gdb/
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2012 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "exceptions.h"
28 #include "breakpoint.h"
29 #include "gdb_wait.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "cli/cli-script.h"
33 #include "target.h"
34 #include "gdbthread.h"
35 #include "annotate.h"
36 #include "symfile.h"
37 #include "top.h"
38 #include <signal.h>
39 #include "inf-loop.h"
40 #include "regcache.h"
41 #include "value.h"
42 #include "observer.h"
43 #include "language.h"
44 #include "solib.h"
45 #include "main.h"
46 #include "dictionary.h"
47 #include "block.h"
48 #include "gdb_assert.h"
49 #include "mi/mi-common.h"
50 #include "event-top.h"
51 #include "record.h"
52 #include "inline-frame.h"
53 #include "jit.h"
54 #include "tracepoint.h"
55 #include "continuations.h"
56 #include "interps.h"
57 #include "skip.h"
58 #include "probe.h"
59 #include "objfiles.h"
60 #include "completer.h"
61 #include "target-descriptions.h"
62
63 /* Prototypes for local functions */
64
65 static void signals_info (char *, int);
66
67 static void handle_command (char *, int);
68
69 static void sig_print_info (enum gdb_signal);
70
71 static void sig_print_header (void);
72
73 static void resume_cleanups (void *);
74
75 static int hook_stop_stub (void *);
76
77 static int restore_selected_frame (void *);
78
79 static int follow_fork (void);
80
81 static void set_schedlock_func (char *args, int from_tty,
82 struct cmd_list_element *c);
83
84 static int currently_stepping (struct thread_info *tp);
85
86 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
87 void *data);
88
89 static void xdb_handle_command (char *args, int from_tty);
90
91 static int prepare_to_proceed (int);
92
93 static void print_exited_reason (int exitstatus);
94
95 static void print_signal_exited_reason (enum gdb_signal siggnal);
96
97 static void print_no_history_reason (void);
98
99 static void print_signal_received_reason (enum gdb_signal siggnal);
100
101 static void print_end_stepping_range_reason (void);
102
103 void _initialize_infrun (void);
104
105 void nullify_last_target_wait_ptid (void);
106
107 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
108
109 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
110
111 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
112
113 /* When set, stop the 'step' command if we enter a function which has
114 no line number information. The normal behavior is that we step
115 over such function. */
116 int step_stop_if_no_debug = 0;
117 static void
118 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
119 struct cmd_list_element *c, const char *value)
120 {
121 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
122 }
123
124 /* In asynchronous mode, but simulating synchronous execution. */
125
126 int sync_execution = 0;
127
128 /* wait_for_inferior and normal_stop use this to notify the user
129 when the inferior stopped in a different thread than it had been
130 running in. */
131
132 static ptid_t previous_inferior_ptid;
133
134 /* Default behavior is to detach newly forked processes (legacy). */
135 int detach_fork = 1;
136
137 int debug_displaced = 0;
138 static void
139 show_debug_displaced (struct ui_file *file, int from_tty,
140 struct cmd_list_element *c, const char *value)
141 {
142 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
143 }
144
145 unsigned int debug_infrun = 0;
146 static void
147 show_debug_infrun (struct ui_file *file, int from_tty,
148 struct cmd_list_element *c, const char *value)
149 {
150 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
151 }
152
153
154 /* Support for disabling address space randomization. */
155
156 int disable_randomization = 1;
157
158 static void
159 show_disable_randomization (struct ui_file *file, int from_tty,
160 struct cmd_list_element *c, const char *value)
161 {
162 if (target_supports_disable_randomization ())
163 fprintf_filtered (file,
164 _("Disabling randomization of debuggee's "
165 "virtual address space is %s.\n"),
166 value);
167 else
168 fputs_filtered (_("Disabling randomization of debuggee's "
169 "virtual address space is unsupported on\n"
170 "this platform.\n"), file);
171 }
172
173 static void
174 set_disable_randomization (char *args, int from_tty,
175 struct cmd_list_element *c)
176 {
177 if (!target_supports_disable_randomization ())
178 error (_("Disabling randomization of debuggee's "
179 "virtual address space is unsupported on\n"
180 "this platform."));
181 }
182
183
184 /* If the program uses ELF-style shared libraries, then calls to
185 functions in shared libraries go through stubs, which live in a
186 table called the PLT (Procedure Linkage Table). The first time the
187 function is called, the stub sends control to the dynamic linker,
188 which looks up the function's real address, patches the stub so
189 that future calls will go directly to the function, and then passes
190 control to the function.
191
192 If we are stepping at the source level, we don't want to see any of
193 this --- we just want to skip over the stub and the dynamic linker.
194 The simple approach is to single-step until control leaves the
195 dynamic linker.
196
197 However, on some systems (e.g., Red Hat's 5.2 distribution) the
198 dynamic linker calls functions in the shared C library, so you
199 can't tell from the PC alone whether the dynamic linker is still
200 running. In this case, we use a step-resume breakpoint to get us
201 past the dynamic linker, as if we were using "next" to step over a
202 function call.
203
204 in_solib_dynsym_resolve_code() says whether we're in the dynamic
205 linker code or not. Normally, this means we single-step. However,
206 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
207 address where we can place a step-resume breakpoint to get past the
208 linker's symbol resolution function.
209
210 in_solib_dynsym_resolve_code() can generally be implemented in a
211 pretty portable way, by comparing the PC against the address ranges
212 of the dynamic linker's sections.
213
214 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
215 it depends on internal details of the dynamic linker. It's usually
216 not too hard to figure out where to put a breakpoint, but it
217 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
218 sanity checking. If it can't figure things out, returning zero and
219 getting the (possibly confusing) stepping behavior is better than
220 signalling an error, which will obscure the change in the
221 inferior's state. */
222
223 /* This function returns TRUE if pc is the address of an instruction
224 that lies within the dynamic linker (such as the event hook, or the
225 dld itself).
226
227 This function must be used only when a dynamic linker event has
228 been caught, and the inferior is being stepped out of the hook, or
229 undefined results are guaranteed. */
230
231 #ifndef SOLIB_IN_DYNAMIC_LINKER
232 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
233 #endif
234
235 /* "Observer mode" is somewhat like a more extreme version of
236 non-stop, in which all GDB operations that might affect the
237 target's execution have been disabled. */
238
239 static int non_stop_1 = 0;
240
241 int observer_mode = 0;
242 static int observer_mode_1 = 0;
243
244 static void
245 set_observer_mode (char *args, int from_tty,
246 struct cmd_list_element *c)
247 {
248 extern int pagination_enabled;
249
250 if (target_has_execution)
251 {
252 observer_mode_1 = observer_mode;
253 error (_("Cannot change this setting while the inferior is running."));
254 }
255
256 observer_mode = observer_mode_1;
257
258 may_write_registers = !observer_mode;
259 may_write_memory = !observer_mode;
260 may_insert_breakpoints = !observer_mode;
261 may_insert_tracepoints = !observer_mode;
262 /* We can insert fast tracepoints in or out of observer mode,
263 but enable them if we're going into this mode. */
264 if (observer_mode)
265 may_insert_fast_tracepoints = 1;
266 may_stop = !observer_mode;
267 update_target_permissions ();
268
269 /* Going *into* observer mode we must force non-stop, then
270 going out we leave it that way. */
271 if (observer_mode)
272 {
273 target_async_permitted = 1;
274 pagination_enabled = 0;
275 non_stop = non_stop_1 = 1;
276 }
277
278 if (from_tty)
279 printf_filtered (_("Observer mode is now %s.\n"),
280 (observer_mode ? "on" : "off"));
281 }
282
283 static void
284 show_observer_mode (struct ui_file *file, int from_tty,
285 struct cmd_list_element *c, const char *value)
286 {
287 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
288 }
289
290 /* This updates the value of observer mode based on changes in
291 permissions. Note that we are deliberately ignoring the values of
292 may-write-registers and may-write-memory, since the user may have
293 reason to enable these during a session, for instance to turn on a
294 debugging-related global. */
295
296 void
297 update_observer_mode (void)
298 {
299 int newval;
300
301 newval = (!may_insert_breakpoints
302 && !may_insert_tracepoints
303 && may_insert_fast_tracepoints
304 && !may_stop
305 && non_stop);
306
307 /* Let the user know if things change. */
308 if (newval != observer_mode)
309 printf_filtered (_("Observer mode is now %s.\n"),
310 (newval ? "on" : "off"));
311
312 observer_mode = observer_mode_1 = newval;
313 }
314
315 /* Tables of how to react to signals; the user sets them. */
316
317 static unsigned char *signal_stop;
318 static unsigned char *signal_print;
319 static unsigned char *signal_program;
320
321 /* Table of signals that the target may silently handle.
322 This is automatically determined from the flags above,
323 and simply cached here. */
324 static unsigned char *signal_pass;
325
326 #define SET_SIGS(nsigs,sigs,flags) \
327 do { \
328 int signum = (nsigs); \
329 while (signum-- > 0) \
330 if ((sigs)[signum]) \
331 (flags)[signum] = 1; \
332 } while (0)
333
334 #define UNSET_SIGS(nsigs,sigs,flags) \
335 do { \
336 int signum = (nsigs); \
337 while (signum-- > 0) \
338 if ((sigs)[signum]) \
339 (flags)[signum] = 0; \
340 } while (0)
341
342 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
343 this function is to avoid exporting `signal_program'. */
344
345 void
346 update_signals_program_target (void)
347 {
348 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
349 }
350
351 /* Value to pass to target_resume() to cause all threads to resume. */
352
353 #define RESUME_ALL minus_one_ptid
354
355 /* Command list pointer for the "stop" placeholder. */
356
357 static struct cmd_list_element *stop_command;
358
359 /* Function inferior was in as of last step command. */
360
361 static struct symbol *step_start_function;
362
363 /* Nonzero if we want to give control to the user when we're notified
364 of shared library events by the dynamic linker. */
365 int stop_on_solib_events;
366 static void
367 show_stop_on_solib_events (struct ui_file *file, int from_tty,
368 struct cmd_list_element *c, const char *value)
369 {
370 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
371 value);
372 }
373
374 /* Nonzero means expecting a trace trap
375 and should stop the inferior and return silently when it happens. */
376
377 int stop_after_trap;
378
379 /* Save register contents here when executing a "finish" command or are
380 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
381 Thus this contains the return value from the called function (assuming
382 values are returned in a register). */
383
384 struct regcache *stop_registers;
385
386 /* Nonzero after stop if current stack frame should be printed. */
387
388 static int stop_print_frame;
389
390 /* This is a cached copy of the pid/waitstatus of the last event
391 returned by target_wait()/deprecated_target_wait_hook(). This
392 information is returned by get_last_target_status(). */
393 static ptid_t target_last_wait_ptid;
394 static struct target_waitstatus target_last_waitstatus;
395
396 static void context_switch (ptid_t ptid);
397
398 void init_thread_stepping_state (struct thread_info *tss);
399
400 static void init_infwait_state (void);
401
402 static const char follow_fork_mode_child[] = "child";
403 static const char follow_fork_mode_parent[] = "parent";
404
405 static const char *const follow_fork_mode_kind_names[] = {
406 follow_fork_mode_child,
407 follow_fork_mode_parent,
408 NULL
409 };
410
411 static const char *follow_fork_mode_string = follow_fork_mode_parent;
412 static void
413 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
414 struct cmd_list_element *c, const char *value)
415 {
416 fprintf_filtered (file,
417 _("Debugger response to a program "
418 "call of fork or vfork is \"%s\".\n"),
419 value);
420 }
421 \f
422
423 /* Tell the target to follow the fork we're stopped at. Returns true
424 if the inferior should be resumed; false, if the target for some
425 reason decided it's best not to resume. */
426
427 static int
428 follow_fork (void)
429 {
430 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
431 int should_resume = 1;
432 struct thread_info *tp;
433
434 /* Copy user stepping state to the new inferior thread. FIXME: the
435 followed fork child thread should have a copy of most of the
436 parent thread structure's run control related fields, not just these.
437 Initialized to avoid "may be used uninitialized" warnings from gcc. */
438 struct breakpoint *step_resume_breakpoint = NULL;
439 struct breakpoint *exception_resume_breakpoint = NULL;
440 CORE_ADDR step_range_start = 0;
441 CORE_ADDR step_range_end = 0;
442 struct frame_id step_frame_id = { 0 };
443
444 if (!non_stop)
445 {
446 ptid_t wait_ptid;
447 struct target_waitstatus wait_status;
448
449 /* Get the last target status returned by target_wait(). */
450 get_last_target_status (&wait_ptid, &wait_status);
451
452 /* If not stopped at a fork event, then there's nothing else to
453 do. */
454 if (wait_status.kind != TARGET_WAITKIND_FORKED
455 && wait_status.kind != TARGET_WAITKIND_VFORKED)
456 return 1;
457
458 /* Check if we switched over from WAIT_PTID, since the event was
459 reported. */
460 if (!ptid_equal (wait_ptid, minus_one_ptid)
461 && !ptid_equal (inferior_ptid, wait_ptid))
462 {
463 /* We did. Switch back to WAIT_PTID thread, to tell the
464 target to follow it (in either direction). We'll
465 afterwards refuse to resume, and inform the user what
466 happened. */
467 switch_to_thread (wait_ptid);
468 should_resume = 0;
469 }
470 }
471
472 tp = inferior_thread ();
473
474 /* If there were any forks/vforks that were caught and are now to be
475 followed, then do so now. */
476 switch (tp->pending_follow.kind)
477 {
478 case TARGET_WAITKIND_FORKED:
479 case TARGET_WAITKIND_VFORKED:
480 {
481 ptid_t parent, child;
482
483 /* If the user did a next/step, etc, over a fork call,
484 preserve the stepping state in the fork child. */
485 if (follow_child && should_resume)
486 {
487 step_resume_breakpoint = clone_momentary_breakpoint
488 (tp->control.step_resume_breakpoint);
489 step_range_start = tp->control.step_range_start;
490 step_range_end = tp->control.step_range_end;
491 step_frame_id = tp->control.step_frame_id;
492 exception_resume_breakpoint
493 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
494
495 /* For now, delete the parent's sr breakpoint, otherwise,
496 parent/child sr breakpoints are considered duplicates,
497 and the child version will not be installed. Remove
498 this when the breakpoints module becomes aware of
499 inferiors and address spaces. */
500 delete_step_resume_breakpoint (tp);
501 tp->control.step_range_start = 0;
502 tp->control.step_range_end = 0;
503 tp->control.step_frame_id = null_frame_id;
504 delete_exception_resume_breakpoint (tp);
505 }
506
507 parent = inferior_ptid;
508 child = tp->pending_follow.value.related_pid;
509
510 /* Tell the target to do whatever is necessary to follow
511 either parent or child. */
512 if (target_follow_fork (follow_child))
513 {
514 /* Target refused to follow, or there's some other reason
515 we shouldn't resume. */
516 should_resume = 0;
517 }
518 else
519 {
520 /* This pending follow fork event is now handled, one way
521 or another. The previous selected thread may be gone
522 from the lists by now, but if it is still around, need
523 to clear the pending follow request. */
524 tp = find_thread_ptid (parent);
525 if (tp)
526 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
527
528 /* This makes sure we don't try to apply the "Switched
529 over from WAIT_PID" logic above. */
530 nullify_last_target_wait_ptid ();
531
532 /* If we followed the child, switch to it... */
533 if (follow_child)
534 {
535 switch_to_thread (child);
536
537 /* ... and preserve the stepping state, in case the
538 user was stepping over the fork call. */
539 if (should_resume)
540 {
541 tp = inferior_thread ();
542 tp->control.step_resume_breakpoint
543 = step_resume_breakpoint;
544 tp->control.step_range_start = step_range_start;
545 tp->control.step_range_end = step_range_end;
546 tp->control.step_frame_id = step_frame_id;
547 tp->control.exception_resume_breakpoint
548 = exception_resume_breakpoint;
549 }
550 else
551 {
552 /* If we get here, it was because we're trying to
553 resume from a fork catchpoint, but, the user
554 has switched threads away from the thread that
555 forked. In that case, the resume command
556 issued is most likely not applicable to the
557 child, so just warn, and refuse to resume. */
558 warning (_("Not resuming: switched threads "
559 "before following fork child.\n"));
560 }
561
562 /* Reset breakpoints in the child as appropriate. */
563 follow_inferior_reset_breakpoints ();
564 }
565 else
566 switch_to_thread (parent);
567 }
568 }
569 break;
570 case TARGET_WAITKIND_SPURIOUS:
571 /* Nothing to follow. */
572 break;
573 default:
574 internal_error (__FILE__, __LINE__,
575 "Unexpected pending_follow.kind %d\n",
576 tp->pending_follow.kind);
577 break;
578 }
579
580 return should_resume;
581 }
582
583 void
584 follow_inferior_reset_breakpoints (void)
585 {
586 struct thread_info *tp = inferior_thread ();
587
588 /* Was there a step_resume breakpoint? (There was if the user
589 did a "next" at the fork() call.) If so, explicitly reset its
590 thread number.
591
592 step_resumes are a form of bp that are made to be per-thread.
