gdb:
[deliverable/binutils-gdb.git] / gdb / infcall.c
1 /* Perform an inferior function call, for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
5 2008, 2009 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "breakpoint.h"
24 #include "target.h"
25 #include "regcache.h"
26 #include "inferior.h"
27 #include "gdb_assert.h"
28 #include "block.h"
29 #include "gdbcore.h"
30 #include "language.h"
31 #include "objfiles.h"
32 #include "gdbcmd.h"
33 #include "command.h"
34 #include "gdb_string.h"
35 #include "infcall.h"
36 #include "dummy-frame.h"
37 #include "ada-lang.h"
38 #include "gdbthread.h"
39 #include "exceptions.h"
40
41 /* If we can't find a function's name from its address,
42 we print this instead. */
43 #define RAW_FUNCTION_ADDRESS_FORMAT "at 0x%s"
44 #define RAW_FUNCTION_ADDRESS_SIZE (sizeof (RAW_FUNCTION_ADDRESS_FORMAT) \
45 + 2 * sizeof (CORE_ADDR))
46
47 /* NOTE: cagney/2003-04-16: What's the future of this code?
48
49 GDB needs an asynchronous expression evaluator, that means an
50 asynchronous inferior function call implementation, and that in
51 turn means restructuring the code so that it is event driven. */
52
53 /* How you should pass arguments to a function depends on whether it
54 was defined in K&R style or prototype style. If you define a
55 function using the K&R syntax that takes a `float' argument, then
56 callers must pass that argument as a `double'. If you define the
57 function using the prototype syntax, then you must pass the
58 argument as a `float', with no promotion.
59
60 Unfortunately, on certain older platforms, the debug info doesn't
61 indicate reliably how each function was defined. A function type's
62 TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
63 defined in prototype style. When calling a function whose
64 TYPE_FLAG_PROTOTYPED flag is clear, GDB consults this flag to
65 decide what to do.
66
67 For modern targets, it is proper to assume that, if the prototype
68 flag is clear, that can be trusted: `float' arguments should be
69 promoted to `double'. For some older targets, if the prototype
70 flag is clear, that doesn't tell us anything. The default is to
71 trust the debug information; the user can override this behavior
72 with "set coerce-float-to-double 0". */
73
74 static int coerce_float_to_double_p = 1;
75 static void
76 show_coerce_float_to_double_p (struct ui_file *file, int from_tty,
77 struct cmd_list_element *c, const char *value)
78 {
79 fprintf_filtered (file, _("\
80 Coercion of floats to doubles when calling functions is %s.\n"),
81 value);
82 }
83
84 /* This boolean tells what gdb should do if a signal is received while
85 in a function called from gdb (call dummy). If set, gdb unwinds
86 the stack and restore the context to what as it was before the
87 call.
88
89 The default is to stop in the frame where the signal was received. */
90
91 int unwind_on_signal_p = 0;
92 static void
93 show_unwind_on_signal_p (struct ui_file *file, int from_tty,
94 struct cmd_list_element *c, const char *value)
95 {
96 fprintf_filtered (file, _("\
97 Unwinding of stack if a signal is received while in a call dummy is %s.\n"),
98 value);
99 }
100
101
102 /* Perform the standard coercions that are specified
103 for arguments to be passed to C or Ada functions.
