gdb/
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
6 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48
49 #include "gdb_assert.h"
50 #include "mi/mi-common.h"
51
52 /* Prototypes for local functions */
53
54 static void signals_info (char *, int);
55
56 static void handle_command (char *, int);
57
58 static void sig_print_info (enum target_signal);
59
60 static void sig_print_header (void);
61
62 static void resume_cleanups (void *);
63
64 static int hook_stop_stub (void *);
65
66 static int restore_selected_frame (void *);
67
68 static void build_infrun (void);
69
70 static int follow_fork (void);
71
72 static void set_schedlock_func (char *args, int from_tty,
73 struct cmd_list_element *c);
74
75 struct execution_control_state;
76
77 static int currently_stepping (struct execution_control_state *ecs);
78
79 static void xdb_handle_command (char *args, int from_tty);
80
81 static int prepare_to_proceed (int);
82
83 void _initialize_infrun (void);
84
85 int inferior_ignoring_leading_exec_events = 0;
86
87 /* When set, stop the 'step' command if we enter a function which has
88 no line number information. The normal behavior is that we step
89 over such function. */
90 int step_stop_if_no_debug = 0;
91 static void
92 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
93 struct cmd_list_element *c, const char *value)
94 {
95 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
96 }
97
98 /* In asynchronous mode, but simulating synchronous execution. */
99
100 int sync_execution = 0;
101
102 /* wait_for_inferior and normal_stop use this to notify the user
103 when the inferior stopped in a different thread than it had been
104 running in. */
105
106 static ptid_t previous_inferior_ptid;
107
108 /* This is true for configurations that may follow through execl() and
109 similar functions. At present this is only true for HP-UX native. */
110
111 #ifndef MAY_FOLLOW_EXEC
112 #define MAY_FOLLOW_EXEC (0)
113 #endif
114
115 static int may_follow_exec = MAY_FOLLOW_EXEC;
116
117 static int debug_infrun = 0;
118 static void
119 show_debug_infrun (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121 {
122 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
123 }
124
125 /* If the program uses ELF-style shared libraries, then calls to
126 functions in shared libraries go through stubs, which live in a
127 table called the PLT (Procedure Linkage Table). The first time the
128 function is called, the stub sends control to the dynamic linker,
129 which looks up the function's real address, patches the stub so
130 that future calls will go directly to the function, and then passes
131 control to the function.
132
133 If we are stepping at the source level, we don't want to see any of
134 this --- we just want to skip over the stub and the dynamic linker.
135 The simple approach is to single-step until control leaves the
136 dynamic linker.
137
138 However, on some systems (e.g., Red Hat's 5.2 distribution) the
139 dynamic linker calls functions in the shared C library, so you
140 can't tell from the PC alone whether the dynamic linker is still
141 running. In this case, we use a step-resume breakpoint to get us
142 past the dynamic linker, as if we were using "next" to step over a
143 function call.
144
145 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
146 linker code or not. Normally, this means we single-step. However,
147 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
148 address where we can place a step-resume breakpoint to get past the
149 linker's symbol resolution function.
150
151 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
152 pretty portable way, by comparing the PC against the address ranges
153 of the dynamic linker's sections.
154
155 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
156 it depends on internal details of the dynamic linker. It's usually
157 not too hard to figure out where to put a breakpoint, but it
158 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
159 sanity checking. If it can't figure things out, returning zero and
160 getting the (possibly confusing) stepping behavior is better than
161 signalling an error, which will obscure the change in the
162 inferior's state. */
163
164 /* This function returns TRUE if pc is the address of an instruction
165 that lies within the dynamic linker (such as the event hook, or the
166 dld itself).
167
168 This function must be used only when a dynamic linker event has
169 been caught, and the inferior is being stepped out of the hook, or
170 undefined results are guaranteed. */
171
172 #ifndef SOLIB_IN_DYNAMIC_LINKER
173 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
174 #endif
175
176
177 /* Convert the #defines into values. This is temporary until wfi control
178 flow is completely sorted out. */
179
180 #ifndef CANNOT_STEP_HW_WATCHPOINTS
181 #define CANNOT_STEP_HW_WATCHPOINTS 0
182 #else
183 #undef CANNOT_STEP_HW_WATCHPOINTS
184 #define CANNOT_STEP_HW_WATCHPOINTS 1
185 #endif
186
187 /* Tables of how to react to signals; the user sets them. */
188
189 static unsigned char *signal_stop;
190 static unsigned char *signal_print;
191 static unsigned char *signal_program;
192
193 #define SET_SIGS(nsigs,sigs,flags) \
194 do { \
195 int signum = (nsigs); \
196 while (signum-- > 0) \
197 if ((sigs)[signum]) \
198 (flags)[signum] = 1; \
199 } while (0)
200
201 #define UNSET_SIGS(nsigs,sigs,flags) \
202 do { \
203 int signum = (nsigs); \
204 while (signum-- > 0) \
205 if ((sigs)[signum]) \
206 (flags)[signum] = 0; \
207 } while (0)
208
209 /* Value to pass to target_resume() to cause all threads to resume */
210
211 #define RESUME_ALL (pid_to_ptid (-1))
212
213 /* Command list pointer for the "stop" placeholder. */
214
215 static struct cmd_list_element *stop_command;
216
217 /* Nonzero if breakpoints are now inserted in the inferior. */
218
219 static int breakpoints_inserted;
220
221 /* Function inferior was in as of last step command. */
222
223 static struct symbol *step_start_function;
224
225 /* Nonzero if we are expecting a trace trap and should proceed from it. */
226
227 static int trap_expected;
228
229 /* Nonzero if we want to give control to the user when we're notified
230 of shared library events by the dynamic linker. */
231 static int stop_on_solib_events;
232 static void
233 show_stop_on_solib_events (struct ui_file *file, int from_tty,
234 struct cmd_list_element *c, const char *value)
235 {
236 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
237 value);
238 }
239
240 /* Nonzero means expecting a trace trap
241 and should stop the inferior and return silently when it happens. */
242
243 int stop_after_trap;
244
245 /* Nonzero means expecting a trap and caller will handle it themselves.
246 It is used after attach, due to attaching to a process;
247 when running in the shell before the child program has been exec'd;
248 and when running some kinds of remote stuff (FIXME?). */
249
250 enum stop_kind stop_soon;
251
252 /* Nonzero if proceed is being used for a "finish" command or a similar
253 situation when stop_registers should be saved. */
254
255 int proceed_to_finish;
256
257 /* Save register contents here when about to pop a stack dummy frame,
258 if-and-only-if proceed_to_finish is set.
259 Thus this contains the return value from the called function (assuming
260 values are returned in a register). */
261
262 struct regcache *stop_registers;
263
264 /* Nonzero after stop if current stack frame should be printed. */
265
266 static int stop_print_frame;
267
268 static struct breakpoint *step_resume_breakpoint = NULL;
269
270 /* This is a cached copy of the pid/waitstatus of the last event
271 returned by target_wait()/deprecated_target_wait_hook(). This
272 information is returned by get_last_target_status(). */
273 static ptid_t target_last_wait_ptid;
274 static struct target_waitstatus target_last_waitstatus;
275
276 /* This is used to remember when a fork, vfork or exec event
277 was caught by a catchpoint, and thus the event is to be
278 followed at the next resume of the inferior, and not
279 immediately. */
280 static struct
281 {
282 enum target_waitkind kind;
283 struct
284 {
285 int parent_pid;
286 int child_pid;
287 }
288 fork_event;
289 char *execd_pathname;
290 }
291 pending_follow;
292
293 static const char follow_fork_mode_child[] = "child";
294 static const char follow_fork_mode_parent[] = "parent";
295
296 static const char *follow_fork_mode_kind_names[] = {
297 follow_fork_mode_child,
298 follow_fork_mode_parent,
299 NULL
300 };
301
302 static const char *follow_fork_mode_string = follow_fork_mode_parent;
303 static void
304 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
305 struct cmd_list_element *c, const char *value)
306 {
307 fprintf_filtered (file, _("\
308 Debugger response to a program call of fork or vfork is \"%s\".\n"),
309 value);
310 }
311 \f
312
313 static int
314 follow_fork (void)
315 {
316 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
317
318 return target_follow_fork (follow_child);
319 }
320
321 void
322 follow_inferior_reset_breakpoints (void)
323 {
324 /* Was there a step_resume breakpoint? (There was if the user
325 did a "next" at the fork() call.) If so, explicitly reset its
326 thread number.
327
328 step_resumes are a form of bp that are made to be per-thread.
329 Since we created the step_resume bp when the parent process
330 was being debugged, and now are switching to the child process,
331 from the breakpoint package's viewpoint, that's a switch of
332 "threads". We must update the bp's notion of which thread
333 it is for, or it'll be ignored when it triggers. */
334
335 if (step_resume_breakpoint)
336 breakpoint_re_set_thread (step_resume_breakpoint);
337
338 /* Reinsert all breakpoints in the child. The user may have set
339 breakpoints after catching the fork, in which case those
340 were never set in the child, but only in the parent. This makes
341 sure the inserted breakpoints match the breakpoint list. */
342
343 breakpoint_re_set ();
344 insert_breakpoints ();
345 }
346
347 /* EXECD_PATHNAME is assumed to be non-NULL. */
348
349 static void
350 follow_exec (int pid, char *execd_pathname)
351 {
352 int saved_pid = pid;
353 struct target_ops *tgt;
354
355 if (!may_follow_exec)
356 return;
357
358 /* This is an exec event that we actually wish to pay attention to.
359 Refresh our symbol table to the newly exec'd program, remove any
360 momentary bp's, etc.
361
362 If there are breakpoints, they aren't really inserted now,
363 since the exec() transformed our inferior into a fresh set
364 of instructions.
365
366 We want to preserve symbolic breakpoints on the list, since
367 we have hopes that they can be reset after the new a.out's
368 symbol table is read.
369
370 However, any "raw" breakpoints must be removed from the list
371 (e.g., the solib bp's), since their address is probably invalid
372 now.
373
374 And, we DON'T want to call delete_breakpoints() here, since
375 that may write the bp's "shadow contents" (the instruction
376 value that was overwritten witha TRAP instruction). Since
377 we now have a new a.out, those shadow contents aren't valid. */
378 update_breakpoints_after_exec ();
379
380 /* If there was one, it's gone now. We cannot truly step-to-next
381 statement through an exec(). */
382 step_resume_breakpoint = NULL;
383 step_range_start = 0;
384 step_range_end = 0;
385
386 /* What is this a.out's name? */
387 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
388
389 /* We've followed the inferior through an exec. Therefore, the
390 inferior has essentially been killed & reborn. */
391
392 /* First collect the run target in effect. */
393 tgt = find_run_target ();
394 /* If we can't find one, things are in a very strange state... */
395 if (tgt == NULL)
396 error (_("Could find run target to save before following exec"));
397
398 gdb_flush (gdb_stdout);
399 target_mourn_inferior ();
400 inferior_ptid = pid_to_ptid (saved_pid);
401 /* Because mourn_inferior resets inferior_ptid. */
402 push_target (tgt);
403
404 /* That a.out is now the one to use. */
405 exec_file_attach (execd_pathname, 0);
406
407 /* And also is where symbols can be found. */
408 symbol_file_add_main (execd_pathname, 0);
409
410 /* Reset the shared library package. This ensures that we get
411 a shlib event when the child reaches "_start", at which point
412 the dld will have had a chance to initialize the child. */
413 #if defined(SOLIB_RESTART)
414 SOLIB_RESTART ();
415 #endif
416 #ifdef SOLIB_CREATE_INFERIOR_HOOK
417 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
418 #else
419 solib_create_inferior_hook ();
420 #endif
421
422 /* Reinsert all breakpoints. (Those which were symbolic have
423 been reset to the proper address in the new a.out, thanks
424 to symbol_file_command...) */
425 insert_breakpoints ();
426
427 /* The next resume of this inferior should bring it to the shlib
428 startup breakpoints. (If the user had also set bp's on
429 "main" from the old (parent) process, then they'll auto-
430 matically get reset there in the new process.) */
431 }
432
433 /* Non-zero if we just simulating a single-step. This is needed
434 because we cannot remove the breakpoints in the inferior process
435 until after the `wait' in `wait_for_inferior'. */
436 static int singlestep_breakpoints_inserted_p = 0;
437
438 /* The thread we inserted single-step breakpoints for. */
439 static ptid_t singlestep_ptid;
440
441 /* PC when we started this single-step. */
442 static CORE_ADDR singlestep_pc;
443
444 /* If another thread hit the singlestep breakpoint, we save the original
445 thread here so that we can resume single-stepping it later. */
446 static ptid_t saved_singlestep_ptid;
447 static int stepping_past_singlestep_breakpoint;
448
449 /* Similarly, if we are stepping another thread past a breakpoint,
450 save the original thread here so that we can resume stepping it later. */
451 static ptid_t stepping_past_breakpoint_ptid;
452 static int stepping_past_breakpoint;
453 \f
454
455 /* Things to clean up if we QUIT out of resume (). */
456 static void
457 resume_cleanups (void *ignore)
458 {
459 normal_stop ();
460 }
461
462 static const char schedlock_off[] = "off";
463 static const char schedlock_on[] = "on";
464 static const char schedlock_step[] = "step";
465 static const char *scheduler_enums[] = {
466 schedlock_off,
467 schedlock_on,
468 schedlock_step,
469 NULL
470 };
471 static const char *scheduler_mode = schedlock_off;
472 static void
473 show_scheduler_mode (struct ui_file *file, int from_tty,
474 struct cmd_list_element *c, const char *value)
475 {
476 fprintf_filtered (file, _("\
477 Mode for locking scheduler during execution is \"%s\".\n"),
478 value);
479 }
480
481 static void
482 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
483 {
484 if (!target_can_lock_scheduler)
485 {
486 scheduler_mode = schedlock_off;
487 error (_("Target '%s' cannot support this command."), target_shortname);
488 }
489 }
490
491
492 /* Resume the inferior, but allow a QUIT. This is useful if the user
493 wants to interrupt some lengthy single-stepping operation
494 (for child processes, the SIGINT goes to the inferior, and so
495 we get a SIGINT random_signal, but for remote debugging and perhaps
496 other targets, that's not true).
497
498 STEP nonzero if we should step (zero to continue instead).
499 SIG is the signal to give the inferior (zero for none). */
500 void
501 resume (int step, enum target_signal sig)
502 {
503 int should_resume = 1;
504 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
505 QUIT;
506
507 if (debug_infrun)
508 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
509 step, sig);
510
511 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
512
513
514 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
515 over an instruction that causes a page fault without triggering
516 a hardware watchpoint. The kernel properly notices that it shouldn't
517 stop, because the hardware watchpoint is not triggered, but it forgets
518 the step request and continues the program normally.
519 Work around the problem by removing hardware watchpoints if a step is
520 requested, GDB will check for a hardware watchpoint trigger after the
521 step anyway. */
522 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
523 remove_hw_watchpoints ();
524
525
526 /* Normally, by the time we reach `resume', the breakpoints are either
527 removed or inserted, as appropriate. The exception is if we're sitting
528 at a permanent breakpoint; we need to step over it, but permanent
529 breakpoints can't be removed. So we have to test for it here. */
530 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
531 {
532 if (gdbarch_skip_permanent_breakpoint_p (current_gdbarch))
533 gdbarch_skip_permanent_breakpoint (current_gdbarch,
534 get_current_regcache ());
535 else
536 error (_("\
537 The program is stopped at a permanent breakpoint, but GDB does not know\n\
538 how to step past a permanent breakpoint on this architecture. Try using\n\
539 a command like `return' or `jump' to continue execution."));
540 }
541
542 if (step && gdbarch_software_single_step_p (current_gdbarch))
543 {
544 /* Do it the hard way, w/temp breakpoints */
545 if (gdbarch_software_single_step (current_gdbarch, get_current_frame ()))
546 {
547 /* ...and don't ask hardware to do it. */
548 step = 0;
549 /* and do not pull these breakpoints until after a `wait' in
550 `wait_for_inferior' */
551 singlestep_breakpoints_inserted_p = 1;
552 singlestep_ptid = inferior_ptid;
553 singlestep_pc = read_pc ();
554 }
555 }
556
557 /* If there were any forks/vforks/execs that were caught and are
558 now to be followed, then do so. */
559 switch (pending_follow.kind)
560 {
561 case TARGET_WAITKIND_FORKED:
562 case TARGET_WAITKIND_VFORKED:
563 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
564 if (follow_fork ())
565 should_resume = 0;
566 break;
567
568 case TARGET_WAITKIND_EXECD:
569 /* follow_exec is called as soon as the exec event is seen. */
570 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
571 break;
572
573 default:
574 break;
575 }
576
577 /* Install inferior's terminal modes. */
578 target_terminal_inferior ();
579
580 if (should_resume)
581 {
582 ptid_t resume_ptid;
583
584 resume_ptid = RESUME_ALL; /* Default */
585
586 if ((step || singlestep_breakpoints_inserted_p)
587 && (stepping_past_singlestep_breakpoint
588 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
589 {
590 /* Stepping past a breakpoint without inserting breakpoints.
