* bfd.c (union tdata): Add nlm_obj_data;
[deliverable/binutils-gdb.git] / gdb / infptrace.c
1 /* Low level Unix child interface to ptrace, for GDB when running under Unix.
2 Copyright 1988, 1989, 1990, 1991, 1992 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "target.h"
24
25 #ifdef USG
26 #include <sys/types.h>
27 #endif
28
29 #include <sys/param.h>
30 #include <sys/dir.h>
31 #include <signal.h>
32 #include <sys/ioctl.h>
33
34 #ifndef NO_PTRACE_H
35 #ifdef PTRACE_IN_WRONG_PLACE
36 #include <ptrace.h>
37 #else
38 #include <sys/ptrace.h>
39 #endif
40 #endif /* NO_PTRACE_H */
41
42 #if !defined (PT_KILL)
43 #define PT_KILL 8
44 #define PT_STEP 9
45 #define PT_CONTINUE 7
46 #define PT_READ_U 3
47 #define PT_WRITE_U 6
48 #define PT_READ_I 1
49 #define PT_READ_D 2
50 #define PT_WRITE_I 4
51 #define PT_WRITE_D 5
52 #endif /* No PT_KILL. */
53
54 #ifndef PT_ATTACH
55 #define PT_ATTACH PTRACE_ATTACH
56 #endif
57 #ifndef PT_DETACH
58 #define PT_DETACH PTRACE_DETACH
59 #endif
60
61 #include "gdbcore.h"
62 #ifndef NO_SYS_FILE
63 #include <sys/file.h>
64 #endif
65 #include <sys/stat.h>
66
67 #if defined (FIVE_ARG_PTRACE
68 /* Deal with HPUX 8.0 braindamage. */
69 #define ptrace(a,b,c,d) ptrace(a,b,c,d,0)
70 #endif
71
72 #if !defined (FETCH_INFERIOR_REGISTERS)
73 #include <sys/user.h> /* Probably need to poke the user structure */
74 #if defined (KERNEL_U_ADDR_BSD)
75 #include <a.out.h> /* For struct nlist */
76 #endif /* KERNEL_U_ADDR_BSD. */
77 #endif /* !FETCH_INFERIOR_REGISTERS */
78
79 \f
80 /* This function simply calls ptrace with the given arguments.
81 It exists so that all calls to ptrace are isolated in this
82 machine-dependent file. */
83 int
84 call_ptrace (request, pid, addr, data)
85 int request, pid;
86 PTRACE_ARG3_TYPE addr;
87 int data;
88 {
89 return ptrace (request, pid, addr, data);
90 }
91
92 #ifdef DEBUG_PTRACE
93 /* For the rest of the file, use an extra level of indirection */
94 /* This lets us breakpoint usefully on call_ptrace. */
95 #define ptrace call_ptrace
96 #endif
97
98 void
99 kill_inferior ()
100 {
101 if (inferior_pid == 0)
102 return;
103 /* ptrace PT_KILL only works if process is stopped!!! So stop it with
104 a real signal first, if we can. */
105 kill (inferior_pid, SIGKILL);
106 ptrace (PT_KILL, inferior_pid, (PTRACE_ARG3_TYPE) 0, 0);
107 wait ((int *)0);
108 target_mourn_inferior ();
109 }
110
111 /* Resume execution of the inferior process.
112 If STEP is nonzero, single-step it.
113 If SIGNAL is nonzero, give it that signal. */
114
115 void
116 child_resume (step, signal)
117 int step;
118 int signal;
119 {
120 errno = 0;
121
122 /* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where
123 it was. (If GDB wanted it to start some other way, we have already
124 written a new PC value to the child.)
125
126 If this system does not support PT_STEP, a higher level function will
127 have called single_step() to transmute the step request into a
128 continue request (by setting breakpoints on all possible successor
129 instructions), so we don't have to worry about that here. */
130
131 if (step)
132 ptrace (PT_STEP, inferior_pid, (PTRACE_ARG3_TYPE) 1, signal);
133 else
134 ptrace (PT_CONTINUE, inferior_pid, (PTRACE_ARG3_TYPE) 1, signal);
135
136 if (errno)
137 perror_with_name ("ptrace");
138 }
139 \f
140 #ifdef ATTACH_DETACH
141 /* Start debugging the process whose number is PID. */
142 int
143 attach (pid)
144 int pid;
145 {
146 errno = 0;
147 ptrace (PT_ATTACH, pid, (PTRACE_ARG3_TYPE) 0, 0);
148 if (errno)
149 perror_with_name ("ptrace");
150 attach_flag = 1;
151 return pid;
152 }
153
154 /* Stop debugging the process whose number is PID
155 and continue it with signal number SIGNAL.
