daily update
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2012 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "exceptions.h"
28 #include "breakpoint.h"
29 #include "gdb_wait.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "cli/cli-script.h"
33 #include "target.h"
34 #include "gdbthread.h"
35 #include "annotate.h"
36 #include "symfile.h"
37 #include "top.h"
38 #include <signal.h>
39 #include "inf-loop.h"
40 #include "regcache.h"
41 #include "value.h"
42 #include "observer.h"
43 #include "language.h"
44 #include "solib.h"
45 #include "main.h"
46 #include "dictionary.h"
47 #include "block.h"
48 #include "gdb_assert.h"
49 #include "mi/mi-common.h"
50 #include "event-top.h"
51 #include "record.h"
52 #include "inline-frame.h"
53 #include "jit.h"
54 #include "tracepoint.h"
55 #include "continuations.h"
56 #include "interps.h"
57 #include "skip.h"
58 #include "probe.h"
59 #include "objfiles.h"
60 #include "completer.h"
61
62 /* Prototypes for local functions */
63
64 static void signals_info (char *, int);
65
66 static void handle_command (char *, int);
67
68 static void sig_print_info (enum gdb_signal);
69
70 static void sig_print_header (void);
71
72 static void resume_cleanups (void *);
73
74 static int hook_stop_stub (void *);
75
76 static int restore_selected_frame (void *);
77
78 static int follow_fork (void);
79
80 static void set_schedlock_func (char *args, int from_tty,
81 struct cmd_list_element *c);
82
83 static int currently_stepping (struct thread_info *tp);
84
85 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
86 void *data);
87
88 static void xdb_handle_command (char *args, int from_tty);
89
90 static int prepare_to_proceed (int);
91
92 static void print_exited_reason (int exitstatus);
93
94 static void print_signal_exited_reason (enum gdb_signal siggnal);
95
96 static void print_no_history_reason (void);
97
98 static void print_signal_received_reason (enum gdb_signal siggnal);
99
100 static void print_end_stepping_range_reason (void);
101
102 void _initialize_infrun (void);
103
104 void nullify_last_target_wait_ptid (void);
105
106 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
107
108 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
109
110 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
111
112 /* When set, stop the 'step' command if we enter a function which has
113 no line number information. The normal behavior is that we step
114 over such function. */
115 int step_stop_if_no_debug = 0;
116 static void
117 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c, const char *value)
119 {
120 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
121 }
122
123 /* In asynchronous mode, but simulating synchronous execution. */
124
125 int sync_execution = 0;
126
127 /* wait_for_inferior and normal_stop use this to notify the user
128 when the inferior stopped in a different thread than it had been
129 running in. */
130
131 static ptid_t previous_inferior_ptid;
132
133 /* Default behavior is to detach newly forked processes (legacy). */
134 int detach_fork = 1;
135
136 int debug_displaced = 0;
137 static void
138 show_debug_displaced (struct ui_file *file, int from_tty,
139 struct cmd_list_element *c, const char *value)
140 {
141 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
142 }
143
144 unsigned int debug_infrun = 0;
145 static void
146 show_debug_infrun (struct ui_file *file, int from_tty,
147 struct cmd_list_element *c, const char *value)
148 {
149 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
150 }
151
152
153 /* Support for disabling address space randomization. */
154
155 int disable_randomization = 1;
156
157 static void
158 show_disable_randomization (struct ui_file *file, int from_tty,
159 struct cmd_list_element *c, const char *value)
160 {
161 if (target_supports_disable_randomization ())
162 fprintf_filtered (file,
163 _("Disabling randomization of debuggee's "
164 "virtual address space is %s.\n"),
165 value);
166 else
167 fputs_filtered (_("Disabling randomization of debuggee's "
168 "virtual address space is unsupported on\n"
169 "this platform.\n"), file);
170 }
171
172 static void
173 set_disable_randomization (char *args, int from_tty,
174 struct cmd_list_element *c)
175 {
176 if (!target_supports_disable_randomization ())
177 error (_("Disabling randomization of debuggee's "
178 "virtual address space is unsupported on\n"
179 "this platform."));
180 }
181
182
183 /* If the program uses ELF-style shared libraries, then calls to
184 functions in shared libraries go through stubs, which live in a
185 table called the PLT (Procedure Linkage Table). The first time the
186 function is called, the stub sends control to the dynamic linker,
187 which looks up the function's real address, patches the stub so
188 that future calls will go directly to the function, and then passes
189 control to the function.
190
191 If we are stepping at the source level, we don't want to see any of
192 this --- we just want to skip over the stub and the dynamic linker.
193 The simple approach is to single-step until control leaves the
194 dynamic linker.
195
196 However, on some systems (e.g., Red Hat's 5.2 distribution) the
197 dynamic linker calls functions in the shared C library, so you
198 can't tell from the PC alone whether the dynamic linker is still
199 running. In this case, we use a step-resume breakpoint to get us
200 past the dynamic linker, as if we were using "next" to step over a
201 function call.
202
203 in_solib_dynsym_resolve_code() says whether we're in the dynamic
204 linker code or not. Normally, this means we single-step. However,
205 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
206 address where we can place a step-resume breakpoint to get past the
207 linker's symbol resolution function.
208
209 in_solib_dynsym_resolve_code() can generally be implemented in a
210 pretty portable way, by comparing the PC against the address ranges
211 of the dynamic linker's sections.
212
213 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
214 it depends on internal details of the dynamic linker. It's usually
215 not too hard to figure out where to put a breakpoint, but it
216 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
217 sanity checking. If it can't figure things out, returning zero and
218 getting the (possibly confusing) stepping behavior is better than
219 signalling an error, which will obscure the change in the
220 inferior's state. */
221
222 /* This function returns TRUE if pc is the address of an instruction
223 that lies within the dynamic linker (such as the event hook, or the
224 dld itself).
225
226 This function must be used only when a dynamic linker event has
227 been caught, and the inferior is being stepped out of the hook, or
228 undefined results are guaranteed. */
229
230 #ifndef SOLIB_IN_DYNAMIC_LINKER
231 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
232 #endif
233
234 /* "Observer mode" is somewhat like a more extreme version of
235 non-stop, in which all GDB operations that might affect the
236 target's execution have been disabled. */
237
238 static int non_stop_1 = 0;
239
240 int observer_mode = 0;
241 static int observer_mode_1 = 0;
242
243 static void
244 set_observer_mode (char *args, int from_tty,
245 struct cmd_list_element *c)
246 {
247 extern int pagination_enabled;
248
249 if (target_has_execution)
250 {
251 observer_mode_1 = observer_mode;
252 error (_("Cannot change this setting while the inferior is running."));
253 }
254
255 observer_mode = observer_mode_1;
256
257 may_write_registers = !observer_mode;
258 may_write_memory = !observer_mode;
259 may_insert_breakpoints = !observer_mode;
260 may_insert_tracepoints = !observer_mode;
261 /* We can insert fast tracepoints in or out of observer mode,
262 but enable them if we're going into this mode. */
263 if (observer_mode)
264 may_insert_fast_tracepoints = 1;
265 may_stop = !observer_mode;
266 update_target_permissions ();
267
268 /* Going *into* observer mode we must force non-stop, then
269 going out we leave it that way. */
270 if (observer_mode)
271 {
272 target_async_permitted = 1;
273 pagination_enabled = 0;
274 non_stop = non_stop_1 = 1;
275 }
276
277 if (from_tty)
278 printf_filtered (_("Observer mode is now %s.\n"),
279 (observer_mode ? "on" : "off"));
280 }
281
282 static void
283 show_observer_mode (struct ui_file *file, int from_tty,
284 struct cmd_list_element *c, const char *value)
285 {
286 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
287 }
288
289 /* This updates the value of observer mode based on changes in
290 permissions. Note that we are deliberately ignoring the values of
291 may-write-registers and may-write-memory, since the user may have
292 reason to enable these during a session, for instance to turn on a
293 debugging-related global. */
294
295 void
296 update_observer_mode (void)
297 {
298 int newval;
299
300 newval = (!may_insert_breakpoints
301 && !may_insert_tracepoints
302 && may_insert_fast_tracepoints
303 && !may_stop
304 && non_stop);
305
306 /* Let the user know if things change. */
307 if (newval != observer_mode)
308 printf_filtered (_("Observer mode is now %s.\n"),
309 (newval ? "on" : "off"));
310
311 observer_mode = observer_mode_1 = newval;
312 }
313
314 /* Tables of how to react to signals; the user sets them. */
315
316 static unsigned char *signal_stop;
317 static unsigned char *signal_print;
318 static unsigned char *signal_program;
319
320 /* Table of signals that the target may silently handle.
321 This is automatically determined from the flags above,
322 and simply cached here. */
323 static unsigned char *signal_pass;
324
325 #define SET_SIGS(nsigs,sigs,flags) \
326 do { \
327 int signum = (nsigs); \
328 while (signum-- > 0) \
329 if ((sigs)[signum]) \
330 (flags)[signum] = 1; \
331 } while (0)
332
333 #define UNSET_SIGS(nsigs,sigs,flags) \
334 do { \
335 int signum = (nsigs); \
336 while (signum-- > 0) \
337 if ((sigs)[signum]) \
338 (flags)[signum] = 0; \
339 } while (0)
340
341 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
342 this function is to avoid exporting `signal_program'. */
343
344 void
345 update_signals_program_target (void)
346 {
347 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
348 }
349
350 /* Value to pass to target_resume() to cause all threads to resume. */
351
352 #define RESUME_ALL minus_one_ptid
353
354 /* Command list pointer for the "stop" placeholder. */
355
356 static struct cmd_list_element *stop_command;
357
358 /* Function inferior was in as of last step command. */
359
360 static struct symbol *step_start_function;
361
362 /* Nonzero if we want to give control to the user when we're notified
363 of shared library events by the dynamic linker. */
364 int stop_on_solib_events;
365 static void
366 show_stop_on_solib_events (struct ui_file *file, int from_tty,
367 struct cmd_list_element *c, const char *value)
368 {
369 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
370 value);
371 }
372
373 /* Nonzero means expecting a trace trap
374 and should stop the inferior and return silently when it happens. */
375
376 int stop_after_trap;
377
378 /* Save register contents here when executing a "finish" command or are
379 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
380 Thus this contains the return value from the called function (assuming
381 values are returned in a register). */
382
383 struct regcache *stop_registers;
384
385 /* Nonzero after stop if current stack frame should be printed. */
386
387 static int stop_print_frame;
388
389 /* This is a cached copy of the pid/waitstatus of the last event
390 returned by target_wait()/deprecated_target_wait_hook(). This
391 information is returned by get_last_target_status(). */
392 static ptid_t target_last_wait_ptid;
393 static struct target_waitstatus target_last_waitstatus;
394
395 static void context_switch (ptid_t ptid);
396
397 void init_thread_stepping_state (struct thread_info *tss);
398
399 void init_infwait_state (void);
400
401 static const char follow_fork_mode_child[] = "child";
402 static const char follow_fork_mode_parent[] = "parent";
403
404 static const char *const follow_fork_mode_kind_names[] = {
405 follow_fork_mode_child,
406 follow_fork_mode_parent,
407 NULL
408 };
409
410 static const char *follow_fork_mode_string = follow_fork_mode_parent;
411 static void
412 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
413 struct cmd_list_element *c, const char *value)
414 {
415 fprintf_filtered (file,
416 _("Debugger response to a program "
417 "call of fork or vfork is \"%s\".\n"),
418 value);
419 }
420 \f
421
422 /* Tell the target to follow the fork we're stopped at. Returns true
423 if the inferior should be resumed; false, if the target for some
424 reason decided it's best not to resume. */
425
426 static int
427 follow_fork (void)
428 {
429 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
430 int should_resume = 1;
431 struct thread_info *tp;
432
433 /* Copy user stepping state to the new inferior thread. FIXME: the
434 followed fork child thread should have a copy of most of the
435 parent thread structure's run control related fields, not just these.
436 Initialized to avoid "may be used uninitialized" warnings from gcc. */
437 struct breakpoint *step_resume_breakpoint = NULL;
438 struct breakpoint *exception_resume_breakpoint = NULL;
439 CORE_ADDR step_range_start = 0;
440 CORE_ADDR step_range_end = 0;
441 struct frame_id step_frame_id = { 0 };
442
443 if (!non_stop)
444 {
445 ptid_t wait_ptid;
446 struct target_waitstatus wait_status;
447
448 /* Get the last target status returned by target_wait(). */
449 get_last_target_status (&wait_ptid, &wait_status);
450
451 /* If not stopped at a fork event, then there's nothing else to
452 do. */
453 if (wait_status.kind != TARGET_WAITKIND_FORKED
454 && wait_status.kind != TARGET_WAITKIND_VFORKED)
455 return 1;
456
457 /* Check if we switched over from WAIT_PTID, since the event was
458 reported. */
459 if (!ptid_equal (wait_ptid, minus_one_ptid)
460 && !ptid_equal (inferior_ptid, wait_ptid))
461 {
462 /* We did. Switch back to WAIT_PTID thread, to tell the
463 target to follow it (in either direction). We'll
464 afterwards refuse to resume, and inform the user what
465 happened. */
466 switch_to_thread (wait_ptid);
467 should_resume = 0;
468 }
469 }
470
471 tp = inferior_thread ();
472
473 /* If there were any forks/vforks that were caught and are now to be
474 followed, then do so now. */
475 switch (tp->pending_follow.kind)
476 {
477 case TARGET_WAITKIND_FORKED:
478 case TARGET_WAITKIND_VFORKED:
479 {
480 ptid_t parent, child;
481
482 /* If the user did a next/step, etc, over a fork call,
483 preserve the stepping state in the fork child. */
484 if (follow_child && should_resume)
485 {
486 step_resume_breakpoint = clone_momentary_breakpoint
487 (tp->control.step_resume_breakpoint);
488 step_range_start = tp->control.step_range_start;
489 step_range_end = tp->control.step_range_end;
490 step_frame_id = tp->control.step_frame_id;
491 exception_resume_breakpoint
492 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
493
494 /* For now, delete the parent's sr breakpoint, otherwise,
495 parent/child sr breakpoints are considered duplicates,
496 and the child version will not be installed. Remove
497 this when the breakpoints module becomes aware of
498 inferiors and address spaces. */
499 delete_step_resume_breakpoint (tp);
500 tp->control.step_range_start = 0;
501 tp->control.step_range_end = 0;
502 tp->control.step_frame_id = null_frame_id;
503 delete_exception_resume_breakpoint (tp);
504 }
505
506 parent = inferior_ptid;
507 child = tp->pending_follow.value.related_pid;
508
509 /* Tell the target to do whatever is necessary to follow
510 either parent or child. */
511 if (target_follow_fork (follow_child))
512 {
513 /* Target refused to follow, or there's some other reason
514 we shouldn't resume. */
515 should_resume = 0;
516 }
517 else
518 {
519 /* This pending follow fork event is now handled, one way
520 or another. The previous selected thread may be gone
521 from the lists by now, but if it is still around, need
522 to clear the pending follow request. */
523 tp = find_thread_ptid (parent);
524 if (tp)
525 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
526
527 /* This makes sure we don't try to apply the "Switched
528 over from WAIT_PID" logic above. */
529 nullify_last_target_wait_ptid ();
530
531 /* If we followed the child, switch to it... */
532 if (follow_child)
533 {
534 switch_to_thread (child);
535
536 /* ... and preserve the stepping state, in case the
537 user was stepping over the fork call. */
538 if (should_resume)
539 {
540 tp = inferior_thread ();
541 tp->control.step_resume_breakpoint
542 = step_resume_breakpoint;
543 tp->control.step_range_start = step_range_start;
544 tp->control.step_range_end = step_range_end;
545 tp->control.step_frame_id = step_frame_id;
546 tp->control.exception_resume_breakpoint
547 = exception_resume_breakpoint;
548 }
549 else
550 {
551 /* If we get here, it was because we're trying to
552 resume from a fork catchpoint, but, the user
553 has switched threads away from the thread that
554 forked. In that case, the resume command
555 issued is most likely not applicable to the
556 child, so just warn, and refuse to resume. */
557 warning (_("Not resuming: switched threads "
558 "before following fork child.\n"));
559 }
560
561 /* Reset breakpoints in the child as appropriate. */
562 follow_inferior_reset_breakpoints ();
563 }
564 else
565 switch_to_thread (parent);
566 }
567 }
568 break;
569 case TARGET_WAITKIND_SPURIOUS:
570 /* Nothing to follow. */
571 break;
572 default:
573 internal_error (__FILE__, __LINE__,
574 "Unexpected pending_follow.kind %d\n",
575 tp->pending_follow.kind);
576 break;
577 }
578
579 return should_resume;
580 }
581
582 void
583 follow_inferior_reset_breakpoints (void)
584 {
585 struct thread_info *tp = inferior_thread ();
586
587 /* Was there a step_resume breakpoint? (There was if the user
588 did a "next" at the fork() call.) If so, explicitly reset its
589 thread number.
590
591 step_resumes are a form of bp that are made to be per-thread.
592 Since we created the step_resume bp when the parent process
593 was being debugged, and now are switching to the child process,
594 from the breakpoint package's viewpoint, that's a switch of
595 "threads". We must update the bp's notion of which thread
596 it is for, or it'll be ignored when it triggers. */
597
598 if (tp->control.step_resume_breakpoint)
599 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
600
601 if (tp->control.exception_resume_breakpoint)
602 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
603
604 /* Reinsert all breakpoints in the child. The user may have set
605 breakpoints after catching the fork, in which case those
606 were never set in the child, but only in the parent. This makes
607 sure the inserted breakpoints match the breakpoint list. */
608
609 breakpoint_re_set ();
610 insert_breakpoints ();
611 }
612
613 /* The child has exited or execed: resume threads of the parent the
614 user wanted to be executing. */
615
616 static int
617 proceed_after_vfork_done (struct thread_info *thread,
618 void *arg)
619 {
620 int pid = * (int *) arg;
621
622 if (ptid_get_pid (thread->ptid) == pid
623 && is_running (thread->ptid)
624 && !is_executing (thread->ptid)
625 && !thread->stop_requested
626 && thread->suspend.stop_signal == GDB_SIGNAL_0)
627 {
628 if (debug_infrun)
629 fprintf_unfiltered (gdb_stdlog,
630 "infrun: resuming vfork parent thread %s\n",
631 target_pid_to_str (thread->ptid));
632
633 switch_to_thread (thread->ptid);
634 clear_proceed_status ();
635 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
636 }
637
638 return 0;
639 }
640
641 /* Called whenever we notice an exec or exit event, to handle
642 detaching or resuming a vfork parent. */
643
644 static void
645 handle_vfork_child_exec_or_exit (int exec)
646 {
647 struct inferior *inf = current_inferior ();
648
649 if (inf->vfork_parent)
650 {
651 int resume_parent = -1;
652
653 /* This exec or exit marks the end of the shared memory region
654 between the parent and the child. If the user wanted to
655 detach from the parent, now is the time. */
656
657 if (inf->vfork_parent->pending_detach)
658 {
659 struct thread_info *tp;
660 struct cleanup *old_chain;
661 struct program_space *pspace;
662 struct address_space *aspace;
663
664 /* follow-fork child, detach-on-fork on. */
665
666 old_chain = make_cleanup_restore_current_thread ();
667
668 /* We're letting loose of the parent. */
669 tp = any_live_thread_of_process (inf->vfork_parent->pid);
670 switch_to_thread (tp->ptid);
671
672 /* We're about to detach from the parent, which implicitly
673 removes breakpoints from its address space. There's a
674 catch here: we want to reuse the spaces for the child,
675 but, parent/child are still sharing the pspace at this
676 point, although the exec in reality makes the kernel give
677 the child a fresh set of new pages. The problem here is
678 that the breakpoints module being unaware of this, would
679 likely chose the child process to write to the parent
680 address space. Swapping the child temporarily away from
681 the spaces has the desired effect. Yes, this is "sort
682 of" a hack. */
683
684 pspace = inf->pspace;
685 aspace = inf->aspace;
686 inf->aspace = NULL;
687 inf->pspace = NULL;
688
689 if (debug_infrun || info_verbose)
690 {
691 target_terminal_ours ();
692
693 if (exec)
694 fprintf_filtered (gdb_stdlog,
695 "Detaching vfork parent process "
696 "%d after child exec.\n",
697 inf->vfork_parent->pid);
698 else
699 fprintf_filtered (gdb_stdlog,
700 "Detaching vfork parent process "
701 "%d after child exit.\n",
702 inf->vfork_parent->pid);
703 }
704
705 target_detach (NULL, 0);
706
707 /* Put it back. */
708 inf->pspace = pspace;
709 inf->aspace = aspace;
710
711 do_cleanups (old_chain);
712 }
713 else if (exec)
714 {
715 /* We're staying attached to the parent, so, really give the
716 child a new address space. */
717 inf->pspace = add_program_space (maybe_new_address_space ());
718 inf->aspace = inf->pspace->aspace;
719 inf->removable = 1;
720 set_current_program_space (inf->pspace);
721
722 resume_parent = inf->vfork_parent->pid;
723
724 /* Break the bonds. */
725 inf->vfork_parent->vfork_child = NULL;
726 }
727 else
728 {
729 struct cleanup *old_chain;
730 struct program_space *pspace;
731
732 /* If this is a vfork child exiting, then the pspace and
733 aspaces were shared with the parent. Since we're
734 reporting the process exit, we'll be mourning all that is
735 found in the address space, and switching to null_ptid,
736 preparing to start a new inferior. But, since we don't
737 want to clobber the parent's address/program spaces, we
738 go ahead and create a new one for this exiting
739 inferior. */
740
741 /* Switch to null_ptid, so that clone_program_space doesn't want
742 to read the selected frame of a dead process. */
743 old_chain = save_inferior_ptid ();
744 inferior_ptid = null_ptid;
745
746 /* This inferior is dead, so avoid giving the breakpoints
747 module the option to write through to it (cloning a
748 program space resets breakpoints). */
749 inf->aspace = NULL;
750 inf->pspace = NULL;
751 pspace = add_program_space (maybe_new_address_space ());
752 set_current_program_space (pspace);
753 inf->removable = 1;
754 inf->symfile_flags = SYMFILE_NO_READ;
755 clone_program_space (pspace, inf->vfork_parent->pspace);
756 inf->pspace = pspace;
757 inf->aspace = pspace->aspace;
758
759 /* Put back inferior_ptid. We'll continue mourning this
760 inferior. */
761 do_cleanups (old_chain);
762
763 resume_parent = inf->vfork_parent->pid;
764 /* Break the bonds. */
765 inf->vfork_parent->vfork_child = NULL;
766 }
767
768 inf->vfork_parent = NULL;
769
770 gdb_assert (current_program_space == inf->pspace);
771
772 if (non_stop && resume_parent != -1)
773 {
774 /* If the user wanted the parent to be running, let it go
775 free now. */
776 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
777
778 if (debug_infrun)
779 fprintf_unfiltered (gdb_stdlog,
780 "infrun: resuming vfork parent process %d\n",
781 resume_parent);
782
783 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
784
785 do_cleanups (old_chain);
786 }
787 }
788 }
789
790 /* Enum strings for "set|show displaced-stepping". */
791
792 static const char follow_exec_mode_new[] = "new";
793 static const char follow_exec_mode_same[] = "same";
794 static const char *const follow_exec_mode_names[] =
795 {
796 follow_exec_mode_new,
797 follow_exec_mode_same,
798 NULL,
799 };
800
801 static const char *follow_exec_mode_string = follow_exec_mode_same;
802 static void
803 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
804 struct cmd_list_element *c, const char *value)
805 {
806 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
807 }
808
809 /* EXECD_PATHNAME is assumed to be non-NULL. */
810
811 static void
812 follow_exec (ptid_t pid, char *execd_pathname)
813 {
814 struct thread_info *th = inferior_thread ();
815 struct inferior *inf = current_inferior ();
816
817 /* This is an exec event that we actually wish to pay attention to.
818 Refresh our symbol table to the newly exec'd program, remove any
819 momentary bp's, etc.
820
821 If there are breakpoints, they aren't really inserted now,
822 since the exec() transformed our inferior into a fresh set
823 of instructions.
824
825 We want to preserve symbolic breakpoints on the list, since
826 we have hopes that they can be reset after the new a.out's
827 symbol table is read.
828
829 However, any "raw" breakpoints must be removed from the list
830 (e.g., the solib bp's), since their address is probably invalid
831 now.
832
833 And, we DON'T want to call delete_breakpoints() here, since
834 that may write the bp's "shadow contents" (the instruction
835 value that was overwritten witha TRAP instruction). Since
836 we now have a new a.out, those shadow contents aren't valid. */
837
838 mark_breakpoints_out ();
839
840 update_breakpoints_after_exec ();
841
842 /* If there was one, it's gone now. We cannot truly step-to-next
843 statement through an exec(). */
844 th->control.step_resume_breakpoint = NULL;
845 th->control.exception_resume_breakpoint = NULL;
846 th->control.step_range_start = 0;
847 th->control.step_range_end = 0;
848
849 /* The target reports the exec event to the main thread, even if
850 some other thread does the exec, and even if the main thread was
851 already stopped --- if debugging in non-stop mode, it's possible
852 the user had the main thread held stopped in the previous image
853 --- release it now. This is the same behavior as step-over-exec
854 with scheduler-locking on in all-stop mode. */
855 th->stop_requested = 0;
856
857 /* What is this a.out's name? */
858 printf_unfiltered (_("%s is executing new program: %s\n"),
859 target_pid_to_str (inferior_ptid),
860 execd_pathname);
861
862 /* We've followed the inferior through an exec. Therefore, the
863 inferior has essentially been killed & reborn. */
864
865 gdb_flush (gdb_stdout);
866
867 breakpoint_init_inferior (inf_execd);
868
869 if (gdb_sysroot && *gdb_sysroot)
870 {
871 char *name = alloca (strlen (gdb_sysroot)
872 + strlen (execd_pathname)
873 + 1);
874
875 strcpy (name, gdb_sysroot);
876 strcat (name, execd_pathname);
877 execd_pathname = name;
878 }
879
880 /* Reset the shared library package. This ensures that we get a
881 shlib event when the child reaches "_start", at which point the
882 dld will have had a chance to initialize the child. */
883 /* Also, loading a symbol file below may trigger symbol lookups, and
884 we don't want those to be satisfied by the libraries of the
885 previous incarnation of this process. */
886 no_shared_libraries (NULL, 0);
887
888 if (follow_exec_mode_string == follow_exec_mode_new)
889 {
890 struct program_space *pspace;
891
892 /* The user wants to keep the old inferior and program spaces
893 around. Create a new fresh one, and switch to it. */
894
895 inf = add_inferior (current_inferior ()->pid);
896 pspace = add_program_space (maybe_new_address_space ());
897 inf->pspace = pspace;
898 inf->aspace = pspace->aspace;
899
900 exit_inferior_num_silent (current_inferior ()->num);
901
902 set_current_inferior (inf);
903 set_current_program_space (pspace);
904 }
905
906 gdb_assert (current_program_space == inf->pspace);
907
908 /* That a.out is now the one to use. */
909 exec_file_attach (execd_pathname, 0);
910
911 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
912 (Position Independent Executable) main symbol file will get applied by
913 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
914 the breakpoints with the zero displacement. */
915
916 symbol_file_add (execd_pathname,
917 (inf->symfile_flags
918 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
919 NULL, 0);
920
921 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
922 set_initial_language ();
923
924 #ifdef SOLIB_CREATE_INFERIOR_HOOK
925 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
926 #else
927 solib_create_inferior_hook (0);
928 #endif
929
930 jit_inferior_created_hook ();
931
932 breakpoint_re_set ();
933
934 /* Reinsert all breakpoints. (Those which were symbolic have
935 been reset to the proper address in the new a.out, thanks
936 to symbol_file_command...). */
937 insert_breakpoints ();
938
939 /* The next resume of this inferior should bring it to the shlib
940 startup breakpoints. (If the user had also set bp's on
941 "main" from the old (parent) process, then they'll auto-
942 matically get reset there in the new process.). */
943 }
944
945 /* Non-zero if we just simulating a single-step. This is needed
946 because we cannot remove the breakpoints in the inferior process
947 until after the `wait' in `wait_for_inferior'. */
948 static int singlestep_breakpoints_inserted_p = 0;
949
950 /* The thread we inserted single-step breakpoints for. */
951 static ptid_t singlestep_ptid;
952
953 /* PC when we started this single-step. */
954 static CORE_ADDR singlestep_pc;
955
956 /* If another thread hit the singlestep breakpoint, we save the original
957 thread here so that we can resume single-stepping it later. */
958 static ptid_t saved_singlestep_ptid;
959 static int stepping_past_singlestep_breakpoint;
960
961 /* If not equal to null_ptid, this means that after stepping over breakpoint
962 is finished, we need to switch to deferred_step_ptid, and step it.
963
964 The use case is when one thread has hit a breakpoint, and then the user
965 has switched to another thread and issued 'step'. We need to step over
966 breakpoint in the thread which hit the breakpoint, but then continue
967 stepping the thread user has selected. */
968 static ptid_t deferred_step_ptid;
969 \f
970 /* Displaced stepping. */
971
972 /* In non-stop debugging mode, we must take special care to manage
973 breakpoints properly; in particular, the traditional strategy for
974 stepping a thread past a breakpoint it has hit is unsuitable.
975 'Displaced stepping' is a tactic for stepping one thread past a
976 breakpoint it has hit while ensuring that other threads running
977 concurrently will hit the breakpoint as they should.
978
979 The traditional way to step a thread T off a breakpoint in a
980 multi-threaded program in all-stop mode is as follows:
981
982 a0) Initially, all threads are stopped, and breakpoints are not
983 inserted.
984 a1) We single-step T, leaving breakpoints uninserted.
985 a2) We insert breakpoints, and resume all threads.
986
987 In non-stop debugging, however, this strategy is unsuitable: we
988 don't want to have to stop all threads in the system in order to
989 continue or step T past a breakpoint. Instead, we use displaced
990 stepping:
991
992 n0) Initially, T is stopped, other threads are running, and
993 breakpoints are inserted.
994 n1) We copy the instruction "under" the breakpoint to a separate
995 location, outside the main code stream, making any adjustments
996 to the instruction, register, and memory state as directed by
997 T's architecture.
998 n2) We single-step T over the instruction at its new location.
