2007-11-07 Markus Deuling <deuling@de.ibm.com>
[deliverable/binutils-gdb.git] / gdb / infcall.c
1 /* Perform an inferior function call, for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "breakpoint.h"
24 #include "target.h"
25 #include "regcache.h"
26 #include "inferior.h"
27 #include "gdb_assert.h"
28 #include "block.h"
29 #include "gdbcore.h"
30 #include "language.h"
31 #include "objfiles.h"
32 #include "gdbcmd.h"
33 #include "command.h"
34 #include "gdb_string.h"
35 #include "infcall.h"
36 #include "dummy-frame.h"
37
38 /* NOTE: cagney/2003-04-16: What's the future of this code?
39
40 GDB needs an asynchronous expression evaluator, that means an
41 asynchronous inferior function call implementation, and that in
42 turn means restructuring the code so that it is event driven. */
43
44 /* How you should pass arguments to a function depends on whether it
45 was defined in K&R style or prototype style. If you define a
46 function using the K&R syntax that takes a `float' argument, then
47 callers must pass that argument as a `double'. If you define the
48 function using the prototype syntax, then you must pass the
49 argument as a `float', with no promotion.
50
51 Unfortunately, on certain older platforms, the debug info doesn't
52 indicate reliably how each function was defined. A function type's
53 TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
54 defined in prototype style. When calling a function whose
55 TYPE_FLAG_PROTOTYPED flag is clear, GDB consults this flag to
56 decide what to do.
57
58 For modern targets, it is proper to assume that, if the prototype
59 flag is clear, that can be trusted: `float' arguments should be
60 promoted to `double'. For some older targets, if the prototype
61 flag is clear, that doesn't tell us anything. The default is to
62 trust the debug information; the user can override this behavior
63 with "set coerce-float-to-double 0". */
64
65 static int coerce_float_to_double_p = 1;
66 static void
67 show_coerce_float_to_double_p (struct ui_file *file, int from_tty,
68 struct cmd_list_element *c, const char *value)
69 {
70 fprintf_filtered (file, _("\
71 Coercion of floats to doubles when calling functions is %s.\n"),
72 value);
73 }
74
75 /* This boolean tells what gdb should do if a signal is received while
76 in a function called from gdb (call dummy). If set, gdb unwinds
77 the stack and restore the context to what as it was before the
78 call.
79
80 The default is to stop in the frame where the signal was received. */
81
82 int unwind_on_signal_p = 0;
83 static void
84 show_unwind_on_signal_p (struct ui_file *file, int from_tty,
85 struct cmd_list_element *c, const char *value)
86 {
87 fprintf_filtered (file, _("\
88 Unwinding of stack if a signal is received while in a call dummy is %s.\n"),
89 value);
90 }
91
92
93 /* Perform the standard coercions that are specified
94 for arguments to be passed to C functions.
