Change enable_thread_stack_temporaries to an RAII class
[deliverable/binutils-gdb.git] / gdb / infcall.c
1 /* Perform an inferior function call, for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "infcall.h"
22 #include "breakpoint.h"
23 #include "tracepoint.h"
24 #include "target.h"
25 #include "regcache.h"
26 #include "inferior.h"
27 #include "infrun.h"
28 #include "block.h"
29 #include "gdbcore.h"
30 #include "language.h"
31 #include "objfiles.h"
32 #include "gdbcmd.h"
33 #include "command.h"
34 #include "dummy-frame.h"
35 #include "ada-lang.h"
36 #include "gdbthread.h"
37 #include "event-top.h"
38 #include "observer.h"
39 #include "top.h"
40 #include "interps.h"
41 #include "thread-fsm.h"
42 #include <algorithm>
43
44 /* If we can't find a function's name from its address,
45 we print this instead. */
46 #define RAW_FUNCTION_ADDRESS_FORMAT "at 0x%s"
47 #define RAW_FUNCTION_ADDRESS_SIZE (sizeof (RAW_FUNCTION_ADDRESS_FORMAT) \
48 + 2 * sizeof (CORE_ADDR))
49
50 /* NOTE: cagney/2003-04-16: What's the future of this code?
51
52 GDB needs an asynchronous expression evaluator, that means an
53 asynchronous inferior function call implementation, and that in
54 turn means restructuring the code so that it is event driven. */
55
56 /* How you should pass arguments to a function depends on whether it
57 was defined in K&R style or prototype style. If you define a
58 function using the K&R syntax that takes a `float' argument, then
59 callers must pass that argument as a `double'. If you define the
60 function using the prototype syntax, then you must pass the
61 argument as a `float', with no promotion.
62
63 Unfortunately, on certain older platforms, the debug info doesn't
64 indicate reliably how each function was defined. A function type's
65 TYPE_PROTOTYPED flag may be clear, even if the function was defined
66 in prototype style. When calling a function whose TYPE_PROTOTYPED
67 flag is clear, GDB consults this flag to decide what to do.
68
69 For modern targets, it is proper to assume that, if the prototype
70 flag is clear, that can be trusted: `float' arguments should be
71 promoted to `double'. For some older targets, if the prototype
72 flag is clear, that doesn't tell us anything. The default is to
73 trust the debug information; the user can override this behavior
74 with "set coerce-float-to-double 0". */
75
76 static int coerce_float_to_double_p = 1;
77 static void
78 show_coerce_float_to_double_p (struct ui_file *file, int from_tty,
79 struct cmd_list_element *c, const char *value)
80 {
81 fprintf_filtered (file,
82 _("Coercion of floats to doubles "
83 "when calling functions is %s.\n"),
84 value);
85 }
86
87 /* This boolean tells what gdb should do if a signal is received while
88 in a function called from gdb (call dummy). If set, gdb unwinds
89 the stack and restore the context to what as it was before the
90 call.
91
92 The default is to stop in the frame where the signal was received. */
93
94 static int unwind_on_signal_p = 0;
95 static void
96 show_unwind_on_signal_p (struct ui_file *file, int from_tty,
97 struct cmd_list_element *c, const char *value)
98 {
99 fprintf_filtered (file,
100 _("Unwinding of stack if a signal is "
101 "received while in a call dummy is %s.\n"),
102 value);
103 }
104
105 /* This boolean tells what gdb should do if a std::terminate call is
106 made while in a function called from gdb (call dummy).
107 As the confines of a single dummy stack prohibit out-of-frame
108 handlers from handling a raised exception, and as out-of-frame
109 handlers are common in C++, this can lead to no handler being found
110 by the unwinder, and a std::terminate call. This is a false positive.
111 If set, gdb unwinds the stack and restores the context to what it
112 was before the call.
113
114 The default is to unwind the frame if a std::terminate call is
115 made. */
116
117 static int unwind_on_terminating_exception_p = 1;
118
119 static void
120 show_unwind_on_terminating_exception_p (struct ui_file *file, int from_tty,
121 struct cmd_list_element *c,
122 const char *value)
123
124 {
125 fprintf_filtered (file,
126 _("Unwind stack if a C++ exception is "
127 "unhandled while in a call dummy is %s.\n"),
128 value);
129 }
130
131 /* Perform the standard coercions that are specified
132 for arguments to be passed to C or Ada functions.
133
134 If PARAM_TYPE is non-NULL, it is the expected parameter type.
135 IS_PROTOTYPED is non-zero if the function declaration is prototyped.
136 SP is the stack pointer were additional data can be pushed (updating
137 its value as needed). */
138
139 static struct value *
140 value_arg_coerce (struct gdbarch *gdbarch, struct value *arg,
141 struct type *param_type, int is_prototyped, CORE_ADDR *sp)
142 {
143 const struct builtin_type *builtin = builtin_type (gdbarch);
144 struct type *arg_type = check_typedef (value_type (arg));
145 struct type *type
146 = param_type ? check_typedef (param_type) : arg_type;
147
148 /* Perform any Ada-specific coercion first. */
149 if (current_language->la_language == language_ada)
150 arg = ada_convert_actual (arg, type);
151
152 /* Force the value to the target if we will need its address. At
153 this point, we could allocate arguments on the stack instead of
154 calling malloc if we knew that their addresses would not be
155 saved by the called function. */
156 arg = value_coerce_to_target (arg);
157
158 switch (TYPE_CODE (type))
159 {
160 case TYPE_CODE_REF:
161 case TYPE_CODE_RVALUE_REF:
162 {
163 struct value *new_value;
164
165 if (TYPE_IS_REFERENCE (arg_type))
166 return value_cast_pointers (type, arg, 0);
167
168 /* Cast the value to the reference's target type, and then
169 convert it back to a reference. This will issue an error
170 if the value was not previously in memory - in some cases
171 we should clearly be allowing this, but how? */
172 new_value = value_cast (TYPE_TARGET_TYPE (type), arg);
173 new_value = value_ref (new_value, TYPE_CODE (type));
174 return new_value;
175 }
176 case TYPE_CODE_INT:
177 case TYPE_CODE_CHAR:
178 case TYPE_CODE_BOOL:
179 case TYPE_CODE_ENUM:
180 /* If we don't have a prototype, coerce to integer type if necessary. */
181 if (!is_prototyped)
182 {
183 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_int))
184 type = builtin->builtin_int;
185 }
186 /* Currently all target ABIs require at least the width of an integer
187 type for an argument. We may have to conditionalize the following
188 type coercion for future targets. */
189 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_int))
190 type = builtin->builtin_int;
191 break;
192 case TYPE_CODE_FLT:
193 if (!is_prototyped && coerce_float_to_double_p)
194 {
195 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin->builtin_double))
196 type = builtin->builtin_double;
197 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin->builtin_double))
198 type = builtin->builtin_long_double;
199 }
200 break;
201 case TYPE_CODE_FUNC:
202 type = lookup_pointer_type (type);
203 break;
204 case TYPE_CODE_ARRAY:
205 /* Arrays are coerced to pointers to their first element, unless
206 they are vectors, in which case we want to leave them alone,
207 because they are passed by value. */
208 if (current_language->c_style_arrays)
209 if (!TYPE_VECTOR (type))
210 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
211 break;
212 case TYPE_CODE_UNDEF:
213 case TYPE_CODE_PTR:
214 case TYPE_CODE_STRUCT:
215 case TYPE_CODE_UNION:
216 case TYPE_CODE_VOID:
217 case TYPE_CODE_SET:
218 case TYPE_CODE_RANGE:
219 case TYPE_CODE_STRING:
220 case TYPE_CODE_ERROR:
221 case TYPE_CODE_MEMBERPTR:
222 case TYPE_CODE_METHODPTR:
223 case TYPE_CODE_METHOD:
224 case TYPE_CODE_COMPLEX:
225 default:
226 break;
227 }
228
229 return value_cast (type, arg);
230 }
231
232 /* Return the return type of a function with its first instruction exactly at
233 the PC address. Return NULL otherwise. */
234
235 static struct type *
236 find_function_return_type (CORE_ADDR pc)
237 {
238 struct symbol *sym = find_pc_function (pc);
239
240 if (sym != NULL && BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) == pc
241 && SYMBOL_TYPE (sym) != NULL)
242 return TYPE_TARGET_TYPE (SYMBOL_TYPE (sym));
243
244 return NULL;
245 }
246
247 /* Determine a function's address and its return type from its value.