999 n3) We adjust the resulting register and memory state as directed
1000 by T's architecture. This includes resetting T's PC to point
1001 back into the main instruction stream.
1002 n4) We resume T.
1003
1004 This approach depends on the following gdbarch methods:
1005
1006 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1007 indicate where to copy the instruction, and how much space must
1008 be reserved there. We use these in step n1.
1009
1010 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1011 address, and makes any necessary adjustments to the instruction,
1012 register contents, and memory. We use this in step n1.
1013
1014 - gdbarch_displaced_step_fixup adjusts registers and memory after
1015 we have successfuly single-stepped the instruction, to yield the
1016 same effect the instruction would have had if we had executed it
1017 at its original address. We use this in step n3.
1018
1019 - gdbarch_displaced_step_free_closure provides cleanup.
1020
1021 The gdbarch_displaced_step_copy_insn and
1022 gdbarch_displaced_step_fixup functions must be written so that
1023 copying an instruction with gdbarch_displaced_step_copy_insn,
1024 single-stepping across the copied instruction, and then applying
1025 gdbarch_displaced_insn_fixup should have the same effects on the
1026 thread's memory and registers as stepping the instruction in place
1027 would have. Exactly which responsibilities fall to the copy and
1028 which fall to the fixup is up to the author of those functions.
1029
1030 See the comments in gdbarch.sh for details.
1031
1032 Note that displaced stepping and software single-step cannot
1033 currently be used in combination, although with some care I think
1034 they could be made to. Software single-step works by placing
1035 breakpoints on all possible subsequent instructions; if the
1036 displaced instruction is a PC-relative jump, those breakpoints
1037 could fall in very strange places --- on pages that aren't
1038 executable, or at addresses that are not proper instruction
1039 boundaries. (We do generally let other threads run while we wait
1040 to hit the software single-step breakpoint, and they might
1041 encounter such a corrupted instruction.) One way to work around
1042 this would be to have gdbarch_displaced_step_copy_insn fully
1043 simulate the effect of PC-relative instructions (and return NULL)
1044 on architectures that use software single-stepping.
1045
1046 In non-stop mode, we can have independent and simultaneous step
1047 requests, so more than one thread may need to simultaneously step
1048 over a breakpoint. The current implementation assumes there is
1049 only one scratch space per process. In this case, we have to
1050 serialize access to the scratch space. If thread A wants to step
1051 over a breakpoint, but we are currently waiting for some other
1052 thread to complete a displaced step, we leave thread A stopped and
1053 place it in the displaced_step_request_queue. Whenever a displaced
1054 step finishes, we pick the next thread in the queue and start a new
1055 displaced step operation on it. See displaced_step_prepare and
1056 displaced_step_fixup for details. */
1057
1058 struct displaced_step_request
1059 {
1060 ptid_t ptid;
1061 struct displaced_step_request *next;
1062 };
1063
1064 /* Per-inferior displaced stepping state. */
1065 struct displaced_step_inferior_state
1066 {
1067 /* Pointer to next in linked list. */
1068 struct displaced_step_inferior_state *next;
1069
1070 /* The process this displaced step state refers to. */
1071 int pid;
1072
1073 /* A queue of pending displaced stepping requests. One entry per
1074 thread that needs to do a displaced step. */
1075 struct displaced_step_request *step_request_queue;
1076
1077 /* If this is not null_ptid, this is the thread carrying out a
1078 displaced single-step in process PID. This thread's state will
1079 require fixing up once it has completed its step. */
1080 ptid_t step_ptid;
1081
1082 /* The architecture the thread had when we stepped it. */
1083 struct gdbarch *step_gdbarch;
1084
1085 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1086 for post-step cleanup. */
1087 struct displaced_step_closure *step_closure;
1088
1089 /* The address of the original instruction, and the copy we
1090 made. */
1091 CORE_ADDR step_original, step_copy;
1092
1093 /* Saved contents of copy area. */
1094 gdb_byte *step_saved_copy;
1095 };
1096
1097 /* The list of states of processes involved in displaced stepping
1098 presently. */
1099 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1100
1101 /* Get the displaced stepping state of process PID. */
1102
1103 static struct displaced_step_inferior_state *
1104 get_displaced_stepping_state (int pid)
1105 {
1106 struct displaced_step_inferior_state *state;
1107
1108 for (state = displaced_step_inferior_states;
1109 state != NULL;
1110 state = state->next)
1111 if (state->pid == pid)
1112 return state;
1113
1114 return NULL;
1115 }
1116
1117 /* Add a new displaced stepping state for process PID to the displaced
1118 stepping state list, or return a pointer to an already existing
1119 entry, if it already exists. Never returns NULL. */
1120
1121 static struct displaced_step_inferior_state *
1122 add_displaced_stepping_state (int pid)
1123 {
1124 struct displaced_step_inferior_state *state;
1125
1126 for (state = displaced_step_inferior_states;
1127 state != NULL;
1128 state = state->next)
1129 if (state->pid == pid)
1130 return state;
1131
1132 state = xcalloc (1, sizeof (*state));
1133 state->pid = pid;
1134 state->next = displaced_step_inferior_states;
1135 displaced_step_inferior_states = state;
1136
1137 return state;
1138 }
1139
1140 /* If inferior is in displaced stepping, and ADDR equals to starting address
1141 of copy area, return corresponding displaced_step_closure. Otherwise,
1142 return NULL. */
1143
1144 struct displaced_step_closure*
1145 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1146 {
1147 struct displaced_step_inferior_state *displaced
1148 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1149
1150 /* If checking the mode of displaced instruction in copy area. */
1151 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1152 && (displaced->step_copy == addr))
1153 return displaced->step_closure;
1154
1155 return NULL;
1156 }
1157
1158 /* Remove the displaced stepping state of process PID. */
1159
1160 static void
1161 remove_displaced_stepping_state (int pid)
1162 {
1163 struct displaced_step_inferior_state *it, **prev_next_p;
1164
1165 gdb_assert (pid != 0);
1166
1167 it = displaced_step_inferior_states;
1168 prev_next_p = &displaced_step_inferior_states;
1169 while (it)
1170 {
1171 if (it->pid == pid)
1172 {
1173 *prev_next_p = it->next;
1174 xfree (it);
1175 return;
1176 }
1177
1178 prev_next_p = &it->next;
1179 it = *prev_next_p;
1180 }
1181 }
1182
1183 static void
1184 infrun_inferior_exit (struct inferior *inf)
1185 {
1186 remove_displaced_stepping_state (inf->pid);
1187 }
1188
1189 /* If ON, and the architecture supports it, GDB will use displaced
1190 stepping to step over breakpoints. If OFF, or if the architecture
1191 doesn't support it, GDB will instead use the traditional
1192 hold-and-step approach. If AUTO (which is the default), GDB will
1193 decide which technique to use to step over breakpoints depending on
1194 which of all-stop or non-stop mode is active --- displaced stepping
1195 in non-stop mode; hold-and-step in all-stop mode. */
1196
1197 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1198
1199 static void
1200 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1201 struct cmd_list_element *c,
1202 const char *value)
1203 {
1204 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1205 fprintf_filtered (file,
1206 _("Debugger's willingness to use displaced stepping "
1207 "to step over breakpoints is %s (currently %s).\n"),
1208 value, non_stop ? "on" : "off");
1209 else
1210 fprintf_filtered (file,
1211 _("Debugger's willingness to use displaced stepping "
1212 "to step over breakpoints is %s.\n"), value);
1213 }
1214
1215 /* Return non-zero if displaced stepping can/should be used to step
1216 over breakpoints. */
1217
1218 static int
1219 use_displaced_stepping (struct gdbarch *gdbarch)
1220 {
1221 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1222 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1223 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1224 && !RECORD_IS_USED);
1225 }
1226
1227 /* Clean out any stray displaced stepping state. */
1228 static void
1229 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1230 {
1231 /* Indicate that there is no cleanup pending. */
1232 displaced->step_ptid = null_ptid;
1233
1234 if (displaced->step_closure)
1235 {
1236 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1237 displaced->step_closure);
1238 displaced->step_closure = NULL;
1239 }
1240 }
1241
1242 static void
1243 displaced_step_clear_cleanup (void *arg)
1244 {
1245 struct displaced_step_inferior_state *state = arg;
1246
1247 displaced_step_clear (state);
1248 }
1249
1250 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1251 void
1252 displaced_step_dump_bytes (struct ui_file *file,
1253 const gdb_byte *buf,
1254 size_t len)
1255 {
1256 int i;
1257
1258 for (i = 0; i < len; i++)
1259 fprintf_unfiltered (file, "%02x ", buf[i]);
1260 fputs_unfiltered ("\n", file);
1261 }
1262
1263 /* Prepare to single-step, using displaced stepping.
1264
1265 Note that we cannot use displaced stepping when we have a signal to
1266 deliver. If we have a signal to deliver and an instruction to step
1267 over, then after the step, there will be no indication from the
1268 target whether the thread entered a signal handler or ignored the
1269 signal and stepped over the instruction successfully --- both cases
1270 result in a simple SIGTRAP. In the first case we mustn't do a
1271 fixup, and in the second case we must --- but we can't tell which.
1272 Comments in the code for 'random signals' in handle_inferior_event
1273 explain how we handle this case instead.
1274
1275 Returns 1 if preparing was successful -- this thread is going to be
1276 stepped now; or 0 if displaced stepping this thread got queued. */
1277 static int
1278 displaced_step_prepare (ptid_t ptid)
1279 {
1280 struct cleanup *old_cleanups, *ignore_cleanups;
1281 struct regcache *regcache = get_thread_regcache (ptid);
1282 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1283 CORE_ADDR original, copy;
1284 ULONGEST len;
1285 struct displaced_step_closure *closure;
1286 struct displaced_step_inferior_state *displaced;
1287 int status;
1288
1289 /* We should never reach this function if the architecture does not
1290 support displaced stepping. */
1291 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1292
1293 /* We have to displaced step one thread at a time, as we only have
1294 access to a single scratch space per inferior. */
1295
1296 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1297
1298 if (!ptid_equal (displaced->step_ptid, null_ptid))
1299 {
1300 /* Already waiting for a displaced step to finish. Defer this
1301 request and place in queue. */
1302 struct displaced_step_request *req, *new_req;
1303
1304 if (debug_displaced)
1305 fprintf_unfiltered (gdb_stdlog,
1306 "displaced: defering step of %s\n",
1307 target_pid_to_str (ptid));
1308
1309 new_req = xmalloc (sizeof (*new_req));
1310 new_req->ptid = ptid;
1311 new_req->next = NULL;
1312
1313 if (displaced->step_request_queue)
1314 {
1315 for (req = displaced->step_request_queue;
1316 req && req->next;
1317 req = req->next)
1318 ;
1319 req->next = new_req;
1320 }
1321 else
1322 displaced->step_request_queue = new_req;
1323
1324 return 0;
1325 }
1326 else
1327 {
1328 if (debug_displaced)
1329 fprintf_unfiltered (gdb_stdlog,
1330 "displaced: stepping %s now\n",
1331 target_pid_to_str (ptid));
1332 }
1333
1334 displaced_step_clear (displaced);
1335
1336 old_cleanups = save_inferior_ptid ();
1337 inferior_ptid = ptid;
1338
1339 original = regcache_read_pc (regcache);
1340
1341 copy = gdbarch_displaced_step_location (gdbarch);
1342 len = gdbarch_max_insn_length (gdbarch);
1343
1344 /* Save the original contents of the copy area. */
1345 displaced->step_saved_copy = xmalloc (len);
1346 ignore_cleanups = make_cleanup (free_current_contents,
1347 &displaced->step_saved_copy);
1348 status = target_read_memory (copy, displaced->step_saved_copy, len);
1349 if (status != 0)
1350 throw_error (MEMORY_ERROR,
1351 _("Error accessing memory address %s (%s) for "
1352 "displaced-stepping scratch space."),
1353 paddress (gdbarch, copy), safe_strerror (status));
1354 if (debug_displaced)
1355 {
1356 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1357 paddress (gdbarch, copy));
1358 displaced_step_dump_bytes (gdb_stdlog,
1359 displaced->step_saved_copy,
1360 len);
1361 };
1362
1363 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1364 original, copy, regcache);
1365
1366 /* We don't support the fully-simulated case at present. */
1367 gdb_assert (closure);
1368
1369 /* Save the information we need to fix things up if the step
1370 succeeds. */
1371 displaced->step_ptid = ptid;
1372 displaced->step_gdbarch = gdbarch;
1373 displaced->step_closure = closure;
1374 displaced->step_original = original;
1375 displaced->step_copy = copy;
1376
1377 make_cleanup (displaced_step_clear_cleanup, displaced);
1378
1379 /* Resume execution at the copy. */
1380 regcache_write_pc (regcache, copy);
1381
1382 discard_cleanups (ignore_cleanups);
1383
1384 do_cleanups (old_cleanups);
1385
1386 if (debug_displaced)
1387 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1388 paddress (gdbarch, copy));
1389
1390 return 1;
1391 }
1392
1393 static void
1394 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1395 const gdb_byte *myaddr, int len)
1396 {
1397 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1398
1399 inferior_ptid = ptid;
1400 write_memory (memaddr, myaddr, len);
1401 do_cleanups (ptid_cleanup);
1402 }
1403
1404 /* Restore the contents of the copy area for thread PTID. */
1405
1406 static void
1407 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1408 ptid_t ptid)
1409 {
1410 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1411
1412 write_memory_ptid (ptid, displaced->step_copy,
1413 displaced->step_saved_copy, len);
1414 if (debug_displaced)
1415 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1416 target_pid_to_str (ptid),
1417 paddress (displaced->step_gdbarch,
1418 displaced->step_copy));
1419 }
1420
1421 static void
1422 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1423 {
1424 struct cleanup *old_cleanups;
1425 struct displaced_step_inferior_state *displaced
1426 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1427
1428 /* Was any thread of this process doing a displaced step? */
1429 if (displaced == NULL)
1430 return;
1431
1432 /* Was this event for the pid we displaced? */
1433 if (ptid_equal (displaced->step_ptid, null_ptid)
1434 || ! ptid_equal (displaced->step_ptid, event_ptid))
1435 return;
1436
1437 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1438
1439 displaced_step_restore (displaced, displaced->step_ptid);
1440
1441 /* Did the instruction complete successfully? */
1442 if (signal == GDB_SIGNAL_TRAP)
1443 {
1444 /* Fix up the resulting state. */
1445 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1446 displaced->step_closure,
1447 displaced->step_original,
1448 displaced->step_copy,
1449 get_thread_regcache (displaced->step_ptid));
1450 }
1451 else
1452 {
1453 /* Since the instruction didn't complete, all we can do is
1454 relocate the PC. */
1455 struct regcache *regcache = get_thread_regcache (event_ptid);
1456 CORE_ADDR pc = regcache_read_pc (regcache);
1457
1458 pc = displaced->step_original + (pc - displaced->step_copy);
1459 regcache_write_pc (regcache, pc);
1460 }
1461
1462 do_cleanups (old_cleanups);
1463
1464 displaced->step_ptid = null_ptid;
1465
1466 /* Are there any pending displaced stepping requests? If so, run
1467 one now. Leave the state object around, since we're likely to
1468 need it again soon. */
1469 while (displaced->step_request_queue)
1470 {
1471 struct displaced_step_request *head;
1472 ptid_t ptid;
1473 struct regcache *regcache;
1474 struct gdbarch *gdbarch;
1475 CORE_ADDR actual_pc;
1476 struct address_space *aspace;
1477
1478 head = displaced->step_request_queue;
1479 ptid = head->ptid;
1480 displaced->step_request_queue = head->next;
1481 xfree (head);
1482
1483 context_switch (ptid);
1484
1485 regcache = get_thread_regcache (ptid);
1486 actual_pc = regcache_read_pc (regcache);
1487 aspace = get_regcache_aspace (regcache);
1488
1489 if (breakpoint_here_p (aspace, actual_pc))
1490 {
1491 if (debug_displaced)
1492 fprintf_unfiltered (gdb_stdlog,
1493 "displaced: stepping queued %s now\n",
1494 target_pid_to_str (ptid));
1495
1496 displaced_step_prepare (ptid);
1497
1498 gdbarch = get_regcache_arch (regcache);
1499
1500 if (debug_displaced)
1501 {
1502 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1503 gdb_byte buf[4];
1504
1505 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1506 paddress (gdbarch, actual_pc));
1507 read_memory (actual_pc, buf, sizeof (buf));
1508 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1509 }
1510
1511 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1512 displaced->step_closure))
1513 target_resume (ptid, 1, GDB_SIGNAL_0);
1514 else
1515 target_resume (ptid, 0, GDB_SIGNAL_0);
1516
1517 /* Done, we're stepping a thread. */
1518 break;
1519 }
1520 else
1521 {
1522 int step;
1523 struct thread_info *tp = inferior_thread ();
1524
1525 /* The breakpoint we were sitting under has since been
1526 removed. */
1527 tp->control.trap_expected = 0;
1528
1529 /* Go back to what we were trying to do. */
1530 step = currently_stepping (tp);
1531
1532 if (debug_displaced)
1533 fprintf_unfiltered (gdb_stdlog,
1534 "displaced: breakpoint is gone: %s, step(%d)\n",
1535 target_pid_to_str (tp->ptid), step);
1536
1537 target_resume (ptid, step, GDB_SIGNAL_0);
1538 tp->suspend.stop_signal = GDB_SIGNAL_0;
1539
1540 /* This request was discarded. See if there's any other
1541 thread waiting for its turn. */
1542 }
1543 }
1544 }
1545
1546 /* Update global variables holding ptids to hold NEW_PTID if they were
1547 holding OLD_PTID. */
1548 static void
1549 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1550 {
1551 struct displaced_step_request *it;
1552 struct displaced_step_inferior_state *displaced;
1553
1554 if (ptid_equal (inferior_ptid, old_ptid))
1555 inferior_ptid = new_ptid;
1556
1557 if (ptid_equal (singlestep_ptid, old_ptid))
1558 singlestep_ptid = new_ptid;
1559
1560 if (ptid_equal (deferred_step_ptid, old_ptid))
1561 deferred_step_ptid = new_ptid;
1562
1563 for (displaced = displaced_step_inferior_states;
1564 displaced;
1565 displaced = displaced->next)
1566 {
1567 if (ptid_equal (displaced->step_ptid, old_ptid))
1568 displaced->step_ptid = new_ptid;
1569
1570 for (it = displaced->step_request_queue; it; it = it->next)
1571 if (ptid_equal (it->ptid, old_ptid))
1572 it->ptid = new_ptid;
1573 }
1574 }
1575
1576 \f
1577 /* Resuming. */
1578
1579 /* Things to clean up if we QUIT out of resume (). */
1580 static void
1581 resume_cleanups (void *ignore)
1582 {
1583 normal_stop ();
1584 }
1585
1586 static const char schedlock_off[] = "off";
1587 static const char schedlock_on[] = "on";
1588 static const char schedlock_step[] = "step";
1589 static const char *const scheduler_enums[] = {
1590 schedlock_off,
1591 schedlock_on,
1592 schedlock_step,
1593 NULL
1594 };
1595 static const char *scheduler_mode = schedlock_off;
1596 static void
1597 show_scheduler_mode (struct ui_file *file, int from_tty,
1598 struct cmd_list_element *c, const char *value)
1599 {
1600 fprintf_filtered (file,
1601 _("Mode for locking scheduler "
1602 "during execution is \"%s\".\n"),
1603 value);
1604 }
1605
1606 static void
1607 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1608 {
1609 if (!target_can_lock_scheduler)
1610 {
1611 scheduler_mode = schedlock_off;
1612 error (_("Target '%s' cannot support this command."), target_shortname);
1613 }
1614 }
1615
1616 /* True if execution commands resume all threads of all processes by
1617 default; otherwise, resume only threads of the current inferior
1618 process. */
1619 int sched_multi = 0;
1620
1621 /* Try to setup for software single stepping over the specified location.
1622 Return 1 if target_resume() should use hardware single step.
1623
1624 GDBARCH the current gdbarch.
1625 PC the location to step over. */
1626
1627 static int
1628 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1629 {
1630 int hw_step = 1;
1631
1632 if (execution_direction == EXEC_FORWARD
1633 && gdbarch_software_single_step_p (gdbarch)
1634 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1635 {
1636 hw_step = 0;
1637 /* Do not pull these breakpoints until after a `wait' in
1638 `wait_for_inferior'. */
1639 singlestep_breakpoints_inserted_p = 1;
1640 singlestep_ptid = inferior_ptid;
1641 singlestep_pc = pc;
1642 }
1643 return hw_step;
1644 }
1645
1646 /* Return a ptid representing the set of threads that we will proceed,
1647 in the perspective of the user/frontend. We may actually resume
1648 fewer threads at first, e.g., if a thread is stopped at a
1649 breakpoint that needs stepping-off, but that should not be visible
1650 to the user/frontend, and neither should the frontend/user be
1651 allowed to proceed any of the threads that happen to be stopped for
1652 internal run control handling, if a previous command wanted them
1653 resumed. */
1654
1655 ptid_t
1656 user_visible_resume_ptid (int step)
1657 {
1658 /* By default, resume all threads of all processes. */
1659 ptid_t resume_ptid = RESUME_ALL;
1660
1661 /* Maybe resume only all threads of the current process. */
1662 if (!sched_multi && target_supports_multi_process ())
1663 {
1664 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1665 }
1666
1667 /* Maybe resume a single thread after all. */
1668 if (non_stop)
1669 {
1670 /* With non-stop mode on, threads are always handled
1671 individually. */
1672 resume_ptid = inferior_ptid;
1673 }
1674 else if ((scheduler_mode == schedlock_on)
1675 || (scheduler_mode == schedlock_step
1676 && (step || singlestep_breakpoints_inserted_p)))
1677 {
1678 /* User-settable 'scheduler' mode requires solo thread resume. */
1679 resume_ptid = inferior_ptid;
1680 }
1681
1682 return resume_ptid;
1683 }
1684
1685 /* Resume the inferior, but allow a QUIT. This is useful if the user
1686 wants to interrupt some lengthy single-stepping operation
1687 (for child processes, the SIGINT goes to the inferior, and so
1688 we get a SIGINT random_signal, but for remote debugging and perhaps
1689 other targets, that's not true).
1690
1691 STEP nonzero if we should step (zero to continue instead).
1692 SIG is the signal to give the inferior (zero for none). */
1693 void
1694 resume (int step, enum gdb_signal sig)
1695 {
1696 int should_resume = 1;
1697 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1698 struct regcache *regcache = get_current_regcache ();
1699 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1700 struct thread_info *tp = inferior_thread ();
1701 CORE_ADDR pc = regcache_read_pc (regcache);
1702 struct address_space *aspace = get_regcache_aspace (regcache);
1703
1704 QUIT;
1705
1706 if (current_inferior ()->waiting_for_vfork_done)
1707 {
1708 /* Don't try to single-step a vfork parent that is waiting for
1709 the child to get out of the shared memory region (by exec'ing
1710 or exiting). This is particularly important on software
1711 single-step archs, as the child process would trip on the
1712 software single step breakpoint inserted for the parent
1713 process. Since the parent will not actually execute any
1714 instruction until the child is out of the shared region (such
1715 are vfork's semantics), it is safe to simply continue it.
1716 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1717 the parent, and tell it to `keep_going', which automatically
1718 re-sets it stepping. */
1719 if (debug_infrun)
1720 fprintf_unfiltered (gdb_stdlog,
1721 "infrun: resume : clear step\n");
1722 step = 0;
1723 }
1724
1725 if (debug_infrun)
1726 fprintf_unfiltered (gdb_stdlog,
1727 "infrun: resume (step=%d, signal=%d), "
1728 "trap_expected=%d, current thread [%s] at %s\n",
1729 step, sig, tp->control.trap_expected,
1730 target_pid_to_str (inferior_ptid),
1731 paddress (gdbarch, pc));
1732
1733 /* Normally, by the time we reach `resume', the breakpoints are either
1734 removed or inserted, as appropriate. The exception is if we're sitting
1735 at a permanent breakpoint; we need to step over it, but permanent
1736 breakpoints can't be removed. So we have to test for it here. */
1737 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1738 {
1739 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1740 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1741 else
1742 error (_("\
1743 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1744 how to step past a permanent breakpoint on this architecture. Try using\n\
1745 a command like `return' or `jump' to continue execution."));
1746 }
1747
1748 /* If enabled, step over breakpoints by executing a copy of the
1749 instruction at a different address.
1750
1751 We can't use displaced stepping when we have a signal to deliver;
1752 the comments for displaced_step_prepare explain why. The
1753 comments in the handle_inferior event for dealing with 'random
1754 signals' explain what we do instead.
1755
1756 We can't use displaced stepping when we are waiting for vfork_done
1757 event, displaced stepping breaks the vfork child similarly as single
1758 step software breakpoint. */
1759 if (use_displaced_stepping (gdbarch)
1760 && (tp->control.trap_expected
1761 || (step && gdbarch_software_single_step_p (gdbarch)))
1762 && sig == GDB_SIGNAL_0
1763 && !current_inferior ()->waiting_for_vfork_done)
1764 {
1765 struct displaced_step_inferior_state *displaced;
1766
1767 if (!displaced_step_prepare (inferior_ptid))
1768 {
1769 /* Got placed in displaced stepping queue. Will be resumed
1770 later when all the currently queued displaced stepping
1771 requests finish. The thread is not executing at this point,
1772 and the call to set_executing will be made later. But we
1773 need to call set_running here, since from frontend point of view,
1774 the thread is running. */
1775 set_running (inferior_ptid, 1);
1776 discard_cleanups (old_cleanups);
1777 return;
1778 }
1779
1780 /* Update pc to reflect the new address from which we will execute
1781 instructions due to displaced stepping. */
1782 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1783
1784 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1785 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1786 displaced->step_closure);
1787 }
1788
1789 /* Do we need to do it the hard way, w/temp breakpoints? */
1790 else if (step)
1791 step = maybe_software_singlestep (gdbarch, pc);
1792
1793 /* Currently, our software single-step implementation leads to different
1794 results than hardware single-stepping in one situation: when stepping
1795 into delivering a signal which has an associated signal handler,
1796 hardware single-step will stop at the first instruction of the handler,
1797 while software single-step will simply skip execution of the handler.
1798
1799 For now, this difference in behavior is accepted since there is no
1800 easy way to actually implement single-stepping into a signal handler
1801 without kernel support.
1802
1803 However, there is one scenario where this difference leads to follow-on
1804 problems: if we're stepping off a breakpoint by removing all breakpoints
1805 and then single-stepping. In this case, the software single-step
1806 behavior means that even if there is a *breakpoint* in the signal
1807 handler, GDB still would not stop.
1808
1809 Fortunately, we can at least fix this particular issue. We detect
1810 here the case where we are about to deliver a signal while software
1811 single-stepping with breakpoints removed. In this situation, we
1812 revert the decisions to remove all breakpoints and insert single-
1813 step breakpoints, and instead we install a step-resume breakpoint
1814 at the current address, deliver the signal without stepping, and
1815 once we arrive back at the step-resume breakpoint, actually step
1816 over the breakpoint we originally wanted to step over. */
1817 if (singlestep_breakpoints_inserted_p
1818 && tp->control.trap_expected && sig != GDB_SIGNAL_0)
1819 {
1820 /* If we have nested signals or a pending signal is delivered
1821 immediately after a handler returns, might might already have
1822 a step-resume breakpoint set on the earlier handler. We cannot
1823 set another step-resume breakpoint; just continue on until the
1824 original breakpoint is hit. */
1825 if (tp->control.step_resume_breakpoint == NULL)
1826 {
1827 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
1828 tp->step_after_step_resume_breakpoint = 1;
1829 }
1830
1831 remove_single_step_breakpoints ();
1832 singlestep_breakpoints_inserted_p = 0;
1833
1834 insert_breakpoints ();
1835 tp->control.trap_expected = 0;
1836 }
1837
1838 if (should_resume)
1839 {
1840 ptid_t resume_ptid;
1841
1842 /* If STEP is set, it's a request to use hardware stepping
1843 facilities. But in that case, we should never
1844 use singlestep breakpoint. */
1845 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1846
1847 /* Decide the set of threads to ask the target to resume. Start
1848 by assuming everything will be resumed, than narrow the set
1849 by applying increasingly restricting conditions. */
1850 resume_ptid = user_visible_resume_ptid (step);
1851
1852 /* Maybe resume a single thread after all. */
1853 if (singlestep_breakpoints_inserted_p
1854 && stepping_past_singlestep_breakpoint)
1855 {
1856 /* The situation here is as follows. In thread T1 we wanted to
1857 single-step. Lacking hardware single-stepping we've
1858 set breakpoint at the PC of the next instruction -- call it
1859 P. After resuming, we've hit that breakpoint in thread T2.
1860 Now we've removed original breakpoint, inserted breakpoint
1861 at P+1, and try to step to advance T2 past breakpoint.
1862 We need to step only T2, as if T1 is allowed to freely run,
1863 it can run past P, and if other threads are allowed to run,
1864 they can hit breakpoint at P+1, and nested hits of single-step
1865 breakpoints is not something we'd want -- that's complicated
1866 to support, and has no value. */
1867 resume_ptid = inferior_ptid;
1868 }
1869 else if ((step || singlestep_breakpoints_inserted_p)
1870 && tp->control.trap_expected)
1871 {
1872 /* We're allowing a thread to run past a breakpoint it has
1873 hit, by single-stepping the thread with the breakpoint
1874 removed. In which case, we need to single-step only this
1875 thread, and keep others stopped, as they can miss this
1876 breakpoint if allowed to run.
