09f1f6b1b107d86aeec06f4f4074d818b0997640
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48
49 #include "gdb_assert.h"
50 #include "mi/mi-common.h"
51
52 /* Prototypes for local functions */
53
54 static void signals_info (char *, int);
55
56 static void handle_command (char *, int);
57
58 static void sig_print_info (enum target_signal);
59
60 static void sig_print_header (void);
61
62 static void resume_cleanups (void *);
63
64 static int hook_stop_stub (void *);
65
66 static int restore_selected_frame (void *);
67
68 static void build_infrun (void);
69
70 static int follow_fork (void);
71
72 static void set_schedlock_func (char *args, int from_tty,
73 struct cmd_list_element *c);
74
75 struct thread_stepping_state;
76
77 static int currently_stepping (struct thread_stepping_state *tss);
78
79 static void xdb_handle_command (char *args, int from_tty);
80
81 static int prepare_to_proceed (int);
82
83 void _initialize_infrun (void);
84
85 /* When set, stop the 'step' command if we enter a function which has
86 no line number information. The normal behavior is that we step
87 over such function. */
88 int step_stop_if_no_debug = 0;
89 static void
90 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
91 struct cmd_list_element *c, const char *value)
92 {
93 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
94 }
95
96 /* In asynchronous mode, but simulating synchronous execution. */
97
98 int sync_execution = 0;
99
100 /* wait_for_inferior and normal_stop use this to notify the user
101 when the inferior stopped in a different thread than it had been
102 running in. */
103
104 static ptid_t previous_inferior_ptid;
105
106 int debug_displaced = 0;
107 static void
108 show_debug_displaced (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110 {
111 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
112 }
113
114 static int debug_infrun = 0;
115 static void
116 show_debug_infrun (struct ui_file *file, int from_tty,
117 struct cmd_list_element *c, const char *value)
118 {
119 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
120 }
121
122 /* If the program uses ELF-style shared libraries, then calls to
123 functions in shared libraries go through stubs, which live in a
124 table called the PLT (Procedure Linkage Table). The first time the
125 function is called, the stub sends control to the dynamic linker,
126 which looks up the function's real address, patches the stub so
127 that future calls will go directly to the function, and then passes
128 control to the function.
129
130 If we are stepping at the source level, we don't want to see any of
131 this --- we just want to skip over the stub and the dynamic linker.
132 The simple approach is to single-step until control leaves the
133 dynamic linker.
134
135 However, on some systems (e.g., Red Hat's 5.2 distribution) the
136 dynamic linker calls functions in the shared C library, so you
137 can't tell from the PC alone whether the dynamic linker is still
138 running. In this case, we use a step-resume breakpoint to get us
139 past the dynamic linker, as if we were using "next" to step over a
140 function call.
141
142 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
143 linker code or not. Normally, this means we single-step. However,
144 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
145 address where we can place a step-resume breakpoint to get past the
146 linker's symbol resolution function.
147
148 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
149 pretty portable way, by comparing the PC against the address ranges
150 of the dynamic linker's sections.
151
152 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
153 it depends on internal details of the dynamic linker. It's usually
154 not too hard to figure out where to put a breakpoint, but it
155 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
156 sanity checking. If it can't figure things out, returning zero and
157 getting the (possibly confusing) stepping behavior is better than
158 signalling an error, which will obscure the change in the
159 inferior's state. */
160
161 /* This function returns TRUE if pc is the address of an instruction
162 that lies within the dynamic linker (such as the event hook, or the
163 dld itself).
164
165 This function must be used only when a dynamic linker event has
166 been caught, and the inferior is being stepped out of the hook, or
167 undefined results are guaranteed. */
168
169 #ifndef SOLIB_IN_DYNAMIC_LINKER
170 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
171 #endif
172
173
174 /* Convert the #defines into values. This is temporary until wfi control
175 flow is completely sorted out. */
176
177 #ifndef CANNOT_STEP_HW_WATCHPOINTS
178 #define CANNOT_STEP_HW_WATCHPOINTS 0
179 #else
180 #undef CANNOT_STEP_HW_WATCHPOINTS
181 #define CANNOT_STEP_HW_WATCHPOINTS 1
182 #endif
183
184 /* Tables of how to react to signals; the user sets them. */
185
186 static unsigned char *signal_stop;
187 static unsigned char *signal_print;
188 static unsigned char *signal_program;
189
190 #define SET_SIGS(nsigs,sigs,flags) \
191 do { \
192 int signum = (nsigs); \
193 while (signum-- > 0) \
194 if ((sigs)[signum]) \
195 (flags)[signum] = 1; \
196 } while (0)
197
198 #define UNSET_SIGS(nsigs,sigs,flags) \
199 do { \
200 int signum = (nsigs); \
201 while (signum-- > 0) \
202 if ((sigs)[signum]) \
203 (flags)[signum] = 0; \
204 } while (0)
205
206 /* Value to pass to target_resume() to cause all threads to resume */
207
208 #define RESUME_ALL (pid_to_ptid (-1))
209
210 /* Command list pointer for the "stop" placeholder. */
211
212 static struct cmd_list_element *stop_command;
213
214 /* Function inferior was in as of last step command. */
215
216 static struct symbol *step_start_function;
217
218 /* Nonzero if we are presently stepping over a breakpoint.
219
220 If we hit a breakpoint or watchpoint, and then continue,
221 we need to single step the current thread with breakpoints
222 disabled, to avoid hitting the same breakpoint or
223 watchpoint again. And we should step just a single
224 thread and keep other threads stopped, so that
225 other threads don't miss breakpoints while they are removed.
226
227 So, this variable simultaneously means that we need to single
228 step the current thread, keep other threads stopped, and that
229 breakpoints should be removed while we step.
230
231 This variable is set either:
232 - in proceed, when we resume inferior on user's explicit request
233 - in keep_going, if handle_inferior_event decides we need to
234 step over breakpoint.
235
236 The variable is cleared in clear_proceed_status, called every
237 time before we call proceed. The proceed calls wait_for_inferior,
238 which calls handle_inferior_event in a loop, and until
239 wait_for_inferior exits, this variable is changed only by keep_going. */
240
241 static int stepping_over_breakpoint;
242
243 /* Nonzero if we want to give control to the user when we're notified
244 of shared library events by the dynamic linker. */
245 static int stop_on_solib_events;
246 static void
247 show_stop_on_solib_events (struct ui_file *file, int from_tty,
248 struct cmd_list_element *c, const char *value)
249 {
250 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
251 value);
252 }
253
254 /* Nonzero means expecting a trace trap
255 and should stop the inferior and return silently when it happens. */
256
257 int stop_after_trap;
258
259 /* Nonzero means expecting a trap and caller will handle it themselves.
260 It is used after attach, due to attaching to a process;
261 when running in the shell before the child program has been exec'd;
262 and when running some kinds of remote stuff (FIXME?). */
263
264 enum stop_kind stop_soon;
265
266 /* Nonzero if proceed is being used for a "finish" command or a similar
267 situation when stop_registers should be saved. */
268
269 int proceed_to_finish;
270
271 /* Save register contents here when about to pop a stack dummy frame,
272 if-and-only-if proceed_to_finish is set.
273 Thus this contains the return value from the called function (assuming
274 values are returned in a register). */
275
276 struct regcache *stop_registers;
277
278 /* Nonzero after stop if current stack frame should be printed. */
279
280 static int stop_print_frame;
281
282 /* Step-resume or longjmp-resume breakpoint. */
283 static struct breakpoint *step_resume_breakpoint = NULL;
284
285 /* This is a cached copy of the pid/waitstatus of the last event
286 returned by target_wait()/deprecated_target_wait_hook(). This
287 information is returned by get_last_target_status(). */
288 static ptid_t target_last_wait_ptid;
289 static struct target_waitstatus target_last_waitstatus;
290
291 /* Context-switchable data. */
292 struct thread_stepping_state
293 {
294 /* Should we step over breakpoint next time keep_going
295 is called? */
296 int stepping_over_breakpoint;
297 struct symtab_and_line sal;
298 int current_line;
299 struct symtab *current_symtab;
300 int step_after_step_resume_breakpoint;
301 int stepping_through_solib_after_catch;
302 bpstat stepping_through_solib_catchpoints;
303 };
304
305 struct thread_stepping_state gtss;
306 struct thread_stepping_state *tss = &gtss;
307
308 static void context_switch (ptid_t ptid);
309
310 void init_thread_stepping_state (struct thread_stepping_state *tss);
311
312 void init_infwait_state (void);
313
314 /* This is used to remember when a fork, vfork or exec event
315 was caught by a catchpoint, and thus the event is to be
316 followed at the next resume of the inferior, and not
317 immediately. */
318 static struct
319 {
320 enum target_waitkind kind;
321 struct
322 {
323 ptid_t parent_pid;
324 ptid_t child_pid;
325 }
326 fork_event;
327 char *execd_pathname;
328 }
329 pending_follow;
330
331 static const char follow_fork_mode_child[] = "child";
332 static const char follow_fork_mode_parent[] = "parent";
333
334 static const char *follow_fork_mode_kind_names[] = {
335 follow_fork_mode_child,
336 follow_fork_mode_parent,
337 NULL
338 };
339
340 static const char *follow_fork_mode_string = follow_fork_mode_parent;
341 static void
342 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
343 struct cmd_list_element *c, const char *value)
344 {
345 fprintf_filtered (file, _("\
346 Debugger response to a program call of fork or vfork is \"%s\".\n"),
347 value);
348 }
349 \f
350
351 static int
352 follow_fork (void)
353 {
354 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
355
356 return target_follow_fork (follow_child);
357 }
358
359 void
360 follow_inferior_reset_breakpoints (void)
361 {
362 /* Was there a step_resume breakpoint? (There was if the user
363 did a "next" at the fork() call.) If so, explicitly reset its
364 thread number.
365
366 step_resumes are a form of bp that are made to be per-thread.
367 Since we created the step_resume bp when the parent process
368 was being debugged, and now are switching to the child process,
369 from the breakpoint package's viewpoint, that's a switch of
370 "threads". We must update the bp's notion of which thread
371 it is for, or it'll be ignored when it triggers. */
372
373 if (step_resume_breakpoint)
374 breakpoint_re_set_thread (step_resume_breakpoint);
375
376 /* Reinsert all breakpoints in the child. The user may have set
377 breakpoints after catching the fork, in which case those
378 were never set in the child, but only in the parent. This makes
379 sure the inserted breakpoints match the breakpoint list. */
380
381 breakpoint_re_set ();
382 insert_breakpoints ();
383 }
384
385 /* EXECD_PATHNAME is assumed to be non-NULL. */
386
387 static void
388 follow_exec (ptid_t pid, char *execd_pathname)
389 {
390 ptid_t saved_pid = pid;
391 struct target_ops *tgt;
392
393 /* This is an exec event that we actually wish to pay attention to.
394 Refresh our symbol table to the newly exec'd program, remove any
395 momentary bp's, etc.
396
397 If there are breakpoints, they aren't really inserted now,
398 since the exec() transformed our inferior into a fresh set
399 of instructions.
400
401 We want to preserve symbolic breakpoints on the list, since
402 we have hopes that they can be reset after the new a.out's
403 symbol table is read.
404
405 However, any "raw" breakpoints must be removed from the list
406 (e.g., the solib bp's), since their address is probably invalid
407 now.
408
409 And, we DON'T want to call delete_breakpoints() here, since
410 that may write the bp's "shadow contents" (the instruction
411 value that was overwritten witha TRAP instruction). Since
412 we now have a new a.out, those shadow contents aren't valid. */
413 update_breakpoints_after_exec ();
414
415 /* If there was one, it's gone now. We cannot truly step-to-next
416 statement through an exec(). */
417 step_resume_breakpoint = NULL;
418 step_range_start = 0;
419 step_range_end = 0;
420
421 /* What is this a.out's name? */
422 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
423
424 /* We've followed the inferior through an exec. Therefore, the
425 inferior has essentially been killed & reborn. */
426
427 gdb_flush (gdb_stdout);
428 generic_mourn_inferior ();
429 /* Because mourn_inferior resets inferior_ptid. */
430 inferior_ptid = saved_pid;
431
432 if (gdb_sysroot && *gdb_sysroot)
433 {
434 char *name = alloca (strlen (gdb_sysroot)
435 + strlen (execd_pathname)
436 + 1);
437 strcpy (name, gdb_sysroot);
438 strcat (name, execd_pathname);
439 execd_pathname = name;
440 }
441
442 /* That a.out is now the one to use. */
443 exec_file_attach (execd_pathname, 0);
444
445 /* Reset the shared library package. This ensures that we get a
446 shlib event when the child reaches "_start", at which point the
447 dld will have had a chance to initialize the child. */
448 /* Also, loading a symbol file below may trigger symbol lookups, and
449 we don't want those to be satisfied by the libraries of the
450 previous incarnation of this process. */
451 no_shared_libraries (NULL, 0);
452
453 /* Load the main file's symbols. */
454 symbol_file_add_main (execd_pathname, 0);
455
456 #ifdef SOLIB_CREATE_INFERIOR_HOOK
457 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
458 #else
459 solib_create_inferior_hook ();
460 #endif
461
462 /* Reinsert all breakpoints. (Those which were symbolic have
463 been reset to the proper address in the new a.out, thanks
464 to symbol_file_command...) */
465 insert_breakpoints ();
466
467 /* The next resume of this inferior should bring it to the shlib
468 startup breakpoints. (If the user had also set bp's on
469 "main" from the old (parent) process, then they'll auto-
470 matically get reset there in the new process.) */
471 }
472
473 /* Non-zero if we just simulating a single-step. This is needed
474 because we cannot remove the breakpoints in the inferior process
475 until after the `wait' in `wait_for_inferior'. */
476 static int singlestep_breakpoints_inserted_p = 0;
477
478 /* The thread we inserted single-step breakpoints for. */
479 static ptid_t singlestep_ptid;
480
481 /* PC when we started this single-step. */
482 static CORE_ADDR singlestep_pc;
483
484 /* If another thread hit the singlestep breakpoint, we save the original
485 thread here so that we can resume single-stepping it later. */
486 static ptid_t saved_singlestep_ptid;
487 static int stepping_past_singlestep_breakpoint;
488
489 /* If not equal to null_ptid, this means that after stepping over breakpoint
490 is finished, we need to switch to deferred_step_ptid, and step it.
491
492 The use case is when one thread has hit a breakpoint, and then the user
493 has switched to another thread and issued 'step'. We need to step over
494 breakpoint in the thread which hit the breakpoint, but then continue
495 stepping the thread user has selected. */
496 static ptid_t deferred_step_ptid;
497 \f
498 /* Displaced stepping. */
499
500 /* In non-stop debugging mode, we must take special care to manage
501 breakpoints properly; in particular, the traditional strategy for
502 stepping a thread past a breakpoint it has hit is unsuitable.
503 'Displaced stepping' is a tactic for stepping one thread past a
504 breakpoint it has hit while ensuring that other threads running
505 concurrently will hit the breakpoint as they should.
506
507 The traditional way to step a thread T off a breakpoint in a
508 multi-threaded program in all-stop mode is as follows:
509
510 a0) Initially, all threads are stopped, and breakpoints are not
511 inserted.
512 a1) We single-step T, leaving breakpoints uninserted.
513 a2) We insert breakpoints, and resume all threads.
514
515 In non-stop debugging, however, this strategy is unsuitable: we
516 don't want to have to stop all threads in the system in order to
517 continue or step T past a breakpoint. Instead, we use displaced
518 stepping:
519
520 n0) Initially, T is stopped, other threads are running, and
521 breakpoints are inserted.
522 n1) We copy the instruction "under" the breakpoint to a separate
523 location, outside the main code stream, making any adjustments
524 to the instruction, register, and memory state as directed by
525 T's architecture.
526 n2) We single-step T over the instruction at its new location.
527 n3) We adjust the resulting register and memory state as directed
528 by T's architecture. This includes resetting T's PC to point
529 back into the main instruction stream.
530 n4) We resume T.
531
532 This approach depends on the following gdbarch methods:
533
534 - gdbarch_max_insn_length and gdbarch_displaced_step_location
535 indicate where to copy the instruction, and how much space must
536 be reserved there. We use these in step n1.
537
538 - gdbarch_displaced_step_copy_insn copies a instruction to a new
539 address, and makes any necessary adjustments to the instruction,
540 register contents, and memory. We use this in step n1.
541
542 - gdbarch_displaced_step_fixup adjusts registers and memory after
543 we have successfuly single-stepped the instruction, to yield the
544 same effect the instruction would have had if we had executed it
545 at its original address. We use this in step n3.
546
547 - gdbarch_displaced_step_free_closure provides cleanup.
548
549 The gdbarch_displaced_step_copy_insn and
550 gdbarch_displaced_step_fixup functions must be written so that
551 copying an instruction with gdbarch_displaced_step_copy_insn,
552 single-stepping across the copied instruction, and then applying
553 gdbarch_displaced_insn_fixup should have the same effects on the
554 thread's memory and registers as stepping the instruction in place
555 would have. Exactly which responsibilities fall to the copy and
556 which fall to the fixup is up to the author of those functions.
557
558 See the comments in gdbarch.sh for details.
559
560 Note that displaced stepping and software single-step cannot
561 currently be used in combination, although with some care I think
562 they could be made to. Software single-step works by placing
563 breakpoints on all possible subsequent instructions; if the
564 displaced instruction is a PC-relative jump, those breakpoints
565 could fall in very strange places --- on pages that aren't
566 executable, or at addresses that are not proper instruction
567 boundaries. (We do generally let other threads run while we wait
568 to hit the software single-step breakpoint, and they might
569 encounter such a corrupted instruction.) One way to work around
570 this would be to have gdbarch_displaced_step_copy_insn fully
571 simulate the effect of PC-relative instructions (and return NULL)
572 on architectures that use software single-stepping.
573
574 In non-stop mode, we can have independent and simultaneous step
575 requests, so more than one thread may need to simultaneously step
576 over a breakpoint. The current implementation assumes there is
577 only one scratch space per process. In this case, we have to
578 serialize access to the scratch space. If thread A wants to step
579 over a breakpoint, but we are currently waiting for some other
580 thread to complete a displaced step, we leave thread A stopped and
581 place it in the displaced_step_request_queue. Whenever a displaced
582 step finishes, we pick the next thread in the queue and start a new
583 displaced step operation on it. See displaced_step_prepare and
584 displaced_step_fixup for details. */
585
586 /* If this is not null_ptid, this is the thread carrying out a
587 displaced single-step. This thread's state will require fixing up
588 once it has completed its step. */
589 static ptid_t displaced_step_ptid;
590
591 struct displaced_step_request
592 {
593 ptid_t ptid;
594 struct displaced_step_request *next;
595 };
596
597 /* A queue of pending displaced stepping requests. */
598 struct displaced_step_request *displaced_step_request_queue;
599
600 /* The architecture the thread had when we stepped it. */
601 static struct gdbarch *displaced_step_gdbarch;
602
603 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
604 for post-step cleanup. */
605 static struct displaced_step_closure *displaced_step_closure;
606
607 /* The address of the original instruction, and the copy we made. */
608 static CORE_ADDR displaced_step_original, displaced_step_copy;
609
610 /* Saved contents of copy area. */
611 static gdb_byte *displaced_step_saved_copy;
612
613 /* When this is non-zero, we are allowed to use displaced stepping, if
614 the architecture supports it. When this is zero, we use
615 traditional the hold-and-step approach. */
616 int can_use_displaced_stepping = 1;
617 static void
618 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
619 struct cmd_list_element *c,
620 const char *value)
621 {
622 fprintf_filtered (file, _("\
623 Debugger's willingness to use displaced stepping to step over "
624 "breakpoints is %s.\n"), value);
625 }
626
627 /* Return non-zero if displaced stepping is enabled, and can be used
628 with GDBARCH. */
629 static int
630 use_displaced_stepping (struct gdbarch *gdbarch)
631 {
632 return (can_use_displaced_stepping
633 && gdbarch_displaced_step_copy_insn_p (gdbarch));
634 }
635
636 /* Clean out any stray displaced stepping state. */
637 static void
638 displaced_step_clear (void)
639 {
640 /* Indicate that there is no cleanup pending. */
641 displaced_step_ptid = null_ptid;
642
643 if (displaced_step_closure)
644 {
645 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
646 displaced_step_closure);
647 displaced_step_closure = NULL;
648 }
649 }
650
651 static void
652 cleanup_displaced_step_closure (void *ptr)
653 {
654 struct displaced_step_closure *closure = ptr;
655
656 gdbarch_displaced_step_free_closure (current_gdbarch, closure);
657 }
658
659 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
660 void
661 displaced_step_dump_bytes (struct ui_file *file,
662 const gdb_byte *buf,
663 size_t len)
664 {
665 int i;
666
667 for (i = 0; i < len; i++)
668 fprintf_unfiltered (file, "%02x ", buf[i]);
669 fputs_unfiltered ("\n", file);
670 }
671
672 /* Prepare to single-step, using displaced stepping.