95
96 If PARAM_TYPE is non-NULL, it is the expected parameter type.
97 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
98
99 static struct value *
100 value_arg_coerce (struct value *arg, struct type *param_type,
101 int is_prototyped)
102 {
103 struct type *arg_type = check_typedef (value_type (arg));
104 struct type *type
105 = param_type ? check_typedef (param_type) : arg_type;
106
107 switch (TYPE_CODE (type))
108 {
109 case TYPE_CODE_REF:
110 {
111 struct value *new_value;
112
113 if (TYPE_CODE (arg_type) == TYPE_CODE_REF)
114 return value_cast_pointers (type, arg);
115
116 /* Cast the value to the reference's target type, and then
117 convert it back to a reference. This will issue an error
118 if the value was not previously in memory - in some cases
119 we should clearly be allowing this, but how? */
120 new_value = value_cast (TYPE_TARGET_TYPE (type), arg);
121 new_value = value_ref (new_value);
122 return new_value;
123 }
124 case TYPE_CODE_INT:
125 case TYPE_CODE_CHAR:
126 case TYPE_CODE_BOOL:
127 case TYPE_CODE_ENUM:
128 /* If we don't have a prototype, coerce to integer type if necessary. */
129 if (!is_prototyped)
130 {
131 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
132 type = builtin_type_int;
133 }
134 /* Currently all target ABIs require at least the width of an integer
135 type for an argument. We may have to conditionalize the following
136 type coercion for future targets. */
137 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
138 type = builtin_type_int;
139 break;
140 case TYPE_CODE_FLT:
141 if (!is_prototyped && coerce_float_to_double_p)
142 {
143 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
144 type = builtin_type_double;
145 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
146 type = builtin_type_long_double;
147 }
148 break;
149 case TYPE_CODE_FUNC:
150 type = lookup_pointer_type (type);
151 break;
152 case TYPE_CODE_ARRAY:
153 /* Arrays are coerced to pointers to their first element, unless
154 they are vectors, in which case we want to leave them alone,
155 because they are passed by value. */
156 if (current_language->c_style_arrays)
157 if (!TYPE_VECTOR (type))
158 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
159 break;
160 case TYPE_CODE_UNDEF:
161 case TYPE_CODE_PTR:
162 case TYPE_CODE_STRUCT:
163 case TYPE_CODE_UNION:
164 case TYPE_CODE_VOID:
165 case TYPE_CODE_SET:
166 case TYPE_CODE_RANGE:
167 case TYPE_CODE_STRING:
168 case TYPE_CODE_BITSTRING:
169 case TYPE_CODE_ERROR:
170 case TYPE_CODE_MEMBERPTR:
171 case TYPE_CODE_METHODPTR:
172 case TYPE_CODE_METHOD:
173 case TYPE_CODE_COMPLEX:
174 default:
175 break;
176 }
177
178 return value_cast (type, arg);
179 }
180
181 /* Determine a function's address and its return type from its value.
182 Calls error() if the function is not valid for calling. */
183
184 CORE_ADDR
185 find_function_addr (struct value *function, struct type **retval_type)
186 {
187 struct type *ftype = check_typedef (value_type (function));
188 enum type_code code = TYPE_CODE (ftype);
189 struct type *value_type;
190 CORE_ADDR funaddr;
191
192 /* If it's a member function, just look at the function
193 part of it. */
194
195 /* Determine address to call. */
196 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
197 {
198 funaddr = VALUE_ADDRESS (function);
199 value_type = TYPE_TARGET_TYPE (ftype);
200 }
201 else if (code == TYPE_CODE_PTR)
202 {
203 funaddr = value_as_address (function);
204 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
205 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
206 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
207 {
208 funaddr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
209 funaddr,
210 &current_target);
211 value_type = TYPE_TARGET_TYPE (ftype);
212 }
213 else
214 value_type = builtin_type_int;
215 }
216 else if (code == TYPE_CODE_INT)
217 {
218 /* Handle the case of functions lacking debugging info.
219 Their values are characters since their addresses are char */
220 if (TYPE_LENGTH (ftype) == 1)