1877
1878 The current code actually removes all breakpoints when
1879 doing this, not just the one being stepped over, so if we
1880 let other threads run, we can actually miss any
1881 breakpoint, not just the one at PC. */
1882 resume_ptid = inferior_ptid;
1883 }
1884
1885 if (gdbarch_cannot_step_breakpoint (gdbarch))
1886 {
1887 /* Most targets can step a breakpoint instruction, thus
1888 executing it normally. But if this one cannot, just
1889 continue and we will hit it anyway. */
1890 if (step && breakpoint_inserted_here_p (aspace, pc))
1891 step = 0;
1892 }
1893
1894 if (debug_displaced
1895 && use_displaced_stepping (gdbarch)
1896 && tp->control.trap_expected)
1897 {
1898 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1899 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1900 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1901 gdb_byte buf[4];
1902
1903 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1904 paddress (resume_gdbarch, actual_pc));
1905 read_memory (actual_pc, buf, sizeof (buf));
1906 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1907 }
1908
1909 /* Install inferior's terminal modes. */
1910 target_terminal_inferior ();
1911
1912 /* Avoid confusing the next resume, if the next stop/resume
1913 happens to apply to another thread. */
1914 tp->suspend.stop_signal = GDB_SIGNAL_0;
1915
1916 /* Advise target which signals may be handled silently. If we have
1917 removed breakpoints because we are stepping over one (which can
1918 happen only if we are not using displaced stepping), we need to
1919 receive all signals to avoid accidentally skipping a breakpoint
1920 during execution of a signal handler. */
1921 if ((step || singlestep_breakpoints_inserted_p)
1922 && tp->control.trap_expected
1923 && !use_displaced_stepping (gdbarch))
1924 target_pass_signals (0, NULL);
1925 else
1926 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
1927
1928 target_resume (resume_ptid, step, sig);
1929 }
1930
1931 discard_cleanups (old_cleanups);
1932 }
1933 \f
1934 /* Proceeding. */
1935
1936 /* Clear out all variables saying what to do when inferior is continued.
1937 First do this, then set the ones you want, then call `proceed'. */
1938
1939 static void
1940 clear_proceed_status_thread (struct thread_info *tp)
1941 {
1942 if (debug_infrun)
1943 fprintf_unfiltered (gdb_stdlog,
1944 "infrun: clear_proceed_status_thread (%s)\n",
1945 target_pid_to_str (tp->ptid));
1946
1947 tp->control.trap_expected = 0;
1948 tp->control.step_range_start = 0;
1949 tp->control.step_range_end = 0;
1950 tp->control.step_frame_id = null_frame_id;
1951 tp->control.step_stack_frame_id = null_frame_id;
1952 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
1953 tp->stop_requested = 0;
1954
1955 tp->control.stop_step = 0;
1956
1957 tp->control.proceed_to_finish = 0;
1958
1959 /* Discard any remaining commands or status from previous stop. */
1960 bpstat_clear (&tp->control.stop_bpstat);
1961 }
1962
1963 static int
1964 clear_proceed_status_callback (struct thread_info *tp, void *data)
1965 {
1966 if (is_exited (tp->ptid))
1967 return 0;
1968
1969 clear_proceed_status_thread (tp);
1970 return 0;
1971 }
1972
1973 void
1974 clear_proceed_status (void)
1975 {
1976 if (!non_stop)
1977 {
1978 /* In all-stop mode, delete the per-thread status of all
1979 threads, even if inferior_ptid is null_ptid, there may be
1980 threads on the list. E.g., we may be launching a new
1981 process, while selecting the executable. */
1982 iterate_over_threads (clear_proceed_status_callback, NULL);
1983 }
1984
1985 if (!ptid_equal (inferior_ptid, null_ptid))
1986 {
1987 struct inferior *inferior;
1988
1989 if (non_stop)
1990 {
1991 /* If in non-stop mode, only delete the per-thread status of
1992 the current thread. */
1993 clear_proceed_status_thread (inferior_thread ());
1994 }
1995
1996 inferior = current_inferior ();
1997 inferior->control.stop_soon = NO_STOP_QUIETLY;
1998 }
1999
2000 stop_after_trap = 0;
2001
2002 observer_notify_about_to_proceed ();
2003
2004 if (stop_registers)
2005 {
2006 regcache_xfree (stop_registers);
2007 stop_registers = NULL;
2008 }
2009 }
2010
2011 /* Check the current thread against the thread that reported the most recent
2012 event. If a step-over is required return TRUE and set the current thread
2013 to the old thread. Otherwise return FALSE.
2014
2015 This should be suitable for any targets that support threads. */
2016
2017 static int
2018 prepare_to_proceed (int step)
2019 {
2020 ptid_t wait_ptid;
2021 struct target_waitstatus wait_status;
2022 int schedlock_enabled;
2023
2024 /* With non-stop mode on, threads are always handled individually. */
2025 gdb_assert (! non_stop);
2026
2027 /* Get the last target status returned by target_wait(). */
2028 get_last_target_status (&wait_ptid, &wait_status);
2029
2030 /* Make sure we were stopped at a breakpoint. */
2031 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2032 || (wait_status.value.sig != GDB_SIGNAL_TRAP
2033 && wait_status.value.sig != GDB_SIGNAL_ILL
2034 && wait_status.value.sig != GDB_SIGNAL_SEGV
2035 && wait_status.value.sig != GDB_SIGNAL_EMT))
2036 {
2037 return 0;
2038 }
2039
2040 schedlock_enabled = (scheduler_mode == schedlock_on
2041 || (scheduler_mode == schedlock_step
2042 && step));
2043
2044 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2045 if (schedlock_enabled)
2046 return 0;
2047
2048 /* Don't switch over if we're about to resume some other process
2049 other than WAIT_PTID's, and schedule-multiple is off. */
2050 if (!sched_multi
2051 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2052 return 0;
2053
2054 /* Switched over from WAIT_PID. */
2055 if (!ptid_equal (wait_ptid, minus_one_ptid)
2056 && !ptid_equal (inferior_ptid, wait_ptid))
2057 {
2058 struct regcache *regcache = get_thread_regcache (wait_ptid);
2059
2060 if (breakpoint_here_p (get_regcache_aspace (regcache),
2061 regcache_read_pc (regcache)))
2062 {
2063 /* If stepping, remember current thread to switch back to. */
2064 if (step)
2065 deferred_step_ptid = inferior_ptid;
2066
2067 /* Switch back to WAIT_PID thread. */
2068 switch_to_thread (wait_ptid);
2069
2070 if (debug_infrun)
2071 fprintf_unfiltered (gdb_stdlog,
2072 "infrun: prepare_to_proceed (step=%d), "
2073 "switched to [%s]\n",
2074 step, target_pid_to_str (inferior_ptid));
2075
2076 /* We return 1 to indicate that there is a breakpoint here,
2077 so we need to step over it before continuing to avoid
2078 hitting it straight away. */
2079 return 1;
2080 }
2081 }
2082
2083 return 0;
2084 }
2085
2086 /* Basic routine for continuing the program in various fashions.
2087
2088 ADDR is the address to resume at, or -1 for resume where stopped.
2089 SIGGNAL is the signal to give it, or 0 for none,
2090 or -1 for act according to how it stopped.
2091 STEP is nonzero if should trap after one instruction.
2092 -1 means return after that and print nothing.
2093 You should probably set various step_... variables
2094 before calling here, if you are stepping.
2095
2096 You should call clear_proceed_status before calling proceed. */
2097
2098 void
2099 proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
2100 {
2101 struct regcache *regcache;
2102 struct gdbarch *gdbarch;
2103 struct thread_info *tp;
2104 CORE_ADDR pc;
2105 struct address_space *aspace;
2106 int oneproc = 0;
2107
2108 /* If we're stopped at a fork/vfork, follow the branch set by the
2109 "set follow-fork-mode" command; otherwise, we'll just proceed
2110 resuming the current thread. */
2111 if (!follow_fork ())
2112 {
2113 /* The target for some reason decided not to resume. */
2114 normal_stop ();
2115 if (target_can_async_p ())
2116 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2117 return;
2118 }
2119
2120 /* We'll update this if & when we switch to a new thread. */
2121 previous_inferior_ptid = inferior_ptid;
2122
2123 regcache = get_current_regcache ();
2124 gdbarch = get_regcache_arch (regcache);
2125 aspace = get_regcache_aspace (regcache);
2126 pc = regcache_read_pc (regcache);
2127
2128 if (step > 0)
2129 step_start_function = find_pc_function (pc);
2130 if (step < 0)
2131 stop_after_trap = 1;
2132
2133 if (addr == (CORE_ADDR) -1)
2134 {
2135 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
2136 && execution_direction != EXEC_REVERSE)
2137 /* There is a breakpoint at the address we will resume at,
2138 step one instruction before inserting breakpoints so that
2139 we do not stop right away (and report a second hit at this
2140 breakpoint).
2141
2142 Note, we don't do this in reverse, because we won't
2143 actually be executing the breakpoint insn anyway.
2144 We'll be (un-)executing the previous instruction. */
2145
2146 oneproc = 1;
2147 else if (gdbarch_single_step_through_delay_p (gdbarch)
2148 && gdbarch_single_step_through_delay (gdbarch,
2149 get_current_frame ()))
2150 /* We stepped onto an instruction that needs to be stepped
2151 again before re-inserting the breakpoint, do so. */
2152 oneproc = 1;
2153 }
2154 else
2155 {
2156 regcache_write_pc (regcache, addr);
2157 }
2158
2159 if (debug_infrun)
2160 fprintf_unfiltered (gdb_stdlog,
2161 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2162 paddress (gdbarch, addr), siggnal, step);
2163
2164 if (non_stop)
2165 /* In non-stop, each thread is handled individually. The context
2166 must already be set to the right thread here. */
2167 ;
2168 else
2169 {
2170 /* In a multi-threaded task we may select another thread and
2171 then continue or step.
2172
2173 But if the old thread was stopped at a breakpoint, it will
2174 immediately cause another breakpoint stop without any
2175 execution (i.e. it will report a breakpoint hit incorrectly).
2176 So we must step over it first.
2177
2178 prepare_to_proceed checks the current thread against the
2179 thread that reported the most recent event. If a step-over
2180 is required it returns TRUE and sets the current thread to
2181 the old thread. */
2182 if (prepare_to_proceed (step))
2183 oneproc = 1;
2184 }
2185
2186 /* prepare_to_proceed may change the current thread. */
2187 tp = inferior_thread ();
2188
2189 if (oneproc)
2190 {
2191 tp->control.trap_expected = 1;
2192 /* If displaced stepping is enabled, we can step over the
2193 breakpoint without hitting it, so leave all breakpoints
2194 inserted. Otherwise we need to disable all breakpoints, step
2195 one instruction, and then re-add them when that step is
2196 finished. */
2197 if (!use_displaced_stepping (gdbarch))
2198 remove_breakpoints ();
2199 }
2200
2201 /* We can insert breakpoints if we're not trying to step over one,
2202 or if we are stepping over one but we're using displaced stepping
2203 to do so. */
2204 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2205 insert_breakpoints ();
2206
2207 if (!non_stop)
2208 {
2209 /* Pass the last stop signal to the thread we're resuming,
2210 irrespective of whether the current thread is the thread that
2211 got the last event or not. This was historically GDB's
2212 behaviour before keeping a stop_signal per thread. */
2213
2214 struct thread_info *last_thread;
2215 ptid_t last_ptid;
2216 struct target_waitstatus last_status;
2217
2218 get_last_target_status (&last_ptid, &last_status);
2219 if (!ptid_equal (inferior_ptid, last_ptid)
2220 && !ptid_equal (last_ptid, null_ptid)
2221 && !ptid_equal (last_ptid, minus_one_ptid))
2222 {
2223 last_thread = find_thread_ptid (last_ptid);
2224 if (last_thread)
2225 {
2226 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2227 last_thread->suspend.stop_signal = GDB_SIGNAL_0;
2228 }
2229 }
2230 }
2231
2232 if (siggnal != GDB_SIGNAL_DEFAULT)
2233 tp->suspend.stop_signal = siggnal;
2234 /* If this signal should not be seen by program,
2235 give it zero. Used for debugging signals. */
2236 else if (!signal_program[tp->suspend.stop_signal])
2237 tp->suspend.stop_signal = GDB_SIGNAL_0;
2238
2239 annotate_starting ();
2240
2241 /* Make sure that output from GDB appears before output from the
2242 inferior. */
2243 gdb_flush (gdb_stdout);
2244
2245 /* Refresh prev_pc value just prior to resuming. This used to be
2246 done in stop_stepping, however, setting prev_pc there did not handle
2247 scenarios such as inferior function calls or returning from
2248 a function via the return command. In those cases, the prev_pc
2249 value was not set properly for subsequent commands. The prev_pc value
2250 is used to initialize the starting line number in the ecs. With an
2251 invalid value, the gdb next command ends up stopping at the position
2252 represented by the next line table entry past our start position.
2253 On platforms that generate one line table entry per line, this
2254 is not a problem. However, on the ia64, the compiler generates
2255 extraneous line table entries that do not increase the line number.
2256 When we issue the gdb next command on the ia64 after an inferior call
2257 or a return command, we often end up a few instructions forward, still
2258 within the original line we started.
2259
2260 An attempt was made to refresh the prev_pc at the same time the
2261 execution_control_state is initialized (for instance, just before
2262 waiting for an inferior event). But this approach did not work
2263 because of platforms that use ptrace, where the pc register cannot
2264 be read unless the inferior is stopped. At that point, we are not
2265 guaranteed the inferior is stopped and so the regcache_read_pc() call
2266 can fail. Setting the prev_pc value here ensures the value is updated
2267 correctly when the inferior is stopped. */
2268 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2269
2270 /* Fill in with reasonable starting values. */
2271 init_thread_stepping_state (tp);
2272
2273 /* Reset to normal state. */
2274 init_infwait_state ();
2275
2276 /* Resume inferior. */
2277 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
2278
2279 /* Wait for it to stop (if not standalone)
2280 and in any case decode why it stopped, and act accordingly. */
2281 /* Do this only if we are not using the event loop, or if the target
2282 does not support asynchronous execution. */
2283 if (!target_can_async_p ())
2284 {
2285 wait_for_inferior ();
2286 normal_stop ();
2287 }
2288 }
2289 \f
2290
2291 /* Start remote-debugging of a machine over a serial link. */
2292
2293 void
2294 start_remote (int from_tty)
2295 {
2296 struct inferior *inferior;
2297
2298 inferior = current_inferior ();
2299 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2300
2301 /* Always go on waiting for the target, regardless of the mode. */
2302 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2303 indicate to wait_for_inferior that a target should timeout if
2304 nothing is returned (instead of just blocking). Because of this,
2305 targets expecting an immediate response need to, internally, set
2306 things up so that the target_wait() is forced to eventually
2307 timeout. */
2308 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2309 differentiate to its caller what the state of the target is after
2310 the initial open has been performed. Here we're assuming that
2311 the target has stopped. It should be possible to eventually have
2312 target_open() return to the caller an indication that the target
2313 is currently running and GDB state should be set to the same as
2314 for an async run. */
2315 wait_for_inferior ();
2316
2317 /* Now that the inferior has stopped, do any bookkeeping like
2318 loading shared libraries. We want to do this before normal_stop,
2319 so that the displayed frame is up to date. */
2320 post_create_inferior (&current_target, from_tty);
2321
2322 normal_stop ();
2323 }
2324
2325 /* Initialize static vars when a new inferior begins. */
2326
2327 void
2328 init_wait_for_inferior (void)
2329 {
2330 /* These are meaningless until the first time through wait_for_inferior. */
2331
2332 breakpoint_init_inferior (inf_starting);
2333
2334 clear_proceed_status ();
2335
2336 stepping_past_singlestep_breakpoint = 0;
2337 deferred_step_ptid = null_ptid;
2338
2339 target_last_wait_ptid = minus_one_ptid;
2340
2341 previous_inferior_ptid = inferior_ptid;
2342 init_infwait_state ();
2343
2344 /* Discard any skipped inlined frames. */
2345 clear_inline_frame_state (minus_one_ptid);
2346 }
2347
2348 \f
2349 /* This enum encodes possible reasons for doing a target_wait, so that
2350 wfi can call target_wait in one place. (Ultimately the call will be
2351 moved out of the infinite loop entirely.) */
2352
2353 enum infwait_states
2354 {
2355 infwait_normal_state,
2356 infwait_thread_hop_state,
2357 infwait_step_watch_state,
2358 infwait_nonstep_watch_state
2359 };
2360
2361 /* The PTID we'll do a target_wait on.*/
2362 ptid_t waiton_ptid;
2363
2364 /* Current inferior wait state. */
2365 enum infwait_states infwait_state;
2366
2367 /* Data to be passed around while handling an event. This data is
2368 discarded between events. */
2369 struct execution_control_state
2370 {
2371 ptid_t ptid;
2372 /* The thread that got the event, if this was a thread event; NULL
2373 otherwise. */
2374 struct thread_info *event_thread;
2375
2376 struct target_waitstatus ws;
2377 int random_signal;
2378 int stop_func_filled_in;
2379 CORE_ADDR stop_func_start;
2380 CORE_ADDR stop_func_end;
2381 const char *stop_func_name;
2382 int wait_some_more;
2383 };
2384
2385 static void handle_inferior_event (struct execution_control_state *ecs);
2386
2387 static void handle_step_into_function (struct gdbarch *gdbarch,
2388 struct execution_control_state *ecs);
2389 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2390 struct execution_control_state *ecs);
2391 static void check_exception_resume (struct execution_control_state *,
2392 struct frame_info *);
2393
2394 static void stop_stepping (struct execution_control_state *ecs);
2395 static void prepare_to_wait (struct execution_control_state *ecs);
2396 static void keep_going (struct execution_control_state *ecs);
2397
2398 /* Callback for iterate over threads. If the thread is stopped, but
2399 the user/frontend doesn't know about that yet, go through
2400 normal_stop, as if the thread had just stopped now. ARG points at
2401 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2402 ptid_is_pid(PTID) is true, applies to all threads of the process
2403 pointed at by PTID. Otherwise, apply only to the thread pointed by
2404 PTID. */
2405
2406 static int
2407 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2408 {
2409 ptid_t ptid = * (ptid_t *) arg;
2410
2411 if ((ptid_equal (info->ptid, ptid)
2412 || ptid_equal (minus_one_ptid, ptid)
2413 || (ptid_is_pid (ptid)
2414 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2415 && is_running (info->ptid)
2416 && !is_executing (info->ptid))
2417 {
2418 struct cleanup *old_chain;
2419 struct execution_control_state ecss;
2420 struct execution_control_state *ecs = &ecss;
2421
2422 memset (ecs, 0, sizeof (*ecs));
2423
2424 old_chain = make_cleanup_restore_current_thread ();
2425
2426 /* Go through handle_inferior_event/normal_stop, so we always
2427 have consistent output as if the stop event had been
2428 reported. */
2429 ecs->ptid = info->ptid;
2430 ecs->event_thread = find_thread_ptid (info->ptid);
2431 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2432 ecs->ws.value.sig = GDB_SIGNAL_0;
2433
2434 handle_inferior_event (ecs);
2435
2436 if (!ecs->wait_some_more)
2437 {
2438 struct thread_info *tp;
2439
2440 normal_stop ();
2441
2442 /* Finish off the continuations. */
2443 tp = inferior_thread ();
2444 do_all_intermediate_continuations_thread (tp, 1);
2445 do_all_continuations_thread (tp, 1);
2446 }
2447
2448 do_cleanups (old_chain);
2449 }
2450
2451 return 0;
2452 }
2453
2454 /* This function is attached as a "thread_stop_requested" observer.
2455 Cleanup local state that assumed the PTID was to be resumed, and
2456 report the stop to the frontend. */
2457
2458 static void
2459 infrun_thread_stop_requested (ptid_t ptid)
2460 {
2461 struct displaced_step_inferior_state *displaced;
2462
2463 /* PTID was requested to stop. Remove it from the displaced
2464 stepping queue, so we don't try to resume it automatically. */
2465
2466 for (displaced = displaced_step_inferior_states;
2467 displaced;
2468 displaced = displaced->next)
2469 {
2470 struct displaced_step_request *it, **prev_next_p;
2471
2472 it = displaced->step_request_queue;
2473 prev_next_p = &displaced->step_request_queue;
2474 while (it)
2475 {
2476 if (ptid_match (it->ptid, ptid))
2477 {
2478 *prev_next_p = it->next;
2479 it->next = NULL;
2480 xfree (it);
2481 }
2482 else
2483 {
2484 prev_next_p = &it->next;
2485 }
2486
2487 it = *prev_next_p;
2488 }
2489 }
2490
2491 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2492 }
2493
2494 static void
2495 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2496 {
2497 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2498 nullify_last_target_wait_ptid ();
2499 }
2500
2501 /* Callback for iterate_over_threads. */
2502
2503 static int
2504 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2505 {
2506 if (is_exited (info->ptid))
2507 return 0;
2508
2509 delete_step_resume_breakpoint (info);
2510 delete_exception_resume_breakpoint (info);
2511 return 0;
2512 }
2513
2514 /* In all-stop, delete the step resume breakpoint of any thread that
2515 had one. In non-stop, delete the step resume breakpoint of the
2516 thread that just stopped. */
2517
2518 static void
2519 delete_step_thread_step_resume_breakpoint (void)
2520 {
2521 if (!target_has_execution
2522 || ptid_equal (inferior_ptid, null_ptid))
2523 /* If the inferior has exited, we have already deleted the step
2524 resume breakpoints out of GDB's lists. */
2525 return;
2526
2527 if (non_stop)
2528 {
2529 /* If in non-stop mode, only delete the step-resume or
2530 longjmp-resume breakpoint of the thread that just stopped
2531 stepping. */
2532 struct thread_info *tp = inferior_thread ();
2533
2534 delete_step_resume_breakpoint (tp);
2535 delete_exception_resume_breakpoint (tp);
2536 }
2537 else
2538 /* In all-stop mode, delete all step-resume and longjmp-resume
2539 breakpoints of any thread that had them. */
2540 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2541 }
2542
2543 /* A cleanup wrapper. */
2544
2545 static void
2546 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2547 {
2548 delete_step_thread_step_resume_breakpoint ();
2549 }
2550
2551 /* Pretty print the results of target_wait, for debugging purposes. */
2552
2553 static void
2554 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2555 const struct target_waitstatus *ws)
2556 {
2557 char *status_string = target_waitstatus_to_string (ws);
2558 struct ui_file *tmp_stream = mem_fileopen ();
2559 char *text;
2560
2561 /* The text is split over several lines because it was getting too long.
2562 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2563 output as a unit; we want only one timestamp printed if debug_timestamp
2564 is set. */
2565
2566 fprintf_unfiltered (tmp_stream,
2567 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2568 if (PIDGET (waiton_ptid) != -1)
2569 fprintf_unfiltered (tmp_stream,
2570 " [%s]", target_pid_to_str (waiton_ptid));
2571 fprintf_unfiltered (tmp_stream, ", status) =\n");
2572 fprintf_unfiltered (tmp_stream,
2573 "infrun: %d [%s],\n",
2574 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2575 fprintf_unfiltered (tmp_stream,
2576 "infrun: %s\n",
2577 status_string);
2578
2579 text = ui_file_xstrdup (tmp_stream, NULL);
2580
2581 /* This uses %s in part to handle %'s in the text, but also to avoid
2582 a gcc error: the format attribute requires a string literal. */
2583 fprintf_unfiltered (gdb_stdlog, "%s", text);
2584
2585 xfree (status_string);
2586 xfree (text);
2587 ui_file_delete (tmp_stream);
2588 }
2589
2590 /* Prepare and stabilize the inferior for detaching it. E.g.,
2591 detaching while a thread is displaced stepping is a recipe for
2592 crashing it, as nothing would readjust the PC out of the scratch
2593 pad. */
2594
2595 void
2596 prepare_for_detach (void)
2597 {
2598 struct inferior *inf = current_inferior ();
2599 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2600 struct cleanup *old_chain_1;
2601 struct displaced_step_inferior_state *displaced;
2602
2603 displaced = get_displaced_stepping_state (inf->pid);
2604
2605 /* Is any thread of this process displaced stepping? If not,
2606 there's nothing else to do. */
2607 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2608 return;
2609
2610 if (debug_infrun)
2611 fprintf_unfiltered (gdb_stdlog,
2612 "displaced-stepping in-process while detaching");
2613
2614 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2615 inf->detaching = 1;
2616
2617 while (!ptid_equal (displaced->step_ptid, null_ptid))
2618 {
2619 struct cleanup *old_chain_2;
2620 struct execution_control_state ecss;
2621 struct execution_control_state *ecs;
2622
2623 ecs = &ecss;
2624 memset (ecs, 0, sizeof (*ecs));
2625
2626 overlay_cache_invalid = 1;
2627
2628 if (deprecated_target_wait_hook)
2629 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2630 else
2631 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2632
2633 if (debug_infrun)
2634 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2635
2636 /* If an error happens while handling the event, propagate GDB's
2637 knowledge of the executing state to the frontend/user running
2638 state. */
2639 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2640 &minus_one_ptid);
2641
2642 /* Now figure out what to do with the result of the result. */
2643 handle_inferior_event (ecs);
2644
2645 /* No error, don't finish the state yet. */
2646 discard_cleanups (old_chain_2);
2647
2648 /* Breakpoints and watchpoints are not installed on the target
2649 at this point, and signals are passed directly to the
2650 inferior, so this must mean the process is gone. */
2651 if (!ecs->wait_some_more)
2652 {
2653 discard_cleanups (old_chain_1);
2654 error (_("Program exited while detaching"));
2655 }
2656 }
2657
2658 discard_cleanups (old_chain_1);
2659 }
2660
2661 /* Wait for control to return from inferior to debugger.
2662
2663 If inferior gets a signal, we may decide to start it up again
2664 instead of returning. That is why there is a loop in this function.
2665 When this function actually returns it means the inferior
2666 should be left stopped and GDB should read more commands. */
2667
2668 void
2669 wait_for_inferior (void)
2670 {
2671 struct cleanup *old_cleanups;
2672
2673 if (debug_infrun)
2674 fprintf_unfiltered
2675 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
2676
2677 old_cleanups =
2678 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2679
2680 while (1)
2681 {
2682 struct execution_control_state ecss;
2683 struct execution_control_state *ecs = &ecss;
2684 struct cleanup *old_chain;
2685
2686 memset (ecs, 0, sizeof (*ecs));
2687
2688 overlay_cache_invalid = 1;
2689
2690 if (deprecated_target_wait_hook)
2691 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2692 else
2693 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2694
2695 if (debug_infrun)
2696 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2697
2698 /* If an error happens while handling the event, propagate GDB's
2699 knowledge of the executing state to the frontend/user running
2700 state. */
2701 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2702
2703 /* Now figure out what to do with the result of the result. */
2704 handle_inferior_event (ecs);
2705
2706 /* No error, don't finish the state yet. */
2707 discard_cleanups (old_chain);
2708
2709 if (!ecs->wait_some_more)
2710 break;
2711 }
2712
2713 do_cleanups (old_cleanups);
2714 }
2715
2716 /* Asynchronous version of wait_for_inferior. It is called by the
2717 event loop whenever a change of state is detected on the file
2718 descriptor corresponding to the target. It can be called more than
2719 once to complete a single execution command. In such cases we need
2720 to keep the state in a global variable ECSS. If it is the last time
2721 that this function is called for a single execution command, then
2722 report to the user that the inferior has stopped, and do the
2723 necessary cleanups. */
2724
2725 void
2726 fetch_inferior_event (void *client_data)
2727 {
2728 struct execution_control_state ecss;
2729 struct execution_control_state *ecs = &ecss;
2730 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2731 struct cleanup *ts_old_chain;
2732 int was_sync = sync_execution;
2733 int cmd_done = 0;
2734
2735 memset (ecs, 0, sizeof (*ecs));
2736
2737 /* We're handling a live event, so make sure we're doing live
2738 debugging. If we're looking at traceframes while the target is
2739 running, we're going to need to get back to that mode after
2740 handling the event. */
2741 if (non_stop)
2742 {
2743 make_cleanup_restore_current_traceframe ();
2744 set_current_traceframe (-1);
2745 }
2746
2747 if (non_stop)
2748 /* In non-stop mode, the user/frontend should not notice a thread
2749 switch due to internal events. Make sure we reverse to the
2750 user selected thread and frame after handling the event and
2751 running any breakpoint commands. */
2752 make_cleanup_restore_current_thread ();
2753
2754 overlay_cache_invalid = 1;
2755
2756 make_cleanup_restore_integer (&execution_direction);
2757 execution_direction = target_execution_direction ();
2758
2759 if (deprecated_target_wait_hook)
2760 ecs->ptid =
2761 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2762 else
2763 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2764
2765 if (debug_infrun)
2766 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2767
2768 /* If an error happens while handling the event, propagate GDB's
2769 knowledge of the executing state to the frontend/user running
2770 state. */
2771 if (!non_stop)
2772 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2773 else
2774 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2775
2776 /* Get executed before make_cleanup_restore_current_thread above to apply
2777 still for the thread which has thrown the exception. */
2778 make_bpstat_clear_actions_cleanup ();
2779
2780 /* Now figure out what to do with the result of the result. */
2781 handle_inferior_event (ecs);
2782
2783 if (!ecs->wait_some_more)
2784 {
2785 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2786
2787 delete_step_thread_step_resume_breakpoint ();
2788
2789 /* We may not find an inferior if this was a process exit. */
2790 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
2791 normal_stop ();
2792
2793 if (target_has_execution
2794 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
2795 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2796 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2797 && ecs->event_thread->step_multi
2798 && ecs->event_thread->control.stop_step)
2799 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2800 else
2801 {
2802 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2803 cmd_done = 1;
2804 }
2805 }
2806
2807 /* No error, don't finish the thread states yet. */
2808 discard_cleanups (ts_old_chain);
2809
2810 /* Revert thread and frame. */
2811 do_cleanups (old_chain);
2812
2813 /* If the inferior was in sync execution mode, and now isn't,
2814 restore the prompt (a synchronous execution command has finished,
2815 and we're ready for input). */
2816 if (interpreter_async && was_sync && !sync_execution)
2817 display_gdb_prompt (0);
2818
2819 if (cmd_done
2820 && !was_sync
2821 && exec_done_display_p
2822 && (ptid_equal (inferior_ptid, null_ptid)
2823 || !is_running (inferior_ptid)))
2824 printf_unfiltered (_("completed.\n"));
2825 }
2826
2827 /* Record the frame and location we're currently stepping through. */
2828 void
2829 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2830 {
2831 struct thread_info *tp = inferior_thread ();
2832
2833 tp->control.step_frame_id = get_frame_id (frame);
2834 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
2835
2836 tp->current_symtab = sal.symtab;
2837 tp->current_line = sal.line;
2838 }
2839
2840 /* Clear context switchable stepping state. */
2841
2842 void
2843 init_thread_stepping_state (struct thread_info *tss)
2844 {
2845 tss->stepping_over_breakpoint = 0;
2846 tss->step_after_step_resume_breakpoint = 0;
2847 }
2848
2849 /* Return the cached copy of the last pid/waitstatus returned by
2850 target_wait()/deprecated_target_wait_hook(). The data is actually
2851 cached by handle_inferior_event(), which gets called immediately
2852 after target_wait()/deprecated_target_wait_hook(). */
2853
2854 void
2855 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2856 {
2857 *ptidp = target_last_wait_ptid;
2858 *status = target_last_waitstatus;
2859 }
2860
2861 void
2862 nullify_last_target_wait_ptid (void)
2863 {
2864 target_last_wait_ptid = minus_one_ptid;
2865 }
2866
2867 /* Switch thread contexts. */
2868
2869 static void
2870 context_switch (ptid_t ptid)
2871 {
2872 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
2873 {
2874 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2875 target_pid_to_str (inferior_ptid));
2876 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2877 target_pid_to_str (ptid));
2878 }
2879
2880 switch_to_thread (ptid);
2881 }
2882
2883 static void
2884 adjust_pc_after_break (struct execution_control_state *ecs)
2885 {
2886 struct regcache *regcache;
2887 struct gdbarch *gdbarch;
2888 struct address_space *aspace;
2889 CORE_ADDR breakpoint_pc;
2890
2891 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2892 we aren't, just return.
