Fri Sep 4 13:57:43 1998 Jakub Jelinek <jj@sunsite.ms.mff.cuni.cz>
[deliverable/binutils-gdb.git] / gdb / infptrace.c
1 /* Low level Unix child interface to ptrace, for GDB when running under Unix.
2 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdb_string.h"
25 #include "wait.h"
26 #include "command.h"
27
28 #ifdef USG
29 #include <sys/types.h>
30 #endif
31
32 #include <sys/param.h>
33 #include <sys/dir.h>
34 #include <signal.h>
35 #include <sys/ioctl.h>
36
37 #ifndef NO_PTRACE_H
38 #ifdef PTRACE_IN_WRONG_PLACE
39 #include <ptrace.h>
40 #else
41 #include <sys/ptrace.h>
42 #endif
43 #endif /* NO_PTRACE_H */
44
45 #if !defined (PT_READ_I)
46 #define PT_READ_I 1 /* Read word from text space */
47 #endif
48 #if !defined (PT_READ_D)
49 #define PT_READ_D 2 /* Read word from data space */
50 #endif
51 #if !defined (PT_READ_U)
52 #define PT_READ_U 3 /* Read word from kernel user struct */
53 #endif
54 #if !defined (PT_WRITE_I)
55 #define PT_WRITE_I 4 /* Write word to text space */
56 #endif
57 #if !defined (PT_WRITE_D)
58 #define PT_WRITE_D 5 /* Write word to data space */
59 #endif
60 #if !defined (PT_WRITE_U)
61 #define PT_WRITE_U 6 /* Write word to kernel user struct */
62 #endif
63 #if !defined (PT_CONTINUE)
64 #define PT_CONTINUE 7 /* Continue after signal */
65 #endif
66 #if !defined (PT_STEP)
67 #define PT_STEP 9 /* Set flag for single stepping */
68 #endif
69 #if !defined (PT_KILL)
70 #define PT_KILL 8 /* Send child a SIGKILL signal */
71 #endif
72
73 #ifndef PT_ATTACH
74 #define PT_ATTACH PTRACE_ATTACH
75 #endif
76 #ifndef PT_DETACH
77 #define PT_DETACH PTRACE_DETACH
78 #endif
79
80 #include "gdbcore.h"
81 #ifndef NO_SYS_FILE
82 #include <sys/file.h>
83 #endif
84 #if 0
85 /* Don't think this is used anymore. On the sequent (not sure whether it's
86 dynix or ptx or both), it is included unconditionally by sys/user.h and
87 not protected against multiple inclusion. */
88 #include "gdb_stat.h"
89 #endif
90
91 #if !defined (FETCH_INFERIOR_REGISTERS)
92 #include <sys/user.h> /* Probably need to poke the user structure */
93 #if defined (KERNEL_U_ADDR_BSD)
94 #include <a.out.h> /* For struct nlist */
95 #endif /* KERNEL_U_ADDR_BSD. */
96 #endif /* !FETCH_INFERIOR_REGISTERS */
97
98 #if !defined (CHILD_XFER_MEMORY)
99 static void udot_info PARAMS ((char *, int));
100 #endif
101
102 #if !defined (FETCH_INFERIOR_REGISTERS)
103 static void fetch_register PARAMS ((int));
104 static void store_register PARAMS ((int));
105 #endif
106
107 \f
108 /* This function simply calls ptrace with the given arguments.
109 It exists so that all calls to ptrace are isolated in this
110 machine-dependent file. */
111 int
112 call_ptrace (request, pid, addr, data)
113 int request, pid;
114 PTRACE_ARG3_TYPE addr;
115 int data;
116 {
117 return ptrace (request, pid, addr, data
118 #if defined (FIVE_ARG_PTRACE)
119 /* Deal with HPUX 8.0 braindamage. We never use the
120 calls which require the fifth argument. */
121 , 0
122 #endif
123 );
124 }
125
126 #if defined (DEBUG_PTRACE) || defined (FIVE_ARG_PTRACE)
127 /* For the rest of the file, use an extra level of indirection */
128 /* This lets us breakpoint usefully on call_ptrace. */
129 #define ptrace call_ptrace
130 #endif
131
132 void
133 kill_inferior ()
134 {
135 if (inferior_pid == 0)
136 return;
137
138 /* This once used to call "kill" to kill the inferior just in case
139 the inferior was still running. As others have noted in the past
140 (kingdon) there shouldn't be any way to get here if the inferior
141 is still running -- else there's a major problem elsewere in gdb
142 and it needs to be fixed.
