *call_thread, CORE_ADDR real_pc)
570 {
571 struct gdb_exception caught_error = exception_none;
572 int saved_in_infcall = call_thread->control.in_infcall;
573 ptid_t call_thread_ptid = call_thread->ptid;
574 enum prompt_state saved_prompt_state = current_ui->prompt_state;
575 int was_running = call_thread->state == THREAD_RUNNING;
576 int saved_ui_async = current_ui->async;
577
578 /* Infcalls run synchronously, in the foreground. */
579 current_ui->prompt_state = PROMPT_BLOCKED;
580 /* So that we don't print the prompt prematurely in
581 fetch_inferior_event. */
582 current_ui->async = 0;
583
584 delete_file_handler (current_ui->input_fd);
585
586 call_thread->control.in_infcall = 1;
587
588 clear_proceed_status (0);
589
590 /* Associate the FSM with the thread after clear_proceed_status
591 (otherwise it'd clear this FSM), and before anything throws, so
592 we don't leak it (and any resources it manages). */
593 call_thread->thread_fsm = sm;
594
595 disable_watchpoints_before_interactive_call_start ();
596
597 /* We want to print return value, please... */
598 call_thread->control.proceed_to_finish = 1;
599
600 TRY
601 {
602 proceed (real_pc, GDB_SIGNAL_0);
603
604 /* Inferior function calls are always synchronous, even if the
605 target supports asynchronous execution. */
606 wait_sync_command_done ();
607 }
608 CATCH (e, RETURN_MASK_ALL)
609 {
610 caught_error = e;
611 }
612 END_CATCH
613
614 /* If GDB has the prompt blocked before, then ensure that it remains
615 so. normal_stop calls async_enable_stdin, so reset the prompt
616 state again here. In other cases, stdin will be re-enabled by
617 inferior_event_handler, when an exception is thrown. */
618 current_ui->prompt_state = saved_prompt_state;
619 if (current_ui->prompt_state == PROMPT_BLOCKED)
620 delete_file_handler (current_ui->input_fd);
621 else
622 ui_register_input_event_handler (current_ui);
623 current_ui->async = saved_ui_async;
624
625 /* If the infcall does NOT succeed, normal_stop will have already
626 finished the thread states. However, on success, normal_stop
627 defers here, so that we can set back the thread states to what
628 they were before the call. Note that we must also finish the
629 state of new threads that might have spawned while the call was
630 running. The main cases to handle are:
631
632 - "(gdb) print foo ()", or any other command that evaluates an
633 expression at the prompt. (The thread was marked stopped before.)
634
635 - "(gdb) break foo if return_false()" or similar cases where we
636 do an infcall while handling an event (while the thread is still
637 marked running). In this example, whether the condition
638 evaluates true and thus we'll present a user-visible stop is
639 decided elsewhere. */
640 if (!was_running
641 && call_thread_ptid == inferior_ptid
642 && stop_stack_dummy == STOP_STACK_DUMMY)
643 finish_thread_state (user_visible_resume_ptid (0));
644
645 enable_watchpoints_after_interactive_call_stop ();
646
647 /* Call breakpoint_auto_delete on the current contents of the bpstat
648 of inferior call thread.
649 If all error()s out of proceed ended up calling normal_stop
650 (and perhaps they should; it already does in the special case
651 of error out of resume()), then we wouldn't need this. */
652 if (caught_error.reason < 0)
653 {
654 if (call_thread->state != THREAD_EXITED)
655 breakpoint_auto_delete (call_thread->control.stop_bpstat);
656 }
657
658 call_thread->control.in_infcall = saved_in_infcall;
659
660 return caught_error;
661 }
662
663 /* See infcall.h. */
664
665 struct value *
666 call_function_by_hand (struct value *function,
667 type *default_return_type,
668 gdb::array_view<value *> args)
669 {
670 return call_function_by_hand_dummy (function, default_return_type,
671 args, NULL, NULL);
672 }
673
674 /* All this stuff with a dummy frame may seem unnecessarily complicated
675 (why not just save registers in GDB?). The purpose of pushing a dummy
676 frame which looks just like a real frame is so that if you call a
677 function and then hit a breakpoint (get a signal, etc), "backtrace"
678 will look right. Whether the backtrace needs to actually show the
679 stack at the time the inferior function was called is debatable, but
680 it certainly needs to not display garbage. So if you are contemplating
681 making dummy frames be different from normal frames, consider that. */
682
683 /* Perform a function call in the inferior.