221 funaddr = value_as_address (value_addr (function));
222 else
223 {
224 /* Handle function descriptors lacking debug info. */
225 int found_descriptor = 0;
226 if (VALUE_LVAL (function) == lval_memory)
227 {
228 CORE_ADDR nfunaddr;
229 funaddr = value_as_address (value_addr (function));
230 nfunaddr = funaddr;
231 funaddr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
232 funaddr,
233 &current_target);
234 if (funaddr != nfunaddr)
235 found_descriptor = 1;
236 }
237 if (!found_descriptor)
238 /* Handle integer used as address of a function. */
239 funaddr = (CORE_ADDR) value_as_long (function);
240 }
241
242 value_type = builtin_type_int;
243 }
244 else
245 error (_("Invalid data type for function to be called."));
246
247 if (retval_type != NULL)
248 *retval_type = value_type;
249 return funaddr + gdbarch_deprecated_function_start_offset (current_gdbarch);
250 }
251
252 /* Call breakpoint_auto_delete on the current contents of the bpstat
253 pointed to by arg (which is really a bpstat *). */
254
255 static void
256 breakpoint_auto_delete_contents (void *arg)
257 {
258 breakpoint_auto_delete (*(bpstat *) arg);
259 }
260
261 static CORE_ADDR
262 generic_push_dummy_code (struct gdbarch *gdbarch,
263 CORE_ADDR sp, CORE_ADDR funaddr,
264 struct value **args, int nargs,
265 struct type *value_type,
266 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
267 struct regcache *regcache)
268 {
269 /* Something here to findout the size of a breakpoint and then
270 allocate space for it on the stack. */
271 int bplen;
272 /* This code assumes frame align. */
273 gdb_assert (gdbarch_frame_align_p (gdbarch));
274 /* Force the stack's alignment. The intent is to ensure that the SP
275 is aligned to at least a breakpoint instruction's boundary. */
276 sp = gdbarch_frame_align (gdbarch, sp);
277 /* Allocate space for, and then position the breakpoint on the
278 stack. */
279 if (gdbarch_inner_than (gdbarch, 1, 2))
280 {
281 CORE_ADDR bppc = sp;
282 gdbarch_breakpoint_from_pc (gdbarch, &bppc, &bplen);
283 sp = gdbarch_frame_align (gdbarch, sp - bplen);
284 (*bp_addr) = sp;
285 /* Should the breakpoint size/location be re-computed here? */
286 }
287 else
288 {
289 (*bp_addr) = sp;
290 gdbarch_breakpoint_from_pc (gdbarch, bp_addr, &bplen);
291 sp = gdbarch_frame_align (gdbarch, sp + bplen);
292 }
293 /* Inferior resumes at the function entry point. */
294 (*real_pc) = funaddr;
295 return sp;
296 }
297
298 /* For CALL_DUMMY_ON_STACK, push a breakpoint sequence that the called
299 function returns to. */
300
301 static CORE_ADDR
302 push_dummy_code (struct gdbarch *gdbarch,
303 CORE_ADDR sp, CORE_ADDR funaddr,
304 struct value **args, int nargs,
305 struct type *value_type,
306 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
307 struct regcache *regcache)
308 {
309 if (gdbarch_push_dummy_code_p (gdbarch))
310 return gdbarch_push_dummy_code (gdbarch, sp, funaddr,
311 args, nargs, value_type, real_pc, bp_addr,
312 regcache);
313 else
314 return generic_push_dummy_code (gdbarch, sp, funaddr,
315 args, nargs, value_type, real_pc, bp_addr,
316 regcache);
317 }
318
319 /* All this stuff with a dummy frame may seem unnecessarily complicated
320 (why not just save registers in GDB?). The purpose of pushing a dummy
321 frame which looks just like a real frame is so that if you call a
322 function and then hit a breakpoint (get a signal, etc), "backtrace"
323 will look right. Whether the backtrace needs to actually show the
324 stack at the time the inferior function was called is debatable, but
325 it certainly needs to not display garbage. So if you are contemplating
326 making dummy frames be different from normal frames, consider that. */
327
328 /* Perform a function call in the inferior.
329 ARGS is a vector of values of arguments (NARGS of them).
330 FUNCTION is a value, the function to be called.
331 Returns a value representing what the function returned.
332 May fail to return, if a breakpoint or signal is hit
333 during the execution of the function.
