2003-09-14 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / infptrace.c
1 /* Low level Unix child interface to ptrace, for GDB when running under Unix.
2 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
3 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "target.h"
27 #include "gdb_string.h"
28 #include "regcache.h"
29
30 #include "gdb_wait.h"
31
32 #include "command.h"
33
34 #ifdef USG
35 #include <sys/types.h>
36 #endif
37
38 #include <sys/param.h>
39 #include "gdb_dirent.h"
40 #include <signal.h>
41 #include <sys/ioctl.h>
42
43 #ifdef HAVE_PTRACE_H
44 #include <ptrace.h>
45 #else
46 #ifdef HAVE_SYS_PTRACE_H
47 #include <sys/ptrace.h>
48 #endif
49 #endif
50
51 #if !defined (PT_READ_I)
52 #define PT_READ_I 1 /* Read word from text space */
53 #endif
54 #if !defined (PT_READ_D)
55 #define PT_READ_D 2 /* Read word from data space */
56 #endif
57 #if !defined (PT_READ_U)
58 #define PT_READ_U 3 /* Read word from kernel user struct */
59 #endif
60 #if !defined (PT_WRITE_I)
61 #define PT_WRITE_I 4 /* Write word to text space */
62 #endif
63 #if !defined (PT_WRITE_D)
64 #define PT_WRITE_D 5 /* Write word to data space */
65 #endif
66 #if !defined (PT_WRITE_U)
67 #define PT_WRITE_U 6 /* Write word to kernel user struct */
68 #endif
69 #if !defined (PT_CONTINUE)
70 #define PT_CONTINUE 7 /* Continue after signal */
71 #endif
72 #if !defined (PT_STEP)
73 #define PT_STEP 9 /* Set flag for single stepping */
74 #endif
75 #if !defined (PT_KILL)
76 #define PT_KILL 8 /* Send child a SIGKILL signal */
77 #endif
78
79 #ifndef PT_ATTACH
80 #define PT_ATTACH PTRACE_ATTACH
81 #endif
82 #ifndef PT_DETACH
83 #define PT_DETACH PTRACE_DETACH
84 #endif
85
86 #include "gdbcore.h"
87 #ifndef NO_SYS_FILE
88 #include <sys/file.h>
89 #endif
90 #if 0
91 /* Don't think this is used anymore. On the sequent (not sure whether it's
92 dynix or ptx or both), it is included unconditionally by sys/user.h and
93 not protected against multiple inclusion. */
94 #include "gdb_stat.h"
95 #endif
96
97 #if !defined (FETCH_INFERIOR_REGISTERS)
98 #include <sys/user.h> /* Probably need to poke the user structure */
99 #if defined (KERNEL_U_ADDR_BSD)
100 #include <a.out.h> /* For struct nlist */
101 #endif /* KERNEL_U_ADDR_BSD. */
102 #endif /* !FETCH_INFERIOR_REGISTERS */
103
104 #if !defined (CHILD_XFER_MEMORY)
105 static void udot_info (char *, int);
106 #endif
107
108 #if !defined (FETCH_INFERIOR_REGISTERS)
109 static void fetch_register (int);
110 static void store_register (int);
111 #endif
112
113 void _initialize_kernel_u_addr (void);
114 void _initialize_infptrace (void);
115 \f
116
117 /* This function simply calls ptrace with the given arguments.