591 Make sure only the current thread gets to step, so that
592 other threads don't sneak past breakpoints while they are
593 not inserted. */
594
595 resume_ptid = inferior_ptid;
596 }
597
598 if ((scheduler_mode == schedlock_on)
599 || (scheduler_mode == schedlock_step
600 && (step || singlestep_breakpoints_inserted_p)))
601 {
602 /* User-settable 'scheduler' mode requires solo thread resume. */
603 resume_ptid = inferior_ptid;
604 }
605
606 if (gdbarch_cannot_step_breakpoint (current_gdbarch))
607 {
608 /* Most targets can step a breakpoint instruction, thus
609 executing it normally. But if this one cannot, just
610 continue and we will hit it anyway. */
611 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
612 step = 0;
613 }
614 target_resume (resume_ptid, step, sig);
615 }
616
617 discard_cleanups (old_cleanups);
618 }
619 \f
620
621 /* Clear out all variables saying what to do when inferior is continued.
622 First do this, then set the ones you want, then call `proceed'. */
623
624 void
625 clear_proceed_status (void)
626 {
627 trap_expected = 0;
628 step_range_start = 0;
629 step_range_end = 0;
630 step_frame_id = null_frame_id;
631 step_over_calls = STEP_OVER_UNDEBUGGABLE;
632 stop_after_trap = 0;
633 stop_soon = NO_STOP_QUIETLY;
634 proceed_to_finish = 0;
635 breakpoint_proceeded = 1; /* We're about to proceed... */
636
637 if (stop_registers)
638 {
639 regcache_xfree (stop_registers);
640 stop_registers = NULL;
641 }
642
643 /* Discard any remaining commands or status from previous stop. */
644 bpstat_clear (&stop_bpstat);
645 }
646
647 /* This should be suitable for any targets that support threads. */
648
649 static int
650 prepare_to_proceed (int step)
651 {
652 ptid_t wait_ptid;
653 struct target_waitstatus wait_status;
654
655 /* Get the last target status returned by target_wait(). */
656 get_last_target_status (&wait_ptid, &wait_status);
657
658 /* Make sure we were stopped at a breakpoint. */
659 if (wait_status.kind != TARGET_WAITKIND_STOPPED
660 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
661 {
662 return 0;
663 }
664
665 /* Switched over from WAIT_PID. */
666 if (!ptid_equal (wait_ptid, minus_one_ptid)
667 && !ptid_equal (inferior_ptid, wait_ptid)
668 && breakpoint_here_p (read_pc_pid (wait_ptid)))
669 {
670 /* If stepping, remember current thread to switch back to. */
671 if (step)
672 {
673 stepping_past_breakpoint = 1;
674 stepping_past_breakpoint_ptid = inferior_ptid;
675 }
676
677 /* Switch back to WAIT_PID thread. */
678 switch_to_thread (wait_ptid);
679
680 /* We return 1 to indicate that there is a breakpoint here,
681 so we need to step over it before continuing to avoid
682 hitting it straight away. */
683 return 1;
684 }
685
686 return 0;
687 }
688
689 /* Record the pc of the program the last time it stopped. This is
690 just used internally by wait_for_inferior, but need to be preserved
691 over calls to it and cleared when the inferior is started. */
692 static CORE_ADDR prev_pc;
693
694 /* Basic routine for continuing the program in various fashions.
695
696 ADDR is the address to resume at, or -1 for resume where stopped.
697 SIGGNAL is the signal to give it, or 0 for none,
698 or -1 for act according to how it stopped.
699 STEP is nonzero if should trap after one instruction.
700 -1 means return after that and print nothing.
701 You should probably set various step_... variables
702 before calling here, if you are stepping.
703
704 You should call clear_proceed_status before calling proceed. */
705
706 void
707 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
708 {
709 int oneproc = 0;
710
711 if (step > 0)
712 step_start_function = find_pc_function (read_pc ());
713 if (step < 0)
714 stop_after_trap = 1;
715
716 if (addr == (CORE_ADDR) -1)
717 {
718 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
719 /* There is a breakpoint at the address we will resume at,
720 step one instruction before inserting breakpoints so that
721 we do not stop right away (and report a second hit at this
722 breakpoint). */
723 oneproc = 1;
724 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
725 && gdbarch_single_step_through_delay (current_gdbarch,
726 get_current_frame ()))
727 /* We stepped onto an instruction that needs to be stepped
728 again before re-inserting the breakpoint, do so. */
729 oneproc = 1;
730 }
731 else
732 {
733 write_pc (addr);
734 }
735
736 if (debug_infrun)
737 fprintf_unfiltered (gdb_stdlog,
738 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
739 paddr_nz (addr), siggnal, step);
740
741 /* In a multi-threaded task we may select another thread
742 and then continue or step.
743
744 But if the old thread was stopped at a breakpoint, it
745 will immediately cause another breakpoint stop without
746 any execution (i.e. it will report a breakpoint hit
747 incorrectly). So we must step over it first.
748
749 prepare_to_proceed checks the current thread against the thread
750 that reported the most recent event. If a step-over is required
751 it returns TRUE and sets the current thread to the old thread. */
752 if (prepare_to_proceed (step))
753 oneproc = 1;
754
755 if (oneproc)
756 /* We will get a trace trap after one instruction.
757 Continue it automatically and insert breakpoints then. */
758 trap_expected = 1;
759 else
760 {
761 insert_breakpoints ();
762 /* If we get here there was no call to error() in
763 insert breakpoints -- so they were inserted. */
764 breakpoints_inserted = 1;
765 }
766
767 if (siggnal != TARGET_SIGNAL_DEFAULT)
768 stop_signal = siggnal;
769 /* If this signal should not be seen by program,
770 give it zero. Used for debugging signals. */
771 else if (!signal_program[stop_signal])
772 stop_signal = TARGET_SIGNAL_0;
773
774 annotate_starting ();
775
776 /* Make sure that output from GDB appears before output from the
777 inferior. */
778 gdb_flush (gdb_stdout);
779
780 /* Refresh prev_pc value just prior to resuming. This used to be
781 done in stop_stepping, however, setting prev_pc there did not handle
782 scenarios such as inferior function calls or returning from
783 a function via the return command. In those cases, the prev_pc
784 value was not set properly for subsequent commands. The prev_pc value
785 is used to initialize the starting line number in the ecs. With an
786 invalid value, the gdb next command ends up stopping at the position
787 represented by the next line table entry past our start position.
788 On platforms that generate one line table entry per line, this
789 is not a problem. However, on the ia64, the compiler generates
790 extraneous line table entries that do not increase the line number.
791 When we issue the gdb next command on the ia64 after an inferior call
792 or a return command, we often end up a few instructions forward, still
793 within the original line we started.
794
795 An attempt was made to have init_execution_control_state () refresh
796 the prev_pc value before calculating the line number. This approach
797 did not work because on platforms that use ptrace, the pc register
798 cannot be read unless the inferior is stopped. At that point, we
799 are not guaranteed the inferior is stopped and so the read_pc ()
800 call can fail. Setting the prev_pc value here ensures the value is
801 updated correctly when the inferior is stopped. */
802 prev_pc = read_pc ();
803
804 /* Resume inferior. */
805 resume (oneproc || step || bpstat_should_step (), stop_signal);
806
807 /* Wait for it to stop (if not standalone)
808 and in any case decode why it stopped, and act accordingly. */
809 /* Do this only if we are not using the event loop, or if the target
810 does not support asynchronous execution. */
811 if (!target_can_async_p ())
812 {
813 wait_for_inferior ();
814 normal_stop ();
815 }
816 }
817 \f
818
819 /* Start remote-debugging of a machine over a serial link. */
820
821 void
822 start_remote (int from_tty)
823 {
824 init_thread_list ();
825 init_wait_for_inferior ();
826 stop_soon = STOP_QUIETLY_REMOTE;
827 trap_expected = 0;
828
829 /* Always go on waiting for the target, regardless of the mode. */
830 /* FIXME: cagney/1999-09-23: At present it isn't possible to
831 indicate to wait_for_inferior that a target should timeout if
832 nothing is returned (instead of just blocking). Because of this,
833 targets expecting an immediate response need to, internally, set
834 things up so that the target_wait() is forced to eventually
835 timeout. */
836 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
837 differentiate to its caller what the state of the target is after
838 the initial open has been performed. Here we're assuming that
839 the target has stopped. It should be possible to eventually have
840 target_open() return to the caller an indication that the target
841 is currently running and GDB state should be set to the same as
842 for an async run. */
843 wait_for_inferior ();
844
845 /* Now that the inferior has stopped, do any bookkeeping like
846 loading shared libraries. We want to do this before normal_stop,
847 so that the displayed frame is up to date. */
848 post_create_inferior (&current_target, from_tty);
849
850 normal_stop ();
851 }
852
853 /* Initialize static vars when a new inferior begins. */
854
855 void
856 init_wait_for_inferior (void)
857 {
858 /* These are meaningless until the first time through wait_for_inferior. */
859 prev_pc = 0;
860
861 breakpoints_inserted = 0;
862 breakpoint_init_inferior (inf_starting);
863
864 /* Don't confuse first call to proceed(). */
865 stop_signal = TARGET_SIGNAL_0;
866
867 /* The first resume is not following a fork/vfork/exec. */
868 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
869
870 clear_proceed_status ();
871
872 stepping_past_singlestep_breakpoint = 0;
873 stepping_past_breakpoint = 0;
874 }
875 \f
876 /* This enum encodes possible reasons for doing a target_wait, so that
877 wfi can call target_wait in one place. (Ultimately the call will be
878 moved out of the infinite loop entirely.) */
879
880 enum infwait_states
881 {
882 infwait_normal_state,
883 infwait_thread_hop_state,
884 infwait_nonstep_watch_state
885 };
886
887 /* Why did the inferior stop? Used to print the appropriate messages
888 to the interface from within handle_inferior_event(). */
889 enum inferior_stop_reason
890 {
891 /* Step, next, nexti, stepi finished. */
892 END_STEPPING_RANGE,
893 /* Inferior terminated by signal. */
894 SIGNAL_EXITED,
895 /* Inferior exited. */
896 EXITED,
897 /* Inferior received signal, and user asked to be notified. */
898 SIGNAL_RECEIVED
899 };
900
901 /* This structure contains what used to be local variables in
902 wait_for_inferior. Probably many of them can return to being
903 locals in handle_inferior_event. */
904
905 struct execution_control_state
906 {
907 struct target_waitstatus ws;
908 struct target_waitstatus *wp;
909 int another_trap;
910 int random_signal;
911 CORE_ADDR stop_func_start;
912 CORE_ADDR stop_func_end;
913 char *stop_func_name;
914 struct symtab_and_line sal;
915 int current_line;
916 struct symtab *current_symtab;
917 int handling_longjmp; /* FIXME */
918 ptid_t ptid;
919 ptid_t saved_inferior_ptid;
920 int step_after_step_resume_breakpoint;
921 int stepping_through_solib_after_catch;
922 bpstat stepping_through_solib_catchpoints;
923 int new_thread_event;
924 struct target_waitstatus tmpstatus;
925 enum infwait_states infwait_state;
926 ptid_t waiton_ptid;
927 int wait_some_more;
928 };
929
930 void init_execution_control_state (struct execution_control_state *ecs);
931
932 void handle_inferior_event (struct execution_control_state *ecs);
933
934 static void step_into_function (struct execution_control_state *ecs);
935 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
936 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
937 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
938 struct frame_id sr_id);
939 static void stop_stepping (struct execution_control_state *ecs);
940 static void prepare_to_wait (struct execution_control_state *ecs);
941 static void keep_going (struct execution_control_state *ecs);
942 static void print_stop_reason (enum inferior_stop_reason stop_reason,
943 int stop_info);
944
945 /* Wait for control to return from inferior to debugger.
946 If inferior gets a signal, we may decide to start it up again
947 instead of returning. That is why there is a loop in this function.
948 When this function actually returns it means the inferior
949 should be left stopped and GDB should read more commands. */
950
951 void
952 wait_for_inferior (void)
953 {
954 struct cleanup *old_cleanups;
955 struct execution_control_state ecss;
956 struct execution_control_state *ecs;
957
958 if (debug_infrun)
959 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
960
961 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
962 &step_resume_breakpoint);
963
964 /* wfi still stays in a loop, so it's OK just to take the address of
965 a local to get the ecs pointer. */
966 ecs = &ecss;
967
968 /* Fill in with reasonable starting values. */
969 init_execution_control_state (ecs);
970
971 /* We'll update this if & when we switch to a new thread. */
972 previous_inferior_ptid = inferior_ptid;
973
974 overlay_cache_invalid = 1;
975
976 /* We have to invalidate the registers BEFORE calling target_wait
977 because they can be loaded from the target while in target_wait.
978 This makes remote debugging a bit more efficient for those
979 targets that provide critical registers as part of their normal
980 status mechanism. */
981
982 registers_changed ();
983
984 while (1)
985 {
986 if (deprecated_target_wait_hook)
987 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
988 else
989 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
990
991 /* Now figure out what to do with the result of the result. */
992 handle_inferior_event (ecs);
993
994 if (!ecs->wait_some_more)
995 break;
996 }
997 do_cleanups (old_cleanups);
998 }
999
1000 /* Asynchronous version of wait_for_inferior. It is called by the
1001 event loop whenever a change of state is detected on the file
1002 descriptor corresponding to the target. It can be called more than
1003 once to complete a single execution command. In such cases we need
1004 to keep the state in a global variable ASYNC_ECSS. If it is the
1005 last time that this function is called for a single execution
1006 command, then report to the user that the inferior has stopped, and
1007 do the necessary cleanups. */
1008
1009 struct execution_control_state async_ecss;
1010 struct execution_control_state *async_ecs;
1011
1012 void
1013 fetch_inferior_event (void *client_data)
1014 {
1015 static struct cleanup *old_cleanups;
1016
1017 async_ecs = &async_ecss;
1018
1019 if (!async_ecs->wait_some_more)
1020 {
1021 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1022 &step_resume_breakpoint);
1023
1024 /* Fill in with reasonable starting values. */
1025 init_execution_control_state (async_ecs);
1026
1027 /* We'll update this if & when we switch to a new thread. */
1028 previous_inferior_ptid = inferior_ptid;
1029
1030 overlay_cache_invalid = 1;
1031
1032 /* We have to invalidate the registers BEFORE calling target_wait
1033 because they can be loaded from the target while in target_wait.
1034 This makes remote debugging a bit more efficient for those
1035 targets that provide critical registers as part of their normal
1036 status mechanism. */
1037
1038 registers_changed ();
1039 }
1040
1041 if (deprecated_target_wait_hook)
1042 async_ecs->ptid =
1043 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1044 else
1045 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1046
1047 /* Now figure out what to do with the result of the result. */
1048 handle_inferior_event (async_ecs);
1049
1050 if (!async_ecs->wait_some_more)
1051 {
1052 /* Do only the cleanups that have been added by this
1053 function. Let the continuations for the commands do the rest,
1054 if there are any. */
1055 do_exec_cleanups (old_cleanups);
1056 normal_stop ();
1057 if (step_multi && stop_step)
1058 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1059 else
1060 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1061 }
1062 }
1063
1064 /* Prepare an execution control state for looping through a
1065 wait_for_inferior-type loop. */
1066
1067 void
1068 init_execution_control_state (struct execution_control_state *ecs)
1069 {
1070 ecs->another_trap = 0;
1071 ecs->random_signal = 0;
1072 ecs->step_after_step_resume_breakpoint = 0;
1073 ecs->handling_longjmp = 0; /* FIXME */
1074 ecs->stepping_through_solib_after_catch = 0;
1075 ecs->stepping_through_solib_catchpoints = NULL;
1076 ecs->sal = find_pc_line (prev_pc, 0);
1077 ecs->current_line = ecs->sal.line;
1078 ecs->current_symtab = ecs->sal.symtab;
1079 ecs->infwait_state = infwait_normal_state;
1080 ecs->waiton_ptid = pid_to_ptid (-1);
1081 ecs->wp = &(ecs->ws);
1082 }
1083
1084 /* Return the cached copy of the last pid/waitstatus returned by
1085 target_wait()/deprecated_target_wait_hook(). The data is actually
1086 cached by handle_inferior_event(), which gets called immediately
1087 after target_wait()/deprecated_target_wait_hook(). */
1088
1089 void
1090 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1091 {
1092 *ptidp = target_last_wait_ptid;
1093 *status = target_last_waitstatus;
1094 }
1095
1096 void
1097 nullify_last_target_wait_ptid (void)
1098 {
1099 target_last_wait_ptid = minus_one_ptid;
1100 }
1101
1102 /* Switch thread contexts, maintaining "infrun state". */
1103
1104 static void
1105 context_switch (struct execution_control_state *ecs)
1106 {
1107 /* Caution: it may happen that the new thread (or the old one!)