593 Since we created the step_resume bp when the parent process
594 was being debugged, and now are switching to the child process,
595 from the breakpoint package's viewpoint, that's a switch of
596 "threads". We must update the bp's notion of which thread
597 it is for, or it'll be ignored when it triggers. */
598
599 if (tp->control.step_resume_breakpoint)
600 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
601
602 if (tp->control.exception_resume_breakpoint)
603 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
604
605 /* Reinsert all breakpoints in the child. The user may have set
606 breakpoints after catching the fork, in which case those
607 were never set in the child, but only in the parent. This makes
608 sure the inserted breakpoints match the breakpoint list. */
609
610 breakpoint_re_set ();
611 insert_breakpoints ();
612 }
613
614 /* The child has exited or execed: resume threads of the parent the
615 user wanted to be executing. */
616
617 static int
618 proceed_after_vfork_done (struct thread_info *thread,
619 void *arg)
620 {
621 int pid = * (int *) arg;
622
623 if (ptid_get_pid (thread->ptid) == pid
624 && is_running (thread->ptid)
625 && !is_executing (thread->ptid)
626 && !thread->stop_requested
627 && thread->suspend.stop_signal == GDB_SIGNAL_0)
628 {
629 if (debug_infrun)
630 fprintf_unfiltered (gdb_stdlog,
631 "infrun: resuming vfork parent thread %s\n",
632 target_pid_to_str (thread->ptid));
633
634 switch_to_thread (thread->ptid);
635 clear_proceed_status ();
636 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
637 }
638
639 return 0;
640 }
641
642 /* Called whenever we notice an exec or exit event, to handle
643 detaching or resuming a vfork parent. */
644
645 static void
646 handle_vfork_child_exec_or_exit (int exec)
647 {
648 struct inferior *inf = current_inferior ();
649
650 if (inf->vfork_parent)
651 {
652 int resume_parent = -1;
653
654 /* This exec or exit marks the end of the shared memory region
655 between the parent and the child. If the user wanted to
656 detach from the parent, now is the time. */
657
658 if (inf->vfork_parent->pending_detach)
659 {
660 struct thread_info *tp;
661 struct cleanup *old_chain;
662 struct program_space *pspace;
663 struct address_space *aspace;
664
665 /* follow-fork child, detach-on-fork on. */
666
667 inf->vfork_parent->pending_detach = 0;
668
669 if (!exec)
670 {
671 /* If we're handling a child exit, then inferior_ptid
672 points at the inferior's pid, not to a thread. */
673 old_chain = save_inferior_ptid ();
674 save_current_program_space ();
675 save_current_inferior ();
676 }
677 else
678 old_chain = save_current_space_and_thread ();
679
680 /* We're letting loose of the parent. */
681 tp = any_live_thread_of_process (inf->vfork_parent->pid);
682 switch_to_thread (tp->ptid);
683
684 /* We're about to detach from the parent, which implicitly
685 removes breakpoints from its address space. There's a
686 catch here: we want to reuse the spaces for the child,
687 but, parent/child are still sharing the pspace at this
688 point, although the exec in reality makes the kernel give
689 the child a fresh set of new pages. The problem here is
690 that the breakpoints module being unaware of this, would
691 likely chose the child process to write to the parent
692 address space. Swapping the child temporarily away from
693 the spaces has the desired effect. Yes, this is "sort
694 of" a hack. */
695
696 pspace = inf->pspace;
697 aspace = inf->aspace;
698 inf->aspace = NULL;
699 inf->pspace = NULL;
700
701 if (debug_infrun || info_verbose)
702 {
703 target_terminal_ours ();
704
705 if (exec)
706 fprintf_filtered (gdb_stdlog,
707 "Detaching vfork parent process "
708 "%d after child exec.\n",
709 inf->vfork_parent->pid);
710 else
711 fprintf_filtered (gdb_stdlog,
712 "Detaching vfork parent process "
713 "%d after child exit.\n",
714 inf->vfork_parent->pid);
715 }
716
717 target_detach (NULL, 0);
718
719 /* Put it back. */
720 inf->pspace = pspace;
721 inf->aspace = aspace;
722
723 do_cleanups (old_chain);
724 }
725 else if (exec)
726 {
727 /* We're staying attached to the parent, so, really give the
728 child a new address space. */
729 inf->pspace = add_program_space (maybe_new_address_space ());
730 inf->aspace = inf->pspace->aspace;
731 inf->removable = 1;
732 set_current_program_space (inf->pspace);
733
734 resume_parent = inf->vfork_parent->pid;
735
736 /* Break the bonds. */
737 inf->vfork_parent->vfork_child = NULL;
738 }
739 else
740 {
741 struct cleanup *old_chain;
742 struct program_space *pspace;
743
744 /* If this is a vfork child exiting, then the pspace and
745 aspaces were shared with the parent. Since we're
746 reporting the process exit, we'll be mourning all that is
747 found in the address space, and switching to null_ptid,
748 preparing to start a new inferior. But, since we don't
749 want to clobber the parent's address/program spaces, we
750 go ahead and create a new one for this exiting
751 inferior. */
752
753 /* Switch to null_ptid, so that clone_program_space doesn't want
754 to read the selected frame of a dead process. */
755 old_chain = save_inferior_ptid ();
756 inferior_ptid = null_ptid;
757
758 /* This inferior is dead, so avoid giving the breakpoints
759 module the option to write through to it (cloning a
760 program space resets breakpoints). */
761 inf->aspace = NULL;
762 inf->pspace = NULL;
763 pspace = add_program_space (maybe_new_address_space ());
764 set_current_program_space (pspace);
765 inf->removable = 1;
766 inf->symfile_flags = SYMFILE_NO_READ;
767 clone_program_space (pspace, inf->vfork_parent->pspace);
768 inf->pspace = pspace;
769 inf->aspace = pspace->aspace;
770
771 /* Put back inferior_ptid. We'll continue mourning this
772 inferior. */
773 do_cleanups (old_chain);
774
775 resume_parent = inf->vfork_parent->pid;
776 /* Break the bonds. */
777 inf->vfork_parent->vfork_child = NULL;
778 }
779
780 inf->vfork_parent = NULL;
781
782 gdb_assert (current_program_space == inf->pspace);
783
784 if (non_stop && resume_parent != -1)
785 {
786 /* If the user wanted the parent to be running, let it go
787 free now. */
788 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
789
790 if (debug_infrun)
791 fprintf_unfiltered (gdb_stdlog,
792 "infrun: resuming vfork parent process %d\n",
793 resume_parent);
794
795 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
796
797 do_cleanups (old_chain);
798 }
799 }
800 }
801
802 /* Enum strings for "set|show displaced-stepping". */
803
804 static const char follow_exec_mode_new[] = "new";
805 static const char follow_exec_mode_same[] = "same";
806 static const char *const follow_exec_mode_names[] =
807 {
808 follow_exec_mode_new,
809 follow_exec_mode_same,
810 NULL,
811 };
812
813 static const char *follow_exec_mode_string = follow_exec_mode_same;
814 static void
815 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
816 struct cmd_list_element *c, const char *value)
817 {
818 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
819 }
820
821 /* EXECD_PATHNAME is assumed to be non-NULL. */
822
823 static void
824 follow_exec (ptid_t pid, char *execd_pathname)
825 {
826 struct thread_info *th = inferior_thread ();
827 struct inferior *inf = current_inferior ();
828
829 /* This is an exec event that we actually wish to pay attention to.
830 Refresh our symbol table to the newly exec'd program, remove any
831 momentary bp's, etc.
832
833 If there are breakpoints, they aren't really inserted now,
834 since the exec() transformed our inferior into a fresh set
835 of instructions.
836
837 We want to preserve symbolic breakpoints on the list, since
838 we have hopes that they can be reset after the new a.out's
839 symbol table is read.
840
841 However, any "raw" breakpoints must be removed from the list
842 (e.g., the solib bp's), since their address is probably invalid
843 now.
844
845 And, we DON'T want to call delete_breakpoints() here, since
846 that may write the bp's "shadow contents" (the instruction
847 value that was overwritten witha TRAP instruction). Since
848 we now have a new a.out, those shadow contents aren't valid. */
849
850 mark_breakpoints_out ();
851
852 update_breakpoints_after_exec ();
853
854 /* If there was one, it's gone now. We cannot truly step-to-next
855 statement through an exec(). */
856 th->control.step_resume_breakpoint = NULL;
857 th->control.exception_resume_breakpoint = NULL;
858 th->control.step_range_start = 0;
859 th->control.step_range_end = 0;
860
861 /* The target reports the exec event to the main thread, even if
862 some other thread does the exec, and even if the main thread was
863 already stopped --- if debugging in non-stop mode, it's possible
864 the user had the main thread held stopped in the previous image
865 --- release it now. This is the same behavior as step-over-exec
866 with scheduler-locking on in all-stop mode. */
867 th->stop_requested = 0;
868
869 /* What is this a.out's name? */
870 printf_unfiltered (_("%s is executing new program: %s\n"),
871 target_pid_to_str (inferior_ptid),
872 execd_pathname);
873
874 /* We've followed the inferior through an exec. Therefore, the
875 inferior has essentially been killed & reborn. */
876
877 gdb_flush (gdb_stdout);
878
879 breakpoint_init_inferior (inf_execd);
880
881 if (gdb_sysroot && *gdb_sysroot)
882 {
883 char *name = alloca (strlen (gdb_sysroot)
884 + strlen (execd_pathname)
885 + 1);
886
887 strcpy (name, gdb_sysroot);
888 strcat (name, execd_pathname);
889 execd_pathname = name;
890 }
891
892 /* Reset the shared library package. This ensures that we get a
893 shlib event when the child reaches "_start", at which point the
894 dld will have had a chance to initialize the child. */
895 /* Also, loading a symbol file below may trigger symbol lookups, and
896 we don't want those to be satisfied by the libraries of the
897 previous incarnation of this process. */
898 no_shared_libraries (NULL, 0);
899
900 if (follow_exec_mode_string == follow_exec_mode_new)
901 {
902 struct program_space *pspace;
903
904 /* The user wants to keep the old inferior and program spaces
905 around. Create a new fresh one, and switch to it. */
906
907 inf = add_inferior (current_inferior ()->pid);
908 pspace = add_program_space (maybe_new_address_space ());
909 inf->pspace = pspace;
910 inf->aspace = pspace->aspace;
911
912 exit_inferior_num_silent (current_inferior ()->num);
913
914 set_current_inferior (inf);
915 set_current_program_space (pspace);
916 }
917 else
918 {
919 /* The old description may no longer be fit for the new image.
920 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
921 old description; we'll read a new one below. No need to do
922 this on "follow-exec-mode new", as the old inferior stays
923 around (its description is later cleared/refetched on
924 restart). */
925 target_clear_description ();
926 }
927
928 gdb_assert (current_program_space == inf->pspace);
929
930 /* That a.out is now the one to use. */
931 exec_file_attach (execd_pathname, 0);
932
933 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
934 (Position Independent Executable) main symbol file will get applied by
935 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
936 the breakpoints with the zero displacement. */
937
938 symbol_file_add (execd_pathname,
939 (inf->symfile_flags
940 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
941 NULL, 0);
942
943 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
944 set_initial_language ();
945
946 /* If the target can specify a description, read it. Must do this
947 after flipping to the new executable (because the target supplied
948 description must be compatible with the executable's
949 architecture, and the old executable may e.g., be 32-bit, while
950 the new one 64-bit), and before anything involving memory or
951 registers. */
952 target_find_description ();
953
954 #ifdef SOLIB_CREATE_INFERIOR_HOOK
955 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
956 #else
957 solib_create_inferior_hook (0);
958 #endif
959
960 jit_inferior_created_hook ();
961
962 breakpoint_re_set ();
963
964 /* Reinsert all breakpoints. (Those which were symbolic have
965 been reset to the proper address in the new a.out, thanks
966 to symbol_file_command...). */
967 insert_breakpoints ();
968
969 /* The next resume of this inferior should bring it to the shlib
970 startup breakpoints. (If the user had also set bp's on
971 "main" from the old (parent) process, then they'll auto-
972 matically get reset there in the new process.). */
973 }
974
975 /* Non-zero if we just simulating a single-step. This is needed
976 because we cannot remove the breakpoints in the inferior process
977 until after the `wait' in `wait_for_inferior'. */
978 static int singlestep_breakpoints_inserted_p = 0;
979
980 /* The thread we inserted single-step breakpoints for. */
981 static ptid_t singlestep_ptid;
982
983 /* PC when we started this single-step. */
984 static CORE_ADDR singlestep_pc;
985
986 /* If another thread hit the singlestep breakpoint, we save the original
987 thread here so that we can resume single-stepping it later. */
988 static ptid_t saved_singlestep_ptid;
989 static int stepping_past_singlestep_breakpoint;
990
991 /* If not equal to null_ptid, this means that after stepping over breakpoint
992 is finished, we need to switch to deferred_step_ptid, and step it.
993
994 The use case is when one thread has hit a breakpoint, and then the user
995 has switched to another thread and issued 'step'. We need to step over
996 breakpoint in the thread which hit the breakpoint, but then continue
997 stepping the thread user has selected. */
998 static ptid_t deferred_step_ptid;
999 \f
1000 /* Displaced stepping. */
1001
1002 /* In non-stop debugging mode, we must take special care to manage
1003 breakpoints properly; in particular, the traditional strategy for
1004 stepping a thread past a breakpoint it has hit is unsuitable.
1005 'Displaced stepping' is a tactic for stepping one thread past a
1006 breakpoint it has hit while ensuring that other threads running
1007 concurrently will hit the breakpoint as they should.
1008
1009 The traditional way to step a thread T off a breakpoint in a
1010 multi-threaded program in all-stop mode is as follows:
1011
1012 a0) Initially, all threads are stopped, and breakpoints are not
1013 inserted.
1014 a1) We single-step T, leaving breakpoints uninserted.
1015 a2) We insert breakpoints, and resume all threads.
1016
1017 In non-stop debugging, however, this strategy is unsuitable: we
1018 don't want to have to stop all threads in the system in order to
1019 continue or step T past a breakpoint. Instead, we use displaced
1020 stepping:
1021
1022 n0) Initially, T is stopped, other threads are running, and
1023 breakpoints are inserted.
1024 n1) We copy the instruction "under" the breakpoint to a separate
1025 location, outside the main code stream, making any adjustments
1026 to the instruction, register, and memory state as directed by
1027 T's architecture.
1028 n2) We single-step T over the instruction at its new location.
1029 n3) We adjust the resulting register and memory state as directed
1030 by T's architecture. This includes resetting T's PC to point
1031 back into the main instruction stream.
1032 n4) We resume T.
1033
1034 This approach depends on the following gdbarch methods:
1035
1036 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1037 indicate where to copy the instruction, and how much space must
1038 be reserved there. We use these in step n1.
1039
1040 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1041 address, and makes any necessary adjustments to the instruction,
1042 register contents, and memory. We use this in step n1.
1043
1044 - gdbarch_displaced_step_fixup adjusts registers and memory after
1045 we have successfuly single-stepped the instruction, to yield the
1046 same effect the instruction would have had if we had executed it
1047 at its original address. We use this in step n3.
1048
1049 - gdbarch_displaced_step_free_closure provides cleanup.
1050
1051 The gdbarch_displaced_step_copy_insn and
1052 gdbarch_displaced_step_fixup functions must be written so that
1053 copying an instruction with gdbarch_displaced_step_copy_insn,
1054 single-stepping across the copied instruction, and then applying
1055 gdbarch_displaced_insn_fixup should have the same effects on the
1056 thread's memory and registers as stepping the instruction in place
1057 would have. Exactly which responsibilities fall to the copy and
1058 which fall to the fixup is up to the author of those functions.
1059
1060 See the comments in gdbarch.sh for details.
1061
1062 Note that displaced stepping and software single-step cannot
1063 currently be used in combination, although with some care I think
1064 they could be made to. Software single-step works by placing
1065 breakpoints on all possible subsequent instructions; if the
1066 displaced instruction is a PC-relative jump, those breakpoints
1067 could fall in very strange places --- on pages that aren't
1068 executable, or at addresses that are not proper instruction
1069 boundaries. (We do generally let other threads run while we wait
1070 to hit the software single-step breakpoint, and they might
1071 encounter such a corrupted instruction.) One way to work around
1072 this would be to have gdbarch_displaced_step_copy_insn fully
1073 simulate the effect of PC-relative instructions (and return NULL)
1074 on architectures that use software single-stepping.