104
105 If PARAM_TYPE is non-NULL, it is the expected parameter type.
106 IS_PROTOTYPED is non-zero if the function declaration is prototyped.
107 SP is the stack pointer were additional data can be pushed (updating
108 its value as needed). */
109
110 static struct value *
111 value_arg_coerce (struct gdbarch *gdbarch, struct value *arg,
112 struct type *param_type, int is_prototyped, CORE_ADDR *sp)
113 {
114 const struct builtin_type *builtin = builtin_type (gdbarch);
115 struct type *arg_type = check_typedef (value_type (arg));
116 struct type *type
117 = param_type ? check_typedef (param_type) : arg_type;
118
119 /* Perform any Ada-specific coercion first. */
120 if (current_language->la_language == language_ada)
121 arg = ada_convert_actual (arg, type, sp);
122
123 /* Force the value to the target if we will need its address. At
124 this point, we could allocate arguments on the stack instead of
125 calling malloc if we knew that their addresses would not be
126 saved by the called function. */
127 arg = value_coerce_to_target (arg);
128
129 switch (TYPE_CODE (type))
130 {
131 case TYPE_CODE_REF:
132 {
133 struct value *new_value;
134
135 if (TYPE_CODE (arg_type) == TYPE_CODE_REF)
136 return value_cast_pointers (type, arg);
137
138 /* Cast the value to the reference's target type, and then
139 convert it back to a reference. This will issue an error
140 if the value was not previously in memory - in some cases
141 we should clearly be allowing this, but how? */
142 new_value = value_cast (TYPE_TARGET_TYPE (type), arg);
143 new_value = value_ref (new_value);
144 return new_value;
145 }
146 case TYPE_CODE_INT:
147 case TYPE_CODE_CHAR:
148 case TYPE_CODE_BOOL:
149 case TYPE_CODE_ENUM:
150 /* If we don't have a prototype, coerce to integer type if necessary. */
151 if (!is_prototyped)
152 {
153 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_int))
154 type = builtin->builtin_int;
155 }
156 /* Currently all target ABIs require at least the width of an integer
157 type for an argument. We may have to conditionalize the following
158 type coercion for future targets. */
159 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_int))
160 type = builtin->builtin_int;
161 break;
162 case TYPE_CODE_FLT:
163 if (!is_prototyped && coerce_float_to_double_p)
164 {
165 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_double))
166 type = builtin->builtin_double;
167 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin->builtin_double))
168 type = builtin->builtin_long_double;
169 }
170 break;
171 case TYPE_CODE_FUNC:
172 type = lookup_pointer_type (type);
173 break;
174 case TYPE_CODE_ARRAY:
175 /* Arrays are coerced to pointers to their first element, unless
176 they are vectors, in which case we want to leave them alone,
177 because they are passed by value. */
178 if (current_language->c_style_arrays)
179 if (!TYPE_VECTOR (type))
180 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
181 break;
182 case TYPE_CODE_UNDEF:
183 case TYPE_CODE_PTR:
184 case TYPE_CODE_STRUCT:
185 case TYPE_CODE_UNION:
186 case TYPE_CODE_VOID:
187 case TYPE_CODE_SET:
188 case TYPE_CODE_RANGE:
189 case TYPE_CODE_STRING:
190 case TYPE_CODE_BITSTRING:
191 case TYPE_CODE_ERROR:
192 case TYPE_CODE_MEMBERPTR:
193 case TYPE_CODE_METHODPTR:
194 case TYPE_CODE_METHOD:
195 case TYPE_CODE_COMPLEX:
196 default:
197 break;
198 }
199
200 return value_cast (type, arg);
201 }
202
203 /* Determine a function's address and its return type from its value.
204 Calls error() if the function is not valid for calling. */
205
206 CORE_ADDR
207 find_function_addr (struct value *function, struct type **retval_type)
208 {
209 struct type *ftype = check_typedef (value_type (function));
210 enum type_code code = TYPE_CODE (ftype);
211 struct type *value_type = NULL;
212 CORE_ADDR funaddr;
213
214 /* If it's a member function, just look at the function
215 part of it. */
216
217 /* Determine address to call. */
218 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
219 {
220 funaddr = VALUE_ADDRESS (function);
221 value_type = TYPE_TARGET_TYPE (ftype);
222 }
223 else if (code == TYPE_CODE_PTR)
224 {
225 funaddr = value_as_address (function);
226 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
227 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
228 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
229 {
230 funaddr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
231 funaddr,
232 &current_target);
233 value_type = TYPE_TARGET_TYPE (ftype);
234 }
235 }
236 else if (code == TYPE_CODE_INT)
237 {
238 /* Handle the case of functions lacking debugging info.
239 Their values are characters since their addresses are char */
240 if (TYPE_LENGTH (ftype) == 1)
241 funaddr = value_as_address (value_addr (function));
242 else
243 {
244 /* Handle function descriptors lacking debug info. */
245 int found_descriptor = 0;
246 funaddr = 0; /* pacify "gcc -Werror" */
247 if (VALUE_LVAL (function) == lval_memory)
248 {
249 CORE_ADDR nfunaddr;
250 funaddr = value_as_address (value_addr (function));
251 nfunaddr = funaddr;
252 funaddr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
253 funaddr,
254 &current_target);
255 if (funaddr != nfunaddr)
256 found_descriptor = 1;
257 }
258 if (!found_descriptor)
259 /* Handle integer used as address of a function. */
260 funaddr = (CORE_ADDR) value_as_long (function);
261 }
262 }
263 else
264 error (_("Invalid data type for function to be called."));
265
266 if (retval_type != NULL)
267 *retval_type = value_type;
268 return funaddr + gdbarch_deprecated_function_start_offset (current_gdbarch);
269 }
270
271 /* For CALL_DUMMY_ON_STACK, push a breakpoint sequence that the called
272 function returns to. */
273
274 static CORE_ADDR
275 push_dummy_code (struct gdbarch *gdbarch,
276 CORE_ADDR sp, CORE_ADDR funaddr,
277 struct value **args, int nargs,
278 struct type *value_type,
279 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
280 struct regcache *regcache)
281 {
282 gdb_assert (gdbarch_push_dummy_code_p (gdbarch));
283
284 return gdbarch_push_dummy_code (gdbarch, sp, funaddr,
285 args, nargs, value_type, real_pc, bp_addr,
286 regcache);
287 }
288
289 /* Fetch the name of the function at FUNADDR.