156 SIGNAL = 0 means just continue it. */
157
158 void
159 detach (signal)
160 int signal;
161 {
162 errno = 0;
163 ptrace (PT_DETACH, inferior_pid, (PTRACE_ARG3_TYPE) 1, signal);
164 if (errno)
165 perror_with_name ("ptrace");
166 attach_flag = 0;
167 }
168 #endif /* ATTACH_DETACH */
169 \f
170 #if !defined (FETCH_INFERIOR_REGISTERS)
171
172 /* KERNEL_U_ADDR is the amount to subtract from u.u_ar0
173 to get the offset in the core file of the register values. */
174 #if defined (KERNEL_U_ADDR_BSD)
175 /* Get kernel_u_addr using BSD-style nlist(). */
176 CORE_ADDR kernel_u_addr;
177
178 void
179 _initialize_kernel_u_addr ()
180 {
181 struct nlist names[2];
182
183 names[0].n_un.n_name = "_u";
184 names[1].n_un.n_name = NULL;
185 if (nlist ("/vmunix", names) == 0)
186 kernel_u_addr = names[0].n_value;
187 else
188 fatal ("Unable to get kernel u area address.");
189 }
190 #endif /* KERNEL_U_ADDR_BSD. */
191
192 #if defined (KERNEL_U_ADDR_HPUX)
193 /* Get kernel_u_addr using HPUX-style nlist(). */
194 CORE_ADDR kernel_u_addr;
195
196 struct hpnlist {
197 char * n_name;
198 long n_value;
199 unsigned char n_type;
200 unsigned char n_length;
201 short n_almod;
202 short n_unused;
203 };
204 static struct hpnlist nl[] = {{ "_u", -1, }, { (char *) 0, }};
205
206 /* read the value of the u area from the hp-ux kernel */
207 void _initialize_kernel_u_addr ()
208 {
209 nlist ("/hp-ux", &nl);
210 kernel_u_addr = nl[0].n_value;
211 }
212 #endif /* KERNEL_U_ADDR_HPUX. */
213
214 #if !defined (offsetof)
215 #define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
216 #endif
217
218 /* U_REGS_OFFSET is the offset of the registers within the u area. */
219 #if !defined (U_REGS_OFFSET)
220 #define U_REGS_OFFSET \
221 ptrace (PT_READ_U, inferior_pid, \
222 (PTRACE_ARG3_TYPE) (offsetof (struct user, u_ar0)), 0) \
223 - KERNEL_U_ADDR
224 #endif
225
226 /* Registers we shouldn't try to fetch. */
227 #if !defined (CANNOT_FETCH_REGISTER)
228 #define CANNOT_FETCH_REGISTER(regno) 0
229 #endif
230
231 /* Fetch one register. */
232
233 static void
234 fetch_register (regno)
235 int regno;
236 {
237 register unsigned int regaddr;
238 char buf[MAX_REGISTER_RAW_SIZE];
239 char mess[128]; /* For messages */
240 register int i;
241
242 /* Offset of registers within the u area. */
243 unsigned int offset;
244
245 if (CANNOT_FETCH_REGISTER (regno))
246 {
247 bzero (buf, REGISTER_RAW_SIZE (regno)); /* Supply zeroes */
248 supply_register (regno, buf);
249 return;
250 }
251
252 offset = U_REGS_OFFSET;
253
254 regaddr = register_addr (regno, offset);
255 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int))
256 {
257 errno = 0;
258 *(int *) &buf[i] = ptrace (PT_READ_U, inferior_pid,
259 (PTRACE_ARG3_TYPE) regaddr, 0);
260 regaddr += sizeof (int);
261 if (errno != 0)
262 {
263 sprintf (mess, "reading register %s (#%d)", reg_names[regno], regno);
264 perror_with_name (mess);
265 }
266 }
267 supply_register (regno, buf);
268 }
269
270
271 /* Fetch all registers, or just one, from the child process. */
272
273 void
274 fetch_inferior_registers (regno)
275 int regno;
276 {
277 if (regno == -1)
278 for (regno = 0; regno < NUM_REGS; regno++)
279 fetch_register (regno);
280 else
281 fetch_register (regno);
282 }
283
284 /* Registers we shouldn't try to store. */
285 #if !defined (CANNOT_STORE_REGISTER)
286 #define CANNOT_STORE_REGISTER(regno) 0
287 #endif
288
289 /* Store our register values back into the inferior.