1075
1076 In non-stop mode, we can have independent and simultaneous step
1077 requests, so more than one thread may need to simultaneously step
1078 over a breakpoint. The current implementation assumes there is
1079 only one scratch space per process. In this case, we have to
1080 serialize access to the scratch space. If thread A wants to step
1081 over a breakpoint, but we are currently waiting for some other
1082 thread to complete a displaced step, we leave thread A stopped and
1083 place it in the displaced_step_request_queue. Whenever a displaced
1084 step finishes, we pick the next thread in the queue and start a new
1085 displaced step operation on it. See displaced_step_prepare and
1086 displaced_step_fixup for details. */
1087
1088 struct displaced_step_request
1089 {
1090 ptid_t ptid;
1091 struct displaced_step_request *next;
1092 };
1093
1094 /* Per-inferior displaced stepping state. */
1095 struct displaced_step_inferior_state
1096 {
1097 /* Pointer to next in linked list. */
1098 struct displaced_step_inferior_state *next;
1099
1100 /* The process this displaced step state refers to. */
1101 int pid;
1102
1103 /* A queue of pending displaced stepping requests. One entry per
1104 thread that needs to do a displaced step. */
1105 struct displaced_step_request *step_request_queue;
1106
1107 /* If this is not null_ptid, this is the thread carrying out a
1108 displaced single-step in process PID. This thread's state will
1109 require fixing up once it has completed its step. */
1110 ptid_t step_ptid;
1111
1112 /* The architecture the thread had when we stepped it. */
1113 struct gdbarch *step_gdbarch;
1114
1115 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1116 for post-step cleanup. */
1117 struct displaced_step_closure *step_closure;
1118
1119 /* The address of the original instruction, and the copy we
1120 made. */
1121 CORE_ADDR step_original, step_copy;
1122
1123 /* Saved contents of copy area. */
1124 gdb_byte *step_saved_copy;
1125 };
1126
1127 /* The list of states of processes involved in displaced stepping
1128 presently. */
1129 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1130
1131 /* Get the displaced stepping state of process PID. */
1132
1133 static struct displaced_step_inferior_state *
1134 get_displaced_stepping_state (int pid)
1135 {
1136 struct displaced_step_inferior_state *state;
1137
1138 for (state = displaced_step_inferior_states;
1139 state != NULL;
1140 state = state->next)
1141 if (state->pid == pid)
1142 return state;
1143
1144 return NULL;
1145 }
1146
1147 /* Add a new displaced stepping state for process PID to the displaced
1148 stepping state list, or return a pointer to an already existing
1149 entry, if it already exists. Never returns NULL. */
1150
1151 static struct displaced_step_inferior_state *
1152 add_displaced_stepping_state (int pid)
1153 {
1154 struct displaced_step_inferior_state *state;
1155
1156 for (state = displaced_step_inferior_states;
1157 state != NULL;
1158 state = state->next)
1159 if (state->pid == pid)
1160 return state;
1161
1162 state = xcalloc (1, sizeof (*state));
1163 state->pid = pid;
1164 state->next = displaced_step_inferior_states;
1165 displaced_step_inferior_states = state;
1166
1167 return state;
1168 }
1169
1170 /* If inferior is in displaced stepping, and ADDR equals to starting address
1171 of copy area, return corresponding displaced_step_closure. Otherwise,
1172 return NULL. */
1173
1174 struct displaced_step_closure*
1175 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1176 {
1177 struct displaced_step_inferior_state *displaced
1178 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1179
1180 /* If checking the mode of displaced instruction in copy area. */
1181 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1182 && (displaced->step_copy == addr))
1183 return displaced->step_closure;
1184
1185 return NULL;
1186 }
1187
1188 /* Remove the displaced stepping state of process PID. */
1189
1190 static void
1191 remove_displaced_stepping_state (int pid)
1192 {
1193 struct displaced_step_inferior_state *it, **prev_next_p;
1194
1195 gdb_assert (pid != 0);
1196
1197 it = displaced_step_inferior_states;
1198 prev_next_p = &displaced_step_inferior_states;
1199 while (it)
1200 {
1201 if (it->pid == pid)
1202 {
1203 *prev_next_p = it->next;
1204 xfree (it);
1205 return;
1206 }
1207
1208 prev_next_p = &it->next;
1209 it = *prev_next_p;
1210 }
1211 }
1212
1213 static void
1214 infrun_inferior_exit (struct inferior *inf)
1215 {
1216 remove_displaced_stepping_state (inf->pid);
1217 }
1218
1219 /* If ON, and the architecture supports it, GDB will use displaced
1220 stepping to step over breakpoints. If OFF, or if the architecture
1221 doesn't support it, GDB will instead use the traditional
1222 hold-and-step approach. If AUTO (which is the default), GDB will
1223 decide which technique to use to step over breakpoints depending on
1224 which of all-stop or non-stop mode is active --- displaced stepping
1225 in non-stop mode; hold-and-step in all-stop mode. */
1226
1227 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1228
1229 static void
1230 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1231 struct cmd_list_element *c,
1232 const char *value)
1233 {
1234 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1235 fprintf_filtered (file,
1236 _("Debugger's willingness to use displaced stepping "
1237 "to step over breakpoints is %s (currently %s).\n"),
1238 value, non_stop ? "on" : "off");
1239 else
1240 fprintf_filtered (file,
1241 _("Debugger's willingness to use displaced stepping "
1242 "to step over breakpoints is %s.\n"), value);
1243 }
1244
1245 /* Return non-zero if displaced stepping can/should be used to step
1246 over breakpoints. */
1247
1248 static int
1249 use_displaced_stepping (struct gdbarch *gdbarch)
1250 {
1251 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1252 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1253 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1254 && !RECORD_IS_USED);
1255 }
1256
1257 /* Clean out any stray displaced stepping state. */
1258 static void
1259 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1260 {
1261 /* Indicate that there is no cleanup pending. */
1262 displaced->step_ptid = null_ptid;
1263
1264 if (displaced->step_closure)
1265 {
1266 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1267 displaced->step_closure);
1268 displaced->step_closure = NULL;
1269 }
1270 }
1271
1272 static void
1273 displaced_step_clear_cleanup (void *arg)
1274 {
1275 struct displaced_step_inferior_state *state = arg;
1276
1277 displaced_step_clear (state);
1278 }
1279
1280 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1281 void
1282 displaced_step_dump_bytes (struct ui_file *file,
1283 const gdb_byte *buf,
1284 size_t len)
1285 {
1286 int i;
1287
1288 for (i = 0; i < len; i++)
1289 fprintf_unfiltered (file, "%02x ", buf[i]);
1290 fputs_unfiltered ("\n", file);
1291 }
1292
1293 /* Prepare to single-step, using displaced stepping.
1294
1295 Note that we cannot use displaced stepping when we have a signal to
1296 deliver. If we have a signal to deliver and an instruction to step
1297 over, then after the step, there will be no indication from the
1298 target whether the thread entered a signal handler or ignored the
1299 signal and stepped over the instruction successfully --- both cases
1300 result in a simple SIGTRAP. In the first case we mustn't do a
1301 fixup, and in the second case we must --- but we can't tell which.
1302 Comments in the code for 'random signals' in handle_inferior_event
1303 explain how we handle this case instead.
1304
1305 Returns 1 if preparing was successful -- this thread is going to be
1306 stepped now; or 0 if displaced stepping this thread got queued. */
1307 static int
1308 displaced_step_prepare (ptid_t ptid)
1309 {
1310 struct cleanup *old_cleanups, *ignore_cleanups;
1311 struct regcache *regcache = get_thread_regcache (ptid);
1312 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1313 CORE_ADDR original, copy;
1314 ULONGEST len;
1315 struct displaced_step_closure *closure;
1316 struct displaced_step_inferior_state *displaced;
1317 int status;
1318
1319 /* We should never reach this function if the architecture does not
1320 support displaced stepping. */
1321 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1322
1323 /* We have to displaced step one thread at a time, as we only have
1324 access to a single scratch space per inferior. */
1325
1326 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1327
1328 if (!ptid_equal (displaced->step_ptid, null_ptid))
1329 {
1330 /* Already waiting for a displaced step to finish. Defer this
1331 request and place in queue. */
1332 struct displaced_step_request *req, *new_req;
1333
1334 if (debug_displaced)
1335 fprintf_unfiltered (gdb_stdlog,
1336 "displaced: defering step of %s\n",
1337 target_pid_to_str (ptid));
1338
1339 new_req = xmalloc (sizeof (*new_req));
1340 new_req->ptid = ptid;
1341 new_req->next = NULL;
1342
1343 if (displaced->step_request_queue)
1344 {
1345 for (req = displaced->step_request_queue;
1346 req && req->next;
1347 req = req->next)
1348 ;
1349 req->next = new_req;
1350 }
1351 else
1352 displaced->step_request_queue = new_req;
1353
1354 return 0;
1355 }
1356 else
1357 {
1358 if (debug_displaced)
1359 fprintf_unfiltered (gdb_stdlog,
1360 "displaced: stepping %s now\n",
1361 target_pid_to_str (ptid));
1362 }
1363
1364 displaced_step_clear (displaced);
1365
1366 old_cleanups = save_inferior_ptid ();
1367 inferior_ptid = ptid;
1368
1369 original = regcache_read_pc (regcache);
1370
1371 copy = gdbarch_displaced_step_location (gdbarch);
1372 len = gdbarch_max_insn_length (gdbarch);
1373
1374 /* Save the original contents of the copy area. */
1375 displaced->step_saved_copy = xmalloc (len);
1376 ignore_cleanups = make_cleanup (free_current_contents,
1377 &displaced->step_saved_copy);
1378 status = target_read_memory (copy, displaced->step_saved_copy, len);
1379 if (status != 0)
1380 throw_error (MEMORY_ERROR,
1381 _("Error accessing memory address %s (%s) for "
1382 "displaced-stepping scratch space."),
1383 paddress (gdbarch, copy), safe_strerror (status));
1384 if (debug_displaced)
1385 {
1386 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1387 paddress (gdbarch, copy));
1388 displaced_step_dump_bytes (gdb_stdlog,
1389 displaced->step_saved_copy,
1390 len);
1391 };
1392
1393 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1394 original, copy, regcache);
1395
1396 /* We don't support the fully-simulated case at present. */
1397 gdb_assert (closure);
1398
1399 /* Save the information we need to fix things up if the step
1400 succeeds. */
1401 displaced->step_ptid = ptid;
1402 displaced->step_gdbarch = gdbarch;
1403 displaced->step_closure = closure;
1404 displaced->step_original = original;
1405 displaced->step_copy = copy;
1406
1407 make_cleanup (displaced_step_clear_cleanup, displaced);
1408
1409 /* Resume execution at the copy. */
1410 regcache_write_pc (regcache, copy);
1411
1412 discard_cleanups (ignore_cleanups);
1413
1414 do_cleanups (old_cleanups);
1415
1416 if (debug_displaced)
1417 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1418 paddress (gdbarch, copy));
1419
1420 return 1;
1421 }
1422
1423 static void
1424 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1425 const gdb_byte *myaddr, int len)
1426 {
1427 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1428
1429 inferior_ptid = ptid;
1430 write_memory (memaddr, myaddr, len);
1431 do_cleanups (ptid_cleanup);
1432 }
1433
1434 /* Restore the contents of the copy area for thread PTID. */
1435
1436 static void
1437 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1438 ptid_t ptid)
1439 {
1440 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1441
1442 write_memory_ptid (ptid, displaced->step_copy,
1443 displaced->step_saved_copy, len);
1444 if (debug_displaced)
1445 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1446 target_pid_to_str (ptid),
1447 paddress (displaced->step_gdbarch,
1448 displaced->step_copy));
1449 }
1450
1451 static void
1452 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1453 {
1454 struct cleanup *old_cleanups;
1455 struct displaced_step_inferior_state *displaced
1456 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1457
1458 /* Was any thread of this process doing a displaced step? */
1459 if (displaced == NULL)
1460 return;
1461
1462 /* Was this event for the pid we displaced? */
1463 if (ptid_equal (displaced->step_ptid, null_ptid)
1464 || ! ptid_equal (displaced->step_ptid, event_ptid))
1465 return;
1466
1467 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1468
1469 displaced_step_restore (displaced, displaced->step_ptid);
1470
1471 /* Did the instruction complete successfully? */
1472 if (signal == GDB_SIGNAL_TRAP)
1473 {
1474 /* Fix up the resulting state. */
1475 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1476 displaced->step_closure,
1477 displaced->step_original,
1478 displaced->step_copy,
1479 get_thread_regcache (displaced->step_ptid));
1480 }
1481 else
1482 {
1483 /* Since the instruction didn't complete, all we can do is
1484 relocate the PC. */
1485 struct regcache *regcache = get_thread_regcache (event_ptid);
1486 CORE_ADDR pc = regcache_read_pc (regcache);
1487
1488 pc = displaced->step_original + (pc - displaced->step_copy);
1489 regcache_write_pc (regcache, pc);
1490 }
1491
1492 do_cleanups (old_cleanups);
1493
1494 displaced->step_ptid = null_ptid;
1495
1496 /* Are there any pending displaced stepping requests? If so, run
1497 one now. Leave the state object around, since we're likely to
1498 need it again soon. */
1499 while (displaced->step_request_queue)
1500 {
1501 struct displaced_step_request *head;
1502 ptid_t ptid;
1503 struct regcache *regcache;
1504 struct gdbarch *gdbarch;
1505 CORE_ADDR actual_pc;
1506 struct address_space *aspace;
1507
1508 head = displaced->step_request_queue;
1509 ptid = head->ptid;
1510 displaced->step_request_queue = head->next;
1511 xfree (head);
1512
1513 context_switch (ptid);
1514
1515 regcache = get_thread_regcache (ptid);
1516 actual_pc = regcache_read_pc (regcache);
1517 aspace = get_regcache_aspace (regcache);
1518
1519 if (breakpoint_here_p (aspace, actual_pc))
1520 {
1521 if (debug_displaced)
1522 fprintf_unfiltered (gdb_stdlog,
1523 "displaced: stepping queued %s now\n",
1524 target_pid_to_str (ptid));
1525
1526 displaced_step_prepare (ptid);
1527
1528 gdbarch = get_regcache_arch (regcache);
1529
1530 if (debug_displaced)
1531 {
1532 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1533 gdb_byte buf[4];
1534
1535 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1536 paddress (gdbarch, actual_pc));
1537 read_memory (actual_pc, buf, sizeof (buf));
1538 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1539 }
1540
1541 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1542 displaced->step_closure))
1543 target_resume (ptid, 1, GDB_SIGNAL_0);
1544 else
1545 target_resume (ptid, 0, GDB_SIGNAL_0);
1546
1547 /* Done, we're stepping a thread. */
1548 break;
1549 }
1550 else
1551 {
1552 int step;
1553 struct thread_info *tp = inferior_thread ();
1554
1555 /* The breakpoint we were sitting under has since been
1556 removed. */
1557 tp->control.trap_expected = 0;
1558
1559 /* Go back to what we were trying to do. */
1560 step = currently_stepping (tp);
1561
1562 if (debug_displaced)
1563 fprintf_unfiltered (gdb_stdlog,
1564 "displaced: breakpoint is gone: %s, step(%d)\n",
1565 target_pid_to_str (tp->ptid), step);
1566
1567 target_resume (ptid, step, GDB_SIGNAL_0);
1568 tp->suspend.stop_signal = GDB_SIGNAL_0;
1569
1570 /* This request was discarded. See if there's any other
1571 thread waiting for its turn. */
1572 }
1573 }
1574 }
1575
1576 /* Update global variables holding ptids to hold NEW_PTID if they were
1577 holding OLD_PTID. */
1578 static void
1579 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1580 {
1581 struct displaced_step_request *it;
1582 struct displaced_step_inferior_state *displaced;
1583
1584 if (ptid_equal (inferior_ptid, old_ptid))
1585 inferior_ptid = new_ptid;
1586
1587 if (ptid_equal (singlestep_ptid, old_ptid))
1588 singlestep_ptid = new_ptid;
1589
1590 if (ptid_equal (deferred_step_ptid, old_ptid))
1591 deferred_step_ptid = new_ptid;
1592
1593 for (displaced = displaced_step_inferior_states;
1594 displaced;
1595 displaced = displaced->next)
1596 {
1597 if (ptid_equal (displaced->step_ptid, old_ptid))
1598 displaced->step_ptid = new_ptid;
1599
1600 for (it = displaced->step_request_queue; it; it = it->next)
1601 if (ptid_equal (it->ptid, old_ptid))
1602 it->ptid = new_ptid;
1603 }
1604 }
1605
1606 \f
1607 /* Resuming. */
1608
1609 /* Things to clean up if we QUIT out of resume (). */
1610 static void
1611 resume_cleanups (void *ignore)
1612 {
1613 normal_stop ();
1614 }
1615
1616 static const char schedlock_off[] = "off";
1617 static const char schedlock_on[] = "on";
1618 static const char schedlock_step[] = "step";
1619 static const char *const scheduler_enums[] = {
1620 schedlock_off,
1621 schedlock_on,
1622 schedlock_step,
1623 NULL
1624 };
1625 static const char *scheduler_mode = schedlock_off;
1626 static void
1627 show_scheduler_mode (struct ui_file *file, int from_tty,
1628 struct cmd_list_element *c, const char *value)
1629 {
1630 fprintf_filtered (file,
1631 _("Mode for locking scheduler "
1632 "during execution is \"%s\".\n"),
1633 value);
1634 }
1635
1636 static void
1637 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1638 {
1639 if (!target_can_lock_scheduler)
1640 {
1641 scheduler_mode = schedlock_off;
1642 error (_("Target '%s' cannot support this command."), target_shortname);
1643 }
1644 }
1645
1646 /* True if execution commands resume all threads of all processes by
1647 default; otherwise, resume only threads of the current inferior
1648 process. */
1649 int sched_multi = 0;
1650
1651 /* Try to setup for software single stepping over the specified location.
1652 Return 1 if target_resume() should use hardware single step.
1653
1654 GDBARCH the current gdbarch.
1655 PC the location to step over. */
1656
1657 static int
1658 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1659 {
1660 int hw_step = 1;
1661
1662 if (execution_direction == EXEC_FORWARD
1663 && gdbarch_software_single_step_p (gdbarch)
1664 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1665 {
1666 hw_step = 0;
1667 /* Do not pull these breakpoints until after a `wait' in
1668 `wait_for_inferior'. */
1669 singlestep_breakpoints_inserted_p = 1;
1670 singlestep_ptid = inferior_ptid;
1671 singlestep_pc = pc;
1672 }
1673 return hw_step;
1674 }
1675
1676 /* Return a ptid representing the set of threads that we will proceed,
1677 in the perspective of the user/frontend. We may actually resume
1678 fewer threads at first, e.g., if a thread is stopped at a
1679 breakpoint that needs stepping-off, but that should not be visible
1680 to the user/frontend, and neither should the frontend/user be
1681 allowed to proceed any of the threads that happen to be stopped for
1682 internal run control handling, if a previous command wanted them
1683 resumed. */
1684
1685 ptid_t
1686 user_visible_resume_ptid (int step)
1687 {
1688 /* By default, resume all threads of all processes. */
1689 ptid_t resume_ptid = RESUME_ALL;
1690
1691 /* Maybe resume only all threads of the current process. */
1692 if (!sched_multi && target_supports_multi_process ())
1693 {
1694 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1695 }
1696
1697 /* Maybe resume a single thread after all. */
1698 if (non_stop)
1699 {
1700 /* With non-stop mode on, threads are always handled
1701 individually. */
1702 resume_ptid = inferior_ptid;
1703 }
1704 else if ((scheduler_mode == schedlock_on)
1705 || (scheduler_mode == schedlock_step
1706 && (step || singlestep_breakpoints_inserted_p)))
1707 {
1708 /* User-settable 'scheduler' mode requires solo thread resume. */
1709 resume_ptid = inferior_ptid;
1710 }
1711
1712 return resume_ptid;
1713 }
1714
1715 /* Resume the inferior, but allow a QUIT. This is useful if the user
1716 wants to interrupt some lengthy single-stepping operation
1717 (for child processes, the SIGINT goes to the inferior, and so
1718 we get a SIGINT random_signal, but for remote debugging and perhaps
1719 other targets, that's not true).
1720
1721 STEP nonzero if we should step (zero to continue instead).
1722 SIG is the signal to give the inferior (zero for none). */
1723 void
1724 resume (int step, enum gdb_signal sig)
1725 {
1726 int should_resume = 1;
1727 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1728 struct regcache *regcache = get_current_regcache ();
1729 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1730 struct thread_info *tp = inferior_thread ();
1731 CORE_ADDR pc = regcache_read_pc (regcache);
1732 struct address_space *aspace = get_regcache_aspace (regcache);
1733
1734 QUIT;
1735
1736 if (current_inferior ()->waiting_for_vfork_done)
1737 {
1738 /* Don't try to single-step a vfork parent that is waiting for
1739 the child to get out of the shared memory region (by exec'ing
1740 or exiting). This is particularly important on software
1741 single-step archs, as the child process would trip on the
1742 software single step breakpoint inserted for the parent
1743 process. Since the parent will not actually execute any
1744 instruction until the child is out of the shared region (such
1745 are vfork's semantics), it is safe to simply continue it.