334
335 ARGS is modified to contain coerced values. */
336
337 struct value *
338 call_function_by_hand (struct value *function, int nargs, struct value **args)
339 {
340 CORE_ADDR sp;
341 CORE_ADDR dummy_addr;
342 struct type *values_type, *target_values_type;
343 unsigned char struct_return = 0, lang_struct_return = 0;
344 CORE_ADDR struct_addr = 0;
345 struct regcache *retbuf;
346 struct cleanup *retbuf_cleanup;
347 struct inferior_status *inf_status;
348 struct cleanup *inf_status_cleanup;
349 CORE_ADDR funaddr;
350 CORE_ADDR real_pc;
351 struct type *ftype = check_typedef (value_type (function));
352 CORE_ADDR bp_addr;
353 struct regcache *caller_regcache;
354 struct cleanup *caller_regcache_cleanup;
355 struct frame_id dummy_id;
356 struct cleanup *args_cleanup;
357
358 if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
359 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
360
361 if (!target_has_execution)
362 noprocess ();
363
364 if (!gdbarch_push_dummy_call_p (current_gdbarch))
365 error (_("This target does not support function calls"));
366
367 /* Create a cleanup chain that contains the retbuf (buffer
368 containing the register values). This chain is create BEFORE the
369 inf_status chain so that the inferior status can cleaned up
370 (restored or discarded) without having the retbuf freed. */
371 retbuf = regcache_xmalloc (current_gdbarch);
372 retbuf_cleanup = make_cleanup_regcache_xfree (retbuf);
373
374 /* A cleanup for the inferior status. Create this AFTER the retbuf
375 so that this can be discarded or applied without interfering with
376 the regbuf. */
377 inf_status = save_inferior_status (1);
378 inf_status_cleanup = make_cleanup_restore_inferior_status (inf_status);
379
380 /* Save the caller's registers so that they can be restored once the
381 callee returns. To allow nested calls the registers are (further
382 down) pushed onto a dummy frame stack. Include a cleanup (which
383 is tossed once the regcache has been pushed). */
384 caller_regcache = frame_save_as_regcache (get_current_frame ());
385 caller_regcache_cleanup = make_cleanup_regcache_xfree (caller_regcache);
386
387 /* Ensure that the initial SP is correctly aligned. */
388 {
389 CORE_ADDR old_sp = get_frame_sp (get_current_frame ());
390 if (gdbarch_frame_align_p (current_gdbarch))
391 {
392 sp = gdbarch_frame_align (current_gdbarch, old_sp);
393 /* NOTE: cagney/2003-08-13: Skip the "red zone". For some
394 ABIs, a function can use memory beyond the inner most stack
395 address. AMD64 called that region the "red zone". Skip at
396 least the "red zone" size before allocating any space on
397 the stack. */
398 if (gdbarch_inner_than (current_gdbarch, 1, 2))
399 sp -= gdbarch_frame_red_zone_size (current_gdbarch);
400 else
401 sp += gdbarch_frame_red_zone_size (current_gdbarch);
402 /* Still aligned? */
403 gdb_assert (sp == gdbarch_frame_align (current_gdbarch, sp));
404 /* NOTE: cagney/2002-09-18:
405
406 On a RISC architecture, a void parameterless generic dummy
407 frame (i.e., no parameters, no result) typically does not
408 need to push anything the stack and hence can leave SP and
409 FP. Similarly, a frameless (possibly leaf) function does
410 not push anything on the stack and, hence, that too can
411 leave FP and SP unchanged. As a consequence, a sequence of
412 void parameterless generic dummy frame calls to frameless
413 functions will create a sequence of effectively identical
414 frames (SP, FP and TOS and PC the same). This, not
415 suprisingly, results in what appears to be a stack in an
416 infinite loop --- when GDB tries to find a generic dummy
417 frame on the internal dummy frame stack, it will always
418 find the first one.
419
420 To avoid this problem, the code below always grows the
421 stack. That way, two dummy frames can never be identical.
422 It does burn a few bytes of stack but that is a small price
423 to pay :-). */
424 if (sp == old_sp)
425 {
426 if (gdbarch_inner_than (current_gdbarch, 1, 2))
427 /* Stack grows down. */
428 sp = gdbarch_frame_align (current_gdbarch, old_sp - 1);
429 else
430 /* Stack grows up. */
431 sp = gdbarch_frame_align (current_gdbarch, old_sp + 1);
432 }
433 gdb_assert ((gdbarch_inner_than (current_gdbarch, 1, 2)
434 && sp <= old_sp)
435 || (gdbarch_inner_than (current_gdbarch, 2, 1)
436 && sp >= old_sp));
437 }
438 else
439 /* FIXME: cagney/2002-09-18: Hey, you loose!
440
441 Who knows how badly aligned the SP is!
442
443 If the generic dummy frame ends up empty (because nothing is
444 pushed) GDB won't be able to correctly perform back traces.
445 If a target is having trouble with backtraces, first thing to
446 do is add FRAME_ALIGN() to the architecture vector. If that
447 fails, try unwind_dummy_id().
448
449 If the ABI specifies a "Red Zone" (see the doco) the code
450 below will quietly trash it. */
451 sp = old_sp;
452 }
453
454 funaddr = find_function_addr (function, &values_type);
455 CHECK_TYPEDEF (values_type);
456
457 /* Are we returning a value using a structure return (passing a
458 hidden argument pointing to storage) or a normal value return?