1108 is not in the thread list. In this case we must not attempt
1109 to "switch context", or we run the risk that our context may
1110 be lost. This may happen as a result of the target module
1111 mishandling thread creation. */
1112
1113 if (debug_infrun)
1114 {
1115 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1116 target_pid_to_str (inferior_ptid));
1117 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1118 target_pid_to_str (ecs->ptid));
1119 }
1120
1121 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1122 { /* Perform infrun state context switch: */
1123 /* Save infrun state for the old thread. */
1124 save_infrun_state (inferior_ptid, prev_pc,
1125 trap_expected, step_resume_breakpoint,
1126 step_range_start,
1127 step_range_end, &step_frame_id,
1128 ecs->handling_longjmp, ecs->another_trap,
1129 ecs->stepping_through_solib_after_catch,
1130 ecs->stepping_through_solib_catchpoints,
1131 ecs->current_line, ecs->current_symtab);
1132
1133 /* Load infrun state for the new thread. */
1134 load_infrun_state (ecs->ptid, &prev_pc,
1135 &trap_expected, &step_resume_breakpoint,
1136 &step_range_start,
1137 &step_range_end, &step_frame_id,
1138 &ecs->handling_longjmp, &ecs->another_trap,
1139 &ecs->stepping_through_solib_after_catch,
1140 &ecs->stepping_through_solib_catchpoints,
1141 &ecs->current_line, &ecs->current_symtab);
1142 }
1143
1144 switch_to_thread (ecs->ptid);
1145 }
1146
1147 static void
1148 adjust_pc_after_break (struct execution_control_state *ecs)
1149 {
1150 CORE_ADDR breakpoint_pc;
1151
1152 /* If this target does not decrement the PC after breakpoints, then
1153 we have nothing to do. */
1154 if (gdbarch_decr_pc_after_break (current_gdbarch) == 0)
1155 return;
1156
1157 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1158 we aren't, just return.
1159
1160 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1161 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1162 implemented by software breakpoints should be handled through the normal
1163 breakpoint layer.
1164
1165 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1166 different signals (SIGILL or SIGEMT for instance), but it is less
1167 clear where the PC is pointing afterwards. It may not match
1168 gdbarch_decr_pc_after_break. I don't know any specific target that
1169 generates these signals at breakpoints (the code has been in GDB since at
1170 least 1992) so I can not guess how to handle them here.
1171
1172 In earlier versions of GDB, a target with
1173 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
1174 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1175 target with both of these set in GDB history, and it seems unlikely to be
1176 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
1177
1178 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1179 return;
1180
1181 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1182 return;
1183
1184 /* Find the location where (if we've hit a breakpoint) the
1185 breakpoint would be. */
1186 breakpoint_pc = read_pc_pid (ecs->ptid) - gdbarch_decr_pc_after_break
1187 (current_gdbarch);
1188
1189 /* Check whether there actually is a software breakpoint inserted
1190 at that location. */
1191 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1192 {
1193 /* When using hardware single-step, a SIGTRAP is reported for both
1194 a completed single-step and a software breakpoint. Need to
1195 differentiate between the two, as the latter needs adjusting
1196 but the former does not.
1197
1198 The SIGTRAP can be due to a completed hardware single-step only if
1199 - we didn't insert software single-step breakpoints
1200 - the thread to be examined is still the current thread
1201 - this thread is currently being stepped
1202
1203 If any of these events did not occur, we must have stopped due
1204 to hitting a software breakpoint, and have to back up to the
1205 breakpoint address.
1206
1207 As a special case, we could have hardware single-stepped a
1208 software breakpoint. In this case (prev_pc == breakpoint_pc),
1209 we also need to back up to the breakpoint address. */
1210
1211 if (singlestep_breakpoints_inserted_p
1212 || !ptid_equal (ecs->ptid, inferior_ptid)
1213 || !currently_stepping (ecs)
1214 || prev_pc == breakpoint_pc)
1215 write_pc_pid (breakpoint_pc, ecs->ptid);
1216 }
1217 }
1218
1219 /* Given an execution control state that has been freshly filled in
1220 by an event from the inferior, figure out what it means and take
1221 appropriate action. */
1222
1223 int stepped_after_stopped_by_watchpoint;
1224
1225 void
1226 handle_inferior_event (struct execution_control_state *ecs)
1227 {
1228 /* NOTE: bje/2005-05-02: If you're looking at this code and thinking
1229 that the variable stepped_after_stopped_by_watchpoint isn't used,
1230 then you're wrong! See remote.c:remote_stopped_data_address. */
1231
1232 int sw_single_step_trap_p = 0;
1233 int stopped_by_watchpoint = -1; /* Mark as unknown. */
1234
1235 /* Cache the last pid/waitstatus. */
1236 target_last_wait_ptid = ecs->ptid;
1237 target_last_waitstatus = *ecs->wp;
1238
1239 adjust_pc_after_break (ecs);
1240
1241 switch (ecs->infwait_state)
1242 {
1243 case infwait_thread_hop_state:
1244 if (debug_infrun)
1245 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1246 /* Cancel the waiton_ptid. */
1247 ecs->waiton_ptid = pid_to_ptid (-1);
1248 break;
1249
1250 case infwait_normal_state:
1251 if (debug_infrun)
1252 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1253 stepped_after_stopped_by_watchpoint = 0;
1254 break;
1255
1256 case infwait_nonstep_watch_state:
1257 if (debug_infrun)
1258 fprintf_unfiltered (gdb_stdlog,
1259 "infrun: infwait_nonstep_watch_state\n");
1260 insert_breakpoints ();
1261
1262 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1263 handle things like signals arriving and other things happening
1264 in combination correctly? */
1265 stepped_after_stopped_by_watchpoint = 1;
1266 break;
1267
1268 default:
1269 internal_error (__FILE__, __LINE__, _("bad switch"));
1270 }
1271 ecs->infwait_state = infwait_normal_state;
1272
1273 reinit_frame_cache ();
1274
1275 /* If it's a new process, add it to the thread database */
1276
1277 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1278 && !ptid_equal (ecs->ptid, minus_one_ptid)
1279 && !in_thread_list (ecs->ptid));
1280
1281 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1282 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1283 {
1284 add_thread (ecs->ptid);
1285
1286 ui_out_text (uiout, "[New ");
1287 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1288 ui_out_text (uiout, "]\n");
1289 }
1290
1291 switch (ecs->ws.kind)
1292 {
1293 case TARGET_WAITKIND_LOADED:
1294 if (debug_infrun)
1295 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1296 /* Ignore gracefully during startup of the inferior, as it might
1297 be the shell which has just loaded some objects, otherwise
1298 add the symbols for the newly loaded objects. Also ignore at
1299 the beginning of an attach or remote session; we will query
1300 the full list of libraries once the connection is
1301 established. */
1302 if (stop_soon == NO_STOP_QUIETLY)
1303 {
1304 int breakpoints_were_inserted;
1305
1306 /* Remove breakpoints, SOLIB_ADD might adjust
1307 breakpoint addresses via breakpoint_re_set. */
1308 breakpoints_were_inserted = breakpoints_inserted;
1309 if (breakpoints_inserted)
1310 remove_breakpoints ();
1311 breakpoints_inserted = 0;
1312
1313 /* Check for any newly added shared libraries if we're
1314 supposed to be adding them automatically. Switch
1315 terminal for any messages produced by
1316 breakpoint_re_set. */
1317 target_terminal_ours_for_output ();
1318 /* NOTE: cagney/2003-11-25: Make certain that the target
1319 stack's section table is kept up-to-date. Architectures,
1320 (e.g., PPC64), use the section table to perform
1321 operations such as address => section name and hence
1322 require the table to contain all sections (including
1323 those found in shared libraries). */
1324 /* NOTE: cagney/2003-11-25: Pass current_target and not
1325 exec_ops to SOLIB_ADD. This is because current GDB is
1326 only tooled to propagate section_table changes out from
1327 the "current_target" (see target_resize_to_sections), and
1328 not up from the exec stratum. This, of course, isn't
1329 right. "infrun.c" should only interact with the
1330 exec/process stratum, instead relying on the target stack
1331 to propagate relevant changes (stop, section table
1332 changed, ...) up to other layers. */
1333 #ifdef SOLIB_ADD
1334 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1335 #else
1336 solib_add (NULL, 0, &current_target, auto_solib_add);
1337 #endif
1338 target_terminal_inferior ();
1339
1340 /* Try to reenable shared library breakpoints, additional
1341 code segments in shared libraries might be mapped in now. */
1342 re_enable_breakpoints_in_shlibs ();
1343
1344 /* If requested, stop when the dynamic linker notifies
1345 gdb of events. This allows the user to get control
1346 and place breakpoints in initializer routines for
1347 dynamically loaded objects (among other things). */
1348 if (stop_on_solib_events)
1349 {
1350 stop_stepping (ecs);
1351 return;
1352 }
1353
1354 /* NOTE drow/2007-05-11: This might be a good place to check
1355 for "catch load". */
1356
1357 /* Reinsert breakpoints and continue. */
1358 if (breakpoints_were_inserted)
1359 {
1360 insert_breakpoints ();
1361 breakpoints_inserted = 1;
1362 }
1363 }
1364
1365 /* If we are skipping through a shell, or through shared library
1366 loading that we aren't interested in, resume the program. If
1367 we're running the program normally, also resume. But stop if
1368 we're attaching or setting up a remote connection. */
1369 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
1370 {
1371 resume (0, TARGET_SIGNAL_0);
1372 prepare_to_wait (ecs);
1373 return;
1374 }
1375
1376 break;
1377
1378 case TARGET_WAITKIND_SPURIOUS:
1379 if (debug_infrun)
1380 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1381 resume (0, TARGET_SIGNAL_0);
1382 prepare_to_wait (ecs);
1383 return;
1384
1385 case TARGET_WAITKIND_EXITED:
1386 if (debug_infrun)
1387 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1388 target_terminal_ours (); /* Must do this before mourn anyway */
1389 print_stop_reason (EXITED, ecs->ws.value.integer);
1390
1391 /* Record the exit code in the convenience variable $_exitcode, so
1392 that the user can inspect this again later. */
1393 set_internalvar (lookup_internalvar ("_exitcode"),
1394 value_from_longest (builtin_type_int,
1395 (LONGEST) ecs->ws.value.integer));
1396 gdb_flush (gdb_stdout);
1397 target_mourn_inferior ();
1398 singlestep_breakpoints_inserted_p = 0;
1399 stop_print_frame = 0;
1400 stop_stepping (ecs);
1401 return;
1402
1403 case TARGET_WAITKIND_SIGNALLED:
1404 if (debug_infrun)
1405 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1406 stop_print_frame = 0;
1407 stop_signal = ecs->ws.value.sig;
1408 target_terminal_ours (); /* Must do this before mourn anyway */
1409
1410 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1411 reach here unless the inferior is dead. However, for years
1412 target_kill() was called here, which hints that fatal signals aren't
1413 really fatal on some systems. If that's true, then some changes
1414 may be needed. */
1415 target_mourn_inferior ();
1416
1417 print_stop_reason (SIGNAL_EXITED, stop_signal);
1418 singlestep_breakpoints_inserted_p = 0;
1419 stop_stepping (ecs);
1420 return;
1421
1422 /* The following are the only cases in which we keep going;
1423 the above cases end in a continue or goto. */
1424 case TARGET_WAITKIND_FORKED:
1425 case TARGET_WAITKIND_VFORKED:
1426 if (debug_infrun)
1427 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1428 stop_signal = TARGET_SIGNAL_TRAP;
1429 pending_follow.kind = ecs->ws.kind;
1430
1431 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1432 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1433
1434 if (!ptid_equal (ecs->ptid, inferior_ptid))
1435 {
1436 context_switch (ecs);
1437 reinit_frame_cache ();
1438 }
1439
1440 stop_pc = read_pc ();
1441
1442 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1443
1444 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1445
1446 /* If no catchpoint triggered for this, then keep going. */
1447 if (ecs->random_signal)
1448 {
1449 stop_signal = TARGET_SIGNAL_0;
1450 keep_going (ecs);
1451 return;
1452 }
1453 goto process_event_stop_test;
1454
1455 case TARGET_WAITKIND_EXECD:
1456 if (debug_infrun)
1457 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
1458 stop_signal = TARGET_SIGNAL_TRAP;
1459
1460 /* NOTE drow/2002-12-05: This code should be pushed down into the
1461 target_wait function. Until then following vfork on HP/UX 10.20
1462 is probably broken by this. Of course, it's broken anyway. */
1463 /* Is this a target which reports multiple exec events per actual
1464 call to exec()? (HP-UX using ptrace does, for example.) If so,
1465 ignore all but the last one. Just resume the exec'r, and wait
1466 for the next exec event. */
1467 if (inferior_ignoring_leading_exec_events)
1468 {
1469 inferior_ignoring_leading_exec_events--;
1470 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1471 prepare_to_wait (ecs);
1472 return;
1473 }
1474 inferior_ignoring_leading_exec_events =
1475 target_reported_exec_events_per_exec_call () - 1;
1476
1477 pending_follow.execd_pathname =
1478 savestring (ecs->ws.value.execd_pathname,
1479 strlen (ecs->ws.value.execd_pathname));
1480
1481 /* This causes the eventpoints and symbol table to be reset. Must
1482 do this now, before trying to determine whether to stop. */
1483 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1484 xfree (pending_follow.execd_pathname);
1485
1486 stop_pc = read_pc_pid (ecs->ptid);
1487 ecs->saved_inferior_ptid = inferior_ptid;
1488 inferior_ptid = ecs->ptid;
1489
1490 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1491
1492 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1493 inferior_ptid = ecs->saved_inferior_ptid;
1494
1495 if (!ptid_equal (ecs->ptid, inferior_ptid))
1496 {
1497 context_switch (ecs);
1498 reinit_frame_cache ();
1499 }
1500
1501 /* If no catchpoint triggered for this, then keep going. */
1502 if (ecs->random_signal)
1503 {
1504 stop_signal = TARGET_SIGNAL_0;
1505 keep_going (ecs);
1506 return;
1507 }
1508 goto process_event_stop_test;
1509
1510 /* Be careful not to try to gather much state about a thread
1511 that's in a syscall. It's frequently a losing proposition. */
1512 case TARGET_WAITKIND_SYSCALL_ENTRY:
1513 if (debug_infrun)
1514 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1515 resume (0, TARGET_SIGNAL_0);
1516 prepare_to_wait (ecs);
1517 return;
1518
1519 /* Before examining the threads further, step this thread to
1520 get it entirely out of the syscall. (We get notice of the
1521 event when the thread is just on the verge of exiting a
1522 syscall. Stepping one instruction seems to get it back
1523 into user code.) */
1524 case TARGET_WAITKIND_SYSCALL_RETURN:
1525 if (debug_infrun)
1526 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1527 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1528 prepare_to_wait (ecs);
1529 return;
1530
1531 case TARGET_WAITKIND_STOPPED:
1532 if (debug_infrun)
1533 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1534 stop_signal = ecs->ws.value.sig;
1535 break;
1536
1537 /* We had an event in the inferior, but we are not interested
1538 in handling it at this level. The lower layers have already
1539 done what needs to be done, if anything.