673
674 Note that we cannot use displaced stepping when we have a signal to
675 deliver. If we have a signal to deliver and an instruction to step
676 over, then after the step, there will be no indication from the
677 target whether the thread entered a signal handler or ignored the
678 signal and stepped over the instruction successfully --- both cases
679 result in a simple SIGTRAP. In the first case we mustn't do a
680 fixup, and in the second case we must --- but we can't tell which.
681 Comments in the code for 'random signals' in handle_inferior_event
682 explain how we handle this case instead.
683
684 Returns 1 if preparing was successful -- this thread is going to be
685 stepped now; or 0 if displaced stepping this thread got queued. */
686 static int
687 displaced_step_prepare (ptid_t ptid)
688 {
689 struct cleanup *old_cleanups;
690 struct regcache *regcache = get_thread_regcache (ptid);
691 struct gdbarch *gdbarch = get_regcache_arch (regcache);
692 CORE_ADDR original, copy;
693 ULONGEST len;
694 struct displaced_step_closure *closure;
695
696 /* We should never reach this function if the architecture does not
697 support displaced stepping. */
698 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
699
700 /* For the first cut, we're displaced stepping one thread at a
701 time. */
702
703 if (!ptid_equal (displaced_step_ptid, null_ptid))
704 {
705 /* Already waiting for a displaced step to finish. Defer this
706 request and place in queue. */
707 struct displaced_step_request *req, *new_req;
708
709 if (debug_displaced)
710 fprintf_unfiltered (gdb_stdlog,
711 "displaced: defering step of %s\n",
712 target_pid_to_str (ptid));
713
714 new_req = xmalloc (sizeof (*new_req));
715 new_req->ptid = ptid;
716 new_req->next = NULL;
717
718 if (displaced_step_request_queue)
719 {
720 for (req = displaced_step_request_queue;
721 req && req->next;
722 req = req->next)
723 ;
724 req->next = new_req;
725 }
726 else
727 displaced_step_request_queue = new_req;
728
729 return 0;
730 }
731 else
732 {
733 if (debug_displaced)
734 fprintf_unfiltered (gdb_stdlog,
735 "displaced: stepping %s now\n",
736 target_pid_to_str (ptid));
737 }
738
739 displaced_step_clear ();
740
741 original = regcache_read_pc (regcache);
742
743 copy = gdbarch_displaced_step_location (gdbarch);
744 len = gdbarch_max_insn_length (gdbarch);
745
746 /* Save the original contents of the copy area. */
747 displaced_step_saved_copy = xmalloc (len);
748 old_cleanups = make_cleanup (free_current_contents,
749 &displaced_step_saved_copy);
750 read_memory (copy, displaced_step_saved_copy, len);
751 if (debug_displaced)
752 {
753 fprintf_unfiltered (gdb_stdlog, "displaced: saved 0x%s: ",
754 paddr_nz (copy));
755 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
756 };
757
758 closure = gdbarch_displaced_step_copy_insn (gdbarch,
759 original, copy, regcache);
760
761 /* We don't support the fully-simulated case at present. */
762 gdb_assert (closure);
763
764 make_cleanup (cleanup_displaced_step_closure, closure);
765
766 /* Resume execution at the copy. */
767 regcache_write_pc (regcache, copy);
768
769 discard_cleanups (old_cleanups);
770
771 if (debug_displaced)
772 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to 0x%s\n",
773 paddr_nz (copy));
774
775 /* Save the information we need to fix things up if the step
776 succeeds. */
777 displaced_step_ptid = ptid;
778 displaced_step_gdbarch = gdbarch;
779 displaced_step_closure = closure;
780 displaced_step_original = original;
781 displaced_step_copy = copy;
782 return 1;
783 }
784
785 static void
786 displaced_step_clear_cleanup (void *ignore)
787 {
788 displaced_step_clear ();
789 }
790
791 static void
792 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
793 {
794 struct cleanup *ptid_cleanup = save_inferior_ptid ();
795 inferior_ptid = ptid;
796 write_memory (memaddr, myaddr, len);
797 do_cleanups (ptid_cleanup);
798 }
799
800 static void
801 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
802 {
803 struct cleanup *old_cleanups;
804
805 /* Was this event for the pid we displaced? */
806 if (ptid_equal (displaced_step_ptid, null_ptid)
807 || ! ptid_equal (displaced_step_ptid, event_ptid))
808 return;
809
810 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
811
812 /* Restore the contents of the copy area. */
813 {
814 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
815 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
816 displaced_step_saved_copy, len);
817 if (debug_displaced)
818 fprintf_unfiltered (gdb_stdlog, "displaced: restored 0x%s\n",
819 paddr_nz (displaced_step_copy));
820 }
821
822 /* Did the instruction complete successfully? */
823 if (signal == TARGET_SIGNAL_TRAP)
824 {
825 /* Fix up the resulting state. */
826 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
827 displaced_step_closure,
828 displaced_step_original,
829 displaced_step_copy,
830 get_thread_regcache (displaced_step_ptid));
831 }
832 else
833 {
834 /* Since the instruction didn't complete, all we can do is
835 relocate the PC. */
836 struct regcache *regcache = get_thread_regcache (event_ptid);
837 CORE_ADDR pc = regcache_read_pc (regcache);
838 pc = displaced_step_original + (pc - displaced_step_copy);
839 regcache_write_pc (regcache, pc);
840 }
841
842 do_cleanups (old_cleanups);
843
844 /* Are there any pending displaced stepping requests? If so, run
845 one now. */
846 if (displaced_step_request_queue)
847 {
848 struct displaced_step_request *head;
849 ptid_t ptid;
850
851 head = displaced_step_request_queue;
852 ptid = head->ptid;
853 displaced_step_request_queue = head->next;
854 xfree (head);
855
856 if (debug_displaced)
857 fprintf_unfiltered (gdb_stdlog,
858 "displaced: stepping queued %s now\n",
859 target_pid_to_str (ptid));
860
861
862 displaced_step_ptid = null_ptid;
863 displaced_step_prepare (ptid);
864 target_resume (ptid, 1, TARGET_SIGNAL_0);
865 }
866 }
867
868 \f
869 /* Resuming. */
870
871 /* Things to clean up if we QUIT out of resume (). */
872 static void
873 resume_cleanups (void *ignore)
874 {
875 normal_stop ();
876 }
877
878 static const char schedlock_off[] = "off";
879 static const char schedlock_on[] = "on";
880 static const char schedlock_step[] = "step";
881 static const char *scheduler_enums[] = {
882 schedlock_off,
883 schedlock_on,
884 schedlock_step,
885 NULL
886 };
887 static const char *scheduler_mode = schedlock_off;
888 static void
889 show_scheduler_mode (struct ui_file *file, int from_tty,
890 struct cmd_list_element *c, const char *value)
891 {
892 fprintf_filtered (file, _("\
893 Mode for locking scheduler during execution is \"%s\".\n"),
894 value);
895 }
896
897 static void
898 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
899 {
900 if (!target_can_lock_scheduler)
901 {
902 scheduler_mode = schedlock_off;
903 error (_("Target '%s' cannot support this command."), target_shortname);
904 }
905 }
906
907
908 /* Resume the inferior, but allow a QUIT. This is useful if the user
909 wants to interrupt some lengthy single-stepping operation
910 (for child processes, the SIGINT goes to the inferior, and so
911 we get a SIGINT random_signal, but for remote debugging and perhaps
912 other targets, that's not true).
913
914 STEP nonzero if we should step (zero to continue instead).
915 SIG is the signal to give the inferior (zero for none). */
916 void
917 resume (int step, enum target_signal sig)
918 {
919 int should_resume = 1;
920 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
921 struct regcache *regcache = get_current_regcache ();
922 struct gdbarch *gdbarch = get_regcache_arch (regcache);
923 CORE_ADDR pc = regcache_read_pc (regcache);
924 QUIT;
925
926 if (debug_infrun)
927 fprintf_unfiltered (gdb_stdlog,
928 "infrun: resume (step=%d, signal=%d), "
929 "stepping_over_breakpoint=%d\n",
930 step, sig, stepping_over_breakpoint);
931
932 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
933 over an instruction that causes a page fault without triggering
934 a hardware watchpoint. The kernel properly notices that it shouldn't
935 stop, because the hardware watchpoint is not triggered, but it forgets
936 the step request and continues the program normally.
937 Work around the problem by removing hardware watchpoints if a step is
938 requested, GDB will check for a hardware watchpoint trigger after the
939 step anyway. */
940 if (CANNOT_STEP_HW_WATCHPOINTS && step)
941 remove_hw_watchpoints ();
942
943
944 /* Normally, by the time we reach `resume', the breakpoints are either
945 removed or inserted, as appropriate. The exception is if we're sitting
946 at a permanent breakpoint; we need to step over it, but permanent
947 breakpoints can't be removed. So we have to test for it here. */
948 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
949 {
950 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
951 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
952 else
953 error (_("\
954 The program is stopped at a permanent breakpoint, but GDB does not know\n\
955 how to step past a permanent breakpoint on this architecture. Try using\n\
956 a command like `return' or `jump' to continue execution."));
957 }
958
959 /* If enabled, step over breakpoints by executing a copy of the
960 instruction at a different address.
961
962 We can't use displaced stepping when we have a signal to deliver;
963 the comments for displaced_step_prepare explain why. The
964 comments in the handle_inferior event for dealing with 'random
965 signals' explain what we do instead. */
966 if (use_displaced_stepping (gdbarch)
967 && stepping_over_breakpoint
968 && sig == TARGET_SIGNAL_0)
969 {
970 if (!displaced_step_prepare (inferior_ptid))
971 /* Got placed in displaced stepping queue. Will be resumed
972 later when all the currently queued displaced stepping
973 requests finish. */
974 return;
975 }
976
977 if (step && gdbarch_software_single_step_p (gdbarch))
978 {
979 /* Do it the hard way, w/temp breakpoints */
980 if (gdbarch_software_single_step (gdbarch, get_current_frame ()))
981 {
982 /* ...and don't ask hardware to do it. */
983 step = 0;
984 /* and do not pull these breakpoints until after a `wait' in
985 `wait_for_inferior' */
986 singlestep_breakpoints_inserted_p = 1;
987 singlestep_ptid = inferior_ptid;
988 singlestep_pc = pc;
989 }
990 }
991
992 /* If there were any forks/vforks/execs that were caught and are
993 now to be followed, then do so. */
994 switch (pending_follow.kind)
995 {
996 case TARGET_WAITKIND_FORKED:
997 case TARGET_WAITKIND_VFORKED:
998 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
999 if (follow_fork ())
1000 should_resume = 0;
1001 break;
1002
1003 case TARGET_WAITKIND_EXECD:
1004 /* follow_exec is called as soon as the exec event is seen. */
1005 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
1006 break;
1007
1008 default:
1009 break;
1010 }
1011
1012 /* Install inferior's terminal modes. */
1013 target_terminal_inferior ();
1014
1015 if (should_resume)
1016 {
1017 ptid_t resume_ptid;
1018
1019 resume_ptid = RESUME_ALL; /* Default */
1020
1021 /* If STEP is set, it's a request to use hardware stepping
1022 facilities. But in that case, we should never
1023 use singlestep breakpoint. */
1024 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1025
1026 if (singlestep_breakpoints_inserted_p
1027 && stepping_past_singlestep_breakpoint)
1028 {
1029 /* The situation here is as follows. In thread T1 we wanted to
1030 single-step. Lacking hardware single-stepping we've
1031 set breakpoint at the PC of the next instruction -- call it
1032 P. After resuming, we've hit that breakpoint in thread T2.
1033 Now we've removed original breakpoint, inserted breakpoint
1034 at P+1, and try to step to advance T2 past breakpoint.
1035 We need to step only T2, as if T1 is allowed to freely run,
1036 it can run past P, and if other threads are allowed to run,
1037 they can hit breakpoint at P+1, and nested hits of single-step
1038 breakpoints is not something we'd want -- that's complicated
1039 to support, and has no value. */
1040 resume_ptid = inferior_ptid;
1041 }
1042
1043 if ((step || singlestep_breakpoints_inserted_p)
1044 && stepping_over_breakpoint)
1045 {
1046 /* We're allowing a thread to run past a breakpoint it has
1047 hit, by single-stepping the thread with the breakpoint
1048 removed. In which case, we need to single-step only this
1049 thread, and keep others stopped, as they can miss this
1050 breakpoint if allowed to run.
1051
1052 The current code actually removes all breakpoints when
1053 doing this, not just the one being stepped over, so if we
1054 let other threads run, we can actually miss any
1055 breakpoint, not just the one at PC. */
1056 resume_ptid = inferior_ptid;
1057 }
1058
1059 if ((scheduler_mode == schedlock_on)
1060 || (scheduler_mode == schedlock_step
1061 && (step || singlestep_breakpoints_inserted_p)))
1062 {
1063 /* User-settable 'scheduler' mode requires solo thread resume. */
1064 resume_ptid = inferior_ptid;
1065 }
1066
1067 if (gdbarch_cannot_step_breakpoint (gdbarch))
1068 {
1069 /* Most targets can step a breakpoint instruction, thus
1070 executing it normally. But if this one cannot, just
1071 continue and we will hit it anyway. */
1072 if (step && breakpoint_inserted_here_p (pc))
1073 step = 0;
1074 }
1075
1076 if (debug_displaced
1077 && use_displaced_stepping (gdbarch)
1078 && stepping_over_breakpoint)
1079 {
1080 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1081 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1082 gdb_byte buf[4];
1083
1084 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
1085 paddr_nz (actual_pc));
1086 read_memory (actual_pc, buf, sizeof (buf));
1087 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1088 }
1089
1090 target_resume (resume_ptid, step, sig);
1091 }
1092
1093 discard_cleanups (old_cleanups);
1094 }
1095 \f
1096 /* Proceeding. */
1097
1098 /* Clear out all variables saying what to do when inferior is continued.
1099 First do this, then set the ones you want, then call `proceed'. */
1100
1101 void
1102 clear_proceed_status (void)
1103 {
1104 stepping_over_breakpoint = 0;
1105 step_range_start = 0;
1106 step_range_end = 0;
1107 step_frame_id = null_frame_id;
1108 step_over_calls = STEP_OVER_UNDEBUGGABLE;
1109 stop_after_trap = 0;
1110 stop_soon = NO_STOP_QUIETLY;
1111 proceed_to_finish = 0;
1112 breakpoint_proceeded = 1; /* We're about to proceed... */
1113
1114 if (stop_registers)
1115 {
1116 regcache_xfree (stop_registers);
1117 stop_registers = NULL;
1118 }
1119
1120 /* Discard any remaining commands or status from previous stop. */
1121 bpstat_clear (&stop_bpstat);
1122 }
1123
1124 /* This should be suitable for any targets that support threads. */
1125
1126 static int
1127 prepare_to_proceed (int step)
1128 {
1129 ptid_t wait_ptid;
1130 struct target_waitstatus wait_status;
1131
1132 /* Get the last target status returned by target_wait(). */
1133 get_last_target_status (&wait_ptid, &wait_status);
1134
1135 /* Make sure we were stopped at a breakpoint. */
1136 if (wait_status.kind != TARGET_WAITKIND_STOPPED
1137 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
1138 {
1139 return 0;
1140 }
1141
1142 /* Switched over from WAIT_PID. */
1143 if (!ptid_equal (wait_ptid, minus_one_ptid)
1144 && !ptid_equal (inferior_ptid, wait_ptid))
1145 {
1146 struct regcache *regcache = get_thread_regcache (wait_ptid);
1147
1148 if (breakpoint_here_p (regcache_read_pc (regcache)))
1149 {
1150 /* If stepping, remember current thread to switch back to. */
1151 if (step)
1152 deferred_step_ptid = inferior_ptid;
1153
1154 /* Switch back to WAIT_PID thread. */
1155 switch_to_thread (wait_ptid);
1156
1157 /* We return 1 to indicate that there is a breakpoint here,
1158 so we need to step over it before continuing to avoid
1159 hitting it straight away. */
1160 return 1;
1161 }
1162 }
1163
1164 return 0;
1165 }
1166
1167 /* Record the pc of the program the last time it stopped. This is
1168 just used internally by wait_for_inferior, but need to be preserved
1169 over calls to it and cleared when the inferior is started. */
1170 static CORE_ADDR prev_pc;
1171
1172 /* Basic routine for continuing the program in various fashions.
1173
1174 ADDR is the address to resume at, or -1 for resume where stopped.
1175 SIGGNAL is the signal to give it, or 0 for none,
1176 or -1 for act according to how it stopped.
1177 STEP is nonzero if should trap after one instruction.
1178 -1 means return after that and print nothing.
1179 You should probably set various step_... variables
1180 before calling here, if you are stepping.
1181
1182 You should call clear_proceed_status before calling proceed. */
1183
1184 void
1185 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
1186 {
1187 struct regcache *regcache = get_current_regcache ();
1188 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1189 CORE_ADDR pc = regcache_read_pc (regcache);
1190 int oneproc = 0;
1191
1192 if (step > 0)
1193 step_start_function = find_pc_function (pc);
1194 if (step < 0)
1195 stop_after_trap = 1;
1196
1197 if (addr == (CORE_ADDR) -1)
1198 {
1199 if (pc == stop_pc && breakpoint_here_p (pc))
1200 /* There is a breakpoint at the address we will resume at,
1201 step one instruction before inserting breakpoints so that
1202 we do not stop right away (and report a second hit at this
1203 breakpoint). */
1204 oneproc = 1;
1205 else if (gdbarch_single_step_through_delay_p (gdbarch)
1206 && gdbarch_single_step_through_delay (gdbarch,
1207 get_current_frame ()))
1208 /* We stepped onto an instruction that needs to be stepped
1209 again before re-inserting the breakpoint, do so. */
1210 oneproc = 1;
1211 }
1212 else
1213 {
1214 regcache_write_pc (regcache, addr);
1215 }
1216
1217 if (debug_infrun)
1218 fprintf_unfiltered (gdb_stdlog,
1219 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
1220 paddr_nz (addr), siggnal, step);
1221
1222 /* In a multi-threaded task we may select another thread
1223 and then continue or step.
1224
1225 But if the old thread was stopped at a breakpoint, it
1226 will immediately cause another breakpoint stop without
1227 any execution (i.e. it will report a breakpoint hit
1228 incorrectly). So we must step over it first.