290 This is used in printing an error message for call_function_by_hand.
291 BUF is used to print FUNADDR in hex if the function name cannot be
292 determined. It must be large enough to hold formatted result of
293 RAW_FUNCTION_ADDRESS_FORMAT. */
294
295 static const char *
296 get_function_name (CORE_ADDR funaddr, char *buf, int buf_size)
297 {
298 {
299 struct symbol *symbol = find_pc_function (funaddr);
300 if (symbol)
301 return SYMBOL_PRINT_NAME (symbol);
302 }
303
304 {
305 /* Try the minimal symbols. */
306 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
307 if (msymbol)
308 return SYMBOL_PRINT_NAME (msymbol);
309 }
310
311 {
312 char *tmp = xstrprintf (_(RAW_FUNCTION_ADDRESS_FORMAT),
313 hex_string (funaddr));
314 gdb_assert (strlen (tmp) + 1 <= buf_size);
315 strcpy (buf, tmp);
316 xfree (tmp);
317 return buf;
318 }
319 }
320
321 /* Subroutine of call_function_by_hand to simplify it.
322 Start up the inferior and wait for it to stop.
323 Return the exception if there's an error, or an exception with
324 reason >= 0 if there's no error.
325
326 This is done inside a TRY_CATCH so the caller needn't worry about
327 thrown errors. The caller should rethrow if there's an error. */
328
329 static struct gdb_exception
330 run_inferior_call (struct thread_info *call_thread, CORE_ADDR real_pc)
331 {
332 volatile struct gdb_exception e;
333 int saved_async = 0;
334 int saved_in_infcall = call_thread->in_infcall;
335 ptid_t call_thread_ptid = call_thread->ptid;
336 char *saved_target_shortname = xstrdup (target_shortname);
337
338 call_thread->in_infcall = 1;
339
340 clear_proceed_status ();
341
342 disable_watchpoints_before_interactive_call_start ();
343 call_thread->proceed_to_finish = 1; /* We want stop_registers, please... */
344
345 if (target_can_async_p ())
346 saved_async = target_async_mask (0);
347
348 TRY_CATCH (e, RETURN_MASK_ALL)
349 proceed (real_pc, TARGET_SIGNAL_0, 0);
350
351 /* At this point the current thread may have changed. Refresh
352 CALL_THREAD as it could be invalid if its thread has exited. */
353 call_thread = find_thread_ptid (call_thread_ptid);
354
355 /* Don't restore the async mask if the target has changed,
356 saved_async is for the original target. */
357 if (saved_async
358 && strcmp (saved_target_shortname, target_shortname) == 0)
359 target_async_mask (saved_async);
360
361 enable_watchpoints_after_interactive_call_stop ();
362
363 /* Call breakpoint_auto_delete on the current contents of the bpstat
364 of inferior call thread.
365 If all error()s out of proceed ended up calling normal_stop
366 (and perhaps they should; it already does in the special case
367 of error out of resume()), then we wouldn't need this. */
368 if (e.reason < 0)
369 {
370 if (call_thread != NULL)
371 breakpoint_auto_delete (call_thread->stop_bpstat);
372 }
373
374 if (call_thread != NULL)
375 call_thread->in_infcall = saved_in_infcall;
376
377 xfree (saved_target_shortname);
378
379 return e;
380 }
381
382 /* All this stuff with a dummy frame may seem unnecessarily complicated
383 (why not just save registers in GDB?). The purpose of pushing a dummy
384 frame which looks just like a real frame is so that if you call a
385 function and then hit a breakpoint (get a signal, etc), "backtrace"
386 will look right. Whether the backtrace needs to actually show the
387 stack at the time the inferior function was called is debatable, but
388 it certainly needs to not display garbage. So if you are contemplating
389 making dummy frames be different from normal frames, consider that. */
390
391 /* Perform a function call in the inferior.