1540
1541 One of the possible circumstances for this is when the
1542 inferior produces output for the console. The inferior has
1543 not stopped, and we are ignoring the event. Another possible
1544 circumstance is any event which the lower level knows will be
1545 reported multiple times without an intervening resume. */
1546 case TARGET_WAITKIND_IGNORE:
1547 if (debug_infrun)
1548 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1549 prepare_to_wait (ecs);
1550 return;
1551 }
1552
1553 /* We may want to consider not doing a resume here in order to give
1554 the user a chance to play with the new thread. It might be good
1555 to make that a user-settable option. */
1556
1557 /* At this point, all threads are stopped (happens automatically in
1558 either the OS or the native code). Therefore we need to continue
1559 all threads in order to make progress. */
1560 if (ecs->new_thread_event)
1561 {
1562 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1563 prepare_to_wait (ecs);
1564 return;
1565 }
1566
1567 stop_pc = read_pc_pid (ecs->ptid);
1568
1569 if (debug_infrun)
1570 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1571
1572 if (stepping_past_singlestep_breakpoint)
1573 {
1574 gdb_assert (singlestep_breakpoints_inserted_p);
1575 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1576 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1577
1578 stepping_past_singlestep_breakpoint = 0;
1579
1580 /* We've either finished single-stepping past the single-step
1581 breakpoint, or stopped for some other reason. It would be nice if
1582 we could tell, but we can't reliably. */
1583 if (stop_signal == TARGET_SIGNAL_TRAP)
1584 {
1585 if (debug_infrun)
1586 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
1587 /* Pull the single step breakpoints out of the target. */
1588 remove_single_step_breakpoints ();
1589 singlestep_breakpoints_inserted_p = 0;
1590
1591 ecs->random_signal = 0;
1592
1593 ecs->ptid = saved_singlestep_ptid;
1594 context_switch (ecs);
1595 if (deprecated_context_hook)
1596 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1597
1598 resume (1, TARGET_SIGNAL_0);
1599 prepare_to_wait (ecs);
1600 return;
1601 }
1602 }
1603
1604 stepping_past_singlestep_breakpoint = 0;
1605
1606 if (stepping_past_breakpoint)
1607 {
1608 stepping_past_breakpoint = 0;
1609
1610 /* If we stopped for some other reason than single-stepping, ignore
1611 the fact that we were supposed to switch back. */
1612 if (stop_signal == TARGET_SIGNAL_TRAP)
1613 {
1614 if (debug_infrun)
1615 fprintf_unfiltered (gdb_stdlog,
1616 "infrun: stepping_past_breakpoint\n");
1617
1618 /* Pull the single step breakpoints out of the target. */
1619 if (singlestep_breakpoints_inserted_p)
1620 {
1621 remove_single_step_breakpoints ();
1622 singlestep_breakpoints_inserted_p = 0;
1623 }
1624
1625 /* Note: We do not call context_switch at this point, as the
1626 context is already set up for stepping the original thread. */
1627 switch_to_thread (stepping_past_breakpoint_ptid);
1628 /* Suppress spurious "Switching to ..." message. */
1629 previous_inferior_ptid = inferior_ptid;
1630
1631 resume (1, TARGET_SIGNAL_0);
1632 prepare_to_wait (ecs);
1633 return;
1634 }
1635 }
1636
1637 /* See if a thread hit a thread-specific breakpoint that was meant for
1638 another thread. If so, then step that thread past the breakpoint,
1639 and continue it. */
1640
1641 if (stop_signal == TARGET_SIGNAL_TRAP)
1642 {
1643 int thread_hop_needed = 0;
1644
1645 /* Check if a regular breakpoint has been hit before checking
1646 for a potential single step breakpoint. Otherwise, GDB will
1647 not see this breakpoint hit when stepping onto breakpoints. */
1648 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
1649 {
1650 ecs->random_signal = 0;
1651 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1652 thread_hop_needed = 1;
1653 }
1654 else if (singlestep_breakpoints_inserted_p)
1655 {
1656 /* We have not context switched yet, so this should be true
1657 no matter which thread hit the singlestep breakpoint. */
1658 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
1659 if (debug_infrun)
1660 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
1661 "trap for %s\n",
1662 target_pid_to_str (ecs->ptid));
1663
1664 ecs->random_signal = 0;
1665 /* The call to in_thread_list is necessary because PTIDs sometimes
1666 change when we go from single-threaded to multi-threaded. If
1667 the singlestep_ptid is still in the list, assume that it is
1668 really different from ecs->ptid. */
1669 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1670 && in_thread_list (singlestep_ptid))
1671 {
1672 /* If the PC of the thread we were trying to single-step
1673 has changed, discard this event (which we were going
1674 to ignore anyway), and pretend we saw that thread
1675 trap. This prevents us continuously moving the
1676 single-step breakpoint forward, one instruction at a
1677 time. If the PC has changed, then the thread we were
1678 trying to single-step has trapped or been signalled,
1679 but the event has not been reported to GDB yet.
1680
1681 There might be some cases where this loses signal
1682 information, if a signal has arrived at exactly the
1683 same time that the PC changed, but this is the best
1684 we can do with the information available. Perhaps we
1685 should arrange to report all events for all threads
1686 when they stop, or to re-poll the remote looking for
1687 this particular thread (i.e. temporarily enable
1688 schedlock). */
1689 if (read_pc_pid (singlestep_ptid) != singlestep_pc)
1690 {
1691 if (debug_infrun)
1692 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
1693 " but expected thread advanced also\n");
1694
1695 /* The current context still belongs to
1696 singlestep_ptid. Don't swap here, since that's
1697 the context we want to use. Just fudge our
1698 state and continue. */
1699 ecs->ptid = singlestep_ptid;
1700 stop_pc = read_pc_pid (ecs->ptid);
1701 }
1702 else
1703 {
1704 if (debug_infrun)
1705 fprintf_unfiltered (gdb_stdlog,
1706 "infrun: unexpected thread\n");
1707
1708 thread_hop_needed = 1;
1709 stepping_past_singlestep_breakpoint = 1;
1710 saved_singlestep_ptid = singlestep_ptid;
1711 }
1712 }
1713 }
1714
1715 if (thread_hop_needed)
1716 {
1717 int remove_status;
1718
1719 if (debug_infrun)
1720 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
1721
1722 /* Saw a breakpoint, but it was hit by the wrong thread.
1723 Just continue. */
1724
1725 if (singlestep_breakpoints_inserted_p)
1726 {
1727 /* Pull the single step breakpoints out of the target. */
1728 remove_single_step_breakpoints ();
1729 singlestep_breakpoints_inserted_p = 0;
1730 }
1731
1732 remove_status = remove_breakpoints ();
1733 /* Did we fail to remove breakpoints? If so, try
1734 to set the PC past the bp. (There's at least
1735 one situation in which we can fail to remove
1736 the bp's: On HP-UX's that use ttrace, we can't
1737 change the address space of a vforking child
1738 process until the child exits (well, okay, not
1739 then either :-) or execs. */
1740 if (remove_status != 0)
1741 {
1742 /* FIXME! This is obviously non-portable! */
1743 write_pc_pid (stop_pc + 4, ecs->ptid);
1744 /* We need to restart all the threads now,
1745 * unles we're running in scheduler-locked mode.
1746 * Use currently_stepping to determine whether to
1747 * step or continue.
1748 */
1749 /* FIXME MVS: is there any reason not to call resume()? */
1750 if (scheduler_mode == schedlock_on)
1751 target_resume (ecs->ptid,
1752 currently_stepping (ecs), TARGET_SIGNAL_0);
1753 else
1754 target_resume (RESUME_ALL,
1755 currently_stepping (ecs), TARGET_SIGNAL_0);
1756 prepare_to_wait (ecs);
1757 return;
1758 }
1759 else
1760 { /* Single step */
1761 breakpoints_inserted = 0;
1762 if (!ptid_equal (inferior_ptid, ecs->ptid))
1763 context_switch (ecs);
1764 ecs->waiton_ptid = ecs->ptid;
1765 ecs->wp = &(ecs->ws);
1766 ecs->another_trap = 1;
1767
1768 ecs->infwait_state = infwait_thread_hop_state;
1769 keep_going (ecs);
1770 registers_changed ();
1771 return;
1772 }
1773 }
1774 else if (singlestep_breakpoints_inserted_p)
1775 {
1776 sw_single_step_trap_p = 1;
1777 ecs->random_signal = 0;
1778 }
1779 }
1780 else
1781 ecs->random_signal = 1;
1782
1783 /* See if something interesting happened to the non-current thread. If
1784 so, then switch to that thread. */
1785 if (!ptid_equal (ecs->ptid, inferior_ptid))
1786 {
1787 if (debug_infrun)
1788 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
1789
1790 context_switch (ecs);
1791
1792 if (deprecated_context_hook)
1793 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1794 }
1795
1796 if (singlestep_breakpoints_inserted_p)
1797 {
1798 /* Pull the single step breakpoints out of the target. */
1799 remove_single_step_breakpoints ();
1800 singlestep_breakpoints_inserted_p = 0;
1801 }
1802
1803 /* It may not be necessary to disable the watchpoint to stop over
1804 it. For example, the PA can (with some kernel cooperation)
1805 single step over a watchpoint without disabling the watchpoint. */
1806 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1807 {
1808 if (debug_infrun)
1809 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1810 resume (1, 0);
1811 prepare_to_wait (ecs);
1812 return;
1813 }
1814
1815 /* It is far more common to need to disable a watchpoint to step
1816 the inferior over it. FIXME. What else might a debug
1817 register or page protection watchpoint scheme need here? */
1818 if (gdbarch_have_nonsteppable_watchpoint (current_gdbarch)
1819 && STOPPED_BY_WATCHPOINT (ecs->ws))
1820 {
1821 /* At this point, we are stopped at an instruction which has
1822 attempted to write to a piece of memory under control of
1823 a watchpoint. The instruction hasn't actually executed
1824 yet. If we were to evaluate the watchpoint expression
1825 now, we would get the old value, and therefore no change
1826 would seem to have occurred.
1827
1828 In order to make watchpoints work `right', we really need
1829 to complete the memory write, and then evaluate the
1830 watchpoint expression. The following code does that by
1831 removing the watchpoint (actually, all watchpoints and
1832 breakpoints), single-stepping the target, re-inserting
1833 watchpoints, and then falling through to let normal
1834 single-step processing handle proceed. Since this
1835 includes evaluating watchpoints, things will come to a
1836 stop in the correct manner. */
1837
1838 if (debug_infrun)
1839 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1840 remove_breakpoints ();
1841 registers_changed ();
1842 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1843
1844 ecs->waiton_ptid = ecs->ptid;
1845 ecs->wp = &(ecs->ws);
1846 ecs->infwait_state = infwait_nonstep_watch_state;
1847 prepare_to_wait (ecs);
1848 return;
1849 }
1850
1851 /* It may be possible to simply continue after a watchpoint. */
1852 if (HAVE_CONTINUABLE_WATCHPOINT)
1853 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
1854
1855 ecs->stop_func_start = 0;
1856 ecs->stop_func_end = 0;
1857 ecs->stop_func_name = 0;
1858 /* Don't care about return value; stop_func_start and stop_func_name
1859 will both be 0 if it doesn't work. */
1860 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1861 &ecs->stop_func_start, &ecs->stop_func_end);
1862 ecs->stop_func_start
1863 += gdbarch_deprecated_function_start_offset (current_gdbarch);
1864 ecs->another_trap = 0;
1865 bpstat_clear (&stop_bpstat);
1866 stop_step = 0;
1867 stop_stack_dummy = 0;
1868 stop_print_frame = 1;
1869 ecs->random_signal = 0;
1870 stopped_by_random_signal = 0;
1871
1872 if (stop_signal == TARGET_SIGNAL_TRAP
1873 && trap_expected
1874 && gdbarch_single_step_through_delay_p (current_gdbarch)
1875 && currently_stepping (ecs))
1876 {
1877 /* We're trying to step of a breakpoint. Turns out that we're
1878 also on an instruction that needs to be stepped multiple
1879 times before it's been fully executing. E.g., architectures
1880 with a delay slot. It needs to be stepped twice, once for
1881 the instruction and once for the delay slot. */
1882 int step_through_delay
1883 = gdbarch_single_step_through_delay (current_gdbarch,
1884 get_current_frame ());
1885 if (debug_infrun && step_through_delay)
1886 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
1887 if (step_range_end == 0 && step_through_delay)
1888 {
1889 /* The user issued a continue when stopped at a breakpoint.
1890 Set up for another trap and get out of here. */
1891 ecs->another_trap = 1;
1892 keep_going (ecs);
1893 return;
1894 }
1895 else if (step_through_delay)
1896 {
1897 /* The user issued a step when stopped at a breakpoint.
1898 Maybe we should stop, maybe we should not - the delay
1899 slot *might* correspond to a line of source. In any
1900 case, don't decide that here, just set ecs->another_trap,
1901 making sure we single-step again before breakpoints are
1902 re-inserted. */
1903 ecs->another_trap = 1;
1904 }
1905 }
1906
1907 /* Look at the cause of the stop, and decide what to do.
1908 The alternatives are:
1909 1) break; to really stop and return to the debugger,
1910 2) drop through to start up again
1911 (set ecs->another_trap to 1 to single step once)
1912 3) set ecs->random_signal to 1, and the decision between 1 and 2
1913 will be made according to the signal handling tables. */
1914
1915 /* First, distinguish signals caused by the debugger from signals
1916 that have to do with the program's own actions. Note that
1917 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1918 on the operating system version. Here we detect when a SIGILL or
1919 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1920 something similar for SIGSEGV, since a SIGSEGV will be generated
1921 when we're trying to execute a breakpoint instruction on a
1922 non-executable stack. This happens for call dummy breakpoints
1923 for architectures like SPARC that place call dummies on the
1924 stack. */
1925
1926 if (stop_signal == TARGET_SIGNAL_TRAP
1927 || (breakpoints_inserted
1928 && (stop_signal == TARGET_SIGNAL_ILL
1929 || stop_signal == TARGET_SIGNAL_SEGV
1930 || stop_signal == TARGET_SIGNAL_EMT))
1931 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
1932 || stop_soon == STOP_QUIETLY_REMOTE)
1933 {
1934 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1935 {
1936 if (debug_infrun)
1937 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
1938 stop_print_frame = 0;
1939 stop_stepping (ecs);
1940 return;
1941 }
1942
1943 /* This is originated from start_remote(), start_inferior() and
1944 shared libraries hook functions. */
1945 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
1946 {
1947 if (debug_infrun)
1948 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
1949 stop_stepping (ecs);
1950 return;
1951 }
1952
1953 /* This originates from attach_command(). We need to overwrite
1954 the stop_signal here, because some kernels don't ignore a
1955 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1956 See more comments in inferior.h. */
1957 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1958 {
1959 stop_stepping (ecs);
1960 if (stop_signal == TARGET_SIGNAL_STOP)
1961 stop_signal = TARGET_SIGNAL_0;
1962 return;
1963 }
1964
1965 /* Don't even think about breakpoints if just proceeded over a
1966 breakpoint. */
1967 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
1968 {
1969 if (debug_infrun)
1970 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
1971 bpstat_clear (&stop_bpstat);
1972 }
1973 else
1974 {
1975 /* See if there is a breakpoint at the current PC. */
1976 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
1977 stopped_by_watchpoint);
1978
1979 /* Following in case break condition called a
1980 function. */
1981 stop_print_frame = 1;
1982 }
1983
1984 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1985 at one stage in the past included checks for an inferior
1986 function call's call dummy's return breakpoint. The original
1987 comment, that went with the test, read:
1988
1989 ``End of a stack dummy. Some systems (e.g. Sony news) give
1990 another signal besides SIGTRAP, so check here as well as
1991 above.''
1992
1993 If someone ever tries to get get call dummys on a
1994 non-executable stack to work (where the target would stop
1995 with something like a SIGSEGV), then those tests might need
1996 to be re-instated. Given, however, that the tests were only
1997 enabled when momentary breakpoints were not being used, I
1998 suspect that it won't be the case.
1999
2000 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2001 be necessary for call dummies on a non-executable stack on
2002 SPARC. */
2003
2004 if (stop_signal == TARGET_SIGNAL_TRAP)
2005 ecs->random_signal
2006 = !(bpstat_explains_signal (stop_bpstat)
2007 || trap_expected
2008 || (step_range_end && step_resume_breakpoint == NULL));
2009 else
2010 {
2011 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
2012 if (!ecs->random_signal)
2013 stop_signal = TARGET_SIGNAL_TRAP;
2014 }
2015 }
2016
2017 /* When we reach this point, we've pretty much decided
2018 that the reason for stopping must've been a random
2019 (unexpected) signal. */
2020
2021 else
2022 ecs->random_signal = 1;
2023
2024 process_event_stop_test:
2025 /* For the program's own signals, act according to
2026 the signal handling tables. */
2027
2028 if (ecs->random_signal)
2029 {
2030 /* Signal not for debugging purposes. */
2031 int printed = 0;
2032
2033 if (debug_infrun)
2034 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
2035
2036 stopped_by_random_signal = 1;
2037
2038 if (signal_print[stop_signal])
2039 {
2040 printed = 1;
2041 target_terminal_ours_for_output ();
2042 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2043 }
2044 if (signal_stop[stop_signal])
2045 {
2046 stop_stepping (ecs);
2047 return;
2048 }
2049 /* If not going to stop, give terminal back
2050 if we took it away. */
2051 else if (printed)
2052 target_terminal_inferior ();
2053
2054 /* Clear the signal if it should not be passed. */
2055 if (signal_program[stop_signal] == 0)
2056 stop_signal = TARGET_SIGNAL_0;
2057
2058 if (prev_pc == read_pc ()
2059 && !breakpoints_inserted
2060 && breakpoint_here_p (read_pc ())
2061 && step_resume_breakpoint == NULL)
2062 {
2063 /* We were just starting a new sequence, attempting to
2064 single-step off of a breakpoint and expecting a SIGTRAP.
2065 Intead this signal arrives. This signal will take us out
2066 of the stepping range so GDB needs to remember to, when
2067 the signal handler returns, resume stepping off that
2068 breakpoint. */
2069 /* To simplify things, "continue" is forced to use the same
2070 code paths as single-step - set a breakpoint at the
2071 signal return address and then, once hit, step off that
2072 breakpoint. */
2073
2074 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2075 ecs->step_after_step_resume_breakpoint = 1;
2076 keep_going (ecs);
2077 return;
2078 }
2079
2080 if (step_range_end != 0
2081 && stop_signal != TARGET_SIGNAL_0
2082 && stop_pc >= step_range_start && stop_pc < step_range_end
2083 && frame_id_eq (get_frame_id (get_current_frame ()),
2084 step_frame_id)
2085 && step_resume_breakpoint == NULL)
2086 {
2087 /* The inferior is about to take a signal that will take it
2088 out of the single step range. Set a breakpoint at the
2089 current PC (which is presumably where the signal handler
2090 will eventually return) and then allow the inferior to
2091 run free.
