* infptrace.c (child_xfer_memory): Make use of the new PT_IO
[deliverable/binutils-gdb.git] / gdb / infptrace.c
1 /* Low level Unix child interface to ptrace, for GDB when running under Unix.
2 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
3 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "target.h"
27 #include "gdb_string.h"
28 #include "regcache.h"
29
30 #include "gdb_wait.h"
31
32 #include "command.h"
33
34 #ifdef USG
35 #include <sys/types.h>
36 #endif
37
38 #include <sys/param.h>
39 #include "gdb_dirent.h"
40 #include <signal.h>
41 #include <sys/ioctl.h>
42
43 #ifdef HAVE_PTRACE_H
44 #include <ptrace.h>
45 #else
46 #ifdef HAVE_SYS_PTRACE_H
47 #include <sys/ptrace.h>
48 #endif
49 #endif
50
51 #if !defined (PT_READ_I)
52 #define PT_READ_I 1 /* Read word from text space */
53 #endif
54 #if !defined (PT_READ_D)
55 #define PT_READ_D 2 /* Read word from data space */
56 #endif
57 #if !defined (PT_READ_U)
58 #define PT_READ_U 3 /* Read word from kernel user struct */
59 #endif
60 #if !defined (PT_WRITE_I)
61 #define PT_WRITE_I 4 /* Write word to text space */
62 #endif
63 #if !defined (PT_WRITE_D)
64 #define PT_WRITE_D 5 /* Write word to data space */
65 #endif
66 #if !defined (PT_WRITE_U)
67 #define PT_WRITE_U 6 /* Write word to kernel user struct */
68 #endif
69 #if !defined (PT_CONTINUE)
70 #define PT_CONTINUE 7 /* Continue after signal */
71 #endif
72 #if !defined (PT_STEP)
73 #define PT_STEP 9 /* Set flag for single stepping */
74 #endif
75 #if !defined (PT_KILL)
76 #define PT_KILL 8 /* Send child a SIGKILL signal */
77 #endif
78
79 #ifndef PT_ATTACH
80 #define PT_ATTACH PTRACE_ATTACH
81 #endif
82 #ifndef PT_DETACH
83 #define PT_DETACH PTRACE_DETACH
84 #endif
85
86 #include "gdbcore.h"
87 #ifndef NO_SYS_FILE
88 #include <sys/file.h>
89 #endif
90 #if 0
91 /* Don't think this is used anymore. On the sequent (not sure whether it's
92 dynix or ptx or both), it is included unconditionally by sys/user.h and
93 not protected against multiple inclusion. */
94 #include "gdb_stat.h"
95 #endif
96
97 #if !defined (FETCH_INFERIOR_REGISTERS)
98 #include <sys/user.h> /* Probably need to poke the user structure */
99 #if defined (KERNEL_U_ADDR_BSD)
100 #include <a.out.h> /* For struct nlist */
101 #endif /* KERNEL_U_ADDR_BSD. */
102 #endif /* !FETCH_INFERIOR_REGISTERS */
103
104 #if !defined (CHILD_XFER_MEMORY)
105 static void udot_info (char *, int);
106 #endif
107
108 #if !defined (FETCH_INFERIOR_REGISTERS)
109 static void fetch_register (int);
110 static void store_register (int);
111 #endif
112
113 void _initialize_kernel_u_addr (void);
114 void _initialize_infptrace (void);
115 \f
116
117 /* This function simply calls ptrace with the given arguments.