459 There are two cases: language-mandated structure return and
460 target ABI structure return. The variable STRUCT_RETURN only
461 describes the latter. The language version is handled by passing
462 the return location as the first parameter to the function,
463 even preceding "this". This is different from the target
464 ABI version, which is target-specific; for instance, on ia64
465 the first argument is passed in out0 but the hidden structure
466 return pointer would normally be passed in r8. */
467
468 if (language_pass_by_reference (values_type))
469 {
470 lang_struct_return = 1;
471
472 /* Tell the target specific argument pushing routine not to
473 expect a value. */
474 target_values_type = builtin_type_void;
475 }
476 else
477 {
478 struct_return = using_struct_return (values_type);
479 target_values_type = values_type;
480 }
481
482 /* Determine the location of the breakpoint (and possibly other
483 stuff) that the called function will return to. The SPARC, for a
484 function returning a structure or union, needs to make space for
485 not just the breakpoint but also an extra word containing the
486 size (?) of the structure being passed. */
487
488 /* The actual breakpoint (at BP_ADDR) is inserted separatly so there
489 is no need to write that out. */
490
491 switch (gdbarch_call_dummy_location (current_gdbarch))
492 {
493 case ON_STACK:
494 /* "dummy_addr" is here just to keep old targets happy. New
495 targets return that same information via "sp" and "bp_addr". */
496 if (gdbarch_inner_than (current_gdbarch, 1, 2))
497 {
498 sp = push_dummy_code (current_gdbarch, sp, funaddr,
499 args, nargs, target_values_type,
500 &real_pc, &bp_addr, get_current_regcache ());
501 dummy_addr = sp;
502 }
503 else
504 {
505 dummy_addr = sp;
506 sp = push_dummy_code (current_gdbarch, sp, funaddr,
507 args, nargs, target_values_type,
508 &real_pc, &bp_addr, get_current_regcache ());
509 }
510 break;
511 case AT_ENTRY_POINT:
512 real_pc = funaddr;
513 dummy_addr = entry_point_address ();
514 /* Make certain that the address points at real code, and not a
515 function descriptor. */
516 dummy_addr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
517 dummy_addr,
518 &current_target);
519 /* A call dummy always consists of just a single breakpoint, so
520 it's address is the same as the address of the dummy. */
521 bp_addr = dummy_addr;
522 break;
523 case AT_SYMBOL:
524 /* Some executables define a symbol __CALL_DUMMY_ADDRESS whose
525 address is the location where the breakpoint should be
526 placed. Once all targets are using the overhauled frame code
527 this can be deleted - ON_STACK is a better option. */
528 {
529 struct minimal_symbol *sym;
530
531 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
532 real_pc = funaddr;
533 if (sym)
534 dummy_addr = SYMBOL_VALUE_ADDRESS (sym);
535 else
536 dummy_addr = entry_point_address ();
537 /* Make certain that the address points at real code, and not
538 a function descriptor. */
539 dummy_addr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
540 dummy_addr,
541 &current_target);
542 /* A call dummy always consists of just a single breakpoint,
543 so it's address is the same as the address of the dummy. */
544 bp_addr = dummy_addr;
545 break;
546 }
547 default:
548 internal_error (__FILE__, __LINE__, _("bad switch"));
549 }
550
551 if (nargs < TYPE_NFIELDS (ftype))
552 error (_("too few arguments in function call"));
553
554 {
555 int i;
556 for (i = nargs - 1; i >= 0; i--)
557 {
558 int prototyped;
559 struct type *param_type;
560
561 /* FIXME drow/2002-05-31: Should just always mark methods as
562 prototyped. Can we respect TYPE_VARARGS? Probably not. */
563 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
564 prototyped = 1;
565 else if (i < TYPE_NFIELDS (ftype))
566 prototyped = TYPE_PROTOTYPED (ftype);