2092
2093 Note that this is only needed for a signal delivered
2094 while in the single-step range. Nested signals aren't a
2095 problem as they eventually all return. */
2096 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2097 keep_going (ecs);
2098 return;
2099 }
2100
2101 /* Note: step_resume_breakpoint may be non-NULL. This occures
2102 when either there's a nested signal, or when there's a
2103 pending signal enabled just as the signal handler returns
2104 (leaving the inferior at the step-resume-breakpoint without
2105 actually executing it). Either way continue until the
2106 breakpoint is really hit. */
2107 keep_going (ecs);
2108 return;
2109 }
2110
2111 /* Handle cases caused by hitting a breakpoint. */
2112 {
2113 CORE_ADDR jmp_buf_pc;
2114 struct bpstat_what what;
2115
2116 what = bpstat_what (stop_bpstat);
2117
2118 if (what.call_dummy)
2119 {
2120 stop_stack_dummy = 1;
2121 }
2122
2123 switch (what.main_action)
2124 {
2125 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2126 /* If we hit the breakpoint at longjmp, disable it for the
2127 duration of this command. Then, install a temporary
2128 breakpoint at the target of the jmp_buf. */
2129 if (debug_infrun)
2130 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2131 disable_longjmp_breakpoint ();
2132 remove_breakpoints ();
2133 breakpoints_inserted = 0;
2134 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
2135 || !gdbarch_get_longjmp_target (current_gdbarch,
2136 get_current_frame (), &jmp_buf_pc))
2137 {
2138 keep_going (ecs);
2139 return;
2140 }
2141
2142 /* Need to blow away step-resume breakpoint, as it
2143 interferes with us */
2144 if (step_resume_breakpoint != NULL)
2145 {
2146 delete_step_resume_breakpoint (&step_resume_breakpoint);
2147 }
2148
2149 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2150 ecs->handling_longjmp = 1; /* FIXME */
2151 keep_going (ecs);
2152 return;
2153
2154 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2155 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2156 if (debug_infrun)
2157 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2158 remove_breakpoints ();
2159 breakpoints_inserted = 0;
2160 disable_longjmp_breakpoint ();
2161 ecs->handling_longjmp = 0; /* FIXME */
2162 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2163 break;
2164 /* else fallthrough */
2165
2166 case BPSTAT_WHAT_SINGLE:
2167 if (debug_infrun)
2168 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2169 if (breakpoints_inserted)
2170 remove_breakpoints ();
2171 breakpoints_inserted = 0;
2172 ecs->another_trap = 1;
2173 /* Still need to check other stuff, at least the case
2174 where we are stepping and step out of the right range. */
2175 break;
2176
2177 case BPSTAT_WHAT_STOP_NOISY:
2178 if (debug_infrun)
2179 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2180 stop_print_frame = 1;
2181
2182 /* We are about to nuke the step_resume_breakpointt via the
2183 cleanup chain, so no need to worry about it here. */
2184
2185 stop_stepping (ecs);
2186 return;
2187
2188 case BPSTAT_WHAT_STOP_SILENT:
2189 if (debug_infrun)
2190 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2191 stop_print_frame = 0;
2192
2193 /* We are about to nuke the step_resume_breakpoin via the
2194 cleanup chain, so no need to worry about it here. */
2195
2196 stop_stepping (ecs);
2197 return;
2198
2199 case BPSTAT_WHAT_STEP_RESUME:
2200 /* This proably demands a more elegant solution, but, yeah
2201 right...
2202
2203 This function's use of the simple variable
2204 step_resume_breakpoint doesn't seem to accomodate
2205 simultaneously active step-resume bp's, although the
2206 breakpoint list certainly can.
2207
2208 If we reach here and step_resume_breakpoint is already
2209 NULL, then apparently we have multiple active
2210 step-resume bp's. We'll just delete the breakpoint we
2211 stopped at, and carry on.
2212
2213 Correction: what the code currently does is delete a
2214 step-resume bp, but it makes no effort to ensure that
2215 the one deleted is the one currently stopped at. MVS */
2216
2217 if (debug_infrun)
2218 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2219
2220 if (step_resume_breakpoint == NULL)
2221 {
2222 step_resume_breakpoint =
2223 bpstat_find_step_resume_breakpoint (stop_bpstat);
2224 }
2225 delete_step_resume_breakpoint (&step_resume_breakpoint);
2226 if (ecs->step_after_step_resume_breakpoint)
2227 {
2228 /* Back when the step-resume breakpoint was inserted, we
2229 were trying to single-step off a breakpoint. Go back
2230 to doing that. */
2231 ecs->step_after_step_resume_breakpoint = 0;
2232 remove_breakpoints ();
2233 breakpoints_inserted = 0;
2234 ecs->another_trap = 1;
2235 keep_going (ecs);
2236 return;
2237 }
2238 break;
2239
2240 case BPSTAT_WHAT_CHECK_SHLIBS:
2241 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2242 {
2243 if (debug_infrun)
2244 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2245 /* Remove breakpoints, we eventually want to step over the
2246 shlib event breakpoint, and SOLIB_ADD might adjust
2247 breakpoint addresses via breakpoint_re_set. */
2248 if (breakpoints_inserted)
2249 remove_breakpoints ();
2250 breakpoints_inserted = 0;
2251
2252 /* Check for any newly added shared libraries if we're
2253 supposed to be adding them automatically. Switch
2254 terminal for any messages produced by
2255 breakpoint_re_set. */
2256 target_terminal_ours_for_output ();
2257 /* NOTE: cagney/2003-11-25: Make certain that the target
2258 stack's section table is kept up-to-date. Architectures,
2259 (e.g., PPC64), use the section table to perform
2260 operations such as address => section name and hence
2261 require the table to contain all sections (including
2262 those found in shared libraries). */
2263 /* NOTE: cagney/2003-11-25: Pass current_target and not
2264 exec_ops to SOLIB_ADD. This is because current GDB is
2265 only tooled to propagate section_table changes out from
2266 the "current_target" (see target_resize_to_sections), and
2267 not up from the exec stratum. This, of course, isn't
2268 right. "infrun.c" should only interact with the
2269 exec/process stratum, instead relying on the target stack
2270 to propagate relevant changes (stop, section table
2271 changed, ...) up to other layers. */
2272 #ifdef SOLIB_ADD
2273 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2274 #else
2275 solib_add (NULL, 0, &current_target, auto_solib_add);
2276 #endif
2277 target_terminal_inferior ();
2278
2279 /* Try to reenable shared library breakpoints, additional
2280 code segments in shared libraries might be mapped in now. */
2281 re_enable_breakpoints_in_shlibs ();
2282
2283 /* If requested, stop when the dynamic linker notifies
2284 gdb of events. This allows the user to get control
2285 and place breakpoints in initializer routines for
2286 dynamically loaded objects (among other things). */
2287 if (stop_on_solib_events || stop_stack_dummy)
2288 {
2289 stop_stepping (ecs);
2290 return;
2291 }
2292
2293 /* If we stopped due to an explicit catchpoint, then the
2294 (see above) call to SOLIB_ADD pulled in any symbols
2295 from a newly-loaded library, if appropriate.
2296
2297 We do want the inferior to stop, but not where it is
2298 now, which is in the dynamic linker callback. Rather,
2299 we would like it stop in the user's program, just after
2300 the call that caused this catchpoint to trigger. That
2301 gives the user a more useful vantage from which to
2302 examine their program's state. */
2303 else if (what.main_action
2304 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2305 {
2306 /* ??rehrauer: If I could figure out how to get the
2307 right return PC from here, we could just set a temp
2308 breakpoint and resume. I'm not sure we can without
2309 cracking open the dld's shared libraries and sniffing
2310 their unwind tables and text/data ranges, and that's
2311 not a terribly portable notion.
2312
2313 Until that time, we must step the inferior out of the
2314 dld callback, and also out of the dld itself (and any
2315 code or stubs in libdld.sl, such as "shl_load" and
2316 friends) until we reach non-dld code. At that point,
2317 we can stop stepping. */
2318 bpstat_get_triggered_catchpoints (stop_bpstat,
2319 &ecs->
2320 stepping_through_solib_catchpoints);
2321 ecs->stepping_through_solib_after_catch = 1;
2322
2323 /* Be sure to lift all breakpoints, so the inferior does
2324 actually step past this point... */
2325 ecs->another_trap = 1;
2326 break;
2327 }
2328 else
2329 {
2330 /* We want to step over this breakpoint, then keep going. */
2331 ecs->another_trap = 1;
2332 break;
2333 }
2334 }
2335 break;
2336
2337 case BPSTAT_WHAT_LAST:
2338 /* Not a real code, but listed here to shut up gcc -Wall. */
2339
2340 case BPSTAT_WHAT_KEEP_CHECKING:
2341 break;
2342 }
2343 }
2344
2345 /* We come here if we hit a breakpoint but should not
2346 stop for it. Possibly we also were stepping
2347 and should stop for that. So fall through and
2348 test for stepping. But, if not stepping,
2349 do not stop. */
2350
2351 /* Are we stepping to get the inferior out of the dynamic linker's
2352 hook (and possibly the dld itself) after catching a shlib
2353 event? */
2354 if (ecs->stepping_through_solib_after_catch)
2355 {
2356 #if defined(SOLIB_ADD)
2357 /* Have we reached our destination? If not, keep going. */
2358 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2359 {
2360 if (debug_infrun)
2361 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2362 ecs->another_trap = 1;
2363 keep_going (ecs);
2364 return;
2365 }
2366 #endif
2367 if (debug_infrun)
2368 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2369 /* Else, stop and report the catchpoint(s) whose triggering
2370 caused us to begin stepping. */
2371 ecs->stepping_through_solib_after_catch = 0;
2372 bpstat_clear (&stop_bpstat);
2373 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2374 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2375 stop_print_frame = 1;
2376 stop_stepping (ecs);
2377 return;
2378 }
2379
2380 if (step_resume_breakpoint)
2381 {
2382 if (debug_infrun)
2383 fprintf_unfiltered (gdb_stdlog,
2384 "infrun: step-resume breakpoint is inserted\n");
2385
2386 /* Having a step-resume breakpoint overrides anything
2387 else having to do with stepping commands until
2388 that breakpoint is reached. */
2389 keep_going (ecs);
2390 return;
2391 }
2392
2393 if (step_range_end == 0)
2394 {
2395 if (debug_infrun)
2396 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2397 /* Likewise if we aren't even stepping. */
2398 keep_going (ecs);
2399 return;
2400 }
2401
2402 /* If stepping through a line, keep going if still within it.
2403
2404 Note that step_range_end is the address of the first instruction
2405 beyond the step range, and NOT the address of the last instruction
2406 within it! */
2407 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2408 {
2409 if (debug_infrun)
2410 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2411 paddr_nz (step_range_start),
2412 paddr_nz (step_range_end));
2413 keep_going (ecs);
2414 return;
2415 }
2416
2417 /* We stepped out of the stepping range. */
2418
2419 /* If we are stepping at the source level and entered the runtime
2420 loader dynamic symbol resolution code, we keep on single stepping
2421 until we exit the run time loader code and reach the callee's
2422 address. */
2423 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2424 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2425 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2426 #else
2427 && in_solib_dynsym_resolve_code (stop_pc)
2428 #endif
2429 )
2430 {
2431 CORE_ADDR pc_after_resolver =
2432 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2433
2434 if (debug_infrun)
2435 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2436
2437 if (pc_after_resolver)
2438 {
2439 /* Set up a step-resume breakpoint at the address
2440 indicated by SKIP_SOLIB_RESOLVER. */
2441 struct symtab_and_line sr_sal;
2442 init_sal (&sr_sal);
2443 sr_sal.pc = pc_after_resolver;
2444
2445 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2446 }
2447
2448 keep_going (ecs);
2449 return;
2450 }
2451
2452 if (step_range_end != 1
2453 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2454 || step_over_calls == STEP_OVER_ALL)
2455 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2456 {
2457 if (debug_infrun)
2458 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2459 /* The inferior, while doing a "step" or "next", has ended up in
2460 a signal trampoline (either by a signal being delivered or by
2461 the signal handler returning). Just single-step until the
2462 inferior leaves the trampoline (either by calling the handler
2463 or returning). */
2464 keep_going (ecs);
2465 return;
2466 }
2467
2468 /* Check for subroutine calls. The check for the current frame
2469 equalling the step ID is not necessary - the check of the
2470 previous frame's ID is sufficient - but it is a common case and
2471 cheaper than checking the previous frame's ID.
2472
2473 NOTE: frame_id_eq will never report two invalid frame IDs as
2474 being equal, so to get into this block, both the current and
2475 previous frame must have valid frame IDs. */
2476 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2477 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2478 {
2479 CORE_ADDR real_stop_pc;
2480
2481 if (debug_infrun)
2482 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2483
2484 if ((step_over_calls == STEP_OVER_NONE)
2485 || ((step_range_end == 1)
2486 && in_prologue (prev_pc, ecs->stop_func_start)))
2487 {
2488 /* I presume that step_over_calls is only 0 when we're
2489 supposed to be stepping at the assembly language level
2490 ("stepi"). Just stop. */
2491 /* Also, maybe we just did a "nexti" inside a prolog, so we
2492 thought it was a subroutine call but it was not. Stop as
2493 well. FENN */
2494 stop_step = 1;
2495 print_stop_reason (END_STEPPING_RANGE, 0);
2496 stop_stepping (ecs);
2497 return;
2498 }
2499
2500 if (step_over_calls == STEP_OVER_ALL)
2501 {
2502 /* We're doing a "next", set a breakpoint at callee's return
2503 address (the address at which the caller will
2504 resume). */
2505 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2506 keep_going (ecs);
2507 return;
2508 }
2509
2510 /* If we are in a function call trampoline (a stub between the
2511 calling routine and the real function), locate the real
2512 function. That's what tells us (a) whether we want to step
2513 into it at all, and (b) what prologue we want to run to the
2514 end of, if we do step into it. */
2515 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
2516 if (real_stop_pc == 0)
2517 real_stop_pc = gdbarch_skip_trampoline_code
2518 (current_gdbarch, get_current_frame (), stop_pc);
2519 if (real_stop_pc != 0)
2520 ecs->stop_func_start = real_stop_pc;
2521
2522 if (
2523 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2524 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2525 #else
2526 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2527 #endif
2528 )
2529 {
2530 struct symtab_and_line sr_sal;
2531 init_sal (&sr_sal);
2532 sr_sal.pc = ecs->stop_func_start;
2533
2534 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2535 keep_going (ecs);
2536 return;
2537 }
2538
2539 /* If we have line number information for the function we are
2540 thinking of stepping into, step into it.
2541
2542 If there are several symtabs at that PC (e.g. with include
2543 files), just want to know whether *any* of them have line
2544 numbers. find_pc_line handles this. */
2545 {
2546 struct symtab_and_line tmp_sal;
2547
2548 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2549 if (tmp_sal.line != 0)
2550 {
2551 step_into_function (ecs);
2552 return;
2553 }
2554 }
2555
2556 /* If we have no line number and the step-stop-if-no-debug is
2557 set, we stop the step so that the user has a chance to switch
2558 in assembly mode. */
2559 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2560 {
2561 stop_step = 1;
2562 print_stop_reason (END_STEPPING_RANGE, 0);
2563 stop_stepping (ecs);
2564 return;
2565 }
2566
2567 /* Set a breakpoint at callee's return address (the address at
2568 which the caller will resume). */
2569 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2570 keep_going (ecs);
2571 return;
2572 }
2573
2574 /* If we're in the return path from a shared library trampoline,
2575 we want to proceed through the trampoline when stepping. */
2576 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
2577 stop_pc, ecs->stop_func_name))
2578 {
2579 /* Determine where this trampoline returns. */
2580 CORE_ADDR real_stop_pc;
2581 real_stop_pc = gdbarch_skip_trampoline_code
2582 (current_gdbarch, get_current_frame (), stop_pc);
2583
2584 if (debug_infrun)
2585 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
2586
2587 /* Only proceed through if we know where it's going. */
2588 if (real_stop_pc)
2589 {
2590 /* And put the step-breakpoint there and go until there. */
2591 struct symtab_and_line sr_sal;
2592
2593 init_sal (&sr_sal); /* initialize to zeroes */
2594 sr_sal.pc = real_stop_pc;
2595 sr_sal.section = find_pc_overlay (sr_sal.pc);
2596
2597 /* Do not specify what the fp should be when we stop since
2598 on some machines the prologue is where the new fp value
2599 is established. */
2600 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2601
2602 /* Restart without fiddling with the step ranges or
2603 other state. */
2604 keep_going (ecs);
2605 return;
2606 }
2607 }
2608
2609 ecs->sal = find_pc_line (stop_pc, 0);
2610
2611 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2612 the trampoline processing logic, however, there are some trampolines
2613 that have no names, so we should do trampoline handling first. */
2614 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2615 && ecs->stop_func_name == NULL
2616 && ecs->sal.line == 0)
2617 {
2618 if (debug_infrun)
2619 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
2620
2621 /* The inferior just stepped into, or returned to, an
2622 undebuggable function (where there is no debugging information
2623 and no line number corresponding to the address where the
2624 inferior stopped). Since we want to skip this kind of code,
2625 we keep going until the inferior returns from this
2626 function - unless the user has asked us not to (via
2627 set step-mode) or we no longer know how to get back
2628 to the call site. */
2629 if (step_stop_if_no_debug
2630 || !frame_id_p (frame_unwind_id (get_current_frame ())))
2631 {
2632 /* If we have no line number and the step-stop-if-no-debug
2633 is set, we stop the step so that the user has a chance to
2634 switch in assembly mode. */
2635 stop_step = 1;
2636 print_stop_reason (END_STEPPING_RANGE, 0);
2637 stop_stepping (ecs);
2638 return;
2639 }
2640 else
2641 {
2642 /* Set a breakpoint at callee's return address (the address
2643 at which the caller will resume). */
2644 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2645 keep_going (ecs);
2646 return;
2647 }
2648 }
2649
2650 if (step_range_end == 1)
2651 {
2652 /* It is stepi or nexti. We always want to stop stepping after
2653 one instruction. */
2654 if (debug_infrun)
2655 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
2656 stop_step = 1;
2657 print_stop_reason (END_STEPPING_RANGE, 0);
2658 stop_stepping (ecs);
2659 return;
2660 }
2661
2662 if (ecs->sal.line == 0)
2663 {
2664 /* We have no line number information. That means to stop
2665 stepping (does this always happen right after one instruction,
2666 when we do "s" in a function with no line numbers,
2667 or can this happen as a result of a return or longjmp?). */
2668 if (debug_infrun)
2669 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
2670 stop_step = 1;
2671 print_stop_reason (END_STEPPING_RANGE, 0);
2672 stop_stepping (ecs);
2673 return;
2674 }
2675
2676 if ((stop_pc == ecs->sal.pc)
2677 && (ecs->current_line != ecs->sal.line
2678 || ecs->current_symtab != ecs->sal.symtab))
2679 {
2680 /* We are at the start of a different line. So stop. Note that
2681 we don't stop if we step into the middle of a different line.