248 Calls error() if the function is not valid for calling. */
249
250 CORE_ADDR
251 find_function_addr (struct value *function, struct type **retval_type)
252 {
253 struct type *ftype = check_typedef (value_type (function));
254 struct gdbarch *gdbarch = get_type_arch (ftype);
255 struct type *value_type = NULL;
256 /* Initialize it just to avoid a GCC false warning. */
257 CORE_ADDR funaddr = 0;
258
259 /* If it's a member function, just look at the function
260 part of it. */
261
262 /* Determine address to call. */
263 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
264 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
265 funaddr = value_address (function);
266 else if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
267 {
268 funaddr = value_as_address (function);
269 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
270 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
271 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
272 funaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funaddr,
273 &current_target);
274 }
275 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
276 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
277 {
278 value_type = TYPE_TARGET_TYPE (ftype);
279
280 if (TYPE_GNU_IFUNC (ftype))
281 {
282 funaddr = gnu_ifunc_resolve_addr (gdbarch, funaddr);
283
284 /* Skip querying the function symbol if no RETVAL_TYPE has been
285 asked for. */
286 if (retval_type)
287 value_type = find_function_return_type (funaddr);
288 }
289 }
290 else if (TYPE_CODE (ftype) == TYPE_CODE_INT)
291 {
292 /* Handle the case of functions lacking debugging info.
293 Their values are characters since their addresses are char. */
294 if (TYPE_LENGTH (ftype) == 1)
295 funaddr = value_as_address (value_addr (function));
296 else
297 {
298 /* Handle function descriptors lacking debug info. */
299 int found_descriptor = 0;
300
301 funaddr = 0; /* pacify "gcc -Werror" */
302 if (VALUE_LVAL (function) == lval_memory)
303 {
304 CORE_ADDR nfunaddr;
305
306 funaddr = value_as_address (value_addr (function));
307 nfunaddr = funaddr;
308 funaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funaddr,
309 &current_target);
310 if (funaddr != nfunaddr)
311 found_descriptor = 1;
312 }
313 if (!found_descriptor)
314 /* Handle integer used as address of a function. */
315 funaddr = (CORE_ADDR) value_as_long (function);
316 }
317 }
318 else
319 error (_("Invalid data type for function to be called."));
320
321 if (retval_type != NULL)
322 *retval_type = value_type;
323 return funaddr + gdbarch_deprecated_function_start_offset (gdbarch);
324 }
325
326 /* For CALL_DUMMY_ON_STACK, push a breakpoint sequence that the called
327 function returns to. */
328
329 static CORE_ADDR
330 push_dummy_code (struct gdbarch *gdbarch,
331 CORE_ADDR sp, CORE_ADDR funaddr,
332 struct value **args, int nargs,
333 struct type *value_type,
334 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
335 struct regcache *regcache)
336 {
337 gdb_assert (gdbarch_push_dummy_code_p (gdbarch));
338
339 return gdbarch_push_dummy_code (gdbarch, sp, funaddr,
340 args, nargs, value_type, real_pc, bp_addr,
341 regcache);
342 }
343
344 /* See infcall.h. */
345
346 void
347 error_call_unknown_return_type (const char *func_name)
348 {
349 if (func_name != NULL)
350 error (_("'%s' has unknown return type; "
351 "cast the call to its declared return type"),
352 func_name);
353 else
354 error (_("function has unknown return type; "
355 "cast the call to its declared return type"));
356 }
357
358 /* Fetch the name of the function at FUNADDR.