567 else
568 prototyped = 0;
569
570 if (i < TYPE_NFIELDS (ftype))
571 param_type = TYPE_FIELD_TYPE (ftype, i);
572 else
573 param_type = NULL;
574
575 args[i] = value_arg_coerce (args[i], param_type, prototyped);
576
577 if (param_type != NULL && language_pass_by_reference (param_type))
578 args[i] = value_addr (args[i]);
579 }
580 }
581
582 /* Reserve space for the return structure to be written on the
583 stack, if necessary. Make certain that the value is correctly
584 aligned. */
585
586 if (struct_return || lang_struct_return)
587 {
588 int len = TYPE_LENGTH (values_type);
589 if (gdbarch_inner_than (current_gdbarch, 1, 2))
590 {
591 /* Stack grows downward. Align STRUCT_ADDR and SP after
592 making space for the return value. */
593 sp -= len;
594 if (gdbarch_frame_align_p (current_gdbarch))
595 sp = gdbarch_frame_align (current_gdbarch, sp);
596 struct_addr = sp;
597 }
598 else
599 {
600 /* Stack grows upward. Align the frame, allocate space, and
601 then again, re-align the frame??? */
602 if (gdbarch_frame_align_p (current_gdbarch))
603 sp = gdbarch_frame_align (current_gdbarch, sp);
604 struct_addr = sp;
605 sp += len;
606 if (gdbarch_frame_align_p (current_gdbarch))
607 sp = gdbarch_frame_align (current_gdbarch, sp);
608 }
609 }
610
611 if (lang_struct_return)
612 {
613 struct value **new_args;
614
615 /* Add the new argument to the front of the argument list. */
616 new_args = xmalloc (sizeof (struct value *) * (nargs + 1));
617 new_args[0] = value_from_pointer (lookup_pointer_type (values_type),
618 struct_addr);
619 memcpy (&new_args[1], &args[0], sizeof (struct value *) * nargs);
620 args = new_args;
621 nargs++;
622 args_cleanup = make_cleanup (xfree, args);
623 }
624 else
625 args_cleanup = make_cleanup (null_cleanup, NULL);
626
627 /* Create the dummy stack frame. Pass in the call dummy address as,
628 presumably, the ABI code knows where, in the call dummy, the
629 return address should be pointed. */
630 sp = gdbarch_push_dummy_call (current_gdbarch, function,
631 get_current_regcache (), bp_addr, nargs, args,
632 sp, struct_return, struct_addr);
633
634 do_cleanups (args_cleanup);
635
636 /* Set up a frame ID for the dummy frame so we can pass it to
637 set_momentary_breakpoint. We need to give the breakpoint a frame
638 ID so that the breakpoint code can correctly re-identify the
639 dummy breakpoint. */
640 /* Sanity. The exact same SP value is returned by PUSH_DUMMY_CALL,
641 saved as the dummy-frame TOS, and used by unwind_dummy_id to form
642 the frame ID's stack address. */
643 dummy_id = frame_id_build (sp, bp_addr);
644
645 /* Create a momentary breakpoint at the return address of the
646 inferior. That way it breaks when it returns. */
647
648 {
649 struct breakpoint *bpt;
650 struct symtab_and_line sal;
651 init_sal (&sal); /* initialize to zeroes */
652 sal.pc = bp_addr;
653 sal.section = find_pc_overlay (sal.pc);
654 /* Sanity. The exact same SP value is returned by
655 PUSH_DUMMY_CALL, saved as the dummy-frame TOS, and used by
656 unwind_dummy_id to form the frame ID's stack address. */
657 bpt = set_momentary_breakpoint (sal, dummy_id, bp_call_dummy);
658 bpt->disposition = disp_del;
659 }
660
661 /* Everything's ready, push all the info needed to restore the
662 caller (and identify the dummy-frame) onto the dummy-frame
663 stack. */
664 dummy_frame_push (caller_regcache, &dummy_id);
665 discard_cleanups (caller_regcache_cleanup);
666
667 /* - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP -
668 If you're looking to implement asynchronous dummy-frames, then
669 just below is the place to chop this function in two.. */
670
671 /* Now proceed, having reached the desired place. */
672 clear_proceed_status ();
673
674 /* Execute a "stack dummy", a piece of code stored in the stack by
675 the debugger to be executed in the inferior.