684 ARGS is a vector of values of arguments (NARGS of them).
685 FUNCTION is a value, the function to be called.
686 Returns a value representing what the function returned.
687 May fail to return, if a breakpoint or signal is hit
688 during the execution of the function.
689
690 ARGS is modified to contain coerced values. */
691
692 struct value *
693 call_function_by_hand_dummy (struct value *function,
694 type *default_return_type,
695 gdb::array_view<value *> args,
696 dummy_frame_dtor_ftype *dummy_dtor,
697 void *dummy_dtor_data)
698 {
699 CORE_ADDR sp;
700 struct type *target_values_type;
701 function_call_return_method return_method = return_method_normal;
702 CORE_ADDR struct_addr = 0;
703 CORE_ADDR real_pc;
704 CORE_ADDR bp_addr;
705 struct frame_id dummy_id;
706 struct frame_info *frame;
707 struct gdbarch *gdbarch;
708 ptid_t call_thread_ptid;
709 struct gdb_exception e;
710 char name_buf[RAW_FUNCTION_ADDRESS_SIZE];
711
712 if (!target_has_execution)
713 noprocess ();
714
715 if (get_traceframe_number () >= 0)
716 error (_("May not call functions while looking at trace frames."));
717
718 if (execution_direction == EXEC_REVERSE)
719 error (_("Cannot call functions in reverse mode."));
720
721 /* We're going to run the target, and inspect the thread's state
722 afterwards. Hold a strong reference so that the pointer remains
723 valid even if the thread exits. */
724 thread_info_ref call_thread
725 = thread_info_ref::new_reference (inferior_thread ());
726
727 bool stack_temporaries = thread_stack_temporaries_enabled_p (call_thread.get ());
728
729 frame = get_current_frame ();
730 gdbarch = get_frame_arch (frame);
731
732 if (!gdbarch_push_dummy_call_p (gdbarch))
733 error (_("This target does not support function calls."));
734
735 /* A holder for the inferior status.
736 This is only needed while we're preparing the inferior function call. */
737 infcall_control_state_up inf_status (save_infcall_control_state ());
738
739 /* Save the caller's registers and other state associated with the
740 inferior itself so that they can be restored once the
741 callee returns. To allow nested calls the registers are (further
742 down) pushed onto a dummy frame stack. This unique pointer
743 is released once the regcache has been pushed). */
744 infcall_suspend_state_up caller_state (save_infcall_suspend_state ());
745
746 /* Ensure that the initial SP is correctly aligned. */
747 {
748 CORE_ADDR old_sp = get_frame_sp (frame);
749
750 if (gdbarch_frame_align_p (gdbarch))
751 {
752 sp = gdbarch_frame_align (gdbarch, old_sp);
753 /* NOTE: cagney/2003-08-13: Skip the "red zone". For some
754 ABIs, a function can use memory beyond the inner most stack
755 address. AMD64 called that region the "red zone". Skip at
756 least the "red zone" size before allocating any space on
757 the stack. */
758 if (gdbarch_inner_than (gdbarch, 1, 2))
759 sp -= gdbarch_frame_red_zone_size (gdbarch);
760 else
761 sp += gdbarch_frame_red_zone_size (gdbarch);
762 /* Still aligned? */
763 gdb_assert (sp == gdbarch_frame_align (gdbarch, sp));
764 /* NOTE: cagney/2002-09-18:
765
766 On a RISC architecture, a void parameterless generic dummy
767 frame (i.e., no parameters, no result) typically does not
768 need to push anything the stack and hence can leave SP and
769 FP. Similarly, a frameless (possibly leaf) function does
770 not push anything on the stack and, hence, that too can
771 leave FP and SP unchanged. As a consequence, a sequence of
772 void parameterless generic dummy frame calls to frameless
773 functions will create a sequence of effectively identical
774 frames (SP, FP and TOS and PC the same). This, not
775 suprisingly, results in what appears to be a stack in an
776 infinite loop --- when GDB tries to find a generic dummy
777 frame on the internal dummy frame stack, it will always
778 find the first one.
