Tue Nov 5 10:21:02 1996 Michael Snyder <msnyder@cleaver.cygnus.com>
[deliverable/binutils-gdb.git] / gdb / infptrace.c
1 /* Low level Unix child interface to ptrace, for GDB when running under Unix.
2 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdb_string.h"
25 #include "wait.h"
26 #include "command.h"
27
28 #ifdef USG
29 #include <sys/types.h>
30 #endif
31
32 #include <sys/param.h>
33 #include <sys/dir.h>
34 #include <signal.h>
35 #include <sys/ioctl.h>
36
37 #ifndef NO_PTRACE_H
38 #ifdef PTRACE_IN_WRONG_PLACE
39 #include <ptrace.h>
40 #else
41 #include <sys/ptrace.h>
42 #endif
43 #endif /* NO_PTRACE_H */
44
45 #if !defined (PT_READ_I)
46 #define PT_READ_I 1 /* Read word from text space */
47 #endif
48 #if !defined (PT_READ_D)
49 #define PT_READ_D 2 /* Read word from data space */
50 #endif
51 #if !defined (PT_READ_U)
52 #define PT_READ_U 3 /* Read word from kernel user struct */
53 #endif
54 #if !defined (PT_WRITE_I)
55 #define PT_WRITE_I 4 /* Write word to text space */
56 #endif
57 #if !defined (PT_WRITE_D)
58 #define PT_WRITE_D 5 /* Write word to data space */
59 #endif
60 #if !defined (PT_WRITE_U)
61 #define PT_WRITE_U 6 /* Write word to kernel user struct */
62 #endif
63 #if !defined (PT_CONTINUE)
64 #define PT_CONTINUE 7 /* Continue after signal */
65 #endif
66 #if !defined (PT_STEP)
67 #define PT_STEP 9 /* Set flag for single stepping */
68 #endif
69 #if !defined (PT_KILL)
70 #define PT_KILL 8 /* Send child a SIGKILL signal */
71 #endif
72
73 #ifndef PT_ATTACH
74 #define PT_ATTACH PTRACE_ATTACH
75 #endif
76 #ifndef PT_DETACH
77 #define PT_DETACH PTRACE_DETACH
78 #endif
79
80 #include "gdbcore.h"
81 #ifndef NO_SYS_FILE
82 #include <sys/file.h>
83 #endif
84 #if 0
85 /* Don't think this is used anymore. On the sequent (not sure whether it's
86 dynix or ptx or both), it is included unconditionally by sys/user.h and
87 not protected against multiple inclusion. */
88 #include "gdb_stat.h"
89 #endif
90
91 #if !defined (FETCH_INFERIOR_REGISTERS)
92 #include <sys/user.h> /* Probably need to poke the user structure */
93 #if defined (KERNEL_U_ADDR_BSD)
94 #include <a.out.h> /* For struct nlist */
95 #endif /* KERNEL_U_ADDR_BSD. */
96 #endif /* !FETCH_INFERIOR_REGISTERS */
97
98 \f
99 /* This function simply calls ptrace with the given arguments.
100 It exists so that all calls to ptrace are isolated in this
101 machine-dependent file. */
102 int
103 call_ptrace (request, pid, addr, data)
104 int request, pid;
105 PTRACE_ARG3_TYPE addr;
106 int data;
107 {
108 return ptrace (request, pid, addr, data
109 #if defined (FIVE_ARG_PTRACE)
110 /* Deal with HPUX 8.0 braindamage. We never use the
111 calls which require the fifth argument. */
112 , 0
113 #endif
114 );
115 }
116
117 #if defined (DEBUG_PTRACE) || defined (FIVE_ARG_PTRACE)
118 /* For the rest of the file, use an extra level of indirection */
119 /* This lets us breakpoint usefully on call_ptrace. */
120 #define ptrace call_ptrace
121 #endif
122
123 void
124 kill_inferior ()
125 {
126 if (inferior_pid == 0)
127 return;
128 /* ptrace PT_KILL only works if process is stopped!!! So stop it with
129 a real signal first, if we can. FIXME: This is bogus. When the inferior
130 is not stopped, GDB should just be waiting for it. Either the following
131 line is unecessary, or there is some problem elsewhere in GDB which
132 causes us to get here when the inferior is not stopped. */
133 kill (inferior_pid, SIGKILL);
134 ptrace (PT_KILL, inferior_pid, (PTRACE_ARG3_TYPE) 0, 0);
135 wait ((int *)0);
136 target_mourn_inferior ();
137 }
138
139 #ifndef CHILD_RESUME
140
141 /* Resume execution of the inferior process.