359 This is used in printing an error message for call_function_by_hand.
360 BUF is used to print FUNADDR in hex if the function name cannot be
361 determined. It must be large enough to hold formatted result of
362 RAW_FUNCTION_ADDRESS_FORMAT. */
363
364 static const char *
365 get_function_name (CORE_ADDR funaddr, char *buf, int buf_size)
366 {
367 {
368 struct symbol *symbol = find_pc_function (funaddr);
369
370 if (symbol)
371 return SYMBOL_PRINT_NAME (symbol);
372 }
373
374 {
375 /* Try the minimal symbols. */
376 struct bound_minimal_symbol msymbol = lookup_minimal_symbol_by_pc (funaddr);
377
378 if (msymbol.minsym)
379 return MSYMBOL_PRINT_NAME (msymbol.minsym);
380 }
381
382 {
383 char *tmp = xstrprintf (_(RAW_FUNCTION_ADDRESS_FORMAT),
384 hex_string (funaddr));
385
386 gdb_assert (strlen (tmp) + 1 <= buf_size);
387 strcpy (buf, tmp);
388 xfree (tmp);
389 return buf;
390 }
391 }
392
393 /* All the meta data necessary to extract the call's return value. */
394
395 struct call_return_meta_info
396 {
397 /* The caller frame's architecture. */
398 struct gdbarch *gdbarch;
399
400 /* The called function. */
401 struct value *function;
402
403 /* The return value's type. */
404 struct type *value_type;
405
406 /* Are we returning a value using a structure return or a normal
407 value return? */
408 int struct_return_p;
409
410 /* If using a structure return, this is the structure's address. */
411 CORE_ADDR struct_addr;
412 };
413
414 /* Extract the called function's return value. */
415
416 static struct value *
417 get_call_return_value (struct call_return_meta_info *ri)
418 {
419 struct value *retval = NULL;
420 bool stack_temporaries = thread_stack_temporaries_enabled_p (inferior_ptid);
421
422 if (TYPE_CODE (ri->value_type) == TYPE_CODE_VOID)
423 retval = allocate_value (ri->value_type);
424 else if (ri->struct_return_p)
425 {
426 if (stack_temporaries)
427 {
428 retval = value_from_contents_and_address (ri->value_type, NULL,
429 ri->struct_addr);
430 push_thread_stack_temporary (inferior_ptid, retval);
431 }
432 else
433 {
434 retval = allocate_value (ri->value_type);
435 read_value_memory (retval, 0, 1, ri->struct_addr,
436 value_contents_raw (retval),
437 TYPE_LENGTH (ri->value_type));
438 }
439 }
440 else
441 {
442 retval = allocate_value (ri->value_type);
443 gdbarch_return_value (ri->gdbarch, ri->function, ri->value_type,
444 get_current_regcache (),
445 value_contents_raw (retval), NULL);
446 if (stack_temporaries && class_or_union_p (ri->value_type))
447 {
448 /* Values of class type returned in registers are copied onto
449 the stack and their lval_type set to lval_memory. This is
450 required because further evaluation of the expression
451 could potentially invoke methods on the return value
452 requiring GDB to evaluate the "this" pointer. To evaluate
453 the this pointer, GDB needs the memory address of the
454 value. */
455 value_force_lval (retval, ri->struct_addr);
456 push_thread_stack_temporary (inferior_ptid, retval);
457 }
458 }
459
460 gdb_assert (retval != NULL);
461 return retval;
462 }
463
464 /* Data for the FSM that manages an infcall. It's main job is to
465 record the called function's return value. */
466
467 struct call_thread_fsm
468 {
469 /* The base class. */
470 struct thread_fsm thread_fsm;
471
472 /* All the info necessary to be able to extract the return
473 value. */
474 struct call_return_meta_info return_meta_info;
475
476 /* The called function's return value. This is extracted from the
477 target before the dummy frame is popped. */
478 struct value *return_value;
479
480 /* The top level that started the infcall (and is synchronously
481 waiting for it to end). */
482 struct ui *waiting_ui;
483 };
484
485 static int call_thread_fsm_should_stop (struct thread_fsm *self,
486 struct thread_info *thread);
487 static int call_thread_fsm_should_notify_stop (struct thread_fsm *self);
488
489 /* call_thread_fsm's vtable. */
490
491 static struct thread_fsm_ops call_thread_fsm_ops =
492 {
493 NULL, /*dtor */
494 NULL, /* clean_up */
495 call_thread_fsm_should_stop,
496 NULL, /* return_value */
497 NULL, /* async_reply_reason*/
498 call_thread_fsm_should_notify_stop,
499 };
500
501 /* Allocate a new call_thread_fsm object. */
502
503 static struct call_thread_fsm *
504 new_call_thread_fsm (struct ui *waiting_ui, struct interp *cmd_interp,
505 struct gdbarch *gdbarch, struct value *function,
506 struct type *value_type,
507 int struct_return_p, CORE_ADDR struct_addr)
508 {
509 struct call_thread_fsm *sm;
510
511 sm = XCNEW (struct call_thread_fsm);
512 thread_fsm_ctor (&sm->thread_fsm, &call_thread_fsm_ops, cmd_interp);
513
514 sm->return_meta_info.gdbarch = gdbarch;
515 sm->return_meta_info.function = function;
516 sm->return_meta_info.value_type = value_type;
517 sm->return_meta_info.struct_return_p = struct_return_p;
518 sm->return_meta_info.struct_addr = struct_addr;
519
520 sm->waiting_ui = waiting_ui;
521
522 return sm;
523 }
524
525 /* Implementation of should_stop method for infcalls. */
526
527 static int
528 call_thread_fsm_should_stop (struct thread_fsm *self,
529 struct thread_info *thread)
530 {
531 struct call_thread_fsm *f = (struct call_thread_fsm *) self;
532
533 if (stop_stack_dummy == STOP_STACK_DUMMY)
534 {
535 /* Done. */
536 thread_fsm_set_finished (self);
537
538 /* Stash the return value before the dummy frame is popped and
539 registers are restored to what they were before the
540 call.. */
541 f->return_value = get_call_return_value (&f->return_meta_info);
542
543 /* Break out of wait_sync_command_done. */
544 scoped_restore save_ui = make_scoped_restore (&current_ui, f->waiting_ui);
545 target_terminal::ours ();
546 f->waiting_ui->prompt_state = PROMPT_NEEDED;
547 }
548
549 return 1;
550 }
551
552 /* Implementation of should_notify_stop method for infcalls. */
553
554 static int
555 call_thread_fsm_should_notify_stop (struct thread_fsm *self)
556 {
557 if (thread_fsm_finished_p (self))
558 {
559 /* Infcall succeeded. Be silent and proceed with evaluating the
560 expression. */
561 return 0;
562 }
563
564 /* Something wrong happened. E.g., an unexpected breakpoint
565 triggered, or a signal was intercepted. Notify the stop. */
566 return 1;
567 }
568
569 /* Subroutine of call_function_by_hand to simplify it.
570 Start up the inferior and wait for it to stop.
571 Return the exception if there's an error, or an exception with
572 reason >= 0 if there's no error.