779
780 To avoid this problem, the code below always grows the
781 stack. That way, two dummy frames can never be identical.
782 It does burn a few bytes of stack but that is a small price
783 to pay :-). */
784 if (sp == old_sp)
785 {
786 if (gdbarch_inner_than (gdbarch, 1, 2))
787 /* Stack grows down. */
788 sp = gdbarch_frame_align (gdbarch, old_sp - 1);
789 else
790 /* Stack grows up. */
791 sp = gdbarch_frame_align (gdbarch, old_sp + 1);
792 }
793 /* SP may have underflown address zero here from OLD_SP. Memory access
794 functions will probably fail in such case but that is a target's
795 problem. */
796 }
797 else
798 /* FIXME: cagney/2002-09-18: Hey, you loose!
799
800 Who knows how badly aligned the SP is!
801
802 If the generic dummy frame ends up empty (because nothing is
803 pushed) GDB won't be able to correctly perform back traces.
804 If a target is having trouble with backtraces, first thing to
805 do is add FRAME_ALIGN() to the architecture vector. If that
806 fails, try dummy_id().
807
808 If the ABI specifies a "Red Zone" (see the doco) the code
809 below will quietly trash it. */
810 sp = old_sp;
811
812 /* Skip over the stack temporaries that might have been generated during
813 the evaluation of an expression. */
814 if (stack_temporaries)
815 {
816 struct value *lastval;
817
818 lastval = get_last_thread_stack_temporary (call_thread.get ());
819 if (lastval != NULL)
820 {
821 CORE_ADDR lastval_addr = value_address (lastval);
822
823 if (gdbarch_inner_than (gdbarch, 1, 2))
824 {
825 gdb_assert (sp >= lastval_addr);
826 sp = lastval_addr;
827 }
828 else
829 {
830 gdb_assert (sp <= lastval_addr);
831 sp = lastval_addr + TYPE_LENGTH (value_type (lastval));
832 }
833
834 if (gdbarch_frame_align_p (gdbarch))
835 sp = gdbarch_frame_align (gdbarch, sp);
836 }
837 }
838 }
839
840 type *ftype;
841 type *values_type;
842 CORE_ADDR funaddr = find_function_addr (function, &values_type, &ftype);
843
844 if (values_type == NULL)
845 values_type = default_return_type;
846 if (values_type == NULL)
847 {
848 const char *name = get_function_name (funaddr,
849 name_buf, sizeof (name_buf));
850 error (_("'%s' has unknown return type; "
851 "cast the call to its declared return type"),
852 name);
853 }
854
855 values_type = check_typedef (values_type);
856
857 /* Are we returning a value using a structure return? */
858
859 if (gdbarch_return_in_first_hidden_param_p (gdbarch, values_type))
860 {
861 return_method = return_method_hidden_param;
862
863 /* Tell the target specific argument pushing routine not to
864 expect a value. */
865 target_values_type = builtin_type (gdbarch)->builtin_void;
866 }
867 else
868 {
869 if (using_struct_return (gdbarch, function, values_type))
870 return_method = return_method_struct;
871 target_values_type = values_type;
872 }
873
874 gdb::observers::inferior_call_pre.notify (inferior_ptid, funaddr);
875
876 /* Determine the location of the breakpoint (and possibly other
877 stuff) that the called function will return to. The SPARC, for a
878 function returning a structure or union, needs to make space for
879 not just the breakpoint but also an extra word containing the
880 size (?) of the structure being passed. */
881
882 switch (gdbarch_call_dummy_location (gdbarch))
883 {
884 case ON_STACK:
885 {
886 const gdb_byte *bp_bytes;
887 CORE_ADDR bp_addr_as_address;
888 int bp_size;
889
890 /* Be careful BP_ADDR is in inferior PC encoding while
891 BP_ADDR_AS_ADDRESS is a plain memory address. */
892
893 sp = push_dummy_code (gdbarch, sp, funaddr, args,
894 target_values_type, &real_pc, &bp_addr,
895 get_current_regcache ());
896
897 /* Write a legitimate instruction at the point where the infcall
898 breakpoint is going to be inserted. While this instruction
899 is never going to be executed, a user investigating the
900 memory from GDB would see this instruction instead of random
901 uninitialized bytes. We chose the breakpoint instruction
902 as it may look as the most logical one to the user and also
903 valgrind 3.7.0 needs it for proper vgdb inferior calls.