1229
1230 prepare_to_proceed checks the current thread against the thread
1231 that reported the most recent event. If a step-over is required
1232 it returns TRUE and sets the current thread to the old thread. */
1233 if (prepare_to_proceed (step))
1234 oneproc = 1;
1235
1236 if (oneproc)
1237 {
1238 stepping_over_breakpoint = 1;
1239 /* If displaced stepping is enabled, we can step over the
1240 breakpoint without hitting it, so leave all breakpoints
1241 inserted. Otherwise we need to disable all breakpoints, step
1242 one instruction, and then re-add them when that step is
1243 finished. */
1244 if (!use_displaced_stepping (gdbarch))
1245 remove_breakpoints ();
1246 }
1247
1248 /* We can insert breakpoints if we're not trying to step over one,
1249 or if we are stepping over one but we're using displaced stepping
1250 to do so. */
1251 if (! stepping_over_breakpoint || use_displaced_stepping (gdbarch))
1252 insert_breakpoints ();
1253
1254 if (siggnal != TARGET_SIGNAL_DEFAULT)
1255 stop_signal = siggnal;
1256 /* If this signal should not be seen by program,
1257 give it zero. Used for debugging signals. */
1258 else if (!signal_program[stop_signal])
1259 stop_signal = TARGET_SIGNAL_0;
1260
1261 annotate_starting ();
1262
1263 /* Make sure that output from GDB appears before output from the
1264 inferior. */
1265 gdb_flush (gdb_stdout);
1266
1267 /* Refresh prev_pc value just prior to resuming. This used to be
1268 done in stop_stepping, however, setting prev_pc there did not handle
1269 scenarios such as inferior function calls or returning from
1270 a function via the return command. In those cases, the prev_pc
1271 value was not set properly for subsequent commands. The prev_pc value
1272 is used to initialize the starting line number in the ecs. With an
1273 invalid value, the gdb next command ends up stopping at the position
1274 represented by the next line table entry past our start position.
1275 On platforms that generate one line table entry per line, this
1276 is not a problem. However, on the ia64, the compiler generates
1277 extraneous line table entries that do not increase the line number.
1278 When we issue the gdb next command on the ia64 after an inferior call
1279 or a return command, we often end up a few instructions forward, still
1280 within the original line we started.
1281
1282 An attempt was made to have init_execution_control_state () refresh
1283 the prev_pc value before calculating the line number. This approach
1284 did not work because on platforms that use ptrace, the pc register
1285 cannot be read unless the inferior is stopped. At that point, we
1286 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
1287 call can fail. Setting the prev_pc value here ensures the value is
1288 updated correctly when the inferior is stopped. */
1289 prev_pc = regcache_read_pc (get_current_regcache ());
1290
1291 /* Resume inferior. */
1292 resume (oneproc || step || bpstat_should_step (), stop_signal);
1293
1294 /* Wait for it to stop (if not standalone)
1295 and in any case decode why it stopped, and act accordingly. */
1296 /* Do this only if we are not using the event loop, or if the target
1297 does not support asynchronous execution. */
1298 if (!target_can_async_p ())
1299 {
1300 wait_for_inferior (0);
1301 normal_stop ();
1302 }
1303 }
1304 \f
1305
1306 /* Start remote-debugging of a machine over a serial link. */
1307
1308 void
1309 start_remote (int from_tty)
1310 {
1311 init_wait_for_inferior ();
1312 stop_soon = STOP_QUIETLY_REMOTE;
1313 stepping_over_breakpoint = 0;
1314
1315 /* Always go on waiting for the target, regardless of the mode. */
1316 /* FIXME: cagney/1999-09-23: At present it isn't possible to
1317 indicate to wait_for_inferior that a target should timeout if
1318 nothing is returned (instead of just blocking). Because of this,
1319 targets expecting an immediate response need to, internally, set
1320 things up so that the target_wait() is forced to eventually
1321 timeout. */
1322 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1323 differentiate to its caller what the state of the target is after
1324 the initial open has been performed. Here we're assuming that
1325 the target has stopped. It should be possible to eventually have
1326 target_open() return to the caller an indication that the target
1327 is currently running and GDB state should be set to the same as
1328 for an async run. */
1329 wait_for_inferior (0);
1330
1331 /* Now that the inferior has stopped, do any bookkeeping like
1332 loading shared libraries. We want to do this before normal_stop,
1333 so that the displayed frame is up to date. */
1334 post_create_inferior (&current_target, from_tty);
1335
1336 normal_stop ();
1337 }
1338
1339 /* Initialize static vars when a new inferior begins. */
1340
1341 void
1342 init_wait_for_inferior (void)
1343 {
1344 /* These are meaningless until the first time through wait_for_inferior. */
1345 prev_pc = 0;
1346
1347 breakpoint_init_inferior (inf_starting);
1348
1349 /* Don't confuse first call to proceed(). */
1350 stop_signal = TARGET_SIGNAL_0;
1351
1352 /* The first resume is not following a fork/vfork/exec. */
1353 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
1354
1355 clear_proceed_status ();
1356
1357 stepping_past_singlestep_breakpoint = 0;
1358 deferred_step_ptid = null_ptid;
1359
1360 target_last_wait_ptid = minus_one_ptid;
1361
1362 init_thread_stepping_state (tss);
1363 previous_inferior_ptid = null_ptid;
1364 init_infwait_state ();
1365
1366 displaced_step_clear ();
1367 }
1368
1369 \f
1370 /* This enum encodes possible reasons for doing a target_wait, so that
1371 wfi can call target_wait in one place. (Ultimately the call will be
1372 moved out of the infinite loop entirely.) */
1373
1374 enum infwait_states
1375 {
1376 infwait_normal_state,
1377 infwait_thread_hop_state,
1378 infwait_step_watch_state,
1379 infwait_nonstep_watch_state
1380 };
1381
1382 /* Why did the inferior stop? Used to print the appropriate messages
1383 to the interface from within handle_inferior_event(). */
1384 enum inferior_stop_reason
1385 {
1386 /* Step, next, nexti, stepi finished. */
1387 END_STEPPING_RANGE,
1388 /* Inferior terminated by signal. */
1389 SIGNAL_EXITED,
1390 /* Inferior exited. */
1391 EXITED,
1392 /* Inferior received signal, and user asked to be notified. */
1393 SIGNAL_RECEIVED
1394 };
1395
1396 /* The PTID we'll do a target_wait on.*/
1397 ptid_t waiton_ptid;
1398
1399 /* Current inferior wait state. */
1400 enum infwait_states infwait_state;
1401
1402 /* Data to be passed around while handling an event. This data is
1403 discarded between events. */
1404 struct execution_control_state
1405 {
1406 ptid_t ptid;
1407 struct target_waitstatus ws;
1408 int random_signal;
1409 CORE_ADDR stop_func_start;
1410 CORE_ADDR stop_func_end;
1411 char *stop_func_name;
1412 int new_thread_event;
1413 int wait_some_more;
1414 };
1415
1416 void init_execution_control_state (struct execution_control_state *ecs);
1417
1418 void handle_inferior_event (struct execution_control_state *ecs);
1419
1420 static void step_into_function (struct execution_control_state *ecs);
1421 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
1422 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
1423 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
1424 struct frame_id sr_id);
1425 static void insert_longjmp_resume_breakpoint (CORE_ADDR);
1426
1427 static void stop_stepping (struct execution_control_state *ecs);
1428 static void prepare_to_wait (struct execution_control_state *ecs);
1429 static void keep_going (struct execution_control_state *ecs);
1430 static void print_stop_reason (enum inferior_stop_reason stop_reason,
1431 int stop_info);
1432
1433 /* Wait for control to return from inferior to debugger.
1434
1435 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1436 as if they were SIGTRAP signals. This can be useful during
1437 the startup sequence on some targets such as HP/UX, where
1438 we receive an EXEC event instead of the expected SIGTRAP.
1439
1440 If inferior gets a signal, we may decide to start it up again
1441 instead of returning. That is why there is a loop in this function.
1442 When this function actually returns it means the inferior
1443 should be left stopped and GDB should read more commands. */
1444
1445 void
1446 wait_for_inferior (int treat_exec_as_sigtrap)
1447 {
1448 struct cleanup *old_cleanups;
1449 struct execution_control_state ecss;
1450 struct execution_control_state *ecs;
1451
1452 if (debug_infrun)
1453 fprintf_unfiltered
1454 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1455 treat_exec_as_sigtrap);
1456
1457 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
1458 &step_resume_breakpoint);
1459
1460 ecs = &ecss;
1461 memset (ecs, 0, sizeof (*ecs));
1462
1463 /* Fill in with reasonable starting values. */
1464 init_thread_stepping_state (tss);
1465
1466 /* Reset to normal state. */
1467 init_infwait_state ();
1468
1469 /* We'll update this if & when we switch to a new thread. */
1470 previous_inferior_ptid = inferior_ptid;
1471
1472 overlay_cache_invalid = 1;
1473
1474 /* We have to invalidate the registers BEFORE calling target_wait
1475 because they can be loaded from the target while in target_wait.
1476 This makes remote debugging a bit more efficient for those
1477 targets that provide critical registers as part of their normal
1478 status mechanism. */
1479
1480 registers_changed ();
1481
1482 while (1)
1483 {
1484 if (deprecated_target_wait_hook)
1485 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
1486 else
1487 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
1488
1489 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1490 {
1491 xfree (ecs->ws.value.execd_pathname);
1492 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1493 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1494 }
1495
1496 /* Now figure out what to do with the result of the result. */
1497 handle_inferior_event (ecs);
1498
1499 if (!ecs->wait_some_more)
1500 break;
1501 }
1502 do_cleanups (old_cleanups);
1503 }
1504
1505 /* Asynchronous version of wait_for_inferior. It is called by the
1506 event loop whenever a change of state is detected on the file
1507 descriptor corresponding to the target. It can be called more than
1508 once to complete a single execution command. In such cases we need
1509 to keep the state in a global variable ECSS. If it is the last time
1510 that this function is called for a single execution command, then
1511 report to the user that the inferior has stopped, and do the
1512 necessary cleanups. */
1513
1514 void
1515 fetch_inferior_event (void *client_data)
1516 {
1517 struct execution_control_state ecss;
1518 struct execution_control_state *ecs = &ecss;
1519
1520 memset (ecs, 0, sizeof (*ecs));
1521
1522 if (!ecs->wait_some_more)
1523 {
1524 /* Fill in with reasonable starting values. */
1525 init_thread_stepping_state (tcs);
1526
1527 init_infwait_state ();
1528
1529 /* We'll update this if & when we switch to a new thread. */
1530 previous_inferior_ptid = inferior_ptid;
1531
1532 overlay_cache_invalid = 1;
1533
1534 /* We have to invalidate the registers BEFORE calling target_wait
1535 because they can be loaded from the target while in target_wait.
1536 This makes remote debugging a bit more efficient for those
1537 targets that provide critical registers as part of their normal
1538 status mechanism. */
1539
1540 registers_changed ();
1541 }
1542
1543 if (deprecated_target_wait_hook)
1544 ecs->ptid =
1545 deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
1546 else
1547 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
1548
1549 /* Now figure out what to do with the result of the result. */
1550 handle_inferior_event (ecs);
1551
1552 if (!ecs->wait_some_more)
1553 {
1554 delete_step_resume_breakpoint (&step_resume_breakpoint);
1555
1556 normal_stop ();
1557 if (step_multi && stop_step)
1558 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1559 else
1560 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1561 }
1562 }
1563
1564 /* Prepare an execution control state for looping through a
1565 wait_for_inferior-type loop. */
1566
1567 void
1568 init_execution_control_state (struct execution_control_state *ecs)
1569 {
1570 ecs->random_signal = 0;
1571 }
1572
1573 /* Clear context switchable stepping state. */
1574
1575 void
1576 init_thread_stepping_state (struct thread_stepping_state *tss)
1577 {
1578 tss->stepping_over_breakpoint = 0;
1579 tss->step_after_step_resume_breakpoint = 0;
1580 tss->stepping_through_solib_after_catch = 0;
1581 tss->stepping_through_solib_catchpoints = NULL;
1582 tss->sal = find_pc_line (prev_pc, 0);
1583 tss->current_line = tss->sal.line;
1584 tss->current_symtab = tss->sal.symtab;
1585 }
1586
1587 /* Return the cached copy of the last pid/waitstatus returned by
1588 target_wait()/deprecated_target_wait_hook(). The data is actually
1589 cached by handle_inferior_event(), which gets called immediately
1590 after target_wait()/deprecated_target_wait_hook(). */
1591
1592 void
1593 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1594 {
1595 *ptidp = target_last_wait_ptid;
1596 *status = target_last_waitstatus;
1597 }
1598
1599 void
1600 nullify_last_target_wait_ptid (void)
1601 {
1602 target_last_wait_ptid = minus_one_ptid;
1603 }
1604
1605 /* Switch thread contexts, maintaining "infrun state". */
1606
1607 static void
1608 context_switch (ptid_t ptid)
1609 {
1610 /* Caution: it may happen that the new thread (or the old one!)
1611 is not in the thread list. In this case we must not attempt
1612 to "switch context", or we run the risk that our context may
1613 be lost. This may happen as a result of the target module
1614 mishandling thread creation. */
1615
1616 if (debug_infrun)
1617 {
1618 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1619 target_pid_to_str (inferior_ptid));
1620 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1621 target_pid_to_str (ptid));
1622 }
1623
1624 if (in_thread_list (inferior_ptid) && in_thread_list (ptid))
1625 { /* Perform infrun state context switch: */
1626 /* Save infrun state for the old thread. */
1627 save_infrun_state (inferior_ptid, prev_pc,
1628 stepping_over_breakpoint, step_resume_breakpoint,
1629 step_range_start,
1630 step_range_end, &step_frame_id,
1631 tss->stepping_over_breakpoint,
1632 tss->stepping_through_solib_after_catch,
1633 tss->stepping_through_solib_catchpoints,
1634 tss->current_line, tss->current_symtab,
1635 cmd_continuation, intermediate_continuation,
1636 proceed_to_finish,
1637 step_over_calls,
1638 stop_step,
1639 step_multi,
1640 stop_signal,
1641 stop_bpstat);
1642
1643 /* Load infrun state for the new thread. */
1644 load_infrun_state (ptid, &prev_pc,
1645 &stepping_over_breakpoint, &step_resume_breakpoint,
1646 &step_range_start,
1647 &step_range_end, &step_frame_id,
1648 &tss->stepping_over_breakpoint,
1649 &tss->stepping_through_solib_after_catch,
1650 &tss->stepping_through_solib_catchpoints,
1651 &tss->current_line, &tss->current_symtab,
1652 &cmd_continuation, &intermediate_continuation,
1653 &proceed_to_finish,
1654 &step_over_calls,
1655 &stop_step,
1656 &step_multi,
1657 &stop_signal,
1658 &stop_bpstat);
1659 }
1660
1661 switch_to_thread (ptid);
1662 }
1663
1664 /* Context switch to thread PTID. */
1665 ptid_t
1666 context_switch_to (ptid_t ptid)
1667 {
1668 ptid_t current_ptid = inferior_ptid;
1669
1670 /* Context switch to the new thread. */
1671 if (!ptid_equal (ptid, inferior_ptid))
1672 {
1673 context_switch (ptid);
1674 }
1675 return current_ptid;
1676 }
1677
1678 static void
1679 adjust_pc_after_break (struct execution_control_state *ecs)
1680 {
1681 struct regcache *regcache = get_thread_regcache (ecs->ptid);
1682 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1683 CORE_ADDR breakpoint_pc;
1684
1685 /* If this target does not decrement the PC after breakpoints, then
1686 we have nothing to do. */
1687 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
1688 return;
1689
1690 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1691 we aren't, just return.
1692
1693 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1694 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1695 implemented by software breakpoints should be handled through the normal
1696 breakpoint layer.
1697
1698 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1699 different signals (SIGILL or SIGEMT for instance), but it is less
1700 clear where the PC is pointing afterwards. It may not match
1701 gdbarch_decr_pc_after_break. I don't know any specific target that
1702 generates these signals at breakpoints (the code has been in GDB since at
1703 least 1992) so I can not guess how to handle them here.
1704
1705 In earlier versions of GDB, a target with
1706 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
1707 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1708 target with both of these set in GDB history, and it seems unlikely to be
1709 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
1710
1711 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1712 return;
1713
1714 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1715 return;
1716
1717 /* Find the location where (if we've hit a breakpoint) the
1718 breakpoint would be. */
1719 breakpoint_pc = regcache_read_pc (regcache)
1720 - gdbarch_decr_pc_after_break (gdbarch);
1721
1722 /* Check whether there actually is a software breakpoint inserted
1723 at that location. */
1724 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1725 {
1726 /* When using hardware single-step, a SIGTRAP is reported for both
1727 a completed single-step and a software breakpoint. Need to
1728 differentiate between the two, as the latter needs adjusting
1729 but the former does not.
1730
1731 The SIGTRAP can be due to a completed hardware single-step only if
1732 - we didn't insert software single-step breakpoints
1733 - the thread to be examined is still the current thread
1734 - this thread is currently being stepped
1735
1736 If any of these events did not occur, we must have stopped due
1737 to hitting a software breakpoint, and have to back up to the
1738 breakpoint address.