143
144 The kill call causes problems under hpux10, so it's been removed;
145 if this causes problems we'll deal with them as they arise. */
146 ptrace (PT_KILL, inferior_pid, (PTRACE_ARG3_TYPE) 0, 0);
147 wait ((int *)0);
148 target_mourn_inferior ();
149 }
150
151 #ifndef CHILD_RESUME
152
153 /* Resume execution of the inferior process.
154 If STEP is nonzero, single-step it.
155 If SIGNAL is nonzero, give it that signal. */
156
157 void
158 child_resume (pid, step, signal)
159 int pid;
160 int step;
161 enum target_signal signal;
162 {
163 errno = 0;
164
165 if (pid == -1)
166 /* Resume all threads. */
167 /* I think this only gets used in the non-threaded case, where "resume
168 all threads" and "resume inferior_pid" are the same. */
169 pid = inferior_pid;
170
171 /* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where
172 it was. (If GDB wanted it to start some other way, we have already
173 written a new PC value to the child.)
174
175 If this system does not support PT_STEP, a higher level function will
176 have called single_step() to transmute the step request into a
177 continue request (by setting breakpoints on all possible successor
178 instructions), so we don't have to worry about that here. */
179
180 if (step)
181 {
182 #ifdef NO_SINGLE_STEP
183 abort(); /* Make sure this doesn't happen. */
184 #else
185 ptrace (PT_STEP, pid, (PTRACE_ARG3_TYPE) 1,
186 target_signal_to_host (signal));
187 #endif /* NO_SINGLE_STEP */
188 }
189 else
190 ptrace (PT_CONTINUE, pid, (PTRACE_ARG3_TYPE) 1,
191 target_signal_to_host (signal));
192
193 if (errno)
194 perror_with_name ("ptrace");
195 }
196 #endif /* CHILD_RESUME */
197
198 \f
199 #ifdef ATTACH_DETACH
200 /* Start debugging the process whose number is PID. */
201 int
202 attach (pid)
203 int pid;
204 {
205 errno = 0;
206 ptrace (PT_ATTACH, pid, (PTRACE_ARG3_TYPE) 0, 0);
207 if (errno)
208 perror_with_name ("ptrace");
209 attach_flag = 1;
210 return pid;
211 }
212
213 /* Stop debugging the process whose number is PID
214 and continue it with signal number SIGNAL.
215 SIGNAL = 0 means just continue it. */
216
217 void
218 detach (signal)
219 int signal;
220 {
221 errno = 0;
222 ptrace (PT_DETACH, inferior_pid, (PTRACE_ARG3_TYPE) 1, signal);
223 if (errno)
224 perror_with_name ("ptrace");
225 attach_flag = 0;
226 }
227 #endif /* ATTACH_DETACH */
228 \f
229 /* Default the type of the ptrace transfer to int. */
230 #ifndef PTRACE_XFER_TYPE
231 #define PTRACE_XFER_TYPE int
232 #endif
233
234 /* KERNEL_U_ADDR is the amount to subtract from u.u_ar0
235 to get the offset in the core file of the register values. */
236 #if defined (KERNEL_U_ADDR_BSD) && !defined (FETCH_INFERIOR_REGISTERS)
237 /* Get kernel_u_addr using BSD-style nlist(). */
238 CORE_ADDR kernel_u_addr;
239 #endif /* KERNEL_U_ADDR_BSD. */
240
241 void
242 _initialize_kernel_u_addr ()
243 {
244 #if defined (KERNEL_U_ADDR_BSD) && !defined (FETCH_INFERIOR_REGISTERS)
245 struct nlist names[2];
246
247 names[0].n_un.n_name = "_u";
248 names[1].n_un.n_name = NULL;
249 if (nlist ("/vmunix", names) == 0)
250 kernel_u_addr = names[0].n_value;
251 else
252 fatal ("Unable to get kernel u area address.");
253 #endif /* KERNEL_U_ADDR_BSD. */
254 }
255
256 #if !defined (FETCH_INFERIOR_REGISTERS)
257
258 #if !defined (offsetof)
259 #define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
260 #endif
261
262 /* U_REGS_OFFSET is the offset of the registers within the u area. */