1746 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1747 the parent, and tell it to `keep_going', which automatically
1748 re-sets it stepping. */
1749 if (debug_infrun)
1750 fprintf_unfiltered (gdb_stdlog,
1751 "infrun: resume : clear step\n");
1752 step = 0;
1753 }
1754
1755 if (debug_infrun)
1756 fprintf_unfiltered (gdb_stdlog,
1757 "infrun: resume (step=%d, signal=%d), "
1758 "trap_expected=%d, current thread [%s] at %s\n",
1759 step, sig, tp->control.trap_expected,
1760 target_pid_to_str (inferior_ptid),
1761 paddress (gdbarch, pc));
1762
1763 /* Normally, by the time we reach `resume', the breakpoints are either
1764 removed or inserted, as appropriate. The exception is if we're sitting
1765 at a permanent breakpoint; we need to step over it, but permanent
1766 breakpoints can't be removed. So we have to test for it here. */
1767 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1768 {
1769 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1770 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1771 else
1772 error (_("\
1773 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1774 how to step past a permanent breakpoint on this architecture. Try using\n\
1775 a command like `return' or `jump' to continue execution."));
1776 }
1777
1778 /* If enabled, step over breakpoints by executing a copy of the
1779 instruction at a different address.
1780
1781 We can't use displaced stepping when we have a signal to deliver;
1782 the comments for displaced_step_prepare explain why. The
1783 comments in the handle_inferior event for dealing with 'random
1784 signals' explain what we do instead.
1785
1786 We can't use displaced stepping when we are waiting for vfork_done
1787 event, displaced stepping breaks the vfork child similarly as single
1788 step software breakpoint. */
1789 if (use_displaced_stepping (gdbarch)
1790 && (tp->control.trap_expected
1791 || (step && gdbarch_software_single_step_p (gdbarch)))
1792 && sig == GDB_SIGNAL_0
1793 && !current_inferior ()->waiting_for_vfork_done)
1794 {
1795 struct displaced_step_inferior_state *displaced;
1796
1797 if (!displaced_step_prepare (inferior_ptid))
1798 {
1799 /* Got placed in displaced stepping queue. Will be resumed
1800 later when all the currently queued displaced stepping
1801 requests finish. The thread is not executing at this point,
1802 and the call to set_executing will be made later. But we
1803 need to call set_running here, since from frontend point of view,
1804 the thread is running. */
1805 set_running (inferior_ptid, 1);
1806 discard_cleanups (old_cleanups);
1807 return;
1808 }
1809
1810 /* Update pc to reflect the new address from which we will execute
1811 instructions due to displaced stepping. */
1812 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1813
1814 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1815 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1816 displaced->step_closure);
1817 }
1818
1819 /* Do we need to do it the hard way, w/temp breakpoints? */
1820 else if (step)
1821 step = maybe_software_singlestep (gdbarch, pc);
1822
1823 /* Currently, our software single-step implementation leads to different
1824 results than hardware single-stepping in one situation: when stepping
1825 into delivering a signal which has an associated signal handler,
1826 hardware single-step will stop at the first instruction of the handler,
1827 while software single-step will simply skip execution of the handler.
1828
1829 For now, this difference in behavior is accepted since there is no
1830 easy way to actually implement single-stepping into a signal handler
1831 without kernel support.
1832
1833 However, there is one scenario where this difference leads to follow-on
1834 problems: if we're stepping off a breakpoint by removing all breakpoints
1835 and then single-stepping. In this case, the software single-step
1836 behavior means that even if there is a *breakpoint* in the signal
1837 handler, GDB still would not stop.
1838
1839 Fortunately, we can at least fix this particular issue. We detect
1840 here the case where we are about to deliver a signal while software
1841 single-stepping with breakpoints removed. In this situation, we
1842 revert the decisions to remove all breakpoints and insert single-
1843 step breakpoints, and instead we install a step-resume breakpoint
1844 at the current address, deliver the signal without stepping, and
1845 once we arrive back at the step-resume breakpoint, actually step
1846 over the breakpoint we originally wanted to step over. */
1847 if (singlestep_breakpoints_inserted_p
1848 && tp->control.trap_expected && sig != GDB_SIGNAL_0)
1849 {
1850 /* If we have nested signals or a pending signal is delivered
1851 immediately after a handler returns, might might already have
1852 a step-resume breakpoint set on the earlier handler. We cannot
1853 set another step-resume breakpoint; just continue on until the
1854 original breakpoint is hit. */
1855 if (tp->control.step_resume_breakpoint == NULL)
1856 {
1857 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
1858 tp->step_after_step_resume_breakpoint = 1;
1859 }
1860
1861 remove_single_step_breakpoints ();
1862 singlestep_breakpoints_inserted_p = 0;
1863
1864 insert_breakpoints ();
1865 tp->control.trap_expected = 0;
1866 }
1867
1868 if (should_resume)
1869 {
1870 ptid_t resume_ptid;
1871
1872 /* If STEP is set, it's a request to use hardware stepping
1873 facilities. But in that case, we should never
1874 use singlestep breakpoint. */
1875 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1876
1877 /* Decide the set of threads to ask the target to resume. Start
1878 by assuming everything will be resumed, than narrow the set
1879 by applying increasingly restricting conditions. */
1880 resume_ptid = user_visible_resume_ptid (step);
1881
1882 /* Maybe resume a single thread after all. */
1883 if (singlestep_breakpoints_inserted_p
1884 && stepping_past_singlestep_breakpoint)
1885 {
1886 /* The situation here is as follows. In thread T1 we wanted to
1887 single-step. Lacking hardware single-stepping we've
1888 set breakpoint at the PC of the next instruction -- call it
1889 P. After resuming, we've hit that breakpoint in thread T2.
1890 Now we've removed original breakpoint, inserted breakpoint
1891 at P+1, and try to step to advance T2 past breakpoint.
1892 We need to step only T2, as if T1 is allowed to freely run,
1893 it can run past P, and if other threads are allowed to run,
1894 they can hit breakpoint at P+1, and nested hits of single-step
1895 breakpoints is not something we'd want -- that's complicated
1896 to support, and has no value. */
1897 resume_ptid = inferior_ptid;
1898 }
1899 else if ((step || singlestep_breakpoints_inserted_p)
1900 && tp->control.trap_expected)
1901 {
1902 /* We're allowing a thread to run past a breakpoint it has
1903 hit, by single-stepping the thread with the breakpoint
1904 removed. In which case, we need to single-step only this
1905 thread, and keep others stopped, as they can miss this
1906 breakpoint if allowed to run.
1907
1908 The current code actually removes all breakpoints when
1909 doing this, not just the one being stepped over, so if we
1910 let other threads run, we can actually miss any
1911 breakpoint, not just the one at PC. */
1912 resume_ptid = inferior_ptid;
1913 }
1914
1915 if (gdbarch_cannot_step_breakpoint (gdbarch))
1916 {
1917 /* Most targets can step a breakpoint instruction, thus
1918 executing it normally. But if this one cannot, just
1919 continue and we will hit it anyway. */
1920 if (step && breakpoint_inserted_here_p (aspace, pc))
1921 step = 0;
1922 }
1923
1924 if (debug_displaced
1925 && use_displaced_stepping (gdbarch)
1926 && tp->control.trap_expected)
1927 {
1928 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1929 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1930 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1931 gdb_byte buf[4];
1932
1933 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1934 paddress (resume_gdbarch, actual_pc));
1935 read_memory (actual_pc, buf, sizeof (buf));
1936 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1937 }
1938
1939 /* Install inferior's terminal modes. */
1940 target_terminal_inferior ();
1941
1942 /* Avoid confusing the next resume, if the next stop/resume
1943 happens to apply to another thread. */
1944 tp->suspend.stop_signal = GDB_SIGNAL_0;
1945
1946 /* Advise target which signals may be handled silently. If we have
1947 removed breakpoints because we are stepping over one (which can
1948 happen only if we are not using displaced stepping), we need to
1949 receive all signals to avoid accidentally skipping a breakpoint
1950 during execution of a signal handler. */
1951 if ((step || singlestep_breakpoints_inserted_p)
1952 && tp->control.trap_expected
1953 && !use_displaced_stepping (gdbarch))
1954 target_pass_signals (0, NULL);
1955 else
1956 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
1957
1958 target_resume (resume_ptid, step, sig);
1959 }
1960
1961 discard_cleanups (old_cleanups);
1962 }
1963 \f
1964 /* Proceeding. */
1965
1966 /* Clear out all variables saying what to do when inferior is continued.
1967 First do this, then set the ones you want, then call `proceed'. */
1968
1969 static void
1970 clear_proceed_status_thread (struct thread_info *tp)
1971 {
1972 if (debug_infrun)
1973 fprintf_unfiltered (gdb_stdlog,
1974 "infrun: clear_proceed_status_thread (%s)\n",
1975 target_pid_to_str (tp->ptid));
1976
1977 tp->control.trap_expected = 0;
1978 tp->control.step_range_start = 0;
1979 tp->control.step_range_end = 0;
1980 tp->control.step_frame_id = null_frame_id;
1981 tp->control.step_stack_frame_id = null_frame_id;
1982 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
1983 tp->stop_requested = 0;
1984
1985 tp->control.stop_step = 0;
1986
1987 tp->control.proceed_to_finish = 0;
1988
1989 /* Discard any remaining commands or status from previous stop. */
1990 bpstat_clear (&tp->control.stop_bpstat);
1991 }
1992
1993 static int
1994 clear_proceed_status_callback (struct thread_info *tp, void *data)
1995 {
1996 if (is_exited (tp->ptid))
1997 return 0;
1998
1999 clear_proceed_status_thread (tp);
2000 return 0;
2001 }
2002
2003 void
2004 clear_proceed_status (void)
2005 {
2006 if (!non_stop)
2007 {
2008 /* In all-stop mode, delete the per-thread status of all
2009 threads, even if inferior_ptid is null_ptid, there may be
2010 threads on the list. E.g., we may be launching a new
2011 process, while selecting the executable. */
2012 iterate_over_threads (clear_proceed_status_callback, NULL);
2013 }
2014
2015 if (!ptid_equal (inferior_ptid, null_ptid))
2016 {
2017 struct inferior *inferior;
2018
2019 if (non_stop)
2020 {
2021 /* If in non-stop mode, only delete the per-thread status of
2022 the current thread. */
2023 clear_proceed_status_thread (inferior_thread ());
2024 }
2025
2026 inferior = current_inferior ();
2027 inferior->control.stop_soon = NO_STOP_QUIETLY;
2028 }
2029
2030 stop_after_trap = 0;
2031
2032 observer_notify_about_to_proceed ();
2033
2034 if (stop_registers)
2035 {
2036 regcache_xfree (stop_registers);
2037 stop_registers = NULL;
2038 }
2039 }
2040
2041 /* Check the current thread against the thread that reported the most recent
2042 event. If a step-over is required return TRUE and set the current thread
2043 to the old thread. Otherwise return FALSE.
2044
2045 This should be suitable for any targets that support threads. */
2046
2047 static int
2048 prepare_to_proceed (int step)
2049 {
2050 ptid_t wait_ptid;
2051 struct target_waitstatus wait_status;
2052 int schedlock_enabled;
2053
2054 /* With non-stop mode on, threads are always handled individually. */
2055 gdb_assert (! non_stop);
2056
2057 /* Get the last target status returned by target_wait(). */
2058 get_last_target_status (&wait_ptid, &wait_status);
2059
2060 /* Make sure we were stopped at a breakpoint. */
2061 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2062 || (wait_status.value.sig != GDB_SIGNAL_TRAP
2063 && wait_status.value.sig != GDB_SIGNAL_ILL
2064 && wait_status.value.sig != GDB_SIGNAL_SEGV
2065 && wait_status.value.sig != GDB_SIGNAL_EMT))
2066 {
2067 return 0;
2068 }
2069
2070 schedlock_enabled = (scheduler_mode == schedlock_on
2071 || (scheduler_mode == schedlock_step
2072 && step));
2073
2074 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2075 if (schedlock_enabled)
2076 return 0;
2077
2078 /* Don't switch over if we're about to resume some other process
2079 other than WAIT_PTID's, and schedule-multiple is off. */
2080 if (!sched_multi
2081 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2082 return 0;
2083
2084 /* Switched over from WAIT_PID. */
2085 if (!ptid_equal (wait_ptid, minus_one_ptid)
2086 && !ptid_equal (inferior_ptid, wait_ptid))
2087 {
2088 struct regcache *regcache = get_thread_regcache (wait_ptid);
2089
2090 if (breakpoint_here_p (get_regcache_aspace (regcache),
2091 regcache_read_pc (regcache)))
2092 {
2093 /* If stepping, remember current thread to switch back to. */
2094 if (step)
2095 deferred_step_ptid = inferior_ptid;
2096
2097 /* Switch back to WAIT_PID thread. */
2098 switch_to_thread (wait_ptid);
2099
2100 if (debug_infrun)
2101 fprintf_unfiltered (gdb_stdlog,
2102 "infrun: prepare_to_proceed (step=%d), "
2103 "switched to [%s]\n",
2104 step, target_pid_to_str (inferior_ptid));
2105
2106 /* We return 1 to indicate that there is a breakpoint here,
2107 so we need to step over it before continuing to avoid
2108 hitting it straight away. */
2109 return 1;
2110 }
2111 }
2112
2113 return 0;
2114 }
2115
2116 /* Basic routine for continuing the program in various fashions.
2117
2118 ADDR is the address to resume at, or -1 for resume where stopped.
2119 SIGGNAL is the signal to give it, or 0 for none,
2120 or -1 for act according to how it stopped.
2121 STEP is nonzero if should trap after one instruction.
2122 -1 means return after that and print nothing.
2123 You should probably set various step_... variables
2124 before calling here, if you are stepping.
2125
2126 You should call clear_proceed_status before calling proceed. */
2127
2128 void
2129 proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
2130 {
2131 struct regcache *regcache;
2132 struct gdbarch *gdbarch;
2133 struct thread_info *tp;
2134 CORE_ADDR pc;
2135 struct address_space *aspace;
2136 int oneproc = 0;
2137
2138 /* If we're stopped at a fork/vfork, follow the branch set by the
2139 "set follow-fork-mode" command; otherwise, we'll just proceed
2140 resuming the current thread. */
2141 if (!follow_fork ())
2142 {
2143 /* The target for some reason decided not to resume. */
2144 normal_stop ();
2145 if (target_can_async_p ())
2146 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2147 return;
2148 }
2149
2150 /* We'll update this if & when we switch to a new thread. */
2151 previous_inferior_ptid = inferior_ptid;
2152
2153 regcache = get_current_regcache ();
2154 gdbarch = get_regcache_arch (regcache);
2155 aspace = get_regcache_aspace (regcache);
2156 pc = regcache_read_pc (regcache);
2157
2158 if (step > 0)
2159 step_start_function = find_pc_function (pc);
2160 if (step < 0)
2161 stop_after_trap = 1;
2162
2163 if (addr == (CORE_ADDR) -1)
2164 {
2165 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
2166 && execution_direction != EXEC_REVERSE)
2167 /* There is a breakpoint at the address we will resume at,
2168 step one instruction before inserting breakpoints so that
2169 we do not stop right away (and report a second hit at this
2170 breakpoint).
2171
2172 Note, we don't do this in reverse, because we won't
2173 actually be executing the breakpoint insn anyway.
2174 We'll be (un-)executing the previous instruction. */
2175
2176 oneproc = 1;
2177 else if (gdbarch_single_step_through_delay_p (gdbarch)
2178 && gdbarch_single_step_through_delay (gdbarch,
2179 get_current_frame ()))
2180 /* We stepped onto an instruction that needs to be stepped
2181 again before re-inserting the breakpoint, do so. */
2182 oneproc = 1;
2183 }
2184 else
2185 {
2186 regcache_write_pc (regcache, addr);
2187 }
2188
2189 if (debug_infrun)
2190 fprintf_unfiltered (gdb_stdlog,
2191 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2192 paddress (gdbarch, addr), siggnal, step);
2193
2194 if (non_stop)
2195 /* In non-stop, each thread is handled individually. The context
2196 must already be set to the right thread here. */
2197 ;
2198 else
2199 {
2200 /* In a multi-threaded task we may select another thread and
2201 then continue or step.
2202
2203 But if the old thread was stopped at a breakpoint, it will
2204 immediately cause another breakpoint stop without any
2205 execution (i.e. it will report a breakpoint hit incorrectly).
2206 So we must step over it first.
2207
2208 prepare_to_proceed checks the current thread against the
2209 thread that reported the most recent event. If a step-over
2210 is required it returns TRUE and sets the current thread to
2211 the old thread. */
2212 if (prepare_to_proceed (step))
2213 oneproc = 1;
2214 }
2215
2216 /* prepare_to_proceed may change the current thread. */
2217 tp = inferior_thread ();
2218
2219 if (oneproc)
2220 {
2221 tp->control.trap_expected = 1;
2222 /* If displaced stepping is enabled, we can step over the
2223 breakpoint without hitting it, so leave all breakpoints
2224 inserted. Otherwise we need to disable all breakpoints, step
2225 one instruction, and then re-add them when that step is
2226 finished. */
2227 if (!use_displaced_stepping (gdbarch))
2228 remove_breakpoints ();
2229 }
2230
2231 /* We can insert breakpoints if we're not trying to step over one,
2232 or if we are stepping over one but we're using displaced stepping
2233 to do so. */
2234 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2235 insert_breakpoints ();
2236
2237 if (!non_stop)
2238 {
2239 /* Pass the last stop signal to the thread we're resuming,
2240 irrespective of whether the current thread is the thread that
2241 got the last event or not. This was historically GDB's
2242 behaviour before keeping a stop_signal per thread. */
2243
2244 struct thread_info *last_thread;
2245 ptid_t last_ptid;
2246 struct target_waitstatus last_status;
2247
2248 get_last_target_status (&last_ptid, &last_status);
2249 if (!ptid_equal (inferior_ptid, last_ptid)
2250 && !ptid_equal (last_ptid, null_ptid)
2251 && !ptid_equal (last_ptid, minus_one_ptid))
2252 {
2253 last_thread = find_thread_ptid (last_ptid);
2254 if (last_thread)
2255 {
2256 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2257 last_thread->suspend.stop_signal = GDB_SIGNAL_0;
2258 }
2259 }
2260 }
2261
2262 if (siggnal != GDB_SIGNAL_DEFAULT)
2263 tp->suspend.stop_signal = siggnal;
2264 /* If this signal should not be seen by program,
2265 give it zero. Used for debugging signals. */
2266 else if (!signal_program[tp->suspend.stop_signal])
2267 tp->suspend.stop_signal = GDB_SIGNAL_0;
2268
2269 annotate_starting ();
2270
2271 /* Make sure that output from GDB appears before output from the
2272 inferior. */
2273 gdb_flush (gdb_stdout);
2274
2275 /* Refresh prev_pc value just prior to resuming. This used to be
2276 done in stop_stepping, however, setting prev_pc there did not handle
2277 scenarios such as inferior function calls or returning from
2278 a function via the return command. In those cases, the prev_pc
2279 value was not set properly for subsequent commands. The prev_pc value
2280 is used to initialize the starting line number in the ecs. With an
2281 invalid value, the gdb next command ends up stopping at the position
2282 represented by the next line table entry past our start position.