1739
1740 As a special case, we could have hardware single-stepped a
1741 software breakpoint. In this case (prev_pc == breakpoint_pc),
1742 we also need to back up to the breakpoint address. */
1743
1744 if (singlestep_breakpoints_inserted_p
1745 || !ptid_equal (ecs->ptid, inferior_ptid)
1746 || !currently_stepping (tss)
1747 || prev_pc == breakpoint_pc)
1748 regcache_write_pc (regcache, breakpoint_pc);
1749 }
1750 }
1751
1752 void
1753 init_infwait_state (void)
1754 {
1755 waiton_ptid = pid_to_ptid (-1);
1756 infwait_state = infwait_normal_state;
1757 }
1758
1759 /* Given an execution control state that has been freshly filled in
1760 by an event from the inferior, figure out what it means and take
1761 appropriate action. */
1762
1763 void
1764 handle_inferior_event (struct execution_control_state *ecs)
1765 {
1766 int sw_single_step_trap_p = 0;
1767 int stopped_by_watchpoint;
1768 int stepped_after_stopped_by_watchpoint = 0;
1769
1770 breakpoint_retire_moribund ();
1771
1772 /* Cache the last pid/waitstatus. */
1773 target_last_wait_ptid = ecs->ptid;
1774 target_last_waitstatus = ecs->ws;
1775
1776 /* Always clear state belonging to the previous time we stopped. */
1777 stop_stack_dummy = 0;
1778
1779 adjust_pc_after_break (ecs);
1780
1781 switch (infwait_state)
1782 {
1783 case infwait_thread_hop_state:
1784 if (debug_infrun)
1785 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1786 /* Cancel the waiton_ptid. */
1787 waiton_ptid = pid_to_ptid (-1);
1788 break;
1789
1790 case infwait_normal_state:
1791 if (debug_infrun)
1792 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1793 break;
1794
1795 case infwait_step_watch_state:
1796 if (debug_infrun)
1797 fprintf_unfiltered (gdb_stdlog,
1798 "infrun: infwait_step_watch_state\n");
1799
1800 stepped_after_stopped_by_watchpoint = 1;
1801 break;
1802
1803 case infwait_nonstep_watch_state:
1804 if (debug_infrun)
1805 fprintf_unfiltered (gdb_stdlog,
1806 "infrun: infwait_nonstep_watch_state\n");
1807 insert_breakpoints ();
1808
1809 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1810 handle things like signals arriving and other things happening
1811 in combination correctly? */
1812 stepped_after_stopped_by_watchpoint = 1;
1813 break;
1814
1815 default:
1816 internal_error (__FILE__, __LINE__, _("bad switch"));
1817 }
1818 infwait_state = infwait_normal_state;
1819
1820 reinit_frame_cache ();
1821
1822 /* If it's a new process, add it to the thread database */
1823
1824 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1825 && !ptid_equal (ecs->ptid, minus_one_ptid)
1826 && !in_thread_list (ecs->ptid));
1827
1828 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1829 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1830 add_thread (ecs->ptid);
1831
1832 /* Mark all threads as not-executing. In non-stop, this should be
1833 adjusted to only mark ecs->ptid. */
1834 if (ecs->ws.kind != TARGET_WAITKIND_IGNORE)
1835 set_executing (pid_to_ptid (-1), 0);
1836
1837 switch (ecs->ws.kind)
1838 {
1839 case TARGET_WAITKIND_LOADED:
1840 if (debug_infrun)
1841 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1842 /* Ignore gracefully during startup of the inferior, as it might
1843 be the shell which has just loaded some objects, otherwise
1844 add the symbols for the newly loaded objects. Also ignore at
1845 the beginning of an attach or remote session; we will query
1846 the full list of libraries once the connection is
1847 established. */
1848 if (stop_soon == NO_STOP_QUIETLY)
1849 {
1850 /* Check for any newly added shared libraries if we're
1851 supposed to be adding them automatically. Switch
1852 terminal for any messages produced by
1853 breakpoint_re_set. */
1854 target_terminal_ours_for_output ();
1855 /* NOTE: cagney/2003-11-25: Make certain that the target
1856 stack's section table is kept up-to-date. Architectures,
1857 (e.g., PPC64), use the section table to perform
1858 operations such as address => section name and hence
1859 require the table to contain all sections (including
1860 those found in shared libraries). */
1861 /* NOTE: cagney/2003-11-25: Pass current_target and not
1862 exec_ops to SOLIB_ADD. This is because current GDB is
1863 only tooled to propagate section_table changes out from
1864 the "current_target" (see target_resize_to_sections), and
1865 not up from the exec stratum. This, of course, isn't
1866 right. "infrun.c" should only interact with the
1867 exec/process stratum, instead relying on the target stack
1868 to propagate relevant changes (stop, section table
1869 changed, ...) up to other layers. */
1870 #ifdef SOLIB_ADD
1871 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1872 #else
1873 solib_add (NULL, 0, &current_target, auto_solib_add);
1874 #endif
1875 target_terminal_inferior ();
1876
1877 /* If requested, stop when the dynamic linker notifies
1878 gdb of events. This allows the user to get control
1879 and place breakpoints in initializer routines for
1880 dynamically loaded objects (among other things). */
1881 if (stop_on_solib_events)
1882 {
1883 stop_stepping (ecs);
1884 return;
1885 }
1886
1887 /* NOTE drow/2007-05-11: This might be a good place to check
1888 for "catch load". */
1889 }
1890
1891 /* If we are skipping through a shell, or through shared library
1892 loading that we aren't interested in, resume the program. If
1893 we're running the program normally, also resume. But stop if
1894 we're attaching or setting up a remote connection. */
1895 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
1896 {
1897 /* Loading of shared libraries might have changed breakpoint
1898 addresses. Make sure new breakpoints are inserted. */
1899 if (stop_soon == NO_STOP_QUIETLY
1900 && !breakpoints_always_inserted_mode ())
1901 insert_breakpoints ();
1902 resume (0, TARGET_SIGNAL_0);
1903 prepare_to_wait (ecs);
1904 return;
1905 }
1906
1907 break;
1908
1909 case TARGET_WAITKIND_SPURIOUS:
1910 if (debug_infrun)
1911 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1912 resume (0, TARGET_SIGNAL_0);
1913 prepare_to_wait (ecs);
1914 return;
1915
1916 case TARGET_WAITKIND_EXITED:
1917 if (debug_infrun)
1918 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1919 target_terminal_ours (); /* Must do this before mourn anyway */
1920 print_stop_reason (EXITED, ecs->ws.value.integer);
1921
1922 /* Record the exit code in the convenience variable $_exitcode, so
1923 that the user can inspect this again later. */
1924 set_internalvar (lookup_internalvar ("_exitcode"),
1925 value_from_longest (builtin_type_int,
1926 (LONGEST) ecs->ws.value.integer));
1927 gdb_flush (gdb_stdout);
1928 target_mourn_inferior ();
1929 singlestep_breakpoints_inserted_p = 0;
1930 stop_print_frame = 0;
1931 stop_stepping (ecs);
1932 return;
1933
1934 case TARGET_WAITKIND_SIGNALLED:
1935 if (debug_infrun)
1936 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1937 stop_print_frame = 0;
1938 stop_signal = ecs->ws.value.sig;
1939 target_terminal_ours (); /* Must do this before mourn anyway */
1940
1941 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1942 reach here unless the inferior is dead. However, for years
1943 target_kill() was called here, which hints that fatal signals aren't
1944 really fatal on some systems. If that's true, then some changes
1945 may be needed. */
1946 target_mourn_inferior ();
1947
1948 print_stop_reason (SIGNAL_EXITED, stop_signal);
1949 singlestep_breakpoints_inserted_p = 0;
1950 stop_stepping (ecs);
1951 return;
1952
1953 /* The following are the only cases in which we keep going;
1954 the above cases end in a continue or goto. */
1955 case TARGET_WAITKIND_FORKED:
1956 case TARGET_WAITKIND_VFORKED:
1957 if (debug_infrun)
1958 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1959 stop_signal = TARGET_SIGNAL_TRAP;
1960 pending_follow.kind = ecs->ws.kind;
1961
1962 pending_follow.fork_event.parent_pid = ecs->ptid;
1963 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1964
1965 if (!ptid_equal (ecs->ptid, inferior_ptid))
1966 {
1967 context_switch (ecs->ptid);
1968 reinit_frame_cache ();
1969 }
1970
1971 stop_pc = read_pc ();
1972
1973 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
1974
1975 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1976
1977 /* If no catchpoint triggered for this, then keep going. */
1978 if (ecs->random_signal)
1979 {
1980 stop_signal = TARGET_SIGNAL_0;
1981 keep_going (ecs);
1982 return;
1983 }
1984 goto process_event_stop_test;
1985
1986 case TARGET_WAITKIND_EXECD:
1987 if (debug_infrun)
1988 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
1989 stop_signal = TARGET_SIGNAL_TRAP;
1990
1991 pending_follow.execd_pathname =
1992 savestring (ecs->ws.value.execd_pathname,
1993 strlen (ecs->ws.value.execd_pathname));
1994
1995 /* This causes the eventpoints and symbol table to be reset. Must
1996 do this now, before trying to determine whether to stop. */
1997 follow_exec (inferior_ptid, pending_follow.execd_pathname);
1998 xfree (pending_follow.execd_pathname);
1999
2000 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2001
2002 {
2003 /* The breakpoints module may need to touch the inferior's
2004 memory. Switch to the (stopped) event ptid
2005 momentarily. */
2006 ptid_t saved_inferior_ptid = inferior_ptid;
2007 inferior_ptid = ecs->ptid;
2008
2009 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2010
2011 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
2012 inferior_ptid = saved_inferior_ptid;
2013 }
2014
2015 if (!ptid_equal (ecs->ptid, inferior_ptid))
2016 {
2017 context_switch (ecs->ptid);
2018 reinit_frame_cache ();
2019 }
2020
2021 /* If no catchpoint triggered for this, then keep going. */
2022 if (ecs->random_signal)
2023 {
2024 stop_signal = TARGET_SIGNAL_0;
2025 keep_going (ecs);
2026 return;
2027 }
2028 goto process_event_stop_test;
2029
2030 /* Be careful not to try to gather much state about a thread
2031 that's in a syscall. It's frequently a losing proposition. */
2032 case TARGET_WAITKIND_SYSCALL_ENTRY:
2033 if (debug_infrun)
2034 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
2035 resume (0, TARGET_SIGNAL_0);
2036 prepare_to_wait (ecs);
2037 return;
2038
2039 /* Before examining the threads further, step this thread to
2040 get it entirely out of the syscall. (We get notice of the
2041 event when the thread is just on the verge of exiting a
2042 syscall. Stepping one instruction seems to get it back
2043 into user code.) */
2044 case TARGET_WAITKIND_SYSCALL_RETURN:
2045 if (debug_infrun)
2046 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
2047 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
2048 prepare_to_wait (ecs);
2049 return;
2050
2051 case TARGET_WAITKIND_STOPPED:
2052 if (debug_infrun)
2053 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2054 stop_signal = ecs->ws.value.sig;
2055 break;
2056
2057 /* We had an event in the inferior, but we are not interested
2058 in handling it at this level. The lower layers have already
2059 done what needs to be done, if anything.
2060
2061 One of the possible circumstances for this is when the
2062 inferior produces output for the console. The inferior has
2063 not stopped, and we are ignoring the event. Another possible
2064 circumstance is any event which the lower level knows will be
2065 reported multiple times without an intervening resume. */
2066 case TARGET_WAITKIND_IGNORE:
2067 if (debug_infrun)
2068 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
2069 prepare_to_wait (ecs);
2070 return;
2071 }
2072
2073 /* We may want to consider not doing a resume here in order to give
2074 the user a chance to play with the new thread. It might be good
2075 to make that a user-settable option. */
2076
2077 /* At this point, all threads are stopped (happens automatically in
2078 either the OS or the native code). Therefore we need to continue
2079 all threads in order to make progress. */
2080 if (ecs->new_thread_event)
2081 {
2082 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2083 prepare_to_wait (ecs);
2084 return;
2085 }
2086
2087 /* Do we need to clean up the state of a thread that has completed a
2088 displaced single-step? (Doing so usually affects the PC, so do
2089 it here, before we set stop_pc.) */
2090 displaced_step_fixup (ecs->ptid, stop_signal);
2091
2092 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2093
2094 if (debug_infrun)
2095 {
2096 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n",
2097 paddr_nz (stop_pc));
2098 if (STOPPED_BY_WATCHPOINT (&ecs->ws))
2099 {
2100 CORE_ADDR addr;
2101 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2102
2103 if (target_stopped_data_address (&current_target, &addr))
2104 fprintf_unfiltered (gdb_stdlog,
2105 "infrun: stopped data address = 0x%s\n",
2106 paddr_nz (addr));
2107 else
2108 fprintf_unfiltered (gdb_stdlog,
2109 "infrun: (no data address available)\n");
2110 }
2111 }
2112
2113 if (stepping_past_singlestep_breakpoint)
2114 {
2115 gdb_assert (singlestep_breakpoints_inserted_p);
2116 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2117 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2118
2119 stepping_past_singlestep_breakpoint = 0;
2120
2121 /* We've either finished single-stepping past the single-step
2122 breakpoint, or stopped for some other reason. It would be nice if
2123 we could tell, but we can't reliably. */
2124 if (stop_signal == TARGET_SIGNAL_TRAP)
2125 {
2126 if (debug_infrun)
2127 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
2128 /* Pull the single step breakpoints out of the target. */
2129 remove_single_step_breakpoints ();
2130 singlestep_breakpoints_inserted_p = 0;
2131
2132 ecs->random_signal = 0;
2133
2134 context_switch (saved_singlestep_ptid);
2135 if (deprecated_context_hook)
2136 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2137
2138 resume (1, TARGET_SIGNAL_0);
2139 prepare_to_wait (ecs);
2140 return;
2141 }
2142 }
2143
2144 stepping_past_singlestep_breakpoint = 0;
2145
2146 if (!ptid_equal (deferred_step_ptid, null_ptid))
2147 {
2148 /* If we stopped for some other reason than single-stepping, ignore
2149 the fact that we were supposed to switch back. */
2150 if (stop_signal == TARGET_SIGNAL_TRAP)
2151 {
2152 if (debug_infrun)
2153 fprintf_unfiltered (gdb_stdlog,
2154 "infrun: handling deferred step\n");
2155
2156 /* Pull the single step breakpoints out of the target. */
2157 if (singlestep_breakpoints_inserted_p)
2158 {
2159 remove_single_step_breakpoints ();
2160 singlestep_breakpoints_inserted_p = 0;
2161 }
2162
2163 /* Note: We do not call context_switch at this point, as the
2164 context is already set up for stepping the original thread. */
2165 switch_to_thread (deferred_step_ptid);
2166 deferred_step_ptid = null_ptid;
2167 /* Suppress spurious "Switching to ..." message. */
2168 previous_inferior_ptid = inferior_ptid;
2169
2170 resume (1, TARGET_SIGNAL_0);
2171 prepare_to_wait (ecs);
2172 return;
2173 }
2174
2175 deferred_step_ptid = null_ptid;
2176 }
2177
2178 /* See if a thread hit a thread-specific breakpoint that was meant for
2179 another thread. If so, then step that thread past the breakpoint,
2180 and continue it. */
2181
2182 if (stop_signal == TARGET_SIGNAL_TRAP)
2183 {
2184 int thread_hop_needed = 0;
2185
2186 /* Check if a regular breakpoint has been hit before checking
2187 for a potential single step breakpoint. Otherwise, GDB will
2188 not see this breakpoint hit when stepping onto breakpoints. */
2189 if (regular_breakpoint_inserted_here_p (stop_pc))
2190 {
2191 ecs->random_signal = 0;
2192 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
2193 thread_hop_needed = 1;
2194 }
2195 else if (singlestep_breakpoints_inserted_p)
2196 {
2197 /* We have not context switched yet, so this should be true
2198 no matter which thread hit the singlestep breakpoint. */
2199 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2200 if (debug_infrun)
2201 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2202 "trap for %s\n",
2203 target_pid_to_str (ecs->ptid));
2204
2205 ecs->random_signal = 0;
2206 /* The call to in_thread_list is necessary because PTIDs sometimes
2207 change when we go from single-threaded to multi-threaded. If
2208 the singlestep_ptid is still in the list, assume that it is
2209 really different from ecs->ptid. */
2210 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2211 && in_thread_list (singlestep_ptid))
2212 {
2213 /* If the PC of the thread we were trying to single-step
2214 has changed, discard this event (which we were going
2215 to ignore anyway), and pretend we saw that thread
2216 trap. This prevents us continuously moving the
2217 single-step breakpoint forward, one instruction at a
2218 time. If the PC has changed, then the thread we were
2219 trying to single-step has trapped or been signalled,
2220 but the event has not been reported to GDB yet.
2221
2222 There might be some cases where this loses signal
2223 information, if a signal has arrived at exactly the
2224 same time that the PC changed, but this is the best
2225 we can do with the information available. Perhaps we
2226 should arrange to report all events for all threads
2227 when they stop, or to re-poll the remote looking for
2228 this particular thread (i.e. temporarily enable
2229 schedlock). */
2230
2231 CORE_ADDR new_singlestep_pc
2232 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2233
2234 if (new_singlestep_pc != singlestep_pc)
2235 {
2236 if (debug_infrun)
2237 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2238 " but expected thread advanced also\n");
2239
2240 /* The current context still belongs to
2241 singlestep_ptid. Don't swap here, since that's
2242 the context we want to use. Just fudge our
2243 state and continue. */
2244 ecs->ptid = singlestep_ptid;
2245 stop_pc = new_singlestep_pc;
2246 }
2247 else
2248 {
2249 if (debug_infrun)
2250 fprintf_unfiltered (gdb_stdlog,
2251 "infrun: unexpected thread\n");
2252
2253 thread_hop_needed = 1;
2254 stepping_past_singlestep_breakpoint = 1;
2255 saved_singlestep_ptid = singlestep_ptid;
2256 }
2257 }
2258 }
2259
2260 if (thread_hop_needed)
2261 {
2262 int remove_status = 0;
2263
2264 if (debug_infrun)
2265 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
2266
2267 /* Saw a breakpoint, but it was hit by the wrong thread.
2268 Just continue. */
2269
2270 if (singlestep_breakpoints_inserted_p)
2271 {
2272 /* Pull the single step breakpoints out of the target. */
2273 remove_single_step_breakpoints ();
2274 singlestep_breakpoints_inserted_p = 0;
2275 }
2276
2277 /* If the arch can displace step, don't remove the
2278 breakpoints. */
2279 if (!use_displaced_stepping (current_gdbarch))
2280 remove_status = remove_breakpoints ();
2281
2282 /* Did we fail to remove breakpoints? If so, try
2283 to set the PC past the bp. (There's at least
2284 one situation in which we can fail to remove
2285 the bp's: On HP-UX's that use ttrace, we can't
2286 change the address space of a vforking child
2287 process until the child exits (well, okay, not
2288 then either :-) or execs. */
2289 if (remove_status != 0)
2290 error (_("Cannot step over breakpoint hit in wrong thread"));
2291 else
2292 { /* Single step */
2293 if (!ptid_equal (inferior_ptid, ecs->ptid))
2294 context_switch (ecs->ptid);
2295
2296 waiton_ptid = ecs->ptid;
2297 infwait_state = infwait_thread_hop_state;
2298
2299 tss->stepping_over_breakpoint = 1;
2300 keep_going (ecs);
2301 registers_changed ();
2302 return;
2303 }
2304 }
2305 else if (singlestep_breakpoints_inserted_p)
2306 {
2307 sw_single_step_trap_p = 1;
2308 ecs->random_signal = 0;
2309 }
2310 }
2311 else
2312 ecs->random_signal = 1;
2313
2314 /* See if something interesting happened to the non-current thread. If
2315 so, then switch to that thread. */
2316 if (!ptid_equal (ecs->ptid, inferior_ptid))
2317 {
2318 if (debug_infrun)
2319 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
2320
2321 context_switch (ecs->ptid);
2322
2323 if (deprecated_context_hook)
2324 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2325 }
2326
2327 if (singlestep_breakpoints_inserted_p)
2328 {
2329 /* Pull the single step breakpoints out of the target. */
2330 remove_single_step_breakpoints ();
2331 singlestep_breakpoints_inserted_p = 0;
2332 }
2333
2334 if (stepped_after_stopped_by_watchpoint)
2335 stopped_by_watchpoint = 0;
2336 else
2337 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
2338
2339 /* If necessary, step over this watchpoint. We'll be back to display
2340 it in a moment. */
2341 if (stopped_by_watchpoint
2342 && (HAVE_STEPPABLE_WATCHPOINT
2343 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
2344 {
2345 /* At this point, we are stopped at an instruction which has
2346 attempted to write to a piece of memory under control of
2347 a watchpoint. The instruction hasn't actually executed
2348 yet. If we were to evaluate the watchpoint expression
2349 now, we would get the old value, and therefore no change
2350 would seem to have occurred.
2351
2352 In order to make watchpoints work `right', we really need
2353 to complete the memory write, and then evaluate the
2354 watchpoint expression. We do this by single-stepping the
2355 target.
2356
2357 It may not be necessary to disable the watchpoint to stop over
2358 it. For example, the PA can (with some kernel cooperation)
2359 single step over a watchpoint without disabling the watchpoint.
2360
2361 It is far more common to need to disable a watchpoint to step
2362 the inferior over it. If we have non-steppable watchpoints,
2363 we must disable the current watchpoint; it's simplest to
2364 disable all watchpoints and breakpoints. */
2365
2366 if (!HAVE_STEPPABLE_WATCHPOINT)
2367 remove_breakpoints ();
2368 registers_changed ();
2369 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
2370 waiton_ptid = ecs->ptid;
2371 if (HAVE_STEPPABLE_WATCHPOINT)
2372 infwait_state = infwait_step_watch_state;
2373 else
2374 infwait_state = infwait_nonstep_watch_state;
2375 prepare_to_wait (ecs);
2376 return;
2377 }
2378
2379 ecs->stop_func_start = 0;
2380 ecs->stop_func_end = 0;
2381 ecs->stop_func_name = 0;
2382 /* Don't care about return value; stop_func_start and stop_func_name
2383 will both be 0 if it doesn't work. */
2384 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2385 &ecs->stop_func_start, &ecs->stop_func_end);
2386 ecs->stop_func_start
2387 += gdbarch_deprecated_function_start_offset (current_gdbarch);
2388 tss->stepping_over_breakpoint = 0;
2389 bpstat_clear (&stop_bpstat);
2390 stop_step = 0;
2391 stop_print_frame = 1;
2392 ecs->random_signal = 0;
2393 stopped_by_random_signal = 0;
2394
2395 if (stop_signal == TARGET_SIGNAL_TRAP
2396 && stepping_over_breakpoint
2397 && gdbarch_single_step_through_delay_p (current_gdbarch)
2398 && currently_stepping (tss))
2399 {
2400 /* We're trying to step off a breakpoint. Turns out that we're
2401 also on an instruction that needs to be stepped multiple
2402 times before it's been fully executing. E.g., architectures
2403 with a delay slot. It needs to be stepped twice, once for
2404 the instruction and once for the delay slot. */
2405 int step_through_delay
2406 = gdbarch_single_step_through_delay (current_gdbarch,
2407 get_current_frame ());
2408 if (debug_infrun && step_through_delay)
2409 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
2410 if (step_range_end == 0 && step_through_delay)
2411 {
2412 /* The user issued a continue when stopped at a breakpoint.