904
905 If software breakpoints are unsupported for this target we
906 leave the user visible memory content uninitialized. */
907
908 bp_addr_as_address = bp_addr;
909 bp_bytes = gdbarch_breakpoint_from_pc (gdbarch, &bp_addr_as_address,
910 &bp_size);
911 if (bp_bytes != NULL)
912 write_memory (bp_addr_as_address, bp_bytes, bp_size);
913 }
914 break;
915 case AT_ENTRY_POINT:
916 {
917 CORE_ADDR dummy_addr;
918
919 real_pc = funaddr;
920 dummy_addr = entry_point_address ();
921
922 /* A call dummy always consists of just a single breakpoint, so
923 its address is the same as the address of the dummy.
924
925 The actual breakpoint is inserted separatly so there is no need to
926 write that out. */
927 bp_addr = dummy_addr;
928 break;
929 }
930 default:
931 internal_error (__FILE__, __LINE__, _("bad switch"));
932 }
933
934 if (args.size () < TYPE_NFIELDS (ftype))
935 error (_("Too few arguments in function call."));
936
937 for (int i = args.size () - 1; i >= 0; i--)
938 {
939 int prototyped;
940 struct type *param_type;
941
942 /* FIXME drow/2002-05-31: Should just always mark methods as
943 prototyped. Can we respect TYPE_VARARGS? Probably not. */
944 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
945 prototyped = 1;
946 if (TYPE_TARGET_TYPE (ftype) == NULL && TYPE_NFIELDS (ftype) == 0
947 && default_return_type != NULL)
948 {
949 /* Calling a no-debug function with the return type
950 explicitly cast. Assume the function is prototyped,
951 with a prototype matching the types of the arguments.
952 E.g., with:
953 float mult (float v1, float v2) { return v1 * v2; }
954 This:
955 (gdb) p (float) mult (2.0f, 3.0f)
956 Is a simpler alternative to:
957 (gdb) p ((float (*) (float, float)) mult) (2.0f, 3.0f)
958 */
959 prototyped = 1;
960 }
961 else if (i < TYPE_NFIELDS (ftype))
962 prototyped = TYPE_PROTOTYPED (ftype);
963 else
964 prototyped = 0;
965
966 if (i < TYPE_NFIELDS (ftype))
967 param_type = TYPE_FIELD_TYPE (ftype, i);
968 else
969 param_type = NULL;
970
971 args[i] = value_arg_coerce (gdbarch, args[i],
972 param_type, prototyped, &sp);
973
974 if (param_type != NULL && language_pass_by_reference (param_type))
975 args[i] = value_addr (args[i]);
976 }
977
978 /* Reserve space for the return structure to be written on the
979 stack, if necessary. Make certain that the value is correctly
980 aligned.
981
982 While evaluating expressions, we reserve space on the stack for
983 return values of class type even if the language ABI and the target
984 ABI do not require that the return value be passed as a hidden first
985 argument. This is because we want to store the return value as an
986 on-stack temporary while the expression is being evaluated. This
987 enables us to have chained function calls in expressions.