2283 On platforms that generate one line table entry per line, this
2284 is not a problem. However, on the ia64, the compiler generates
2285 extraneous line table entries that do not increase the line number.
2286 When we issue the gdb next command on the ia64 after an inferior call
2287 or a return command, we often end up a few instructions forward, still
2288 within the original line we started.
2289
2290 An attempt was made to refresh the prev_pc at the same time the
2291 execution_control_state is initialized (for instance, just before
2292 waiting for an inferior event). But this approach did not work
2293 because of platforms that use ptrace, where the pc register cannot
2294 be read unless the inferior is stopped. At that point, we are not
2295 guaranteed the inferior is stopped and so the regcache_read_pc() call
2296 can fail. Setting the prev_pc value here ensures the value is updated
2297 correctly when the inferior is stopped. */
2298 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2299
2300 /* Fill in with reasonable starting values. */
2301 init_thread_stepping_state (tp);
2302
2303 /* Reset to normal state. */
2304 init_infwait_state ();
2305
2306 /* Resume inferior. */
2307 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
2308
2309 /* Wait for it to stop (if not standalone)
2310 and in any case decode why it stopped, and act accordingly. */
2311 /* Do this only if we are not using the event loop, or if the target
2312 does not support asynchronous execution. */
2313 if (!target_can_async_p ())
2314 {
2315 wait_for_inferior ();
2316 normal_stop ();
2317 }
2318 }
2319 \f
2320
2321 /* Start remote-debugging of a machine over a serial link. */
2322
2323 void
2324 start_remote (int from_tty)
2325 {
2326 struct inferior *inferior;
2327
2328 inferior = current_inferior ();
2329 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2330
2331 /* Always go on waiting for the target, regardless of the mode. */
2332 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2333 indicate to wait_for_inferior that a target should timeout if
2334 nothing is returned (instead of just blocking). Because of this,
2335 targets expecting an immediate response need to, internally, set
2336 things up so that the target_wait() is forced to eventually
2337 timeout. */
2338 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2339 differentiate to its caller what the state of the target is after
2340 the initial open has been performed. Here we're assuming that
2341 the target has stopped. It should be possible to eventually have
2342 target_open() return to the caller an indication that the target
2343 is currently running and GDB state should be set to the same as
2344 for an async run. */
2345 wait_for_inferior ();
2346
2347 /* Now that the inferior has stopped, do any bookkeeping like
2348 loading shared libraries. We want to do this before normal_stop,
2349 so that the displayed frame is up to date. */
2350 post_create_inferior (&current_target, from_tty);
2351
2352 normal_stop ();
2353 }
2354
2355 /* Initialize static vars when a new inferior begins. */
2356
2357 void
2358 init_wait_for_inferior (void)
2359 {
2360 /* These are meaningless until the first time through wait_for_inferior. */
2361
2362 breakpoint_init_inferior (inf_starting);
2363
2364 clear_proceed_status ();
2365
2366 stepping_past_singlestep_breakpoint = 0;
2367 deferred_step_ptid = null_ptid;
2368
2369 target_last_wait_ptid = minus_one_ptid;
2370
2371 previous_inferior_ptid = inferior_ptid;
2372 init_infwait_state ();
2373
2374 /* Discard any skipped inlined frames. */
2375 clear_inline_frame_state (minus_one_ptid);
2376 }
2377
2378 \f
2379 /* This enum encodes possible reasons for doing a target_wait, so that
2380 wfi can call target_wait in one place. (Ultimately the call will be
2381 moved out of the infinite loop entirely.) */
2382
2383 enum infwait_states
2384 {
2385 infwait_normal_state,
2386 infwait_thread_hop_state,
2387 infwait_step_watch_state,
2388 infwait_nonstep_watch_state
2389 };
2390
2391 /* The PTID we'll do a target_wait on.*/
2392 ptid_t waiton_ptid;
2393
2394 /* Current inferior wait state. */
2395 static enum infwait_states infwait_state;
2396
2397 /* Data to be passed around while handling an event. This data is
2398 discarded between events. */
2399 struct execution_control_state
2400 {
2401 ptid_t ptid;
2402 /* The thread that got the event, if this was a thread event; NULL
2403 otherwise. */
2404 struct thread_info *event_thread;
2405
2406 struct target_waitstatus ws;
2407 int random_signal;
2408 int stop_func_filled_in;
2409 CORE_ADDR stop_func_start;
2410 CORE_ADDR stop_func_end;
2411 const char *stop_func_name;
2412 int wait_some_more;
2413 };
2414
2415 static void handle_inferior_event (struct execution_control_state *ecs);
2416
2417 static void handle_step_into_function (struct gdbarch *gdbarch,
2418 struct execution_control_state *ecs);
2419 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2420 struct execution_control_state *ecs);
2421 static void check_exception_resume (struct execution_control_state *,
2422 struct frame_info *);
2423
2424 static void stop_stepping (struct execution_control_state *ecs);
2425 static void prepare_to_wait (struct execution_control_state *ecs);
2426 static void keep_going (struct execution_control_state *ecs);
2427
2428 /* Callback for iterate over threads. If the thread is stopped, but
2429 the user/frontend doesn't know about that yet, go through
2430 normal_stop, as if the thread had just stopped now. ARG points at
2431 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2432 ptid_is_pid(PTID) is true, applies to all threads of the process
2433 pointed at by PTID. Otherwise, apply only to the thread pointed by
2434 PTID. */
2435
2436 static int
2437 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2438 {
2439 ptid_t ptid = * (ptid_t *) arg;
2440
2441 if ((ptid_equal (info->ptid, ptid)
2442 || ptid_equal (minus_one_ptid, ptid)
2443 || (ptid_is_pid (ptid)
2444 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2445 && is_running (info->ptid)
2446 && !is_executing (info->ptid))
2447 {
2448 struct cleanup *old_chain;
2449 struct execution_control_state ecss;
2450 struct execution_control_state *ecs = &ecss;
2451
2452 memset (ecs, 0, sizeof (*ecs));
2453
2454 old_chain = make_cleanup_restore_current_thread ();
2455
2456 /* Go through handle_inferior_event/normal_stop, so we always
2457 have consistent output as if the stop event had been
2458 reported. */
2459 ecs->ptid = info->ptid;
2460 ecs->event_thread = find_thread_ptid (info->ptid);
2461 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2462 ecs->ws.value.sig = GDB_SIGNAL_0;
2463
2464 handle_inferior_event (ecs);
2465
2466 if (!ecs->wait_some_more)
2467 {
2468 struct thread_info *tp;
2469
2470 normal_stop ();
2471
2472 /* Finish off the continuations. */
2473 tp = inferior_thread ();
2474 do_all_intermediate_continuations_thread (tp, 1);
2475 do_all_continuations_thread (tp, 1);
2476 }
2477
2478 do_cleanups (old_chain);
2479 }
2480
2481 return 0;
2482 }
2483
2484 /* This function is attached as a "thread_stop_requested" observer.
2485 Cleanup local state that assumed the PTID was to be resumed, and
2486 report the stop to the frontend. */
2487
2488 static void
2489 infrun_thread_stop_requested (ptid_t ptid)
2490 {
2491 struct displaced_step_inferior_state *displaced;
2492
2493 /* PTID was requested to stop. Remove it from the displaced
2494 stepping queue, so we don't try to resume it automatically. */
2495
2496 for (displaced = displaced_step_inferior_states;
2497 displaced;
2498 displaced = displaced->next)
2499 {
2500 struct displaced_step_request *it, **prev_next_p;
2501
2502 it = displaced->step_request_queue;
2503 prev_next_p = &displaced->step_request_queue;
2504 while (it)
2505 {
2506 if (ptid_match (it->ptid, ptid))
2507 {
2508 *prev_next_p = it->next;
2509 it->next = NULL;
2510 xfree (it);
2511 }
2512 else
2513 {
2514 prev_next_p = &it->next;
2515 }
2516
2517 it = *prev_next_p;
2518 }
2519 }
2520
2521 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2522 }
2523
2524 static void
2525 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2526 {
2527 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2528 nullify_last_target_wait_ptid ();
2529 }
2530
2531 /* Callback for iterate_over_threads. */
2532
2533 static int
2534 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2535 {
2536 if (is_exited (info->ptid))
2537 return 0;
2538
2539 delete_step_resume_breakpoint (info);
2540 delete_exception_resume_breakpoint (info);
2541 return 0;
2542 }
2543
2544 /* In all-stop, delete the step resume breakpoint of any thread that
2545 had one. In non-stop, delete the step resume breakpoint of the
2546 thread that just stopped. */
2547
2548 static void
2549 delete_step_thread_step_resume_breakpoint (void)
2550 {
2551 if (!target_has_execution
2552 || ptid_equal (inferior_ptid, null_ptid))
2553 /* If the inferior has exited, we have already deleted the step
2554 resume breakpoints out of GDB's lists. */
2555 return;
2556
2557 if (non_stop)
2558 {
2559 /* If in non-stop mode, only delete the step-resume or
2560 longjmp-resume breakpoint of the thread that just stopped
2561 stepping. */
2562 struct thread_info *tp = inferior_thread ();
2563
2564 delete_step_resume_breakpoint (tp);
2565 delete_exception_resume_breakpoint (tp);
2566 }
2567 else
2568 /* In all-stop mode, delete all step-resume and longjmp-resume
2569 breakpoints of any thread that had them. */
2570 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2571 }
2572
2573 /* A cleanup wrapper. */
2574
2575 static void
2576 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2577 {
2578 delete_step_thread_step_resume_breakpoint ();
2579 }
2580
2581 /* Pretty print the results of target_wait, for debugging purposes. */
2582
2583 static void
2584 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2585 const struct target_waitstatus *ws)
2586 {
2587 char *status_string = target_waitstatus_to_string (ws);
2588 struct ui_file *tmp_stream = mem_fileopen ();
2589 char *text;
2590
2591 /* The text is split over several lines because it was getting too long.
2592 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2593 output as a unit; we want only one timestamp printed if debug_timestamp
2594 is set. */
2595
2596 fprintf_unfiltered (tmp_stream,
2597 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2598 if (PIDGET (waiton_ptid) != -1)
2599 fprintf_unfiltered (tmp_stream,
2600 " [%s]", target_pid_to_str (waiton_ptid));
2601 fprintf_unfiltered (tmp_stream, ", status) =\n");
2602 fprintf_unfiltered (tmp_stream,
2603 "infrun: %d [%s],\n",
2604 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2605 fprintf_unfiltered (tmp_stream,
2606 "infrun: %s\n",
2607 status_string);
2608
2609 text = ui_file_xstrdup (tmp_stream, NULL);
2610
2611 /* This uses %s in part to handle %'s in the text, but also to avoid
2612 a gcc error: the format attribute requires a string literal. */
2613 fprintf_unfiltered (gdb_stdlog, "%s", text);
2614
2615 xfree (status_string);
2616 xfree (text);
2617 ui_file_delete (tmp_stream);
2618 }
2619
2620 /* Prepare and stabilize the inferior for detaching it. E.g.,
2621 detaching while a thread is displaced stepping is a recipe for
2622 crashing it, as nothing would readjust the PC out of the scratch
2623 pad. */
2624
2625 void
2626 prepare_for_detach (void)
2627 {
2628 struct inferior *inf = current_inferior ();
2629 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2630 struct cleanup *old_chain_1;
2631 struct displaced_step_inferior_state *displaced;
2632
2633 displaced = get_displaced_stepping_state (inf->pid);
2634
2635 /* Is any thread of this process displaced stepping? If not,
2636 there's nothing else to do. */
2637 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2638 return;
2639
2640 if (debug_infrun)
2641 fprintf_unfiltered (gdb_stdlog,
2642 "displaced-stepping in-process while detaching");
2643
2644 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2645 inf->detaching = 1;
2646
2647 while (!ptid_equal (displaced->step_ptid, null_ptid))
2648 {
2649 struct cleanup *old_chain_2;
2650 struct execution_control_state ecss;
2651 struct execution_control_state *ecs;
2652
2653 ecs = &ecss;
2654 memset (ecs, 0, sizeof (*ecs));
2655
2656 overlay_cache_invalid = 1;
2657
2658 if (deprecated_target_wait_hook)
2659 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2660 else
2661 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2662
2663 if (debug_infrun)
2664 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2665
2666 /* If an error happens while handling the event, propagate GDB's
2667 knowledge of the executing state to the frontend/user running
2668 state. */
2669 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2670 &minus_one_ptid);
2671
2672 /* Now figure out what to do with the result of the result. */
2673 handle_inferior_event (ecs);
2674
2675 /* No error, don't finish the state yet. */
2676 discard_cleanups (old_chain_2);
2677
2678 /* Breakpoints and watchpoints are not installed on the target
2679 at this point, and signals are passed directly to the
2680 inferior, so this must mean the process is gone. */
2681 if (!ecs->wait_some_more)
2682 {
2683 discard_cleanups (old_chain_1);
2684 error (_("Program exited while detaching"));
2685 }
2686 }
2687
2688 discard_cleanups (old_chain_1);
2689 }
2690
2691 /* Wait for control to return from inferior to debugger.
2692
2693 If inferior gets a signal, we may decide to start it up again
2694 instead of returning. That is why there is a loop in this function.
2695 When this function actually returns it means the inferior
2696 should be left stopped and GDB should read more commands. */
2697
2698 void
2699 wait_for_inferior (void)
2700 {
2701 struct cleanup *old_cleanups;
2702
2703 if (debug_infrun)
2704 fprintf_unfiltered
2705 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
2706
2707 old_cleanups =
2708 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2709
2710 while (1)
2711 {
2712 struct execution_control_state ecss;
2713 struct execution_control_state *ecs = &ecss;
2714 struct cleanup *old_chain;
2715
2716 memset (ecs, 0, sizeof (*ecs));
2717
2718 overlay_cache_invalid = 1;
2719
2720 if (deprecated_target_wait_hook)
2721 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2722 else
2723 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2724
2725 if (debug_infrun)
2726 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2727
2728 /* If an error happens while handling the event, propagate GDB's
2729 knowledge of the executing state to the frontend/user running
2730 state. */
2731 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2732
2733 /* Now figure out what to do with the result of the result. */
2734 handle_inferior_event (ecs);
2735
2736 /* No error, don't finish the state yet. */
2737 discard_cleanups (old_chain);
2738
2739 if (!ecs->wait_some_more)
2740 break;
2741 }
2742
2743 do_cleanups (old_cleanups);
2744 }
2745
2746 /* Asynchronous version of wait_for_inferior. It is called by the
2747 event loop whenever a change of state is detected on the file
2748 descriptor corresponding to the target. It can be called more than
2749 once to complete a single execution command. In such cases we need
2750 to keep the state in a global variable ECSS. If it is the last time
2751 that this function is called for a single execution command, then
2752 report to the user that the inferior has stopped, and do the
2753 necessary cleanups. */
2754
2755 void
2756 fetch_inferior_event (void *client_data)
2757 {
2758 struct execution_control_state ecss;
2759 struct execution_control_state *ecs = &ecss;
2760 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2761 struct cleanup *ts_old_chain;
2762 int was_sync = sync_execution;
2763 int cmd_done = 0;
2764
2765 memset (ecs, 0, sizeof (*ecs));
2766
2767 /* We're handling a live event, so make sure we're doing live
2768 debugging. If we're looking at traceframes while the target is
2769 running, we're going to need to get back to that mode after
2770 handling the event. */
2771 if (non_stop)
2772 {
2773 make_cleanup_restore_current_traceframe ();
2774 set_current_traceframe (-1);
2775 }
2776
2777 if (non_stop)
2778 /* In non-stop mode, the user/frontend should not notice a thread
2779 switch due to internal events. Make sure we reverse to the
2780 user selected thread and frame after handling the event and
2781 running any breakpoint commands. */
2782 make_cleanup_restore_current_thread ();
2783
2784 overlay_cache_invalid = 1;
2785
2786 make_cleanup_restore_integer (&execution_direction);
2787 execution_direction = target_execution_direction ();
2788
2789 if (deprecated_target_wait_hook)
2790 ecs->ptid =
2791 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2792 else
2793 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2794
2795 if (debug_infrun)
2796 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2797
2798 /* If an error happens while handling the event, propagate GDB's
2799 knowledge of the executing state to the frontend/user running
2800 state. */
2801 if (!non_stop)
2802 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2803 else
2804 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2805
2806 /* Get executed before make_cleanup_restore_current_thread above to apply
2807 still for the thread which has thrown the exception. */
2808 make_bpstat_clear_actions_cleanup ();
2809
2810 /* Now figure out what to do with the result of the result. */
2811 handle_inferior_event (ecs);
2812
2813 if (!ecs->wait_some_more)
2814 {
2815 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2816
2817 delete_step_thread_step_resume_breakpoint ();
2818
2819 /* We may not find an inferior if this was a process exit. */
2820 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
2821 normal_stop ();
2822
2823 if (target_has_execution
2824 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
2825 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2826 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2827 && ecs->event_thread->step_multi
2828 && ecs->event_thread->control.stop_step)
2829 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2830 else
2831 {
2832 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2833 cmd_done = 1;
2834 }
2835 }
2836
2837 /* No error, don't finish the thread states yet. */
2838 discard_cleanups (ts_old_chain);
2839
2840 /* Revert thread and frame. */
2841 do_cleanups (old_chain);
2842
2843 /* If the inferior was in sync execution mode, and now isn't,
2844 restore the prompt (a synchronous execution command has finished,
2845 and we're ready for input). */
2846 if (interpreter_async && was_sync && !sync_execution)
2847 display_gdb_prompt (0);
2848
2849 if (cmd_done
2850 && !was_sync
2851 && exec_done_display_p
2852 && (ptid_equal (inferior_ptid, null_ptid)
2853 || !is_running (inferior_ptid)))
2854 printf_unfiltered (_("completed.\n"));
2855 }
2856
2857 /* Record the frame and location we're currently stepping through. */
2858 void
2859 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2860 {
2861 struct thread_info *tp = inferior_thread ();
2862
2863 tp->control.step_frame_id = get_frame_id (frame);
2864 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
2865
2866 tp->current_symtab = sal.symtab;
2867 tp->current_line = sal.line;
2868 }
2869
2870 /* Clear context switchable stepping state. */
2871
2872 void
2873 init_thread_stepping_state (struct thread_info *tss)
2874 {
2875 tss->stepping_over_breakpoint = 0;
2876 tss->step_after_step_resume_breakpoint = 0;
2877 }
2878
2879 /* Return the cached copy of the last pid/waitstatus returned by
2880 target_wait()/deprecated_target_wait_hook(). The data is actually
2881 cached by handle_inferior_event(), which gets called immediately
2882 after target_wait()/deprecated_target_wait_hook(). */
2883
2884 void
2885 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2886 {
2887 *ptidp = target_last_wait_ptid;
2888 *status = target_last_waitstatus;
2889 }
2890
2891 void
2892 nullify_last_target_wait_ptid (void)
2893 {
2894 target_last_wait_ptid = minus_one_ptid;
2895 }
2896
2897 /* Switch thread contexts. */
2898
2899 static void
2900 context_switch (ptid_t ptid)
2901 {
2902 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
2903 {
2904 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2905 target_pid_to_str (inferior_ptid));
2906 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2907 target_pid_to_str (ptid));
2908 }
2909
2910 switch_to_thread (ptid);
2911 }
2912
2913 static void
2914 adjust_pc_after_break (struct execution_control_state *ecs)
2915 {
2916 struct regcache *regcache;
2917 struct gdbarch *gdbarch;
2918 struct address_space *aspace;
2919 CORE_ADDR breakpoint_pc;
2920
2921 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2922 we aren't, just return.