142 If STEP is nonzero, single-step it.
143 If SIGNAL is nonzero, give it that signal. */
144
145 void
146 child_resume (pid, step, signal)
147 int pid;
148 int step;
149 enum target_signal signal;
150 {
151 errno = 0;
152
153 if (pid == -1)
154 /* Resume all threads. */
155 /* I think this only gets used in the non-threaded case, where "resume
156 all threads" and "resume inferior_pid" are the same. */
157 pid = inferior_pid;
158
159 /* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where
160 it was. (If GDB wanted it to start some other way, we have already
161 written a new PC value to the child.)
162
163 If this system does not support PT_STEP, a higher level function will
164 have called single_step() to transmute the step request into a
165 continue request (by setting breakpoints on all possible successor
166 instructions), so we don't have to worry about that here. */
167
168 if (step)
169 ptrace (PT_STEP, pid, (PTRACE_ARG3_TYPE) 1,
170 target_signal_to_host (signal));
171 else
172 ptrace (PT_CONTINUE, pid, (PTRACE_ARG3_TYPE) 1,
173 target_signal_to_host (signal));
174
175 if (errno)
176 perror_with_name ("ptrace");
177 }
178 #endif /* CHILD_RESUME */
179
180 \f
181 #ifdef ATTACH_DETACH
182 /* Start debugging the process whose number is PID. */
183 int
184 attach (pid)
185 int pid;
186 {
187 errno = 0;
188 ptrace (PT_ATTACH, pid, (PTRACE_ARG3_TYPE) 0, 0);
189 if (errno)
190 perror_with_name ("ptrace");
191 attach_flag = 1;
192 return pid;
193 }
194
195 /* Stop debugging the process whose number is PID
196 and continue it with signal number SIGNAL.
197 SIGNAL = 0 means just continue it. */
198
199 void
200 detach (signal)
201 int signal;
202 {
203 errno = 0;
204 ptrace (PT_DETACH, inferior_pid, (PTRACE_ARG3_TYPE) 1, signal);
205 if (errno)
206 perror_with_name ("ptrace");
207 attach_flag = 0;
208 }
209 #endif /* ATTACH_DETACH */
210 \f
211 /* Default the type of the ptrace transfer to int. */
212 #ifndef PTRACE_XFER_TYPE
213 #define PTRACE_XFER_TYPE int
214 #endif
215
216 /* KERNEL_U_ADDR is the amount to subtract from u.u_ar0
217 to get the offset in the core file of the register values. */
218 #if defined (KERNEL_U_ADDR_BSD) && !defined (FETCH_INFERIOR_REGISTERS)
219 /* Get kernel_u_addr using BSD-style nlist(). */
220 CORE_ADDR kernel_u_addr;
221 #endif /* KERNEL_U_ADDR_BSD. */
222
223 void
224 _initialize_kernel_u_addr ()
225 {
226 #if defined (KERNEL_U_ADDR_BSD) && !defined (FETCH_INFERIOR_REGISTERS)
227 struct nlist names[2];
228
229 names[0].n_un.n_name = "_u";
230 names[1].n_un.n_name = NULL;
231 if (nlist ("/vmunix", names) == 0)
232 kernel_u_addr = names[0].n_value;
233 else
234 fatal ("Unable to get kernel u area address.");
235 #endif /* KERNEL_U_ADDR_BSD. */
236 }
237
238 #if !defined (FETCH_INFERIOR_REGISTERS)
239
240 #if !defined (offsetof)
241 #define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
242 #endif
243
244 /* U_REGS_OFFSET is the offset of the registers within the u area. */
245 #if !defined (U_REGS_OFFSET)
246 #define U_REGS_OFFSET \
247 ptrace (PT_READ_U, inferior_pid, \
248 (PTRACE_ARG3_TYPE) (offsetof (struct user, u_ar0)), 0) \
249 - KERNEL_U_ADDR
250 #endif
251
252 /* Registers we shouldn't try to fetch. */
253 #if !defined (CANNOT_FETCH_REGISTER)
254 #define CANNOT_FETCH_REGISTER(regno) 0