263 #if !defined (U_REGS_OFFSET)
264 #define U_REGS_OFFSET \
265 ptrace (PT_READ_U, inferior_pid, \
266 (PTRACE_ARG3_TYPE) (offsetof (struct user, u_ar0)), 0) \
267 - KERNEL_U_ADDR
268 #endif
269
270 /* Registers we shouldn't try to fetch. */
271 #if !defined (CANNOT_FETCH_REGISTER)
272 #define CANNOT_FETCH_REGISTER(regno) 0
273 #endif
274
275 /* Fetch one register. */
276
277 static void
278 fetch_register (regno)
279 int regno;
280 {
281 /* This isn't really an address. But ptrace thinks of it as one. */
282 CORE_ADDR regaddr;
283 char mess[128]; /* For messages */
284 register int i;
285 unsigned int offset; /* Offset of registers within the u area. */
286 char buf[MAX_REGISTER_RAW_SIZE];
287
288 if (CANNOT_FETCH_REGISTER (regno))
289 {
290 memset (buf, '\0', REGISTER_RAW_SIZE (regno)); /* Supply zeroes */
291 supply_register (regno, buf);
292 return;
293 }
294
295 offset = U_REGS_OFFSET;
296
297 regaddr = register_addr (regno, offset);
298 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
299 {
300 errno = 0;
301 *(PTRACE_XFER_TYPE *) &buf[i] = ptrace (PT_READ_U, inferior_pid,
302 (PTRACE_ARG3_TYPE) regaddr, 0);
303 regaddr += sizeof (PTRACE_XFER_TYPE);
304 if (errno != 0)
305 {
306 sprintf (mess, "reading register %s (#%d)", reg_names[regno], regno);
307 perror_with_name (mess);
308 }
309 }
310 supply_register (regno, buf);
311 }
312
313
314 /* Fetch register values from the inferior.
315 If REGNO is negative, do this for all registers.
316 Otherwise, REGNO specifies which register (so we can save time). */
317
318 void
319 fetch_inferior_registers (regno)
320 int regno;
321 {
322 if (regno >= 0)
323 {
324 fetch_register (regno);
325 }
326 else
327 {
328 for (regno = 0; regno < ARCH_NUM_REGS; regno++)
329 {
330 fetch_register (regno);
331 }
332 }
333 }
334
335 /* Registers we shouldn't try to store. */
336 #if !defined (CANNOT_STORE_REGISTER)
337 #define CANNOT_STORE_REGISTER(regno) 0
338 #endif
339
340 /* Store one register. */
341
342 static void
343 store_register (regno)
344 int regno;
345 {
346 /* This isn't really an address. But ptrace thinks of it as one. */
347 CORE_ADDR regaddr;
348 char mess[128]; /* For messages */
349 register int i;
350 unsigned int offset; /* Offset of registers within the u area. */
351
352 if (CANNOT_STORE_REGISTER (regno))
353 {
354 return;
355 }
356
357 offset = U_REGS_OFFSET;
358
359 regaddr = register_addr (regno, offset);
360 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof(PTRACE_XFER_TYPE))
361 {
362 errno = 0;
363 ptrace (PT_WRITE_U, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
364 *(PTRACE_XFER_TYPE *) &registers[REGISTER_BYTE (regno) + i]);
365 regaddr += sizeof (PTRACE_XFER_TYPE);
366 if (errno != 0)
367 {
368 sprintf (mess, "writing register %s (#%d)", reg_names[regno], regno);
369 perror_with_name (mess);
370 }
371 }
372 }
373
374 /* Store our register values back into the inferior.
375 If REGNO is negative, do this for all registers.
376 Otherwise, REGNO specifies which register (so we can save time). */
377
378 void
379 store_inferior_registers (regno)
380 int regno;
381 {
382 if (regno >= 0)
383 {
384 store_register (regno);
385 }
386 else
387 {
388 for (regno = 0; regno < ARCH_NUM_REGS; regno++)
389 {
390 store_register (regno);
391 }
392 }
393 }
394 #endif /* !defined (FETCH_INFERIOR_REGISTERS). */
395 \f
396
397 #if !defined (CHILD_XFER_MEMORY)
398 /* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
399 in the NEW_SUN_PTRACE case.