2923
2924 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2925 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2926 implemented by software breakpoints should be handled through the normal
2927 breakpoint layer.
2928
2929 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2930 different signals (SIGILL or SIGEMT for instance), but it is less
2931 clear where the PC is pointing afterwards. It may not match
2932 gdbarch_decr_pc_after_break. I don't know any specific target that
2933 generates these signals at breakpoints (the code has been in GDB since at
2934 least 1992) so I can not guess how to handle them here.
2935
2936 In earlier versions of GDB, a target with
2937 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2938 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2939 target with both of these set in GDB history, and it seems unlikely to be
2940 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2941
2942 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2943 return;
2944
2945 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
2946 return;
2947
2948 /* In reverse execution, when a breakpoint is hit, the instruction
2949 under it has already been de-executed. The reported PC always
2950 points at the breakpoint address, so adjusting it further would
2951 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2952 architecture:
2953
2954 B1 0x08000000 : INSN1
2955 B2 0x08000001 : INSN2
2956 0x08000002 : INSN3
2957 PC -> 0x08000003 : INSN4
2958
2959 Say you're stopped at 0x08000003 as above. Reverse continuing
2960 from that point should hit B2 as below. Reading the PC when the
2961 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2962 been de-executed already.
2963
2964 B1 0x08000000 : INSN1
2965 B2 PC -> 0x08000001 : INSN2
2966 0x08000002 : INSN3
2967 0x08000003 : INSN4
2968
2969 We can't apply the same logic as for forward execution, because
2970 we would wrongly adjust the PC to 0x08000000, since there's a
2971 breakpoint at PC - 1. We'd then report a hit on B1, although
2972 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2973 behaviour. */
2974 if (execution_direction == EXEC_REVERSE)
2975 return;
2976
2977 /* If this target does not decrement the PC after breakpoints, then
2978 we have nothing to do. */
2979 regcache = get_thread_regcache (ecs->ptid);
2980 gdbarch = get_regcache_arch (regcache);
2981 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2982 return;
2983
2984 aspace = get_regcache_aspace (regcache);
2985
2986 /* Find the location where (if we've hit a breakpoint) the
2987 breakpoint would be. */
2988 breakpoint_pc = regcache_read_pc (regcache)
2989 - gdbarch_decr_pc_after_break (gdbarch);
2990
2991 /* Check whether there actually is a software breakpoint inserted at
2992 that location.
2993
2994 If in non-stop mode, a race condition is possible where we've
2995 removed a breakpoint, but stop events for that breakpoint were
2996 already queued and arrive later. To suppress those spurious
2997 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2998 and retire them after a number of stop events are reported. */
2999 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3000 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
3001 {
3002 struct cleanup *old_cleanups = NULL;
3003
3004 if (RECORD_IS_USED)
3005 old_cleanups = record_gdb_operation_disable_set ();
3006
3007 /* When using hardware single-step, a SIGTRAP is reported for both
3008 a completed single-step and a software breakpoint. Need to
3009 differentiate between the two, as the latter needs adjusting
3010 but the former does not.
3011
3012 The SIGTRAP can be due to a completed hardware single-step only if
3013 - we didn't insert software single-step breakpoints
3014 - the thread to be examined is still the current thread
3015 - this thread is currently being stepped
3016
3017 If any of these events did not occur, we must have stopped due
3018 to hitting a software breakpoint, and have to back up to the
3019 breakpoint address.
3020
3021 As a special case, we could have hardware single-stepped a
3022 software breakpoint. In this case (prev_pc == breakpoint_pc),
3023 we also need to back up to the breakpoint address. */
3024
3025 if (singlestep_breakpoints_inserted_p
3026 || !ptid_equal (ecs->ptid, inferior_ptid)
3027 || !currently_stepping (ecs->event_thread)
3028 || ecs->event_thread->prev_pc == breakpoint_pc)
3029 regcache_write_pc (regcache, breakpoint_pc);
3030
3031 if (RECORD_IS_USED)
3032 do_cleanups (old_cleanups);
3033 }
3034 }
3035
3036 static void
3037 init_infwait_state (void)
3038 {
3039 waiton_ptid = pid_to_ptid (-1);
3040 infwait_state = infwait_normal_state;
3041 }
3042
3043 static int
3044 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3045 {
3046 for (frame = get_prev_frame (frame);
3047 frame != NULL;
3048 frame = get_prev_frame (frame))
3049 {
3050 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3051 return 1;
3052 if (get_frame_type (frame) != INLINE_FRAME)
3053 break;
3054 }
3055
3056 return 0;
3057 }
3058
3059 /* Auxiliary function that handles syscall entry/return events.
3060 It returns 1 if the inferior should keep going (and GDB
3061 should ignore the event), or 0 if the event deserves to be
3062 processed. */
3063
3064 static int
3065 handle_syscall_event (struct execution_control_state *ecs)
3066 {
3067 struct regcache *regcache;
3068 struct gdbarch *gdbarch;
3069 int syscall_number;
3070
3071 if (!ptid_equal (ecs->ptid, inferior_ptid))
3072 context_switch (ecs->ptid);
3073
3074 regcache = get_thread_regcache (ecs->ptid);
3075 gdbarch = get_regcache_arch (regcache);
3076 syscall_number = ecs->ws.value.syscall_number;
3077 stop_pc = regcache_read_pc (regcache);
3078
3079 if (catch_syscall_enabled () > 0
3080 && catching_syscall_number (syscall_number) > 0)
3081 {
3082 if (debug_infrun)
3083 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3084 syscall_number);
3085
3086 ecs->event_thread->control.stop_bpstat
3087 = bpstat_stop_status (get_regcache_aspace (regcache),
3088 stop_pc, ecs->ptid, &ecs->ws);
3089 ecs->random_signal
3090 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3091
3092 if (!ecs->random_signal)
3093 {
3094 /* Catchpoint hit. */
3095 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3096 return 0;
3097 }
3098 }
3099
3100 /* If no catchpoint triggered for this, then keep going. */
3101 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3102 keep_going (ecs);
3103 return 1;
3104 }
3105
3106 /* Clear the supplied execution_control_state's stop_func_* fields. */
3107
3108 static void
3109 clear_stop_func (struct execution_control_state *ecs)
3110 {
3111 ecs->stop_func_filled_in = 0;
3112 ecs->stop_func_start = 0;
3113 ecs->stop_func_end = 0;
3114 ecs->stop_func_name = NULL;
3115 }
3116
3117 /* Lazily fill in the execution_control_state's stop_func_* fields. */
3118
3119 static void
3120 fill_in_stop_func (struct gdbarch *gdbarch,
3121 struct execution_control_state *ecs)
3122 {
3123 if (!ecs->stop_func_filled_in)
3124 {
3125 /* Don't care about return value; stop_func_start and stop_func_name
3126 will both be 0 if it doesn't work. */
3127 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3128 &ecs->stop_func_start, &ecs->stop_func_end);
3129 ecs->stop_func_start
3130 += gdbarch_deprecated_function_start_offset (gdbarch);
3131
3132 ecs->stop_func_filled_in = 1;
3133 }
3134 }
3135
3136 /* Given an execution control state that has been freshly filled in
3137 by an event from the inferior, figure out what it means and take
3138 appropriate action. */
3139
3140 static void
3141 handle_inferior_event (struct execution_control_state *ecs)
3142 {
3143 struct frame_info *frame;
3144 struct gdbarch *gdbarch;
3145 int stopped_by_watchpoint;
3146 int stepped_after_stopped_by_watchpoint = 0;
3147 struct symtab_and_line stop_pc_sal;
3148 enum stop_kind stop_soon;
3149
3150 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3151 {
3152 /* We had an event in the inferior, but we are not interested in
3153 handling it at this level. The lower layers have already
3154 done what needs to be done, if anything.
3155
3156 One of the possible circumstances for this is when the
3157 inferior produces output for the console. The inferior has
3158 not stopped, and we are ignoring the event. Another possible
3159 circumstance is any event which the lower level knows will be
3160 reported multiple times without an intervening resume. */
3161 if (debug_infrun)
3162 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3163 prepare_to_wait (ecs);
3164 return;
3165 }
3166
3167 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3168 && target_can_async_p () && !sync_execution)
3169 {
3170 /* There were no unwaited-for children left in the target, but,
3171 we're not synchronously waiting for events either. Just
3172 ignore. Otherwise, if we were running a synchronous
3173 execution command, we need to cancel it and give the user
3174 back the terminal. */
3175 if (debug_infrun)
3176 fprintf_unfiltered (gdb_stdlog,
3177 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3178 prepare_to_wait (ecs);
3179 return;
3180 }
3181
3182 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3183 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3184 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3185 {
3186 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3187
3188 gdb_assert (inf);
3189 stop_soon = inf->control.stop_soon;
3190 }
3191 else
3192 stop_soon = NO_STOP_QUIETLY;
3193
3194 /* Cache the last pid/waitstatus. */
3195 target_last_wait_ptid = ecs->ptid;
3196 target_last_waitstatus = ecs->ws;
3197
3198 /* Always clear state belonging to the previous time we stopped. */
3199 stop_stack_dummy = STOP_NONE;
3200
3201 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3202 {
3203 /* No unwaited-for children left. IOW, all resumed children
3204 have exited. */
3205 if (debug_infrun)
3206 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3207
3208 stop_print_frame = 0;
3209 stop_stepping (ecs);
3210 return;
3211 }
3212
3213 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3214 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
3215 {
3216 ecs->event_thread = find_thread_ptid (ecs->ptid);
3217 /* If it's a new thread, add it to the thread database. */
3218 if (ecs->event_thread == NULL)
3219 ecs->event_thread = add_thread (ecs->ptid);
3220 }
3221
3222 /* Dependent on valid ECS->EVENT_THREAD. */
3223 adjust_pc_after_break (ecs);
3224
3225 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3226 reinit_frame_cache ();
3227
3228 breakpoint_retire_moribund ();
3229
3230 /* First, distinguish signals caused by the debugger from signals
3231 that have to do with the program's own actions. Note that
3232 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3233 on the operating system version. Here we detect when a SIGILL or
3234 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3235 something similar for SIGSEGV, since a SIGSEGV will be generated
3236 when we're trying to execute a breakpoint instruction on a
3237 non-executable stack. This happens for call dummy breakpoints
3238 for architectures like SPARC that place call dummies on the
3239 stack. */
3240 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3241 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3242 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3243 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
3244 {
3245 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3246
3247 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3248 regcache_read_pc (regcache)))
3249 {
3250 if (debug_infrun)
3251 fprintf_unfiltered (gdb_stdlog,
3252 "infrun: Treating signal as SIGTRAP\n");
3253 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
3254 }
3255 }
3256
3257 /* Mark the non-executing threads accordingly. In all-stop, all
3258 threads of all processes are stopped when we get any event
3259 reported. In non-stop mode, only the event thread stops. If
3260 we're handling a process exit in non-stop mode, there's nothing
3261 to do, as threads of the dead process are gone, and threads of
3262 any other process were left running. */
3263 if (!non_stop)
3264 set_executing (minus_one_ptid, 0);
3265 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3266 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3267 set_executing (ecs->ptid, 0);
3268
3269 switch (infwait_state)
3270 {
3271 case infwait_thread_hop_state:
3272 if (debug_infrun)
3273 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
3274 break;
3275
3276 case infwait_normal_state:
3277 if (debug_infrun)
3278 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
3279 break;
3280
3281 case infwait_step_watch_state:
3282 if (debug_infrun)
3283 fprintf_unfiltered (gdb_stdlog,
3284 "infrun: infwait_step_watch_state\n");
3285
3286 stepped_after_stopped_by_watchpoint = 1;
3287 break;
3288
3289 case infwait_nonstep_watch_state:
3290 if (debug_infrun)
3291 fprintf_unfiltered (gdb_stdlog,
3292 "infrun: infwait_nonstep_watch_state\n");
3293 insert_breakpoints ();
3294
3295 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3296 handle things like signals arriving and other things happening
3297 in combination correctly? */
3298 stepped_after_stopped_by_watchpoint = 1;
3299 break;
3300
3301 default:
3302 internal_error (__FILE__, __LINE__, _("bad switch"));
3303 }
3304
3305 infwait_state = infwait_normal_state;
3306 waiton_ptid = pid_to_ptid (-1);
3307
3308 switch (ecs->ws.kind)
3309 {
3310 case TARGET_WAITKIND_LOADED:
3311 if (debug_infrun)
3312 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3313 /* Ignore gracefully during startup of the inferior, as it might
3314 be the shell which has just loaded some objects, otherwise
3315 add the symbols for the newly loaded objects. Also ignore at
3316 the beginning of an attach or remote session; we will query
3317 the full list of libraries once the connection is
3318 established. */
3319 if (stop_soon == NO_STOP_QUIETLY)
3320 {
3321 struct regcache *regcache;
3322
3323 if (!ptid_equal (ecs->ptid, inferior_ptid))
3324 context_switch (ecs->ptid);
3325 regcache = get_thread_regcache (ecs->ptid);
3326
3327 handle_solib_event ();
3328
3329 ecs->event_thread->control.stop_bpstat
3330 = bpstat_stop_status (get_regcache_aspace (regcache),
3331 stop_pc, ecs->ptid, &ecs->ws);
3332 ecs->random_signal
3333 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3334
3335 if (!ecs->random_signal)
3336 {
3337 /* A catchpoint triggered. */
3338 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3339 goto process_event_stop_test;
3340 }
3341
3342 /* If requested, stop when the dynamic linker notifies
3343 gdb of events. This allows the user to get control
3344 and place breakpoints in initializer routines for
3345 dynamically loaded objects (among other things). */
3346 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3347 if (stop_on_solib_events)
3348 {
3349 /* Make sure we print "Stopped due to solib-event" in
3350 normal_stop. */
3351 stop_print_frame = 1;
3352
3353 stop_stepping (ecs);
3354 return;
3355 }
3356 }
3357
3358 /* If we are skipping through a shell, or through shared library
3359 loading that we aren't interested in, resume the program. If
3360 we're running the program normally, also resume. But stop if
3361 we're attaching or setting up a remote connection. */
3362 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3363 {
3364 if (!ptid_equal (ecs->ptid, inferior_ptid))
3365 context_switch (ecs->ptid);
3366
3367 /* Loading of shared libraries might have changed breakpoint
3368 addresses. Make sure new breakpoints are inserted. */
3369 if (stop_soon == NO_STOP_QUIETLY
3370 && !breakpoints_always_inserted_mode ())
3371 insert_breakpoints ();
3372 resume (0, GDB_SIGNAL_0);
3373 prepare_to_wait (ecs);
3374 return;
3375 }
3376
3377 break;
3378
3379 case TARGET_WAITKIND_SPURIOUS:
3380 if (debug_infrun)
3381 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3382 if (!ptid_equal (ecs->ptid, inferior_ptid))
3383 context_switch (ecs->ptid);
3384 resume (0, GDB_SIGNAL_0);
3385 prepare_to_wait (ecs);
3386 return;
3387
3388 case TARGET_WAITKIND_EXITED:
3389 case TARGET_WAITKIND_SIGNALLED:
3390 if (debug_infrun)
3391 {
3392 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3393 fprintf_unfiltered (gdb_stdlog,
3394 "infrun: TARGET_WAITKIND_EXITED\n");
3395 else
3396 fprintf_unfiltered (gdb_stdlog,
3397 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3398 }
3399
3400 inferior_ptid = ecs->ptid;
3401 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3402 set_current_program_space (current_inferior ()->pspace);
3403 handle_vfork_child_exec_or_exit (0);
3404 target_terminal_ours (); /* Must do this before mourn anyway. */
3405
3406 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3407 {
3408 /* Record the exit code in the convenience variable $_exitcode, so
3409 that the user can inspect this again later. */
3410 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3411 (LONGEST) ecs->ws.value.integer);
3412
3413 /* Also record this in the inferior itself. */
3414 current_inferior ()->has_exit_code = 1;
3415 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3416
3417 print_exited_reason (ecs->ws.value.integer);
3418 }
3419 else
3420 print_signal_exited_reason (ecs->ws.value.sig);
3421
3422 gdb_flush (gdb_stdout);
3423 target_mourn_inferior ();
3424 singlestep_breakpoints_inserted_p = 0;
3425 cancel_single_step_breakpoints ();
3426 stop_print_frame = 0;
3427 stop_stepping (ecs);
3428 return;
3429
3430 /* The following are the only cases in which we keep going;
3431 the above cases end in a continue or goto. */
3432 case TARGET_WAITKIND_FORKED:
3433 case TARGET_WAITKIND_VFORKED:
3434 if (debug_infrun)
3435 {
3436 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3437 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3438 else
3439 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3440 }
3441
3442 /* Check whether the inferior is displaced stepping. */
3443 {
3444 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3445 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3446 struct displaced_step_inferior_state *displaced
3447 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3448
3449 /* If checking displaced stepping is supported, and thread
3450 ecs->ptid is displaced stepping. */
3451 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3452 {
3453 struct inferior *parent_inf
3454 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3455 struct regcache *child_regcache;
3456 CORE_ADDR parent_pc;
3457
3458 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3459 indicating that the displaced stepping of syscall instruction
3460 has been done. Perform cleanup for parent process here. Note
3461 that this operation also cleans up the child process for vfork,
3462 because their pages are shared. */
3463 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
3464
3465 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3466 {
3467 /* Restore scratch pad for child process. */
3468 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3469 }
3470
3471 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3472 the child's PC is also within the scratchpad. Set the child's PC
3473 to the parent's PC value, which has already been fixed up.