2413 Set up for another trap and get out of here. */
2414 tss->stepping_over_breakpoint = 1;
2415 keep_going (ecs);
2416 return;
2417 }
2418 else if (step_through_delay)
2419 {
2420 /* The user issued a step when stopped at a breakpoint.
2421 Maybe we should stop, maybe we should not - the delay
2422 slot *might* correspond to a line of source. In any
2423 case, don't decide that here, just set
2424 ecs->stepping_over_breakpoint, making sure we
2425 single-step again before breakpoints are re-inserted. */
2426 tss->stepping_over_breakpoint = 1;
2427 }
2428 }
2429
2430 /* Look at the cause of the stop, and decide what to do.
2431 The alternatives are:
2432 1) stop_stepping and return; to really stop and return to the debugger,
2433 2) keep_going and return to start up again
2434 (set tss->stepping_over_breakpoint to 1 to single step once)
2435 3) set ecs->random_signal to 1, and the decision between 1 and 2
2436 will be made according to the signal handling tables. */
2437
2438 /* First, distinguish signals caused by the debugger from signals
2439 that have to do with the program's own actions. Note that
2440 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
2441 on the operating system version. Here we detect when a SIGILL or
2442 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
2443 something similar for SIGSEGV, since a SIGSEGV will be generated
2444 when we're trying to execute a breakpoint instruction on a
2445 non-executable stack. This happens for call dummy breakpoints
2446 for architectures like SPARC that place call dummies on the
2447 stack.
2448
2449 If we're doing a displaced step past a breakpoint, then the
2450 breakpoint is always inserted at the original instruction;
2451 non-standard signals can't be explained by the breakpoint. */
2452 if (stop_signal == TARGET_SIGNAL_TRAP
2453 || (! stepping_over_breakpoint
2454 && breakpoint_inserted_here_p (stop_pc)
2455 && (stop_signal == TARGET_SIGNAL_ILL
2456 || stop_signal == TARGET_SIGNAL_SEGV
2457 || stop_signal == TARGET_SIGNAL_EMT))
2458 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
2459 || stop_soon == STOP_QUIETLY_REMOTE)
2460 {
2461 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
2462 {
2463 if (debug_infrun)
2464 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
2465 stop_print_frame = 0;
2466 stop_stepping (ecs);
2467 return;
2468 }
2469
2470 /* This is originated from start_remote(), start_inferior() and
2471 shared libraries hook functions. */
2472 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
2473 {
2474 if (debug_infrun)
2475 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
2476 stop_stepping (ecs);
2477 return;
2478 }
2479
2480 /* This originates from attach_command(). We need to overwrite
2481 the stop_signal here, because some kernels don't ignore a
2482 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
2483 See more comments in inferior.h. On the other hand, if we
2484 get a non-SIGSTOP, report it to the user - assume the backend
2485 will handle the SIGSTOP if it should show up later. */
2486 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2487 && stop_signal == TARGET_SIGNAL_STOP)
2488 {
2489 stop_stepping (ecs);
2490 stop_signal = TARGET_SIGNAL_0;
2491 return;
2492 }
2493
2494 /* See if there is a breakpoint at the current PC. */
2495 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2496
2497 /* Following in case break condition called a
2498 function. */
2499 stop_print_frame = 1;
2500
2501 /* NOTE: cagney/2003-03-29: These two checks for a random signal
2502 at one stage in the past included checks for an inferior
2503 function call's call dummy's return breakpoint. The original
2504 comment, that went with the test, read:
2505
2506 ``End of a stack dummy. Some systems (e.g. Sony news) give
2507 another signal besides SIGTRAP, so check here as well as
2508 above.''
2509
2510 If someone ever tries to get get call dummys on a
2511 non-executable stack to work (where the target would stop
2512 with something like a SIGSEGV), then those tests might need
2513 to be re-instated. Given, however, that the tests were only
2514 enabled when momentary breakpoints were not being used, I
2515 suspect that it won't be the case.
2516
2517 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2518 be necessary for call dummies on a non-executable stack on
2519 SPARC. */
2520
2521 if (stop_signal == TARGET_SIGNAL_TRAP)
2522 ecs->random_signal
2523 = !(bpstat_explains_signal (stop_bpstat)
2524 || stepping_over_breakpoint
2525 || (step_range_end && step_resume_breakpoint == NULL));
2526 else
2527 {
2528 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
2529 if (!ecs->random_signal)
2530 stop_signal = TARGET_SIGNAL_TRAP;
2531 }
2532 }
2533
2534 /* When we reach this point, we've pretty much decided
2535 that the reason for stopping must've been a random
2536 (unexpected) signal. */
2537
2538 else
2539 ecs->random_signal = 1;
2540
2541 process_event_stop_test:
2542 /* For the program's own signals, act according to
2543 the signal handling tables. */
2544
2545 if (ecs->random_signal)
2546 {
2547 /* Signal not for debugging purposes. */
2548 int printed = 0;
2549
2550 if (debug_infrun)
2551 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
2552
2553 stopped_by_random_signal = 1;
2554
2555 if (signal_print[stop_signal])
2556 {
2557 printed = 1;
2558 target_terminal_ours_for_output ();
2559 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2560 }
2561 if (signal_stop_state (stop_signal))
2562 {
2563 stop_stepping (ecs);
2564 return;
2565 }
2566 /* If not going to stop, give terminal back
2567 if we took it away. */
2568 else if (printed)
2569 target_terminal_inferior ();
2570
2571 /* Clear the signal if it should not be passed. */
2572 if (signal_program[stop_signal] == 0)
2573 stop_signal = TARGET_SIGNAL_0;
2574
2575 if (prev_pc == read_pc ()
2576 && stepping_over_breakpoint
2577 && step_resume_breakpoint == NULL)
2578 {
2579 /* We were just starting a new sequence, attempting to
2580 single-step off of a breakpoint and expecting a SIGTRAP.
2581 Instead this signal arrives. This signal will take us out
2582 of the stepping range so GDB needs to remember to, when
2583 the signal handler returns, resume stepping off that
2584 breakpoint. */
2585 /* To simplify things, "continue" is forced to use the same
2586 code paths as single-step - set a breakpoint at the
2587 signal return address and then, once hit, step off that
2588 breakpoint. */
2589 if (debug_infrun)
2590 fprintf_unfiltered (gdb_stdlog,
2591 "infrun: signal arrived while stepping over "
2592 "breakpoint\n");
2593
2594 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2595 tss->step_after_step_resume_breakpoint = 1;
2596 keep_going (ecs);
2597 return;
2598 }
2599
2600 if (step_range_end != 0
2601 && stop_signal != TARGET_SIGNAL_0
2602 && stop_pc >= step_range_start && stop_pc < step_range_end
2603 && frame_id_eq (get_frame_id (get_current_frame ()),
2604 step_frame_id)
2605 && step_resume_breakpoint == NULL)
2606 {
2607 /* The inferior is about to take a signal that will take it
2608 out of the single step range. Set a breakpoint at the
2609 current PC (which is presumably where the signal handler
2610 will eventually return) and then allow the inferior to
2611 run free.
2612
2613 Note that this is only needed for a signal delivered
2614 while in the single-step range. Nested signals aren't a
2615 problem as they eventually all return. */
2616 if (debug_infrun)
2617 fprintf_unfiltered (gdb_stdlog,
2618 "infrun: signal may take us out of "
2619 "single-step range\n");
2620
2621 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2622 keep_going (ecs);
2623 return;
2624 }
2625
2626 /* Note: step_resume_breakpoint may be non-NULL. This occures
2627 when either there's a nested signal, or when there's a
2628 pending signal enabled just as the signal handler returns
2629 (leaving the inferior at the step-resume-breakpoint without
2630 actually executing it). Either way continue until the
2631 breakpoint is really hit. */
2632 keep_going (ecs);
2633 return;
2634 }
2635
2636 /* Handle cases caused by hitting a breakpoint. */
2637 {
2638 CORE_ADDR jmp_buf_pc;
2639 struct bpstat_what what;
2640
2641 what = bpstat_what (stop_bpstat);
2642
2643 if (what.call_dummy)
2644 {
2645 stop_stack_dummy = 1;
2646 }
2647
2648 switch (what.main_action)
2649 {
2650 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2651 /* If we hit the breakpoint at longjmp while stepping, we
2652 install a momentary breakpoint at the target of the
2653 jmp_buf. */
2654
2655 if (debug_infrun)
2656 fprintf_unfiltered (gdb_stdlog,
2657 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2658
2659 tss->stepping_over_breakpoint = 1;
2660
2661 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
2662 || !gdbarch_get_longjmp_target (current_gdbarch,
2663 get_current_frame (), &jmp_buf_pc))
2664 {
2665 if (debug_infrun)
2666 fprintf_unfiltered (gdb_stdlog, "\
2667 infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
2668 keep_going (ecs);
2669 return;
2670 }
2671
2672 /* We're going to replace the current step-resume breakpoint
2673 with a longjmp-resume breakpoint. */
2674 if (step_resume_breakpoint != NULL)
2675 delete_step_resume_breakpoint (&step_resume_breakpoint);
2676
2677 /* Insert a breakpoint at resume address. */
2678 insert_longjmp_resume_breakpoint (jmp_buf_pc);
2679
2680 keep_going (ecs);
2681 return;
2682
2683 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2684 if (debug_infrun)
2685 fprintf_unfiltered (gdb_stdlog,
2686 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2687
2688 gdb_assert (step_resume_breakpoint != NULL);
2689 delete_step_resume_breakpoint (&step_resume_breakpoint);
2690
2691 stop_step = 1;
2692 print_stop_reason (END_STEPPING_RANGE, 0);
2693 stop_stepping (ecs);
2694 return;
2695
2696 case BPSTAT_WHAT_SINGLE:
2697 if (debug_infrun)
2698 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2699 tss->stepping_over_breakpoint = 1;
2700 /* Still need to check other stuff, at least the case
2701 where we are stepping and step out of the right range. */
2702 break;
2703
2704 case BPSTAT_WHAT_STOP_NOISY:
2705 if (debug_infrun)
2706 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2707 stop_print_frame = 1;
2708
2709 /* We are about to nuke the step_resume_breakpointt via the
2710 cleanup chain, so no need to worry about it here. */
2711
2712 stop_stepping (ecs);
2713 return;
2714
2715 case BPSTAT_WHAT_STOP_SILENT:
2716 if (debug_infrun)
2717 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2718 stop_print_frame = 0;
2719
2720 /* We are about to nuke the step_resume_breakpoin via the
2721 cleanup chain, so no need to worry about it here. */
2722
2723 stop_stepping (ecs);
2724 return;
2725
2726 case BPSTAT_WHAT_STEP_RESUME:
2727 /* This proably demands a more elegant solution, but, yeah
2728 right...
2729
2730 This function's use of the simple variable
2731 step_resume_breakpoint doesn't seem to accomodate
2732 simultaneously active step-resume bp's, although the
2733 breakpoint list certainly can.
2734
2735 If we reach here and step_resume_breakpoint is already
2736 NULL, then apparently we have multiple active
2737 step-resume bp's. We'll just delete the breakpoint we
2738 stopped at, and carry on.
2739
2740 Correction: what the code currently does is delete a
2741 step-resume bp, but it makes no effort to ensure that
2742 the one deleted is the one currently stopped at. MVS */
2743
2744 if (debug_infrun)
2745 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2746
2747 if (step_resume_breakpoint == NULL)
2748 {
2749 step_resume_breakpoint =
2750 bpstat_find_step_resume_breakpoint (stop_bpstat);
2751 }
2752 delete_step_resume_breakpoint (&step_resume_breakpoint);
2753 if (tss->step_after_step_resume_breakpoint)
2754 {
2755 /* Back when the step-resume breakpoint was inserted, we
2756 were trying to single-step off a breakpoint. Go back
2757 to doing that. */
2758 tss->step_after_step_resume_breakpoint = 0;
2759 tss->stepping_over_breakpoint = 1;
2760 keep_going (ecs);
2761 return;
2762 }
2763 break;
2764
2765 case BPSTAT_WHAT_CHECK_SHLIBS:
2766 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2767 {
2768 if (debug_infrun)
2769 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2770
2771 /* Check for any newly added shared libraries if we're
2772 supposed to be adding them automatically. Switch
2773 terminal for any messages produced by
2774 breakpoint_re_set. */
2775 target_terminal_ours_for_output ();
2776 /* NOTE: cagney/2003-11-25: Make certain that the target
2777 stack's section table is kept up-to-date. Architectures,
2778 (e.g., PPC64), use the section table to perform
2779 operations such as address => section name and hence
2780 require the table to contain all sections (including
2781 those found in shared libraries). */
2782 /* NOTE: cagney/2003-11-25: Pass current_target and not
2783 exec_ops to SOLIB_ADD. This is because current GDB is
2784 only tooled to propagate section_table changes out from
2785 the "current_target" (see target_resize_to_sections), and
2786 not up from the exec stratum. This, of course, isn't
2787 right. "infrun.c" should only interact with the
2788 exec/process stratum, instead relying on the target stack
2789 to propagate relevant changes (stop, section table
2790 changed, ...) up to other layers. */
2791 #ifdef SOLIB_ADD
2792 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2793 #else
2794 solib_add (NULL, 0, &current_target, auto_solib_add);
2795 #endif
2796 target_terminal_inferior ();
2797
2798 /* If requested, stop when the dynamic linker notifies
2799 gdb of events. This allows the user to get control
2800 and place breakpoints in initializer routines for
2801 dynamically loaded objects (among other things). */
2802 if (stop_on_solib_events || stop_stack_dummy)
2803 {
2804 stop_stepping (ecs);
2805 return;
2806 }
2807
2808 /* If we stopped due to an explicit catchpoint, then the
2809 (see above) call to SOLIB_ADD pulled in any symbols
2810 from a newly-loaded library, if appropriate.
2811
2812 We do want the inferior to stop, but not where it is
2813 now, which is in the dynamic linker callback. Rather,
2814 we would like it stop in the user's program, just after
2815 the call that caused this catchpoint to trigger. That
2816 gives the user a more useful vantage from which to
2817 examine their program's state. */
2818 else if (what.main_action
2819 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2820 {
2821 /* ??rehrauer: If I could figure out how to get the
2822 right return PC from here, we could just set a temp
2823 breakpoint and resume. I'm not sure we can without
2824 cracking open the dld's shared libraries and sniffing
2825 their unwind tables and text/data ranges, and that's
2826 not a terribly portable notion.
2827
2828 Until that time, we must step the inferior out of the
2829 dld callback, and also out of the dld itself (and any
2830 code or stubs in libdld.sl, such as "shl_load" and
2831 friends) until we reach non-dld code. At that point,
2832 we can stop stepping. */
2833 bpstat_get_triggered_catchpoints (stop_bpstat,
2834 &tss->
2835 stepping_through_solib_catchpoints);
2836 tss->stepping_through_solib_after_catch = 1;
2837
2838 /* Be sure to lift all breakpoints, so the inferior does
2839 actually step past this point... */
2840 tss->stepping_over_breakpoint = 1;
2841 break;
2842 }
2843 else
2844 {
2845 /* We want to step over this breakpoint, then keep going. */
2846 tss->stepping_over_breakpoint = 1;
2847 break;
2848 }
2849 }
2850 break;
2851
2852 case BPSTAT_WHAT_LAST:
2853 /* Not a real code, but listed here to shut up gcc -Wall. */
2854
2855 case BPSTAT_WHAT_KEEP_CHECKING:
2856 break;
2857 }
2858 }
2859
2860 /* We come here if we hit a breakpoint but should not
2861 stop for it. Possibly we also were stepping
2862 and should stop for that. So fall through and
2863 test for stepping. But, if not stepping,
2864 do not stop. */
2865
2866 /* Are we stepping to get the inferior out of the dynamic linker's
2867 hook (and possibly the dld itself) after catching a shlib
2868 event? */
2869 if (tss->stepping_through_solib_after_catch)
2870 {
2871 #if defined(SOLIB_ADD)
2872 /* Have we reached our destination? If not, keep going. */
2873 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2874 {
2875 if (debug_infrun)
2876 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2877 tss->stepping_over_breakpoint = 1;
2878 keep_going (ecs);
2879 return;
2880 }
2881 #endif
2882 if (debug_infrun)
2883 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2884 /* Else, stop and report the catchpoint(s) whose triggering
2885 caused us to begin stepping. */
2886 tss->stepping_through_solib_after_catch = 0;
2887 bpstat_clear (&stop_bpstat);
2888 stop_bpstat = bpstat_copy (tss->stepping_through_solib_catchpoints);
2889 bpstat_clear (&tss->stepping_through_solib_catchpoints);
2890 stop_print_frame = 1;
2891 stop_stepping (ecs);
2892 return;
2893 }
2894
2895 if (step_resume_breakpoint)
2896 {
2897 if (debug_infrun)
2898 fprintf_unfiltered (gdb_stdlog,
2899 "infrun: step-resume breakpoint is inserted\n");
2900
2901 /* Having a step-resume breakpoint overrides anything
2902 else having to do with stepping commands until
2903 that breakpoint is reached. */
2904 keep_going (ecs);
2905 return;
2906 }
2907
2908 if (step_range_end == 0)
2909 {
2910 if (debug_infrun)
2911 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2912 /* Likewise if we aren't even stepping. */
2913 keep_going (ecs);
2914 return;
2915 }
2916
2917 /* If stepping through a line, keep going if still within it.
2918
2919 Note that step_range_end is the address of the first instruction
2920 beyond the step range, and NOT the address of the last instruction
2921 within it! */
2922 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2923 {
2924 if (debug_infrun)
2925 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2926 paddr_nz (step_range_start),
2927 paddr_nz (step_range_end));
2928 keep_going (ecs);
2929 return;
2930 }
2931
2932 /* We stepped out of the stepping range. */
2933
2934 /* If we are stepping at the source level and entered the runtime
2935 loader dynamic symbol resolution code, we keep on single stepping
2936 until we exit the run time loader code and reach the callee's
2937 address. */
2938 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2939 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2940 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2941 #else
2942 && in_solib_dynsym_resolve_code (stop_pc)
2943 #endif
2944 )
2945 {
2946 CORE_ADDR pc_after_resolver =
2947 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2948
2949 if (debug_infrun)
2950 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2951
2952 if (pc_after_resolver)
2953 {
2954 /* Set up a step-resume breakpoint at the address
2955 indicated by SKIP_SOLIB_RESOLVER. */
2956 struct symtab_and_line sr_sal;
2957 init_sal (&sr_sal);
2958 sr_sal.pc = pc_after_resolver;
2959
2960 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2961 }
2962
2963 keep_going (ecs);
2964 return;
2965 }
2966
2967 if (step_range_end != 1
2968 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2969 || step_over_calls == STEP_OVER_ALL)
2970 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2971 {
2972 if (debug_infrun)
2973 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2974 /* The inferior, while doing a "step" or "next", has ended up in
2975 a signal trampoline (either by a signal being delivered or by
2976 the signal handler returning). Just single-step until the
2977 inferior leaves the trampoline (either by calling the handler
2978 or returning). */
2979 keep_going (ecs);
2980 return;
2981 }
2982
2983 /* Check for subroutine calls. The check for the current frame
2984 equalling the step ID is not necessary - the check of the
2985 previous frame's ID is sufficient - but it is a common case and
2986 cheaper than checking the previous frame's ID.