118 It exists so that all calls to ptrace are isolated in this
119 machine-dependent file. */
120 int
121 call_ptrace (int request, int pid, PTRACE_ARG3_TYPE addr, int data)
122 {
123 int pt_status = 0;
124
125 #if 0
126 int saved_errno;
127
128 printf ("call_ptrace(request=%d, pid=%d, addr=0x%x, data=0x%x)",
129 request, pid, addr, data);
130 #endif
131 #if defined(PT_SETTRC)
132 /* If the parent can be told to attach to us, try to do it. */
133 if (request == PT_SETTRC)
134 {
135 errno = 0;
136 #if !defined (FIVE_ARG_PTRACE)
137 pt_status = ptrace (PT_SETTRC, pid, addr, data);
138 #else
139 /* Deal with HPUX 8.0 braindamage. We never use the
140 calls which require the fifth argument. */
141 pt_status = ptrace (PT_SETTRC, pid, addr, data, 0);
142 #endif
143 if (errno)
144 perror_with_name ("ptrace");
145 #if 0
146 printf (" = %d\n", pt_status);
147 #endif
148 if (pt_status < 0)
149 return pt_status;
150 else
151 return parent_attach_all (pid, addr, data);
152 }
153 #endif
154
155 #if defined(PT_CONTIN1)
156 /* On HPUX, PT_CONTIN1 is a form of continue that preserves pending
157 signals. If it's available, use it. */
158 if (request == PT_CONTINUE)
159 request = PT_CONTIN1;
160 #endif
161
162 #if defined(PT_SINGLE1)
163 /* On HPUX, PT_SINGLE1 is a form of step that preserves pending
164 signals. If it's available, use it. */
165 if (request == PT_STEP)
166 request = PT_SINGLE1;
167 #endif
168
169 #if 0
170 saved_errno = errno;
171 errno = 0;
172 #endif
173 #if !defined (FIVE_ARG_PTRACE)
174 pt_status = ptrace (request, pid, addr, data);
175 #else
176 /* Deal with HPUX 8.0 braindamage. We never use the
177 calls which require the fifth argument. */
178 pt_status = ptrace (request, pid, addr, data, 0);
179 #endif
180
181 #if 0
182 if (errno)
183 printf (" [errno = %d]", errno);
184
185 errno = saved_errno;
186 printf (" = 0x%x\n", pt_status);
187 #endif
188 return pt_status;
189 }
190
191
192 #if defined (DEBUG_PTRACE) || defined (FIVE_ARG_PTRACE)
193 /* For the rest of the file, use an extra level of indirection */
194 /* This lets us breakpoint usefully on call_ptrace. */
195 #define ptrace call_ptrace
196 #endif
197
198 /* Wait for a process to finish, possibly running a target-specific
199 hook before returning. */
200
201 int
202 ptrace_wait (ptid_t ptid, int *status)
203 {
204 int wstate;
205
206 wstate = wait (status);
207 target_post_wait (pid_to_ptid (wstate), *status);
208 return wstate;
209 }
210
211 #ifndef KILL_INFERIOR
212 void
213 kill_inferior (void)
214 {
215 int status;
216 int pid = PIDGET (inferior_ptid);
217
218 if (pid == 0)
219 return;
220
221 /* This once used to call "kill" to kill the inferior just in case
222 the inferior was still running. As others have noted in the past
223 (kingdon) there shouldn't be any way to get here if the inferior
224 is still running -- else there's a major problem elsewere in gdb
225 and it needs to be fixed.
226
227 The kill call causes problems under hpux10, so it's been removed;
228 if this causes problems we'll deal with them as they arise. */
229 ptrace (PT_KILL, pid, (PTRACE_ARG3_TYPE) 0, 0);
230 ptrace_wait (null_ptid, &status);
231 target_mourn_inferior ();
232 }
233 #endif /* KILL_INFERIOR */
234
235 #ifndef CHILD_RESUME
236
237 /* Resume execution of the inferior process.
238 If STEP is nonzero, single-step it.
239 If SIGNAL is nonzero, give it that signal. */
240
241 void
242 child_resume (ptid_t ptid, int step, enum target_signal signal)
243 {
244 int pid = PIDGET (ptid);
245
246 errno = 0;
247
248 if (pid == -1)
249 /* Resume all threads. */
250 /* I think this only gets used in the non-threaded case, where "resume
251 all threads" and "resume inferior_ptid" are the same. */
252 pid = PIDGET (inferior_ptid);
253
254 /* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where
255 it was. (If GDB wanted it to start some other way, we have already
256 written a new PC value to the child.)
257
258 If this system does not support PT_STEP, a higher level function will
259 have called single_step() to transmute the step request into a
260 continue request (by setting breakpoints on all possible successor
261 instructions), so we don't have to worry about that here. */
262
263 if (step)
264 {
265 if (SOFTWARE_SINGLE_STEP_P ())
266 internal_error (__FILE__, __LINE__, "failed internal consistency check"); /* Make sure this doesn't happen. */
267 else
268 ptrace (PT_STEP, pid, (PTRACE_ARG3_TYPE) 1,
269 target_signal_to_host (signal));
270 }
271 else
272 ptrace (PT_CONTINUE, pid, (PTRACE_ARG3_TYPE) 1,
273 target_signal_to_host (signal));
274
275 if (errno)
276 {
277 perror_with_name ("ptrace");
278 }
279 }
280 #endif /* CHILD_RESUME */
281 \f
282
283 #ifdef ATTACH_DETACH
284 /* Start debugging the process whose number is PID. */
285 int
286 attach (int pid)
287 {
288 errno = 0;
289 ptrace (PT_ATTACH, pid, (PTRACE_ARG3_TYPE) 0, 0);
290 if (errno)
291 perror_with_name ("ptrace");
292 attach_flag = 1;
293 return pid;
294 }
295
296 /* Stop debugging the process whose number is PID
297 and continue it with signal number SIGNAL.