988
989 Keeping the return values as on-stack temporaries while the expression
990 is being evaluated is OK because the thread is stopped until the
991 expression is completely evaluated. */
992
993 if (return_method != return_method_normal
994 || (stack_temporaries && class_or_union_p (values_type)))
995 {
996 if (gdbarch_inner_than (gdbarch, 1, 2))
997 {
998 /* Stack grows downward. Align STRUCT_ADDR and SP after
999 making space for the return value. */
1000 sp -= TYPE_LENGTH (values_type);
1001 if (gdbarch_frame_align_p (gdbarch))
1002 sp = gdbarch_frame_align (gdbarch, sp);
1003 struct_addr = sp;
1004 }
1005 else
1006 {
1007 /* Stack grows upward. Align the frame, allocate space, and
1008 then again, re-align the frame??? */
1009 if (gdbarch_frame_align_p (gdbarch))
1010 sp = gdbarch_frame_align (gdbarch, sp);
1011 struct_addr = sp;
1012 sp += TYPE_LENGTH (values_type);
1013 if (gdbarch_frame_align_p (gdbarch))
1014 sp = gdbarch_frame_align (gdbarch, sp);
1015 }
1016 }
1017
1018 std::vector<struct value *> new_args;
1019 if (return_method == return_method_hidden_param)
1020 {
1021 /* Add the new argument to the front of the argument list. */
1022 new_args.reserve (args.size ());
1023 new_args.push_back
1024 (value_from_pointer (lookup_pointer_type (values_type), struct_addr));
1025 new_args.insert (new_args.end (), args.begin (), args.end ());
1026 args = new_args;
1027 }
1028
1029 /* Create the dummy stack frame. Pass in the call dummy address as,
1030 presumably, the ABI code knows where, in the call dummy, the
1031 return address should be pointed. */
1032 sp = gdbarch_push_dummy_call (gdbarch, function, get_current_regcache (),
1033 bp_addr, args.size (), args.data (),
1034 sp, return_method, struct_addr);
1035
1036 /* Set up a frame ID for the dummy frame so we can pass it to
1037 set_momentary_breakpoint. We need to give the breakpoint a frame
1038 ID so that the breakpoint code can correctly re-identify the
1039 dummy breakpoint. */
1040 /* Sanity. The exact same SP value is returned by PUSH_DUMMY_CALL,
1041 saved as the dummy-frame TOS, and used by dummy_id to form
1042 the frame ID's stack address. */
1043 dummy_id = frame_id_build (sp, bp_addr);
1044
1045 /* Create a momentary breakpoint at the return address of the
1046 inferior. That way it breaks when it returns. */
1047
1048 {
1049 symtab_and_line sal;
1050 sal.pspace = current_program_space;
1051 sal.pc = bp_addr;
1052 sal.section = find_pc_overlay (sal.pc);
1053
1054 /* Sanity. The exact same SP value is returned by
1055 PUSH_DUMMY_CALL, saved as the dummy-frame TOS, and used by
1056 dummy_id to form the frame ID's stack address. */
1057 breakpoint *bpt
1058 = set_momentary_breakpoint (gdbarch, sal,
1059 dummy_id, bp_call_dummy).release ();
1060
1061 /* set_momentary_breakpoint invalidates FRAME. */
1062 frame = NULL;
1063
1064 bpt->disposition = disp_del;
1065 gdb_assert (bpt->related_breakpoint == bpt);
1066
1067 breakpoint *longjmp_b = set_longjmp_breakpoint_for_call_dummy ();
1068 if (longjmp_b)
1069 {
1070 /* Link BPT into the chain of LONGJMP_B. */
1071 bpt->related_breakpoint = longjmp_b;
1072 while (longjmp_b->related_breakpoint != bpt->related_breakpoint)
1073 longjmp_b = longjmp_b->related_breakpoint;
1074 longjmp_b->related_breakpoint = bpt;
1075 }
1076 }
1077
1078 /* Create a breakpoint in std::terminate.