2987
2988 NOTE: frame_id_eq will never report two invalid frame IDs as
2989 being equal, so to get into this block, both the current and
2990 previous frame must have valid frame IDs. */
2991 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2992 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2993 {
2994 CORE_ADDR real_stop_pc;
2995
2996 if (debug_infrun)
2997 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2998
2999 if ((step_over_calls == STEP_OVER_NONE)
3000 || ((step_range_end == 1)
3001 && in_prologue (prev_pc, ecs->stop_func_start)))
3002 {
3003 /* I presume that step_over_calls is only 0 when we're
3004 supposed to be stepping at the assembly language level
3005 ("stepi"). Just stop. */
3006 /* Also, maybe we just did a "nexti" inside a prolog, so we
3007 thought it was a subroutine call but it was not. Stop as
3008 well. FENN */
3009 stop_step = 1;
3010 print_stop_reason (END_STEPPING_RANGE, 0);
3011 stop_stepping (ecs);
3012 return;
3013 }
3014
3015 if (step_over_calls == STEP_OVER_ALL)
3016 {
3017 /* We're doing a "next", set a breakpoint at callee's return
3018 address (the address at which the caller will
3019 resume). */
3020 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3021 keep_going (ecs);
3022 return;
3023 }
3024
3025 /* If we are in a function call trampoline (a stub between the
3026 calling routine and the real function), locate the real
3027 function. That's what tells us (a) whether we want to step
3028 into it at all, and (b) what prologue we want to run to the
3029 end of, if we do step into it. */
3030 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
3031 if (real_stop_pc == 0)
3032 real_stop_pc = gdbarch_skip_trampoline_code
3033 (current_gdbarch, get_current_frame (), stop_pc);
3034 if (real_stop_pc != 0)
3035 ecs->stop_func_start = real_stop_pc;
3036
3037 if (
3038 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
3039 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
3040 #else
3041 in_solib_dynsym_resolve_code (ecs->stop_func_start)
3042 #endif
3043 )
3044 {
3045 struct symtab_and_line sr_sal;
3046 init_sal (&sr_sal);
3047 sr_sal.pc = ecs->stop_func_start;
3048
3049 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3050 keep_going (ecs);
3051 return;
3052 }
3053
3054 /* If we have line number information for the function we are
3055 thinking of stepping into, step into it.
3056
3057 If there are several symtabs at that PC (e.g. with include
3058 files), just want to know whether *any* of them have line
3059 numbers. find_pc_line handles this. */
3060 {
3061 struct symtab_and_line tmp_sal;
3062
3063 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
3064 if (tmp_sal.line != 0)
3065 {
3066 step_into_function (ecs);
3067 return;
3068 }
3069 }
3070
3071 /* If we have no line number and the step-stop-if-no-debug is
3072 set, we stop the step so that the user has a chance to switch
3073 in assembly mode. */
3074 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
3075 {
3076 stop_step = 1;
3077 print_stop_reason (END_STEPPING_RANGE, 0);
3078 stop_stepping (ecs);
3079 return;
3080 }
3081
3082 /* Set a breakpoint at callee's return address (the address at
3083 which the caller will resume). */
3084 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3085 keep_going (ecs);
3086 return;
3087 }
3088
3089 /* If we're in the return path from a shared library trampoline,
3090 we want to proceed through the trampoline when stepping. */
3091 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
3092 stop_pc, ecs->stop_func_name))
3093 {
3094 /* Determine where this trampoline returns. */
3095 CORE_ADDR real_stop_pc;
3096 real_stop_pc = gdbarch_skip_trampoline_code
3097 (current_gdbarch, get_current_frame (), stop_pc);
3098
3099 if (debug_infrun)
3100 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
3101
3102 /* Only proceed through if we know where it's going. */
3103 if (real_stop_pc)
3104 {
3105 /* And put the step-breakpoint there and go until there. */
3106 struct symtab_and_line sr_sal;
3107
3108 init_sal (&sr_sal); /* initialize to zeroes */
3109 sr_sal.pc = real_stop_pc;
3110 sr_sal.section = find_pc_overlay (sr_sal.pc);
3111
3112 /* Do not specify what the fp should be when we stop since
3113 on some machines the prologue is where the new fp value
3114 is established. */
3115 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3116
3117 /* Restart without fiddling with the step ranges or
3118 other state. */
3119 keep_going (ecs);
3120 return;
3121 }
3122 }
3123
3124 tss->sal = find_pc_line (stop_pc, 0);
3125
3126 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3127 the trampoline processing logic, however, there are some trampolines
3128 that have no names, so we should do trampoline handling first. */
3129 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
3130 && ecs->stop_func_name == NULL
3131 && tss->sal.line == 0)
3132 {
3133 if (debug_infrun)
3134 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
3135
3136 /* The inferior just stepped into, or returned to, an
3137 undebuggable function (where there is no debugging information
3138 and no line number corresponding to the address where the
3139 inferior stopped). Since we want to skip this kind of code,
3140 we keep going until the inferior returns from this
3141 function - unless the user has asked us not to (via
3142 set step-mode) or we no longer know how to get back
3143 to the call site. */
3144 if (step_stop_if_no_debug
3145 || !frame_id_p (frame_unwind_id (get_current_frame ())))
3146 {
3147 /* If we have no line number and the step-stop-if-no-debug
3148 is set, we stop the step so that the user has a chance to
3149 switch in assembly mode. */
3150 stop_step = 1;
3151 print_stop_reason (END_STEPPING_RANGE, 0);
3152 stop_stepping (ecs);
3153 return;
3154 }
3155 else
3156 {
3157 /* Set a breakpoint at callee's return address (the address
3158 at which the caller will resume). */
3159 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3160 keep_going (ecs);
3161 return;
3162 }
3163 }
3164
3165 if (step_range_end == 1)
3166 {
3167 /* It is stepi or nexti. We always want to stop stepping after
3168 one instruction. */
3169 if (debug_infrun)
3170 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
3171 stop_step = 1;
3172 print_stop_reason (END_STEPPING_RANGE, 0);
3173 stop_stepping (ecs);
3174 return;
3175 }
3176
3177 if (tss->sal.line == 0)
3178 {
3179 /* We have no line number information. That means to stop
3180 stepping (does this always happen right after one instruction,
3181 when we do "s" in a function with no line numbers,
3182 or can this happen as a result of a return or longjmp?). */
3183 if (debug_infrun)
3184 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
3185 stop_step = 1;
3186 print_stop_reason (END_STEPPING_RANGE, 0);
3187 stop_stepping (ecs);
3188 return;
3189 }
3190
3191 if ((stop_pc == tss->sal.pc)
3192 && (tss->current_line != tss->sal.line
3193 || tss->current_symtab != tss->sal.symtab))
3194 {
3195 /* We are at the start of a different line. So stop. Note that
3196 we don't stop if we step into the middle of a different line.
3197 That is said to make things like for (;;) statements work
3198 better. */
3199 if (debug_infrun)
3200 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
3201 stop_step = 1;
3202 print_stop_reason (END_STEPPING_RANGE, 0);
3203 stop_stepping (ecs);
3204 return;
3205 }
3206
3207 /* We aren't done stepping.
3208
3209 Optimize by setting the stepping range to the line.
3210 (We might not be in the original line, but if we entered a
3211 new line in mid-statement, we continue stepping. This makes
3212 things like for(;;) statements work better.) */
3213
3214 step_range_start = tss->sal.pc;
3215 step_range_end = tss->sal.end;
3216 step_frame_id = get_frame_id (get_current_frame ());
3217 tss->current_line = tss->sal.line;
3218 tss->current_symtab = tss->sal.symtab;
3219
3220 /* In the case where we just stepped out of a function into the
3221 middle of a line of the caller, continue stepping, but
3222 step_frame_id must be modified to current frame */
3223 #if 0
3224 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
3225 generous. It will trigger on things like a step into a frameless
3226 stackless leaf function. I think the logic should instead look
3227 at the unwound frame ID has that should give a more robust
3228 indication of what happened. */
3229 if (step - ID == current - ID)
3230 still stepping in same function;
3231 else if (step - ID == unwind (current - ID))
3232 stepped into a function;
3233 else
3234 stepped out of a function;
3235 /* Of course this assumes that the frame ID unwind code is robust
3236 and we're willing to introduce frame unwind logic into this
3237 function. Fortunately, those days are nearly upon us. */
3238 #endif
3239 {
3240 struct frame_info *frame = get_current_frame ();
3241 struct frame_id current_frame = get_frame_id (frame);
3242 if (!(frame_id_inner (get_frame_arch (frame), current_frame,
3243 step_frame_id)))
3244 step_frame_id = current_frame;
3245 }
3246
3247 if (debug_infrun)
3248 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
3249 keep_going (ecs);
3250 }
3251
3252 /* Are we in the middle of stepping? */
3253
3254 static int
3255 currently_stepping (struct thread_stepping_state *tss)
3256 {
3257 return (((step_range_end && step_resume_breakpoint == NULL)
3258 || stepping_over_breakpoint)
3259 || tss->stepping_through_solib_after_catch
3260 || bpstat_should_step ());
3261 }
3262
3263 /* Subroutine call with source code we should not step over. Do step
3264 to the first line of code in it. */
3265
3266 static void
3267 step_into_function (struct execution_control_state *ecs)
3268 {
3269 struct symtab *s;
3270 struct symtab_and_line sr_sal;
3271
3272 s = find_pc_symtab (stop_pc);
3273 if (s && s->language != language_asm)
3274 ecs->stop_func_start = gdbarch_skip_prologue
3275 (current_gdbarch, ecs->stop_func_start);
3276
3277 tss->sal = find_pc_line (ecs->stop_func_start, 0);
3278 /* Use the step_resume_break to step until the end of the prologue,
3279 even if that involves jumps (as it seems to on the vax under
3280 4.2). */
3281 /* If the prologue ends in the middle of a source line, continue to
3282 the end of that source line (if it is still within the function).
3283 Otherwise, just go to end of prologue. */
3284 if (tss->sal.end
3285 && tss->sal.pc != ecs->stop_func_start
3286 && tss->sal.end < ecs->stop_func_end)
3287 ecs->stop_func_start = tss->sal.end;
3288
3289 /* Architectures which require breakpoint adjustment might not be able
3290 to place a breakpoint at the computed address. If so, the test
3291 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
3292 ecs->stop_func_start to an address at which a breakpoint may be
3293 legitimately placed.
3294
3295 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
3296 made, GDB will enter an infinite loop when stepping through
3297 optimized code consisting of VLIW instructions which contain
3298 subinstructions corresponding to different source lines. On
3299 FR-V, it's not permitted to place a breakpoint on any but the
3300 first subinstruction of a VLIW instruction. When a breakpoint is
3301 set, GDB will adjust the breakpoint address to the beginning of
3302 the VLIW instruction. Thus, we need to make the corresponding
3303 adjustment here when computing the stop address. */
3304
3305 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
3306 {
3307 ecs->stop_func_start
3308 = gdbarch_adjust_breakpoint_address (current_gdbarch,
3309 ecs->stop_func_start);
3310 }
3311
3312 if (ecs->stop_func_start == stop_pc)
3313 {
3314 /* We are already there: stop now. */
3315 stop_step = 1;
3316 print_stop_reason (END_STEPPING_RANGE, 0);
3317 stop_stepping (ecs);
3318 return;
3319 }
3320 else
3321 {
3322 /* Put the step-breakpoint there and go until there. */
3323 init_sal (&sr_sal); /* initialize to zeroes */
3324 sr_sal.pc = ecs->stop_func_start;
3325 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
3326
3327 /* Do not specify what the fp should be when we stop since on
3328 some machines the prologue is where the new fp value is
3329 established. */
3330 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3331
3332 /* And make sure stepping stops right away then. */
3333 step_range_end = step_range_start;
3334 }
3335 keep_going (ecs);
3336 }
3337
3338 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
3339 This is used to both functions and to skip over code. */
3340
3341 static void
3342 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
3343 struct frame_id sr_id)
3344 {
3345 /* There should never be more than one step-resume or longjmp-resume
3346 breakpoint per thread, so we should never be setting a new
3347 step_resume_breakpoint when one is already active. */
3348 gdb_assert (step_resume_breakpoint == NULL);
3349
3350 if (debug_infrun)
3351 fprintf_unfiltered (gdb_stdlog,
3352 "infrun: inserting step-resume breakpoint at 0x%s\n",
3353 paddr_nz (sr_sal.pc));
3354
3355 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
3356 bp_step_resume);
3357 }
3358
3359 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
3360 to skip a potential signal handler.
3361
3362 This is called with the interrupted function's frame. The signal
3363 handler, when it returns, will resume the interrupted function at
3364 RETURN_FRAME.pc. */
3365
3366 static void
3367 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
3368 {
3369 struct symtab_and_line sr_sal;
3370
3371 gdb_assert (return_frame != NULL);
3372 init_sal (&sr_sal); /* initialize to zeros */
3373
3374 sr_sal.pc = gdbarch_addr_bits_remove
3375 (current_gdbarch, get_frame_pc (return_frame));
3376 sr_sal.section = find_pc_overlay (sr_sal.pc);
3377
3378 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
3379 }
3380
3381 /* Similar to insert_step_resume_breakpoint_at_frame, except
3382 but a breakpoint at the previous frame's PC. This is used to
3383 skip a function after stepping into it (for "next" or if the called
3384 function has no debugging information).
3385
3386 The current function has almost always been reached by single
3387 stepping a call or return instruction. NEXT_FRAME belongs to the
3388 current function, and the breakpoint will be set at the caller's
3389 resume address.
3390
3391 This is a separate function rather than reusing
3392 insert_step_resume_breakpoint_at_frame in order to avoid
3393 get_prev_frame, which may stop prematurely (see the implementation
3394 of frame_unwind_id for an example). */
3395
3396 static void
3397 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
3398 {
3399 struct symtab_and_line sr_sal;
3400
3401 /* We shouldn't have gotten here if we don't know where the call site
3402 is. */
3403 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
3404
3405 init_sal (&sr_sal); /* initialize to zeros */
3406
3407 sr_sal.pc = gdbarch_addr_bits_remove
3408 (current_gdbarch, frame_pc_unwind (next_frame));
3409 sr_sal.section = find_pc_overlay (sr_sal.pc);
3410
3411 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
3412 }
3413
3414 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
3415 new breakpoint at the target of a jmp_buf. The handling of
3416 longjmp-resume uses the same mechanisms used for handling
3417 "step-resume" breakpoints. */
3418
3419 static void
3420 insert_longjmp_resume_breakpoint (CORE_ADDR pc)
3421 {
3422 /* There should never be more than one step-resume or longjmp-resume
3423 breakpoint per thread, so we should never be setting a new
3424 longjmp_resume_breakpoint when one is already active. */
3425 gdb_assert (step_resume_breakpoint == NULL);
3426
3427 if (debug_infrun)
3428 fprintf_unfiltered (gdb_stdlog,
3429 "infrun: inserting longjmp-resume breakpoint at 0x%s\n",
3430 paddr_nz (pc));
3431
3432 step_resume_breakpoint =
3433 set_momentary_breakpoint_at_pc (pc, bp_longjmp_resume);
3434 }
3435
3436 static void
3437 stop_stepping (struct execution_control_state *ecs)
3438 {
3439 if (debug_infrun)
3440 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
3441
3442 /* Let callers know we don't want to wait for the inferior anymore. */
3443 ecs->wait_some_more = 0;
3444 }
3445
3446 /* This function handles various cases where we need to continue
3447 waiting for the inferior. */
3448 /* (Used to be the keep_going: label in the old wait_for_inferior) */
3449
3450 static void
3451 keep_going (struct execution_control_state *ecs)
3452 {
3453 /* Save the pc before execution, to compare with pc after stop. */
3454 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
3455
3456 /* If we did not do break;, it means we should keep running the
3457 inferior and not return to debugger. */
3458
3459 if (stepping_over_breakpoint && stop_signal != TARGET_SIGNAL_TRAP)
3460 {
3461 /* We took a signal (which we are supposed to pass through to
3462 the inferior, else we'd have done a break above) and we
3463 haven't yet gotten our trap. Simply continue. */
3464 resume (currently_stepping (tss), stop_signal);
3465 }
3466 else
3467 {
3468 /* Either the trap was not expected, but we are continuing
3469 anyway (the user asked that this signal be passed to the
3470 child)
3471 -- or --
3472 The signal was SIGTRAP, e.g. it was our signal, but we
3473 decided we should resume from it.
3474
3475 We're going to run this baby now!
3476
3477 Note that insert_breakpoints won't try to re-insert
3478 already inserted breakpoints. Therefore, we don't
3479 care if breakpoints were already inserted, or not. */
3480
3481 if (tss->stepping_over_breakpoint)
3482 {
3483 if (! use_displaced_stepping (current_gdbarch))
3484 /* Since we can't do a displaced step, we have to remove
3485 the breakpoint while we step it. To keep things
3486 simple, we remove them all. */
3487 remove_breakpoints ();
3488 }
3489 else
3490 {
3491 struct gdb_exception e;
3492 /* Stop stepping when inserting breakpoints
3493 has failed. */
3494 TRY_CATCH (e, RETURN_MASK_ERROR)
3495 {
3496 insert_breakpoints ();
3497 }
3498 if (e.reason < 0)
3499 {
3500 stop_stepping (ecs);
3501 return;
3502 }
3503 }
3504
3505 stepping_over_breakpoint = tss->stepping_over_breakpoint;
3506
3507 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
3508 specifies that such a signal should be delivered to the
3509 target program).