2893
2894 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2895 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2896 implemented by software breakpoints should be handled through the normal
2897 breakpoint layer.
2898
2899 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2900 different signals (SIGILL or SIGEMT for instance), but it is less
2901 clear where the PC is pointing afterwards. It may not match
2902 gdbarch_decr_pc_after_break. I don't know any specific target that
2903 generates these signals at breakpoints (the code has been in GDB since at
2904 least 1992) so I can not guess how to handle them here.
2905
2906 In earlier versions of GDB, a target with
2907 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2908 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2909 target with both of these set in GDB history, and it seems unlikely to be
2910 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2911
2912 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2913 return;
2914
2915 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
2916 return;
2917
2918 /* In reverse execution, when a breakpoint is hit, the instruction
2919 under it has already been de-executed. The reported PC always
2920 points at the breakpoint address, so adjusting it further would
2921 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2922 architecture:
2923
2924 B1 0x08000000 : INSN1
2925 B2 0x08000001 : INSN2
2926 0x08000002 : INSN3
2927 PC -> 0x08000003 : INSN4
2928
2929 Say you're stopped at 0x08000003 as above. Reverse continuing
2930 from that point should hit B2 as below. Reading the PC when the
2931 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2932 been de-executed already.
2933
2934 B1 0x08000000 : INSN1
2935 B2 PC -> 0x08000001 : INSN2
2936 0x08000002 : INSN3
2937 0x08000003 : INSN4
2938
2939 We can't apply the same logic as for forward execution, because
2940 we would wrongly adjust the PC to 0x08000000, since there's a
2941 breakpoint at PC - 1. We'd then report a hit on B1, although
2942 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2943 behaviour. */
2944 if (execution_direction == EXEC_REVERSE)
2945 return;
2946
2947 /* If this target does not decrement the PC after breakpoints, then
2948 we have nothing to do. */
2949 regcache = get_thread_regcache (ecs->ptid);
2950 gdbarch = get_regcache_arch (regcache);
2951 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2952 return;
2953
2954 aspace = get_regcache_aspace (regcache);
2955
2956 /* Find the location where (if we've hit a breakpoint) the
2957 breakpoint would be. */
2958 breakpoint_pc = regcache_read_pc (regcache)
2959 - gdbarch_decr_pc_after_break (gdbarch);
2960
2961 /* Check whether there actually is a software breakpoint inserted at
2962 that location.
2963
2964 If in non-stop mode, a race condition is possible where we've
2965 removed a breakpoint, but stop events for that breakpoint were
2966 already queued and arrive later. To suppress those spurious
2967 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2968 and retire them after a number of stop events are reported. */
2969 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2970 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
2971 {
2972 struct cleanup *old_cleanups = NULL;
2973
2974 if (RECORD_IS_USED)
2975 old_cleanups = record_gdb_operation_disable_set ();
2976
2977 /* When using hardware single-step, a SIGTRAP is reported for both
2978 a completed single-step and a software breakpoint. Need to
2979 differentiate between the two, as the latter needs adjusting
2980 but the former does not.
2981
2982 The SIGTRAP can be due to a completed hardware single-step only if
2983 - we didn't insert software single-step breakpoints
2984 - the thread to be examined is still the current thread
2985 - this thread is currently being stepped
2986
2987 If any of these events did not occur, we must have stopped due
2988 to hitting a software breakpoint, and have to back up to the
2989 breakpoint address.
2990
2991 As a special case, we could have hardware single-stepped a
2992 software breakpoint. In this case (prev_pc == breakpoint_pc),
2993 we also need to back up to the breakpoint address. */
2994
2995 if (singlestep_breakpoints_inserted_p
2996 || !ptid_equal (ecs->ptid, inferior_ptid)
2997 || !currently_stepping (ecs->event_thread)
2998 || ecs->event_thread->prev_pc == breakpoint_pc)
2999 regcache_write_pc (regcache, breakpoint_pc);
3000
3001 if (RECORD_IS_USED)
3002 do_cleanups (old_cleanups);
3003 }
3004 }
3005
3006 void
3007 init_infwait_state (void)
3008 {
3009 waiton_ptid = pid_to_ptid (-1);
3010 infwait_state = infwait_normal_state;
3011 }
3012
3013 void
3014 error_is_running (void)
3015 {
3016 error (_("Cannot execute this command while "
3017 "the selected thread is running."));
3018 }
3019
3020 void
3021 ensure_not_running (void)
3022 {
3023 if (is_running (inferior_ptid))
3024 error_is_running ();
3025 }
3026
3027 static int
3028 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3029 {
3030 for (frame = get_prev_frame (frame);
3031 frame != NULL;
3032 frame = get_prev_frame (frame))
3033 {
3034 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3035 return 1;
3036 if (get_frame_type (frame) != INLINE_FRAME)
3037 break;
3038 }
3039
3040 return 0;
3041 }
3042
3043 /* Auxiliary function that handles syscall entry/return events.
3044 It returns 1 if the inferior should keep going (and GDB
3045 should ignore the event), or 0 if the event deserves to be
3046 processed. */
3047
3048 static int
3049 handle_syscall_event (struct execution_control_state *ecs)
3050 {
3051 struct regcache *regcache;
3052 struct gdbarch *gdbarch;
3053 int syscall_number;
3054
3055 if (!ptid_equal (ecs->ptid, inferior_ptid))
3056 context_switch (ecs->ptid);
3057
3058 regcache = get_thread_regcache (ecs->ptid);
3059 gdbarch = get_regcache_arch (regcache);
3060 syscall_number = ecs->ws.value.syscall_number;
3061 stop_pc = regcache_read_pc (regcache);
3062
3063 if (catch_syscall_enabled () > 0
3064 && catching_syscall_number (syscall_number) > 0)
3065 {
3066 if (debug_infrun)
3067 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3068 syscall_number);
3069
3070 ecs->event_thread->control.stop_bpstat
3071 = bpstat_stop_status (get_regcache_aspace (regcache),
3072 stop_pc, ecs->ptid, &ecs->ws);
3073 ecs->random_signal
3074 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3075
3076 if (!ecs->random_signal)
3077 {
3078 /* Catchpoint hit. */
3079 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3080 return 0;
3081 }
3082 }
3083
3084 /* If no catchpoint triggered for this, then keep going. */
3085 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3086 keep_going (ecs);
3087 return 1;
3088 }
3089
3090 /* Clear the supplied execution_control_state's stop_func_* fields. */
3091
3092 static void
3093 clear_stop_func (struct execution_control_state *ecs)
3094 {
3095 ecs->stop_func_filled_in = 0;
3096 ecs->stop_func_start = 0;
3097 ecs->stop_func_end = 0;
3098 ecs->stop_func_name = NULL;
3099 }
3100
3101 /* Lazily fill in the execution_control_state's stop_func_* fields. */
3102
3103 static void
3104 fill_in_stop_func (struct gdbarch *gdbarch,
3105 struct execution_control_state *ecs)
3106 {
3107 if (!ecs->stop_func_filled_in)
3108 {
3109 /* Don't care about return value; stop_func_start and stop_func_name
3110 will both be 0 if it doesn't work. */
3111 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3112 &ecs->stop_func_start, &ecs->stop_func_end);
3113 ecs->stop_func_start
3114 += gdbarch_deprecated_function_start_offset (gdbarch);
3115
3116 ecs->stop_func_filled_in = 1;
3117 }
3118 }
3119
3120 /* Given an execution control state that has been freshly filled in
3121 by an event from the inferior, figure out what it means and take
3122 appropriate action. */
3123
3124 static void
3125 handle_inferior_event (struct execution_control_state *ecs)
3126 {
3127 struct frame_info *frame;
3128 struct gdbarch *gdbarch;
3129 int stopped_by_watchpoint;
3130 int stepped_after_stopped_by_watchpoint = 0;
3131 struct symtab_and_line stop_pc_sal;
3132 enum stop_kind stop_soon;
3133
3134 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3135 {
3136 /* We had an event in the inferior, but we are not interested in
3137 handling it at this level. The lower layers have already
3138 done what needs to be done, if anything.
3139
3140 One of the possible circumstances for this is when the
3141 inferior produces output for the console. The inferior has
3142 not stopped, and we are ignoring the event. Another possible
3143 circumstance is any event which the lower level knows will be
3144 reported multiple times without an intervening resume. */
3145 if (debug_infrun)
3146 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3147 prepare_to_wait (ecs);
3148 return;
3149 }
3150
3151 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3152 && target_can_async_p () && !sync_execution)
3153 {
3154 /* There were no unwaited-for children left in the target, but,
3155 we're not synchronously waiting for events either. Just
3156 ignore. Otherwise, if we were running a synchronous
3157 execution command, we need to cancel it and give the user
3158 back the terminal. */
3159 if (debug_infrun)
3160 fprintf_unfiltered (gdb_stdlog,
3161 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3162 prepare_to_wait (ecs);
3163 return;
3164 }
3165
3166 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3167 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3168 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3169 {
3170 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3171
3172 gdb_assert (inf);
3173 stop_soon = inf->control.stop_soon;
3174 }
3175 else
3176 stop_soon = NO_STOP_QUIETLY;
3177
3178 /* Cache the last pid/waitstatus. */
3179 target_last_wait_ptid = ecs->ptid;
3180 target_last_waitstatus = ecs->ws;
3181
3182 /* Always clear state belonging to the previous time we stopped. */
3183 stop_stack_dummy = STOP_NONE;
3184
3185 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3186 {
3187 /* No unwaited-for children left. IOW, all resumed children
3188 have exited. */
3189 if (debug_infrun)
3190 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3191
3192 stop_print_frame = 0;
3193 stop_stepping (ecs);
3194 return;
3195 }
3196
3197 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3198 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
3199 {
3200 ecs->event_thread = find_thread_ptid (ecs->ptid);
3201 /* If it's a new thread, add it to the thread database. */
3202 if (ecs->event_thread == NULL)
3203 ecs->event_thread = add_thread (ecs->ptid);
3204 }
3205
3206 /* Dependent on valid ECS->EVENT_THREAD. */
3207 adjust_pc_after_break (ecs);
3208
3209 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3210 reinit_frame_cache ();
3211
3212 breakpoint_retire_moribund ();
3213
3214 /* First, distinguish signals caused by the debugger from signals
3215 that have to do with the program's own actions. Note that
3216 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3217 on the operating system version. Here we detect when a SIGILL or
3218 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3219 something similar for SIGSEGV, since a SIGSEGV will be generated
3220 when we're trying to execute a breakpoint instruction on a
3221 non-executable stack. This happens for call dummy breakpoints
3222 for architectures like SPARC that place call dummies on the
3223 stack. */
3224 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3225 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3226 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3227 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
3228 {
3229 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3230
3231 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3232 regcache_read_pc (regcache)))
3233 {
3234 if (debug_infrun)
3235 fprintf_unfiltered (gdb_stdlog,
3236 "infrun: Treating signal as SIGTRAP\n");
3237 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
3238 }
3239 }
3240
3241 /* Mark the non-executing threads accordingly. In all-stop, all
3242 threads of all processes are stopped when we get any event
3243 reported. In non-stop mode, only the event thread stops. If
3244 we're handling a process exit in non-stop mode, there's nothing
3245 to do, as threads of the dead process are gone, and threads of
3246 any other process were left running. */
3247 if (!non_stop)
3248 set_executing (minus_one_ptid, 0);
3249 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3250 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3251 set_executing (ecs->ptid, 0);
3252
3253 switch (infwait_state)
3254 {
3255 case infwait_thread_hop_state:
3256 if (debug_infrun)
3257 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
3258 break;
3259
3260 case infwait_normal_state:
3261 if (debug_infrun)
3262 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
3263 break;
3264
3265 case infwait_step_watch_state:
3266 if (debug_infrun)
3267 fprintf_unfiltered (gdb_stdlog,
3268 "infrun: infwait_step_watch_state\n");
3269
3270 stepped_after_stopped_by_watchpoint = 1;
3271 break;
3272
3273 case infwait_nonstep_watch_state:
3274 if (debug_infrun)
3275 fprintf_unfiltered (gdb_stdlog,
3276 "infrun: infwait_nonstep_watch_state\n");
3277 insert_breakpoints ();
3278
3279 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3280 handle things like signals arriving and other things happening
3281 in combination correctly? */
3282 stepped_after_stopped_by_watchpoint = 1;
3283 break;
3284
3285 default:
3286 internal_error (__FILE__, __LINE__, _("bad switch"));
3287 }
3288
3289 infwait_state = infwait_normal_state;
3290 waiton_ptid = pid_to_ptid (-1);
3291
3292 switch (ecs->ws.kind)
3293 {
3294 case TARGET_WAITKIND_LOADED:
3295 if (debug_infrun)
3296 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3297 /* Ignore gracefully during startup of the inferior, as it might
3298 be the shell which has just loaded some objects, otherwise
3299 add the symbols for the newly loaded objects. Also ignore at
3300 the beginning of an attach or remote session; we will query
3301 the full list of libraries once the connection is
3302 established. */
3303 if (stop_soon == NO_STOP_QUIETLY)
3304 {
3305 struct regcache *regcache;
3306
3307 if (!ptid_equal (ecs->ptid, inferior_ptid))
3308 context_switch (ecs->ptid);
3309 regcache = get_thread_regcache (ecs->ptid);
3310
3311 handle_solib_event ();
3312
3313 ecs->event_thread->control.stop_bpstat
3314 = bpstat_stop_status (get_regcache_aspace (regcache),
3315 stop_pc, ecs->ptid, &ecs->ws);
3316 ecs->random_signal
3317 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3318
3319 if (!ecs->random_signal)
3320 {
3321 /* A catchpoint triggered. */
3322 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3323 goto process_event_stop_test;
3324 }
3325
3326 /* If requested, stop when the dynamic linker notifies
3327 gdb of events. This allows the user to get control
3328 and place breakpoints in initializer routines for
3329 dynamically loaded objects (among other things). */
3330 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3331 if (stop_on_solib_events)
3332 {
3333 /* Make sure we print "Stopped due to solib-event" in
3334 normal_stop. */
3335 stop_print_frame = 1;
3336
3337 stop_stepping (ecs);
3338 return;
3339 }
3340 }
3341
3342 /* If we are skipping through a shell, or through shared library
3343 loading that we aren't interested in, resume the program. If
3344 we're running the program normally, also resume. But stop if
3345 we're attaching or setting up a remote connection. */
3346 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3347 {
3348 if (!ptid_equal (ecs->ptid, inferior_ptid))
3349 context_switch (ecs->ptid);
3350
3351 /* Loading of shared libraries might have changed breakpoint
3352 addresses. Make sure new breakpoints are inserted. */
3353 if (stop_soon == NO_STOP_QUIETLY
3354 && !breakpoints_always_inserted_mode ())
3355 insert_breakpoints ();
3356 resume (0, GDB_SIGNAL_0);
3357 prepare_to_wait (ecs);
3358 return;
3359 }
3360
3361 break;
3362
3363 case TARGET_WAITKIND_SPURIOUS:
3364 if (debug_infrun)
3365 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3366 if (!ptid_equal (ecs->ptid, inferior_ptid))
3367 context_switch (ecs->ptid);
3368 resume (0, GDB_SIGNAL_0);
3369 prepare_to_wait (ecs);
3370 return;
3371
3372 case TARGET_WAITKIND_EXITED:
3373 if (debug_infrun)
3374 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
3375 inferior_ptid = ecs->ptid;
3376 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3377 set_current_program_space (current_inferior ()->pspace);
3378 handle_vfork_child_exec_or_exit (0);
3379 target_terminal_ours (); /* Must do this before mourn anyway. */
3380 print_exited_reason (ecs->ws.value.integer);
3381
3382 /* Record the exit code in the convenience variable $_exitcode, so
3383 that the user can inspect this again later. */
3384 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3385 (LONGEST) ecs->ws.value.integer);
3386
3387 /* Also record this in the inferior itself. */
3388 current_inferior ()->has_exit_code = 1;
3389 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3390
3391 gdb_flush (gdb_stdout);
3392 target_mourn_inferior ();
3393 singlestep_breakpoints_inserted_p = 0;
3394 cancel_single_step_breakpoints ();
3395 stop_print_frame = 0;
3396 stop_stepping (ecs);
3397 return;
3398
3399 case TARGET_WAITKIND_SIGNALLED:
3400 if (debug_infrun)
3401 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
3402 inferior_ptid = ecs->ptid;
3403 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3404 set_current_program_space (current_inferior ()->pspace);
3405 handle_vfork_child_exec_or_exit (0);
3406 stop_print_frame = 0;
3407 target_terminal_ours (); /* Must do this before mourn anyway. */
3408
3409 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3410 reach here unless the inferior is dead. However, for years
3411 target_kill() was called here, which hints that fatal signals aren't
3412 really fatal on some systems. If that's true, then some changes
3413 may be needed. */
3414 target_mourn_inferior ();
3415
3416 print_signal_exited_reason (ecs->ws.value.sig);
3417 singlestep_breakpoints_inserted_p = 0;
3418 cancel_single_step_breakpoints ();
3419 stop_stepping (ecs);
3420 return;
3421
3422 /* The following are the only cases in which we keep going;
3423 the above cases end in a continue or goto. */
3424 case TARGET_WAITKIND_FORKED:
3425 case TARGET_WAITKIND_VFORKED:
3426 if (debug_infrun)
3427 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3428
3429 /* Check whether the inferior is displaced stepping. */
3430 {
3431 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3432 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3433 struct displaced_step_inferior_state *displaced
3434 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3435
3436 /* If checking displaced stepping is supported, and thread
3437 ecs->ptid is displaced stepping. */
3438 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3439 {
3440 struct inferior *parent_inf
3441 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3442 struct regcache *child_regcache;
3443 CORE_ADDR parent_pc;
3444
3445 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3446 indicating that the displaced stepping of syscall instruction
3447 has been done. Perform cleanup for parent process here. Note
3448 that this operation also cleans up the child process for vfork,
3449 because their pages are shared. */
3450 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
3451
3452 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3453 {
3454 /* Restore scratch pad for child process. */
3455 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3456 }
3457
3458 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3459 the child's PC is also within the scratchpad. Set the child's PC
3460 to the parent's PC value, which has already been fixed up.
3461 FIXME: we use the parent's aspace here, although we're touching
3462 the child, because the child hasn't been added to the inferior
3463 list yet at this point. */
3464
3465 child_regcache
3466 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3467 gdbarch,
3468 parent_inf->aspace);
3469 /* Read PC value of parent process. */
3470 parent_pc = regcache_read_pc (regcache);
3471
3472 if (debug_displaced)
3473 fprintf_unfiltered (gdb_stdlog,
3474 "displaced: write child pc from %s to %s\n",
3475 paddress (gdbarch,
3476 regcache_read_pc (child_regcache)),
3477 paddress (gdbarch, parent_pc));
3478
3479 regcache_write_pc (child_regcache, parent_pc);
3480 }
3481 }
3482
3483 if (!ptid_equal (ecs->ptid, inferior_ptid))
3484 context_switch (ecs->ptid);
3485
3486 /* Immediately detach breakpoints from the child before there's
3487 any chance of letting the user delete breakpoints from the
3488 breakpoint lists. If we don't do this early, it's easy to
3489 leave left over traps in the child, vis: "break foo; catch
3490 fork; c; <fork>; del; c; <child calls foo>". We only follow
3491 the fork on the last `continue', and by that time the
3492 breakpoint at "foo" is long gone from the breakpoint table.
3493 If we vforked, then we don't need to unpatch here, since both
3494 parent and child are sharing the same memory pages; we'll
3495 need to unpatch at follow/detach time instead to be certain
3496 that new breakpoints added between catchpoint hit time and
3497 vfork follow are detached. */
3498 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3499 {
3500 /* This won't actually modify the breakpoint list, but will
3501 physically remove the breakpoints from the child. */
3502 detach_breakpoints (ecs->ws.value.related_pid);
3503 }
3504
3505 if (singlestep_breakpoints_inserted_p)
3506 {
3507 /* Pull the single step breakpoints out of the target. */
3508 remove_single_step_breakpoints ();
3509 singlestep_breakpoints_inserted_p = 0;
3510 }
3511
3512 /* In case the event is caught by a catchpoint, remember that
3513 the event is to be followed at the next resume of the thread,
3514 and not immediately. */
3515 ecs->event_thread->pending_follow = ecs->ws;
3516
3517 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3518
3519 ecs->event_thread->control.stop_bpstat
3520 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3521 stop_pc, ecs->ptid, &ecs->ws);
3522
3523 /* Note that we're interested in knowing the bpstat actually
3524 causes a stop, not just if it may explain the signal.
3525 Software watchpoints, for example, always appear in the
3526 bpstat. */
3527 ecs->random_signal
3528 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
3529
3530 /* If no catchpoint triggered for this, then keep going. */
3531 if (ecs->random_signal)
3532 {
3533 ptid_t parent;
3534 ptid_t child;
3535 int should_resume;
3536 int follow_child
3537 = (follow_fork_mode_string == follow_fork_mode_child);
3538
3539 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3540
3541 should_resume = follow_fork ();
3542
3543 parent = ecs->ptid;
3544 child = ecs->ws.value.related_pid;
3545
3546 /* In non-stop mode, also resume the other branch. */
3547 if (non_stop && !detach_fork)
3548 {
3549 if (follow_child)
3550 switch_to_thread (parent);
3551 else
3552 switch_to_thread (child);
3553
3554 ecs->event_thread = inferior_thread ();
3555 ecs->ptid = inferior_ptid;
3556 keep_going (ecs);
3557 }
3558
3559 if (follow_child)
3560 switch_to_thread (child);
3561 else
3562 switch_to_thread (parent);
3563
3564 ecs->event_thread = inferior_thread ();
3565 ecs->ptid = inferior_ptid;
3566
3567 if (should_resume)
3568 keep_going (ecs);
3569 else
3570 stop_stepping (ecs);
3571 return;
3572 }
3573 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3574 goto process_event_stop_test;
3575
3576 case TARGET_WAITKIND_VFORK_DONE:
3577 /* Done with the shared memory region. Re-insert breakpoints in
3578 the parent, and keep going. */
3579
3580 if (debug_infrun)
3581 fprintf_unfiltered (gdb_stdlog,
3582 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3583
3584 if (!ptid_equal (ecs->ptid, inferior_ptid))
3585 context_switch (ecs->ptid);
3586
3587 current_inferior ()->waiting_for_vfork_done = 0;
3588 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3589 /* This also takes care of reinserting breakpoints in the
3590 previously locked inferior. */
3591 keep_going (ecs);
3592 return;
3593
3594 case TARGET_WAITKIND_EXECD:
3595 if (debug_infrun)
3596 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3597
3598 if (!ptid_equal (ecs->ptid, inferior_ptid))
3599 context_switch (ecs->ptid);
3600
3601 singlestep_breakpoints_inserted_p = 0;
3602 cancel_single_step_breakpoints ();
3603
3604 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3605
3606 /* Do whatever is necessary to the parent branch of the vfork. */
3607 handle_vfork_child_exec_or_exit (1);
3608
3609 /* This causes the eventpoints and symbol table to be reset.
3610 Must do this now, before trying to determine whether to
3611 stop. */
3612 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3613
3614 ecs->event_thread->control.stop_bpstat
3615 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3616 stop_pc, ecs->ptid, &ecs->ws);
3617 ecs->random_signal
3618 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3619
3620 /* Note that this may be referenced from inside
3621 bpstat_stop_status above, through inferior_has_execd. */
3622 xfree (ecs->ws.value.execd_pathname);
3623 ecs->ws.value.execd_pathname = NULL;
3624
3625 /* If no catchpoint triggered for this, then keep going. */
3626 if (ecs->random_signal)
3627 {
3628 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3629 keep_going (ecs);
3630 return;
3631 }
3632 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3633 goto process_event_stop_test;
3634
3635 /* Be careful not to try to gather much state about a thread
3636 that's in a syscall. It's frequently a losing proposition. */
3637 case TARGET_WAITKIND_SYSCALL_ENTRY:
3638 if (debug_infrun)
3639 fprintf_unfiltered (gdb_stdlog,
3640 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3641 /* Getting the current syscall number. */
3642 if (handle_syscall_event (ecs) != 0)
3643 return;
3644 goto process_event_stop_test;
3645
3646 /* Before examining the threads further, step this thread to
3647 get it entirely out of the syscall. (We get notice of the
3648 event when the thread is just on the verge of exiting a
3649 syscall. Stepping one instruction seems to get it back
3650 into user code.) */
3651 case TARGET_WAITKIND_SYSCALL_RETURN:
3652 if (debug_infrun)
3653 fprintf_unfiltered (gdb_stdlog,
3654 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3655 if (handle_syscall_event (ecs) != 0)
3656 return;
3657 goto process_event_stop_test;
3658
3659 case TARGET_WAITKIND_STOPPED:
3660 if (debug_infrun)
3661 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3662 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
3663 break;
3664
3665 case TARGET_WAITKIND_NO_HISTORY:
3666 if (debug_infrun)
3667 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
3668 /* Reverse execution: target ran out of history info. */
3669
3670 /* Pull the single step breakpoints out of the target. */
3671 if (singlestep_breakpoints_inserted_p)
3672 {
3673 if (!ptid_equal (ecs->ptid, inferior_ptid))
3674 context_switch (ecs->ptid);
3675 remove_single_step_breakpoints ();
3676 singlestep_breakpoints_inserted_p = 0;
3677 }
3678 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3679 print_no_history_reason ();
3680 stop_stepping (ecs);
3681 return;
3682 }
3683
3684 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
3685 {
3686 /* Do we need to clean up the state of a thread that has
3687 completed a displaced single-step? (Doing so usually affects
3688 the PC, so do it here, before we set stop_pc.) */
3689 displaced_step_fixup (ecs->ptid,
3690 ecs->event_thread->suspend.stop_signal);
3691
3692 /* If we either finished a single-step or hit a breakpoint, but
3693 the user wanted this thread to be stopped, pretend we got a
3694 SIG0 (generic unsignaled stop). */
3695
3696 if (ecs->event_thread->stop_requested
3697 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3698 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3699 }
3700
3701 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3702
3703 if (debug_infrun)
3704 {
3705 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3706 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3707 struct cleanup *old_chain = save_inferior_ptid ();
3708
3709 inferior_ptid = ecs->ptid;
3710
3711 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3712 paddress (gdbarch, stop_pc));
3713 if (target_stopped_by_watchpoint ())
3714 {
3715 CORE_ADDR addr;
3716
3717 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3718
3719 if (target_stopped_data_address (&current_target, &addr))
3720 fprintf_unfiltered (gdb_stdlog,
3721 "infrun: stopped data address = %s\n",
3722 paddress (gdbarch, addr));
3723 else
3724 fprintf_unfiltered (gdb_stdlog,
3725 "infrun: (no data address available)\n");
3726 }
3727
3728 do_cleanups (old_chain);
3729 }
3730
3731 if (stepping_past_singlestep_breakpoint)
3732 {
3733 gdb_assert (singlestep_breakpoints_inserted_p);
3734 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3735 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3736
3737 stepping_past_singlestep_breakpoint = 0;
3738
3739 /* We've either finished single-stepping past the single-step
3740 breakpoint, or stopped for some other reason. It would be nice if
3741 we could tell, but we can't reliably. */
3742 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3743 {
3744 if (debug_infrun)
3745 fprintf_unfiltered (gdb_stdlog,
3746 "infrun: stepping_past_"
3747 "singlestep_breakpoint\n");
3748 /* Pull the single step breakpoints out of the target. */
3749 if (!ptid_equal (ecs->ptid, inferior_ptid))
3750 context_switch (ecs->ptid);
3751 remove_single_step_breakpoints ();
3752 singlestep_breakpoints_inserted_p = 0;
3753
3754 ecs->random_signal = 0;
3755 ecs->event_thread->control.trap_expected = 0;
3756
3757 context_switch (saved_singlestep_ptid);
3758 if (deprecated_context_hook)
3759 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3760
3761 resume (1, GDB_SIGNAL_0);
3762 prepare_to_wait (ecs);
3763 return;
3764 }
3765 }
3766
3767 if (!ptid_equal (deferred_step_ptid, null_ptid))
3768 {
3769 /* In non-stop mode, there's never a deferred_step_ptid set. */
3770 gdb_assert (!non_stop);
3771
3772 /* If we stopped for some other reason than single-stepping, ignore
3773 the fact that we were supposed to switch back. */
3774 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3775 {
3776 if (debug_infrun)
3777 fprintf_unfiltered (gdb_stdlog,
3778 "infrun: handling deferred step\n");
3779
3780 /* Pull the single step breakpoints out of the target. */
3781 if (singlestep_breakpoints_inserted_p)
3782 {
3783 if (!ptid_equal (ecs->ptid, inferior_ptid))
3784 context_switch (ecs->ptid);
3785 remove_single_step_breakpoints ();
3786 singlestep_breakpoints_inserted_p = 0;
3787 }
3788
3789 ecs->event_thread->control.trap_expected = 0;
3790
3791 context_switch (deferred_step_ptid);
3792 deferred_step_ptid = null_ptid;
3793 /* Suppress spurious "Switching to ..." message. */
3794 previous_inferior_ptid = inferior_ptid;
3795
3796 resume (1, GDB_SIGNAL_0);
3797 prepare_to_wait (ecs);
3798 return;
3799 }
3800
3801 deferred_step_ptid = null_ptid;
3802 }
3803
3804 /* See if a thread hit a thread-specific breakpoint that was meant for
3805 another thread. If so, then step that thread past the breakpoint,
3806 and continue it. */
3807
3808 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3809 {
3810 int thread_hop_needed = 0;
3811 struct address_space *aspace =
3812 get_regcache_aspace (get_thread_regcache (ecs->ptid));
3813
3814 /* Check if a regular breakpoint has been hit before checking
3815 for a potential single step breakpoint. Otherwise, GDB will
3816 not see this breakpoint hit when stepping onto breakpoints. */
3817 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3818 {
3819 ecs->random_signal = 0;
3820 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3821 thread_hop_needed = 1;
3822 }
3823 else if (singlestep_breakpoints_inserted_p)
3824 {
3825 /* We have not context switched yet, so this should be true
3826 no matter which thread hit the singlestep breakpoint. */
3827 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3828 if (debug_infrun)
3829 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3830 "trap for %s\n",
3831 target_pid_to_str (ecs->ptid));
3832
3833 ecs->random_signal = 0;
3834 /* The call to in_thread_list is necessary because PTIDs sometimes
3835 change when we go from single-threaded to multi-threaded. If
3836 the singlestep_ptid is still in the list, assume that it is
3837 really different from ecs->ptid. */
3838 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3839 && in_thread_list (singlestep_ptid))
3840 {
3841 /* If the PC of the thread we were trying to single-step
3842 has changed, discard this event (which we were going
3843 to ignore anyway), and pretend we saw that thread
3844 trap. This prevents us continuously moving the
3845 single-step breakpoint forward, one instruction at a
3846 time. If the PC has changed, then the thread we were
3847 trying to single-step has trapped or been signalled,
3848 but the event has not been reported to GDB yet.