676
677 The dummy's frame is automatically popped whenever that break is
678 hit. If that is the first time the program stops,
679 call_function_by_hand returns to its caller with that frame
680 already gone and sets RC to 0.
681
682 Otherwise, set RC to a non-zero value. If the called function
683 receives a random signal, we do not allow the user to continue
684 executing it as this may not work. The dummy frame is poped and
685 we return 1. If we hit a breakpoint, we leave the frame in place
686 and return 2 (the frame will eventually be popped when we do hit
687 the dummy end breakpoint). */
688
689 {
690 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
691 int saved_async = 0;
692
693 /* If all error()s out of proceed ended up calling normal_stop
694 (and perhaps they should; it already does in the special case
695 of error out of resume()), then we wouldn't need this. */
696 make_cleanup (breakpoint_auto_delete_contents, &stop_bpstat);
697
698 disable_watchpoints_before_interactive_call_start ();
699 proceed_to_finish = 1; /* We want stop_registers, please... */
700
701 if (target_can_async_p ())
702 saved_async = target_async_mask (0);
703
704 proceed (real_pc, TARGET_SIGNAL_0, 0);
705
706 if (saved_async)
707 target_async_mask (saved_async);
708
709 enable_watchpoints_after_interactive_call_stop ();
710
711 discard_cleanups (old_cleanups);
712 }
713
714 if (stopped_by_random_signal || !stop_stack_dummy)
715 {
716 /* Find the name of the function we're about to complain about. */
717 const char *name = NULL;
718 {
719 struct symbol *symbol = find_pc_function (funaddr);
720 if (symbol)
721 name = SYMBOL_PRINT_NAME (symbol);
722 else
723 {
724 /* Try the minimal symbols. */
725 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
726 if (msymbol)
727 name = SYMBOL_PRINT_NAME (msymbol);
728 }
729 if (name == NULL)
730 {
731 /* Can't use a cleanup here. It is discarded, instead use
732 an alloca. */
733 char *tmp = xstrprintf ("at %s", hex_string (funaddr));
734 char *a = alloca (strlen (tmp) + 1);
735 strcpy (a, tmp);
736 xfree (tmp);
737 name = a;
738 }
739 }
740 if (stopped_by_random_signal)
741 {
742 /* We stopped inside the FUNCTION because of a random
743 signal. Further execution of the FUNCTION is not
744 allowed. */
745
746 if (unwind_on_signal_p)
747 {
748 /* The user wants the context restored. */
749
750 /* We must get back to the frame we were before the
751 dummy call. */
752 frame_pop (get_current_frame ());
753
754 /* FIXME: Insert a bunch of wrap_here; name can be very
755 long if it's a C++ name with arguments and stuff. */
756 error (_("\
757 The program being debugged was signaled while in a function called from GDB.\n\
758 GDB has restored the context to what it was before the call.\n\
759 To change this behavior use \"set unwindonsignal off\"\n\
760 Evaluation of the expression containing the function (%s) will be abandoned."),
761 name);
762 }
763 else
764 {
765 /* The user wants to stay in the frame where we stopped
766 (default).*/
767 /* If we restored the inferior status (via the cleanup),
768 we would print a spurious error message (Unable to
769 restore previously selected frame), would write the
770 registers from the inf_status (which is wrong), and
771 would do other wrong things. */
772 discard_cleanups (inf_status_cleanup);
773 discard_inferior_status (inf_status);
774 /* FIXME: Insert a bunch of wrap_here; name can be very
775 long if it's a C++ name with arguments and stuff. */
776 error (_("\
777 The program being debugged was signaled while in a function called from GDB.\n\
778 GDB remains in the frame where the signal was received.\n\
779 To change this behavior use \"set unwindonsignal on\"\n\
780 Evaluation of the expression containing the function (%s) will be abandoned."),
781 name);
782 }
783 }
784
785 if (!stop_stack_dummy)
786 {
787 /* We hit a breakpoint inside the FUNCTION. */
788 /* If we restored the inferior status (via the cleanup), we
789 would print a spurious error message (Unable to restore
790 previously selected frame), would write the registers
791 from the inf_status (which is wrong), and would do other
792 wrong things. */
793 discard_cleanups (inf_status_cleanup);
794 discard_inferior_status (inf_status);
795 /* The following error message used to say "The expression
796 which contained the function call has been discarded."