573
574 This is done inside a TRY_CATCH so the caller needn't worry about
575 thrown errors. The caller should rethrow if there's an error. */
576
577 static struct gdb_exception
578 run_inferior_call (struct call_thread_fsm *sm,
579 struct thread_info *call_thread, CORE_ADDR real_pc)
580 {
581 struct gdb_exception caught_error = exception_none;
582 int saved_in_infcall = call_thread->control.in_infcall;
583 ptid_t call_thread_ptid = call_thread->ptid;
584 enum prompt_state saved_prompt_state = current_ui->prompt_state;
585 int was_running = call_thread->state == THREAD_RUNNING;
586 int saved_ui_async = current_ui->async;
587
588 /* Infcalls run synchronously, in the foreground. */
589 current_ui->prompt_state = PROMPT_BLOCKED;
590 /* So that we don't print the prompt prematurely in
591 fetch_inferior_event. */
592 current_ui->async = 0;
593
594 delete_file_handler (current_ui->input_fd);
595
596 call_thread->control.in_infcall = 1;
597
598 clear_proceed_status (0);
599
600 /* Associate the FSM with the thread after clear_proceed_status
601 (otherwise it'd clear this FSM), and before anything throws, so
602 we don't leak it (and any resources it manages). */
603 call_thread->thread_fsm = &sm->thread_fsm;
604
605 disable_watchpoints_before_interactive_call_start ();
606
607 /* We want to print return value, please... */
608 call_thread->control.proceed_to_finish = 1;
609
610 TRY
611 {
612 proceed (real_pc, GDB_SIGNAL_0);
613
614 /* Inferior function calls are always synchronous, even if the
615 target supports asynchronous execution. */
616 wait_sync_command_done ();
617 }
618 CATCH (e, RETURN_MASK_ALL)
619 {
620 caught_error = e;
621 }
622 END_CATCH
623
624 /* If GDB has the prompt blocked before, then ensure that it remains
625 so. normal_stop calls async_enable_stdin, so reset the prompt
626 state again here. In other cases, stdin will be re-enabled by
627 inferior_event_handler, when an exception is thrown. */
628 current_ui->prompt_state = saved_prompt_state;
629 if (current_ui->prompt_state == PROMPT_BLOCKED)
630 delete_file_handler (current_ui->input_fd);
631 else
632 ui_register_input_event_handler (current_ui);
633 current_ui->async = saved_ui_async;
634
635 /* At this point the current thread may have changed. Refresh
636 CALL_THREAD as it could be invalid if its thread has exited. */
637 call_thread = find_thread_ptid (call_thread_ptid);
638
639 /* If the infcall does NOT succeed, normal_stop will have already
640 finished the thread states. However, on success, normal_stop
641 defers here, so that we can set back the thread states to what
642 they were before the call. Note that we must also finish the
643 state of new threads that might have spawned while the call was
644 running. The main cases to handle are:
645
646 - "(gdb) print foo ()", or any other command that evaluates an
647 expression at the prompt. (The thread was marked stopped before.)
648
649 - "(gdb) break foo if return_false()" or similar cases where we
650 do an infcall while handling an event (while the thread is still
651 marked running). In this example, whether the condition
652 evaluates true and thus we'll present a user-visible stop is
653 decided elsewhere. */
654 if (!was_running
655 && ptid_equal (call_thread_ptid, inferior_ptid)
656 && stop_stack_dummy == STOP_STACK_DUMMY)
657 finish_thread_state (user_visible_resume_ptid (0));
658
659 enable_watchpoints_after_interactive_call_stop ();
660
661 /* Call breakpoint_auto_delete on the current contents of the bpstat
662 of inferior call thread.
663 If all error()s out of proceed ended up calling normal_stop
664 (and perhaps they should; it already does in the special case
665 of error out of resume()), then we wouldn't need this. */
666 if (caught_error.reason < 0)
667 {
668 if (call_thread != NULL)
669 breakpoint_auto_delete (call_thread->control.stop_bpstat);
670 }
671
672 if (call_thread != NULL)
673 call_thread->control.in_infcall = saved_in_infcall;
674
675 return caught_error;
676 }
677
678 /* A cleanup function that calls delete_std_terminate_breakpoint. */
679 static void
680 cleanup_delete_std_terminate_breakpoint (void *ignore)
681 {
682 delete_std_terminate_breakpoint ();
683 }
684
685 /* See infcall.h. */
686
687 struct value *
688 call_function_by_hand (struct value *function,
689 type *default_return_type,
690 int nargs, struct value **args)
691 {
692 return call_function_by_hand_dummy (function, default_return_type,
693 nargs, args, NULL, NULL);
694 }
695
696 /* All this stuff with a dummy frame may seem unnecessarily complicated
697 (why not just save registers in GDB?). The purpose of pushing a dummy
698 frame which looks just like a real frame is so that if you call a
699 function and then hit a breakpoint (get a signal, etc), "backtrace"
700 will look right. Whether the backtrace needs to actually show the
701 stack at the time the inferior function was called is debatable, but
702 it certainly needs to not display garbage. So if you are contemplating
703 making dummy frames be different from normal frames, consider that. */
704
705 /* Perform a function call in the inferior.
706 ARGS is a vector of values of arguments (NARGS of them).
707 FUNCTION is a value, the function to be called.
708 Returns a value representing what the function returned.
709 May fail to return, if a breakpoint or signal is hit
710 during the execution of the function.
711
712 ARGS is modified to contain coerced values. */
713
714 struct value *
715 call_function_by_hand_dummy (struct value *function,
716 type *default_return_type,
717 int nargs, struct value **args,
718 dummy_frame_dtor_ftype *dummy_dtor,
719 void *dummy_dtor_data)
720 {
721 CORE_ADDR sp;
722 struct type *values_type, *target_values_type;
723 unsigned char struct_return = 0, hidden_first_param_p = 0;
724 CORE_ADDR struct_addr = 0;
725 struct infcall_control_state *inf_status;
726 struct cleanup *inf_status_cleanup;
727 struct infcall_suspend_state *caller_state;
728 CORE_ADDR funaddr;
729 CORE_ADDR real_pc;
730 struct type *ftype = check_typedef (value_type (function));
731 CORE_ADDR bp_addr;
732 struct frame_id dummy_id;
733 struct frame_info *frame;
734 struct gdbarch *gdbarch;
735 struct cleanup *terminate_bp_cleanup;
736 ptid_t call_thread_ptid;
737 struct gdb_exception e;
738 char name_buf[RAW_FUNCTION_ADDRESS_SIZE];
739 bool stack_temporaries = thread_stack_temporaries_enabled_p (inferior_ptid);
740
741 if (TYPE_CODE (ftype) == TYPE_CODE_PTR)
742 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
743
744 if (!target_has_execution)
745 noprocess ();
746
747 if (get_traceframe_number () >= 0)
748 error (_("May not call functions while looking at trace frames."));
749
750 if (execution_direction == EXEC_REVERSE)
751 error (_("Cannot call functions in reverse mode."));
752
753 frame = get_current_frame ();
754 gdbarch = get_frame_arch (frame);
755
756 if (!gdbarch_push_dummy_call_p (gdbarch))
757 error (_("This target does not support function calls."));
758
759 /* A cleanup for the inferior status.