392 ARGS is a vector of values of arguments (NARGS of them).
393 FUNCTION is a value, the function to be called.
394 Returns a value representing what the function returned.
395 May fail to return, if a breakpoint or signal is hit
396 during the execution of the function.
397
398 ARGS is modified to contain coerced values. */
399
400 struct value *
401 call_function_by_hand (struct value *function, int nargs, struct value **args)
402 {
403 CORE_ADDR sp;
404 struct type *values_type, *target_values_type;
405 unsigned char struct_return = 0, lang_struct_return = 0;
406 CORE_ADDR struct_addr = 0;
407 struct inferior_status *inf_status;
408 struct cleanup *inf_status_cleanup;
409 struct inferior_thread_state *caller_state;
410 struct cleanup *caller_state_cleanup;
411 CORE_ADDR funaddr;
412 CORE_ADDR real_pc;
413 struct type *ftype = check_typedef (value_type (function));
414 CORE_ADDR bp_addr;
415 struct frame_id dummy_id;
416 struct cleanup *args_cleanup;
417 struct frame_info *frame;
418 struct gdbarch *gdbarch;
419 ptid_t call_thread_ptid;
420 struct gdb_exception e;
421 const char *name;
422 char name_buf[RAW_FUNCTION_ADDRESS_SIZE];
423
424 if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
425 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
426
427 if (!target_has_execution)
428 noprocess ();
429
430 frame = get_current_frame ();
431 gdbarch = get_frame_arch (frame);
432
433 if (!gdbarch_push_dummy_call_p (gdbarch))
434 error (_("This target does not support function calls."));
435
436 /* A cleanup for the inferior status.
437 This is only needed while we're preparing the inferior function call. */
438 inf_status = save_inferior_status ();
439 inf_status_cleanup = make_cleanup_restore_inferior_status (inf_status);
440
441 /* Save the caller's registers and other state associated with the
442 inferior itself so that they can be restored once the
443 callee returns. To allow nested calls the registers are (further
444 down) pushed onto a dummy frame stack. Include a cleanup (which
445 is tossed once the regcache has been pushed). */
446 caller_state = save_inferior_thread_state ();
447 caller_state_cleanup = make_cleanup_restore_inferior_thread_state (caller_state);
448
449 /* Ensure that the initial SP is correctly aligned. */
450 {
451 CORE_ADDR old_sp = get_frame_sp (frame);
452 if (gdbarch_frame_align_p (gdbarch))
453 {
454 sp = gdbarch_frame_align (gdbarch, old_sp);
455 /* NOTE: cagney/2003-08-13: Skip the "red zone". For some
456 ABIs, a function can use memory beyond the inner most stack
457 address. AMD64 called that region the "red zone". Skip at
458 least the "red zone" size before allocating any space on
459 the stack. */
460 if (gdbarch_inner_than (gdbarch, 1, 2))
461 sp -= gdbarch_frame_red_zone_size (gdbarch);
462 else
463 sp += gdbarch_frame_red_zone_size (gdbarch);
464 /* Still aligned? */
465 gdb_assert (sp == gdbarch_frame_align (gdbarch, sp));
466 /* NOTE: cagney/2002-09-18:
467
468 On a RISC architecture, a void parameterless generic dummy
469 frame (i.e., no parameters, no result) typically does not
470 need to push anything the stack and hence can leave SP and
471 FP. Similarly, a frameless (possibly leaf) function does
472 not push anything on the stack and, hence, that too can
473 leave FP and SP unchanged. As a consequence, a sequence of
474 void parameterless generic dummy frame calls to frameless
475 functions will create a sequence of effectively identical
476 frames (SP, FP and TOS and PC the same). This, not
477 suprisingly, results in what appears to be a stack in an
478 infinite loop --- when GDB tries to find a generic dummy
479 frame on the internal dummy frame stack, it will always
480 find the first one.
481
482 To avoid this problem, the code below always grows the
483 stack. That way, two dummy frames can never be identical.
484 It does burn a few bytes of stack but that is a small price
485 to pay :-). */
486 if (sp == old_sp)
487 {
488 if (gdbarch_inner_than (gdbarch, 1, 2))
489 /* Stack grows down. */
490 sp = gdbarch_frame_align (gdbarch, old_sp - 1);
491 else
492 /* Stack grows up. */
493 sp = gdbarch_frame_align (gdbarch, old_sp + 1);
494 }
495 gdb_assert ((gdbarch_inner_than (gdbarch, 1, 2)
496 && sp <= old_sp)
497 || (gdbarch_inner_than (gdbarch, 2, 1)
498 && sp >= old_sp));
499 }
500 else
501 /* FIXME: cagney/2002-09-18: Hey, you loose!