400 It ought to be straightforward. But it appears that writing did
401 not write the data that I specified. I cannot understand where
402 it got the data that it actually did write. */
403
404 /* Copy LEN bytes to or from inferior's memory starting at MEMADDR
405 to debugger memory starting at MYADDR. Copy to inferior if
406 WRITE is nonzero.
407
408 Returns the length copied, which is either the LEN argument or zero.
409 This xfer function does not do partial moves, since child_ops
410 doesn't allow memory operations to cross below us in the target stack
411 anyway. */
412
413 int
414 child_xfer_memory (memaddr, myaddr, len, write, target)
415 CORE_ADDR memaddr;
416 char *myaddr;
417 int len;
418 int write;
419 struct target_ops *target; /* ignored */
420 {
421 register int i;
422 /* Round starting address down to longword boundary. */
423 register CORE_ADDR addr = memaddr & - sizeof (PTRACE_XFER_TYPE);
424 /* Round ending address up; get number of longwords that makes. */
425 register int count
426 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
427 / sizeof (PTRACE_XFER_TYPE);
428 /* Allocate buffer of that many longwords. */
429 register PTRACE_XFER_TYPE *buffer
430 = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
431
432 if (write)
433 {
434 /* Fill start and end extra bytes of buffer with existing memory data. */
435
436 if (addr != memaddr || len < (int) sizeof (PTRACE_XFER_TYPE)) {
437 /* Need part of initial word -- fetch it. */
438 buffer[0] = ptrace (PT_READ_I, inferior_pid, (PTRACE_ARG3_TYPE) addr,
439 0);
440 }
441
442 if (count > 1) /* FIXME, avoid if even boundary */
443 {
444 buffer[count - 1]
445 = ptrace (PT_READ_I, inferior_pid,
446 ((PTRACE_ARG3_TYPE)
447 (addr + (count - 1) * sizeof (PTRACE_XFER_TYPE))),
448 0);
449 }
450
451 /* Copy data to be written over corresponding part of buffer */
452
453 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
454 myaddr,
455 len);
456
457 /* Write the entire buffer. */
458
459 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
460 {
461 errno = 0;
462 ptrace (PT_WRITE_D, inferior_pid, (PTRACE_ARG3_TYPE) addr,
463 buffer[i]);
464 if (errno)
465 {
466 /* Using the appropriate one (I or D) is necessary for
467 Gould NP1, at least. */
468 errno = 0;
469 ptrace (PT_WRITE_I, inferior_pid, (PTRACE_ARG3_TYPE) addr,
470 buffer[i]);
471 }
472 if (errno)
473 return 0;
474 }
475 }
476 else
477 {
478 /* Read all the longwords */
479 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
480 {
481 errno = 0;
482 buffer[i] = ptrace (PT_READ_I, inferior_pid,
483 (PTRACE_ARG3_TYPE) addr, 0);
484 if (errno)
485 return 0;
486 QUIT;
487 }
488
489 /* Copy appropriate bytes out of the buffer. */
490 memcpy (myaddr,
491 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
492 len);
493 }
494 return len;
495 }
496
497 \f
498 static void
499 udot_info (dummy1, dummy2)
500 char *dummy1;
501 int dummy2;
502 {
503 #if defined (KERNEL_U_SIZE)
504 int udot_off; /* Offset into user struct */
505 int udot_val; /* Value from user struct at udot_off */
506 char mess[128]; /* For messages */
507 #endif
508
509 if (!target_has_execution)
510 {
511 error ("The program is not being run.");
512 }
513
514 #if !defined (KERNEL_U_SIZE)
515
516 /* Adding support for this command is easy. Typically you just add a
517 routine, called "kernel_u_size" that returns the size of the user
518 struct, to the appropriate *-nat.c file and then add to the native
519 config file "#define KERNEL_U_SIZE kernel_u_size()" */
520 error ("Don't know how large ``struct user'' is in this version of gdb.");
521
522 #else
523
524 for (udot_off = 0; udot_off < KERNEL_U_SIZE; udot_off += sizeof (udot_val))
525 {
526 if ((udot_off % 24) == 0)
527 {
528 if (udot_off > 0)
529 {
530 printf_filtered ("\n");
531 }
532 printf_filtered ("%04x:", udot_off);
533 }
534 udot_val = ptrace (PT_READ_U, inferior_pid, (PTRACE_ARG3_TYPE) udot_off, 0);
535 if (errno != 0)
536 {
537 sprintf (mess, "\nreading user struct at offset 0x%x", udot_off);
538 perror_with_name (mess);
539 }
540 /* Avoid using nonportable (?) "*" in print specs */
541 printf_filtered (sizeof (int) == 4 ? " 0x%08x" : " 0x%16x", udot_val);
542 }
543 printf_filtered ("\n");
544
545 #endif
546 }
547 #endif /* !defined (CHILD_XFER_MEMORY). */
548
549 \f
550 void
551 _initialize_infptrace ()
552 {
553 #if !defined (CHILD_XFER_MEMORY)
554 add_info ("udot", udot_info,
555 "Print contents of kernel ``struct user'' for current child.");
556 #endif
557 }
This page took 0.041288 seconds and 4 git commands to generate.