760 This is only needed while we're preparing the inferior function call. */
761 inf_status = save_infcall_control_state ();
762 inf_status_cleanup
763 = make_cleanup_restore_infcall_control_state (inf_status);
764
765 /* Save the caller's registers and other state associated with the
766 inferior itself so that they can be restored once the
767 callee returns. To allow nested calls the registers are (further
768 down) pushed onto a dummy frame stack. Include a cleanup (which
769 is tossed once the regcache has been pushed). */
770 caller_state = save_infcall_suspend_state ();
771 make_cleanup_restore_infcall_suspend_state (caller_state);
772
773 /* Ensure that the initial SP is correctly aligned. */
774 {
775 CORE_ADDR old_sp = get_frame_sp (frame);
776
777 if (gdbarch_frame_align_p (gdbarch))
778 {
779 sp = gdbarch_frame_align (gdbarch, old_sp);
780 /* NOTE: cagney/2003-08-13: Skip the "red zone". For some
781 ABIs, a function can use memory beyond the inner most stack
782 address. AMD64 called that region the "red zone". Skip at
783 least the "red zone" size before allocating any space on
784 the stack. */
785 if (gdbarch_inner_than (gdbarch, 1, 2))
786 sp -= gdbarch_frame_red_zone_size (gdbarch);
787 else
788 sp += gdbarch_frame_red_zone_size (gdbarch);
789 /* Still aligned? */
790 gdb_assert (sp == gdbarch_frame_align (gdbarch, sp));
791 /* NOTE: cagney/2002-09-18:
792
793 On a RISC architecture, a void parameterless generic dummy
794 frame (i.e., no parameters, no result) typically does not
795 need to push anything the stack and hence can leave SP and
796 FP. Similarly, a frameless (possibly leaf) function does
797 not push anything on the stack and, hence, that too can
798 leave FP and SP unchanged. As a consequence, a sequence of
799 void parameterless generic dummy frame calls to frameless
800 functions will create a sequence of effectively identical
801 frames (SP, FP and TOS and PC the same). This, not
802 suprisingly, results in what appears to be a stack in an
803 infinite loop --- when GDB tries to find a generic dummy
804 frame on the internal dummy frame stack, it will always
805 find the first one.
806
807 To avoid this problem, the code below always grows the
808 stack. That way, two dummy frames can never be identical.
809 It does burn a few bytes of stack but that is a small price
810 to pay :-). */
811 if (sp == old_sp)
812 {
813 if (gdbarch_inner_than (gdbarch, 1, 2))
814 /* Stack grows down. */
815 sp = gdbarch_frame_align (gdbarch, old_sp - 1);
816 else
817 /* Stack grows up. */
818 sp = gdbarch_frame_align (gdbarch, old_sp + 1);
819 }
820 /* SP may have underflown address zero here from OLD_SP. Memory access
821 functions will probably fail in such case but that is a target's
822 problem. */
823 }
824 else
825 /* FIXME: cagney/2002-09-18: Hey, you loose!
826
827 Who knows how badly aligned the SP is!
828
829 If the generic dummy frame ends up empty (because nothing is
830 pushed) GDB won't be able to correctly perform back traces.
831 If a target is having trouble with backtraces, first thing to
832 do is add FRAME_ALIGN() to the architecture vector. If that
833 fails, try dummy_id().
834
835 If the ABI specifies a "Red Zone" (see the doco) the code
836 below will quietly trash it. */
837 sp = old_sp;
838
839 /* Skip over the stack temporaries that might have been generated during
840 the evaluation of an expression. */
841 if (stack_temporaries)
842 {
843 struct value *lastval;
844
845 lastval = get_last_thread_stack_temporary (inferior_ptid);
846 if (lastval != NULL)
847 {
848 CORE_ADDR lastval_addr = value_address (lastval);
849
850 if (gdbarch_inner_than (gdbarch, 1, 2))
851 {
852 gdb_assert (sp >= lastval_addr);
853 sp = lastval_addr;
854 }
855 else
856 {
857 gdb_assert (sp <= lastval_addr);
858 sp = lastval_addr + TYPE_LENGTH (value_type (lastval));
859 }
860
861 if (gdbarch_frame_align_p (gdbarch))
862 sp = gdbarch_frame_align (gdbarch, sp);
863 }
864 }
865 }
866
867 funaddr = find_function_addr (function, &values_type);
868 if (values_type == NULL)
869 values_type = default_return_type;
870 if (values_type == NULL)
871 {
872 const char *name = get_function_name (funaddr,
873 name_buf, sizeof (name_buf));
874 error (_("'%s' has unknown return type; "
875 "cast the call to its declared return type"),
876 name);
877 }
878
879 values_type = check_typedef (values_type);
880
881 /* Are we returning a value using a structure return (passing a
882 hidden argument pointing to storage) or a normal value return?
883 There are two cases: language-mandated structure return and
884 target ABI structure return. The variable STRUCT_RETURN only
885 describes the latter. The language version is handled by passing
886 the return location as the first parameter to the function,
887 even preceding "this". This is different from the target
888 ABI version, which is target-specific; for instance, on ia64
889 the first argument is passed in out0 but the hidden structure
890 return pointer would normally be passed in r8. */
891
892 if (gdbarch_return_in_first_hidden_param_p (gdbarch, values_type))
893 {
894 hidden_first_param_p = 1;
895
896 /* Tell the target specific argument pushing routine not to
897 expect a value. */
898 target_values_type = builtin_type (gdbarch)->builtin_void;
899 }
900 else
901 {
902 struct_return = using_struct_return (gdbarch, function, values_type);
903 target_values_type = values_type;
904 }
905
906 observer_notify_inferior_call_pre (inferior_ptid, funaddr);
907
908 /* Determine the location of the breakpoint (and possibly other
909 stuff) that the called function will return to. The SPARC, for a
910 function returning a structure or union, needs to make space for
911 not just the breakpoint but also an extra word containing the
912 size (?) of the structure being passed. */
913
914 switch (gdbarch_call_dummy_location (gdbarch))
915 {
916 case ON_STACK:
917 {
918 const gdb_byte *bp_bytes;
919 CORE_ADDR bp_addr_as_address;
920 int bp_size;
921
922 /* Be careful BP_ADDR is in inferior PC encoding while
923 BP_ADDR_AS_ADDRESS is a plain memory address. */
924
925 sp = push_dummy_code (gdbarch, sp, funaddr, args, nargs,
926 target_values_type, &real_pc, &bp_addr,
927 get_current_regcache ());
928
929 /* Write a legitimate instruction at the point where the infcall
930 breakpoint is going to be inserted. While this instruction
931 is never going to be executed, a user investigating the
932 memory from GDB would see this instruction instead of random
933 uninitialized bytes. We chose the breakpoint instruction
934 as it may look as the most logical one to the user and also
935 valgrind 3.7.0 needs it for proper vgdb inferior calls.