118 It exists so that all calls to ptrace are isolated in this
119 machine-dependent file. */
120 int
121 call_ptrace (int request, int pid, PTRACE_ARG3_TYPE addr, int data)
122 {
123 int pt_status = 0;
124
125 #if 0
126 int saved_errno;
127
128 printf ("call_ptrace(request=%d, pid=%d, addr=0x%x, data=0x%x)",
129 request, pid, addr, data);
130 #endif
131 #if defined(PT_SETTRC)
132 /* If the parent can be told to attach to us, try to do it. */
133 if (request == PT_SETTRC)
134 {
135 errno = 0;
136 #if !defined (FIVE_ARG_PTRACE)
137 pt_status = ptrace (PT_SETTRC, pid, addr, data);
138 #else
139 /* Deal with HPUX 8.0 braindamage. We never use the
140 calls which require the fifth argument. */
141 pt_status = ptrace (PT_SETTRC, pid, addr, data, 0);
142 #endif
143 if (errno)
144 perror_with_name ("ptrace");
145 #if 0
146 printf (" = %d\n", pt_status);
147 #endif
148 if (pt_status < 0)
149 return pt_status;
150 else
151 return parent_attach_all (pid, addr, data);
152 }
153 #endif
154
155 #if defined(PT_CONTIN1)
156 /* On HPUX, PT_CONTIN1 is a form of continue that preserves pending
157 signals. If it's available, use it. */
158 if (request == PT_CONTINUE)
159 request = PT_CONTIN1;
160 #endif
161
162 #if defined(PT_SINGLE1)
163 /* On HPUX, PT_SINGLE1 is a form of step that preserves pending
164 signals. If it's available, use it. */
165 if (request == PT_STEP)
166 request = PT_SINGLE1;
167 #endif
168
169 #if 0
170 saved_errno = errno;
171 errno = 0;
172 #endif
173 #if !defined (FIVE_ARG_PTRACE)
174 pt_status = ptrace (request, pid, addr, data);
175 #else
176 /* Deal with HPUX 8.0 braindamage. We never use the
177 calls which require the fifth argument. */
178 pt_status = ptrace (request, pid, addr, data, 0);
179 #endif
180
181 #if 0
182 if (errno)
183 printf (" [errno = %d]", errno);
184
185 errno = saved_errno;
186 printf (" = 0x%x\n", pt_status);
187 #endif
188 return pt_status;
189 }
190
191
192 #if defined (DEBUG_PTRACE) || defined (FIVE_ARG_PTRACE)
193 /* For the rest of the file, use an extra level of indirection */
194 /* This lets us breakpoint usefully on call_ptrace. */
195 #define ptrace call_ptrace
196 #endif
197
198 /* Wait for a process to finish, possibly running a target-specific
199 hook before returning. */
200
201 int
202 ptrace_wait (ptid_t ptid, int *status)
203 {
204 int wstate;
205
206 wstate = wait (status);
207 target_post_wait (pid_to_ptid (wstate), *status);
208 return wstate;
209 }
210
211 void
212 kill_inferior (void)
213 {
214 int status;
215 int pid = PIDGET (inferior_ptid);
216
217 if (pid == 0)
218 return;
219
220 /* This once used to call "kill" to kill the inferior just in case
221 the inferior was still running. As others have noted in the past
222 (kingdon) there shouldn't be any way to get here if the inferior
223 is still running -- else there's a major problem elsewere in gdb
224 and it needs to be fixed.
225
226 The kill call causes problems under hpux10, so it's been removed;
227 if this causes problems we'll deal with them as they arise. */
228 ptrace (PT_KILL, pid, (PTRACE_ARG3_TYPE) 0, 0);
229 ptrace_wait (null_ptid, &status);
230 target_mourn_inferior ();
231 }
232
233 #ifndef CHILD_RESUME
234
235 /* Resume execution of the inferior process.
236 If STEP is nonzero, single-step it.
237 If SIGNAL is nonzero, give it that signal. */
238
239 void
240 child_resume (ptid_t ptid, int step, enum target_signal signal)
241 {
242 int pid = PIDGET (ptid);
243
244 errno = 0;
245
246 if (pid == -1)
247 /* Resume all threads. */
248 /* I think this only gets used in the non-threaded case, where "resume
249 all threads" and "resume inferior_ptid" are the same. */
250 pid = PIDGET (inferior_ptid);
251
252 /* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where
253 it was. (If GDB wanted it to start some other way, we have already
254 written a new PC value to the child.)
255
256 If this system does not support PT_STEP, a higher level function will
257 have called single_step() to transmute the step request into a
258 continue request (by setting breakpoints on all possible successor
259 instructions), so we don't have to worry about that here. */
260
261 if (step)
262 {
263 if (SOFTWARE_SINGLE_STEP_P ())
264 internal_error (__FILE__, __LINE__, "failed internal consistency check"); /* Make sure this doesn't happen. */
265 else
266 ptrace (PT_STEP, pid, (PTRACE_ARG3_TYPE) 1,
267 target_signal_to_host (signal));
268 }
269 else
270 ptrace (PT_CONTINUE, pid, (PTRACE_ARG3_TYPE) 1,
271 target_signal_to_host (signal));
272
273 if (errno)
274 {
275 perror_with_name ("ptrace");
276 }
277 }
278 #endif /* CHILD_RESUME */
279 \f
280
281 #ifdef ATTACH_DETACH
282 /* Start debugging the process whose number is PID. */
283 int
284 attach (int pid)
285 {
286 errno = 0;
287 ptrace (PT_ATTACH, pid, (PTRACE_ARG3_TYPE) 0, 0);
288 if (errno)
289 perror_with_name ("ptrace");
290 attach_flag = 1;
291 return pid;
292 }
293
294 /* Stop debugging the process whose number is PID
295 and continue it with signal number SIGNAL.