3849
3850 There might be some cases where this loses signal
3851 information, if a signal has arrived at exactly the
3852 same time that the PC changed, but this is the best
3853 we can do with the information available. Perhaps we
3854 should arrange to report all events for all threads
3855 when they stop, or to re-poll the remote looking for
3856 this particular thread (i.e. temporarily enable
3857 schedlock). */
3858
3859 CORE_ADDR new_singlestep_pc
3860 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3861
3862 if (new_singlestep_pc != singlestep_pc)
3863 {
3864 enum gdb_signal stop_signal;
3865
3866 if (debug_infrun)
3867 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3868 " but expected thread advanced also\n");
3869
3870 /* The current context still belongs to
3871 singlestep_ptid. Don't swap here, since that's
3872 the context we want to use. Just fudge our
3873 state and continue. */
3874 stop_signal = ecs->event_thread->suspend.stop_signal;
3875 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3876 ecs->ptid = singlestep_ptid;
3877 ecs->event_thread = find_thread_ptid (ecs->ptid);
3878 ecs->event_thread->suspend.stop_signal = stop_signal;
3879 stop_pc = new_singlestep_pc;
3880 }
3881 else
3882 {
3883 if (debug_infrun)
3884 fprintf_unfiltered (gdb_stdlog,
3885 "infrun: unexpected thread\n");
3886
3887 thread_hop_needed = 1;
3888 stepping_past_singlestep_breakpoint = 1;
3889 saved_singlestep_ptid = singlestep_ptid;
3890 }
3891 }
3892 }
3893
3894 if (thread_hop_needed)
3895 {
3896 struct regcache *thread_regcache;
3897 int remove_status = 0;
3898
3899 if (debug_infrun)
3900 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
3901
3902 /* Switch context before touching inferior memory, the
3903 previous thread may have exited. */
3904 if (!ptid_equal (inferior_ptid, ecs->ptid))
3905 context_switch (ecs->ptid);
3906
3907 /* Saw a breakpoint, but it was hit by the wrong thread.
3908 Just continue. */
3909
3910 if (singlestep_breakpoints_inserted_p)
3911 {
3912 /* Pull the single step breakpoints out of the target. */
3913 remove_single_step_breakpoints ();
3914 singlestep_breakpoints_inserted_p = 0;
3915 }
3916
3917 /* If the arch can displace step, don't remove the
3918 breakpoints. */
3919 thread_regcache = get_thread_regcache (ecs->ptid);
3920 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
3921 remove_status = remove_breakpoints ();
3922
3923 /* Did we fail to remove breakpoints? If so, try
3924 to set the PC past the bp. (There's at least
3925 one situation in which we can fail to remove
3926 the bp's: On HP-UX's that use ttrace, we can't
3927 change the address space of a vforking child
3928 process until the child exits (well, okay, not
3929 then either :-) or execs. */
3930 if (remove_status != 0)
3931 error (_("Cannot step over breakpoint hit in wrong thread"));
3932 else
3933 { /* Single step */
3934 if (!non_stop)
3935 {
3936 /* Only need to require the next event from this
3937 thread in all-stop mode. */
3938 waiton_ptid = ecs->ptid;
3939 infwait_state = infwait_thread_hop_state;
3940 }
3941
3942 ecs->event_thread->stepping_over_breakpoint = 1;
3943 keep_going (ecs);
3944 return;
3945 }
3946 }
3947 else if (singlestep_breakpoints_inserted_p)
3948 {
3949 ecs->random_signal = 0;
3950 }
3951 }
3952 else
3953 ecs->random_signal = 1;
3954
3955 /* See if something interesting happened to the non-current thread. If
3956 so, then switch to that thread. */
3957 if (!ptid_equal (ecs->ptid, inferior_ptid))
3958 {
3959 if (debug_infrun)
3960 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
3961
3962 context_switch (ecs->ptid);
3963
3964 if (deprecated_context_hook)
3965 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3966 }
3967
3968 /* At this point, get hold of the now-current thread's frame. */
3969 frame = get_current_frame ();
3970 gdbarch = get_frame_arch (frame);
3971
3972 if (singlestep_breakpoints_inserted_p)
3973 {
3974 /* Pull the single step breakpoints out of the target. */
3975 remove_single_step_breakpoints ();
3976 singlestep_breakpoints_inserted_p = 0;
3977 }
3978
3979 if (stepped_after_stopped_by_watchpoint)
3980 stopped_by_watchpoint = 0;
3981 else
3982 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3983
3984 /* If necessary, step over this watchpoint. We'll be back to display
3985 it in a moment. */
3986 if (stopped_by_watchpoint
3987 && (target_have_steppable_watchpoint
3988 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
3989 {
3990 /* At this point, we are stopped at an instruction which has
3991 attempted to write to a piece of memory under control of
3992 a watchpoint. The instruction hasn't actually executed
3993 yet. If we were to evaluate the watchpoint expression
3994 now, we would get the old value, and therefore no change
3995 would seem to have occurred.
3996
3997 In order to make watchpoints work `right', we really need
3998 to complete the memory write, and then evaluate the
3999 watchpoint expression. We do this by single-stepping the
4000 target.
4001
4002 It may not be necessary to disable the watchpoint to stop over
4003 it. For example, the PA can (with some kernel cooperation)
4004 single step over a watchpoint without disabling the watchpoint.
4005
4006 It is far more common to need to disable a watchpoint to step
4007 the inferior over it. If we have non-steppable watchpoints,
4008 we must disable the current watchpoint; it's simplest to
4009 disable all watchpoints and breakpoints. */
4010 int hw_step = 1;
4011
4012 if (!target_have_steppable_watchpoint)
4013 {
4014 remove_breakpoints ();
4015 /* See comment in resume why we need to stop bypassing signals
4016 while breakpoints have been removed. */
4017 target_pass_signals (0, NULL);
4018 }
4019 /* Single step */
4020 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
4021 target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
4022 waiton_ptid = ecs->ptid;
4023 if (target_have_steppable_watchpoint)
4024 infwait_state = infwait_step_watch_state;
4025 else
4026 infwait_state = infwait_nonstep_watch_state;
4027 prepare_to_wait (ecs);
4028 return;
4029 }
4030
4031 clear_stop_func (ecs);
4032 ecs->event_thread->stepping_over_breakpoint = 0;
4033 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4034 ecs->event_thread->control.stop_step = 0;
4035 stop_print_frame = 1;
4036 ecs->random_signal = 0;
4037 stopped_by_random_signal = 0;
4038
4039 /* Hide inlined functions starting here, unless we just performed stepi or
4040 nexti. After stepi and nexti, always show the innermost frame (not any
4041 inline function call sites). */
4042 if (ecs->event_thread->control.step_range_end != 1)
4043 {
4044 struct address_space *aspace =
4045 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4046
4047 /* skip_inline_frames is expensive, so we avoid it if we can
4048 determine that the address is one where functions cannot have
4049 been inlined. This improves performance with inferiors that
4050 load a lot of shared libraries, because the solib event
4051 breakpoint is defined as the address of a function (i.e. not
4052 inline). Note that we have to check the previous PC as well
4053 as the current one to catch cases when we have just
4054 single-stepped off a breakpoint prior to reinstating it.
4055 Note that we're assuming that the code we single-step to is
4056 not inline, but that's not definitive: there's nothing
4057 preventing the event breakpoint function from containing
4058 inlined code, and the single-step ending up there. If the
4059 user had set a breakpoint on that inlined code, the missing
4060 skip_inline_frames call would break things. Fortunately
4061 that's an extremely unlikely scenario. */
4062 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
4063 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4064 && ecs->event_thread->control.trap_expected
4065 && pc_at_non_inline_function (aspace,
4066 ecs->event_thread->prev_pc,
4067 &ecs->ws)))
4068 {
4069 skip_inline_frames (ecs->ptid);
4070
4071 /* Re-fetch current thread's frame in case that invalidated
4072 the frame cache. */
4073 frame = get_current_frame ();
4074 gdbarch = get_frame_arch (frame);
4075 }
4076 }
4077
4078 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4079 && ecs->event_thread->control.trap_expected
4080 && gdbarch_single_step_through_delay_p (gdbarch)
4081 && currently_stepping (ecs->event_thread))
4082 {
4083 /* We're trying to step off a breakpoint. Turns out that we're
4084 also on an instruction that needs to be stepped multiple
4085 times before it's been fully executing. E.g., architectures
4086 with a delay slot. It needs to be stepped twice, once for
4087 the instruction and once for the delay slot. */
4088 int step_through_delay
4089 = gdbarch_single_step_through_delay (gdbarch, frame);
4090
4091 if (debug_infrun && step_through_delay)
4092 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4093 if (ecs->event_thread->control.step_range_end == 0
4094 && step_through_delay)
4095 {
4096 /* The user issued a continue when stopped at a breakpoint.
4097 Set up for another trap and get out of here. */
4098 ecs->event_thread->stepping_over_breakpoint = 1;
4099 keep_going (ecs);
4100 return;
4101 }
4102 else if (step_through_delay)
4103 {
4104 /* The user issued a step when stopped at a breakpoint.
4105 Maybe we should stop, maybe we should not - the delay
4106 slot *might* correspond to a line of source. In any
4107 case, don't decide that here, just set
4108 ecs->stepping_over_breakpoint, making sure we
4109 single-step again before breakpoints are re-inserted. */
4110 ecs->event_thread->stepping_over_breakpoint = 1;
4111 }
4112 }
4113
4114 /* Look at the cause of the stop, and decide what to do.
4115 The alternatives are:
4116 1) stop_stepping and return; to really stop and return to the debugger,
4117 2) keep_going and return to start up again
4118 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
4119 3) set ecs->random_signal to 1, and the decision between 1 and 2
4120 will be made according to the signal handling tables. */
4121
4122 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4123 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
4124 || stop_soon == STOP_QUIETLY_REMOTE)
4125 {
4126 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4127 && stop_after_trap)
4128 {
4129 if (debug_infrun)
4130 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4131 stop_print_frame = 0;
4132 stop_stepping (ecs);
4133 return;
4134 }
4135
4136 /* This is originated from start_remote(), start_inferior() and
4137 shared libraries hook functions. */
4138 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4139 {
4140 if (debug_infrun)
4141 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4142 stop_stepping (ecs);
4143 return;
4144 }
4145
4146 /* This originates from attach_command(). We need to overwrite
4147 the stop_signal here, because some kernels don't ignore a
4148 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4149 See more comments in inferior.h. On the other hand, if we
4150 get a non-SIGSTOP, report it to the user - assume the backend
4151 will handle the SIGSTOP if it should show up later.
4152
4153 Also consider that the attach is complete when we see a
4154 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4155 target extended-remote report it instead of a SIGSTOP
4156 (e.g. gdbserver). We already rely on SIGTRAP being our
4157 signal, so this is no exception.
4158
4159 Also consider that the attach is complete when we see a
4160 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4161 the target to stop all threads of the inferior, in case the
4162 low level attach operation doesn't stop them implicitly. If
4163 they weren't stopped implicitly, then the stub will report a
4164 GDB_SIGNAL_0, meaning: stopped for no particular reason
4165 other than GDB's request. */
4166 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4167 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4168 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4169 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4170 {
4171 stop_stepping (ecs);
4172 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4173 return;
4174 }
4175
4176 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4177 handles this event. */
4178 ecs->event_thread->control.stop_bpstat
4179 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4180 stop_pc, ecs->ptid, &ecs->ws);
4181
4182 /* Following in case break condition called a
4183 function. */
4184 stop_print_frame = 1;
4185
4186 /* This is where we handle "moribund" watchpoints. Unlike
4187 software breakpoints traps, hardware watchpoint traps are
4188 always distinguishable from random traps. If no high-level
4189 watchpoint is associated with the reported stop data address
4190 anymore, then the bpstat does not explain the signal ---
4191 simply make sure to ignore it if `stopped_by_watchpoint' is
4192 set. */
4193
4194 if (debug_infrun
4195 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4196 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4197 && stopped_by_watchpoint)
4198 fprintf_unfiltered (gdb_stdlog,
4199 "infrun: no user watchpoint explains "
4200 "watchpoint SIGTRAP, ignoring\n");
4201
4202 /* NOTE: cagney/2003-03-29: These two checks for a random signal
4203 at one stage in the past included checks for an inferior
4204 function call's call dummy's return breakpoint. The original
4205 comment, that went with the test, read:
4206
4207 ``End of a stack dummy. Some systems (e.g. Sony news) give
4208 another signal besides SIGTRAP, so check here as well as
4209 above.''
4210
4211 If someone ever tries to get call dummys on a
4212 non-executable stack to work (where the target would stop
4213 with something like a SIGSEGV), then those tests might need
4214 to be re-instated. Given, however, that the tests were only
4215 enabled when momentary breakpoints were not being used, I
4216 suspect that it won't be the case.
4217
4218 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4219 be necessary for call dummies on a non-executable stack on
4220 SPARC. */
4221
4222 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4223 ecs->random_signal
4224 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4225 || stopped_by_watchpoint
4226 || ecs->event_thread->control.trap_expected
4227 || (ecs->event_thread->control.step_range_end
4228 && (ecs->event_thread->control.step_resume_breakpoint
4229 == NULL)));
4230 else
4231 {
4232 ecs->random_signal = !bpstat_explains_signal
4233 (ecs->event_thread->control.stop_bpstat);
4234 if (!ecs->random_signal)
4235 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
4236 }
4237 }
4238
4239 /* When we reach this point, we've pretty much decided
4240 that the reason for stopping must've been a random
4241 (unexpected) signal. */
4242
4243 else
4244 ecs->random_signal = 1;
4245
4246 process_event_stop_test:
4247
4248 /* Re-fetch current thread's frame in case we did a
4249 "goto process_event_stop_test" above. */
4250 frame = get_current_frame ();
4251 gdbarch = get_frame_arch (frame);
4252
4253 /* For the program's own signals, act according to
4254 the signal handling tables. */
4255
4256 if (ecs->random_signal)
4257 {
4258 /* Signal not for debugging purposes. */
4259 int printed = 0;
4260 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4261
4262 if (debug_infrun)
4263 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
4264 ecs->event_thread->suspend.stop_signal);
4265
4266 stopped_by_random_signal = 1;
4267
4268 if (signal_print[ecs->event_thread->suspend.stop_signal])
4269 {
4270 printed = 1;
4271 target_terminal_ours_for_output ();
4272 print_signal_received_reason
4273 (ecs->event_thread->suspend.stop_signal);
4274 }
4275 /* Always stop on signals if we're either just gaining control
4276 of the program, or the user explicitly requested this thread
4277 to remain stopped. */
4278 if (stop_soon != NO_STOP_QUIETLY
4279 || ecs->event_thread->stop_requested
4280 || (!inf->detaching
4281 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4282 {
4283 stop_stepping (ecs);
4284 return;
4285 }
4286 /* If not going to stop, give terminal back
4287 if we took it away. */
4288 else if (printed)
4289 target_terminal_inferior ();
4290
4291 /* Clear the signal if it should not be passed. */
4292 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4293 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4294
4295 if (ecs->event_thread->prev_pc == stop_pc
4296 && ecs->event_thread->control.trap_expected
4297 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4298 {
4299 /* We were just starting a new sequence, attempting to
4300 single-step off of a breakpoint and expecting a SIGTRAP.
4301 Instead this signal arrives. This signal will take us out
4302 of the stepping range so GDB needs to remember to, when
4303 the signal handler returns, resume stepping off that
4304 breakpoint. */
4305 /* To simplify things, "continue" is forced to use the same
4306 code paths as single-step - set a breakpoint at the
4307 signal return address and then, once hit, step off that
4308 breakpoint. */
4309 if (debug_infrun)
4310 fprintf_unfiltered (gdb_stdlog,
4311 "infrun: signal arrived while stepping over "
4312 "breakpoint\n");
4313
4314 insert_hp_step_resume_breakpoint_at_frame (frame);
4315 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4316 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4317 ecs->event_thread->control.trap_expected = 0;
4318 keep_going (ecs);
4319 return;
4320 }
4321
4322 if (ecs->event_thread->control.step_range_end != 0
4323 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4324 && (ecs->event_thread->control.step_range_start <= stop_pc
4325 && stop_pc < ecs->event_thread->control.step_range_end)
4326 && frame_id_eq (get_stack_frame_id (frame),
4327 ecs->event_thread->control.step_stack_frame_id)
4328 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4329 {
4330 /* The inferior is about to take a signal that will take it
4331 out of the single step range. Set a breakpoint at the
4332 current PC (which is presumably where the signal handler
4333 will eventually return) and then allow the inferior to
4334 run free.
4335
4336 Note that this is only needed for a signal delivered
4337 while in the single-step range. Nested signals aren't a
4338 problem as they eventually all return. */
4339 if (debug_infrun)
4340 fprintf_unfiltered (gdb_stdlog,
4341 "infrun: signal may take us out of "
4342 "single-step range\n");
4343
4344 insert_hp_step_resume_breakpoint_at_frame (frame);
4345 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4346 ecs->event_thread->control.trap_expected = 0;
4347 keep_going (ecs);
4348 return;
4349 }
4350
4351 /* Note: step_resume_breakpoint may be non-NULL. This occures
4352 when either there's a nested signal, or when there's a
4353 pending signal enabled just as the signal handler returns
4354 (leaving the inferior at the step-resume-breakpoint without
4355 actually executing it). Either way continue until the
4356 breakpoint is really hit. */
4357 }
4358 else
4359 {
4360 /* Handle cases caused by hitting a breakpoint. */
4361
4362 CORE_ADDR jmp_buf_pc;
4363 struct bpstat_what what;
4364
4365 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4366
4367 if (what.call_dummy)
4368 {
4369 stop_stack_dummy = what.call_dummy;
4370 }
4371
4372 /* If we hit an internal event that triggers symbol changes, the
4373 current frame will be invalidated within bpstat_what (e.g.,
4374 if we hit an internal solib event). Re-fetch it. */
4375 frame = get_current_frame ();
4376 gdbarch = get_frame_arch (frame);
4377
4378 switch (what.main_action)
4379 {
4380 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4381 /* If we hit the breakpoint at longjmp while stepping, we
4382 install a momentary breakpoint at the target of the
4383 jmp_buf. */
4384
4385 if (debug_infrun)
4386 fprintf_unfiltered (gdb_stdlog,
4387 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4388
4389 ecs->event_thread->stepping_over_breakpoint = 1;
4390
4391 if (what.is_longjmp)
4392 {
4393 struct value *arg_value;
4394
4395 /* If we set the longjmp breakpoint via a SystemTap
4396 probe, then use it to extract the arguments. The
4397 destination PC is the third argument to the
4398 probe. */
4399 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4400 if (arg_value)
4401 jmp_buf_pc = value_as_address (arg_value);
4402 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4403 || !gdbarch_get_longjmp_target (gdbarch,
4404 frame, &jmp_buf_pc))
4405 {
4406 if (debug_infrun)
4407 fprintf_unfiltered (gdb_stdlog,
4408 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4409 "(!gdbarch_get_longjmp_target)\n");
4410 keep_going (ecs);
4411 return;
4412 }
4413
4414 /* Insert a breakpoint at resume address. */
4415 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4416 }
4417 else
4418 check_exception_resume (ecs, frame);
4419 keep_going (ecs);
4420 return;
4421
4422 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4423 {
4424 struct frame_info *init_frame;
4425
4426 /* There are several cases to consider.
4427
4428 1. The initiating frame no longer exists. In this case
4429 we must stop, because the exception or longjmp has gone
4430 too far.
4431
4432 2. The initiating frame exists, and is the same as the
4433 current frame. We stop, because the exception or
4434 longjmp has been caught.
4435
4436 3. The initiating frame exists and is different from
4437 the current frame. This means the exception or longjmp
4438 has been caught beneath the initiating frame, so keep
4439 going.
4440
4441 4. longjmp breakpoint has been placed just to protect
4442 against stale dummy frames and user is not interested
4443 in stopping around longjmps. */
4444
4445 if (debug_infrun)
4446 fprintf_unfiltered (gdb_stdlog,
4447 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4448
4449 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4450 != NULL);
4451 delete_exception_resume_breakpoint (ecs->event_thread);
4452
4453 if (what.is_longjmp)
4454 {
4455 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread->num);
4456
4457 if (!frame_id_p (ecs->event_thread->initiating_frame))
4458 {
4459 /* Case 4. */
4460 keep_going (ecs);
4461 return;
4462 }
4463 }
4464
4465 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
4466
4467 if (init_frame)
4468 {
4469 struct frame_id current_id
4470 = get_frame_id (get_current_frame ());
4471 if (frame_id_eq (current_id,
4472 ecs->event_thread->initiating_frame))
4473 {
4474 /* Case 2. Fall through. */
4475 }
4476 else
4477 {
4478 /* Case 3. */
4479 keep_going (ecs);
4480 return;
4481 }
4482 }
4483
4484 /* For Cases 1 and 2, remove the step-resume breakpoint,
4485 if it exists. */
4486 delete_step_resume_breakpoint (ecs->event_thread);
4487
4488 ecs->event_thread->control.stop_step = 1;
4489 print_end_stepping_range_reason ();
4490 stop_stepping (ecs);
4491 }
4492 return;
4493
4494 case BPSTAT_WHAT_SINGLE:
4495 if (debug_infrun)
4496 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4497 ecs->event_thread->stepping_over_breakpoint = 1;
4498 /* Still need to check other stuff, at least the case where
4499 we are stepping and step out of the right range. */
4500 break;
4501
4502 case BPSTAT_WHAT_STEP_RESUME:
4503 if (debug_infrun)
4504 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4505
4506 delete_step_resume_breakpoint (ecs->event_thread);
4507 if (ecs->event_thread->control.proceed_to_finish
4508 && execution_direction == EXEC_REVERSE)
4509 {
4510 struct thread_info *tp = ecs->event_thread;
4511
4512 /* We are finishing a function in reverse, and just hit
4513 the step-resume breakpoint at the start address of
4514 the function, and we're almost there -- just need to
4515 back up by one more single-step, which should take us
4516 back to the function call. */
4517 tp->control.step_range_start = tp->control.step_range_end = 1;
4518 keep_going (ecs);
4519 return;
4520 }
4521 fill_in_stop_func (gdbarch, ecs);
4522 if (stop_pc == ecs->stop_func_start
4523 && execution_direction == EXEC_REVERSE)
4524 {
4525 /* We are stepping over a function call in reverse, and
4526 just hit the step-resume breakpoint at the start
4527 address of the function. Go back to single-stepping,
4528 which should take us back to the function call. */
4529 ecs->event_thread->stepping_over_breakpoint = 1;
4530 keep_going (ecs);
4531 return;
4532 }
4533 break;
4534
4535 case BPSTAT_WHAT_STOP_NOISY:
4536 if (debug_infrun)
4537 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4538 stop_print_frame = 1;
4539
4540 /* We are about to nuke the step_resume_breakpointt via the
4541 cleanup chain, so no need to worry about it here. */
4542
4543 stop_stepping (ecs);
4544 return;
4545
4546 case BPSTAT_WHAT_STOP_SILENT:
4547 if (debug_infrun)
4548 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4549 stop_print_frame = 0;
4550
4551 /* We are about to nuke the step_resume_breakpoin via the
4552 cleanup chain, so no need to worry about it here. */
4553
4554 stop_stepping (ecs);
4555 return;
4556
4557 case BPSTAT_WHAT_HP_STEP_RESUME:
4558 if (debug_infrun)
4559 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4560
4561 delete_step_resume_breakpoint (ecs->event_thread);
4562 if (ecs->event_thread->step_after_step_resume_breakpoint)
4563 {
4564 /* Back when the step-resume breakpoint was inserted, we
4565 were trying to single-step off a breakpoint. Go back
4566 to doing that. */
4567 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4568 ecs->event_thread->stepping_over_breakpoint = 1;
4569 keep_going (ecs);
4570 return;
4571 }
4572 break;
4573
4574 case BPSTAT_WHAT_KEEP_CHECKING:
4575 break;
4576 }
4577 }
4578
4579 /* We come here if we hit a breakpoint but should not
4580 stop for it. Possibly we also were stepping
4581 and should stop for that. So fall through and
4582 test for stepping. But, if not stepping,
4583 do not stop. */
4584
4585 /* In all-stop mode, if we're currently stepping but have stopped in
4586 some other thread, we need to switch back to the stepped thread. */
4587 if (!non_stop)
4588 {
4589 struct thread_info *tp;
4590
4591 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
4592 ecs->event_thread);
4593 if (tp)
4594 {
4595 /* However, if the current thread is blocked on some internal
4596 breakpoint, and we simply need to step over that breakpoint
4597 to get it going again, do that first. */
4598 if ((ecs->event_thread->control.trap_expected
4599 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
4600 || ecs->event_thread->stepping_over_breakpoint)
4601 {
4602 keep_going (ecs);
4603 return;
4604 }
4605
4606 /* If the stepping thread exited, then don't try to switch
4607 back and resume it, which could fail in several different
4608 ways depending on the target. Instead, just keep going.
4609
4610 We can find a stepping dead thread in the thread list in
4611 two cases:
4612
4613 - The target supports thread exit events, and when the
4614 target tries to delete the thread from the thread list,
4615 inferior_ptid pointed at the exiting thread. In such
4616 case, calling delete_thread does not really remove the
4617 thread from the list; instead, the thread is left listed,
4618 with 'exited' state.
4619
4620 - The target's debug interface does not support thread
4621 exit events, and so we have no idea whatsoever if the
4622 previously stepping thread is still alive. For that
4623 reason, we need to synchronously query the target
4624 now. */
4625 if (is_exited (tp->ptid)
4626 || !target_thread_alive (tp->ptid))
4627 {
4628 if (debug_infrun)
4629 fprintf_unfiltered (gdb_stdlog,
4630 "infrun: not switching back to "
4631 "stepped thread, it has vanished\n");
4632
4633 delete_thread (tp->ptid);
4634 keep_going (ecs);
4635 return;
4636 }
4637
4638 /* Otherwise, we no longer expect a trap in the current thread.
4639 Clear the trap_expected flag before switching back -- this is
4640 what keep_going would do as well, if we called it. */
4641 ecs->event_thread->control.trap_expected = 0;
4642
4643 if (debug_infrun)
4644 fprintf_unfiltered (gdb_stdlog,
4645 "infrun: switching back to stepped thread\n");
4646
4647 ecs->event_thread = tp;
4648 ecs->ptid = tp->ptid;
4649 context_switch (ecs->ptid);
4650 keep_going (ecs);
4651 return;
4652 }
4653 }
4654
4655 if (ecs->event_thread->control.step_resume_breakpoint)
4656 {
4657 if (debug_infrun)
4658 fprintf_unfiltered (gdb_stdlog,
4659 "infrun: step-resume breakpoint is inserted\n");
4660
4661 /* Having a step-resume breakpoint overrides anything
4662 else having to do with stepping commands until
4663 that breakpoint is reached. */
4664 keep_going (ecs);
4665 return;
4666 }
4667
4668 if (ecs->event_thread->control.step_range_end == 0)
4669 {
4670 if (debug_infrun)
4671 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4672 /* Likewise if we aren't even stepping. */
4673 keep_going (ecs);
4674 return;
4675 }
4676
4677 /* Re-fetch current thread's frame in case the code above caused
4678 the frame cache to be re-initialized, making our FRAME variable
4679 a dangling pointer. */
4680 frame = get_current_frame ();
4681 gdbarch = get_frame_arch (frame);
4682 fill_in_stop_func (gdbarch, ecs);
4683
4684 /* If stepping through a line, keep going if still within it.
4685
4686 Note that step_range_end is the address of the first instruction
4687 beyond the step range, and NOT the address of the last instruction
4688 within it!