255 #endif
256
257 /* Fetch one register. */
258
259 static void
260 fetch_register (regno)
261 int regno;
262 {
263 /* This isn't really an address. But ptrace thinks of it as one. */
264 CORE_ADDR regaddr;
265 char buf[MAX_REGISTER_RAW_SIZE];
266 char mess[128]; /* For messages */
267 register int i;
268
269 /* Offset of registers within the u area. */
270 unsigned int offset;
271
272 if (CANNOT_FETCH_REGISTER (regno))
273 {
274 memset (buf, '\0', REGISTER_RAW_SIZE (regno)); /* Supply zeroes */
275 supply_register (regno, buf);
276 return;
277 }
278
279 offset = U_REGS_OFFSET;
280
281 regaddr = register_addr (regno, offset);
282 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
283 {
284 errno = 0;
285 *(PTRACE_XFER_TYPE *) &buf[i] = ptrace (PT_READ_U, inferior_pid,
286 (PTRACE_ARG3_TYPE) regaddr, 0);
287 regaddr += sizeof (PTRACE_XFER_TYPE);
288 if (errno != 0)
289 {
290 sprintf (mess, "reading register %s (#%d)", reg_names[regno], regno);
291 perror_with_name (mess);
292 }
293 }
294 supply_register (regno, buf);
295 }
296
297
298 /* Fetch all registers, or just one, from the child process. */
299
300 void
301 fetch_inferior_registers (regno)
302 int regno;
303 {
304 int numregs;
305
306 if (regno == -1)
307 {
308 numregs = ARCH_NUM_REGS;
309 for (regno = 0; regno < numregs; regno++)
310 fetch_register (regno);
311 }
312 else
313 fetch_register (regno);
314 }
315
316 /* Registers we shouldn't try to store. */
317 #if !defined (CANNOT_STORE_REGISTER)
318 #define CANNOT_STORE_REGISTER(regno) 0
319 #endif
320
321 /* Store our register values back into the inferior.
322 If REGNO is -1, do this for all registers.
323 Otherwise, REGNO specifies which register (so we can save time). */
324
325 void
326 store_inferior_registers (regno)
327 int regno;
328 {
329 /* This isn't really an address. But ptrace thinks of it as one. */
330 CORE_ADDR regaddr;
331 char buf[80];
332 register int i, numregs;
333
334 unsigned int offset = U_REGS_OFFSET;
335
336 if (regno >= 0)
337 {
338 regaddr = register_addr (regno, offset);
339 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof(PTRACE_XFER_TYPE))
340 {
341 errno = 0;
342 ptrace (PT_WRITE_U, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
343 *(PTRACE_XFER_TYPE *) &registers[REGISTER_BYTE (regno) + i]);
344 if (errno != 0)
345 {
346 sprintf (buf, "writing register number %d(%d)", regno, i);
347 perror_with_name (buf);
348 }
349 regaddr += sizeof(PTRACE_XFER_TYPE);
350 }
351 }
352 else
353 {
354 numregs = ARCH_NUM_REGS;
355 for (regno = 0; regno < numregs; regno++)
356 {
357 if (CANNOT_STORE_REGISTER (regno))
358 continue;
359 regaddr = register_addr (regno, offset);
360 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof(PTRACE_XFER_TYPE))
361 {
362 errno = 0;
363 ptrace (PT_WRITE_U, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
364 *(PTRACE_XFER_TYPE *) &registers[REGISTER_BYTE (regno) + i]);
365 if (errno != 0)
366 {
367 sprintf (buf, "writing register number %d(%d)", regno, i);
368 perror_with_name (buf);
369 }
370 regaddr += sizeof(PTRACE_XFER_TYPE);
371 }
372 }
373 }
374 }
375 #endif /* !defined (FETCH_INFERIOR_REGISTERS). */
376 \f
377
378 #if !defined (CHILD_XFER_MEMORY)
379 /* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
380 in the NEW_SUN_PTRACE case.