290 If REGNO is -1, do this for all registers.
291 Otherwise, REGNO specifies which register (so we can save time). */
292
293 void
294 store_inferior_registers (regno)
295 int regno;
296 {
297 register unsigned int regaddr;
298 char buf[80];
299 extern char registers[];
300 register int i;
301
302 unsigned int offset = U_REGS_OFFSET;
303
304 if (regno >= 0)
305 {
306 regaddr = register_addr (regno, offset);
307 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof(int))
308 {
309 errno = 0;
310 ptrace (PT_WRITE_U, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
311 *(int *) &registers[REGISTER_BYTE (regno) + i]);
312 if (errno != 0)
313 {
314 sprintf (buf, "writing register number %d(%d)", regno, i);
315 perror_with_name (buf);
316 }
317 regaddr += sizeof(int);
318 }
319 }
320 else
321 {
322 for (regno = 0; regno < NUM_REGS; regno++)
323 {
324 if (CANNOT_STORE_REGISTER (regno))
325 continue;
326 regaddr = register_addr (regno, offset);
327 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof(int))
328 {
329 errno = 0;
330 ptrace (PT_WRITE_U, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
331 *(int *) &registers[REGISTER_BYTE (regno) + i]);
332 if (errno != 0)
333 {
334 sprintf (buf, "writing register number %d(%d)", regno, i);
335 perror_with_name (buf);
336 }
337 regaddr += sizeof(int);
338 }
339 }
340 }
341 }
342 #endif /* !defined (FETCH_INFERIOR_REGISTERS). */
343 \f
344 /* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
345 in the NEW_SUN_PTRACE case.
346 It ought to be straightforward. But it appears that writing did
347 not write the data that I specified. I cannot understand where
348 it got the data that it actually did write. */
349
350 /* Copy LEN bytes to or from inferior's memory starting at MEMADDR
351 to debugger memory starting at MYADDR. Copy to inferior if
352 WRITE is nonzero.
353
354 Returns the length copied, which is either the LEN argument or zero.
355 This xfer function does not do partial moves, since child_ops
356 doesn't allow memory operations to cross below us in the target stack
357 anyway. */
358
359 int
360 child_xfer_memory (memaddr, myaddr, len, write, target)
361 CORE_ADDR memaddr;
362 char *myaddr;
363 int len;
364 int write;
365 struct target_ops *target; /* ignored */
366 {
367 register int i;
368 /* Round starting address down to longword boundary. */
369 register CORE_ADDR addr = memaddr & - sizeof (int);
370 /* Round ending address up; get number of longwords that makes. */
371 register int count
372 = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
373 /* Allocate buffer of that many longwords. */
374 register int *buffer = (int *) alloca (count * sizeof (int));
375
376 if (write)
377 {
378 /* Fill start and end extra bytes of buffer with existing memory data. */
379
380 if (addr != memaddr || len < (int)sizeof (int)) {
381 /* Need part of initial word -- fetch it. */
382 buffer[0] = ptrace (PT_READ_I, inferior_pid, (PTRACE_ARG3_TYPE) addr,
383 0);
384 }
385
386 if (count > 1) /* FIXME, avoid if even boundary */
387 {
388 buffer[count - 1]
389 = ptrace (PT_READ_I, inferior_pid,
390 (PTRACE_ARG3_TYPE) (addr + (count - 1) * sizeof (int)),
391 0);
392 }
393
394 /* Copy data to be written over corresponding part of buffer */
395
396 memcpy ((char *) buffer + (memaddr & (sizeof (int) - 1)), myaddr, len);
397
398 /* Write the entire buffer. */
399
400 for (i = 0; i < count; i++, addr += sizeof (int))
401 {
402 errno = 0;
403 ptrace (PT_WRITE_D, inferior_pid, (PTRACE_ARG3_TYPE) addr,
404 buffer[i]);
405 if (errno)
406 {
407 /* Using the appropriate one (I or D) is necessary for
408 Gould NP1, at least. */
409 errno = 0;
410 ptrace (PT_WRITE_I, inferior_pid, (PTRACE_ARG3_TYPE) addr,
411 buffer[i]);
412 }
413 if (errno)
414 return 0;
415 }
416 }
417 else
418 {
419 /* Read all the longwords */
420 for (i = 0; i < count; i++, addr += sizeof (int))
421 {
422 errno = 0;
423 buffer[i] = ptrace (PT_READ_I, inferior_pid,
424 (PTRACE_ARG3_TYPE) addr, 0);
425 if (errno)
426 return 0;
427 QUIT;
428 }
429
430 /* Copy appropriate bytes out of the buffer. */
431 memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len);
432 }
433 return len;
434 }
This page took 0.060789 seconds and 4 git commands to generate.