2682 That is said to make things like for (;;) statements work
2683 better. */
2684 if (debug_infrun)
2685 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
2686 stop_step = 1;
2687 print_stop_reason (END_STEPPING_RANGE, 0);
2688 stop_stepping (ecs);
2689 return;
2690 }
2691
2692 /* We aren't done stepping.
2693
2694 Optimize by setting the stepping range to the line.
2695 (We might not be in the original line, but if we entered a
2696 new line in mid-statement, we continue stepping. This makes
2697 things like for(;;) statements work better.) */
2698
2699 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2700 {
2701 /* If this is the last line of the function, don't keep stepping
2702 (it would probably step us out of the function).
2703 This is particularly necessary for a one-line function,
2704 in which after skipping the prologue we better stop even though
2705 we will be in mid-line. */
2706 if (debug_infrun)
2707 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
2708 stop_step = 1;
2709 print_stop_reason (END_STEPPING_RANGE, 0);
2710 stop_stepping (ecs);
2711 return;
2712 }
2713 step_range_start = ecs->sal.pc;
2714 step_range_end = ecs->sal.end;
2715 step_frame_id = get_frame_id (get_current_frame ());
2716 ecs->current_line = ecs->sal.line;
2717 ecs->current_symtab = ecs->sal.symtab;
2718
2719 /* In the case where we just stepped out of a function into the
2720 middle of a line of the caller, continue stepping, but
2721 step_frame_id must be modified to current frame */
2722 #if 0
2723 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2724 generous. It will trigger on things like a step into a frameless
2725 stackless leaf function. I think the logic should instead look
2726 at the unwound frame ID has that should give a more robust
2727 indication of what happened. */
2728 if (step - ID == current - ID)
2729 still stepping in same function;
2730 else if (step - ID == unwind (current - ID))
2731 stepped into a function;
2732 else
2733 stepped out of a function;
2734 /* Of course this assumes that the frame ID unwind code is robust
2735 and we're willing to introduce frame unwind logic into this
2736 function. Fortunately, those days are nearly upon us. */
2737 #endif
2738 {
2739 struct frame_id current_frame = get_frame_id (get_current_frame ());
2740 if (!(frame_id_inner (current_frame, step_frame_id)))
2741 step_frame_id = current_frame;
2742 }
2743
2744 if (debug_infrun)
2745 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
2746 keep_going (ecs);
2747 }
2748
2749 /* Are we in the middle of stepping? */
2750
2751 static int
2752 currently_stepping (struct execution_control_state *ecs)
2753 {
2754 return ((!ecs->handling_longjmp
2755 && ((step_range_end && step_resume_breakpoint == NULL)
2756 || trap_expected))
2757 || ecs->stepping_through_solib_after_catch
2758 || bpstat_should_step ());
2759 }
2760
2761 /* Subroutine call with source code we should not step over. Do step
2762 to the first line of code in it. */
2763
2764 static void
2765 step_into_function (struct execution_control_state *ecs)
2766 {
2767 struct symtab *s;
2768 struct symtab_and_line sr_sal;
2769
2770 s = find_pc_symtab (stop_pc);
2771 if (s && s->language != language_asm)
2772 ecs->stop_func_start = gdbarch_skip_prologue
2773 (current_gdbarch, ecs->stop_func_start);
2774
2775 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2776 /* Use the step_resume_break to step until the end of the prologue,
2777 even if that involves jumps (as it seems to on the vax under
2778 4.2). */
2779 /* If the prologue ends in the middle of a source line, continue to
2780 the end of that source line (if it is still within the function).
2781 Otherwise, just go to end of prologue. */
2782 if (ecs->sal.end
2783 && ecs->sal.pc != ecs->stop_func_start
2784 && ecs->sal.end < ecs->stop_func_end)
2785 ecs->stop_func_start = ecs->sal.end;
2786
2787 /* Architectures which require breakpoint adjustment might not be able
2788 to place a breakpoint at the computed address. If so, the test
2789 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2790 ecs->stop_func_start to an address at which a breakpoint may be
2791 legitimately placed.
2792
2793 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2794 made, GDB will enter an infinite loop when stepping through
2795 optimized code consisting of VLIW instructions which contain
2796 subinstructions corresponding to different source lines. On
2797 FR-V, it's not permitted to place a breakpoint on any but the
2798 first subinstruction of a VLIW instruction. When a breakpoint is
2799 set, GDB will adjust the breakpoint address to the beginning of
2800 the VLIW instruction. Thus, we need to make the corresponding
2801 adjustment here when computing the stop address. */
2802
2803 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2804 {
2805 ecs->stop_func_start
2806 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2807 ecs->stop_func_start);
2808 }
2809
2810 if (ecs->stop_func_start == stop_pc)
2811 {
2812 /* We are already there: stop now. */
2813 stop_step = 1;
2814 print_stop_reason (END_STEPPING_RANGE, 0);
2815 stop_stepping (ecs);
2816 return;
2817 }
2818 else
2819 {
2820 /* Put the step-breakpoint there and go until there. */
2821 init_sal (&sr_sal); /* initialize to zeroes */
2822 sr_sal.pc = ecs->stop_func_start;
2823 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2824
2825 /* Do not specify what the fp should be when we stop since on
2826 some machines the prologue is where the new fp value is
2827 established. */
2828 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2829
2830 /* And make sure stepping stops right away then. */
2831 step_range_end = step_range_start;
2832 }
2833 keep_going (ecs);
2834 }
2835
2836 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
2837 This is used to both functions and to skip over code. */
2838
2839 static void
2840 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2841 struct frame_id sr_id)
2842 {
2843 /* There should never be more than one step-resume breakpoint per
2844 thread, so we should never be setting a new
2845 step_resume_breakpoint when one is already active. */
2846 gdb_assert (step_resume_breakpoint == NULL);
2847
2848 if (debug_infrun)
2849 fprintf_unfiltered (gdb_stdlog,
2850 "infrun: inserting step-resume breakpoint at 0x%s\n",
2851 paddr_nz (sr_sal.pc));
2852
2853 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2854 bp_step_resume);
2855 if (breakpoints_inserted)
2856 insert_breakpoints ();
2857 }
2858
2859 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
2860 to skip a potential signal handler.
2861
2862 This is called with the interrupted function's frame. The signal
2863 handler, when it returns, will resume the interrupted function at
2864 RETURN_FRAME.pc. */
2865
2866 static void
2867 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2868 {
2869 struct symtab_and_line sr_sal;
2870
2871 gdb_assert (return_frame != NULL);
2872 init_sal (&sr_sal); /* initialize to zeros */
2873
2874 sr_sal.pc = gdbarch_addr_bits_remove
2875 (current_gdbarch, get_frame_pc (return_frame));
2876 sr_sal.section = find_pc_overlay (sr_sal.pc);
2877
2878 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2879 }
2880
2881 /* Similar to insert_step_resume_breakpoint_at_frame, except
2882 but a breakpoint at the previous frame's PC. This is used to
2883 skip a function after stepping into it (for "next" or if the called
2884 function has no debugging information).
2885
2886 The current function has almost always been reached by single
2887 stepping a call or return instruction. NEXT_FRAME belongs to the
2888 current function, and the breakpoint will be set at the caller's
2889 resume address.
2890
2891 This is a separate function rather than reusing
2892 insert_step_resume_breakpoint_at_frame in order to avoid
2893 get_prev_frame, which may stop prematurely (see the implementation
2894 of frame_unwind_id for an example). */
2895
2896 static void
2897 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2898 {
2899 struct symtab_and_line sr_sal;
2900
2901 /* We shouldn't have gotten here if we don't know where the call site
2902 is. */
2903 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2904
2905 init_sal (&sr_sal); /* initialize to zeros */
2906
2907 sr_sal.pc = gdbarch_addr_bits_remove
2908 (current_gdbarch, frame_pc_unwind (next_frame));
2909 sr_sal.section = find_pc_overlay (sr_sal.pc);
2910
2911 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2912 }
2913
2914 static void
2915 stop_stepping (struct execution_control_state *ecs)
2916 {
2917 if (debug_infrun)
2918 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
2919
2920 /* Let callers know we don't want to wait for the inferior anymore. */
2921 ecs->wait_some_more = 0;
2922 }
2923
2924 /* This function handles various cases where we need to continue
2925 waiting for the inferior. */
2926 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2927
2928 static void
2929 keep_going (struct execution_control_state *ecs)
2930 {
2931 /* Save the pc before execution, to compare with pc after stop. */
2932 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2933
2934 /* If we did not do break;, it means we should keep running the
2935 inferior and not return to debugger. */
2936
2937 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2938 {
2939 /* We took a signal (which we are supposed to pass through to
2940 the inferior, else we'd have done a break above) and we
2941 haven't yet gotten our trap. Simply continue. */
2942 resume (currently_stepping (ecs), stop_signal);
2943 }
2944 else
2945 {
2946 /* Either the trap was not expected, but we are continuing
2947 anyway (the user asked that this signal be passed to the
2948 child)
2949 -- or --
2950 The signal was SIGTRAP, e.g. it was our signal, but we
2951 decided we should resume from it.
2952
2953 We're going to run this baby now! */
2954
2955 if (!breakpoints_inserted && !ecs->another_trap)
2956 {
2957 /* Stop stepping when inserting breakpoints
2958 has failed. */
2959 if (insert_breakpoints () != 0)
2960 {
2961 stop_stepping (ecs);
2962 return;
2963 }
2964 breakpoints_inserted = 1;
2965 }
2966
2967 trap_expected = ecs->another_trap;
2968
2969 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2970 specifies that such a signal should be delivered to the
2971 target program).
2972
2973 Typically, this would occure when a user is debugging a
2974 target monitor on a simulator: the target monitor sets a
2975 breakpoint; the simulator encounters this break-point and
2976 halts the simulation handing control to GDB; GDB, noteing
2977 that the break-point isn't valid, returns control back to the
2978 simulator; the simulator then delivers the hardware
2979 equivalent of a SIGNAL_TRAP to the program being debugged. */
2980
2981 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2982 stop_signal = TARGET_SIGNAL_0;
2983
2984
2985 resume (currently_stepping (ecs), stop_signal);
2986 }
2987
2988 prepare_to_wait (ecs);
2989 }
2990
2991 /* This function normally comes after a resume, before
2992 handle_inferior_event exits. It takes care of any last bits of
2993 housekeeping, and sets the all-important wait_some_more flag. */
2994
2995 static void
2996 prepare_to_wait (struct execution_control_state *ecs)
2997 {
2998 if (debug_infrun)
2999 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
3000 if (ecs->infwait_state == infwait_normal_state)
3001 {
3002 overlay_cache_invalid = 1;
3003
3004 /* We have to invalidate the registers BEFORE calling
3005 target_wait because they can be loaded from the target while
3006 in target_wait. This makes remote debugging a bit more
3007 efficient for those targets that provide critical registers
3008 as part of their normal status mechanism. */
3009
3010 registers_changed ();
3011 ecs->waiton_ptid = pid_to_ptid (-1);
3012 ecs->wp = &(ecs->ws);
3013 }
3014 /* This is the old end of the while loop. Let everybody know we
3015 want to wait for the inferior some more and get called again
3016 soon. */
3017 ecs->wait_some_more = 1;
3018 }
3019
3020 /* Print why the inferior has stopped. We always print something when
3021 the inferior exits, or receives a signal. The rest of the cases are
3022 dealt with later on in normal_stop() and print_it_typical(). Ideally
3023 there should be a call to this function from handle_inferior_event()
3024 each time stop_stepping() is called.*/
3025 static void
3026 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
3027 {
3028 switch (stop_reason)
3029 {
3030 case END_STEPPING_RANGE:
3031 /* We are done with a step/next/si/ni command. */
3032 /* For now print nothing. */
3033 /* Print a message only if not in the middle of doing a "step n"
3034 operation for n > 1 */
3035 if (!step_multi || !stop_step)
3036 if (ui_out_is_mi_like_p (uiout))
3037 ui_out_field_string
3038 (uiout, "reason",
3039 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
3040 break;
3041 case SIGNAL_EXITED:
3042 /* The inferior was terminated by a signal. */
3043 annotate_signalled ();
3044 if (ui_out_is_mi_like_p (uiout))
3045 ui_out_field_string
3046 (uiout, "reason",
3047 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
3048 ui_out_text (uiout, "\nProgram terminated with signal ");
3049 annotate_signal_name ();
3050 ui_out_field_string (uiout, "signal-name",
3051 target_signal_to_name (stop_info));
3052 annotate_signal_name_end ();
3053 ui_out_text (uiout, ", ");
3054 annotate_signal_string ();
3055 ui_out_field_string (uiout, "signal-meaning",
3056 target_signal_to_string (stop_info));
3057 annotate_signal_string_end ();
3058 ui_out_text (uiout, ".\n");
3059 ui_out_text (uiout, "The program no longer exists.\n");
3060 break;
3061 case EXITED:
3062 /* The inferior program is finished. */
3063 annotate_exited (stop_info);
3064 if (stop_info)
3065 {
3066 if (ui_out_is_mi_like_p (uiout))
3067 ui_out_field_string (uiout, "reason",
3068 async_reason_lookup (EXEC_ASYNC_EXITED));
3069 ui_out_text (uiout, "\nProgram exited with code ");
3070 ui_out_field_fmt (uiout, "exit-code", "0%o",
3071 (unsigned int) stop_info);
3072 ui_out_text (uiout, ".\n");
3073 }
3074 else
3075 {
3076 if (ui_out_is_mi_like_p (uiout))
3077 ui_out_field_string
3078 (uiout, "reason",
3079 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3080 ui_out_text (uiout, "\nProgram exited normally.\n");
3081 }
3082 /* Support the --return-child-result option. */
3083 return_child_result_value = stop_info;
3084 break;
3085 case SIGNAL_RECEIVED:
3086 /* Signal received. The signal table tells us to print about
3087 it. */
3088 annotate_signal ();
3089 ui_out_text (uiout, "\nProgram received signal ");
3090 annotate_signal_name ();
3091 if (ui_out_is_mi_like_p (uiout))
3092 ui_out_field_string
3093 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3094 ui_out_field_string (uiout, "signal-name",
3095 target_signal_to_name (stop_info));
3096 annotate_signal_name_end ();
3097 ui_out_text (uiout, ", ");
3098 annotate_signal_string ();
3099 ui_out_field_string (uiout, "signal-meaning",
3100 target_signal_to_string (stop_info));
3101 annotate_signal_string_end ();
3102 ui_out_text (uiout, ".\n");
3103 break;
3104 default:
3105 internal_error (__FILE__, __LINE__,
3106 _("print_stop_reason: unrecognized enum value"));
3107 break;
3108 }
3109 }
3110 \f
3111
3112 /* Here to return control to GDB when the inferior stops for real.