296 SIGNAL = 0 means just continue it. */
297
298 void
299 detach (int signal)
300 {
301 errno = 0;
302 ptrace (PT_DETACH, PIDGET (inferior_ptid), (PTRACE_ARG3_TYPE) 1,
303 signal);
304 if (errno)
305 perror_with_name ("ptrace");
306 attach_flag = 0;
307 }
308 #endif /* ATTACH_DETACH */
309 \f
310 /* Default the type of the ptrace transfer to int. */
311 #ifndef PTRACE_XFER_TYPE
312 #define PTRACE_XFER_TYPE int
313 #endif
314
315 /* KERNEL_U_ADDR is the amount to subtract from u.u_ar0
316 to get the offset in the core file of the register values. */
317 #if defined (KERNEL_U_ADDR_BSD) && !defined (FETCH_INFERIOR_REGISTERS)
318 /* Get kernel_u_addr using BSD-style nlist(). */
319 CORE_ADDR kernel_u_addr;
320 #endif /* KERNEL_U_ADDR_BSD. */
321
322 void
323 _initialize_kernel_u_addr (void)
324 {
325 #if defined (KERNEL_U_ADDR_BSD) && !defined (FETCH_INFERIOR_REGISTERS)
326 struct nlist names[2];
327
328 names[0].n_un.n_name = "_u";
329 names[1].n_un.n_name = NULL;
330 if (nlist ("/vmunix", names) == 0)
331 kernel_u_addr = names[0].n_value;
332 else
333 internal_error (__FILE__, __LINE__,
334 "Unable to get kernel u area address.");
335 #endif /* KERNEL_U_ADDR_BSD. */
336 }
337
338 #if !defined (FETCH_INFERIOR_REGISTERS)
339
340 #if !defined (offsetof)
341 #define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
342 #endif
343
344 /* U_REGS_OFFSET is the offset of the registers within the u area. */
345 #if !defined (U_REGS_OFFSET)
346 #define U_REGS_OFFSET \
347 ptrace (PT_READ_U, PIDGET (inferior_ptid), \
348 (PTRACE_ARG3_TYPE) (offsetof (struct user, u_ar0)), 0) \
349 - KERNEL_U_ADDR
350 #endif
351
352 /* Fetch one register. */
353
354 static void
355 fetch_register (int regno)
356 {
357 /* This isn't really an address. But ptrace thinks of it as one. */
358 CORE_ADDR regaddr;
359 char mess[128]; /* For messages */
360 register int i;
361 unsigned int offset; /* Offset of registers within the u area. */
362 char *buf = alloca (MAX_REGISTER_RAW_SIZE);
363 int tid;
364
365 if (CANNOT_FETCH_REGISTER (regno))
366 {
367 memset (buf, '\0', REGISTER_RAW_SIZE (regno)); /* Supply zeroes */
368 supply_register (regno, buf);
369 return;
370 }
371
372 /* Overload thread id onto process id */
373 if ((tid = TIDGET (inferior_ptid)) == 0)
374 tid = PIDGET (inferior_ptid); /* no thread id, just use process id */
375
376 offset = U_REGS_OFFSET;
377
378 regaddr = register_addr (regno, offset);
379 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
380 {
381 errno = 0;
382 *(PTRACE_XFER_TYPE *) & buf[i] = ptrace (PT_READ_U, tid,
383 (PTRACE_ARG3_TYPE) regaddr, 0);
384 regaddr += sizeof (PTRACE_XFER_TYPE);
385 if (errno != 0)
386 {
387 sprintf (mess, "reading register %s (#%d)",
388 REGISTER_NAME (regno), regno);
389 perror_with_name (mess);
390 }
391 }
392 supply_register (regno, buf);
393 }
394
395
396 /* Fetch register values from the inferior.