797 It is a hard concept to explain in a few words. Ideally,
798 GDB would be able to resume evaluation of the expression
799 when the function finally is done executing. Perhaps
800 someday this will be implemented (it would not be easy). */
801 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
802 a C++ name with arguments and stuff. */
803 error (_("\
804 The program being debugged stopped while in a function called from GDB.\n\
805 When the function (%s) is done executing, GDB will silently\n\
806 stop (instead of continuing to evaluate the expression containing\n\
807 the function call)."), name);
808 }
809
810 /* The above code errors out, so ... */
811 internal_error (__FILE__, __LINE__, _("... should not be here"));
812 }
813
814 /* If we get here the called FUNCTION run to completion. */
815
816 /* On normal return, the stack dummy has been popped already. */
817 regcache_cpy_no_passthrough (retbuf, stop_registers);
818
819 /* Restore the inferior status, via its cleanup. At this stage,
820 leave the RETBUF alone. */
821 do_cleanups (inf_status_cleanup);
822
823 /* Figure out the value returned by the function. */
824 {
825 struct value *retval = NULL;
826
827 if (lang_struct_return)
828 retval = value_at (values_type, struct_addr);
829 else if (TYPE_CODE (target_values_type) == TYPE_CODE_VOID)
830 {
831 /* If the function returns void, don't bother fetching the
832 return value. */
833 retval = allocate_value (values_type);
834 }
835 else
836 {
837 struct gdbarch *arch = current_gdbarch;
838
839 switch (gdbarch_return_value (arch, target_values_type, NULL, NULL, NULL))
840 {
841 case RETURN_VALUE_REGISTER_CONVENTION:
842 case RETURN_VALUE_ABI_RETURNS_ADDRESS:
843 case RETURN_VALUE_ABI_PRESERVES_ADDRESS:
844 retval = allocate_value (values_type);
845 gdbarch_return_value (current_gdbarch, values_type, retbuf,
846 value_contents_raw (retval), NULL);
847 break;
848 case RETURN_VALUE_STRUCT_CONVENTION:
849 retval = value_at (values_type, struct_addr);
850 break;
851 }
852 }
853
854 do_cleanups (retbuf_cleanup);
855
856 gdb_assert(retval);
857 return retval;
858 }
859 }
860 \f
861
862 /* Provide a prototype to silence -Wmissing-prototypes. */
863 void _initialize_infcall (void);
864
865 void
866 _initialize_infcall (void)
867 {
868 add_setshow_boolean_cmd ("coerce-float-to-double", class_obscure,
869 &coerce_float_to_double_p, _("\
870 Set coercion of floats to doubles when calling functions."), _("\
871 Show coercion of floats to doubles when calling functions"), _("\
872 Variables of type float should generally be converted to doubles before\n\
873 calling an unprototyped function, and left alone when calling a prototyped\n\
874 function. However, some older debug info formats do not provide enough\n\
875 information to determine that a function is prototyped. If this flag is\n\
876 set, GDB will perform the conversion for a function it considers\n\
877 unprototyped.\n\
878 The default is to perform the conversion.\n"),
879 NULL,
880 show_coerce_float_to_double_p,
881 &setlist, &showlist);
882
883 add_setshow_boolean_cmd ("unwindonsignal", no_class,
884 &unwind_on_signal_p, _("\
885 Set unwinding of stack if a signal is received while in a call dummy."), _("\
886 Show unwinding of stack if a signal is received while in a call dummy."), _("\
887 The unwindonsignal lets the user determine what gdb should do if a signal\n\
888 is received while in a function called from gdb (call dummy). If set, gdb\n\
889 unwinds the stack and restore the context to what as it was before the call.\n\
890 The default is to stop in the frame where the signal was received."),
891 NULL,
892 show_unwind_on_signal_p,
893 &setlist, &showlist);
894 }
This page took 0.055886 seconds and 5 git commands to generate.