936
937 If software breakpoints are unsupported for this target we
938 leave the user visible memory content uninitialized. */
939
940 bp_addr_as_address = bp_addr;
941 bp_bytes = gdbarch_breakpoint_from_pc (gdbarch, &bp_addr_as_address,
942 &bp_size);
943 if (bp_bytes != NULL)
944 write_memory (bp_addr_as_address, bp_bytes, bp_size);
945 }
946 break;
947 case AT_ENTRY_POINT:
948 {
949 CORE_ADDR dummy_addr;
950
951 real_pc = funaddr;
952 dummy_addr = entry_point_address ();
953
954 /* A call dummy always consists of just a single breakpoint, so
955 its address is the same as the address of the dummy.
956
957 The actual breakpoint is inserted separatly so there is no need to
958 write that out. */
959 bp_addr = dummy_addr;
960 break;
961 }
962 default:
963 internal_error (__FILE__, __LINE__, _("bad switch"));
964 }
965
966 if (nargs < TYPE_NFIELDS (ftype))
967 error (_("Too few arguments in function call."));
968
969 {
970 int i;
971
972 for (i = nargs - 1; i >= 0; i--)
973 {
974 int prototyped;
975 struct type *param_type;
976
977 /* FIXME drow/2002-05-31: Should just always mark methods as
978 prototyped. Can we respect TYPE_VARARGS? Probably not. */
979 if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
980 prototyped = 1;
981 if (TYPE_TARGET_TYPE (ftype) == NULL && TYPE_NFIELDS (ftype) == 0
982 && default_return_type != NULL)
983 {
984 /* Calling a no-debug function with the return type
985 explicitly cast. Assume the function is prototyped,
986 with a prototype matching the types of the arguments.
987 E.g., with:
988 float mult (float v1, float v2) { return v1 * v2; }
989 This:
990 (gdb) p (float) mult (2.0f, 3.0f)
991 Is a simpler alternative to:
992 (gdb) p ((float (*) (float, float)) mult) (2.0f, 3.0f)
993 */
994 prototyped = 1;
995 }
996 else if (i < TYPE_NFIELDS (ftype))
997 prototyped = TYPE_PROTOTYPED (ftype);
998 else
999 prototyped = 0;
1000
1001 if (i < TYPE_NFIELDS (ftype))
1002 param_type = TYPE_FIELD_TYPE (ftype, i);
1003 else
1004 param_type = NULL;
1005
1006 args[i] = value_arg_coerce (gdbarch, args[i],
1007 param_type, prototyped, &sp);
1008
1009 if (param_type != NULL && language_pass_by_reference (param_type))
1010 args[i] = value_addr (args[i]);
1011 }
1012 }
1013
1014 /* Reserve space for the return structure to be written on the
1015 stack, if necessary. Make certain that the value is correctly
1016 aligned.
1017
1018 While evaluating expressions, we reserve space on the stack for
1019 return values of class type even if the language ABI and the target
1020 ABI do not require that the return value be passed as a hidden first
1021 argument. This is because we want to store the return value as an
1022 on-stack temporary while the expression is being evaluated. This
1023 enables us to have chained function calls in expressions.
1024
1025 Keeping the return values as on-stack temporaries while the expression
1026 is being evaluated is OK because the thread is stopped until the
1027 expression is completely evaluated. */
1028
1029 if (struct_return || hidden_first_param_p
1030 || (stack_temporaries && class_or_union_p (values_type)))
1031 {
1032 if (gdbarch_inner_than (gdbarch, 1, 2))
1033 {
1034 /* Stack grows downward. Align STRUCT_ADDR and SP after
1035 making space for the return value. */
1036 sp -= TYPE_LENGTH (values_type);
1037 if (gdbarch_frame_align_p (gdbarch))
1038 sp = gdbarch_frame_align (gdbarch, sp);
1039 struct_addr = sp;
1040 }
1041 else
1042 {
1043 /* Stack grows upward. Align the frame, allocate space, and
1044 then again, re-align the frame??? */
1045 if (gdbarch_frame_align_p (gdbarch))
1046 sp = gdbarch_frame_align (gdbarch, sp);
1047 struct_addr = sp;
1048 sp += TYPE_LENGTH (values_type);
1049 if (gdbarch_frame_align_p (gdbarch))
1050 sp = gdbarch_frame_align (gdbarch, sp);
1051 }
1052 }
1053
1054 std::vector<struct value *> new_args;
1055 if (hidden_first_param_p)
1056 {
1057 /* Add the new argument to the front of the argument list. */
1058 new_args.push_back
1059 (value_from_pointer (lookup_pointer_type (values_type), struct_addr));
1060 std::copy (&args[0], &args[nargs], std::back_inserter (new_args));
1061 args = new_args.data ();
1062 nargs++;
1063 }
1064
1065 /* Create the dummy stack frame. Pass in the call dummy address as,
1066 presumably, the ABI code knows where, in the call dummy, the
1067 return address should be pointed. */
1068 sp = gdbarch_push_dummy_call (gdbarch, function, get_current_regcache (),
1069 bp_addr, nargs, args,
1070 sp, struct_return, struct_addr);
1071
1072 /* Set up a frame ID for the dummy frame so we can pass it to
1073 set_momentary_breakpoint. We need to give the breakpoint a frame
1074 ID so that the breakpoint code can correctly re-identify the
1075 dummy breakpoint. */
1076 /* Sanity. The exact same SP value is returned by PUSH_DUMMY_CALL,
1077 saved as the dummy-frame TOS, and used by dummy_id to form
1078 the frame ID's stack address. */
1079 dummy_id = frame_id_build (sp, bp_addr);
1080
1081 /* Create a momentary breakpoint at the return address of the
1082 inferior. That way it breaks when it returns. */
1083
1084 {
1085 symtab_and_line sal;
1086 sal.pspace = current_program_space;
1087 sal.pc = bp_addr;
1088 sal.section = find_pc_overlay (sal.pc);
1089
1090 /* Sanity. The exact same SP value is returned by
1091 PUSH_DUMMY_CALL, saved as the dummy-frame TOS, and used by
1092 dummy_id to form the frame ID's stack address. */
1093 breakpoint *bpt
1094 = set_momentary_breakpoint (gdbarch, sal,
1095 dummy_id, bp_call_dummy).release ();
1096
1097 /* set_momentary_breakpoint invalidates FRAME. */
1098 frame = NULL;
1099
1100 bpt->disposition = disp_del;
1101 gdb_assert (bpt->related_breakpoint == bpt);
1102
1103 breakpoint *longjmp_b = set_longjmp_breakpoint_for_call_dummy ();
1104 if (longjmp_b)
1105 {
1106 /* Link BPT into the chain of LONGJMP_B. */
1107 bpt->related_breakpoint = longjmp_b;
1108 while (longjmp_b->related_breakpoint != bpt->related_breakpoint)
1109 longjmp_b = longjmp_b->related_breakpoint;
1110 longjmp_b->related_breakpoint = bpt;
1111 }
1112 }
1113
1114 /* Create a breakpoint in std::terminate.