502
503 Who knows how badly aligned the SP is!
504
505 If the generic dummy frame ends up empty (because nothing is
506 pushed) GDB won't be able to correctly perform back traces.
507 If a target is having trouble with backtraces, first thing to
508 do is add FRAME_ALIGN() to the architecture vector. If that
509 fails, try dummy_id().
510
511 If the ABI specifies a "Red Zone" (see the doco) the code
512 below will quietly trash it. */
513 sp = old_sp;
514 }
515
516 funaddr = find_function_addr (function, &values_type);
517 if (!values_type)
518 values_type = builtin_type (gdbarch)->builtin_int;
519
520 CHECK_TYPEDEF (values_type);
521
522 /* Are we returning a value using a structure return (passing a
523 hidden argument pointing to storage) or a normal value return?
524 There are two cases: language-mandated structure return and
525 target ABI structure return. The variable STRUCT_RETURN only
526 describes the latter. The language version is handled by passing
527 the return location as the first parameter to the function,
528 even preceding "this". This is different from the target
529 ABI version, which is target-specific; for instance, on ia64
530 the first argument is passed in out0 but the hidden structure
531 return pointer would normally be passed in r8. */
532
533 if (language_pass_by_reference (values_type))
534 {
535 lang_struct_return = 1;
536
537 /* Tell the target specific argument pushing routine not to
538 expect a value. */
539 target_values_type = builtin_type_void;
540 }
541 else
542 {
543 struct_return = using_struct_return (value_type (function), values_type);
544 target_values_type = values_type;
545 }
546
547 /* Determine the location of the breakpoint (and possibly other
548 stuff) that the called function will return to. The SPARC, for a
549 function returning a structure or union, needs to make space for
550 not just the breakpoint but also an extra word containing the
551 size (?) of the structure being passed. */
552
553 /* The actual breakpoint (at BP_ADDR) is inserted separatly so there
554 is no need to write that out. */
555
556 switch (gdbarch_call_dummy_location (gdbarch))
557 {
558 case ON_STACK:
559 sp = push_dummy_code (gdbarch, sp, funaddr,
560 args, nargs, target_values_type,
561 &real_pc, &bp_addr, get_current_regcache ());
562 break;
563 case AT_ENTRY_POINT:
564 {
565 CORE_ADDR dummy_addr;
566
567 real_pc = funaddr;
568 dummy_addr = entry_point_address ();
569 /* Make certain that the address points at real code, and not a
570 function descriptor. */
571 dummy_addr = gdbarch_convert_from_func_ptr_addr (gdbarch,
572 dummy_addr,
573 &current_target);
574 /* A call dummy always consists of just a single breakpoint, so
575 its address is the same as the address of the dummy. */
576 bp_addr = dummy_addr;
577 break;
578 }
579 case AT_SYMBOL:
580 /* Some executables define a symbol __CALL_DUMMY_ADDRESS whose
581 address is the location where the breakpoint should be
582 placed. Once all targets are using the overhauled frame code
583 this can be deleted - ON_STACK is a better option. */
584 {
585 struct minimal_symbol *sym;
586 CORE_ADDR dummy_addr;
587
588 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
589 real_pc = funaddr;
590 if (sym)
591 dummy_addr = SYMBOL_VALUE_ADDRESS (sym);
592 else
593 dummy_addr = entry_point_address ();
594 /* Make certain that the address points at real code, and not
595 a function descriptor. */
596 dummy_addr = gdbarch_convert_from_func_ptr_addr (gdbarch,
597 dummy_addr,
598 &current_target);
599 /* A call dummy always consists of just a single breakpoint,
600 so it's address is the same as the address of the dummy. */
601 bp_addr = dummy_addr;
602 break;
603 }
604 default:
605 internal_error (__FILE__, __LINE__, _("bad switch"));
606 }
607
608 if (nargs < TYPE_NFIELDS (ftype))