3510
3511 Typically, this would occure when a user is debugging a
3512 target monitor on a simulator: the target monitor sets a
3513 breakpoint; the simulator encounters this break-point and
3514 halts the simulation handing control to GDB; GDB, noteing
3515 that the break-point isn't valid, returns control back to the
3516 simulator; the simulator then delivers the hardware
3517 equivalent of a SIGNAL_TRAP to the program being debugged. */
3518
3519 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
3520 stop_signal = TARGET_SIGNAL_0;
3521
3522
3523 resume (currently_stepping (tss), stop_signal);
3524 }
3525
3526 prepare_to_wait (ecs);
3527 }
3528
3529 /* This function normally comes after a resume, before
3530 handle_inferior_event exits. It takes care of any last bits of
3531 housekeeping, and sets the all-important wait_some_more flag. */
3532
3533 static void
3534 prepare_to_wait (struct execution_control_state *ecs)
3535 {
3536 if (debug_infrun)
3537 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
3538 if (infwait_state == infwait_normal_state)
3539 {
3540 overlay_cache_invalid = 1;
3541
3542 /* We have to invalidate the registers BEFORE calling
3543 target_wait because they can be loaded from the target while
3544 in target_wait. This makes remote debugging a bit more
3545 efficient for those targets that provide critical registers
3546 as part of their normal status mechanism. */
3547
3548 registers_changed ();
3549 waiton_ptid = pid_to_ptid (-1);
3550 }
3551 /* This is the old end of the while loop. Let everybody know we
3552 want to wait for the inferior some more and get called again
3553 soon. */
3554 ecs->wait_some_more = 1;
3555 }
3556
3557 /* Print why the inferior has stopped. We always print something when
3558 the inferior exits, or receives a signal. The rest of the cases are
3559 dealt with later on in normal_stop() and print_it_typical(). Ideally
3560 there should be a call to this function from handle_inferior_event()
3561 each time stop_stepping() is called.*/
3562 static void
3563 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
3564 {
3565 switch (stop_reason)
3566 {
3567 case END_STEPPING_RANGE:
3568 /* We are done with a step/next/si/ni command. */
3569 /* For now print nothing. */
3570 /* Print a message only if not in the middle of doing a "step n"
3571 operation for n > 1 */
3572 if (!step_multi || !stop_step)
3573 if (ui_out_is_mi_like_p (uiout))
3574 ui_out_field_string
3575 (uiout, "reason",
3576 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
3577 break;
3578 case SIGNAL_EXITED:
3579 /* The inferior was terminated by a signal. */
3580 annotate_signalled ();
3581 if (ui_out_is_mi_like_p (uiout))
3582 ui_out_field_string
3583 (uiout, "reason",
3584 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
3585 ui_out_text (uiout, "\nProgram terminated with signal ");
3586 annotate_signal_name ();
3587 ui_out_field_string (uiout, "signal-name",
3588 target_signal_to_name (stop_info));
3589 annotate_signal_name_end ();
3590 ui_out_text (uiout, ", ");
3591 annotate_signal_string ();
3592 ui_out_field_string (uiout, "signal-meaning",
3593 target_signal_to_string (stop_info));
3594 annotate_signal_string_end ();
3595 ui_out_text (uiout, ".\n");
3596 ui_out_text (uiout, "The program no longer exists.\n");
3597 break;
3598 case EXITED:
3599 /* The inferior program is finished. */
3600 annotate_exited (stop_info);
3601 if (stop_info)
3602 {
3603 if (ui_out_is_mi_like_p (uiout))
3604 ui_out_field_string (uiout, "reason",
3605 async_reason_lookup (EXEC_ASYNC_EXITED));
3606 ui_out_text (uiout, "\nProgram exited with code ");
3607 ui_out_field_fmt (uiout, "exit-code", "0%o",
3608 (unsigned int) stop_info);
3609 ui_out_text (uiout, ".\n");
3610 }
3611 else
3612 {
3613 if (ui_out_is_mi_like_p (uiout))
3614 ui_out_field_string
3615 (uiout, "reason",
3616 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3617 ui_out_text (uiout, "\nProgram exited normally.\n");
3618 }
3619 /* Support the --return-child-result option. */
3620 return_child_result_value = stop_info;
3621 break;
3622 case SIGNAL_RECEIVED:
3623 /* Signal received. The signal table tells us to print about
3624 it. */
3625 annotate_signal ();
3626 ui_out_text (uiout, "\nProgram received signal ");
3627 annotate_signal_name ();
3628 if (ui_out_is_mi_like_p (uiout))
3629 ui_out_field_string
3630 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3631 ui_out_field_string (uiout, "signal-name",
3632 target_signal_to_name (stop_info));
3633 annotate_signal_name_end ();
3634 ui_out_text (uiout, ", ");
3635 annotate_signal_string ();
3636 ui_out_field_string (uiout, "signal-meaning",
3637 target_signal_to_string (stop_info));
3638 annotate_signal_string_end ();
3639 ui_out_text (uiout, ".\n");
3640 break;
3641 default:
3642 internal_error (__FILE__, __LINE__,
3643 _("print_stop_reason: unrecognized enum value"));
3644 break;
3645 }
3646 }
3647 \f
3648
3649 /* Here to return control to GDB when the inferior stops for real.
3650 Print appropriate messages, remove breakpoints, give terminal our modes.
3651
3652 STOP_PRINT_FRAME nonzero means print the executing frame
3653 (pc, function, args, file, line number and line text).
3654 BREAKPOINTS_FAILED nonzero means stop was due to error
3655 attempting to insert breakpoints. */
3656
3657 void
3658 normal_stop (void)
3659 {
3660 struct target_waitstatus last;
3661 ptid_t last_ptid;
3662
3663 get_last_target_status (&last_ptid, &last);
3664
3665 /* As with the notification of thread events, we want to delay
3666 notifying the user that we've switched thread context until
3667 the inferior actually stops.
3668
3669 There's no point in saying anything if the inferior has exited.
3670 Note that SIGNALLED here means "exited with a signal", not
3671 "received a signal". */
3672 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
3673 && target_has_execution
3674 && last.kind != TARGET_WAITKIND_SIGNALLED
3675 && last.kind != TARGET_WAITKIND_EXITED)
3676 {
3677 target_terminal_ours_for_output ();
3678 printf_filtered (_("[Switching to %s]\n"),
3679 target_pid_to_str (inferior_ptid));
3680 annotate_thread_changed ();
3681 previous_inferior_ptid = inferior_ptid;
3682 }
3683
3684 /* NOTE drow/2004-01-17: Is this still necessary? */
3685 /* Make sure that the current_frame's pc is correct. This
3686 is a correction for setting up the frame info before doing
3687 gdbarch_decr_pc_after_break */
3688 if (target_has_execution)
3689 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3690 gdbarch_decr_pc_after_break, the program counter can change. Ask the
3691 frame code to check for this and sort out any resultant mess.
3692 gdbarch_decr_pc_after_break needs to just go away. */
3693 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3694
3695 if (!breakpoints_always_inserted_mode () && target_has_execution)
3696 {
3697 if (remove_breakpoints ())
3698 {
3699 target_terminal_ours_for_output ();
3700 printf_filtered (_("\
3701 Cannot remove breakpoints because program is no longer writable.\n\
3702 It might be running in another process.\n\
3703 Further execution is probably impossible.\n"));
3704 }
3705 }
3706
3707 /* If an auto-display called a function and that got a signal,
3708 delete that auto-display to avoid an infinite recursion. */
3709
3710 if (stopped_by_random_signal)
3711 disable_current_display ();
3712
3713 /* Don't print a message if in the middle of doing a "step n"
3714 operation for n > 1 */
3715 if (step_multi && stop_step)
3716 goto done;
3717
3718 target_terminal_ours ();
3719
3720 /* Set the current source location. This will also happen if we
3721 display the frame below, but the current SAL will be incorrect
3722 during a user hook-stop function. */
3723 if (target_has_stack && !stop_stack_dummy)
3724 set_current_sal_from_frame (get_current_frame (), 1);
3725
3726 /* Look up the hook_stop and run it (CLI internally handles problem
3727 of stop_command's pre-hook not existing). */
3728 if (stop_command)
3729 catch_errors (hook_stop_stub, stop_command,
3730 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3731
3732 if (!target_has_stack)
3733 {
3734
3735 goto done;
3736 }
3737
3738 /* Select innermost stack frame - i.e., current frame is frame 0,
3739 and current location is based on that.
3740 Don't do this on return from a stack dummy routine,
3741 or if the program has exited. */
3742
3743 if (!stop_stack_dummy)
3744 {
3745 select_frame (get_current_frame ());
3746
3747 /* Print current location without a level number, if
3748 we have changed functions or hit a breakpoint.
3749 Print source line if we have one.
3750 bpstat_print() contains the logic deciding in detail
3751 what to print, based on the event(s) that just occurred. */
3752
3753 /* If --batch-silent is enabled then there's no need to print the current
3754 source location, and to try risks causing an error message about
3755 missing source files. */
3756 if (stop_print_frame && !batch_silent)
3757 {
3758 int bpstat_ret;
3759 int source_flag;
3760 int do_frame_printing = 1;
3761
3762 bpstat_ret = bpstat_print (stop_bpstat);
3763 switch (bpstat_ret)
3764 {
3765 case PRINT_UNKNOWN:
3766 /* If we had hit a shared library event breakpoint,
3767 bpstat_print would print out this message. If we hit
3768 an OS-level shared library event, do the same
3769 thing. */
3770 if (last.kind == TARGET_WAITKIND_LOADED)
3771 {
3772 printf_filtered (_("Stopped due to shared library event\n"));
3773 source_flag = SRC_LINE; /* something bogus */
3774 do_frame_printing = 0;
3775 break;
3776 }
3777
3778 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3779 (or should) carry around the function and does (or
3780 should) use that when doing a frame comparison. */
3781 if (stop_step
3782 && frame_id_eq (step_frame_id,
3783 get_frame_id (get_current_frame ()))
3784 && step_start_function == find_pc_function (stop_pc))
3785 source_flag = SRC_LINE; /* finished step, just print source line */
3786 else
3787 source_flag = SRC_AND_LOC; /* print location and source line */
3788 break;
3789 case PRINT_SRC_AND_LOC:
3790 source_flag = SRC_AND_LOC; /* print location and source line */
3791 break;
3792 case PRINT_SRC_ONLY:
3793 source_flag = SRC_LINE;
3794 break;
3795 case PRINT_NOTHING:
3796 source_flag = SRC_LINE; /* something bogus */
3797 do_frame_printing = 0;
3798 break;
3799 default:
3800 internal_error (__FILE__, __LINE__, _("Unknown value."));
3801 }
3802
3803 if (ui_out_is_mi_like_p (uiout))
3804 ui_out_field_int (uiout, "thread-id",
3805 pid_to_thread_id (inferior_ptid));
3806 /* The behavior of this routine with respect to the source
3807 flag is:
3808 SRC_LINE: Print only source line
3809 LOCATION: Print only location
3810 SRC_AND_LOC: Print location and source line */
3811 if (do_frame_printing)
3812 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3813
3814 /* Display the auto-display expressions. */
3815 do_displays ();
3816 }
3817 }
3818
3819 /* Save the function value return registers, if we care.
3820 We might be about to restore their previous contents. */
3821 if (proceed_to_finish)
3822 {
3823 /* This should not be necessary. */
3824 if (stop_registers)
3825 regcache_xfree (stop_registers);
3826
3827 /* NB: The copy goes through to the target picking up the value of
3828 all the registers. */
3829 stop_registers = regcache_dup (get_current_regcache ());
3830 }
3831
3832 if (stop_stack_dummy)
3833 {
3834 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3835 ends with a setting of the current frame, so we can use that
3836 next. */
3837 frame_pop (get_current_frame ());
3838 /* Set stop_pc to what it was before we called the function.
3839 Can't rely on restore_inferior_status because that only gets
3840 called if we don't stop in the called function. */
3841 stop_pc = read_pc ();
3842 select_frame (get_current_frame ());
3843 }
3844
3845 done:
3846 annotate_stopped ();
3847 if (!suppress_stop_observer && !step_multi)
3848 observer_notify_normal_stop (stop_bpstat);
3849 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3850 Delete any breakpoint that is to be deleted at the next stop. */
3851 breakpoint_auto_delete (stop_bpstat);
3852 set_running (pid_to_ptid (-1), 0);
3853 }
3854
3855 static int
3856 hook_stop_stub (void *cmd)
3857 {
3858 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3859 return (0);
3860 }
3861 \f
3862 int
3863 signal_stop_state (int signo)
3864 {
3865 /* Always stop on signals if we're just gaining control of the
3866 program. */
3867 return signal_stop[signo] || stop_soon != NO_STOP_QUIETLY;
3868 }
3869
3870 int
3871 signal_print_state (int signo)
3872 {
3873 return signal_print[signo];
3874 }
3875
3876 int
3877 signal_pass_state (int signo)
3878 {
3879 return signal_program[signo];
3880 }
3881
3882 int
3883 signal_stop_update (int signo, int state)
3884 {
3885 int ret = signal_stop[signo];
3886 signal_stop[signo] = state;
3887 return ret;
3888 }
3889
3890 int
3891 signal_print_update (int signo, int state)
3892 {
3893 int ret = signal_print[signo];
3894 signal_print[signo] = state;
3895 return ret;
3896 }
3897
3898 int
3899 signal_pass_update (int signo, int state)
3900 {
3901 int ret = signal_program[signo];
3902 signal_program[signo] = state;
3903 return ret;
3904 }
3905
3906 static void
3907 sig_print_header (void)
3908 {
3909 printf_filtered (_("\
3910 Signal Stop\tPrint\tPass to program\tDescription\n"));
3911 }
3912
3913 static void
3914 sig_print_info (enum target_signal oursig)
3915 {
3916 char *name = target_signal_to_name (oursig);
3917 int name_padding = 13 - strlen (name);
3918
3919 if (name_padding <= 0)
3920 name_padding = 0;
3921
3922 printf_filtered ("%s", name);
3923 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3924 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3925 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3926 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3927 printf_filtered ("%s\n", target_signal_to_string (oursig));
3928 }
3929
3930 /* Specify how various signals in the inferior should be handled. */
3931
3932 static void
3933 handle_command (char *args, int from_tty)
3934 {
3935 char **argv;
3936 int digits, wordlen;
3937 int sigfirst, signum, siglast;
3938 enum target_signal oursig;
3939 int allsigs;
3940 int nsigs;
3941 unsigned char *sigs;
3942 struct cleanup *old_chain;
3943
3944 if (args == NULL)
3945 {
3946 error_no_arg (_("signal to handle"));
3947 }
3948
3949 /* Allocate and zero an array of flags for which signals to handle. */
3950
3951 nsigs = (int) TARGET_SIGNAL_LAST;
3952 sigs = (unsigned char *) alloca (nsigs);
3953 memset (sigs, 0, nsigs);
3954
3955 /* Break the command line up into args. */
3956
3957 argv = buildargv (args);
3958 if (argv == NULL)
3959 {
3960 nomem (0);
3961 }
3962 old_chain = make_cleanup_freeargv (argv);
3963
3964 /* Walk through the args, looking for signal oursigs, signal names, and
3965 actions. Signal numbers and signal names may be interspersed with
3966 actions, with the actions being performed for all signals cumulatively
3967 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3968
3969 while (*argv != NULL)
3970 {
3971 wordlen = strlen (*argv);
3972 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3973 {;
3974 }
3975 allsigs = 0;
3976 sigfirst = siglast = -1;
3977
3978 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3979 {
3980 /* Apply action to all signals except those used by the
3981 debugger. Silently skip those. */
3982 allsigs = 1;
3983 sigfirst = 0;
3984 siglast = nsigs - 1;
3985 }
3986 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3987 {
3988 SET_SIGS (nsigs, sigs, signal_stop);
3989 SET_SIGS (nsigs, sigs, signal_print);
3990 }
3991 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3992 {
3993 UNSET_SIGS (nsigs, sigs, signal_program);
3994 }
3995 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3996 {
3997 SET_SIGS (nsigs, sigs, signal_print);
3998 }
3999 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
4000 {
4001 SET_SIGS (nsigs, sigs, signal_program);
4002 }
4003 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
4004 {
4005 UNSET_SIGS (nsigs, sigs, signal_stop);
4006 }
4007 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
4008 {
4009 SET_SIGS (nsigs, sigs, signal_program);
4010 }
4011 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
4012 {
4013 UNSET_SIGS (nsigs, sigs, signal_print);
4014 UNSET_SIGS (nsigs, sigs, signal_stop);
4015 }
4016 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
4017 {
4018 UNSET_SIGS (nsigs, sigs, signal_program);
4019 }
4020 else if (digits > 0)
4021 {
4022 /* It is numeric. The numeric signal refers to our own
4023 internal signal numbering from target.h, not to host/target
4024 signal number. This is a feature; users really should be
4025 using symbolic names anyway, and the common ones like
4026 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
4027
4028 sigfirst = siglast = (int)
4029 target_signal_from_command (atoi (*argv));
4030 if ((*argv)[digits] == '-')
4031 {
4032 siglast = (int)
4033 target_signal_from_command (atoi ((*argv) + digits + 1));
4034 }
4035 if (sigfirst > siglast)
4036 {
4037 /* Bet he didn't figure we'd think of this case... */
4038 signum = sigfirst;
4039 sigfirst = siglast;
4040 siglast = signum;
4041 }
4042 }
4043 else
4044 {
4045 oursig = target_signal_from_name (*argv);
4046 if (oursig != TARGET_SIGNAL_UNKNOWN)
4047 {
4048 sigfirst = siglast = (int) oursig;
4049 }
4050 else
4051 {
4052 /* Not a number and not a recognized flag word => complain. */
4053 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
4054 }
4055 }
4056
4057 /* If any signal numbers or symbol names were found, set flags for
4058 which signals to apply actions to. */
4059
4060 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
4061 {
4062 switch ((enum target_signal) signum)
4063 {
4064 case TARGET_SIGNAL_TRAP:
4065 case TARGET_SIGNAL_INT:
4066 if (!allsigs && !sigs[signum])
4067 {
4068 if (query ("%s is used by the debugger.\n\
4069 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
4070 {
4071 sigs[signum] = 1;
4072 }
4073 else
4074 {
4075 printf_unfiltered (_("Not confirmed, unchanged.\n"));
4076 gdb_flush (gdb_stdout);
4077 }
4078 }
4079 break;
4080 case TARGET_SIGNAL_0:
4081 case TARGET_SIGNAL_DEFAULT:
4082 case TARGET_SIGNAL_UNKNOWN:
4083 /* Make sure that "all" doesn't print these. */
4084 break;
4085 default:
4086 sigs[signum] = 1;
4087 break;
4088 }
4089 }
4090
4091 argv++;
4092 }
4093
4094 target_notice_signals (inferior_ptid);
4095
4096 if (from_tty)
4097 {
4098 /* Show the results. */
4099 sig_print_header ();
4100 for (signum = 0; signum < nsigs; signum++)
4101 {
4102 if (sigs[signum])
4103 {
4104 sig_print_info (signum);
4105 }
4106 }
4107 }
4108
4109 do_cleanups (old_chain);
4110 }
4111
4112 static void
4113 xdb_handle_command (char *args, int from_tty)
4114 {
4115 char **argv;
4116 struct cleanup *old_chain;
4117
4118 /* Break the command line up into args. */
4119
4120 argv = buildargv (args);
4121 if (argv == NULL)
4122 {
4123 nomem (0);
4124 }
4125 old_chain = make_cleanup_freeargv (argv);
4126 if (argv[1] != (char *) NULL)
4127 {
4128 char *argBuf;
4129 int bufLen;
4130
4131 bufLen = strlen (argv[0]) + 20;
4132 argBuf = (char *) xmalloc (bufLen);
4133 if (argBuf)
4134 {
4135 int validFlag = 1;
4136 enum target_signal oursig;
4137
4138 oursig = target_signal_from_name (argv[0]);
4139 memset (argBuf, 0, bufLen);
4140 if (strcmp (argv[1], "Q") == 0)
4141 sprintf (argBuf, "%s %s", argv[0], "noprint");
4142 else
4143 {
4144 if (strcmp (argv[1], "s") == 0)
4145 {
4146 if (!signal_stop[oursig])
4147 sprintf (argBuf, "%s %s", argv[0], "stop");
4148 else
4149 sprintf (argBuf, "%s %s", argv[0], "nostop");
4150 }
4151 else if (strcmp (argv[1], "i") == 0)
4152 {
4153 if (!signal_program[oursig])
4154 sprintf (argBuf, "%s %s", argv[0], "pass");
4155 else
4156 sprintf (argBuf, "%s %s", argv[0], "nopass");
4157 }
4158 else if (strcmp (argv[1], "r") == 0)
4159 {
4160 if (!signal_print[oursig])
4161 sprintf (argBuf, "%s %s", argv[0], "print");
4162 else
4163 sprintf (argBuf, "%s %s", argv[0], "noprint");
4164 }
4165 else
4166 validFlag = 0;
4167 }
4168 if (validFlag)
4169 handle_command (argBuf, from_tty);
4170 else
4171 printf_filtered (_("Invalid signal handling flag.\n"));
4172 if (argBuf)
4173 xfree (argBuf);
4174 }
4175 }
4176 do_cleanups (old_chain);
4177 }
4178
4179 /* Print current contents of the tables set by the handle command.