1115 If a C++ exception is raised in the dummy-frame, and the
1116 exception handler is (normally, and expected to be) out-of-frame,
1117 the default C++ handler will (wrongly) be called in an inferior
1118 function call. This is wrong, as an exception can be normally
1119 and legally handled out-of-frame. The confines of the dummy frame
1120 prevent the unwinder from finding the correct handler (or any
1121 handler, unless it is in-frame). The default handler calls
1122 std::terminate. This will kill the inferior. Assert that
1123 terminate should never be called in an inferior function
1124 call. Place a momentary breakpoint in the std::terminate function
1125 and if triggered in the call, rewind. */
1126 if (unwind_on_terminating_exception_p)
1127 set_std_terminate_breakpoint ();
1128
1129 /* Discard both inf_status and caller_state cleanups.
1130 From this point on we explicitly restore the associated state
1131 or discard it. */
1132 discard_cleanups (inf_status_cleanup);
1133
1134 /* Everything's ready, push all the info needed to restore the
1135 caller (and identify the dummy-frame) onto the dummy-frame
1136 stack. */
1137 dummy_frame_push (caller_state, &dummy_id, inferior_ptid);
1138 if (dummy_dtor != NULL)
1139 register_dummy_frame_dtor (dummy_id, inferior_ptid,
1140 dummy_dtor, dummy_dtor_data);
1141
1142 /* Register a clean-up for unwind_on_terminating_exception_breakpoint. */
1143 terminate_bp_cleanup = make_cleanup (cleanup_delete_std_terminate_breakpoint,
1144 NULL);
1145
1146 /* - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP -
1147 If you're looking to implement asynchronous dummy-frames, then
1148 just below is the place to chop this function in two.. */
1149
1150 /* TP is invalid after run_inferior_call returns, so enclose this
1151 in a block so that it's only in scope during the time it's valid. */
1152 {
1153 struct thread_info *tp = inferior_thread ();
1154 struct thread_fsm *saved_sm;
1155 struct call_thread_fsm *sm;
1156
1157 /* Save the current FSM. We'll override it. */
1158 saved_sm = tp->thread_fsm;
1159 tp->thread_fsm = NULL;
1160
1161 /* Save this thread's ptid, we need it later but the thread
1162 may have exited. */
1163 call_thread_ptid = tp->ptid;
1164
1165 /* Run the inferior until it stops. */
1166
1167 /* Create the FSM used to manage the infcall. It tells infrun to
1168 not report the stop to the user, and captures the return value
1169 before the dummy frame is popped. run_inferior_call registers
1170 it with the thread ASAP. */
1171 sm = new_call_thread_fsm (current_ui, command_interp (),
1172 gdbarch, function,
1173 values_type,
1174 struct_return || hidden_first_param_p,
1175 struct_addr);
1176
1177 e = run_inferior_call (sm, tp, real_pc);
1178
1179 observer_notify_inferior_call_post (call_thread_ptid, funaddr);
1180
1181 tp = find_thread_ptid (call_thread_ptid);
1182 if (tp != NULL)
1183 {
1184 /* The FSM should still be the same. */
1185 gdb_assert (tp->thread_fsm == &sm->thread_fsm);
1186
1187 if (thread_fsm_finished_p (tp->thread_fsm))
1188 {
1189 struct value *retval;
1190
1191 /* The inferior call is successful. Pop the dummy frame,
1192 which runs its destructors and restores the inferior's
1193 suspend state, and restore the inferior control
1194 state. */
1195 dummy_frame_pop (dummy_id, call_thread_ptid);
1196 restore_infcall_control_state (inf_status);
1197
1198 /* Get the return value. */
1199 retval = sm->return_value;
1200
1201 /* Clean up / destroy the call FSM, and restore the
1202 original one. */
1203 thread_fsm_clean_up (tp->thread_fsm, tp);
1204 thread_fsm_delete (tp->thread_fsm);
1205 tp->thread_fsm = saved_sm;
1206
1207 maybe_remove_breakpoints ();
1208
1209 do_cleanups (terminate_bp_cleanup);
1210 gdb_assert (retval != NULL);
1211 return retval;
1212 }
1213
1214 /* Didn't complete. Restore previous state machine, and
1215 handle the error. */
1216 tp->thread_fsm = saved_sm;
1217 }
1218 }
1219
1220 /* Rethrow an error if we got one trying to run the inferior. */
1221
1222 if (e.reason < 0)
1223 {
1224 const char *name = get_function_name (funaddr,
1225 name_buf, sizeof (name_buf));
1226
1227 discard_infcall_control_state (inf_status);
1228
1229 /* We could discard the dummy frame here if the program exited,
1230 but it will get garbage collected the next time the program is
1231 run anyway. */
1232
1233 switch (e.reason)
1234 {
1235 case RETURN_ERROR:
1236 throw_error (e.error, _("%s\n\
1237 An error occurred while in a function called from GDB.\n\
1238 Evaluation of the expression containing the function\n\
1239 (%s) will be abandoned.\n\
1240 When the function is done executing, GDB will silently stop."),
1241 e.message, name);
1242 case RETURN_QUIT:
1243 default:
1244 throw_exception (e);
1245 }
1246 }
1247
1248 /* If the program has exited, or we stopped at a different thread,
1249 exit and inform the user. */
1250
1251 if (! target_has_execution)
1252 {
1253 const char *name = get_function_name (funaddr,
1254 name_buf, sizeof (name_buf));
1255
1256 /* If we try to restore the inferior status,
1257 we'll crash as the inferior is no longer running. */
1258 discard_infcall_control_state (inf_status);
1259
1260 /* We could discard the dummy frame here given that the program exited,
1261 but it will get garbage collected the next time the program is
1262 run anyway. */
1263
1264 error (_("The program being debugged exited while in a function "
1265 "called from GDB.\n"
1266 "Evaluation of the expression containing the function\n"
1267 "(%s) will be abandoned."),
1268 name);
1269 }
1270
1271 if (! ptid_equal (call_thread_ptid, inferior_ptid))
1272 {
1273 const char *name = get_function_name (funaddr,
1274 name_buf, sizeof (name_buf));
1275
1276 /* We've switched threads. This can happen if another thread gets a
1277 signal or breakpoint while our thread was running.