3474 FIXME: we use the parent's aspace here, although we're touching
3475 the child, because the child hasn't been added to the inferior
3476 list yet at this point. */
3477
3478 child_regcache
3479 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3480 gdbarch,
3481 parent_inf->aspace);
3482 /* Read PC value of parent process. */
3483 parent_pc = regcache_read_pc (regcache);
3484
3485 if (debug_displaced)
3486 fprintf_unfiltered (gdb_stdlog,
3487 "displaced: write child pc from %s to %s\n",
3488 paddress (gdbarch,
3489 regcache_read_pc (child_regcache)),
3490 paddress (gdbarch, parent_pc));
3491
3492 regcache_write_pc (child_regcache, parent_pc);
3493 }
3494 }
3495
3496 if (!ptid_equal (ecs->ptid, inferior_ptid))
3497 context_switch (ecs->ptid);
3498
3499 /* Immediately detach breakpoints from the child before there's
3500 any chance of letting the user delete breakpoints from the
3501 breakpoint lists. If we don't do this early, it's easy to
3502 leave left over traps in the child, vis: "break foo; catch
3503 fork; c; <fork>; del; c; <child calls foo>". We only follow
3504 the fork on the last `continue', and by that time the
3505 breakpoint at "foo" is long gone from the breakpoint table.
3506 If we vforked, then we don't need to unpatch here, since both
3507 parent and child are sharing the same memory pages; we'll
3508 need to unpatch at follow/detach time instead to be certain
3509 that new breakpoints added between catchpoint hit time and
3510 vfork follow are detached. */
3511 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3512 {
3513 /* This won't actually modify the breakpoint list, but will
3514 physically remove the breakpoints from the child. */
3515 detach_breakpoints (ecs->ws.value.related_pid);
3516 }
3517
3518 if (singlestep_breakpoints_inserted_p)
3519 {
3520 /* Pull the single step breakpoints out of the target. */
3521 remove_single_step_breakpoints ();
3522 singlestep_breakpoints_inserted_p = 0;
3523 }
3524
3525 /* In case the event is caught by a catchpoint, remember that
3526 the event is to be followed at the next resume of the thread,
3527 and not immediately. */
3528 ecs->event_thread->pending_follow = ecs->ws;
3529
3530 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3531
3532 ecs->event_thread->control.stop_bpstat
3533 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3534 stop_pc, ecs->ptid, &ecs->ws);
3535
3536 /* Note that we're interested in knowing the bpstat actually
3537 causes a stop, not just if it may explain the signal.
3538 Software watchpoints, for example, always appear in the
3539 bpstat. */
3540 ecs->random_signal
3541 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
3542
3543 /* If no catchpoint triggered for this, then keep going. */
3544 if (ecs->random_signal)
3545 {
3546 ptid_t parent;
3547 ptid_t child;
3548 int should_resume;
3549 int follow_child
3550 = (follow_fork_mode_string == follow_fork_mode_child);
3551
3552 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3553
3554 should_resume = follow_fork ();
3555
3556 parent = ecs->ptid;
3557 child = ecs->ws.value.related_pid;
3558
3559 /* In non-stop mode, also resume the other branch. */
3560 if (non_stop && !detach_fork)
3561 {
3562 if (follow_child)
3563 switch_to_thread (parent);
3564 else
3565 switch_to_thread (child);
3566
3567 ecs->event_thread = inferior_thread ();
3568 ecs->ptid = inferior_ptid;
3569 keep_going (ecs);
3570 }
3571
3572 if (follow_child)
3573 switch_to_thread (child);
3574 else
3575 switch_to_thread (parent);
3576
3577 ecs->event_thread = inferior_thread ();
3578 ecs->ptid = inferior_ptid;
3579
3580 if (should_resume)
3581 keep_going (ecs);
3582 else
3583 stop_stepping (ecs);
3584 return;
3585 }
3586 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3587 goto process_event_stop_test;
3588
3589 case TARGET_WAITKIND_VFORK_DONE:
3590 /* Done with the shared memory region. Re-insert breakpoints in
3591 the parent, and keep going. */
3592
3593 if (debug_infrun)
3594 fprintf_unfiltered (gdb_stdlog,
3595 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3596
3597 if (!ptid_equal (ecs->ptid, inferior_ptid))
3598 context_switch (ecs->ptid);
3599
3600 current_inferior ()->waiting_for_vfork_done = 0;
3601 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3602 /* This also takes care of reinserting breakpoints in the
3603 previously locked inferior. */
3604 keep_going (ecs);
3605 return;
3606
3607 case TARGET_WAITKIND_EXECD:
3608 if (debug_infrun)
3609 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3610
3611 if (!ptid_equal (ecs->ptid, inferior_ptid))
3612 context_switch (ecs->ptid);
3613
3614 singlestep_breakpoints_inserted_p = 0;
3615 cancel_single_step_breakpoints ();
3616
3617 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3618
3619 /* Do whatever is necessary to the parent branch of the vfork. */
3620 handle_vfork_child_exec_or_exit (1);
3621
3622 /* This causes the eventpoints and symbol table to be reset.
3623 Must do this now, before trying to determine whether to
3624 stop. */
3625 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3626
3627 ecs->event_thread->control.stop_bpstat
3628 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3629 stop_pc, ecs->ptid, &ecs->ws);
3630 ecs->random_signal
3631 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3632
3633 /* Note that this may be referenced from inside
3634 bpstat_stop_status above, through inferior_has_execd. */
3635 xfree (ecs->ws.value.execd_pathname);
3636 ecs->ws.value.execd_pathname = NULL;
3637
3638 /* If no catchpoint triggered for this, then keep going. */
3639 if (ecs->random_signal)
3640 {
3641 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3642 keep_going (ecs);
3643 return;
3644 }
3645 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3646 goto process_event_stop_test;
3647
3648 /* Be careful not to try to gather much state about a thread
3649 that's in a syscall. It's frequently a losing proposition. */
3650 case TARGET_WAITKIND_SYSCALL_ENTRY:
3651 if (debug_infrun)
3652 fprintf_unfiltered (gdb_stdlog,
3653 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3654 /* Getting the current syscall number. */
3655 if (handle_syscall_event (ecs) != 0)
3656 return;
3657 goto process_event_stop_test;
3658
3659 /* Before examining the threads further, step this thread to
3660 get it entirely out of the syscall. (We get notice of the
3661 event when the thread is just on the verge of exiting a
3662 syscall. Stepping one instruction seems to get it back
3663 into user code.) */
3664 case TARGET_WAITKIND_SYSCALL_RETURN:
3665 if (debug_infrun)
3666 fprintf_unfiltered (gdb_stdlog,
3667 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3668 if (handle_syscall_event (ecs) != 0)
3669 return;
3670 goto process_event_stop_test;
3671
3672 case TARGET_WAITKIND_STOPPED:
3673 if (debug_infrun)
3674 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3675 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
3676 break;
3677
3678 case TARGET_WAITKIND_NO_HISTORY:
3679 if (debug_infrun)
3680 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
3681 /* Reverse execution: target ran out of history info. */
3682
3683 /* Pull the single step breakpoints out of the target. */
3684 if (singlestep_breakpoints_inserted_p)
3685 {
3686 if (!ptid_equal (ecs->ptid, inferior_ptid))
3687 context_switch (ecs->ptid);
3688 remove_single_step_breakpoints ();
3689 singlestep_breakpoints_inserted_p = 0;
3690 }
3691 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3692 print_no_history_reason ();
3693 stop_stepping (ecs);
3694 return;
3695 }
3696
3697 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
3698 {
3699 /* Do we need to clean up the state of a thread that has
3700 completed a displaced single-step? (Doing so usually affects
3701 the PC, so do it here, before we set stop_pc.) */
3702 displaced_step_fixup (ecs->ptid,
3703 ecs->event_thread->suspend.stop_signal);
3704
3705 /* If we either finished a single-step or hit a breakpoint, but
3706 the user wanted this thread to be stopped, pretend we got a
3707 SIG0 (generic unsignaled stop). */
3708
3709 if (ecs->event_thread->stop_requested
3710 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3711 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3712 }
3713
3714 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3715
3716 if (debug_infrun)
3717 {
3718 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3719 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3720 struct cleanup *old_chain = save_inferior_ptid ();
3721
3722 inferior_ptid = ecs->ptid;
3723
3724 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3725 paddress (gdbarch, stop_pc));
3726 if (target_stopped_by_watchpoint ())
3727 {
3728 CORE_ADDR addr;
3729
3730 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3731
3732 if (target_stopped_data_address (&current_target, &addr))
3733 fprintf_unfiltered (gdb_stdlog,
3734 "infrun: stopped data address = %s\n",
3735 paddress (gdbarch, addr));
3736 else
3737 fprintf_unfiltered (gdb_stdlog,
3738 "infrun: (no data address available)\n");
3739 }
3740
3741 do_cleanups (old_chain);
3742 }
3743
3744 if (stepping_past_singlestep_breakpoint)
3745 {
3746 gdb_assert (singlestep_breakpoints_inserted_p);
3747 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3748 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3749
3750 stepping_past_singlestep_breakpoint = 0;
3751
3752 /* We've either finished single-stepping past the single-step
3753 breakpoint, or stopped for some other reason. It would be nice if
3754 we could tell, but we can't reliably. */
3755 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3756 {
3757 if (debug_infrun)
3758 fprintf_unfiltered (gdb_stdlog,
3759 "infrun: stepping_past_"
3760 "singlestep_breakpoint\n");
3761 /* Pull the single step breakpoints out of the target. */
3762 if (!ptid_equal (ecs->ptid, inferior_ptid))
3763 context_switch (ecs->ptid);
3764 remove_single_step_breakpoints ();
3765 singlestep_breakpoints_inserted_p = 0;
3766
3767 ecs->random_signal = 0;
3768 ecs->event_thread->control.trap_expected = 0;
3769
3770 context_switch (saved_singlestep_ptid);
3771 if (deprecated_context_hook)
3772 deprecated_context_hook (pid_to_thread_id (saved_singlestep_ptid));
3773
3774 resume (1, GDB_SIGNAL_0);
3775 prepare_to_wait (ecs);
3776 return;
3777 }
3778 }
3779
3780 if (!ptid_equal (deferred_step_ptid, null_ptid))
3781 {
3782 /* In non-stop mode, there's never a deferred_step_ptid set. */
3783 gdb_assert (!non_stop);
3784
3785 /* If we stopped for some other reason than single-stepping, ignore
3786 the fact that we were supposed to switch back. */
3787 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3788 {
3789 if (debug_infrun)
3790 fprintf_unfiltered (gdb_stdlog,
3791 "infrun: handling deferred step\n");
3792
3793 /* Pull the single step breakpoints out of the target. */
3794 if (singlestep_breakpoints_inserted_p)
3795 {
3796 if (!ptid_equal (ecs->ptid, inferior_ptid))
3797 context_switch (ecs->ptid);
3798 remove_single_step_breakpoints ();
3799 singlestep_breakpoints_inserted_p = 0;
3800 }
3801
3802 ecs->event_thread->control.trap_expected = 0;
3803
3804 context_switch (deferred_step_ptid);
3805 deferred_step_ptid = null_ptid;
3806 /* Suppress spurious "Switching to ..." message. */
3807 previous_inferior_ptid = inferior_ptid;
3808
3809 resume (1, GDB_SIGNAL_0);
3810 prepare_to_wait (ecs);
3811 return;
3812 }
3813
3814 deferred_step_ptid = null_ptid;
3815 }
3816
3817 /* See if a thread hit a thread-specific breakpoint that was meant for
3818 another thread. If so, then step that thread past the breakpoint,
3819 and continue it. */
3820
3821 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3822 {
3823 int thread_hop_needed = 0;
3824 struct address_space *aspace =
3825 get_regcache_aspace (get_thread_regcache (ecs->ptid));
3826
3827 /* Check if a regular breakpoint has been hit before checking
3828 for a potential single step breakpoint. Otherwise, GDB will
3829 not see this breakpoint hit when stepping onto breakpoints. */
3830 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3831 {
3832 ecs->random_signal = 0;
3833 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3834 thread_hop_needed = 1;
3835 }
3836 else if (singlestep_breakpoints_inserted_p)
3837 {
3838 /* We have not context switched yet, so this should be true
3839 no matter which thread hit the singlestep breakpoint. */
3840 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3841 if (debug_infrun)
3842 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3843 "trap for %s\n",
3844 target_pid_to_str (ecs->ptid));
3845
3846 ecs->random_signal = 0;
3847 /* The call to in_thread_list is necessary because PTIDs sometimes
3848 change when we go from single-threaded to multi-threaded. If
3849 the singlestep_ptid is still in the list, assume that it is
3850 really different from ecs->ptid. */
3851 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3852 && in_thread_list (singlestep_ptid))
3853 {
3854 /* If the PC of the thread we were trying to single-step
3855 has changed, discard this event (which we were going
3856 to ignore anyway), and pretend we saw that thread
3857 trap. This prevents us continuously moving the
3858 single-step breakpoint forward, one instruction at a
3859 time. If the PC has changed, then the thread we were
3860 trying to single-step has trapped or been signalled,
3861 but the event has not been reported to GDB yet.
3862
3863 There might be some cases where this loses signal
3864 information, if a signal has arrived at exactly the
3865 same time that the PC changed, but this is the best
3866 we can do with the information available. Perhaps we
3867 should arrange to report all events for all threads
3868 when they stop, or to re-poll the remote looking for
3869 this particular thread (i.e. temporarily enable
3870 schedlock). */
3871
3872 CORE_ADDR new_singlestep_pc
3873 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3874
3875 if (new_singlestep_pc != singlestep_pc)
3876 {
3877 enum gdb_signal stop_signal;
3878
3879 if (debug_infrun)
3880 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3881 " but expected thread advanced also\n");
3882
3883 /* The current context still belongs to
3884 singlestep_ptid. Don't swap here, since that's
3885 the context we want to use. Just fudge our
3886 state and continue. */
3887 stop_signal = ecs->event_thread->suspend.stop_signal;
3888 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3889 ecs->ptid = singlestep_ptid;
3890 ecs->event_thread = find_thread_ptid (ecs->ptid);
3891 ecs->event_thread->suspend.stop_signal = stop_signal;
3892 stop_pc = new_singlestep_pc;
3893 }
3894 else
3895 {
3896 if (debug_infrun)
3897 fprintf_unfiltered (gdb_stdlog,
3898 "infrun: unexpected thread\n");
3899
3900 thread_hop_needed = 1;
3901 stepping_past_singlestep_breakpoint = 1;
3902 saved_singlestep_ptid = singlestep_ptid;
3903 }
3904 }
3905 }
3906
3907 if (thread_hop_needed)
3908 {
3909 struct regcache *thread_regcache;
3910 int remove_status = 0;
3911
3912 if (debug_infrun)
3913 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
3914
3915 /* Switch context before touching inferior memory, the
3916 previous thread may have exited. */
3917 if (!ptid_equal (inferior_ptid, ecs->ptid))
3918 context_switch (ecs->ptid);
3919
3920 /* Saw a breakpoint, but it was hit by the wrong thread.
3921 Just continue. */
3922
3923 if (singlestep_breakpoints_inserted_p)
3924 {
3925 /* Pull the single step breakpoints out of the target. */
3926 remove_single_step_breakpoints ();
3927 singlestep_breakpoints_inserted_p = 0;
3928 }
3929
3930 /* If the arch can displace step, don't remove the
3931 breakpoints. */
3932 thread_regcache = get_thread_regcache (ecs->ptid);
3933 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
3934 remove_status = remove_breakpoints ();
3935
3936 /* Did we fail to remove breakpoints? If so, try
3937 to set the PC past the bp. (There's at least
3938 one situation in which we can fail to remove
3939 the bp's: On HP-UX's that use ttrace, we can't
3940 change the address space of a vforking child
3941 process until the child exits (well, okay, not
3942 then either :-) or execs. */
3943 if (remove_status != 0)
3944 error (_("Cannot step over breakpoint hit in wrong thread"));
3945 else
3946 { /* Single step */
3947 if (!non_stop)
3948 {
3949 /* Only need to require the next event from this
3950 thread in all-stop mode. */
3951 waiton_ptid = ecs->ptid;
3952 infwait_state = infwait_thread_hop_state;
3953 }
3954
3955 ecs->event_thread->stepping_over_breakpoint = 1;
3956 keep_going (ecs);
3957 return;
3958 }
3959 }
3960 else if (singlestep_breakpoints_inserted_p)
3961 {
3962 ecs->random_signal = 0;
3963 }
3964 }
3965 else
3966 ecs->random_signal = 1;
3967
3968 /* See if something interesting happened to the non-current thread. If
3969 so, then switch to that thread. */
3970 if (!ptid_equal (ecs->ptid, inferior_ptid))
3971 {
3972 if (debug_infrun)
3973 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
3974
3975 context_switch (ecs->ptid);
3976
3977 if (deprecated_context_hook)
3978 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3979 }
3980
3981 /* At this point, get hold of the now-current thread's frame. */
3982 frame = get_current_frame ();
3983 gdbarch = get_frame_arch (frame);
3984
3985 if (singlestep_breakpoints_inserted_p)
3986 {
3987 /* Pull the single step breakpoints out of the target. */
3988 remove_single_step_breakpoints ();
3989 singlestep_breakpoints_inserted_p = 0;
3990 }
3991
3992 if (stepped_after_stopped_by_watchpoint)
3993 stopped_by_watchpoint = 0;
3994 else
3995 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3996
3997 /* If necessary, step over this watchpoint. We'll be back to display
3998 it in a moment. */
3999 if (stopped_by_watchpoint
4000 && (target_have_steppable_watchpoint
4001 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
4002 {
4003 /* At this point, we are stopped at an instruction which has
4004 attempted to write to a piece of memory under control of
4005 a watchpoint. The instruction hasn't actually executed
4006 yet. If we were to evaluate the watchpoint expression
4007 now, we would get the old value, and therefore no change
4008 would seem to have occurred.