609 error (_("Too few arguments in function call."));
610
611 {
612 int i;
613 for (i = nargs - 1; i >= 0; i--)
614 {
615 int prototyped;
616 struct type *param_type;
617
618 /* FIXME drow/2002-05-31: Should just always mark methods as
619 prototyped. Can we respect TYPE_VARARGS? Probably not. */
620 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
621 prototyped = 1;
622 else if (i < TYPE_NFIELDS (ftype))
623 prototyped = TYPE_PROTOTYPED (ftype);
624 else
625 prototyped = 0;
626
627 if (i < TYPE_NFIELDS (ftype))
628 param_type = TYPE_FIELD_TYPE (ftype, i);
629 else
630 param_type = NULL;
631
632 args[i] = value_arg_coerce (gdbarch, args[i],
633 param_type, prototyped, &sp);
634
635 if (param_type != NULL && language_pass_by_reference (param_type))
636 args[i] = value_addr (args[i]);
637 }
638 }
639
640 /* Reserve space for the return structure to be written on the
641 stack, if necessary. Make certain that the value is correctly
642 aligned. */
643
644 if (struct_return || lang_struct_return)
645 {
646 int len = TYPE_LENGTH (values_type);
647 if (gdbarch_inner_than (gdbarch, 1, 2))
648 {
649 /* Stack grows downward. Align STRUCT_ADDR and SP after
650 making space for the return value. */
651 sp -= len;
652 if (gdbarch_frame_align_p (gdbarch))
653 sp = gdbarch_frame_align (gdbarch, sp);
654 struct_addr = sp;
655 }
656 else
657 {
658 /* Stack grows upward. Align the frame, allocate space, and
659 then again, re-align the frame??? */
660 if (gdbarch_frame_align_p (gdbarch))
661 sp = gdbarch_frame_align (gdbarch, sp);
662 struct_addr = sp;
663 sp += len;
664 if (gdbarch_frame_align_p (gdbarch))
665 sp = gdbarch_frame_align (gdbarch, sp);
666 }
667 }
668
669 if (lang_struct_return)
670 {
671 struct value **new_args;
672
673 /* Add the new argument to the front of the argument list. */
674 new_args = xmalloc (sizeof (struct value *) * (nargs + 1));
675 new_args[0] = value_from_pointer (lookup_pointer_type (values_type),
676 struct_addr);
677 memcpy (&new_args[1], &args[0], sizeof (struct value *) * nargs);
678 args = new_args;
679 nargs++;
680 args_cleanup = make_cleanup (xfree, args);
681 }
682 else
683 args_cleanup = make_cleanup (null_cleanup, NULL);
684
685 /* Create the dummy stack frame. Pass in the call dummy address as,
686 presumably, the ABI code knows where, in the call dummy, the
687 return address should be pointed. */
688 sp = gdbarch_push_dummy_call (gdbarch, function, get_current_regcache (),
689 bp_addr, nargs, args,
690 sp, struct_return, struct_addr);
691
692 do_cleanups (args_cleanup);
693
694 /* Set up a frame ID for the dummy frame so we can pass it to
695 set_momentary_breakpoint. We need to give the breakpoint a frame
696 ID so that the breakpoint code can correctly re-identify the
697 dummy breakpoint. */
698 /* Sanity. The exact same SP value is returned by PUSH_DUMMY_CALL,
699 saved as the dummy-frame TOS, and used by dummy_id to form
700 the frame ID's stack address. */
701 dummy_id = frame_id_build (sp, bp_addr);
702
703 /* Create a momentary breakpoint at the return address of the
704 inferior. That way it breaks when it returns. */
705
706 {
707 struct breakpoint *bpt;
708 struct symtab_and_line sal;
709 init_sal (&sal); /* initialize to zeroes */
710 sal.pc = bp_addr;
711 sal.section = find_pc_overlay (sal.pc);
712 /* Sanity. The exact same SP value is returned by
713 PUSH_DUMMY_CALL, saved as the dummy-frame TOS, and used by
714 dummy_id to form the frame ID's stack address. */
715 bpt = set_momentary_breakpoint (sal, dummy_id, bp_call_dummy);
716 bpt->disposition = disp_del;
717 }
718
719 /* Everything's ready, push all the info needed to restore the
720 caller (and identify the dummy-frame) onto the dummy-frame
721 stack. */
722 dummy_frame_push (caller_state, &dummy_id);
723
724 /* Discard both inf_status and caller_state cleanups.