4689
4690 Note also that during reverse execution, we may be stepping
4691 through a function epilogue and therefore must detect when
4692 the current-frame changes in the middle of a line. */
4693
4694 if (stop_pc >= ecs->event_thread->control.step_range_start
4695 && stop_pc < ecs->event_thread->control.step_range_end
4696 && (execution_direction != EXEC_REVERSE
4697 || frame_id_eq (get_frame_id (frame),
4698 ecs->event_thread->control.step_frame_id)))
4699 {
4700 if (debug_infrun)
4701 fprintf_unfiltered
4702 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4703 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4704 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4705
4706 /* When stepping backward, stop at beginning of line range
4707 (unless it's the function entry point, in which case
4708 keep going back to the call point). */
4709 if (stop_pc == ecs->event_thread->control.step_range_start
4710 && stop_pc != ecs->stop_func_start
4711 && execution_direction == EXEC_REVERSE)
4712 {
4713 ecs->event_thread->control.stop_step = 1;
4714 print_end_stepping_range_reason ();
4715 stop_stepping (ecs);
4716 }
4717 else
4718 keep_going (ecs);
4719
4720 return;
4721 }
4722
4723 /* We stepped out of the stepping range. */
4724
4725 /* If we are stepping at the source level and entered the runtime
4726 loader dynamic symbol resolution code...
4727
4728 EXEC_FORWARD: we keep on single stepping until we exit the run
4729 time loader code and reach the callee's address.
4730
4731 EXEC_REVERSE: we've already executed the callee (backward), and
4732 the runtime loader code is handled just like any other
4733 undebuggable function call. Now we need only keep stepping
4734 backward through the trampoline code, and that's handled further
4735 down, so there is nothing for us to do here. */
4736
4737 if (execution_direction != EXEC_REVERSE
4738 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4739 && in_solib_dynsym_resolve_code (stop_pc))
4740 {
4741 CORE_ADDR pc_after_resolver =
4742 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4743
4744 if (debug_infrun)
4745 fprintf_unfiltered (gdb_stdlog,
4746 "infrun: stepped into dynsym resolve code\n");
4747
4748 if (pc_after_resolver)
4749 {
4750 /* Set up a step-resume breakpoint at the address
4751 indicated by SKIP_SOLIB_RESOLVER. */
4752 struct symtab_and_line sr_sal;
4753
4754 init_sal (&sr_sal);
4755 sr_sal.pc = pc_after_resolver;
4756 sr_sal.pspace = get_frame_program_space (frame);
4757
4758 insert_step_resume_breakpoint_at_sal (gdbarch,
4759 sr_sal, null_frame_id);
4760 }
4761
4762 keep_going (ecs);
4763 return;
4764 }
4765
4766 if (ecs->event_thread->control.step_range_end != 1
4767 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4768 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4769 && get_frame_type (frame) == SIGTRAMP_FRAME)
4770 {
4771 if (debug_infrun)
4772 fprintf_unfiltered (gdb_stdlog,
4773 "infrun: stepped into signal trampoline\n");
4774 /* The inferior, while doing a "step" or "next", has ended up in
4775 a signal trampoline (either by a signal being delivered or by
4776 the signal handler returning). Just single-step until the
4777 inferior leaves the trampoline (either by calling the handler
4778 or returning). */
4779 keep_going (ecs);
4780 return;
4781 }
4782
4783 /* If we're in the return path from a shared library trampoline,
4784 we want to proceed through the trampoline when stepping. */
4785 /* macro/2012-04-25: This needs to come before the subroutine
4786 call check below as on some targets return trampolines look
4787 like subroutine calls (MIPS16 return thunks). */
4788 if (gdbarch_in_solib_return_trampoline (gdbarch,
4789 stop_pc, ecs->stop_func_name)
4790 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4791 {
4792 /* Determine where this trampoline returns. */
4793 CORE_ADDR real_stop_pc;
4794
4795 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4796
4797 if (debug_infrun)
4798 fprintf_unfiltered (gdb_stdlog,
4799 "infrun: stepped into solib return tramp\n");
4800
4801 /* Only proceed through if we know where it's going. */
4802 if (real_stop_pc)
4803 {
4804 /* And put the step-breakpoint there and go until there. */
4805 struct symtab_and_line sr_sal;
4806
4807 init_sal (&sr_sal); /* initialize to zeroes */
4808 sr_sal.pc = real_stop_pc;
4809 sr_sal.section = find_pc_overlay (sr_sal.pc);
4810 sr_sal.pspace = get_frame_program_space (frame);
4811
4812 /* Do not specify what the fp should be when we stop since
4813 on some machines the prologue is where the new fp value
4814 is established. */
4815 insert_step_resume_breakpoint_at_sal (gdbarch,
4816 sr_sal, null_frame_id);
4817
4818 /* Restart without fiddling with the step ranges or
4819 other state. */
4820 keep_going (ecs);
4821 return;
4822 }
4823 }
4824
4825 /* Check for subroutine calls. The check for the current frame
4826 equalling the step ID is not necessary - the check of the
4827 previous frame's ID is sufficient - but it is a common case and
4828 cheaper than checking the previous frame's ID.
4829
4830 NOTE: frame_id_eq will never report two invalid frame IDs as
4831 being equal, so to get into this block, both the current and
4832 previous frame must have valid frame IDs. */
4833 /* The outer_frame_id check is a heuristic to detect stepping
4834 through startup code. If we step over an instruction which
4835 sets the stack pointer from an invalid value to a valid value,
4836 we may detect that as a subroutine call from the mythical
4837 "outermost" function. This could be fixed by marking
4838 outermost frames as !stack_p,code_p,special_p. Then the
4839 initial outermost frame, before sp was valid, would
4840 have code_addr == &_start. See the comment in frame_id_eq
4841 for more. */
4842 if (!frame_id_eq (get_stack_frame_id (frame),
4843 ecs->event_thread->control.step_stack_frame_id)
4844 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4845 ecs->event_thread->control.step_stack_frame_id)
4846 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4847 outer_frame_id)
4848 || step_start_function != find_pc_function (stop_pc))))
4849 {
4850 CORE_ADDR real_stop_pc;
4851
4852 if (debug_infrun)
4853 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4854
4855 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4856 || ((ecs->event_thread->control.step_range_end == 1)
4857 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4858 ecs->stop_func_start)))
4859 {
4860 /* I presume that step_over_calls is only 0 when we're
4861 supposed to be stepping at the assembly language level
4862 ("stepi"). Just stop. */
4863 /* Also, maybe we just did a "nexti" inside a prolog, so we
4864 thought it was a subroutine call but it was not. Stop as
4865 well. FENN */
4866 /* And this works the same backward as frontward. MVS */
4867 ecs->event_thread->control.stop_step = 1;
4868 print_end_stepping_range_reason ();
4869 stop_stepping (ecs);
4870 return;
4871 }
4872
4873 /* Reverse stepping through solib trampolines. */
4874
4875 if (execution_direction == EXEC_REVERSE
4876 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
4877 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4878 || (ecs->stop_func_start == 0
4879 && in_solib_dynsym_resolve_code (stop_pc))))
4880 {
4881 /* Any solib trampoline code can be handled in reverse
4882 by simply continuing to single-step. We have already
4883 executed the solib function (backwards), and a few
4884 steps will take us back through the trampoline to the
4885 caller. */
4886 keep_going (ecs);
4887 return;
4888 }
4889
4890 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4891 {
4892 /* We're doing a "next".
4893
4894 Normal (forward) execution: set a breakpoint at the
4895 callee's return address (the address at which the caller
4896 will resume).
4897
4898 Reverse (backward) execution. set the step-resume
4899 breakpoint at the start of the function that we just
4900 stepped into (backwards), and continue to there. When we
4901 get there, we'll need to single-step back to the caller. */
4902
4903 if (execution_direction == EXEC_REVERSE)
4904 {
4905 /* If we're already at the start of the function, we've either
4906 just stepped backward into a single instruction function,
4907 or stepped back out of a signal handler to the first instruction
4908 of the function. Just keep going, which will single-step back
4909 to the caller. */
4910 if (ecs->stop_func_start != stop_pc)
4911 {
4912 struct symtab_and_line sr_sal;
4913
4914 /* Normal function call return (static or dynamic). */
4915 init_sal (&sr_sal);
4916 sr_sal.pc = ecs->stop_func_start;
4917 sr_sal.pspace = get_frame_program_space (frame);
4918 insert_step_resume_breakpoint_at_sal (gdbarch,
4919 sr_sal, null_frame_id);
4920 }
4921 }
4922 else
4923 insert_step_resume_breakpoint_at_caller (frame);
4924
4925 keep_going (ecs);
4926 return;
4927 }
4928
4929 /* If we are in a function call trampoline (a stub between the
4930 calling routine and the real function), locate the real
4931 function. That's what tells us (a) whether we want to step
4932 into it at all, and (b) what prologue we want to run to the
4933 end of, if we do step into it. */
4934 real_stop_pc = skip_language_trampoline (frame, stop_pc);
4935 if (real_stop_pc == 0)
4936 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4937 if (real_stop_pc != 0)
4938 ecs->stop_func_start = real_stop_pc;
4939
4940 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4941 {
4942 struct symtab_and_line sr_sal;
4943
4944 init_sal (&sr_sal);
4945 sr_sal.pc = ecs->stop_func_start;
4946 sr_sal.pspace = get_frame_program_space (frame);
4947
4948 insert_step_resume_breakpoint_at_sal (gdbarch,
4949 sr_sal, null_frame_id);
4950 keep_going (ecs);
4951 return;
4952 }
4953
4954 /* If we have line number information for the function we are
4955 thinking of stepping into and the function isn't on the skip
4956 list, step into it.
4957
4958 If there are several symtabs at that PC (e.g. with include
4959 files), just want to know whether *any* of them have line
4960 numbers. find_pc_line handles this. */
4961 {
4962 struct symtab_and_line tmp_sal;
4963
4964 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4965 if (tmp_sal.line != 0
4966 && !function_pc_is_marked_for_skip (ecs->stop_func_start))
4967 {
4968 if (execution_direction == EXEC_REVERSE)
4969 handle_step_into_function_backward (gdbarch, ecs);
4970 else
4971 handle_step_into_function (gdbarch, ecs);
4972 return;
4973 }
4974 }
4975
4976 /* If we have no line number and the step-stop-if-no-debug is
4977 set, we stop the step so that the user has a chance to switch
4978 in assembly mode. */
4979 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4980 && step_stop_if_no_debug)
4981 {
4982 ecs->event_thread->control.stop_step = 1;
4983 print_end_stepping_range_reason ();
4984 stop_stepping (ecs);
4985 return;
4986 }
4987
4988 if (execution_direction == EXEC_REVERSE)
4989 {
4990 /* If we're already at the start of the function, we've either just
4991 stepped backward into a single instruction function without line
4992 number info, or stepped back out of a signal handler to the first
4993 instruction of the function without line number info. Just keep
4994 going, which will single-step back to the caller. */
4995 if (ecs->stop_func_start != stop_pc)
4996 {
4997 /* Set a breakpoint at callee's start address.
4998 From there we can step once and be back in the caller. */
4999 struct symtab_and_line sr_sal;
5000
5001 init_sal (&sr_sal);
5002 sr_sal.pc = ecs->stop_func_start;
5003 sr_sal.pspace = get_frame_program_space (frame);
5004 insert_step_resume_breakpoint_at_sal (gdbarch,
5005 sr_sal, null_frame_id);
5006 }
5007 }
5008 else
5009 /* Set a breakpoint at callee's return address (the address
5010 at which the caller will resume). */
5011 insert_step_resume_breakpoint_at_caller (frame);
5012
5013 keep_going (ecs);
5014 return;
5015 }
5016
5017 /* Reverse stepping through solib trampolines. */
5018
5019 if (execution_direction == EXEC_REVERSE
5020 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5021 {
5022 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5023 || (ecs->stop_func_start == 0
5024 && in_solib_dynsym_resolve_code (stop_pc)))
5025 {
5026 /* Any solib trampoline code can be handled in reverse
5027 by simply continuing to single-step. We have already
5028 executed the solib function (backwards), and a few
5029 steps will take us back through the trampoline to the
5030 caller. */
5031 keep_going (ecs);
5032 return;
5033 }
5034 else if (in_solib_dynsym_resolve_code (stop_pc))
5035 {
5036 /* Stepped backward into the solib dynsym resolver.
5037 Set a breakpoint at its start and continue, then
5038 one more step will take us out. */
5039 struct symtab_and_line sr_sal;
5040
5041 init_sal (&sr_sal);
5042 sr_sal.pc = ecs->stop_func_start;
5043 sr_sal.pspace = get_frame_program_space (frame);
5044 insert_step_resume_breakpoint_at_sal (gdbarch,
5045 sr_sal, null_frame_id);
5046 keep_going (ecs);
5047 return;
5048 }
5049 }
5050
5051 stop_pc_sal = find_pc_line (stop_pc, 0);
5052
5053 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5054 the trampoline processing logic, however, there are some trampolines
5055 that have no names, so we should do trampoline handling first. */
5056 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5057 && ecs->stop_func_name == NULL
5058 && stop_pc_sal.line == 0)
5059 {
5060 if (debug_infrun)
5061 fprintf_unfiltered (gdb_stdlog,
5062 "infrun: stepped into undebuggable function\n");
5063
5064 /* The inferior just stepped into, or returned to, an
5065 undebuggable function (where there is no debugging information
5066 and no line number corresponding to the address where the
5067 inferior stopped). Since we want to skip this kind of code,
5068 we keep going until the inferior returns from this
5069 function - unless the user has asked us not to (via
5070 set step-mode) or we no longer know how to get back
5071 to the call site. */
5072 if (step_stop_if_no_debug
5073 || !frame_id_p (frame_unwind_caller_id (frame)))
5074 {
5075 /* If we have no line number and the step-stop-if-no-debug
5076 is set, we stop the step so that the user has a chance to
5077 switch in assembly mode. */
5078 ecs->event_thread->control.stop_step = 1;
5079 print_end_stepping_range_reason ();
5080 stop_stepping (ecs);
5081 return;
5082 }
5083 else
5084 {
5085 /* Set a breakpoint at callee's return address (the address
5086 at which the caller will resume). */
5087 insert_step_resume_breakpoint_at_caller (frame);
5088 keep_going (ecs);
5089 return;
5090 }
5091 }
5092
5093 if (ecs->event_thread->control.step_range_end == 1)
5094 {
5095 /* It is stepi or nexti. We always want to stop stepping after
5096 one instruction. */
5097 if (debug_infrun)
5098 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
5099 ecs->event_thread->control.stop_step = 1;
5100 print_end_stepping_range_reason ();
5101 stop_stepping (ecs);
5102 return;
5103 }
5104
5105 if (stop_pc_sal.line == 0)
5106 {
5107 /* We have no line number information. That means to stop
5108 stepping (does this always happen right after one instruction,
5109 when we do "s" in a function with no line numbers,
5110 or can this happen as a result of a return or longjmp?). */
5111 if (debug_infrun)
5112 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
5113 ecs->event_thread->control.stop_step = 1;
5114 print_end_stepping_range_reason ();
5115 stop_stepping (ecs);
5116 return;
5117 }
5118
5119 /* Look for "calls" to inlined functions, part one. If the inline
5120 frame machinery detected some skipped call sites, we have entered
5121 a new inline function. */
5122
5123 if (frame_id_eq (get_frame_id (get_current_frame ()),
5124 ecs->event_thread->control.step_frame_id)
5125 && inline_skipped_frames (ecs->ptid))
5126 {
5127 struct symtab_and_line call_sal;
5128
5129 if (debug_infrun)
5130 fprintf_unfiltered (gdb_stdlog,
5131 "infrun: stepped into inlined function\n");
5132
5133 find_frame_sal (get_current_frame (), &call_sal);
5134
5135 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5136 {
5137 /* For "step", we're going to stop. But if the call site
5138 for this inlined function is on the same source line as
5139 we were previously stepping, go down into the function
5140 first. Otherwise stop at the call site. */
5141
5142 if (call_sal.line == ecs->event_thread->current_line
5143 && call_sal.symtab == ecs->event_thread->current_symtab)
5144 step_into_inline_frame (ecs->ptid);
5145
5146 ecs->event_thread->control.stop_step = 1;
5147 print_end_stepping_range_reason ();
5148 stop_stepping (ecs);
5149 return;
5150 }
5151 else
5152 {
5153 /* For "next", we should stop at the call site if it is on a
5154 different source line. Otherwise continue through the
5155 inlined function. */
5156 if (call_sal.line == ecs->event_thread->current_line
5157 && call_sal.symtab == ecs->event_thread->current_symtab)
5158 keep_going (ecs);
5159 else
5160 {
5161 ecs->event_thread->control.stop_step = 1;
5162 print_end_stepping_range_reason ();
5163 stop_stepping (ecs);
5164 }
5165 return;
5166 }
5167 }
5168
5169 /* Look for "calls" to inlined functions, part two. If we are still
5170 in the same real function we were stepping through, but we have
5171 to go further up to find the exact frame ID, we are stepping
5172 through a more inlined call beyond its call site. */
5173
5174 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5175 && !frame_id_eq (get_frame_id (get_current_frame ()),
5176 ecs->event_thread->control.step_frame_id)
5177 && stepped_in_from (get_current_frame (),
5178 ecs->event_thread->control.step_frame_id))
5179 {
5180 if (debug_infrun)
5181 fprintf_unfiltered (gdb_stdlog,
5182 "infrun: stepping through inlined function\n");
5183
5184 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5185 keep_going (ecs);
5186 else
5187 {
5188 ecs->event_thread->control.stop_step = 1;
5189 print_end_stepping_range_reason ();
5190 stop_stepping (ecs);
5191 }
5192 return;
5193 }
5194
5195 if ((stop_pc == stop_pc_sal.pc)
5196 && (ecs->event_thread->current_line != stop_pc_sal.line
5197 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5198 {
5199 /* We are at the start of a different line. So stop. Note that
5200 we don't stop if we step into the middle of a different line.
5201 That is said to make things like for (;;) statements work
5202 better. */
5203 if (debug_infrun)
5204 fprintf_unfiltered (gdb_stdlog,
5205 "infrun: stepped to a different line\n");
5206 ecs->event_thread->control.stop_step = 1;
5207 print_end_stepping_range_reason ();
5208 stop_stepping (ecs);
5209 return;
5210 }
5211
5212 /* We aren't done stepping.
5213
5214 Optimize by setting the stepping range to the line.
5215 (We might not be in the original line, but if we entered a
5216 new line in mid-statement, we continue stepping. This makes
5217 things like for(;;) statements work better.) */
5218
5219 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5220 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5221 set_step_info (frame, stop_pc_sal);
5222
5223 if (debug_infrun)
5224 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5225 keep_going (ecs);
5226 }
5227
5228 /* Is thread TP in the middle of single-stepping? */
5229
5230 static int
5231 currently_stepping (struct thread_info *tp)
5232 {
5233 return ((tp->control.step_range_end
5234 && tp->control.step_resume_breakpoint == NULL)
5235 || tp->control.trap_expected
5236 || bpstat_should_step ());
5237 }
5238
5239 /* Returns true if any thread *but* the one passed in "data" is in the
5240 middle of stepping or of handling a "next". */
5241
5242 static int
5243 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
5244 {
5245 if (tp == data)
5246 return 0;
5247
5248 return (tp->control.step_range_end
5249 || tp->control.trap_expected);
5250 }
5251
5252 /* Inferior has stepped into a subroutine call with source code that
5253 we should not step over. Do step to the first line of code in
5254 it. */
5255
5256 static void
5257 handle_step_into_function (struct gdbarch *gdbarch,
5258 struct execution_control_state *ecs)
5259 {
5260 struct symtab *s;
5261 struct symtab_and_line stop_func_sal, sr_sal;
5262
5263 fill_in_stop_func (gdbarch, ecs);
5264
5265 s = find_pc_symtab (stop_pc);
5266 if (s && s->language != language_asm)
5267 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5268 ecs->stop_func_start);
5269
5270 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5271 /* Use the step_resume_break to step until the end of the prologue,
5272 even if that involves jumps (as it seems to on the vax under
5273 4.2). */
5274 /* If the prologue ends in the middle of a source line, continue to
5275 the end of that source line (if it is still within the function).
5276 Otherwise, just go to end of prologue. */
5277 if (stop_func_sal.end
5278 && stop_func_sal.pc != ecs->stop_func_start
5279 && stop_func_sal.end < ecs->stop_func_end)
5280 ecs->stop_func_start = stop_func_sal.end;
5281
5282 /* Architectures which require breakpoint adjustment might not be able
5283 to place a breakpoint at the computed address. If so, the test
5284 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5285 ecs->stop_func_start to an address at which a breakpoint may be
5286 legitimately placed.
5287
5288 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5289 made, GDB will enter an infinite loop when stepping through
5290 optimized code consisting of VLIW instructions which contain
5291 subinstructions corresponding to different source lines. On
5292 FR-V, it's not permitted to place a breakpoint on any but the
5293 first subinstruction of a VLIW instruction. When a breakpoint is
5294 set, GDB will adjust the breakpoint address to the beginning of
5295 the VLIW instruction. Thus, we need to make the corresponding
5296 adjustment here when computing the stop address. */
5297
5298 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5299 {
5300 ecs->stop_func_start
5301 = gdbarch_adjust_breakpoint_address (gdbarch,
5302 ecs->stop_func_start);
5303 }
5304
5305 if (ecs->stop_func_start == stop_pc)
5306 {
5307 /* We are already there: stop now. */
5308 ecs->event_thread->control.stop_step = 1;
5309 print_end_stepping_range_reason ();
5310 stop_stepping (ecs);
5311 return;
5312 }
5313 else
5314 {
5315 /* Put the step-breakpoint there and go until there. */
5316 init_sal (&sr_sal); /* initialize to zeroes */
5317 sr_sal.pc = ecs->stop_func_start;
5318 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5319 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5320
5321 /* Do not specify what the fp should be when we stop since on
5322 some machines the prologue is where the new fp value is
5323 established. */
5324 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5325
5326 /* And make sure stepping stops right away then. */
5327 ecs->event_thread->control.step_range_end
5328 = ecs->event_thread->control.step_range_start;
5329 }
5330 keep_going (ecs);
5331 }
5332
5333 /* Inferior has stepped backward into a subroutine call with source
5334 code that we should not step over. Do step to the beginning of the
5335 last line of code in it. */
5336
5337 static void
5338 handle_step_into_function_backward (struct gdbarch *gdbarch,
5339 struct execution_control_state *ecs)
5340 {
5341 struct symtab *s;
5342 struct symtab_and_line stop_func_sal;
5343
5344 fill_in_stop_func (gdbarch, ecs);
5345
5346 s = find_pc_symtab (stop_pc);
5347 if (s && s->language != language_asm)
5348 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5349 ecs->stop_func_start);
5350
5351 stop_func_sal = find_pc_line (stop_pc, 0);
5352
5353 /* OK, we're just going to keep stepping here. */
5354 if (stop_func_sal.pc == stop_pc)
5355 {
5356 /* We're there already. Just stop stepping now. */
5357 ecs->event_thread->control.stop_step = 1;
5358 print_end_stepping_range_reason ();
5359 stop_stepping (ecs);
5360 }
5361 else
5362 {
5363 /* Else just reset the step range and keep going.
5364 No step-resume breakpoint, they don't work for
5365 epilogues, which can have multiple entry paths. */
5366 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5367 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5368 keep_going (ecs);
5369 }
5370 return;
5371 }
5372
5373 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5374 This is used to both functions and to skip over code. */
5375
5376 static void
5377 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5378 struct symtab_and_line sr_sal,
5379 struct frame_id sr_id,
5380 enum bptype sr_type)
5381 {
5382 /* There should never be more than one step-resume or longjmp-resume
5383 breakpoint per thread, so we should never be setting a new
5384 step_resume_breakpoint when one is already active. */
5385 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5386 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5387
5388 if (debug_infrun)
5389 fprintf_unfiltered (gdb_stdlog,
5390 "infrun: inserting step-resume breakpoint at %s\n",
5391 paddress (gdbarch, sr_sal.pc));
5392
5393 inferior_thread ()->control.step_resume_breakpoint
5394 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5395 }
5396
5397 void
5398 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5399 struct symtab_and_line sr_sal,
5400 struct frame_id sr_id)
5401 {
5402 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5403 sr_sal, sr_id,
5404 bp_step_resume);
5405 }
5406
5407 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5408 This is used to skip a potential signal handler.
5409
5410 This is called with the interrupted function's frame. The signal
5411 handler, when it returns, will resume the interrupted function at
5412 RETURN_FRAME.pc. */
5413
5414 static void
5415 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5416 {
5417 struct symtab_and_line sr_sal;
5418 struct gdbarch *gdbarch;
5419
5420 gdb_assert (return_frame != NULL);
5421 init_sal (&sr_sal); /* initialize to zeros */
5422
5423 gdbarch = get_frame_arch (return_frame);
5424 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5425 sr_sal.section = find_pc_overlay (sr_sal.pc);
5426 sr_sal.pspace = get_frame_program_space (return_frame);
5427
5428 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5429 get_stack_frame_id (return_frame),
5430 bp_hp_step_resume);
5431 }
5432
5433 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
5434 is used to skip a function after stepping into it (for "next" or if
5435 the called function has no debugging information).
5436
5437 The current function has almost always been reached by single
5438 stepping a call or return instruction. NEXT_FRAME belongs to the
5439 current function, and the breakpoint will be set at the caller's
5440 resume address.
5441
5442 This is a separate function rather than reusing
5443 insert_hp_step_resume_breakpoint_at_frame in order to avoid
5444 get_prev_frame, which may stop prematurely (see the implementation
5445 of frame_unwind_caller_id for an example). */
5446
5447 static void
5448 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5449 {
5450 struct symtab_and_line sr_sal;
5451 struct gdbarch *gdbarch;
5452
5453 /* We shouldn't have gotten here if we don't know where the call site
5454 is. */
5455 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5456
5457 init_sal (&sr_sal); /* initialize to zeros */
5458
5459 gdbarch = frame_unwind_caller_arch (next_frame);
5460 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5461 frame_unwind_caller_pc (next_frame));
5462 sr_sal.section = find_pc_overlay (sr_sal.pc);
5463 sr_sal.pspace = frame_unwind_program_space (next_frame);
5464
5465 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5466 frame_unwind_caller_id (next_frame));
5467 }
5468
5469 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5470 new breakpoint at the target of a jmp_buf. The handling of
5471 longjmp-resume uses the same mechanisms used for handling
5472 "step-resume" breakpoints. */
5473
5474 static void
5475 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5476 {
5477 /* There should never be more than one longjmp-resume breakpoint per
5478 thread, so we should never be setting a new
5479 longjmp_resume_breakpoint when one is already active. */
5480 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
5481
5482 if (debug_infrun)
5483 fprintf_unfiltered (gdb_stdlog,
5484 "infrun: inserting longjmp-resume breakpoint at %s\n",
5485 paddress (gdbarch, pc));
5486
5487 inferior_thread ()->control.exception_resume_breakpoint =
5488 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5489 }
5490
5491 /* Insert an exception resume breakpoint. TP is the thread throwing
5492 the exception. The block B is the block of the unwinder debug hook
5493 function. FRAME is the frame corresponding to the call to this
5494 function. SYM is the symbol of the function argument holding the
5495 target PC of the exception. */
5496
5497 static void
5498 insert_exception_resume_breakpoint (struct thread_info *tp,
5499 struct block *b,
5500 struct frame_info *frame,
5501 struct symbol *sym)
5502 {
5503 volatile struct gdb_exception e;
5504
5505 /* We want to ignore errors here. */
5506 TRY_CATCH (e, RETURN_MASK_ERROR)
5507 {
5508 struct symbol *vsym;
5509 struct value *value;
5510 CORE_ADDR handler;
5511 struct breakpoint *bp;
5512
5513 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5514 value = read_var_value (vsym, frame);
5515 /* If the value was optimized out, revert to the old behavior. */
5516 if (! value_optimized_out (value))
5517 {
5518 handler = value_as_address (value);
5519
5520 if (debug_infrun)
5521 fprintf_unfiltered (gdb_stdlog,
5522 "infrun: exception resume at %lx\n",
5523 (unsigned long) handler);
5524
5525 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5526 handler, bp_exception_resume);
5527
5528 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5529 frame = NULL;
5530
5531 bp->thread = tp->num;
5532 inferior_thread ()->control.exception_resume_breakpoint = bp;
5533 }
5534 }
5535 }
5536
5537 /* A helper for check_exception_resume that sets an
5538 exception-breakpoint based on a SystemTap probe. */
5539
5540 static void
5541 insert_exception_resume_from_probe (struct thread_info *tp,
5542 const struct probe *probe,
5543 struct frame_info *frame)
5544 {
5545 struct value *arg_value;
5546 CORE_ADDR handler;
5547 struct breakpoint *bp;
5548
5549 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5550 if (!arg_value)
5551 return;
5552
5553 handler = value_as_address (arg_value);
5554
5555 if (debug_infrun)
5556 fprintf_unfiltered (gdb_stdlog,
5557 "infrun: exception resume at %s\n",
5558 paddress (get_objfile_arch (probe->objfile),
5559 handler));
5560
5561 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5562 handler, bp_exception_resume);
5563 bp->thread = tp->num;
5564 inferior_thread ()->control.exception_resume_breakpoint = bp;
5565 }
5566
5567 /* This is called when an exception has been intercepted. Check to
5568 see whether the exception's destination is of interest, and if so,
5569 set an exception resume breakpoint there. */
5570
5571 static void
5572 check_exception_resume (struct execution_control_state *ecs,
5573 struct frame_info *frame)
5574 {
5575 volatile struct gdb_exception e;
5576 const struct probe *probe;
5577 struct symbol *func;
5578
5579 /* First see if this exception unwinding breakpoint was set via a
5580 SystemTap probe point. If so, the probe has two arguments: the
5581 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5582 set a breakpoint there. */
5583 probe = find_probe_by_pc (get_frame_pc (frame));
5584 if (probe)
5585 {
5586 insert_exception_resume_from_probe (ecs->event_thread, probe, frame);
5587 return;
5588 }
5589
5590 func = get_frame_function (frame);
5591 if (!func)
5592 return;
5593
5594 TRY_CATCH (e, RETURN_MASK_ERROR)
5595 {
5596 struct block *b;
5597 struct block_iterator iter;
5598 struct symbol *sym;
5599 int argno = 0;
5600
5601 /* The exception breakpoint is a thread-specific breakpoint on
5602 the unwinder's debug hook, declared as:
5603
5604 void _Unwind_DebugHook (void *cfa, void *handler);
5605
5606 The CFA argument indicates the frame to which control is
5607 about to be transferred. HANDLER is the destination PC.