298 SIGNAL = 0 means just continue it. */
299
300 void
301 detach (int signal)
302 {
303 errno = 0;
304 ptrace (PT_DETACH, PIDGET (inferior_ptid), (PTRACE_ARG3_TYPE) 1,
305 signal);
306 if (errno)
307 print_sys_errmsg ("ptrace", errno);
308 attach_flag = 0;
309 }
310 #endif /* ATTACH_DETACH */
311 \f
312 /* Default the type of the ptrace transfer to int. */
313 #ifndef PTRACE_XFER_TYPE
314 #define PTRACE_XFER_TYPE int
315 #endif
316
317 /* KERNEL_U_ADDR is the amount to subtract from u.u_ar0
318 to get the offset in the core file of the register values. */
319 #if defined (KERNEL_U_ADDR_BSD) && !defined (FETCH_INFERIOR_REGISTERS)
320 /* Get kernel_u_addr using BSD-style nlist(). */
321 CORE_ADDR kernel_u_addr;
322 #endif /* KERNEL_U_ADDR_BSD. */
323
324 void
325 _initialize_kernel_u_addr (void)
326 {
327 #if defined (KERNEL_U_ADDR_BSD) && !defined (FETCH_INFERIOR_REGISTERS)
328 struct nlist names[2];
329
330 names[0].n_un.n_name = "_u";
331 names[1].n_un.n_name = NULL;
332 if (nlist ("/vmunix", names) == 0)
333 kernel_u_addr = names[0].n_value;
334 else
335 internal_error (__FILE__, __LINE__,
336 "Unable to get kernel u area address.");
337 #endif /* KERNEL_U_ADDR_BSD. */
338 }
339
340 #if !defined (FETCH_INFERIOR_REGISTERS)
341
342 #if !defined (offsetof)
343 #define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
344 #endif
345
346 /* U_REGS_OFFSET is the offset of the registers within the u area. */
347 #if !defined (U_REGS_OFFSET)
348 #define U_REGS_OFFSET \
349 ptrace (PT_READ_U, PIDGET (inferior_ptid), \
350 (PTRACE_ARG3_TYPE) (offsetof (struct user, u_ar0)), 0) \
351 - KERNEL_U_ADDR
352 #endif
353
354 /* Fetch one register. */
355
356 static void
357 fetch_register (int regno)
358 {
359 /* This isn't really an address. But ptrace thinks of it as one. */
360 CORE_ADDR regaddr;
361 char mess[128]; /* For messages */
362 int i;
363 unsigned int offset; /* Offset of registers within the u area. */
364 char buf[MAX_REGISTER_SIZE];
365 int tid;
366
367 if (CANNOT_FETCH_REGISTER (regno))
368 {
369 memset (buf, '\0', REGISTER_RAW_SIZE (regno)); /* Supply zeroes */
370 supply_register (regno, buf);
371 return;
372 }
373
374 /* Overload thread id onto process id */
375 if ((tid = TIDGET (inferior_ptid)) == 0)
376 tid = PIDGET (inferior_ptid); /* no thread id, just use process id */
377
378 offset = U_REGS_OFFSET;
379
380 regaddr = register_addr (regno, offset);
381 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
382 {
383 errno = 0;
384 *(PTRACE_XFER_TYPE *) & buf[i] = ptrace (PT_READ_U, tid,
385 (PTRACE_ARG3_TYPE) regaddr, 0);
386 regaddr += sizeof (PTRACE_XFER_TYPE);
387 if (errno != 0)
388 {
389 sprintf (mess, "reading register %s (#%d)",
390 REGISTER_NAME (regno), regno);
391 perror_with_name (mess);
392 }
393 }
394 supply_register (regno, buf);
395 }
396
397
398 /* Fetch register values from the inferior.