3113 Print appropriate messages, remove breakpoints, give terminal our modes.
3114
3115 STOP_PRINT_FRAME nonzero means print the executing frame
3116 (pc, function, args, file, line number and line text).
3117 BREAKPOINTS_FAILED nonzero means stop was due to error
3118 attempting to insert breakpoints. */
3119
3120 void
3121 normal_stop (void)
3122 {
3123 struct target_waitstatus last;
3124 ptid_t last_ptid;
3125
3126 get_last_target_status (&last_ptid, &last);
3127
3128 /* As with the notification of thread events, we want to delay
3129 notifying the user that we've switched thread context until
3130 the inferior actually stops.
3131
3132 There's no point in saying anything if the inferior has exited.
3133 Note that SIGNALLED here means "exited with a signal", not
3134 "received a signal". */
3135 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
3136 && target_has_execution
3137 && last.kind != TARGET_WAITKIND_SIGNALLED
3138 && last.kind != TARGET_WAITKIND_EXITED)
3139 {
3140 target_terminal_ours_for_output ();
3141 printf_filtered (_("[Switching to %s]\n"),
3142 target_pid_or_tid_to_str (inferior_ptid));
3143 previous_inferior_ptid = inferior_ptid;
3144 }
3145
3146 /* NOTE drow/2004-01-17: Is this still necessary? */
3147 /* Make sure that the current_frame's pc is correct. This
3148 is a correction for setting up the frame info before doing
3149 gdbarch_decr_pc_after_break */
3150 if (target_has_execution)
3151 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3152 gdbarch_decr_pc_after_break, the program counter can change. Ask the
3153 frame code to check for this and sort out any resultant mess.
3154 gdbarch_decr_pc_after_break needs to just go away. */
3155 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3156
3157 if (target_has_execution && breakpoints_inserted)
3158 {
3159 if (remove_breakpoints ())
3160 {
3161 target_terminal_ours_for_output ();
3162 printf_filtered (_("\
3163 Cannot remove breakpoints because program is no longer writable.\n\
3164 It might be running in another process.\n\
3165 Further execution is probably impossible.\n"));
3166 }
3167 }
3168 breakpoints_inserted = 0;
3169
3170 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3171 Delete any breakpoint that is to be deleted at the next stop. */
3172
3173 breakpoint_auto_delete (stop_bpstat);
3174
3175 /* If an auto-display called a function and that got a signal,
3176 delete that auto-display to avoid an infinite recursion. */
3177
3178 if (stopped_by_random_signal)
3179 disable_current_display ();
3180
3181 /* Don't print a message if in the middle of doing a "step n"
3182 operation for n > 1 */
3183 if (step_multi && stop_step)
3184 goto done;
3185
3186 target_terminal_ours ();
3187
3188 /* Set the current source location. This will also happen if we
3189 display the frame below, but the current SAL will be incorrect
3190 during a user hook-stop function. */
3191 if (target_has_stack && !stop_stack_dummy)
3192 set_current_sal_from_frame (get_current_frame (), 1);
3193
3194 /* Look up the hook_stop and run it (CLI internally handles problem
3195 of stop_command's pre-hook not existing). */
3196 if (stop_command)
3197 catch_errors (hook_stop_stub, stop_command,
3198 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3199
3200 if (!target_has_stack)
3201 {
3202
3203 goto done;
3204 }
3205
3206 /* Select innermost stack frame - i.e., current frame is frame 0,
3207 and current location is based on that.
3208 Don't do this on return from a stack dummy routine,
3209 or if the program has exited. */
3210
3211 if (!stop_stack_dummy)
3212 {
3213 select_frame (get_current_frame ());
3214
3215 /* Print current location without a level number, if
3216 we have changed functions or hit a breakpoint.
3217 Print source line if we have one.
3218 bpstat_print() contains the logic deciding in detail
3219 what to print, based on the event(s) that just occurred. */
3220
3221 if (stop_print_frame)
3222 {
3223 int bpstat_ret;
3224 int source_flag;
3225 int do_frame_printing = 1;
3226
3227 bpstat_ret = bpstat_print (stop_bpstat);
3228 switch (bpstat_ret)
3229 {
3230 case PRINT_UNKNOWN:
3231 /* If we had hit a shared library event breakpoint,
3232 bpstat_print would print out this message. If we hit
3233 an OS-level shared library event, do the same
3234 thing. */
3235 if (last.kind == TARGET_WAITKIND_LOADED)
3236 {
3237 printf_filtered (_("Stopped due to shared library event\n"));
3238 source_flag = SRC_LINE; /* something bogus */
3239 do_frame_printing = 0;
3240 break;
3241 }
3242
3243 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3244 (or should) carry around the function and does (or
3245 should) use that when doing a frame comparison. */
3246 if (stop_step
3247 && frame_id_eq (step_frame_id,
3248 get_frame_id (get_current_frame ()))
3249 && step_start_function == find_pc_function (stop_pc))
3250 source_flag = SRC_LINE; /* finished step, just print source line */
3251 else
3252 source_flag = SRC_AND_LOC; /* print location and source line */
3253 break;
3254 case PRINT_SRC_AND_LOC:
3255 source_flag = SRC_AND_LOC; /* print location and source line */
3256 break;
3257 case PRINT_SRC_ONLY:
3258 source_flag = SRC_LINE;
3259 break;
3260 case PRINT_NOTHING:
3261 source_flag = SRC_LINE; /* something bogus */
3262 do_frame_printing = 0;
3263 break;
3264 default:
3265 internal_error (__FILE__, __LINE__, _("Unknown value."));
3266 }
3267
3268 if (ui_out_is_mi_like_p (uiout))
3269 ui_out_field_int (uiout, "thread-id",
3270 pid_to_thread_id (inferior_ptid));
3271 /* The behavior of this routine with respect to the source
3272 flag is:
3273 SRC_LINE: Print only source line
3274 LOCATION: Print only location
3275 SRC_AND_LOC: Print location and source line */
3276 if (do_frame_printing)
3277 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3278
3279 /* Display the auto-display expressions. */
3280 do_displays ();
3281 }
3282 }
3283
3284 /* Save the function value return registers, if we care.
3285 We might be about to restore their previous contents. */
3286 if (proceed_to_finish)
3287 {
3288 /* This should not be necessary. */
3289 if (stop_registers)
3290 regcache_xfree (stop_registers);
3291
3292 /* NB: The copy goes through to the target picking up the value of
3293 all the registers. */
3294 stop_registers = regcache_dup (get_current_regcache ());
3295 }
3296
3297 if (stop_stack_dummy)
3298 {
3299 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3300 ends with a setting of the current frame, so we can use that
3301 next. */
3302 frame_pop (get_current_frame ());
3303 /* Set stop_pc to what it was before we called the function.
3304 Can't rely on restore_inferior_status because that only gets
3305 called if we don't stop in the called function. */
3306 stop_pc = read_pc ();
3307 select_frame (get_current_frame ());
3308 }
3309
3310 done:
3311 annotate_stopped ();
3312 observer_notify_normal_stop (stop_bpstat);
3313 }
3314
3315 static int
3316 hook_stop_stub (void *cmd)
3317 {
3318 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3319 return (0);
3320 }
3321 \f
3322 int
3323 signal_stop_state (int signo)
3324 {
3325 return signal_stop[signo];
3326 }
3327
3328 int
3329 signal_print_state (int signo)
3330 {
3331 return signal_print[signo];
3332 }
3333
3334 int
3335 signal_pass_state (int signo)
3336 {
3337 return signal_program[signo];
3338 }
3339
3340 int
3341 signal_stop_update (int signo, int state)
3342 {
3343 int ret = signal_stop[signo];
3344 signal_stop[signo] = state;
3345 return ret;
3346 }
3347
3348 int
3349 signal_print_update (int signo, int state)
3350 {
3351 int ret = signal_print[signo];
3352 signal_print[signo] = state;
3353 return ret;
3354 }
3355
3356 int
3357 signal_pass_update (int signo, int state)
3358 {
3359 int ret = signal_program[signo];
3360 signal_program[signo] = state;
3361 return ret;
3362 }
3363
3364 static void
3365 sig_print_header (void)
3366 {
3367 printf_filtered (_("\
3368 Signal Stop\tPrint\tPass to program\tDescription\n"));
3369 }
3370
3371 static void
3372 sig_print_info (enum target_signal oursig)
3373 {
3374 char *name = target_signal_to_name (oursig);
3375 int name_padding = 13 - strlen (name);
3376
3377 if (name_padding <= 0)
3378 name_padding = 0;
3379
3380 printf_filtered ("%s", name);
3381 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3382 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3383 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3384 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3385 printf_filtered ("%s\n", target_signal_to_string (oursig));
3386 }
3387
3388 /* Specify how various signals in the inferior should be handled. */
3389
3390 static void
3391 handle_command (char *args, int from_tty)
3392 {
3393 char **argv;
3394 int digits, wordlen;
3395 int sigfirst, signum, siglast;
3396 enum target_signal oursig;
3397 int allsigs;
3398 int nsigs;
3399 unsigned char *sigs;
3400 struct cleanup *old_chain;
3401
3402 if (args == NULL)
3403 {
3404 error_no_arg (_("signal to handle"));
3405 }
3406
3407 /* Allocate and zero an array of flags for which signals to handle. */
3408
3409 nsigs = (int) TARGET_SIGNAL_LAST;
3410 sigs = (unsigned char *) alloca (nsigs);
3411 memset (sigs, 0, nsigs);
3412
3413 /* Break the command line up into args. */
3414
3415 argv = buildargv (args);
3416 if (argv == NULL)
3417 {
3418 nomem (0);
3419 }
3420 old_chain = make_cleanup_freeargv (argv);
3421
3422 /* Walk through the args, looking for signal oursigs, signal names, and
3423 actions. Signal numbers and signal names may be interspersed with
3424 actions, with the actions being performed for all signals cumulatively
3425 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3426
3427 while (*argv != NULL)
3428 {
3429 wordlen = strlen (*argv);
3430 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3431 {;
3432 }
3433 allsigs = 0;
3434 sigfirst = siglast = -1;
3435
3436 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3437 {
3438 /* Apply action to all signals except those used by the
3439 debugger. Silently skip those. */
3440 allsigs = 1;
3441 sigfirst = 0;
3442 siglast = nsigs - 1;
3443 }
3444 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3445 {
3446 SET_SIGS (nsigs, sigs, signal_stop);
3447 SET_SIGS (nsigs, sigs, signal_print);
3448 }
3449 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3450 {
3451 UNSET_SIGS (nsigs, sigs, signal_program);
3452 }
3453 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3454 {
3455 SET_SIGS (nsigs, sigs, signal_print);
3456 }
3457 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3458 {
3459 SET_SIGS (nsigs, sigs, signal_program);
3460 }
3461 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3462 {
3463 UNSET_SIGS (nsigs, sigs, signal_stop);
3464 }
3465 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3466 {
3467 SET_SIGS (nsigs, sigs, signal_program);
3468 }
3469 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3470 {
3471 UNSET_SIGS (nsigs, sigs, signal_print);
3472 UNSET_SIGS (nsigs, sigs, signal_stop);
3473 }
3474 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3475 {
3476 UNSET_SIGS (nsigs, sigs, signal_program);
3477 }
3478 else if (digits > 0)
3479 {
3480 /* It is numeric. The numeric signal refers to our own
3481 internal signal numbering from target.h, not to host/target
3482 signal number. This is a feature; users really should be
3483 using symbolic names anyway, and the common ones like
3484 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3485
3486 sigfirst = siglast = (int)
3487 target_signal_from_command (atoi (*argv));
3488 if ((*argv)[digits] == '-')
3489 {
3490 siglast = (int)
3491 target_signal_from_command (atoi ((*argv) + digits + 1));
3492 }
3493 if (sigfirst > siglast)
3494 {
3495 /* Bet he didn't figure we'd think of this case... */
3496 signum = sigfirst;
3497 sigfirst = siglast;
3498 siglast = signum;
3499 }
3500 }
3501 else
3502 {
3503 oursig = target_signal_from_name (*argv);
3504 if (oursig != TARGET_SIGNAL_UNKNOWN)
3505 {
3506 sigfirst = siglast = (int) oursig;
3507 }
3508 else
3509 {
3510 /* Not a number and not a recognized flag word => complain. */
3511 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3512 }
3513 }
3514
3515 /* If any signal numbers or symbol names were found, set flags for
3516 which signals to apply actions to. */
3517
3518 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3519 {
3520 switch ((enum target_signal) signum)
3521 {
3522 case TARGET_SIGNAL_TRAP:
3523 case TARGET_SIGNAL_INT:
3524 if (!allsigs && !sigs[signum])
3525 {
3526 if (query ("%s is used by the debugger.\n\
3527 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3528 {
3529 sigs[signum] = 1;
3530 }
3531 else
3532 {
3533 printf_unfiltered (_("Not confirmed, unchanged.\n"));
3534 gdb_flush (gdb_stdout);
3535 }
3536 }
3537 break;
3538 case TARGET_SIGNAL_0:
3539 case TARGET_SIGNAL_DEFAULT:
3540 case TARGET_SIGNAL_UNKNOWN:
3541 /* Make sure that "all" doesn't print these. */
3542 break;
3543 default:
3544 sigs[signum] = 1;
3545 break;
3546 }
3547 }
3548
3549 argv++;
3550 }
3551
3552 target_notice_signals (inferior_ptid);
3553
3554 if (from_tty)
3555 {
3556 /* Show the results. */
3557 sig_print_header ();
3558 for (signum = 0; signum < nsigs; signum++)
3559 {
3560 if (sigs[signum])
3561 {
3562 sig_print_info (signum);
3563 }
3564 }
3565 }
3566
3567 do_cleanups (old_chain);
3568 }
3569
3570 static void
3571 xdb_handle_command (char *args, int from_tty)
3572 {
3573 char **argv;
3574 struct cleanup *old_chain;
3575
3576 /* Break the command line up into args. */
3577
3578 argv = buildargv (args);
3579 if (argv == NULL)
3580 {
3581 nomem (0);
3582 }
3583 old_chain = make_cleanup_freeargv (argv);
3584 if (argv[1] != (char *) NULL)
3585 {
3586 char *argBuf;
3587 int bufLen;
3588
3589 bufLen = strlen (argv[0]) + 20;
3590 argBuf = (char *) xmalloc (bufLen);
3591 if (argBuf)
3592 {
3593 int validFlag = 1;
3594 enum target_signal oursig;
3595
3596 oursig = target_signal_from_name (argv[0]);
3597 memset (argBuf, 0, bufLen);
3598 if (strcmp (argv[1], "Q") == 0)
3599 sprintf (argBuf, "%s %s", argv[0], "noprint");
3600 else
3601 {
3602 if (strcmp (argv[1], "s") == 0)
3603 {
3604 if (!signal_stop[oursig])
3605 sprintf (argBuf, "%s %s", argv[0], "stop");
3606 else
3607 sprintf (argBuf, "%s %s", argv[0], "nostop");
3608 }
3609 else if (strcmp (argv[1], "i") == 0)
3610 {
3611 if (!signal_program[oursig])
3612 sprintf (argBuf, "%s %s", argv[0], "pass");
3613 else
3614 sprintf (argBuf, "%s %s", argv[0], "nopass");
3615 }
3616 else if (strcmp (argv[1], "r") == 0)
3617 {
3618 if (!signal_print[oursig])
3619 sprintf (argBuf, "%s %s", argv[0], "print");
3620 else
3621 sprintf (argBuf, "%s %s", argv[0], "noprint");
3622 }
3623 else
3624 validFlag = 0;
3625 }
3626 if (validFlag)
3627 handle_command (argBuf, from_tty);
3628 else
3629 printf_filtered (_("Invalid signal handling flag.\n"));
3630 if (argBuf)
3631 xfree (argBuf);
3632 }
3633 }
3634 do_cleanups (old_chain);
3635 }
3636
3637 /* Print current contents of the tables set by the handle command.