5608
5609 We ignore the CFA and set a temporary breakpoint at HANDLER.
5610 This is not extremely efficient but it avoids issues in gdb
5611 with computing the DWARF CFA, and it also works even in weird
5612 cases such as throwing an exception from inside a signal
5613 handler. */
5614
5615 b = SYMBOL_BLOCK_VALUE (func);
5616 ALL_BLOCK_SYMBOLS (b, iter, sym)
5617 {
5618 if (!SYMBOL_IS_ARGUMENT (sym))
5619 continue;
5620
5621 if (argno == 0)
5622 ++argno;
5623 else
5624 {
5625 insert_exception_resume_breakpoint (ecs->event_thread,
5626 b, frame, sym);
5627 break;
5628 }
5629 }
5630 }
5631 }
5632
5633 static void
5634 stop_stepping (struct execution_control_state *ecs)
5635 {
5636 if (debug_infrun)
5637 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
5638
5639 /* Let callers know we don't want to wait for the inferior anymore. */
5640 ecs->wait_some_more = 0;
5641 }
5642
5643 /* This function handles various cases where we need to continue
5644 waiting for the inferior. */
5645 /* (Used to be the keep_going: label in the old wait_for_inferior). */
5646
5647 static void
5648 keep_going (struct execution_control_state *ecs)
5649 {
5650 /* Make sure normal_stop is called if we get a QUIT handled before
5651 reaching resume. */
5652 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5653
5654 /* Save the pc before execution, to compare with pc after stop. */
5655 ecs->event_thread->prev_pc
5656 = regcache_read_pc (get_thread_regcache (ecs->ptid));
5657
5658 /* If we did not do break;, it means we should keep running the
5659 inferior and not return to debugger. */
5660
5661 if (ecs->event_thread->control.trap_expected
5662 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5663 {
5664 /* We took a signal (which we are supposed to pass through to
5665 the inferior, else we'd not get here) and we haven't yet
5666 gotten our trap. Simply continue. */
5667
5668 discard_cleanups (old_cleanups);
5669 resume (currently_stepping (ecs->event_thread),
5670 ecs->event_thread->suspend.stop_signal);
5671 }
5672 else
5673 {
5674 /* Either the trap was not expected, but we are continuing
5675 anyway (the user asked that this signal be passed to the
5676 child)
5677 -- or --
5678 The signal was SIGTRAP, e.g. it was our signal, but we
5679 decided we should resume from it.
5680
5681 We're going to run this baby now!
5682
5683 Note that insert_breakpoints won't try to re-insert
5684 already inserted breakpoints. Therefore, we don't
5685 care if breakpoints were already inserted, or not. */
5686
5687 if (ecs->event_thread->stepping_over_breakpoint)
5688 {
5689 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
5690
5691 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
5692 /* Since we can't do a displaced step, we have to remove
5693 the breakpoint while we step it. To keep things
5694 simple, we remove them all. */
5695 remove_breakpoints ();
5696 }
5697 else
5698 {
5699 volatile struct gdb_exception e;
5700
5701 /* Stop stepping when inserting breakpoints
5702 has failed. */
5703 TRY_CATCH (e, RETURN_MASK_ERROR)
5704 {
5705 insert_breakpoints ();
5706 }
5707 if (e.reason < 0)
5708 {
5709 exception_print (gdb_stderr, e);
5710 stop_stepping (ecs);
5711 return;
5712 }
5713 }
5714
5715 ecs->event_thread->control.trap_expected
5716 = ecs->event_thread->stepping_over_breakpoint;
5717
5718 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
5719 specifies that such a signal should be delivered to the
5720 target program).
5721
5722 Typically, this would occure when a user is debugging a
5723 target monitor on a simulator: the target monitor sets a
5724 breakpoint; the simulator encounters this break-point and
5725 halts the simulation handing control to GDB; GDB, noteing
5726 that the break-point isn't valid, returns control back to the
5727 simulator; the simulator then delivers the hardware
5728 equivalent of a SIGNAL_TRAP to the program being debugged. */
5729
5730 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5731 && !signal_program[ecs->event_thread->suspend.stop_signal])
5732 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5733
5734 discard_cleanups (old_cleanups);
5735 resume (currently_stepping (ecs->event_thread),
5736 ecs->event_thread->suspend.stop_signal);
5737 }
5738
5739 prepare_to_wait (ecs);
5740 }
5741
5742 /* This function normally comes after a resume, before
5743 handle_inferior_event exits. It takes care of any last bits of
5744 housekeeping, and sets the all-important wait_some_more flag. */
5745
5746 static void
5747 prepare_to_wait (struct execution_control_state *ecs)
5748 {
5749 if (debug_infrun)
5750 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
5751
5752 /* This is the old end of the while loop. Let everybody know we
5753 want to wait for the inferior some more and get called again
5754 soon. */
5755 ecs->wait_some_more = 1;
5756 }
5757
5758 /* Several print_*_reason functions to print why the inferior has stopped.
5759 We always print something when the inferior exits, or receives a signal.
5760 The rest of the cases are dealt with later on in normal_stop and
5761 print_it_typical. Ideally there should be a call to one of these
5762 print_*_reason functions functions from handle_inferior_event each time
5763 stop_stepping is called. */
5764
5765 /* Print why the inferior has stopped.
5766 We are done with a step/next/si/ni command, print why the inferior has
5767 stopped. For now print nothing. Print a message only if not in the middle
5768 of doing a "step n" operation for n > 1. */
5769
5770 static void
5771 print_end_stepping_range_reason (void)
5772 {
5773 if ((!inferior_thread ()->step_multi
5774 || !inferior_thread ()->control.stop_step)
5775 && ui_out_is_mi_like_p (current_uiout))
5776 ui_out_field_string (current_uiout, "reason",
5777 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5778 }
5779
5780 /* The inferior was terminated by a signal, print why it stopped. */
5781
5782 static void
5783 print_signal_exited_reason (enum gdb_signal siggnal)
5784 {
5785 struct ui_out *uiout = current_uiout;
5786
5787 annotate_signalled ();
5788 if (ui_out_is_mi_like_p (uiout))
5789 ui_out_field_string
5790 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5791 ui_out_text (uiout, "\nProgram terminated with signal ");
5792 annotate_signal_name ();
5793 ui_out_field_string (uiout, "signal-name",
5794 gdb_signal_to_name (siggnal));
5795 annotate_signal_name_end ();
5796 ui_out_text (uiout, ", ");
5797 annotate_signal_string ();
5798 ui_out_field_string (uiout, "signal-meaning",
5799 gdb_signal_to_string (siggnal));
5800 annotate_signal_string_end ();
5801 ui_out_text (uiout, ".\n");
5802 ui_out_text (uiout, "The program no longer exists.\n");
5803 }
5804
5805 /* The inferior program is finished, print why it stopped. */
5806
5807 static void
5808 print_exited_reason (int exitstatus)
5809 {
5810 struct inferior *inf = current_inferior ();
5811 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5812 struct ui_out *uiout = current_uiout;
5813
5814 annotate_exited (exitstatus);
5815 if (exitstatus)
5816 {
5817 if (ui_out_is_mi_like_p (uiout))
5818 ui_out_field_string (uiout, "reason",
5819 async_reason_lookup (EXEC_ASYNC_EXITED));
5820 ui_out_text (uiout, "[Inferior ");
5821 ui_out_text (uiout, plongest (inf->num));
5822 ui_out_text (uiout, " (");
5823 ui_out_text (uiout, pidstr);
5824 ui_out_text (uiout, ") exited with code ");
5825 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
5826 ui_out_text (uiout, "]\n");
5827 }
5828 else
5829 {
5830 if (ui_out_is_mi_like_p (uiout))
5831 ui_out_field_string
5832 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5833 ui_out_text (uiout, "[Inferior ");
5834 ui_out_text (uiout, plongest (inf->num));
5835 ui_out_text (uiout, " (");
5836 ui_out_text (uiout, pidstr);
5837 ui_out_text (uiout, ") exited normally]\n");
5838 }
5839 /* Support the --return-child-result option. */
5840 return_child_result_value = exitstatus;
5841 }
5842
5843 /* Signal received, print why the inferior has stopped. The signal table
5844 tells us to print about it. */
5845
5846 static void
5847 print_signal_received_reason (enum gdb_signal siggnal)
5848 {
5849 struct ui_out *uiout = current_uiout;
5850
5851 annotate_signal ();
5852
5853 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5854 {
5855 struct thread_info *t = inferior_thread ();
5856
5857 ui_out_text (uiout, "\n[");
5858 ui_out_field_string (uiout, "thread-name",
5859 target_pid_to_str (t->ptid));
5860 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5861 ui_out_text (uiout, " stopped");
5862 }
5863 else
5864 {
5865 ui_out_text (uiout, "\nProgram received signal ");
5866 annotate_signal_name ();
5867 if (ui_out_is_mi_like_p (uiout))
5868 ui_out_field_string
5869 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5870 ui_out_field_string (uiout, "signal-name",
5871 gdb_signal_to_name (siggnal));
5872 annotate_signal_name_end ();
5873 ui_out_text (uiout, ", ");
5874 annotate_signal_string ();
5875 ui_out_field_string (uiout, "signal-meaning",
5876 gdb_signal_to_string (siggnal));
5877 annotate_signal_string_end ();
5878 }
5879 ui_out_text (uiout, ".\n");
5880 }
5881
5882 /* Reverse execution: target ran out of history info, print why the inferior
5883 has stopped. */
5884
5885 static void
5886 print_no_history_reason (void)
5887 {
5888 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
5889 }
5890
5891 /* Here to return control to GDB when the inferior stops for real.
5892 Print appropriate messages, remove breakpoints, give terminal our modes.
5893
5894 STOP_PRINT_FRAME nonzero means print the executing frame
5895 (pc, function, args, file, line number and line text).
5896 BREAKPOINTS_FAILED nonzero means stop was due to error
5897 attempting to insert breakpoints. */
5898
5899 void
5900 normal_stop (void)
5901 {
5902 struct target_waitstatus last;
5903 ptid_t last_ptid;
5904 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5905
5906 get_last_target_status (&last_ptid, &last);
5907
5908 /* If an exception is thrown from this point on, make sure to
5909 propagate GDB's knowledge of the executing state to the
5910 frontend/user running state. A QUIT is an easy exception to see
5911 here, so do this before any filtered output. */
5912 if (!non_stop)
5913 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5914 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5915 && last.kind != TARGET_WAITKIND_EXITED
5916 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5917 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
5918
5919 /* In non-stop mode, we don't want GDB to switch threads behind the
5920 user's back, to avoid races where the user is typing a command to
5921 apply to thread x, but GDB switches to thread y before the user
5922 finishes entering the command. */
5923
5924 /* As with the notification of thread events, we want to delay
5925 notifying the user that we've switched thread context until
5926 the inferior actually stops.
5927
5928 There's no point in saying anything if the inferior has exited.
5929 Note that SIGNALLED here means "exited with a signal", not
5930 "received a signal". */
5931 if (!non_stop
5932 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
5933 && target_has_execution
5934 && last.kind != TARGET_WAITKIND_SIGNALLED
5935 && last.kind != TARGET_WAITKIND_EXITED
5936 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5937 {
5938 target_terminal_ours_for_output ();
5939 printf_filtered (_("[Switching to %s]\n"),
5940 target_pid_to_str (inferior_ptid));
5941 annotate_thread_changed ();
5942 previous_inferior_ptid = inferior_ptid;
5943 }
5944
5945 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
5946 {
5947 gdb_assert (sync_execution || !target_can_async_p ());
5948
5949 target_terminal_ours_for_output ();
5950 printf_filtered (_("No unwaited-for children left.\n"));
5951 }
5952
5953 if (!breakpoints_always_inserted_mode () && target_has_execution)
5954 {
5955 if (remove_breakpoints ())
5956 {
5957 target_terminal_ours_for_output ();
5958 printf_filtered (_("Cannot remove breakpoints because "
5959 "program is no longer writable.\nFurther "
5960 "execution is probably impossible.\n"));
5961 }
5962 }
5963
5964 /* If an auto-display called a function and that got a signal,
5965 delete that auto-display to avoid an infinite recursion. */
5966
5967 if (stopped_by_random_signal)
5968 disable_current_display ();
5969
5970 /* Don't print a message if in the middle of doing a "step n"
5971 operation for n > 1 */
5972 if (target_has_execution
5973 && last.kind != TARGET_WAITKIND_SIGNALLED
5974 && last.kind != TARGET_WAITKIND_EXITED
5975 && inferior_thread ()->step_multi
5976 && inferior_thread ()->control.stop_step)
5977 goto done;
5978
5979 target_terminal_ours ();
5980 async_enable_stdin ();
5981
5982 /* Set the current source location. This will also happen if we
5983 display the frame below, but the current SAL will be incorrect
5984 during a user hook-stop function. */
5985 if (has_stack_frames () && !stop_stack_dummy)
5986 set_current_sal_from_frame (get_current_frame (), 1);
5987
5988 /* Let the user/frontend see the threads as stopped. */
5989 do_cleanups (old_chain);
5990
5991 /* Look up the hook_stop and run it (CLI internally handles problem
5992 of stop_command's pre-hook not existing). */
5993 if (stop_command)
5994 catch_errors (hook_stop_stub, stop_command,
5995 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5996
5997 if (!has_stack_frames ())
5998 goto done;
5999
6000 if (last.kind == TARGET_WAITKIND_SIGNALLED
6001 || last.kind == TARGET_WAITKIND_EXITED)
6002 goto done;
6003
6004 /* Select innermost stack frame - i.e., current frame is frame 0,
6005 and current location is based on that.
6006 Don't do this on return from a stack dummy routine,
6007 or if the program has exited. */
6008
6009 if (!stop_stack_dummy)
6010 {
6011 select_frame (get_current_frame ());
6012
6013 /* Print current location without a level number, if
6014 we have changed functions or hit a breakpoint.
6015 Print source line if we have one.
6016 bpstat_print() contains the logic deciding in detail
6017 what to print, based on the event(s) that just occurred. */
6018
6019 /* If --batch-silent is enabled then there's no need to print the current
6020 source location, and to try risks causing an error message about
6021 missing source files. */
6022 if (stop_print_frame && !batch_silent)
6023 {
6024 int bpstat_ret;
6025 int source_flag;
6026 int do_frame_printing = 1;
6027 struct thread_info *tp = inferior_thread ();
6028
6029 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
6030 switch (bpstat_ret)
6031 {
6032 case PRINT_UNKNOWN:
6033 /* FIXME: cagney/2002-12-01: Given that a frame ID does
6034 (or should) carry around the function and does (or
6035 should) use that when doing a frame comparison. */
6036 if (tp->control.stop_step
6037 && frame_id_eq (tp->control.step_frame_id,
6038 get_frame_id (get_current_frame ()))
6039 && step_start_function == find_pc_function (stop_pc))
6040 source_flag = SRC_LINE; /* Finished step, just
6041 print source line. */
6042 else
6043 source_flag = SRC_AND_LOC; /* Print location and
6044 source line. */
6045 break;
6046 case PRINT_SRC_AND_LOC:
6047 source_flag = SRC_AND_LOC; /* Print location and
6048 source line. */
6049 break;
6050 case PRINT_SRC_ONLY:
6051 source_flag = SRC_LINE;
6052 break;
6053 case PRINT_NOTHING:
6054 source_flag = SRC_LINE; /* something bogus */
6055 do_frame_printing = 0;
6056 break;
6057 default:
6058 internal_error (__FILE__, __LINE__, _("Unknown value."));
6059 }
6060
6061 /* The behavior of this routine with respect to the source
6062 flag is:
6063 SRC_LINE: Print only source line
6064 LOCATION: Print only location
6065 SRC_AND_LOC: Print location and source line. */
6066 if (do_frame_printing)
6067 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
6068
6069 /* Display the auto-display expressions. */
6070 do_displays ();
6071 }
6072 }
6073
6074 /* Save the function value return registers, if we care.
6075 We might be about to restore their previous contents. */
6076 if (inferior_thread ()->control.proceed_to_finish
6077 && execution_direction != EXEC_REVERSE)
6078 {
6079 /* This should not be necessary. */
6080 if (stop_registers)
6081 regcache_xfree (stop_registers);
6082
6083 /* NB: The copy goes through to the target picking up the value of
6084 all the registers. */
6085 stop_registers = regcache_dup (get_current_regcache ());
6086 }
6087
6088 if (stop_stack_dummy == STOP_STACK_DUMMY)
6089 {
6090 /* Pop the empty frame that contains the stack dummy.
6091 This also restores inferior state prior to the call
6092 (struct infcall_suspend_state). */
6093 struct frame_info *frame = get_current_frame ();
6094
6095 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6096 frame_pop (frame);
6097 /* frame_pop() calls reinit_frame_cache as the last thing it
6098 does which means there's currently no selected frame. We
6099 don't need to re-establish a selected frame if the dummy call
6100 returns normally, that will be done by
6101 restore_infcall_control_state. However, we do have to handle
6102 the case where the dummy call is returning after being
6103 stopped (e.g. the dummy call previously hit a breakpoint).
6104 We can't know which case we have so just always re-establish
6105 a selected frame here. */
6106 select_frame (get_current_frame ());
6107 }
6108
6109 done:
6110 annotate_stopped ();
6111
6112 /* Suppress the stop observer if we're in the middle of:
6113
6114 - a step n (n > 1), as there still more steps to be done.
6115
6116 - a "finish" command, as the observer will be called in
6117 finish_command_continuation, so it can include the inferior
6118 function's return value.
6119
6120 - calling an inferior function, as we pretend we inferior didn't
6121 run at all. The return value of the call is handled by the
6122 expression evaluator, through call_function_by_hand. */
6123
6124 if (!target_has_execution
6125 || last.kind == TARGET_WAITKIND_SIGNALLED
6126 || last.kind == TARGET_WAITKIND_EXITED
6127 || last.kind == TARGET_WAITKIND_NO_RESUMED
6128 || (!(inferior_thread ()->step_multi
6129 && inferior_thread ()->control.stop_step)
6130 && !(inferior_thread ()->control.stop_bpstat
6131 && inferior_thread ()->control.proceed_to_finish)
6132 && !inferior_thread ()->control.in_infcall))
6133 {
6134 if (!ptid_equal (inferior_ptid, null_ptid))
6135 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
6136 stop_print_frame);
6137 else
6138 observer_notify_normal_stop (NULL, stop_print_frame);
6139 }
6140
6141 if (target_has_execution)
6142 {
6143 if (last.kind != TARGET_WAITKIND_SIGNALLED
6144 && last.kind != TARGET_WAITKIND_EXITED)
6145 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6146 Delete any breakpoint that is to be deleted at the next stop. */
6147 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
6148 }
6149
6150 /* Try to get rid of automatically added inferiors that are no
6151 longer needed. Keeping those around slows down things linearly.
6152 Note that this never removes the current inferior. */
6153 prune_inferiors ();
6154 }
6155
6156 static int
6157 hook_stop_stub (void *cmd)
6158 {
6159 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
6160 return (0);
6161 }
6162 \f
6163 int
6164 signal_stop_state (int signo)
6165 {
6166 return signal_stop[signo];
6167 }
6168
6169 int
6170 signal_print_state (int signo)
6171 {
6172 return signal_print[signo];
6173 }
6174
6175 int
6176 signal_pass_state (int signo)
6177 {
6178 return signal_program[signo];
6179 }
6180
6181 static void
6182 signal_cache_update (int signo)
6183 {
6184 if (signo == -1)
6185 {
6186 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
6187 signal_cache_update (signo);
6188
6189 return;
6190 }
6191
6192 signal_pass[signo] = (signal_stop[signo] == 0
6193 && signal_print[signo] == 0
6194 && signal_program[signo] == 1);
6195 }
6196
6197 int
6198 signal_stop_update (int signo, int state)
6199 {
6200 int ret = signal_stop[signo];
6201
6202 signal_stop[signo] = state;
6203 signal_cache_update (signo);
6204 return ret;
6205 }
6206
6207 int
6208 signal_print_update (int signo, int state)
6209 {
6210 int ret = signal_print[signo];
6211
6212 signal_print[signo] = state;
6213 signal_cache_update (signo);
6214 return ret;
6215 }
6216
6217 int
6218 signal_pass_update (int signo, int state)
6219 {
6220 int ret = signal_program[signo];
6221
6222 signal_program[signo] = state;
6223 signal_cache_update (signo);
6224 return ret;
6225 }
6226
6227 static void
6228 sig_print_header (void)
6229 {
6230 printf_filtered (_("Signal Stop\tPrint\tPass "
6231 "to program\tDescription\n"));
6232 }
6233
6234 static void
6235 sig_print_info (enum gdb_signal oursig)
6236 {
6237 const char *name = gdb_signal_to_name (oursig);
6238 int name_padding = 13 - strlen (name);
6239
6240 if (name_padding <= 0)
6241 name_padding = 0;
6242
6243 printf_filtered ("%s", name);
6244 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6245 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6246 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6247 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6248 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
6249 }
6250
6251 /* Specify how various signals in the inferior should be handled. */
6252
6253 static void
6254 handle_command (char *args, int from_tty)
6255 {
6256 char **argv;
6257 int digits, wordlen;
6258 int sigfirst, signum, siglast;
6259 enum gdb_signal oursig;
6260 int allsigs;
6261 int nsigs;
6262 unsigned char *sigs;
6263 struct cleanup *old_chain;
6264
6265 if (args == NULL)
6266 {
6267 error_no_arg (_("signal to handle"));
6268 }
6269
6270 /* Allocate and zero an array of flags for which signals to handle. */
6271
6272 nsigs = (int) GDB_SIGNAL_LAST;
6273 sigs = (unsigned char *) alloca (nsigs);
6274 memset (sigs, 0, nsigs);
6275
6276 /* Break the command line up into args. */
6277
6278 argv = gdb_buildargv (args);
6279 old_chain = make_cleanup_freeargv (argv);
6280
6281 /* Walk through the args, looking for signal oursigs, signal names, and
6282 actions. Signal numbers and signal names may be interspersed with
6283 actions, with the actions being performed for all signals cumulatively
6284 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6285
6286 while (*argv != NULL)
6287 {
6288 wordlen = strlen (*argv);
6289 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6290 {;
6291 }
6292 allsigs = 0;
6293 sigfirst = siglast = -1;
6294
6295 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6296 {
6297 /* Apply action to all signals except those used by the
6298 debugger. Silently skip those. */
6299 allsigs = 1;
6300 sigfirst = 0;
6301 siglast = nsigs - 1;
6302 }
6303 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6304 {
6305 SET_SIGS (nsigs, sigs, signal_stop);
6306 SET_SIGS (nsigs, sigs, signal_print);
6307 }
6308 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6309 {
6310 UNSET_SIGS (nsigs, sigs, signal_program);
6311 }
6312 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6313 {
6314 SET_SIGS (nsigs, sigs, signal_print);
6315 }
6316 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6317 {
6318 SET_SIGS (nsigs, sigs, signal_program);
6319 }
6320 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6321 {
6322 UNSET_SIGS (nsigs, sigs, signal_stop);
6323 }
6324 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6325 {
6326 SET_SIGS (nsigs, sigs, signal_program);
6327 }
6328 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6329 {
6330 UNSET_SIGS (nsigs, sigs, signal_print);
6331 UNSET_SIGS (nsigs, sigs, signal_stop);
6332 }
6333 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6334 {
6335 UNSET_SIGS (nsigs, sigs, signal_program);
6336 }
6337 else if (digits > 0)
6338 {
6339 /* It is numeric. The numeric signal refers to our own
6340 internal signal numbering from target.h, not to host/target
6341 signal number. This is a feature; users really should be
6342 using symbolic names anyway, and the common ones like
6343 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6344
6345 sigfirst = siglast = (int)
6346 gdb_signal_from_command (atoi (*argv));
6347 if ((*argv)[digits] == '-')
6348 {
6349 siglast = (int)
6350 gdb_signal_from_command (atoi ((*argv) + digits + 1));
6351 }
6352 if (sigfirst > siglast)
6353 {
6354 /* Bet he didn't figure we'd think of this case... */
6355 signum = sigfirst;
6356 sigfirst = siglast;
6357 siglast = signum;
6358 }
6359 }
6360 else
6361 {
6362 oursig = gdb_signal_from_name (*argv);
6363 if (oursig != GDB_SIGNAL_UNKNOWN)
6364 {
6365 sigfirst = siglast = (int) oursig;
6366 }
6367 else
6368 {
6369 /* Not a number and not a recognized flag word => complain. */
6370 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6371 }
6372 }
6373
6374 /* If any signal numbers or symbol names were found, set flags for
6375 which signals to apply actions to. */
6376
6377 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6378 {
6379 switch ((enum gdb_signal) signum)
6380 {
6381 case GDB_SIGNAL_TRAP:
6382 case GDB_SIGNAL_INT:
6383 if (!allsigs && !sigs[signum])
6384 {
6385 if (query (_("%s is used by the debugger.\n\
6386 Are you sure you want to change it? "),
6387 gdb_signal_to_name ((enum gdb_signal) signum)))
6388 {
6389 sigs[signum] = 1;
6390 }
6391 else
6392 {
6393 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6394 gdb_flush (gdb_stdout);
6395 }
6396 }
6397 break;
6398 case GDB_SIGNAL_0:
6399 case GDB_SIGNAL_DEFAULT:
6400 case GDB_SIGNAL_UNKNOWN:
6401 /* Make sure that "all" doesn't print these. */
6402 break;
6403 default:
6404 sigs[signum] = 1;
6405 break;
6406 }
6407 }
6408
6409 argv++;
6410 }
6411
6412 for (signum = 0; signum < nsigs; signum++)
6413 if (sigs[signum])
6414 {
6415 signal_cache_update (-1);
6416 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6417 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
6418
6419 if (from_tty)
6420 {
6421 /* Show the results. */
6422 sig_print_header ();
6423 for (; signum < nsigs; signum++)
6424 if (sigs[signum])
6425 sig_print_info (signum);
6426 }
6427
6428 break;
6429 }
6430
6431 do_cleanups (old_chain);
6432 }
6433
6434 /* Complete the "handle" command. */
6435
6436 static VEC (char_ptr) *
6437 handle_completer (struct cmd_list_element *ignore,
6438 char *text, char *word)
6439 {
6440 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6441 static const char * const keywords[] =
6442 {
6443 "all",
6444 "stop",
6445 "ignore",
6446 "print",
6447 "pass",
6448 "nostop",
6449 "noignore",
6450 "noprint",
6451 "nopass",
6452 NULL,
6453 };
6454
6455 vec_signals = signal_completer (ignore, text, word);
6456 vec_keywords = complete_on_enum (keywords, word, word);
6457
6458 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6459 VEC_free (char_ptr, vec_signals);
6460 VEC_free (char_ptr, vec_keywords);
6461 return return_val;
6462 }
6463
6464 static void
6465 xdb_handle_command (char *args, int from_tty)
6466 {
6467 char **argv;
6468 struct cleanup *old_chain;
6469
6470 if (args == NULL)
6471 error_no_arg (_("xdb command"));
6472
6473 /* Break the command line up into args. */
6474
6475 argv = gdb_buildargv (args);
6476 old_chain = make_cleanup_freeargv (argv);
6477 if (argv[1] != (char *) NULL)
6478 {
6479 char *argBuf;
6480 int bufLen;
6481
6482 bufLen = strlen (argv[0]) + 20;
6483 argBuf = (char *) xmalloc (bufLen);
6484 if (argBuf)
6485 {
6486 int validFlag = 1;
6487 enum gdb_signal oursig;
6488
6489 oursig = gdb_signal_from_name (argv[0]);
6490 memset (argBuf, 0, bufLen);
6491 if (strcmp (argv[1], "Q") == 0)
6492 sprintf (argBuf, "%s %s", argv[0], "noprint");
6493 else
6494 {
6495 if (strcmp (argv[1], "s") == 0)
6496 {
6497 if (!signal_stop[oursig])
6498 sprintf (argBuf, "%s %s", argv[0], "stop");
6499 else
6500 sprintf (argBuf, "%s %s", argv[0], "nostop");
6501 }
6502 else if (strcmp (argv[1], "i") == 0)
6503 {
6504 if (!signal_program[oursig])
6505 sprintf (argBuf, "%s %s", argv[0], "pass");
6506 else
6507 sprintf (argBuf, "%s %s", argv[0], "nopass");
6508 }
6509 else if (strcmp (argv[1], "r") == 0)
6510 {
6511 if (!signal_print[oursig])
6512 sprintf (argBuf, "%s %s", argv[0], "print");
6513 else
6514 sprintf (argBuf, "%s %s", argv[0], "noprint");
6515 }
6516 else
6517 validFlag = 0;
6518 }
6519 if (validFlag)
6520 handle_command (argBuf, from_tty);
6521 else
6522 printf_filtered (_("Invalid signal handling flag.\n"));
6523 if (argBuf)
6524 xfree (argBuf);
6525 }
6526 }
6527 do_cleanups (old_chain);
6528 }
6529
6530 enum gdb_signal
6531 gdb_signal_from_command (int num)
6532 {
6533 if (num >= 1 && num <= 15)
6534 return (enum gdb_signal) num;
6535 error (_("Only signals 1-15 are valid as numeric signals.\n\
6536 Use \"info signals\" for a list of symbolic signals."));
6537 }
6538
6539 /* Print current contents of the tables set by the handle command.