399 If REGNO is negative, do this for all registers.
400 Otherwise, REGNO specifies which register (so we can save time). */
401
402 void
403 fetch_inferior_registers (int regno)
404 {
405 if (regno >= 0)
406 {
407 fetch_register (regno);
408 }
409 else
410 {
411 for (regno = 0; regno < NUM_REGS; regno++)
412 {
413 fetch_register (regno);
414 }
415 }
416 }
417
418 /* Store one register. */
419
420 static void
421 store_register (int regno)
422 {
423 /* This isn't really an address. But ptrace thinks of it as one. */
424 CORE_ADDR regaddr;
425 char mess[128]; /* For messages */
426 int i;
427 unsigned int offset; /* Offset of registers within the u area. */
428 int tid;
429 char buf[MAX_REGISTER_SIZE];
430
431 if (CANNOT_STORE_REGISTER (regno))
432 {
433 return;
434 }
435
436 /* Overload thread id onto process id */
437 if ((tid = TIDGET (inferior_ptid)) == 0)
438 tid = PIDGET (inferior_ptid); /* no thread id, just use process id */
439
440 offset = U_REGS_OFFSET;
441
442 regaddr = register_addr (regno, offset);
443
444 /* Put the contents of regno into a local buffer */
445 regcache_collect (regno, buf);
446
447 /* Store the local buffer into the inferior a chunk at the time. */
448 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
449 {
450 errno = 0;
451 ptrace (PT_WRITE_U, tid, (PTRACE_ARG3_TYPE) regaddr,
452 *(PTRACE_XFER_TYPE *) (buf + i));
453 regaddr += sizeof (PTRACE_XFER_TYPE);
454 if (errno != 0)
455 {
456 sprintf (mess, "writing register %s (#%d)",
457 REGISTER_NAME (regno), regno);
458 perror_with_name (mess);
459 }
460 }
461 }
462
463 /* Store our register values back into the inferior.
464 If REGNO is negative, do this for all registers.
465 Otherwise, REGNO specifies which register (so we can save time). */
466
467 void
468 store_inferior_registers (int regno)
469 {
470 if (regno >= 0)
471 {
472 store_register (regno);
473 }
474 else
475 {
476 for (regno = 0; regno < NUM_REGS; regno++)
477 {
478 store_register (regno);
479 }
480 }
481 }
482 #endif /* !defined (FETCH_INFERIOR_REGISTERS). */
483 \f
484
485 /* Set an upper limit on alloca. */
486 #ifndef GDB_MAX_ALLOCA
487 #define GDB_MAX_ALLOCA 0x1000
488 #endif
489
490 #if !defined (CHILD_XFER_MEMORY)
491 /* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
492 in the NEW_SUN_PTRACE case. It ought to be straightforward. But
493 it appears that writing did not write the data that I specified. I
494 cannot understand where it got the data that it actually did write. */
495
496 /* Copy LEN bytes to or from inferior's memory starting at MEMADDR to
497 debugger memory starting at MYADDR. Copy to inferior if WRITE is
498 nonzero. TARGET is ignored.
499
500 Returns the length copied, which is either the LEN argument or
501 zero. This xfer function does not do partial moves, since
502 child_ops doesn't allow memory operations to cross below us in the
503 target stack anyway. */
504
505 int
506 child_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
507 struct mem_attrib *attrib, struct target_ops *target)
508 {
509 int i;
510 /* Round starting address down to longword boundary. */
511 CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
512 /* Round ending address up; get number of longwords that makes. */
513 int count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
514 / sizeof (PTRACE_XFER_TYPE));
515 int alloc = count * sizeof (PTRACE_XFER_TYPE);
516 PTRACE_XFER_TYPE *buffer;
517 struct cleanup *old_chain = NULL;
518
519 #ifdef PT_IO
520 /* OpenBSD 3.1, NetBSD 1.6 and FreeBSD 5.0 have a new PT_IO request
521 that promises to be much more efficient in reading and writing
522 data in the traced process's address space. */
523
524 {
525 struct ptrace_io_desc piod;
526
527 /* NOTE: We assume that there are no distinct address spaces for
528 instruction and data. */
529 piod.piod_op = write ? PIOD_WRITE_D : PIOD_READ_D;
530 piod.piod_offs = (void *) memaddr;
531 piod.piod_addr = myaddr;
532 piod.piod_len = len;
533
534 if (ptrace (PT_IO, PIDGET (inferior_ptid), (caddr_t) &piod, 0) == -1)
535 {