397 If REGNO is negative, do this for all registers.
398 Otherwise, REGNO specifies which register (so we can save time). */
399
400 void
401 fetch_inferior_registers (int regno)
402 {
403 if (regno >= 0)
404 {
405 fetch_register (regno);
406 }
407 else
408 {
409 for (regno = 0; regno < NUM_REGS; regno++)
410 {
411 fetch_register (regno);
412 }
413 }
414 }
415
416 /* Store one register. */
417
418 static void
419 store_register (int regno)
420 {
421 /* This isn't really an address. But ptrace thinks of it as one. */
422 CORE_ADDR regaddr;
423 char mess[128]; /* For messages */
424 register int i;
425 unsigned int offset; /* Offset of registers within the u area. */
426 int tid;
427 char *buf = alloca (MAX_REGISTER_RAW_SIZE);
428
429 if (CANNOT_STORE_REGISTER (regno))
430 {
431 return;
432 }
433
434 /* Overload thread id onto process id */
435 if ((tid = TIDGET (inferior_ptid)) == 0)
436 tid = PIDGET (inferior_ptid); /* no thread id, just use process id */
437
438 offset = U_REGS_OFFSET;
439
440 regaddr = register_addr (regno, offset);
441
442 /* Put the contents of regno into a local buffer */
443 regcache_collect (regno, buf);
444
445 /* Store the local buffer into the inferior a chunk at the time. */
446 for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (PTRACE_XFER_TYPE))
447 {
448 errno = 0;
449 ptrace (PT_WRITE_U, tid, (PTRACE_ARG3_TYPE) regaddr,
450 *(PTRACE_XFER_TYPE *) (buf + i));
451 regaddr += sizeof (PTRACE_XFER_TYPE);
452 if (errno != 0)
453 {
454 sprintf (mess, "writing register %s (#%d)",
455 REGISTER_NAME (regno), regno);
456 perror_with_name (mess);
457 }
458 }
459 }
460
461 /* Store our register values back into the inferior.
462 If REGNO is negative, do this for all registers.
463 Otherwise, REGNO specifies which register (so we can save time). */
464
465 void
466 store_inferior_registers (int regno)
467 {
468 if (regno >= 0)
469 {
470 store_register (regno);
471 }
472 else
473 {
474 for (regno = 0; regno < NUM_REGS; regno++)
475 {
476 store_register (regno);
477 }
478 }
479 }
480 #endif /* !defined (FETCH_INFERIOR_REGISTERS). */
481 \f
482
483 /* Set an upper limit on alloca. */
484 #ifndef GDB_MAX_ALLOCA
485 #define GDB_MAX_ALLOCA 0x1000
486 #endif
487
488 #if !defined (CHILD_XFER_MEMORY)
489 /* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
490 in the NEW_SUN_PTRACE case. It ought to be straightforward. But
491 it appears that writing did not write the data that I specified. I
492 cannot understand where it got the data that it actually did write. */
493
494 /* Copy LEN bytes to or from inferior's memory starting at MEMADDR to
495 debugger memory starting at MYADDR. Copy to inferior if WRITE is
496 nonzero. TARGET is ignored.
497
498 Returns the length copied, which is either the LEN argument or
499 zero. This xfer function does not do partial moves, since
500 child_ops doesn't allow memory operations to cross below us in the
501 target stack anyway. */
502
503 int
504 child_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
505 struct mem_attrib *attrib, struct target_ops *target)
506 {
507 int i;
508 /* Round starting address down to longword boundary. */
509 CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
510 /* Round ending address up; get number of longwords that makes. */
511 int count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
512 / sizeof (PTRACE_XFER_TYPE));
513 int alloc = count * sizeof (PTRACE_XFER_TYPE);
514 PTRACE_XFER_TYPE *buffer;
515 struct cleanup *old_chain = NULL;
516
517 #ifdef PT_IO
518 /* OpenBSD 3.1, NetBSD 1.6 and FreeBSD 5.0 have a new PT_IO request
519 that promises to be much more efficient in reading and writing
520 data in the traced process's address space. */
521
522 {
523 struct ptrace_io_desc piod;
524
525 /* NOTE: We assume that there are no distinct address spaces for
526 instruction and data. */
527 piod.piod_op = write ? PIOD_WRITE_D : PIOD_READ_D;
528 piod.piod_offs = (void *) memaddr;
529 piod.piod_addr = myaddr;
530 piod.piod_len = len;
531
532 if (ptrace (PT_IO, PIDGET (inferior_ptid), (caddr_t) &piod, 0) == -1)