1079 If a C++ exception is raised in the dummy-frame, and the
1080 exception handler is (normally, and expected to be) out-of-frame,
1081 the default C++ handler will (wrongly) be called in an inferior
1082 function call. This is wrong, as an exception can be normally
1083 and legally handled out-of-frame. The confines of the dummy frame
1084 prevent the unwinder from finding the correct handler (or any
1085 handler, unless it is in-frame). The default handler calls
1086 std::terminate. This will kill the inferior. Assert that
1087 terminate should never be called in an inferior function
1088 call. Place a momentary breakpoint in the std::terminate function
1089 and if triggered in the call, rewind. */
1090 if (unwind_on_terminating_exception_p)
1091 set_std_terminate_breakpoint ();
1092
1093 /* Everything's ready, push all the info needed to restore the
1094 caller (and identify the dummy-frame) onto the dummy-frame
1095 stack. */
1096 dummy_frame_push (caller_state.release (), &dummy_id, call_thread.get ());
1097 if (dummy_dtor != NULL)
1098 register_dummy_frame_dtor (dummy_id, call_thread.get (),
1099 dummy_dtor, dummy_dtor_data);
1100
1101 /* Register a clean-up for unwind_on_terminating_exception_breakpoint. */
1102 SCOPE_EXIT { delete_std_terminate_breakpoint (); };
1103
1104 /* - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP -
1105 If you're looking to implement asynchronous dummy-frames, then
1106 just below is the place to chop this function in two.. */
1107
1108 {
1109 struct thread_fsm *saved_sm;
1110 struct call_thread_fsm *sm;
1111
1112 /* Save the current FSM. We'll override it. */
1113 saved_sm = call_thread->thread_fsm;
1114 call_thread->thread_fsm = NULL;
1115
1116 /* Save this thread's ptid, we need it later but the thread
1117 may have exited. */
1118 call_thread_ptid = call_thread->ptid;
1119
1120 /* Run the inferior until it stops. */
1121
1122 /* Create the FSM used to manage the infcall. It tells infrun to
1123 not report the stop to the user, and captures the return value
1124 before the dummy frame is popped. run_inferior_call registers
1125 it with the thread ASAP. */
1126 sm = new call_thread_fsm (current_ui, command_interp (),
1127 gdbarch, function,
1128 values_type,
1129 return_method != return_method_normal,
1130 struct_addr);
1131
1132 e = run_inferior_call (sm, call_thread.get (), real_pc);
1133
1134 gdb::observers::inferior_call_post.notify (call_thread_ptid, funaddr);
1135
1136 if (call_thread->state != THREAD_EXITED)
1137 {
1138 /* The FSM should still be the same. */
1139 gdb_assert (call_thread->thread_fsm == sm);
1140
1141 if (call_thread->thread_fsm->finished_p ())
1142 {
1143 struct value *retval;
1144
1145 /* The inferior call is successful. Pop the dummy frame,
1146 which runs its destructors and restores the inferior's
1147 suspend state, and restore the inferior control
1148 state. */
1149 dummy_frame_pop (dummy_id, call_thread.get ());
1150 restore_infcall_control_state (inf_status.release ());
1151
1152 /* Get the return value. */
1153 retval = sm->return_value;
1154
1155 /* Clean up / destroy the call FSM, and restore the
1156 original one. */
1157 call_thread->thread_fsm->clean_up (call_thread.get ());
1158 delete call_thread->thread_fsm;
1159 call_thread->thread_fsm = saved_sm;
1160
1161 maybe_remove_breakpoints ();
1162
1163 gdb_assert (retval != NULL);
1164 return retval;
1165 }
1166
1167 /* Didn't complete. Clean up / destroy the call FSM, and restore the
1168 previous state machine, and handle the error. */
1169 call_thread->thread_fsm->clean_up (call_thread.get ());
1170 delete call_thread->thread_fsm;
1171 call_thread->thread_fsm = saved_sm;
1172 }
1173 }
1174
1175 /* Rethrow an error if we got one trying to run the inferior. */
1176
1177 if (e.reason < 0)
1178 {
1179 const char *name = get_function_name (funaddr,
1180 name_buf, sizeof (name_buf));
1181
1182 discard_infcall_control_state (inf_status.release ());
1183
1184 /* We could discard the dummy frame here if the program exited,
1185 but it will get garbage collected the next time the program is
1186 run anyway. */
1187
1188 switch (e.reason)
1189 {
1190 case RETURN_ERROR:
1191 throw_error (e.error, _("%s\n\
1192 An error occurred while in a function called from GDB.\n\
1193 Evaluation of the expression containing the function\n\
1194 (%s) will be abandoned.\n\
1195 When the function is done executing, GDB will silently stop."),
1196 e.message, name);
1197 case RETURN_QUIT:
1198 default:
1199 throw_exception (e);
1200 }
1201 }
1202
1203 /* If the program has exited, or we stopped at a different thread,
1204 exit and inform the user. */
1205
1206 if (! target_has_execution)
1207 {
1208 const char *name = get_function_name (funaddr,
1209 name_buf, sizeof (name_buf));
1210
1211 /* If we try to restore the inferior status,
1212 we'll crash as the inferior is no longer running. */
1213 discard_infcall_control_state (inf_status.release ());
1214
1215 /* We could discard the dummy frame here given that the program exited,
1216 but it will get garbage collected the next time the program is
1217 run anyway. */
1218
1219 error (_("The program being debugged exited while in a function "
1220 "called from GDB.\n"
1221 "Evaluation of the expression containing the function\n"
1222 "(%s) will be abandoned."),
1223 name);
1224 }
1225
1226 if (call_thread_ptid != inferior_ptid)
1227 {
1228 const char *name = get_function_name (funaddr,
1229 name_buf, sizeof (name_buf));
1230
1231 /* We've switched threads. This can happen if another thread gets a
1232 signal or breakpoint while our thread was running.