381 It ought to be straightforward. But it appears that writing did
382 not write the data that I specified. I cannot understand where
383 it got the data that it actually did write. */
384
385 /* Copy LEN bytes to or from inferior's memory starting at MEMADDR
386 to debugger memory starting at MYADDR. Copy to inferior if
387 WRITE is nonzero.
388
389 Returns the length copied, which is either the LEN argument or zero.
390 This xfer function does not do partial moves, since child_ops
391 doesn't allow memory operations to cross below us in the target stack
392 anyway. */
393
394 int
395 child_xfer_memory (memaddr, myaddr, len, write, target)
396 CORE_ADDR memaddr;
397 char *myaddr;
398 int len;
399 int write;
400 struct target_ops *target; /* ignored */
401 {
402 register int i;
403 /* Round starting address down to longword boundary. */
404 register CORE_ADDR addr = memaddr & - sizeof (PTRACE_XFER_TYPE);
405 /* Round ending address up; get number of longwords that makes. */
406 register int count
407 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
408 / sizeof (PTRACE_XFER_TYPE);
409 /* Allocate buffer of that many longwords. */
410 register PTRACE_XFER_TYPE *buffer
411 = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
412
413 if (write)
414 {
415 /* Fill start and end extra bytes of buffer with existing memory data. */
416
417 if (addr != memaddr || len < (int) sizeof (PTRACE_XFER_TYPE)) {
418 /* Need part of initial word -- fetch it. */
419 buffer[0] = ptrace (PT_READ_I, inferior_pid, (PTRACE_ARG3_TYPE) addr,
420 0);
421 }
422
423 if (count > 1) /* FIXME, avoid if even boundary */
424 {
425 buffer[count - 1]
426 = ptrace (PT_READ_I, inferior_pid,
427 ((PTRACE_ARG3_TYPE)
428 (addr + (count - 1) * sizeof (PTRACE_XFER_TYPE))),
429 0);
430 }
431
432 /* Copy data to be written over corresponding part of buffer */
433
434 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
435 myaddr,
436 len);
437
438 /* Write the entire buffer. */
439
440 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
441 {
442 errno = 0;
443 ptrace (PT_WRITE_D, inferior_pid, (PTRACE_ARG3_TYPE) addr,
444 buffer[i]);
445 if (errno)
446 {
447 /* Using the appropriate one (I or D) is necessary for
448 Gould NP1, at least. */
449 errno = 0;
450 ptrace (PT_WRITE_I, inferior_pid, (PTRACE_ARG3_TYPE) addr,
451 buffer[i]);
452 }
453 if (errno)
454 return 0;
455 }
456 }
457 else
458 {
459 /* Read all the longwords */
460 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
461 {
462 errno = 0;
463 buffer[i] = ptrace (PT_READ_I, inferior_pid,
464 (PTRACE_ARG3_TYPE) addr, 0);
465 if (errno)
466 return 0;
467 QUIT;
468 }
469
470 /* Copy appropriate bytes out of the buffer. */
471 memcpy (myaddr,
472 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
473 len);
474 }
475 return len;
476 }
477
478 \f
479 static void
480 udot_info ()
481 {
482 int udot_off; /* Offset into user struct */
483 int udot_val; /* Value from user struct at udot_off */
484 char mess[128]; /* For messages */
485
486 if (!target_has_execution)
487 {
488 error ("The program is not being run.");
489 }
490
491 #if !defined (KERNEL_U_SIZE)
492
493 /* Adding support for this command is easy. Typically you just add a
494 routine, called "kernel_u_size" that returns the size of the user
495 struct, to the appropriate *-nat.c file and then add to the native
496 config file "#define KERNEL_U_SIZE kernel_u_size()" */
497 error ("Don't know how large ``struct user'' is in this version of gdb.");
498
499 #else
500
501 for (udot_off = 0; udot_off < KERNEL_U_SIZE; udot_off += sizeof (udot_val))
502 {
503 if ((udot_off % 24) == 0)
504 {
505 if (udot_off > 0)
506 {
507 printf_filtered ("\n");
508 }
509 printf_filtered ("%04x:", udot_off);
510 }
511 udot_val = ptrace (PT_READ_U, inferior_pid, (PTRACE_ARG3_TYPE) udot_off, 0);
512 if (errno != 0)
513 {
514 sprintf (mess, "\nreading user struct at offset 0x%x", udot_off);
515 perror_with_name (mess);
516 }
517 /* Avoid using nonportable (?) "*" in print specs */
518 printf_filtered (sizeof (int) == 4 ? " 0x%08x" : " 0x%16x", udot_val);
519 }
520 printf_filtered ("\n");
521
522 #endif
523 }
524 #endif /* !defined (CHILD_XFER_MEMORY). */
525
526 \f
527 void
528 _initialize_infptrace ()
529 {
530 #if !defined (CHILD_XFER_MEMORY)
531 add_info ("udot", udot_info,
532 "Print contents of kernel ``struct user'' for current child.");
533 #endif
534 }
This page took 0.039531 seconds and 4 git commands to generate.