533 {
534 /* If the PT_IO request is somehow not supported, fallback on
535 using PT_WRITE_D/PT_READ_D. Otherwise we will return zero
536 to indicate failure. */
537 if (errno != EINVAL)
538 return 0;
539 }
540 else
541 {
542 /* Return the actual number of bytes read or written. */
543 return piod.piod_len;
544 }
545 }
546 #endif
547
548 /* Allocate buffer of that many longwords. */
549 if (len < GDB_MAX_ALLOCA)
550 {
551 buffer = (PTRACE_XFER_TYPE *) alloca (alloc);
552 }
553 else
554 {
555 buffer = (PTRACE_XFER_TYPE *) xmalloc (alloc);
556 old_chain = make_cleanup (xfree, buffer);
557 }
558
559 if (write)
560 {
561 /* Fill start and end extra bytes of buffer with existing memory
562 data. */
563 if (addr != memaddr || len < (int) sizeof (PTRACE_XFER_TYPE))
564 {
565 /* Need part of initial word -- fetch it. */
566 buffer[0] = ptrace (PT_READ_I, PIDGET (inferior_ptid),
567 (PTRACE_ARG3_TYPE) addr, 0);
568 }
569
570 if (count > 1) /* FIXME, avoid if even boundary. */
571 {
572 buffer[count - 1] =
573 ptrace (PT_READ_I, PIDGET (inferior_ptid),
574 ((PTRACE_ARG3_TYPE)
575 (addr + (count - 1) * sizeof (PTRACE_XFER_TYPE))), 0);
576 }
577
578 /* Copy data to be written over corresponding part of buffer. */
579 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
580 myaddr, len);
581
582 /* Write the entire buffer. */
583 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
584 {
585 errno = 0;
586 ptrace (PT_WRITE_D, PIDGET (inferior_ptid),
587 (PTRACE_ARG3_TYPE) addr, buffer[i]);
588 if (errno)
589 {
590 /* Using the appropriate one (I or D) is necessary for
591 Gould NP1, at least. */
592 errno = 0;
593 ptrace (PT_WRITE_I, PIDGET (inferior_ptid),
594 (PTRACE_ARG3_TYPE) addr, buffer[i]);
595 }
596 if (errno)
597 return 0;
598 }
599 #ifdef CLEAR_INSN_CACHE
600 CLEAR_INSN_CACHE ();
601 #endif
602 }
603 else
604 {
605 /* Read all the longwords. */
606 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
607 {
608 errno = 0;
609 buffer[i] = ptrace (PT_READ_I, PIDGET (inferior_ptid),
610 (PTRACE_ARG3_TYPE) addr, 0);
611 if (errno)
612 return 0;
613 QUIT;
614 }
615
616 /* Copy appropriate bytes out of the buffer. */
617 memcpy (myaddr,
618 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
619 len);
620 }
621
622 if (old_chain != NULL)
623 do_cleanups (old_chain);
624 return len;
625 }
626 \f
627
628 static void
629 udot_info (char *dummy1, int dummy2)
630 {
631 #if defined (KERNEL_U_SIZE)
632 int udot_off; /* Offset into user struct */
633 int udot_val; /* Value from user struct at udot_off */
634 char mess[128]; /* For messages */
635 #endif
636
637 if (!target_has_execution)
638 {
639 error ("The program is not being run.");
640 }
641
642 #if !defined (KERNEL_U_SIZE)
643
644 /* Adding support for this command is easy. Typically you just add a
645 routine, called "kernel_u_size" that returns the size of the user
646 struct, to the appropriate *-nat.c file and then add to the native
647 config file "#define KERNEL_U_SIZE kernel_u_size()" */
648 error ("Don't know how large ``struct user'' is in this version of gdb.");
649
650 #else
651
652 for (udot_off = 0; udot_off < KERNEL_U_SIZE; udot_off += sizeof (udot_val))
653 {
654 if ((udot_off % 24) == 0)
655 {
656 if (udot_off > 0)
657 {
658 printf_filtered ("\n");
659 }
660 printf_filtered ("%04x:", udot_off);
661 }
662 udot_val = ptrace (PT_READ_U, PIDGET (inferior_ptid), (PTRACE_ARG3_TYPE) udot_off, 0);
663 if (errno != 0)
664 {
665 sprintf (mess, "\nreading user struct at offset 0x%x", udot_off);
666 perror_with_name (mess);
667 }
668 /* Avoid using nonportable (?) "*" in print specs */
669 printf_filtered (sizeof (int) == 4 ? " 0x%08x" : " 0x%16x", udot_val);
670 }
671 printf_filtered ("\n");
672
673 #endif
674 }
675 #endif /* !defined (CHILD_XFER_MEMORY). */
676 \f
677
678 void
679 _initialize_infptrace (void)
680 {
681 #if !defined (CHILD_XFER_MEMORY)
682 add_info ("udot", udot_info,
683 "Print contents of kernel ``struct user'' for current child.");
684 #endif
685 }
This page took 0.0597 seconds and 5 git commands to generate.