1233 There's no point in restoring the inferior status,
1234 we're in a different thread. */
1235 discard_infcall_control_state (inf_status.release ());
1236 /* Keep the dummy frame record, if the user switches back to the
1237 thread with the hand-call, we'll need it. */
1238 if (stopped_by_random_signal)
1239 error (_("\
1240 The program received a signal in another thread while\n\
1241 making a function call from GDB.\n\
1242 Evaluation of the expression containing the function\n\
1243 (%s) will be abandoned.\n\
1244 When the function is done executing, GDB will silently stop."),
1245 name);
1246 else
1247 error (_("\
1248 The program stopped in another thread while making a function call from GDB.\n\
1249 Evaluation of the expression containing the function\n\
1250 (%s) will be abandoned.\n\
1251 When the function is done executing, GDB will silently stop."),
1252 name);
1253 }
1254
1255 {
1256 /* Make a copy as NAME may be in an objfile freed by dummy_frame_pop. */
1257 std::string name = get_function_name (funaddr, name_buf,
1258 sizeof (name_buf));
1259
1260 if (stopped_by_random_signal)
1261 {
1262 /* We stopped inside the FUNCTION because of a random
1263 signal. Further execution of the FUNCTION is not
1264 allowed. */
1265
1266 if (unwind_on_signal_p)
1267 {
1268 /* The user wants the context restored. */
1269
1270 /* We must get back to the frame we were before the
1271 dummy call. */
1272 dummy_frame_pop (dummy_id, call_thread.get ());
1273
1274 /* We also need to restore inferior status to that before the
1275 dummy call. */
1276 restore_infcall_control_state (inf_status.release ());
1277
1278 /* FIXME: Insert a bunch of wrap_here; name can be very
1279 long if it's a C++ name with arguments and stuff. */
1280 error (_("\
1281 The program being debugged was signaled while in a function called from GDB.\n\
1282 GDB has restored the context to what it was before the call.\n\
1283 To change this behavior use \"set unwindonsignal off\".\n\
1284 Evaluation of the expression containing the function\n\
1285 (%s) will be abandoned."),
1286 name.c_str ());
1287 }
1288 else
1289 {
1290 /* The user wants to stay in the frame where we stopped
1291 (default).
1292 Discard inferior status, we're not at the same point
1293 we started at. */
1294 discard_infcall_control_state (inf_status.release ());
1295
1296 /* FIXME: Insert a bunch of wrap_here; name can be very
1297 long if it's a C++ name with arguments and stuff. */
1298 error (_("\
1299 The program being debugged was signaled while in a function called from GDB.\n\
1300 GDB remains in the frame where the signal was received.\n\
1301 To change this behavior use \"set unwindonsignal on\".\n\
1302 Evaluation of the expression containing the function\n\
1303 (%s) will be abandoned.\n\
1304 When the function is done executing, GDB will silently stop."),
1305 name.c_str ());
1306 }
1307 }
1308
1309 if (stop_stack_dummy == STOP_STD_TERMINATE)
1310 {
1311 /* We must get back to the frame we were before the dummy
1312 call. */
1313 dummy_frame_pop (dummy_id, call_thread.get ());
1314
1315 /* We also need to restore inferior status to that before
1316 the dummy call. */
1317 restore_infcall_control_state (inf_status.release ());
1318
1319 error (_("\
1320 The program being debugged entered a std::terminate call, most likely\n\
1321 caused by an unhandled C++ exception. GDB blocked this call in order\n\
1322 to prevent the program from being terminated, and has restored the\n\
1323 context to its original state before the call.\n\
1324 To change this behaviour use \"set unwind-on-terminating-exception off\".\n\
1325 Evaluation of the expression containing the function (%s)\n\
1326 will be abandoned."),
1327 name.c_str ());
1328 }
1329 else if (stop_stack_dummy == STOP_NONE)
1330 {
1331
1332 /* We hit a breakpoint inside the FUNCTION.