725 From this point on we explicitly restore the associated state
726 or discard it. */
727 discard_cleanups (inf_status_cleanup);
728
729 /* - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP -
730 If you're looking to implement asynchronous dummy-frames, then
731 just below is the place to chop this function in two.. */
732
733 /* TP is invalid after run_inferior_call returns, so enclose this
734 in a block so that it's only in scope during the time it's valid. */
735 {
736 struct thread_info *tp = inferior_thread ();
737
738 /* Save this thread's ptid, we need it later but the thread
739 may have exited. */
740 call_thread_ptid = tp->ptid;
741
742 /* Run the inferior until it stops. */
743
744 e = run_inferior_call (tp, real_pc);
745 }
746
747 /* Rethrow an error if we got one trying to run the inferior. */
748
749 if (e.reason < 0)
750 {
751 const char *name = get_function_name (funaddr,
752 name_buf, sizeof (name_buf));
753
754 discard_inferior_status (inf_status);
755
756 /* We could discard the dummy frame here if the program exited,
757 but it will get garbage collected the next time the program is
758 run anyway. */
759
760 switch (e.reason)
761 {
762 case RETURN_ERROR:
763 throw_error (e.error, _("\
764 %s\n\
765 An error occurred while in a function called from GDB.\n\
766 Evaluation of the expression containing the function\n\
767 (%s) will be abandoned.\n\
768 When the function is done executing, GDB will silently stop."),
769 e.message, name);
770 case RETURN_QUIT:
771 default:
772 throw_exception (e);
773 }
774 }
775
776 /* If the program has exited, or we stopped at a different thread,
777 exit and inform the user. */
778
779 if (! target_has_execution)
780 {
781 const char *name = get_function_name (funaddr,
782 name_buf, sizeof (name_buf));
783
784 /* If we try to restore the inferior status,
785 we'll crash as the inferior is no longer running. */
786 discard_inferior_status (inf_status);
787
788 /* We could discard the dummy frame here given that the program exited,
789 but it will get garbage collected the next time the program is
790 run anyway. */
791
792 error (_("\
793 The program being debugged exited while in a function called from GDB.\n\
794 Evaluation of the expression containing the function\n\
795 (%s) will be abandoned."),
796 name);
797 }
798
799 if (! ptid_equal (call_thread_ptid, inferior_ptid))
800 {
801 const char *name = get_function_name (funaddr,
802 name_buf, sizeof (name_buf));
803
804 /* We've switched threads. This can happen if another thread gets a
805 signal or breakpoint while our thread was running.
806 There's no point in restoring the inferior status,
807 we're in a different thread. */
808 discard_inferior_status (inf_status);
809 /* Keep the dummy frame record, if the user switches back to the
810 thread with the hand-call, we'll need it. */
811 if (stopped_by_random_signal)
812 error (_("\
813 The program received a signal in another thread while\n\
814 making a function call from GDB.\n\
815 Evaluation of the expression containing the function\n\
816 (%s) will be abandoned.\n\
817 When the function is done executing, GDB will silently stop."),
818 name);
819 else
820 error (_("\
821 The program stopped in another thread while making a function call from GDB.\n\
822 Evaluation of the expression containing the function\n\
823 (%s) will be abandoned.\n\
824 When the function is done executing, GDB will silently stop."),
825 name);
826 }
827
828 if (stopped_by_random_signal || !stop_stack_dummy)
829 {
830 const char *name = get_function_name (funaddr,
831 name_buf, sizeof (name_buf));
832
833 if (stopped_by_random_signal)
834 {
835 /* We stopped inside the FUNCTION because of a random
836 signal. Further execution of the FUNCTION is not
837 allowed. */
838
839 if (unwind_on_signal_p)
840 {
841 /* The user wants the context restored. */
842
843 /* We must get back to the frame we were before the
844 dummy call. */
845 dummy_frame_pop (dummy_id);
846
847 /* We also need to restore inferior status to that before the
848 dummy call. */
849 restore_inferior_status (inf_status);
850
851 /* FIXME: Insert a bunch of wrap_here; name can be very
852 long if it's a C++ name with arguments and stuff. */
853 error (_("\
854 The program being debugged was signaled while in a function called from GDB.\n\
855 GDB has restored the context to what it was before the call.\n\
856 To change this behavior use \"set unwindonsignal off\".\n\
857 Evaluation of the expression containing the function\n\
858 (%s) will be abandoned."),
859 name);
860 }
861 else
862 {
863 /* The user wants to stay in the frame where we stopped
864 (default).
865 Discard inferior status, we're not at the same point
866 we started at. */
867 discard_inferior_status (inf_status);
868
869 /* FIXME: Insert a bunch of wrap_here; name can be very
870 long if it's a C++ name with arguments and stuff. */
871 error (_("\
872 The program being debugged was signaled while in a function called from GDB.\n\
873 GDB remains in the frame where the signal was received.\n\
874 To change this behavior use \"set unwindonsignal on\".\n\
875 Evaluation of the expression containing the function\n\
876 (%s) will be abandoned.\n\
877 When the function is done executing, GDB will silently stop."),
878 name);
879 }
880 }
881
882 if (!stop_stack_dummy)
883 {
884 /* We hit a breakpoint inside the FUNCTION.