1278 There's no point in restoring the inferior status,
1279 we're in a different thread. */
1280 discard_infcall_control_state (inf_status);
1281 /* Keep the dummy frame record, if the user switches back to the
1282 thread with the hand-call, we'll need it. */
1283 if (stopped_by_random_signal)
1284 error (_("\
1285 The program received a signal in another thread while\n\
1286 making a function call from GDB.\n\
1287 Evaluation of the expression containing the function\n\
1288 (%s) will be abandoned.\n\
1289 When the function is done executing, GDB will silently stop."),
1290 name);
1291 else
1292 error (_("\
1293 The program stopped in another thread while making a function call from GDB.\n\
1294 Evaluation of the expression containing the function\n\
1295 (%s) will be abandoned.\n\
1296 When the function is done executing, GDB will silently stop."),
1297 name);
1298 }
1299
1300 {
1301 /* Make a copy as NAME may be in an objfile freed by dummy_frame_pop. */
1302 std::string name = get_function_name (funaddr, name_buf,
1303 sizeof (name_buf));
1304
1305 if (stopped_by_random_signal)
1306 {
1307 /* We stopped inside the FUNCTION because of a random
1308 signal. Further execution of the FUNCTION is not
1309 allowed. */
1310
1311 if (unwind_on_signal_p)
1312 {
1313 /* The user wants the context restored. */
1314
1315 /* We must get back to the frame we were before the
1316 dummy call. */
1317 dummy_frame_pop (dummy_id, call_thread_ptid);
1318
1319 /* We also need to restore inferior status to that before the
1320 dummy call. */
1321 restore_infcall_control_state (inf_status);
1322
1323 /* FIXME: Insert a bunch of wrap_here; name can be very
1324 long if it's a C++ name with arguments and stuff. */
1325 error (_("\
1326 The program being debugged was signaled while in a function called from GDB.\n\
1327 GDB has restored the context to what it was before the call.\n\
1328 To change this behavior use \"set unwindonsignal off\".\n\
1329 Evaluation of the expression containing the function\n\
1330 (%s) will be abandoned."),
1331 name.c_str ());
1332 }
1333 else
1334 {
1335 /* The user wants to stay in the frame where we stopped
1336 (default).
1337 Discard inferior status, we're not at the same point
1338 we started at. */
1339 discard_infcall_control_state (inf_status);
1340
1341 /* FIXME: Insert a bunch of wrap_here; name can be very
1342 long if it's a C++ name with arguments and stuff. */
1343 error (_("\
1344 The program being debugged was signaled while in a function called from GDB.\n\
1345 GDB remains in the frame where the signal was received.\n\
1346 To change this behavior use \"set unwindonsignal on\".\n\
1347 Evaluation of the expression containing the function\n\
1348 (%s) will be abandoned.\n\
1349 When the function is done executing, GDB will silently stop."),
1350 name.c_str ());
1351 }
1352 }
1353
1354 if (stop_stack_dummy == STOP_STD_TERMINATE)
1355 {
1356 /* We must get back to the frame we were before the dummy
1357 call. */
1358 dummy_frame_pop (dummy_id, call_thread_ptid);
1359
1360 /* We also need to restore inferior status to that before
1361 the dummy call. */
1362 restore_infcall_control_state (inf_status);
1363
1364 error (_("\
1365 The program being debugged entered a std::terminate call, most likely\n\
1366 caused by an unhandled C++ exception. GDB blocked this call in order\n\
1367 to prevent the program from being terminated, and has restored the\n\
1368 context to its original state before the call.\n\
1369 To change this behaviour use \"set unwind-on-terminating-exception off\".\n\
1370 Evaluation of the expression containing the function (%s)\n\
1371 will be abandoned."),
1372 name.c_str ());
1373 }
1374 else if (stop_stack_dummy == STOP_NONE)
1375 {
1376
1377 /* We hit a breakpoint inside the FUNCTION.
1378 Keep the dummy frame, the user may want to examine its state.
1379 Discard inferior status, we're not at the same point
1380 we started at. */
1381 discard_infcall_control_state (inf_status);
1382
1383 /* The following error message used to say "The expression
1384 which contained the function call has been discarded."
1385 It is a hard concept to explain in a few words. Ideally,
1386 GDB would be able to resume evaluation of the expression
1387 when the function finally is done executing. Perhaps
1388 someday this will be implemented (it would not be easy). */
1389 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1390 a C++ name with arguments and stuff. */
1391 error (_("\
1392 The program being debugged stopped while in a function called from GDB.\n\
1393 Evaluation of the expression containing the function\n\
1394 (%s) will be abandoned.\n\
1395 When the function is done executing, GDB will silently stop."),
1396 name.c_str ());
1397 }
1398
1399 }
1400
1401 /* The above code errors out, so ... */
1402 gdb_assert_not_reached ("... should not be here");
1403 }
1404
1405 void
1406 _initialize_infcall (void)
1407 {
1408 add_setshow_boolean_cmd ("coerce-float-to-double", class_obscure,
1409 &coerce_float_to_double_p, _("\
1410 Set coercion of floats to doubles when calling functions."), _("\
1411 Show coercion of floats to doubles when calling functions"), _("\
1412 Variables of type float should generally be converted to doubles before\n\
1413 calling an unprototyped function, and left alone when calling a prototyped\n\
1414 function. However, some older debug info formats do not provide enough\n\
1415 information to determine that a function is prototyped. If this flag is\n\
1416 set, GDB will perform the conversion for a function it considers\n\
1417 unprototyped.\n\
1418 The default is to perform the conversion.\n"),
1419 NULL,
1420 show_coerce_float_to_double_p,
1421 &setlist, &showlist);
1422
1423 add_setshow_boolean_cmd ("unwindonsignal", no_class,
1424 &unwind_on_signal_p, _("\
1425 Set unwinding of stack if a signal is received while in a call dummy."), _("\
1426 Show unwinding of stack if a signal is received while in a call dummy."), _("\
1427 The unwindonsignal lets the user determine what gdb should do if a signal\n\
1428 is received while in a function called from gdb (call dummy). If set, gdb\n\
1429 unwinds the stack and restore the context to what as it was before the call.\n\
1430 The default is to stop in the frame where the signal was received."),
1431 NULL,
1432 show_unwind_on_signal_p,
1433 &setlist, &showlist);
1434
1435 add_setshow_boolean_cmd ("unwind-on-terminating-exception", no_class,
1436 &unwind_on_terminating_exception_p, _("\
1437 Set unwinding of stack if std::terminate is called while in call dummy."), _("\
1438 Show unwinding of stack if std::terminate() is called while in a call dummy."),
1439 _("\
1440 The unwind on terminating exception flag lets the user determine\n\
1441 what gdb should do if a std::terminate() call is made from the\n\
1442 default exception handler. If set, gdb unwinds the stack and restores\n\
1443 the context to what it was before the call. If unset, gdb allows the\n\
1444 std::terminate call to proceed.\n\
1445 The default is to unwind the frame."),
1446 NULL,
1447 show_unwind_on_terminating_exception_p,
1448 &setlist, &showlist);
1449
1450 }
This page took 0.062281 seconds and 5 git commands to generate.