4180 It is possible we should just be printing signals actually used
4181 by the current target (but for things to work right when switching
4182 targets, all signals should be in the signal tables). */
4183
4184 static void
4185 signals_info (char *signum_exp, int from_tty)
4186 {
4187 enum target_signal oursig;
4188 sig_print_header ();
4189
4190 if (signum_exp)
4191 {
4192 /* First see if this is a symbol name. */
4193 oursig = target_signal_from_name (signum_exp);
4194 if (oursig == TARGET_SIGNAL_UNKNOWN)
4195 {
4196 /* No, try numeric. */
4197 oursig =
4198 target_signal_from_command (parse_and_eval_long (signum_exp));
4199 }
4200 sig_print_info (oursig);
4201 return;
4202 }
4203
4204 printf_filtered ("\n");
4205 /* These ugly casts brought to you by the native VAX compiler. */
4206 for (oursig = TARGET_SIGNAL_FIRST;
4207 (int) oursig < (int) TARGET_SIGNAL_LAST;
4208 oursig = (enum target_signal) ((int) oursig + 1))
4209 {
4210 QUIT;
4211
4212 if (oursig != TARGET_SIGNAL_UNKNOWN
4213 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
4214 sig_print_info (oursig);
4215 }
4216
4217 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
4218 }
4219 \f
4220 struct inferior_status
4221 {
4222 enum target_signal stop_signal;
4223 CORE_ADDR stop_pc;
4224 bpstat stop_bpstat;
4225 int stop_step;
4226 int stop_stack_dummy;
4227 int stopped_by_random_signal;
4228 int stepping_over_breakpoint;
4229 CORE_ADDR step_range_start;
4230 CORE_ADDR step_range_end;
4231 struct frame_id step_frame_id;
4232 enum step_over_calls_kind step_over_calls;
4233 CORE_ADDR step_resume_break_address;
4234 int stop_after_trap;
4235 int stop_soon;
4236
4237 /* These are here because if call_function_by_hand has written some
4238 registers and then decides to call error(), we better not have changed
4239 any registers. */
4240 struct regcache *registers;
4241
4242 /* A frame unique identifier. */
4243 struct frame_id selected_frame_id;
4244
4245 int breakpoint_proceeded;
4246 int restore_stack_info;
4247 int proceed_to_finish;
4248 };
4249
4250 void
4251 write_inferior_status_register (struct inferior_status *inf_status, int regno,
4252 LONGEST val)
4253 {
4254 int size = register_size (current_gdbarch, regno);
4255 void *buf = alloca (size);
4256 store_signed_integer (buf, size, val);
4257 regcache_raw_write (inf_status->registers, regno, buf);
4258 }
4259
4260 /* Save all of the information associated with the inferior<==>gdb
4261 connection. INF_STATUS is a pointer to a "struct inferior_status"
4262 (defined in inferior.h). */
4263
4264 struct inferior_status *
4265 save_inferior_status (int restore_stack_info)
4266 {
4267 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
4268
4269 inf_status->stop_signal = stop_signal;
4270 inf_status->stop_pc = stop_pc;
4271 inf_status->stop_step = stop_step;
4272 inf_status->stop_stack_dummy = stop_stack_dummy;
4273 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4274 inf_status->stepping_over_breakpoint = stepping_over_breakpoint;
4275 inf_status->step_range_start = step_range_start;
4276 inf_status->step_range_end = step_range_end;
4277 inf_status->step_frame_id = step_frame_id;
4278 inf_status->step_over_calls = step_over_calls;
4279 inf_status->stop_after_trap = stop_after_trap;
4280 inf_status->stop_soon = stop_soon;
4281 /* Save original bpstat chain here; replace it with copy of chain.
4282 If caller's caller is walking the chain, they'll be happier if we
4283 hand them back the original chain when restore_inferior_status is
4284 called. */
4285 inf_status->stop_bpstat = stop_bpstat;
4286 stop_bpstat = bpstat_copy (stop_bpstat);
4287 inf_status->breakpoint_proceeded = breakpoint_proceeded;
4288 inf_status->restore_stack_info = restore_stack_info;
4289 inf_status->proceed_to_finish = proceed_to_finish;
4290
4291 inf_status->registers = regcache_dup (get_current_regcache ());
4292
4293 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
4294 return inf_status;
4295 }
4296
4297 static int
4298 restore_selected_frame (void *args)
4299 {
4300 struct frame_id *fid = (struct frame_id *) args;
4301 struct frame_info *frame;
4302
4303 frame = frame_find_by_id (*fid);
4304
4305 /* If inf_status->selected_frame_id is NULL, there was no previously
4306 selected frame. */
4307 if (frame == NULL)
4308 {
4309 warning (_("Unable to restore previously selected frame."));
4310 return 0;
4311 }
4312
4313 select_frame (frame);
4314
4315 return (1);
4316 }
4317
4318 void
4319 restore_inferior_status (struct inferior_status *inf_status)
4320 {
4321 stop_signal = inf_status->stop_signal;
4322 stop_pc = inf_status->stop_pc;
4323 stop_step = inf_status->stop_step;
4324 stop_stack_dummy = inf_status->stop_stack_dummy;
4325 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4326 stepping_over_breakpoint = inf_status->stepping_over_breakpoint;
4327 step_range_start = inf_status->step_range_start;
4328 step_range_end = inf_status->step_range_end;
4329 step_frame_id = inf_status->step_frame_id;
4330 step_over_calls = inf_status->step_over_calls;
4331 stop_after_trap = inf_status->stop_after_trap;
4332 stop_soon = inf_status->stop_soon;
4333 bpstat_clear (&stop_bpstat);
4334 stop_bpstat = inf_status->stop_bpstat;
4335 breakpoint_proceeded = inf_status->breakpoint_proceeded;
4336 proceed_to_finish = inf_status->proceed_to_finish;
4337
4338 /* The inferior can be gone if the user types "print exit(0)"
4339 (and perhaps other times). */
4340 if (target_has_execution)
4341 /* NB: The register write goes through to the target. */
4342 regcache_cpy (get_current_regcache (), inf_status->registers);
4343 regcache_xfree (inf_status->registers);
4344
4345 /* FIXME: If we are being called after stopping in a function which
4346 is called from gdb, we should not be trying to restore the
4347 selected frame; it just prints a spurious error message (The
4348 message is useful, however, in detecting bugs in gdb (like if gdb
4349 clobbers the stack)). In fact, should we be restoring the
4350 inferior status at all in that case? . */
4351
4352 if (target_has_stack && inf_status->restore_stack_info)
4353 {
4354 /* The point of catch_errors is that if the stack is clobbered,
4355 walking the stack might encounter a garbage pointer and
4356 error() trying to dereference it. */
4357 if (catch_errors
4358 (restore_selected_frame, &inf_status->selected_frame_id,
4359 "Unable to restore previously selected frame:\n",
4360 RETURN_MASK_ERROR) == 0)
4361 /* Error in restoring the selected frame. Select the innermost
4362 frame. */
4363 select_frame (get_current_frame ());
4364
4365 }
4366
4367 xfree (inf_status);
4368 }
4369
4370 static void
4371 do_restore_inferior_status_cleanup (void *sts)
4372 {
4373 restore_inferior_status (sts);
4374 }
4375
4376 struct cleanup *
4377 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
4378 {
4379 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
4380 }
4381
4382 void
4383 discard_inferior_status (struct inferior_status *inf_status)
4384 {
4385 /* See save_inferior_status for info on stop_bpstat. */
4386 bpstat_clear (&inf_status->stop_bpstat);
4387 regcache_xfree (inf_status->registers);
4388 xfree (inf_status);
4389 }
4390
4391 int
4392 inferior_has_forked (ptid_t pid, ptid_t *child_pid)
4393 {
4394 struct target_waitstatus last;
4395 ptid_t last_ptid;
4396
4397 get_last_target_status (&last_ptid, &last);
4398
4399 if (last.kind != TARGET_WAITKIND_FORKED)
4400 return 0;
4401
4402 if (!ptid_equal (last_ptid, pid))
4403 return 0;
4404
4405 *child_pid = last.value.related_pid;
4406 return 1;
4407 }
4408
4409 int
4410 inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
4411 {
4412 struct target_waitstatus last;
4413 ptid_t last_ptid;
4414
4415 get_last_target_status (&last_ptid, &last);
4416
4417 if (last.kind != TARGET_WAITKIND_VFORKED)
4418 return 0;
4419
4420 if (!ptid_equal (last_ptid, pid))
4421 return 0;
4422
4423 *child_pid = last.value.related_pid;
4424 return 1;
4425 }
4426
4427 int
4428 inferior_has_execd (ptid_t pid, char **execd_pathname)
4429 {
4430 struct target_waitstatus last;
4431 ptid_t last_ptid;
4432
4433 get_last_target_status (&last_ptid, &last);
4434
4435 if (last.kind != TARGET_WAITKIND_EXECD)
4436 return 0;
4437
4438 if (!ptid_equal (last_ptid, pid))
4439 return 0;
4440
4441 *execd_pathname = xstrdup (last.value.execd_pathname);
4442 return 1;
4443 }
4444
4445 /* Oft used ptids */
4446 ptid_t null_ptid;
4447 ptid_t minus_one_ptid;
4448
4449 /* Create a ptid given the necessary PID, LWP, and TID components. */
4450
4451 ptid_t
4452 ptid_build (int pid, long lwp, long tid)
4453 {
4454 ptid_t ptid;
4455
4456 ptid.pid = pid;
4457 ptid.lwp = lwp;
4458 ptid.tid = tid;
4459 return ptid;
4460 }
4461
4462 /* Create a ptid from just a pid. */
4463
4464 ptid_t
4465 pid_to_ptid (int pid)
4466 {
4467 return ptid_build (pid, 0, 0);
4468 }
4469
4470 /* Fetch the pid (process id) component from a ptid. */
4471
4472 int
4473 ptid_get_pid (ptid_t ptid)
4474 {
4475 return ptid.pid;
4476 }
4477
4478 /* Fetch the lwp (lightweight process) component from a ptid. */
4479
4480 long
4481 ptid_get_lwp (ptid_t ptid)
4482 {
4483 return ptid.lwp;
4484 }
4485
4486 /* Fetch the tid (thread id) component from a ptid. */
4487
4488 long
4489 ptid_get_tid (ptid_t ptid)
4490 {
4491 return ptid.tid;
4492 }
4493
4494 /* ptid_equal() is used to test equality of two ptids. */
4495
4496 int
4497 ptid_equal (ptid_t ptid1, ptid_t ptid2)
4498 {
4499 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
4500 && ptid1.tid == ptid2.tid);
4501 }
4502
4503 /* restore_inferior_ptid() will be used by the cleanup machinery
4504 to restore the inferior_ptid value saved in a call to
4505 save_inferior_ptid(). */
4506
4507 static void
4508 restore_inferior_ptid (void *arg)
4509 {
4510 ptid_t *saved_ptid_ptr = arg;
4511 inferior_ptid = *saved_ptid_ptr;
4512 xfree (arg);
4513 }
4514
4515 /* Save the value of inferior_ptid so that it may be restored by a
4516 later call to do_cleanups(). Returns the struct cleanup pointer
4517 needed for later doing the cleanup. */
4518
4519 struct cleanup *
4520 save_inferior_ptid (void)
4521 {
4522 ptid_t *saved_ptid_ptr;
4523
4524 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
4525 *saved_ptid_ptr = inferior_ptid;
4526 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
4527 }
4528 \f
4529
4530 int non_stop = 0;
4531 static int non_stop_1 = 0;
4532
4533 static void
4534 set_non_stop (char *args, int from_tty,
4535 struct cmd_list_element *c)
4536 {
4537 if (target_has_execution)
4538 {
4539 non_stop_1 = non_stop;
4540 error (_("Cannot change this setting while the inferior is running."));
4541 }
4542
4543 non_stop = non_stop_1;
4544 }
4545
4546 static void
4547 show_non_stop (struct ui_file *file, int from_tty,
4548 struct cmd_list_element *c, const char *value)
4549 {
4550 fprintf_filtered (file,
4551 _("Controlling the inferior in non-stop mode is %s.\n"),
4552 value);
4553 }
4554
4555
4556 void
4557 _initialize_infrun (void)
4558 {
4559 int i;
4560 int numsigs;
4561 struct cmd_list_element *c;
4562
4563 add_info ("signals", signals_info, _("\
4564 What debugger does when program gets various signals.\n\
4565 Specify a signal as argument to print info on that signal only."));
4566 add_info_alias ("handle", "signals", 0);
4567
4568 add_com ("handle", class_run, handle_command, _("\
4569 Specify how to handle a signal.\n\
4570 Args are signals and actions to apply to those signals.\n\
4571 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4572 from 1-15 are allowed for compatibility with old versions of GDB.\n\
4573 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4574 The special arg \"all\" is recognized to mean all signals except those\n\
4575 used by the debugger, typically SIGTRAP and SIGINT.\n\
4576 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
4577 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
4578 Stop means reenter debugger if this signal happens (implies print).\n\
4579 Print means print a message if this signal happens.\n\
4580 Pass means let program see this signal; otherwise program doesn't know.\n\
4581 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4582 Pass and Stop may be combined."));
4583 if (xdb_commands)
4584 {
4585 add_com ("lz", class_info, signals_info, _("\
4586 What debugger does when program gets various signals.\n\
4587 Specify a signal as argument to print info on that signal only."));
4588 add_com ("z", class_run, xdb_handle_command, _("\
4589 Specify how to handle a signal.\n\
4590 Args are signals and actions to apply to those signals.\n\
4591 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4592 from 1-15 are allowed for compatibility with old versions of GDB.\n\
4593 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4594 The special arg \"all\" is recognized to mean all signals except those\n\
4595 used by the debugger, typically SIGTRAP and SIGINT.\n\
4596 Recognized actions include \"s\" (toggles between stop and nostop), \n\
4597 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4598 nopass), \"Q\" (noprint)\n\
4599 Stop means reenter debugger if this signal happens (implies print).\n\
4600 Print means print a message if this signal happens.\n\
4601 Pass means let program see this signal; otherwise program doesn't know.\n\
4602 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4603 Pass and Stop may be combined."));
4604 }
4605
4606 if (!dbx_commands)
4607 stop_command = add_cmd ("stop", class_obscure,
4608 not_just_help_class_command, _("\
4609 There is no `stop' command, but you can set a hook on `stop'.\n\
4610 This allows you to set a list of commands to be run each time execution\n\
4611 of the program stops."), &cmdlist);
4612
4613 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4614 Set inferior debugging."), _("\
4615 Show inferior debugging."), _("\
4616 When non-zero, inferior specific debugging is enabled."),
4617 NULL,
4618 show_debug_infrun,
4619 &setdebuglist, &showdebuglist);
4620
4621 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
4622 Set displaced stepping debugging."), _("\
4623 Show displaced stepping debugging."), _("\
4624 When non-zero, displaced stepping specific debugging is enabled."),
4625 NULL,
4626 show_debug_displaced,
4627 &setdebuglist, &showdebuglist);
4628
4629 add_setshow_boolean_cmd ("non-stop", no_class,
4630 &non_stop_1, _("\
4631 Set whether gdb controls the inferior in non-stop mode."), _("\
4632 Show whether gdb controls the inferior in non-stop mode."), _("\
4633 When debugging a multi-threaded program and this setting is\n\
4634 off (the default, also called all-stop mode), when one thread stops\n\
4635 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
4636 all other threads in the program while you interact with the thread of\n\
4637 interest. When you continue or step a thread, you can allow the other\n\
4638 threads to run, or have them remain stopped, but while you inspect any\n\
4639 thread's state, all threads stop.\n\
4640 \n\
4641 In non-stop mode, when one thread stops, other threads can continue\n\
4642 to run freely. You'll be able to step each thread independently,\n\
4643 leave it stopped or free to run as needed."),
4644 set_non_stop,
4645 show_non_stop,
4646 &setlist,
4647 &showlist);
4648
4649 numsigs = (int) TARGET_SIGNAL_LAST;
4650 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
4651 signal_print = (unsigned char *)
4652 xmalloc (sizeof (signal_print[0]) * numsigs);
4653 signal_program = (unsigned char *)
4654 xmalloc (sizeof (signal_program[0]) * numsigs);
4655 for (i = 0; i < numsigs; i++)
4656 {
4657 signal_stop[i] = 1;
4658 signal_print[i] = 1;
4659 signal_program[i] = 1;
4660 }
4661
4662 /* Signals caused by debugger's own actions
4663 should not be given to the program afterwards. */
4664 signal_program[TARGET_SIGNAL_TRAP] = 0;
4665 signal_program[TARGET_SIGNAL_INT] = 0;
4666
4667 /* Signals that are not errors should not normally enter the debugger. */
4668 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4669 signal_print[TARGET_SIGNAL_ALRM] = 0;
4670 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4671 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4672 signal_stop[TARGET_SIGNAL_PROF] = 0;
4673 signal_print[TARGET_SIGNAL_PROF] = 0;
4674 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4675 signal_print[TARGET_SIGNAL_CHLD] = 0;
4676 signal_stop[TARGET_SIGNAL_IO] = 0;
4677 signal_print[TARGET_SIGNAL_IO] = 0;
4678 signal_stop[TARGET_SIGNAL_POLL] = 0;
4679 signal_print[TARGET_SIGNAL_POLL] = 0;
4680 signal_stop[TARGET_SIGNAL_URG] = 0;
4681 signal_print[TARGET_SIGNAL_URG] = 0;
4682 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4683 signal_print[TARGET_SIGNAL_WINCH] = 0;
4684
4685 /* These signals are used internally by user-level thread
4686 implementations. (See signal(5) on Solaris.) Like the above
4687 signals, a healthy program receives and handles them as part of
4688 its normal operation. */
4689 signal_stop[TARGET_SIGNAL_LWP] = 0;
4690 signal_print[TARGET_SIGNAL_LWP] = 0;
4691 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4692 signal_print[TARGET_SIGNAL_WAITING] = 0;
4693 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4694 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4695
4696 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4697 &stop_on_solib_events, _("\
4698 Set stopping for shared library events."), _("\
4699 Show stopping for shared library events."), _("\
4700 If nonzero, gdb will give control to the user when the dynamic linker\n\
4701 notifies gdb of shared library events. The most common event of interest\n\
4702 to the user would be loading/unloading of a new library."),
4703 NULL,
4704 show_stop_on_solib_events,
4705 &setlist, &showlist);
4706
4707 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4708 follow_fork_mode_kind_names,
4709 &follow_fork_mode_string, _("\
4710 Set debugger response to a program call of fork or vfork."), _("\
4711 Show debugger response to a program call of fork or vfork."), _("\
4712 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4713 parent - the original process is debugged after a fork\n\
4714 child - the new process is debugged after a fork\n\
4715 The unfollowed process will continue to run.\n\
4716 By default, the debugger will follow the parent process."),
4717 NULL,
4718 show_follow_fork_mode_string,
4719 &setlist, &showlist);
4720
4721 add_setshow_enum_cmd ("scheduler-locking", class_run,
4722 scheduler_enums, &scheduler_mode, _("\
4723 Set mode for locking scheduler during execution."), _("\
4724 Show mode for locking scheduler during execution."), _("\
4725 off == no locking (threads may preempt at any time)\n\
4726 on == full locking (no thread except the current thread may run)\n\
4727 step == scheduler locked during every single-step operation.\n\
4728 In this mode, no other thread may run during a step command.\n\
4729 Other threads may run while stepping over a function call ('next')."),
4730 set_schedlock_func, /* traps on target vector */
4731 show_scheduler_mode,
4732 &setlist, &showlist);
4733
4734 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4735 Set mode of the step operation."), _("\
4736 Show mode of the step operation."), _("\
4737 When set, doing a step over a function without debug line information\n\
4738 will stop at the first instruction of that function. Otherwise, the\n\
4739 function is skipped and the step command stops at a different source line."),
4740 NULL,
4741 show_step_stop_if_no_debug,
4742 &setlist, &showlist);
4743
4744 add_setshow_boolean_cmd ("can-use-displaced-stepping", class_maintenance,
4745 &can_use_displaced_stepping, _("\
4746 Set debugger's willingness to use displaced stepping."), _("\
4747 Show debugger's willingness to use displaced stepping."), _("\
4748 If zero, gdb will not use displaced stepping to step over\n\
4749 breakpoints, even if such is supported by the target."),
4750 NULL,
4751 show_can_use_displaced_stepping,
4752 &maintenance_set_cmdlist,
4753 &maintenance_show_cmdlist);
4754
4755 /* ptid initializations */
4756 null_ptid = ptid_build (0, 0, 0);
4757 minus_one_ptid = ptid_build (-1, 0, 0);
4758 inferior_ptid = null_ptid;
4759 target_last_wait_ptid = minus_one_ptid;
4760 displaced_step_ptid = null_ptid;
4761 }
This page took 0.131322 seconds and 4 git commands to generate.