536 /* If the PT_IO request is somehow not supported, fallback on
537 using PT_WRITE_D/PT_READ_D. Otherwise we will return zero
538 to indicate failure. */
539 if (errno != EINVAL)
540 return 0;
541 }
542 else
543 {
544 /* Return the actual number of bytes read or written. */
545 return piod.piod_len;
546 }
547 }
548 #endif
549
550 /* Allocate buffer of that many longwords. */
551 if (len < GDB_MAX_ALLOCA)
552 {
553 buffer = (PTRACE_XFER_TYPE *) alloca (alloc);
554 }
555 else
556 {
557 buffer = (PTRACE_XFER_TYPE *) xmalloc (alloc);
558 old_chain = make_cleanup (xfree, buffer);
559 }
560
561 if (write)
562 {
563 /* Fill start and end extra bytes of buffer with existing memory
564 data. */
565 if (addr != memaddr || len < (int) sizeof (PTRACE_XFER_TYPE))
566 {
567 /* Need part of initial word -- fetch it. */
568 buffer[0] = ptrace (PT_READ_I, PIDGET (inferior_ptid),
569 (PTRACE_ARG3_TYPE) addr, 0);
570 }
571
572 if (count > 1) /* FIXME, avoid if even boundary. */
573 {
574 buffer[count - 1] =
575 ptrace (PT_READ_I, PIDGET (inferior_ptid),
576 ((PTRACE_ARG3_TYPE)
577 (addr + (count - 1) * sizeof (PTRACE_XFER_TYPE))), 0);
578 }
579
580 /* Copy data to be written over corresponding part of buffer. */
581 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
582 myaddr, len);
583
584 /* Write the entire buffer. */
585 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
586 {
587 errno = 0;
588 ptrace (PT_WRITE_D, PIDGET (inferior_ptid),
589 (PTRACE_ARG3_TYPE) addr, buffer[i]);
590 if (errno)
591 {
592 /* Using the appropriate one (I or D) is necessary for
593 Gould NP1, at least. */
594 errno = 0;
595 ptrace (PT_WRITE_I, PIDGET (inferior_ptid),
596 (PTRACE_ARG3_TYPE) addr, buffer[i]);
597 }
598 if (errno)
599 return 0;
600 }
601 #ifdef CLEAR_INSN_CACHE
602 CLEAR_INSN_CACHE ();
603 #endif
604 }
605 else
606 {
607 /* Read all the longwords. */
608 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
609 {
610 errno = 0;
611 buffer[i] = ptrace (PT_READ_I, PIDGET (inferior_ptid),
612 (PTRACE_ARG3_TYPE) addr, 0);
613 if (errno)
614 return 0;
615 QUIT;
616 }
617
618 /* Copy appropriate bytes out of the buffer. */
619 memcpy (myaddr,
620 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
621 len);
622 }
623
624 if (old_chain != NULL)
625 do_cleanups (old_chain);
626 return len;
627 }
628 \f
629
630 static void
631 udot_info (char *dummy1, int dummy2)
632 {
633 #if defined (KERNEL_U_SIZE)
634 long udot_off; /* Offset into user struct */
635 int udot_val; /* Value from user struct at udot_off */
636 char mess[128]; /* For messages */
637 #endif
638
639 if (!target_has_execution)
640 {
641 error ("The program is not being run.");
642 }
643
644 #if !defined (KERNEL_U_SIZE)
645
646 /* Adding support for this command is easy. Typically you just add a
647 routine, called "kernel_u_size" that returns the size of the user
648 struct, to the appropriate *-nat.c file and then add to the native
649 config file "#define KERNEL_U_SIZE kernel_u_size()" */
650 error ("Don't know how large ``struct user'' is in this version of gdb.");
651
652 #else
653
654 for (udot_off = 0; udot_off < KERNEL_U_SIZE; udot_off += sizeof (udot_val))
655 {
656 if ((udot_off % 24) == 0)
657 {
658 if (udot_off > 0)
659 {
660 printf_filtered ("\n");
661 }
662 printf_filtered ("%s:", paddr (udot_off));
663 }
664 udot_val = ptrace (PT_READ_U, PIDGET (inferior_ptid), (PTRACE_ARG3_TYPE) udot_off, 0);
665 if (errno != 0)
666 {
667 sprintf (mess, "\nreading user struct at offset 0x%s",
668 paddr_nz (udot_off));
669 perror_with_name (mess);
670 }
671 /* Avoid using nonportable (?) "*" in print specs */
672 printf_filtered (sizeof (int) == 4 ? " 0x%08x" : " 0x%16x", udot_val);
673 }
674 printf_filtered ("\n");
675
676 #endif
677 }
678 #endif /* !defined (CHILD_XFER_MEMORY). */
679 \f
680
681 void
682 _initialize_infptrace (void)
683 {
684 #if !defined (CHILD_XFER_MEMORY)
685 add_info ("udot", udot_info,
686 "Print contents of kernel ``struct user'' for current child.");
687 #endif
688 }
This page took 0.043596 seconds and 4 git commands to generate.