6540 It is possible we should just be printing signals actually used
6541 by the current target (but for things to work right when switching
6542 targets, all signals should be in the signal tables). */
6543
6544 static void
6545 signals_info (char *signum_exp, int from_tty)
6546 {
6547 enum gdb_signal oursig;
6548
6549 sig_print_header ();
6550
6551 if (signum_exp)
6552 {
6553 /* First see if this is a symbol name. */
6554 oursig = gdb_signal_from_name (signum_exp);
6555 if (oursig == GDB_SIGNAL_UNKNOWN)
6556 {
6557 /* No, try numeric. */
6558 oursig =
6559 gdb_signal_from_command (parse_and_eval_long (signum_exp));
6560 }
6561 sig_print_info (oursig);
6562 return;
6563 }
6564
6565 printf_filtered ("\n");
6566 /* These ugly casts brought to you by the native VAX compiler. */
6567 for (oursig = GDB_SIGNAL_FIRST;
6568 (int) oursig < (int) GDB_SIGNAL_LAST;
6569 oursig = (enum gdb_signal) ((int) oursig + 1))
6570 {
6571 QUIT;
6572
6573 if (oursig != GDB_SIGNAL_UNKNOWN
6574 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
6575 sig_print_info (oursig);
6576 }
6577
6578 printf_filtered (_("\nUse the \"handle\" command "
6579 "to change these tables.\n"));
6580 }
6581
6582 /* Check if it makes sense to read $_siginfo from the current thread
6583 at this point. If not, throw an error. */
6584
6585 static void
6586 validate_siginfo_access (void)
6587 {
6588 /* No current inferior, no siginfo. */
6589 if (ptid_equal (inferior_ptid, null_ptid))
6590 error (_("No thread selected."));
6591
6592 /* Don't try to read from a dead thread. */
6593 if (is_exited (inferior_ptid))
6594 error (_("The current thread has terminated"));
6595
6596 /* ... or from a spinning thread. */
6597 if (is_running (inferior_ptid))
6598 error (_("Selected thread is running."));
6599 }
6600
6601 /* The $_siginfo convenience variable is a bit special. We don't know
6602 for sure the type of the value until we actually have a chance to
6603 fetch the data. The type can change depending on gdbarch, so it is
6604 also dependent on which thread you have selected.
6605
6606 1. making $_siginfo be an internalvar that creates a new value on
6607 access.
6608
6609 2. making the value of $_siginfo be an lval_computed value. */
6610
6611 /* This function implements the lval_computed support for reading a
6612 $_siginfo value. */
6613
6614 static void
6615 siginfo_value_read (struct value *v)
6616 {
6617 LONGEST transferred;
6618
6619 validate_siginfo_access ();
6620
6621 transferred =
6622 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6623 NULL,
6624 value_contents_all_raw (v),
6625 value_offset (v),
6626 TYPE_LENGTH (value_type (v)));
6627
6628 if (transferred != TYPE_LENGTH (value_type (v)))
6629 error (_("Unable to read siginfo"));
6630 }
6631
6632 /* This function implements the lval_computed support for writing a
6633 $_siginfo value. */
6634
6635 static void
6636 siginfo_value_write (struct value *v, struct value *fromval)
6637 {
6638 LONGEST transferred;
6639
6640 validate_siginfo_access ();
6641
6642 transferred = target_write (&current_target,
6643 TARGET_OBJECT_SIGNAL_INFO,
6644 NULL,
6645 value_contents_all_raw (fromval),
6646 value_offset (v),
6647 TYPE_LENGTH (value_type (fromval)));
6648
6649 if (transferred != TYPE_LENGTH (value_type (fromval)))
6650 error (_("Unable to write siginfo"));
6651 }
6652
6653 static const struct lval_funcs siginfo_value_funcs =
6654 {
6655 siginfo_value_read,
6656 siginfo_value_write
6657 };
6658
6659 /* Return a new value with the correct type for the siginfo object of
6660 the current thread using architecture GDBARCH. Return a void value
6661 if there's no object available. */
6662
6663 static struct value *
6664 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
6665 void *ignore)
6666 {
6667 if (target_has_stack
6668 && !ptid_equal (inferior_ptid, null_ptid)
6669 && gdbarch_get_siginfo_type_p (gdbarch))
6670 {
6671 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6672
6673 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
6674 }
6675
6676 return allocate_value (builtin_type (gdbarch)->builtin_void);
6677 }
6678
6679 \f
6680 /* infcall_suspend_state contains state about the program itself like its
6681 registers and any signal it received when it last stopped.
6682 This state must be restored regardless of how the inferior function call
6683 ends (either successfully, or after it hits a breakpoint or signal)
6684 if the program is to properly continue where it left off. */
6685
6686 struct infcall_suspend_state
6687 {
6688 struct thread_suspend_state thread_suspend;
6689 #if 0 /* Currently unused and empty structures are not valid C. */
6690 struct inferior_suspend_state inferior_suspend;
6691 #endif
6692
6693 /* Other fields: */
6694 CORE_ADDR stop_pc;
6695 struct regcache *registers;
6696
6697 /* Format of SIGINFO_DATA or NULL if it is not present. */
6698 struct gdbarch *siginfo_gdbarch;
6699
6700 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6701 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6702 content would be invalid. */
6703 gdb_byte *siginfo_data;
6704 };
6705
6706 struct infcall_suspend_state *
6707 save_infcall_suspend_state (void)
6708 {
6709 struct infcall_suspend_state *inf_state;
6710 struct thread_info *tp = inferior_thread ();
6711 struct inferior *inf = current_inferior ();
6712 struct regcache *regcache = get_current_regcache ();
6713 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6714 gdb_byte *siginfo_data = NULL;
6715
6716 if (gdbarch_get_siginfo_type_p (gdbarch))
6717 {
6718 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6719 size_t len = TYPE_LENGTH (type);
6720 struct cleanup *back_to;
6721
6722 siginfo_data = xmalloc (len);
6723 back_to = make_cleanup (xfree, siginfo_data);
6724
6725 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6726 siginfo_data, 0, len) == len)
6727 discard_cleanups (back_to);
6728 else
6729 {
6730 /* Errors ignored. */
6731 do_cleanups (back_to);
6732 siginfo_data = NULL;
6733 }
6734 }
6735
6736 inf_state = XZALLOC (struct infcall_suspend_state);
6737
6738 if (siginfo_data)
6739 {
6740 inf_state->siginfo_gdbarch = gdbarch;
6741 inf_state->siginfo_data = siginfo_data;
6742 }
6743
6744 inf_state->thread_suspend = tp->suspend;
6745 #if 0 /* Currently unused and empty structures are not valid C. */
6746 inf_state->inferior_suspend = inf->suspend;
6747 #endif
6748
6749 /* run_inferior_call will not use the signal due to its `proceed' call with
6750 GDB_SIGNAL_0 anyway. */
6751 tp->suspend.stop_signal = GDB_SIGNAL_0;
6752
6753 inf_state->stop_pc = stop_pc;
6754
6755 inf_state->registers = regcache_dup (regcache);
6756
6757 return inf_state;
6758 }
6759
6760 /* Restore inferior session state to INF_STATE. */
6761
6762 void
6763 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6764 {
6765 struct thread_info *tp = inferior_thread ();
6766 struct inferior *inf = current_inferior ();
6767 struct regcache *regcache = get_current_regcache ();
6768 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6769
6770 tp->suspend = inf_state->thread_suspend;
6771 #if 0 /* Currently unused and empty structures are not valid C. */
6772 inf->suspend = inf_state->inferior_suspend;
6773 #endif
6774
6775 stop_pc = inf_state->stop_pc;
6776
6777 if (inf_state->siginfo_gdbarch == gdbarch)
6778 {
6779 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6780
6781 /* Errors ignored. */
6782 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6783 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
6784 }
6785
6786 /* The inferior can be gone if the user types "print exit(0)"
6787 (and perhaps other times). */
6788 if (target_has_execution)
6789 /* NB: The register write goes through to the target. */
6790 regcache_cpy (regcache, inf_state->registers);
6791
6792 discard_infcall_suspend_state (inf_state);
6793 }
6794
6795 static void
6796 do_restore_infcall_suspend_state_cleanup (void *state)
6797 {
6798 restore_infcall_suspend_state (state);
6799 }
6800
6801 struct cleanup *
6802 make_cleanup_restore_infcall_suspend_state
6803 (struct infcall_suspend_state *inf_state)
6804 {
6805 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
6806 }
6807
6808 void
6809 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6810 {
6811 regcache_xfree (inf_state->registers);
6812 xfree (inf_state->siginfo_data);
6813 xfree (inf_state);
6814 }
6815
6816 struct regcache *
6817 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
6818 {
6819 return inf_state->registers;
6820 }
6821
6822 /* infcall_control_state contains state regarding gdb's control of the
6823 inferior itself like stepping control. It also contains session state like
6824 the user's currently selected frame. */
6825
6826 struct infcall_control_state
6827 {
6828 struct thread_control_state thread_control;
6829 struct inferior_control_state inferior_control;
6830
6831 /* Other fields: */
6832 enum stop_stack_kind stop_stack_dummy;
6833 int stopped_by_random_signal;
6834 int stop_after_trap;
6835
6836 /* ID if the selected frame when the inferior function call was made. */
6837 struct frame_id selected_frame_id;
6838 };
6839
6840 /* Save all of the information associated with the inferior<==>gdb
6841 connection. */
6842
6843 struct infcall_control_state *
6844 save_infcall_control_state (void)
6845 {
6846 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
6847 struct thread_info *tp = inferior_thread ();
6848 struct inferior *inf = current_inferior ();
6849
6850 inf_status->thread_control = tp->control;
6851 inf_status->inferior_control = inf->control;
6852
6853 tp->control.step_resume_breakpoint = NULL;
6854 tp->control.exception_resume_breakpoint = NULL;
6855
6856 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6857 chain. If caller's caller is walking the chain, they'll be happier if we
6858 hand them back the original chain when restore_infcall_control_state is
6859 called. */
6860 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
6861
6862 /* Other fields: */
6863 inf_status->stop_stack_dummy = stop_stack_dummy;
6864 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6865 inf_status->stop_after_trap = stop_after_trap;
6866
6867 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
6868
6869 return inf_status;
6870 }
6871
6872 static int
6873 restore_selected_frame (void *args)
6874 {
6875 struct frame_id *fid = (struct frame_id *) args;
6876 struct frame_info *frame;
6877
6878 frame = frame_find_by_id (*fid);
6879
6880 /* If inf_status->selected_frame_id is NULL, there was no previously
6881 selected frame. */
6882 if (frame == NULL)
6883 {
6884 warning (_("Unable to restore previously selected frame."));
6885 return 0;
6886 }
6887
6888 select_frame (frame);
6889
6890 return (1);
6891 }
6892
6893 /* Restore inferior session state to INF_STATUS. */
6894
6895 void
6896 restore_infcall_control_state (struct infcall_control_state *inf_status)
6897 {
6898 struct thread_info *tp = inferior_thread ();
6899 struct inferior *inf = current_inferior ();
6900
6901 if (tp->control.step_resume_breakpoint)
6902 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6903
6904 if (tp->control.exception_resume_breakpoint)
6905 tp->control.exception_resume_breakpoint->disposition
6906 = disp_del_at_next_stop;
6907
6908 /* Handle the bpstat_copy of the chain. */
6909 bpstat_clear (&tp->control.stop_bpstat);
6910
6911 tp->control = inf_status->thread_control;
6912 inf->control = inf_status->inferior_control;
6913
6914 /* Other fields: */
6915 stop_stack_dummy = inf_status->stop_stack_dummy;
6916 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6917 stop_after_trap = inf_status->stop_after_trap;
6918
6919 if (target_has_stack)
6920 {
6921 /* The point of catch_errors is that if the stack is clobbered,
6922 walking the stack might encounter a garbage pointer and
6923 error() trying to dereference it. */
6924 if (catch_errors
6925 (restore_selected_frame, &inf_status->selected_frame_id,
6926 "Unable to restore previously selected frame:\n",
6927 RETURN_MASK_ERROR) == 0)
6928 /* Error in restoring the selected frame. Select the innermost
6929 frame. */
6930 select_frame (get_current_frame ());
6931 }
6932
6933 xfree (inf_status);
6934 }
6935
6936 static void
6937 do_restore_infcall_control_state_cleanup (void *sts)
6938 {
6939 restore_infcall_control_state (sts);
6940 }
6941
6942 struct cleanup *
6943 make_cleanup_restore_infcall_control_state
6944 (struct infcall_control_state *inf_status)
6945 {
6946 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
6947 }
6948
6949 void
6950 discard_infcall_control_state (struct infcall_control_state *inf_status)
6951 {
6952 if (inf_status->thread_control.step_resume_breakpoint)
6953 inf_status->thread_control.step_resume_breakpoint->disposition
6954 = disp_del_at_next_stop;
6955
6956 if (inf_status->thread_control.exception_resume_breakpoint)
6957 inf_status->thread_control.exception_resume_breakpoint->disposition
6958 = disp_del_at_next_stop;
6959
6960 /* See save_infcall_control_state for info on stop_bpstat. */
6961 bpstat_clear (&inf_status->thread_control.stop_bpstat);
6962
6963 xfree (inf_status);
6964 }
6965 \f
6966 int
6967 ptid_match (ptid_t ptid, ptid_t filter)
6968 {
6969 if (ptid_equal (filter, minus_one_ptid))
6970 return 1;
6971 if (ptid_is_pid (filter)
6972 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6973 return 1;
6974 else if (ptid_equal (ptid, filter))
6975 return 1;
6976
6977 return 0;
6978 }
6979
6980 /* restore_inferior_ptid() will be used by the cleanup machinery
6981 to restore the inferior_ptid value saved in a call to
6982 save_inferior_ptid(). */
6983
6984 static void
6985 restore_inferior_ptid (void *arg)
6986 {
6987 ptid_t *saved_ptid_ptr = arg;
6988
6989 inferior_ptid = *saved_ptid_ptr;
6990 xfree (arg);
6991 }
6992
6993 /* Save the value of inferior_ptid so that it may be restored by a
6994 later call to do_cleanups(). Returns the struct cleanup pointer
6995 needed for later doing the cleanup. */
6996
6997 struct cleanup *
6998 save_inferior_ptid (void)
6999 {
7000 ptid_t *saved_ptid_ptr;
7001
7002 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7003 *saved_ptid_ptr = inferior_ptid;
7004 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7005 }
7006 \f
7007
7008 /* User interface for reverse debugging:
7009 Set exec-direction / show exec-direction commands
7010 (returns error unless target implements to_set_exec_direction method). */
7011
7012 int execution_direction = EXEC_FORWARD;
7013 static const char exec_forward[] = "forward";
7014 static const char exec_reverse[] = "reverse";
7015 static const char *exec_direction = exec_forward;
7016 static const char *const exec_direction_names[] = {
7017 exec_forward,
7018 exec_reverse,
7019 NULL
7020 };
7021
7022 static void
7023 set_exec_direction_func (char *args, int from_tty,
7024 struct cmd_list_element *cmd)
7025 {
7026 if (target_can_execute_reverse)
7027 {
7028 if (!strcmp (exec_direction, exec_forward))
7029 execution_direction = EXEC_FORWARD;
7030 else if (!strcmp (exec_direction, exec_reverse))
7031 execution_direction = EXEC_REVERSE;
7032 }
7033 else
7034 {
7035 exec_direction = exec_forward;
7036 error (_("Target does not support this operation."));
7037 }
7038 }
7039
7040 static void
7041 show_exec_direction_func (struct ui_file *out, int from_tty,
7042 struct cmd_list_element *cmd, const char *value)
7043 {
7044 switch (execution_direction) {
7045 case EXEC_FORWARD:
7046 fprintf_filtered (out, _("Forward.\n"));
7047 break;
7048 case EXEC_REVERSE:
7049 fprintf_filtered (out, _("Reverse.\n"));
7050 break;
7051 default:
7052 internal_error (__FILE__, __LINE__,
7053 _("bogus execution_direction value: %d"),
7054 (int) execution_direction);
7055 }
7056 }
7057
7058 /* User interface for non-stop mode. */
7059
7060 int non_stop = 0;
7061
7062 static void
7063 set_non_stop (char *args, int from_tty,
7064 struct cmd_list_element *c)
7065 {
7066 if (target_has_execution)
7067 {
7068 non_stop_1 = non_stop;
7069 error (_("Cannot change this setting while the inferior is running."));
7070 }
7071
7072 non_stop = non_stop_1;
7073 }
7074
7075 static void
7076 show_non_stop (struct ui_file *file, int from_tty,
7077 struct cmd_list_element *c, const char *value)
7078 {
7079 fprintf_filtered (file,
7080 _("Controlling the inferior in non-stop mode is %s.\n"),
7081 value);
7082 }
7083
7084 static void
7085 show_schedule_multiple (struct ui_file *file, int from_tty,
7086 struct cmd_list_element *c, const char *value)
7087 {
7088 fprintf_filtered (file, _("Resuming the execution of threads "
7089 "of all processes is %s.\n"), value);
7090 }
7091
7092 /* Implementation of `siginfo' variable. */
7093
7094 static const struct internalvar_funcs siginfo_funcs =
7095 {
7096 siginfo_make_value,
7097 NULL,
7098 NULL
7099 };
7100
7101 void
7102 _initialize_infrun (void)
7103 {
7104 int i;
7105 int numsigs;
7106 struct cmd_list_element *c;
7107
7108 add_info ("signals", signals_info, _("\
7109 What debugger does when program gets various signals.\n\
7110 Specify a signal as argument to print info on that signal only."));
7111 add_info_alias ("handle", "signals", 0);
7112
7113 c = add_com ("handle", class_run, handle_command, _("\
7114 Specify how to handle signals.\n\
7115 Usage: handle SIGNAL [ACTIONS]\n\
7116 Args are signals and actions to apply to those signals.\n\
7117 If no actions are specified, the current settings for the specified signals\n\
7118 will be displayed instead.\n\
7119 \n\
7120 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7121 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7122 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7123 The special arg \"all\" is recognized to mean all signals except those\n\
7124 used by the debugger, typically SIGTRAP and SIGINT.\n\
7125 \n\
7126 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
7127 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7128 Stop means reenter debugger if this signal happens (implies print).\n\
7129 Print means print a message if this signal happens.\n\
7130 Pass means let program see this signal; otherwise program doesn't know.\n\
7131 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7132 Pass and Stop may be combined.\n\
7133 \n\
7134 Multiple signals may be specified. Signal numbers and signal names\n\
7135 may be interspersed with actions, with the actions being performed for\n\
7136 all signals cumulatively specified."));
7137 set_cmd_completer (c, handle_completer);
7138
7139 if (xdb_commands)
7140 {
7141 add_com ("lz", class_info, signals_info, _("\
7142 What debugger does when program gets various signals.\n\
7143 Specify a signal as argument to print info on that signal only."));
7144 add_com ("z", class_run, xdb_handle_command, _("\
7145 Specify how to handle a signal.\n\
7146 Args are signals and actions to apply to those signals.\n\
7147 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7148 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7149 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7150 The special arg \"all\" is recognized to mean all signals except those\n\
7151 used by the debugger, typically SIGTRAP and SIGINT.\n\
7152 Recognized actions include \"s\" (toggles between stop and nostop),\n\
7153 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7154 nopass), \"Q\" (noprint)\n\
7155 Stop means reenter debugger if this signal happens (implies print).\n\
7156 Print means print a message if this signal happens.\n\
7157 Pass means let program see this signal; otherwise program doesn't know.\n\
7158 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7159 Pass and Stop may be combined."));
7160 }
7161
7162 if (!dbx_commands)
7163 stop_command = add_cmd ("stop", class_obscure,
7164 not_just_help_class_command, _("\
7165 There is no `stop' command, but you can set a hook on `stop'.\n\
7166 This allows you to set a list of commands to be run each time execution\n\
7167 of the program stops."), &cmdlist);
7168
7169 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7170 Set inferior debugging."), _("\
7171 Show inferior debugging."), _("\
7172 When non-zero, inferior specific debugging is enabled."),
7173 NULL,
7174 show_debug_infrun,
7175 &setdebuglist, &showdebuglist);
7176
7177 add_setshow_boolean_cmd ("displaced", class_maintenance,
7178 &debug_displaced, _("\
7179 Set displaced stepping debugging."), _("\
7180 Show displaced stepping debugging."), _("\
7181 When non-zero, displaced stepping specific debugging is enabled."),
7182 NULL,
7183 show_debug_displaced,
7184 &setdebuglist, &showdebuglist);
7185
7186 add_setshow_boolean_cmd ("non-stop", no_class,
7187 &non_stop_1, _("\
7188 Set whether gdb controls the inferior in non-stop mode."), _("\
7189 Show whether gdb controls the inferior in non-stop mode."), _("\
7190 When debugging a multi-threaded program and this setting is\n\
7191 off (the default, also called all-stop mode), when one thread stops\n\
7192 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7193 all other threads in the program while you interact with the thread of\n\
7194 interest. When you continue or step a thread, you can allow the other\n\
7195 threads to run, or have them remain stopped, but while you inspect any\n\
7196 thread's state, all threads stop.\n\
7197 \n\
7198 In non-stop mode, when one thread stops, other threads can continue\n\
7199 to run freely. You'll be able to step each thread independently,\n\
7200 leave it stopped or free to run as needed."),
7201 set_non_stop,
7202 show_non_stop,
7203 &setlist,
7204 &showlist);
7205
7206 numsigs = (int) GDB_SIGNAL_LAST;
7207 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7208 signal_print = (unsigned char *)
7209 xmalloc (sizeof (signal_print[0]) * numsigs);
7210 signal_program = (unsigned char *)
7211 xmalloc (sizeof (signal_program[0]) * numsigs);
7212 signal_pass = (unsigned char *)
7213 xmalloc (sizeof (signal_program[0]) * numsigs);
7214 for (i = 0; i < numsigs; i++)
7215 {
7216 signal_stop[i] = 1;
7217 signal_print[i] = 1;
7218 signal_program[i] = 1;
7219 }
7220
7221 /* Signals caused by debugger's own actions
7222 should not be given to the program afterwards. */
7223 signal_program[GDB_SIGNAL_TRAP] = 0;
7224 signal_program[GDB_SIGNAL_INT] = 0;
7225
7226 /* Signals that are not errors should not normally enter the debugger. */
7227 signal_stop[GDB_SIGNAL_ALRM] = 0;
7228 signal_print[GDB_SIGNAL_ALRM] = 0;
7229 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7230 signal_print[GDB_SIGNAL_VTALRM] = 0;
7231 signal_stop[GDB_SIGNAL_PROF] = 0;
7232 signal_print[GDB_SIGNAL_PROF] = 0;
7233 signal_stop[GDB_SIGNAL_CHLD] = 0;
7234 signal_print[GDB_SIGNAL_CHLD] = 0;
7235 signal_stop[GDB_SIGNAL_IO] = 0;
7236 signal_print[GDB_SIGNAL_IO] = 0;
7237 signal_stop[GDB_SIGNAL_POLL] = 0;
7238 signal_print[GDB_SIGNAL_POLL] = 0;
7239 signal_stop[GDB_SIGNAL_URG] = 0;
7240 signal_print[GDB_SIGNAL_URG] = 0;
7241 signal_stop[GDB_SIGNAL_WINCH] = 0;
7242 signal_print[GDB_SIGNAL_WINCH] = 0;
7243 signal_stop[GDB_SIGNAL_PRIO] = 0;
7244 signal_print[GDB_SIGNAL_PRIO] = 0;
7245
7246 /* These signals are used internally by user-level thread
7247 implementations. (See signal(5) on Solaris.) Like the above
7248 signals, a healthy program receives and handles them as part of
7249 its normal operation. */
7250 signal_stop[GDB_SIGNAL_LWP] = 0;
7251 signal_print[GDB_SIGNAL_LWP] = 0;
7252 signal_stop[GDB_SIGNAL_WAITING] = 0;
7253 signal_print[GDB_SIGNAL_WAITING] = 0;
7254 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7255 signal_print[GDB_SIGNAL_CANCEL] = 0;
7256
7257 /* Update cached state. */
7258 signal_cache_update (-1);
7259
7260 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7261 &stop_on_solib_events, _("\
7262 Set stopping for shared library events."), _("\
7263 Show stopping for shared library events."), _("\
7264 If nonzero, gdb will give control to the user when the dynamic linker\n\
7265 notifies gdb of shared library events. The most common event of interest\n\
7266 to the user would be loading/unloading of a new library."),
7267 NULL,
7268 show_stop_on_solib_events,
7269 &setlist, &showlist);
7270
7271 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7272 follow_fork_mode_kind_names,
7273 &follow_fork_mode_string, _("\
7274 Set debugger response to a program call of fork or vfork."), _("\
7275 Show debugger response to a program call of fork or vfork."), _("\
7276 A fork or vfork creates a new process. follow-fork-mode can be:\n\
7277 parent - the original process is debugged after a fork\n\
7278 child - the new process is debugged after a fork\n\
7279 The unfollowed process will continue to run.\n\
7280 By default, the debugger will follow the parent process."),
7281 NULL,
7282 show_follow_fork_mode_string,
7283 &setlist, &showlist);
7284
7285 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7286 follow_exec_mode_names,
7287 &follow_exec_mode_string, _("\
7288 Set debugger response to a program call of exec."), _("\
7289 Show debugger response to a program call of exec."), _("\
7290 An exec call replaces the program image of a process.\n\
7291 \n\
7292 follow-exec-mode can be:\n\
7293 \n\
7294 new - the debugger creates a new inferior and rebinds the process\n\
7295 to this new inferior. The program the process was running before\n\
7296 the exec call can be restarted afterwards by restarting the original\n\
7297 inferior.\n\
7298 \n\
7299 same - the debugger keeps the process bound to the same inferior.\n\
7300 The new executable image replaces the previous executable loaded in\n\
7301 the inferior. Restarting the inferior after the exec call restarts\n\
7302 the executable the process was running after the exec call.\n\
7303 \n\
7304 By default, the debugger will use the same inferior."),
7305 NULL,
7306 show_follow_exec_mode_string,
7307 &setlist, &showlist);
7308
7309 add_setshow_enum_cmd ("scheduler-locking", class_run,
7310 scheduler_enums, &scheduler_mode, _("\
7311 Set mode for locking scheduler during execution."), _("\
7312 Show mode for locking scheduler during execution."), _("\
7313 off == no locking (threads may preempt at any time)\n\
7314 on == full locking (no thread except the current thread may run)\n\
7315 step == scheduler locked during every single-step operation.\n\
7316 In this mode, no other thread may run during a step command.\n\
7317 Other threads may run while stepping over a function call ('next')."),
7318 set_schedlock_func, /* traps on target vector */
7319 show_scheduler_mode,
7320 &setlist, &showlist);
7321
7322 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7323 Set mode for resuming threads of all processes."), _("\
7324 Show mode for resuming threads of all processes."), _("\
7325 When on, execution commands (such as 'continue' or 'next') resume all\n\
7326 threads of all processes. When off (which is the default), execution\n\
7327 commands only resume the threads of the current process. The set of\n\
7328 threads that are resumed is further refined by the scheduler-locking\n\
7329 mode (see help set scheduler-locking)."),
7330 NULL,
7331 show_schedule_multiple,
7332 &setlist, &showlist);
7333
7334 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7335 Set mode of the step operation."), _("\
7336 Show mode of the step operation."), _("\
7337 When set, doing a step over a function without debug line information\n\
7338 will stop at the first instruction of that function. Otherwise, the\n\
7339 function is skipped and the step command stops at a different source line."),
7340 NULL,
7341 show_step_stop_if_no_debug,
7342 &setlist, &showlist);
7343
7344 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7345 &can_use_displaced_stepping, _("\
7346 Set debugger's willingness to use displaced stepping."), _("\
7347 Show debugger's willingness to use displaced stepping."), _("\
7348 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7349 supported by the target architecture. If off, gdb will not use displaced\n\
7350 stepping to step over breakpoints, even if such is supported by the target\n\
7351 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7352 if the target architecture supports it and non-stop mode is active, but will not\n\
7353 use it in all-stop mode (see help set non-stop)."),
7354 NULL,
7355 show_can_use_displaced_stepping,
7356 &setlist, &showlist);
7357
7358 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7359 &exec_direction, _("Set direction of execution.\n\
7360 Options are 'forward' or 'reverse'."),
7361 _("Show direction of execution (forward/reverse)."),
7362 _("Tells gdb whether to execute forward or backward."),
7363 set_exec_direction_func, show_exec_direction_func,
7364 &setlist, &showlist);
7365
7366 /* Set/show detach-on-fork: user-settable mode. */
7367
7368 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7369 Set whether gdb will detach the child of a fork."), _("\
7370 Show whether gdb will detach the child of a fork."), _("\
7371 Tells gdb whether to detach the child of a fork."),
7372 NULL, NULL, &setlist, &showlist);
7373
7374 /* Set/show disable address space randomization mode. */
7375
7376 add_setshow_boolean_cmd ("disable-randomization", class_support,
7377 &disable_randomization, _("\
7378 Set disabling of debuggee's virtual address space randomization."), _("\
7379 Show disabling of debuggee's virtual address space randomization."), _("\
7380 When this mode is on (which is the default), randomization of the virtual\n\
7381 address space is disabled. Standalone programs run with the randomization\n\
7382 enabled by default on some platforms."),
7383 &set_disable_randomization,
7384 &show_disable_randomization,
7385 &setlist, &showlist);
7386
7387 /* ptid initializations */
7388 inferior_ptid = null_ptid;
7389 target_last_wait_ptid = minus_one_ptid;
7390
7391 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7392 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7393 observer_attach_thread_exit (infrun_thread_thread_exit);
7394 observer_attach_inferior_exit (infrun_inferior_exit);
7395
7396 /* Explicitly create without lookup, since that tries to create a
7397 value with a void typed value, and when we get here, gdbarch
7398 isn't initialized yet. At this point, we're quite sure there
7399 isn't another convenience variable of the same name. */
7400 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
7401
7402 add_setshow_boolean_cmd ("observer", no_class,
7403 &observer_mode_1, _("\
7404 Set whether gdb controls the inferior in observer mode."), _("\
7405 Show whether gdb controls the inferior in observer mode."), _("\
7406 In observer mode, GDB can get data from the inferior, but not\n\
7407 affect its execution. Registers and memory may not be changed,\n\
7408 breakpoints may not be set, and the program cannot be interrupted\n\
7409 or signalled."),
7410 set_observer_mode,
7411 show_observer_mode,
7412 &setlist,
7413 &showlist);
7414 }
This page took 0.236512 seconds and 4 git commands to generate.