3638 It is possible we should just be printing signals actually used
3639 by the current target (but for things to work right when switching
3640 targets, all signals should be in the signal tables). */
3641
3642 static void
3643 signals_info (char *signum_exp, int from_tty)
3644 {
3645 enum target_signal oursig;
3646 sig_print_header ();
3647
3648 if (signum_exp)
3649 {
3650 /* First see if this is a symbol name. */
3651 oursig = target_signal_from_name (signum_exp);
3652 if (oursig == TARGET_SIGNAL_UNKNOWN)
3653 {
3654 /* No, try numeric. */
3655 oursig =
3656 target_signal_from_command (parse_and_eval_long (signum_exp));
3657 }
3658 sig_print_info (oursig);
3659 return;
3660 }
3661
3662 printf_filtered ("\n");
3663 /* These ugly casts brought to you by the native VAX compiler. */
3664 for (oursig = TARGET_SIGNAL_FIRST;
3665 (int) oursig < (int) TARGET_SIGNAL_LAST;
3666 oursig = (enum target_signal) ((int) oursig + 1))
3667 {
3668 QUIT;
3669
3670 if (oursig != TARGET_SIGNAL_UNKNOWN
3671 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3672 sig_print_info (oursig);
3673 }
3674
3675 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
3676 }
3677 \f
3678 struct inferior_status
3679 {
3680 enum target_signal stop_signal;
3681 CORE_ADDR stop_pc;
3682 bpstat stop_bpstat;
3683 int stop_step;
3684 int stop_stack_dummy;
3685 int stopped_by_random_signal;
3686 int trap_expected;
3687 CORE_ADDR step_range_start;
3688 CORE_ADDR step_range_end;
3689 struct frame_id step_frame_id;
3690 enum step_over_calls_kind step_over_calls;
3691 CORE_ADDR step_resume_break_address;
3692 int stop_after_trap;
3693 int stop_soon;
3694
3695 /* These are here because if call_function_by_hand has written some
3696 registers and then decides to call error(), we better not have changed
3697 any registers. */
3698 struct regcache *registers;
3699
3700 /* A frame unique identifier. */
3701 struct frame_id selected_frame_id;
3702
3703 int breakpoint_proceeded;
3704 int restore_stack_info;
3705 int proceed_to_finish;
3706 };
3707
3708 void
3709 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3710 LONGEST val)
3711 {
3712 int size = register_size (current_gdbarch, regno);
3713 void *buf = alloca (size);
3714 store_signed_integer (buf, size, val);
3715 regcache_raw_write (inf_status->registers, regno, buf);
3716 }
3717
3718 /* Save all of the information associated with the inferior<==>gdb
3719 connection. INF_STATUS is a pointer to a "struct inferior_status"
3720 (defined in inferior.h). */
3721
3722 struct inferior_status *
3723 save_inferior_status (int restore_stack_info)
3724 {
3725 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3726
3727 inf_status->stop_signal = stop_signal;
3728 inf_status->stop_pc = stop_pc;
3729 inf_status->stop_step = stop_step;
3730 inf_status->stop_stack_dummy = stop_stack_dummy;
3731 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3732 inf_status->trap_expected = trap_expected;
3733 inf_status->step_range_start = step_range_start;
3734 inf_status->step_range_end = step_range_end;
3735 inf_status->step_frame_id = step_frame_id;
3736 inf_status->step_over_calls = step_over_calls;
3737 inf_status->stop_after_trap = stop_after_trap;
3738 inf_status->stop_soon = stop_soon;
3739 /* Save original bpstat chain here; replace it with copy of chain.
3740 If caller's caller is walking the chain, they'll be happier if we
3741 hand them back the original chain when restore_inferior_status is
3742 called. */
3743 inf_status->stop_bpstat = stop_bpstat;
3744 stop_bpstat = bpstat_copy (stop_bpstat);
3745 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3746 inf_status->restore_stack_info = restore_stack_info;
3747 inf_status->proceed_to_finish = proceed_to_finish;
3748
3749 inf_status->registers = regcache_dup (get_current_regcache ());
3750
3751 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
3752 return inf_status;
3753 }
3754
3755 static int
3756 restore_selected_frame (void *args)
3757 {
3758 struct frame_id *fid = (struct frame_id *) args;
3759 struct frame_info *frame;
3760
3761 frame = frame_find_by_id (*fid);
3762
3763 /* If inf_status->selected_frame_id is NULL, there was no previously
3764 selected frame. */
3765 if (frame == NULL)
3766 {
3767 warning (_("Unable to restore previously selected frame."));
3768 return 0;
3769 }
3770
3771 select_frame (frame);
3772
3773 return (1);
3774 }
3775
3776 void
3777 restore_inferior_status (struct inferior_status *inf_status)
3778 {
3779 stop_signal = inf_status->stop_signal;
3780 stop_pc = inf_status->stop_pc;
3781 stop_step = inf_status->stop_step;
3782 stop_stack_dummy = inf_status->stop_stack_dummy;
3783 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3784 trap_expected = inf_status->trap_expected;
3785 step_range_start = inf_status->step_range_start;
3786 step_range_end = inf_status->step_range_end;
3787 step_frame_id = inf_status->step_frame_id;
3788 step_over_calls = inf_status->step_over_calls;
3789 stop_after_trap = inf_status->stop_after_trap;
3790 stop_soon = inf_status->stop_soon;
3791 bpstat_clear (&stop_bpstat);
3792 stop_bpstat = inf_status->stop_bpstat;
3793 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3794 proceed_to_finish = inf_status->proceed_to_finish;
3795
3796 /* The inferior can be gone if the user types "print exit(0)"
3797 (and perhaps other times). */
3798 if (target_has_execution)
3799 /* NB: The register write goes through to the target. */
3800 regcache_cpy (get_current_regcache (), inf_status->registers);
3801 regcache_xfree (inf_status->registers);
3802
3803 /* FIXME: If we are being called after stopping in a function which
3804 is called from gdb, we should not be trying to restore the
3805 selected frame; it just prints a spurious error message (The
3806 message is useful, however, in detecting bugs in gdb (like if gdb
3807 clobbers the stack)). In fact, should we be restoring the
3808 inferior status at all in that case? . */
3809
3810 if (target_has_stack && inf_status->restore_stack_info)
3811 {
3812 /* The point of catch_errors is that if the stack is clobbered,
3813 walking the stack might encounter a garbage pointer and
3814 error() trying to dereference it. */
3815 if (catch_errors
3816 (restore_selected_frame, &inf_status->selected_frame_id,
3817 "Unable to restore previously selected frame:\n",
3818 RETURN_MASK_ERROR) == 0)
3819 /* Error in restoring the selected frame. Select the innermost
3820 frame. */
3821 select_frame (get_current_frame ());
3822
3823 }
3824
3825 xfree (inf_status);
3826 }
3827
3828 static void
3829 do_restore_inferior_status_cleanup (void *sts)
3830 {
3831 restore_inferior_status (sts);
3832 }
3833
3834 struct cleanup *
3835 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3836 {
3837 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3838 }
3839
3840 void
3841 discard_inferior_status (struct inferior_status *inf_status)
3842 {
3843 /* See save_inferior_status for info on stop_bpstat. */
3844 bpstat_clear (&inf_status->stop_bpstat);
3845 regcache_xfree (inf_status->registers);
3846 xfree (inf_status);
3847 }
3848
3849 int
3850 inferior_has_forked (int pid, int *child_pid)
3851 {
3852 struct target_waitstatus last;
3853 ptid_t last_ptid;
3854
3855 get_last_target_status (&last_ptid, &last);
3856
3857 if (last.kind != TARGET_WAITKIND_FORKED)
3858 return 0;
3859
3860 if (ptid_get_pid (last_ptid) != pid)
3861 return 0;
3862
3863 *child_pid = last.value.related_pid;
3864 return 1;
3865 }
3866
3867 int
3868 inferior_has_vforked (int pid, int *child_pid)
3869 {
3870 struct target_waitstatus last;
3871 ptid_t last_ptid;
3872
3873 get_last_target_status (&last_ptid, &last);
3874
3875 if (last.kind != TARGET_WAITKIND_VFORKED)
3876 return 0;
3877
3878 if (ptid_get_pid (last_ptid) != pid)
3879 return 0;
3880
3881 *child_pid = last.value.related_pid;
3882 return 1;
3883 }
3884
3885 int
3886 inferior_has_execd (int pid, char **execd_pathname)
3887 {
3888 struct target_waitstatus last;
3889 ptid_t last_ptid;
3890
3891 get_last_target_status (&last_ptid, &last);
3892
3893 if (last.kind != TARGET_WAITKIND_EXECD)
3894 return 0;
3895
3896 if (ptid_get_pid (last_ptid) != pid)
3897 return 0;
3898
3899 *execd_pathname = xstrdup (last.value.execd_pathname);
3900 return 1;
3901 }
3902
3903 /* Oft used ptids */
3904 ptid_t null_ptid;
3905 ptid_t minus_one_ptid;
3906
3907 /* Create a ptid given the necessary PID, LWP, and TID components. */
3908
3909 ptid_t
3910 ptid_build (int pid, long lwp, long tid)
3911 {
3912 ptid_t ptid;
3913
3914 ptid.pid = pid;
3915 ptid.lwp = lwp;
3916 ptid.tid = tid;
3917 return ptid;
3918 }
3919
3920 /* Create a ptid from just a pid. */
3921
3922 ptid_t
3923 pid_to_ptid (int pid)
3924 {
3925 return ptid_build (pid, 0, 0);
3926 }
3927
3928 /* Fetch the pid (process id) component from a ptid. */
3929
3930 int
3931 ptid_get_pid (ptid_t ptid)
3932 {
3933 return ptid.pid;
3934 }
3935
3936 /* Fetch the lwp (lightweight process) component from a ptid. */
3937
3938 long
3939 ptid_get_lwp (ptid_t ptid)
3940 {
3941 return ptid.lwp;
3942 }
3943
3944 /* Fetch the tid (thread id) component from a ptid. */
3945
3946 long
3947 ptid_get_tid (ptid_t ptid)
3948 {
3949 return ptid.tid;
3950 }
3951
3952 /* ptid_equal() is used to test equality of two ptids. */
3953
3954 int
3955 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3956 {
3957 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3958 && ptid1.tid == ptid2.tid);
3959 }
3960
3961 /* restore_inferior_ptid() will be used by the cleanup machinery
3962 to restore the inferior_ptid value saved in a call to
3963 save_inferior_ptid(). */
3964
3965 static void
3966 restore_inferior_ptid (void *arg)
3967 {
3968 ptid_t *saved_ptid_ptr = arg;
3969 inferior_ptid = *saved_ptid_ptr;
3970 xfree (arg);
3971 }
3972
3973 /* Save the value of inferior_ptid so that it may be restored by a
3974 later call to do_cleanups(). Returns the struct cleanup pointer
3975 needed for later doing the cleanup. */
3976
3977 struct cleanup *
3978 save_inferior_ptid (void)
3979 {
3980 ptid_t *saved_ptid_ptr;
3981
3982 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3983 *saved_ptid_ptr = inferior_ptid;
3984 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3985 }
3986 \f
3987
3988 void
3989 _initialize_infrun (void)
3990 {
3991 int i;
3992 int numsigs;
3993 struct cmd_list_element *c;
3994
3995 add_info ("signals", signals_info, _("\
3996 What debugger does when program gets various signals.\n\
3997 Specify a signal as argument to print info on that signal only."));
3998 add_info_alias ("handle", "signals", 0);
3999
4000 add_com ("handle", class_run, handle_command, _("\
4001 Specify how to handle a signal.\n\
4002 Args are signals and actions to apply to those signals.\n\
4003 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4004 from 1-15 are allowed for compatibility with old versions of GDB.\n\
4005 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4006 The special arg \"all\" is recognized to mean all signals except those\n\
4007 used by the debugger, typically SIGTRAP and SIGINT.\n\
4008 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
4009 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
4010 Stop means reenter debugger if this signal happens (implies print).\n\
4011 Print means print a message if this signal happens.\n\
4012 Pass means let program see this signal; otherwise program doesn't know.\n\
4013 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4014 Pass and Stop may be combined."));
4015 if (xdb_commands)
4016 {
4017 add_com ("lz", class_info, signals_info, _("\
4018 What debugger does when program gets various signals.\n\
4019 Specify a signal as argument to print info on that signal only."));
4020 add_com ("z", class_run, xdb_handle_command, _("\
4021 Specify how to handle a signal.\n\
4022 Args are signals and actions to apply to those signals.\n\
4023 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4024 from 1-15 are allowed for compatibility with old versions of GDB.\n\
4025 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4026 The special arg \"all\" is recognized to mean all signals except those\n\
4027 used by the debugger, typically SIGTRAP and SIGINT.\n\
4028 Recognized actions include \"s\" (toggles between stop and nostop), \n\
4029 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4030 nopass), \"Q\" (noprint)\n\
4031 Stop means reenter debugger if this signal happens (implies print).\n\
4032 Print means print a message if this signal happens.\n\
4033 Pass means let program see this signal; otherwise program doesn't know.\n\
4034 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4035 Pass and Stop may be combined."));
4036 }
4037
4038 if (!dbx_commands)
4039 stop_command = add_cmd ("stop", class_obscure,
4040 not_just_help_class_command, _("\
4041 There is no `stop' command, but you can set a hook on `stop'.\n\
4042 This allows you to set a list of commands to be run each time execution\n\
4043 of the program stops."), &cmdlist);
4044
4045 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4046 Set inferior debugging."), _("\
4047 Show inferior debugging."), _("\
4048 When non-zero, inferior specific debugging is enabled."),
4049 NULL,
4050 show_debug_infrun,
4051 &setdebuglist, &showdebuglist);
4052
4053 numsigs = (int) TARGET_SIGNAL_LAST;
4054 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
4055 signal_print = (unsigned char *)
4056 xmalloc (sizeof (signal_print[0]) * numsigs);
4057 signal_program = (unsigned char *)
4058 xmalloc (sizeof (signal_program[0]) * numsigs);
4059 for (i = 0; i < numsigs; i++)
4060 {
4061 signal_stop[i] = 1;
4062 signal_print[i] = 1;
4063 signal_program[i] = 1;
4064 }
4065
4066 /* Signals caused by debugger's own actions
4067 should not be given to the program afterwards. */
4068 signal_program[TARGET_SIGNAL_TRAP] = 0;
4069 signal_program[TARGET_SIGNAL_INT] = 0;
4070
4071 /* Signals that are not errors should not normally enter the debugger. */
4072 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4073 signal_print[TARGET_SIGNAL_ALRM] = 0;
4074 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4075 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4076 signal_stop[TARGET_SIGNAL_PROF] = 0;
4077 signal_print[TARGET_SIGNAL_PROF] = 0;
4078 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4079 signal_print[TARGET_SIGNAL_CHLD] = 0;
4080 signal_stop[TARGET_SIGNAL_IO] = 0;
4081 signal_print[TARGET_SIGNAL_IO] = 0;
4082 signal_stop[TARGET_SIGNAL_POLL] = 0;
4083 signal_print[TARGET_SIGNAL_POLL] = 0;
4084 signal_stop[TARGET_SIGNAL_URG] = 0;
4085 signal_print[TARGET_SIGNAL_URG] = 0;
4086 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4087 signal_print[TARGET_SIGNAL_WINCH] = 0;
4088
4089 /* These signals are used internally by user-level thread
4090 implementations. (See signal(5) on Solaris.) Like the above
4091 signals, a healthy program receives and handles them as part of
4092 its normal operation. */
4093 signal_stop[TARGET_SIGNAL_LWP] = 0;
4094 signal_print[TARGET_SIGNAL_LWP] = 0;
4095 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4096 signal_print[TARGET_SIGNAL_WAITING] = 0;
4097 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4098 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4099
4100 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4101 &stop_on_solib_events, _("\
4102 Set stopping for shared library events."), _("\
4103 Show stopping for shared library events."), _("\
4104 If nonzero, gdb will give control to the user when the dynamic linker\n\
4105 notifies gdb of shared library events. The most common event of interest\n\
4106 to the user would be loading/unloading of a new library."),
4107 NULL,
4108 show_stop_on_solib_events,
4109 &setlist, &showlist);
4110
4111 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4112 follow_fork_mode_kind_names,
4113 &follow_fork_mode_string, _("\
4114 Set debugger response to a program call of fork or vfork."), _("\
4115 Show debugger response to a program call of fork or vfork."), _("\
4116 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4117 parent - the original process is debugged after a fork\n\
4118 child - the new process is debugged after a fork\n\
4119 The unfollowed process will continue to run.\n\
4120 By default, the debugger will follow the parent process."),
4121 NULL,
4122 show_follow_fork_mode_string,
4123 &setlist, &showlist);
4124
4125 add_setshow_enum_cmd ("scheduler-locking", class_run,
4126 scheduler_enums, &scheduler_mode, _("\
4127 Set mode for locking scheduler during execution."), _("\
4128 Show mode for locking scheduler during execution."), _("\
4129 off == no locking (threads may preempt at any time)\n\
4130 on == full locking (no thread except the current thread may run)\n\
4131 step == scheduler locked during every single-step operation.\n\
4132 In this mode, no other thread may run during a step command.\n\
4133 Other threads may run while stepping over a function call ('next')."),
4134 set_schedlock_func, /* traps on target vector */
4135 show_scheduler_mode,
4136 &setlist, &showlist);
4137
4138 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4139 Set mode of the step operation."), _("\
4140 Show mode of the step operation."), _("\
4141 When set, doing a step over a function without debug line information\n\
4142 will stop at the first instruction of that function. Otherwise, the\n\
4143 function is skipped and the step command stops at a different source line."),
4144 NULL,
4145 show_step_stop_if_no_debug,
4146 &setlist, &showlist);
4147
4148 /* ptid initializations */
4149 null_ptid = ptid_build (0, 0, 0);
4150 minus_one_ptid = ptid_build (-1, 0, 0);
4151 inferior_ptid = null_ptid;
4152 target_last_wait_ptid = minus_one_ptid;
4153 }
This page took 0.117549 seconds and 4 git commands to generate.