1333 Keep the dummy frame, the user may want to examine its state.
1334 Discard inferior status, we're not at the same point
1335 we started at. */
1336 discard_infcall_control_state (inf_status.release ());
1337
1338 /* The following error message used to say "The expression
1339 which contained the function call has been discarded."
1340 It is a hard concept to explain in a few words. Ideally,
1341 GDB would be able to resume evaluation of the expression
1342 when the function finally is done executing. Perhaps
1343 someday this will be implemented (it would not be easy). */
1344 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1345 a C++ name with arguments and stuff. */
1346 error (_("\
1347 The program being debugged stopped while in a function called from GDB.\n\
1348 Evaluation of the expression containing the function\n\
1349 (%s) will be abandoned.\n\
1350 When the function is done executing, GDB will silently stop."),
1351 name.c_str ());
1352 }
1353
1354 }
1355
1356 /* The above code errors out, so ... */
1357 gdb_assert_not_reached ("... should not be here");
1358 }
1359
1360 void
1361 _initialize_infcall (void)
1362 {
1363 add_setshow_boolean_cmd ("coerce-float-to-double", class_obscure,
1364 &coerce_float_to_double_p, _("\
1365 Set coercion of floats to doubles when calling functions."), _("\
1366 Show coercion of floats to doubles when calling functions"), _("\
1367 Variables of type float should generally be converted to doubles before\n\
1368 calling an unprototyped function, and left alone when calling a prototyped\n\
1369 function. However, some older debug info formats do not provide enough\n\
1370 information to determine that a function is prototyped. If this flag is\n\
1371 set, GDB will perform the conversion for a function it considers\n\
1372 unprototyped.\n\
1373 The default is to perform the conversion.\n"),
1374 NULL,
1375 show_coerce_float_to_double_p,
1376 &setlist, &showlist);
1377
1378 add_setshow_boolean_cmd ("unwindonsignal", no_class,
1379 &unwind_on_signal_p, _("\
1380 Set unwinding of stack if a signal is received while in a call dummy."), _("\
1381 Show unwinding of stack if a signal is received while in a call dummy."), _("\
1382 The unwindonsignal lets the user determine what gdb should do if a signal\n\
1383 is received while in a function called from gdb (call dummy). If set, gdb\n\
1384 unwinds the stack and restore the context to what as it was before the call.\n\
1385 The default is to stop in the frame where the signal was received."),
1386 NULL,
1387 show_unwind_on_signal_p,
1388 &setlist, &showlist);
1389
1390 add_setshow_boolean_cmd ("unwind-on-terminating-exception", no_class,
1391 &unwind_on_terminating_exception_p, _("\
1392 Set unwinding of stack if std::terminate is called while in call dummy."), _("\
1393 Show unwinding of stack if std::terminate() is called while in a call dummy."),
1394 _("\
1395 The unwind on terminating exception flag lets the user determine\n\
1396 what gdb should do if a std::terminate() call is made from the\n\
1397 default exception handler. If set, gdb unwinds the stack and restores\n\
1398 the context to what it was before the call. If unset, gdb allows the\n\
1399 std::terminate call to proceed.\n\
1400 The default is to unwind the frame."),
1401 NULL,
1402 show_unwind_on_terminating_exception_p,
1403 &setlist, &showlist);
1404
1405 }
This page took 0.061071 seconds and 5 git commands to generate.