885 Keep the dummy frame, the user may want to examine its state.
886 Discard inferior status, we're not at the same point
887 we started at. */
888 discard_inferior_status (inf_status);
889
890 /* The following error message used to say "The expression
891 which contained the function call has been discarded."
892 It is a hard concept to explain in a few words. Ideally,
893 GDB would be able to resume evaluation of the expression
894 when the function finally is done executing. Perhaps
895 someday this will be implemented (it would not be easy). */
896 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
897 a C++ name with arguments and stuff. */
898 error (_("\
899 The program being debugged stopped while in a function called from GDB.\n\
900 Evaluation of the expression containing the function\n\
901 (%s) will be abandoned.\n\
902 When the function is done executing, GDB will silently stop."),
903 name);
904 }
905
906 /* The above code errors out, so ... */
907 internal_error (__FILE__, __LINE__, _("... should not be here"));
908 }
909
910 /* If we get here the called FUNCTION ran to completion,
911 and the dummy frame has already been popped. */
912
913 {
914 struct regcache *retbuf = regcache_xmalloc (gdbarch);
915 struct cleanup *retbuf_cleanup = make_cleanup_regcache_xfree (retbuf);
916 struct value *retval = NULL;
917
918 regcache_cpy_no_passthrough (retbuf, stop_registers);
919
920 /* Inferior call is successful. Restore the inferior status.
921 At this stage, leave the RETBUF alone. */
922 restore_inferior_status (inf_status);
923
924 /* Figure out the value returned by the function. */
925
926 if (lang_struct_return)
927 retval = value_at (values_type, struct_addr);
928 else if (TYPE_CODE (target_values_type) == TYPE_CODE_VOID)
929 {
930 /* If the function returns void, don't bother fetching the
931 return value. */
932 retval = allocate_value (values_type);
933 }
934 else
935 {
936 switch (gdbarch_return_value (gdbarch, value_type (function),
937 target_values_type, NULL, NULL, NULL))
938 {
939 case RETURN_VALUE_REGISTER_CONVENTION:
940 case RETURN_VALUE_ABI_RETURNS_ADDRESS:
941 case RETURN_VALUE_ABI_PRESERVES_ADDRESS:
942 retval = allocate_value (values_type);
943 gdbarch_return_value (gdbarch, value_type (function), values_type,
944 retbuf, value_contents_raw (retval), NULL);
945 break;
946 case RETURN_VALUE_STRUCT_CONVENTION:
947 retval = value_at (values_type, struct_addr);
948 break;
949 }
950 }
951
952 do_cleanups (retbuf_cleanup);
953
954 gdb_assert (retval);
955 return retval;
956 }
957 }
958 \f
959
960 /* Provide a prototype to silence -Wmissing-prototypes. */
961 void _initialize_infcall (void);
962
963 void
964 _initialize_infcall (void)
965 {
966 add_setshow_boolean_cmd ("coerce-float-to-double", class_obscure,
967 &coerce_float_to_double_p, _("\
968 Set coercion of floats to doubles when calling functions."), _("\
969 Show coercion of floats to doubles when calling functions"), _("\
970 Variables of type float should generally be converted to doubles before\n\
971 calling an unprototyped function, and left alone when calling a prototyped\n\
972 function. However, some older debug info formats do not provide enough\n\
973 information to determine that a function is prototyped. If this flag is\n\
974 set, GDB will perform the conversion for a function it considers\n\
975 unprototyped.\n\
976 The default is to perform the conversion.\n"),
977 NULL,
978 show_coerce_float_to_double_p,
979 &setlist, &showlist);
980
981 add_setshow_boolean_cmd ("unwindonsignal", no_class,
982 &unwind_on_signal_p, _("\
983 Set unwinding of stack if a signal is received while in a call dummy."), _("\
984 Show unwinding of stack if a signal is received while in a call dummy."), _("\
985 The unwindonsignal lets the user determine what gdb should do if a signal\n\
986 is received while in a function called from gdb (call dummy). If set, gdb\n\
987 unwinds the stack and restore the context to what as it was before the call.\n\
988 The default is to stop in the frame where the signal was received."),
989 NULL,
990 show_unwind_on_signal_p,
991 &setlist, &showlist);
992 }
This page took 0.049516 seconds and 5 git commands to generate.