4009
4010 In order to make watchpoints work `right', we really need
4011 to complete the memory write, and then evaluate the
4012 watchpoint expression. We do this by single-stepping the
4013 target.
4014
4015 It may not be necessary to disable the watchpoint to stop over
4016 it. For example, the PA can (with some kernel cooperation)
4017 single step over a watchpoint without disabling the watchpoint.
4018
4019 It is far more common to need to disable a watchpoint to step
4020 the inferior over it. If we have non-steppable watchpoints,
4021 we must disable the current watchpoint; it's simplest to
4022 disable all watchpoints and breakpoints. */
4023 int hw_step = 1;
4024
4025 if (!target_have_steppable_watchpoint)
4026 {
4027 remove_breakpoints ();
4028 /* See comment in resume why we need to stop bypassing signals
4029 while breakpoints have been removed. */
4030 target_pass_signals (0, NULL);
4031 }
4032 /* Single step */
4033 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
4034 target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
4035 waiton_ptid = ecs->ptid;
4036 if (target_have_steppable_watchpoint)
4037 infwait_state = infwait_step_watch_state;
4038 else
4039 infwait_state = infwait_nonstep_watch_state;
4040 prepare_to_wait (ecs);
4041 return;
4042 }
4043
4044 clear_stop_func (ecs);
4045 ecs->event_thread->stepping_over_breakpoint = 0;
4046 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4047 ecs->event_thread->control.stop_step = 0;
4048 stop_print_frame = 1;
4049 ecs->random_signal = 0;
4050 stopped_by_random_signal = 0;
4051
4052 /* Hide inlined functions starting here, unless we just performed stepi or
4053 nexti. After stepi and nexti, always show the innermost frame (not any
4054 inline function call sites). */
4055 if (ecs->event_thread->control.step_range_end != 1)
4056 {
4057 struct address_space *aspace =
4058 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4059
4060 /* skip_inline_frames is expensive, so we avoid it if we can
4061 determine that the address is one where functions cannot have
4062 been inlined. This improves performance with inferiors that
4063 load a lot of shared libraries, because the solib event
4064 breakpoint is defined as the address of a function (i.e. not
4065 inline). Note that we have to check the previous PC as well
4066 as the current one to catch cases when we have just
4067 single-stepped off a breakpoint prior to reinstating it.
4068 Note that we're assuming that the code we single-step to is
4069 not inline, but that's not definitive: there's nothing
4070 preventing the event breakpoint function from containing
4071 inlined code, and the single-step ending up there. If the
4072 user had set a breakpoint on that inlined code, the missing
4073 skip_inline_frames call would break things. Fortunately
4074 that's an extremely unlikely scenario. */
4075 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
4076 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4077 && ecs->event_thread->control.trap_expected
4078 && pc_at_non_inline_function (aspace,
4079 ecs->event_thread->prev_pc,
4080 &ecs->ws)))
4081 {
4082 skip_inline_frames (ecs->ptid);
4083
4084 /* Re-fetch current thread's frame in case that invalidated
4085 the frame cache. */
4086 frame = get_current_frame ();
4087 gdbarch = get_frame_arch (frame);
4088 }
4089 }
4090
4091 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4092 && ecs->event_thread->control.trap_expected
4093 && gdbarch_single_step_through_delay_p (gdbarch)
4094 && currently_stepping (ecs->event_thread))
4095 {
4096 /* We're trying to step off a breakpoint. Turns out that we're
4097 also on an instruction that needs to be stepped multiple
4098 times before it's been fully executing. E.g., architectures
4099 with a delay slot. It needs to be stepped twice, once for
4100 the instruction and once for the delay slot. */
4101 int step_through_delay
4102 = gdbarch_single_step_through_delay (gdbarch, frame);
4103
4104 if (debug_infrun && step_through_delay)
4105 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4106 if (ecs->event_thread->control.step_range_end == 0
4107 && step_through_delay)
4108 {
4109 /* The user issued a continue when stopped at a breakpoint.
4110 Set up for another trap and get out of here. */
4111 ecs->event_thread->stepping_over_breakpoint = 1;
4112 keep_going (ecs);
4113 return;
4114 }
4115 else if (step_through_delay)
4116 {
4117 /* The user issued a step when stopped at a breakpoint.
4118 Maybe we should stop, maybe we should not - the delay
4119 slot *might* correspond to a line of source. In any
4120 case, don't decide that here, just set
4121 ecs->stepping_over_breakpoint, making sure we
4122 single-step again before breakpoints are re-inserted. */
4123 ecs->event_thread->stepping_over_breakpoint = 1;
4124 }
4125 }
4126
4127 /* Look at the cause of the stop, and decide what to do.
4128 The alternatives are:
4129 1) stop_stepping and return; to really stop and return to the debugger,
4130 2) keep_going and return to start up again
4131 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
4132 3) set ecs->random_signal to 1, and the decision between 1 and 2
4133 will be made according to the signal handling tables. */
4134
4135 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4136 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
4137 || stop_soon == STOP_QUIETLY_REMOTE)
4138 {
4139 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4140 && stop_after_trap)
4141 {
4142 if (debug_infrun)
4143 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4144 stop_print_frame = 0;
4145 stop_stepping (ecs);
4146 return;
4147 }
4148
4149 /* This is originated from start_remote(), start_inferior() and
4150 shared libraries hook functions. */
4151 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4152 {
4153 if (debug_infrun)
4154 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4155 stop_stepping (ecs);
4156 return;
4157 }
4158
4159 /* This originates from attach_command(). We need to overwrite
4160 the stop_signal here, because some kernels don't ignore a
4161 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4162 See more comments in inferior.h. On the other hand, if we
4163 get a non-SIGSTOP, report it to the user - assume the backend
4164 will handle the SIGSTOP if it should show up later.
4165
4166 Also consider that the attach is complete when we see a
4167 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4168 target extended-remote report it instead of a SIGSTOP
4169 (e.g. gdbserver). We already rely on SIGTRAP being our
4170 signal, so this is no exception.
4171
4172 Also consider that the attach is complete when we see a
4173 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4174 the target to stop all threads of the inferior, in case the
4175 low level attach operation doesn't stop them implicitly. If
4176 they weren't stopped implicitly, then the stub will report a
4177 GDB_SIGNAL_0, meaning: stopped for no particular reason
4178 other than GDB's request. */
4179 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4180 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4181 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4182 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4183 {
4184 stop_stepping (ecs);
4185 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4186 return;
4187 }
4188
4189 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4190 handles this event. */
4191 ecs->event_thread->control.stop_bpstat
4192 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4193 stop_pc, ecs->ptid, &ecs->ws);
4194
4195 /* Following in case break condition called a
4196 function. */
4197 stop_print_frame = 1;
4198
4199 /* This is where we handle "moribund" watchpoints. Unlike
4200 software breakpoints traps, hardware watchpoint traps are
4201 always distinguishable from random traps. If no high-level
4202 watchpoint is associated with the reported stop data address
4203 anymore, then the bpstat does not explain the signal ---
4204 simply make sure to ignore it if `stopped_by_watchpoint' is
4205 set. */
4206
4207 if (debug_infrun
4208 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4209 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4210 && stopped_by_watchpoint)
4211 fprintf_unfiltered (gdb_stdlog,
4212 "infrun: no user watchpoint explains "
4213 "watchpoint SIGTRAP, ignoring\n");
4214
4215 /* NOTE: cagney/2003-03-29: These two checks for a random signal
4216 at one stage in the past included checks for an inferior
4217 function call's call dummy's return breakpoint. The original
4218 comment, that went with the test, read:
4219
4220 ``End of a stack dummy. Some systems (e.g. Sony news) give
4221 another signal besides SIGTRAP, so check here as well as
4222 above.''
4223
4224 If someone ever tries to get call dummys on a
4225 non-executable stack to work (where the target would stop
4226 with something like a SIGSEGV), then those tests might need
4227 to be re-instated. Given, however, that the tests were only
4228 enabled when momentary breakpoints were not being used, I
4229 suspect that it won't be the case.
4230
4231 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4232 be necessary for call dummies on a non-executable stack on
4233 SPARC. */
4234
4235 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4236 ecs->random_signal
4237 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4238 || stopped_by_watchpoint
4239 || ecs->event_thread->control.trap_expected
4240 || (ecs->event_thread->control.step_range_end
4241 && (ecs->event_thread->control.step_resume_breakpoint
4242 == NULL)));
4243 else
4244 {
4245 ecs->random_signal = !bpstat_explains_signal
4246 (ecs->event_thread->control.stop_bpstat);
4247 if (!ecs->random_signal)
4248 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
4249 }
4250 }
4251
4252 /* When we reach this point, we've pretty much decided
4253 that the reason for stopping must've been a random
4254 (unexpected) signal. */
4255
4256 else
4257 ecs->random_signal = 1;
4258
4259 process_event_stop_test:
4260
4261 /* Re-fetch current thread's frame in case we did a
4262 "goto process_event_stop_test" above. */
4263 frame = get_current_frame ();
4264 gdbarch = get_frame_arch (frame);
4265
4266 /* For the program's own signals, act according to
4267 the signal handling tables. */
4268
4269 if (ecs->random_signal)
4270 {
4271 /* Signal not for debugging purposes. */
4272 int printed = 0;
4273 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4274
4275 if (debug_infrun)
4276 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
4277 ecs->event_thread->suspend.stop_signal);
4278
4279 stopped_by_random_signal = 1;
4280
4281 if (signal_print[ecs->event_thread->suspend.stop_signal])
4282 {
4283 printed = 1;
4284 target_terminal_ours_for_output ();
4285 print_signal_received_reason
4286 (ecs->event_thread->suspend.stop_signal);
4287 }
4288 /* Always stop on signals if we're either just gaining control
4289 of the program, or the user explicitly requested this thread
4290 to remain stopped. */
4291 if (stop_soon != NO_STOP_QUIETLY
4292 || ecs->event_thread->stop_requested
4293 || (!inf->detaching
4294 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4295 {
4296 stop_stepping (ecs);
4297 return;
4298 }
4299 /* If not going to stop, give terminal back
4300 if we took it away. */
4301 else if (printed)
4302 target_terminal_inferior ();
4303
4304 /* Clear the signal if it should not be passed. */
4305 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4306 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4307
4308 if (ecs->event_thread->prev_pc == stop_pc
4309 && ecs->event_thread->control.trap_expected
4310 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4311 {
4312 /* We were just starting a new sequence, attempting to
4313 single-step off of a breakpoint and expecting a SIGTRAP.
4314 Instead this signal arrives. This signal will take us out
4315 of the stepping range so GDB needs to remember to, when
4316 the signal handler returns, resume stepping off that
4317 breakpoint. */
4318 /* To simplify things, "continue" is forced to use the same
4319 code paths as single-step - set a breakpoint at the
4320 signal return address and then, once hit, step off that
4321 breakpoint. */
4322 if (debug_infrun)
4323 fprintf_unfiltered (gdb_stdlog,
4324 "infrun: signal arrived while stepping over "
4325 "breakpoint\n");
4326
4327 insert_hp_step_resume_breakpoint_at_frame (frame);
4328 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4329 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4330 ecs->event_thread->control.trap_expected = 0;
4331 keep_going (ecs);
4332 return;
4333 }
4334
4335 if (ecs->event_thread->control.step_range_end != 0
4336 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4337 && (ecs->event_thread->control.step_range_start <= stop_pc
4338 && stop_pc < ecs->event_thread->control.step_range_end)
4339 && frame_id_eq (get_stack_frame_id (frame),
4340 ecs->event_thread->control.step_stack_frame_id)
4341 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4342 {
4343 /* The inferior is about to take a signal that will take it
4344 out of the single step range. Set a breakpoint at the
4345 current PC (which is presumably where the signal handler
4346 will eventually return) and then allow the inferior to
4347 run free.
4348
4349 Note that this is only needed for a signal delivered
4350 while in the single-step range. Nested signals aren't a
4351 problem as they eventually all return. */
4352 if (debug_infrun)
4353 fprintf_unfiltered (gdb_stdlog,
4354 "infrun: signal may take us out of "
4355 "single-step range\n");
4356
4357 insert_hp_step_resume_breakpoint_at_frame (frame);
4358 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4359 ecs->event_thread->control.trap_expected = 0;
4360 keep_going (ecs);
4361 return;
4362 }
4363
4364 /* Note: step_resume_breakpoint may be non-NULL. This occures
4365 when either there's a nested signal, or when there's a
4366 pending signal enabled just as the signal handler returns
4367 (leaving the inferior at the step-resume-breakpoint without
4368 actually executing it). Either way continue until the
4369 breakpoint is really hit. */
4370 }
4371 else
4372 {
4373 /* Handle cases caused by hitting a breakpoint. */
4374
4375 CORE_ADDR jmp_buf_pc;
4376 struct bpstat_what what;
4377
4378 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4379
4380 if (what.call_dummy)
4381 {
4382 stop_stack_dummy = what.call_dummy;
4383 }
4384
4385 /* If we hit an internal event that triggers symbol changes, the
4386 current frame will be invalidated within bpstat_what (e.g.,
4387 if we hit an internal solib event). Re-fetch it. */
4388 frame = get_current_frame ();
4389 gdbarch = get_frame_arch (frame);
4390
4391 switch (what.main_action)
4392 {
4393 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4394 /* If we hit the breakpoint at longjmp while stepping, we
4395 install a momentary breakpoint at the target of the
4396 jmp_buf. */
4397
4398 if (debug_infrun)
4399 fprintf_unfiltered (gdb_stdlog,
4400 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4401
4402 ecs->event_thread->stepping_over_breakpoint = 1;
4403
4404 if (what.is_longjmp)
4405 {
4406 struct value *arg_value;
4407
4408 /* If we set the longjmp breakpoint via a SystemTap
4409 probe, then use it to extract the arguments. The
4410 destination PC is the third argument to the
4411 probe. */
4412 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4413 if (arg_value)
4414 jmp_buf_pc = value_as_address (arg_value);
4415 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4416 || !gdbarch_get_longjmp_target (gdbarch,
4417 frame, &jmp_buf_pc))
4418 {
4419 if (debug_infrun)
4420 fprintf_unfiltered (gdb_stdlog,
4421 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4422 "(!gdbarch_get_longjmp_target)\n");
4423 keep_going (ecs);
4424 return;
4425 }
4426
4427 /* Insert a breakpoint at resume address. */
4428 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4429 }
4430 else
4431 check_exception_resume (ecs, frame);
4432 keep_going (ecs);
4433 return;
4434
4435 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4436 {
4437 struct frame_info *init_frame;
4438
4439 /* There are several cases to consider.
4440
4441 1. The initiating frame no longer exists. In this case
4442 we must stop, because the exception or longjmp has gone
4443 too far.
4444
4445 2. The initiating frame exists, and is the same as the
4446 current frame. We stop, because the exception or
4447 longjmp has been caught.
4448
4449 3. The initiating frame exists and is different from
4450 the current frame. This means the exception or longjmp
4451 has been caught beneath the initiating frame, so keep
4452 going.
4453
4454 4. longjmp breakpoint has been placed just to protect
4455 against stale dummy frames and user is not interested
4456 in stopping around longjmps. */
4457
4458 if (debug_infrun)
4459 fprintf_unfiltered (gdb_stdlog,
4460 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4461
4462 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4463 != NULL);
4464 delete_exception_resume_breakpoint (ecs->event_thread);
4465
4466 if (what.is_longjmp)
4467 {
4468 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread->num);
4469
4470 if (!frame_id_p (ecs->event_thread->initiating_frame))
4471 {
4472 /* Case 4. */
4473 keep_going (ecs);
4474 return;
4475 }
4476 }
4477
4478 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
4479
4480 if (init_frame)
4481 {
4482 struct frame_id current_id
4483 = get_frame_id (get_current_frame ());
4484 if (frame_id_eq (current_id,
4485 ecs->event_thread->initiating_frame))
4486 {
4487 /* Case 2. Fall through. */
4488 }
4489 else
4490 {
4491 /* Case 3. */
4492 keep_going (ecs);
4493 return;
4494 }
4495 }
4496
4497 /* For Cases 1 and 2, remove the step-resume breakpoint,
4498 if it exists. */
4499 delete_step_resume_breakpoint (ecs->event_thread);
4500
4501 ecs->event_thread->control.stop_step = 1;
4502 print_end_stepping_range_reason ();
4503 stop_stepping (ecs);
4504 }
4505 return;
4506
4507 case BPSTAT_WHAT_SINGLE:
4508 if (debug_infrun)
4509 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4510 ecs->event_thread->stepping_over_breakpoint = 1;
4511 /* Still need to check other stuff, at least the case where
4512 we are stepping and step out of the right range. */
4513 break;
4514
4515 case BPSTAT_WHAT_STEP_RESUME:
4516 if (debug_infrun)
4517 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4518
4519 delete_step_resume_breakpoint (ecs->event_thread);
4520 if (ecs->event_thread->control.proceed_to_finish
4521 && execution_direction == EXEC_REVERSE)
4522 {
4523 struct thread_info *tp = ecs->event_thread;
4524
4525 /* We are finishing a function in reverse, and just hit
4526 the step-resume breakpoint at the start address of
4527 the function, and we're almost there -- just need to
4528 back up by one more single-step, which should take us
4529 back to the function call. */
4530 tp->control.step_range_start = tp->control.step_range_end = 1;
4531 keep_going (ecs);
4532 return;
4533 }
4534 fill_in_stop_func (gdbarch, ecs);
4535 if (stop_pc == ecs->stop_func_start
4536 && execution_direction == EXEC_REVERSE)
4537 {
4538 /* We are stepping over a function call in reverse, and
4539 just hit the step-resume breakpoint at the start
4540 address of the function. Go back to single-stepping,
4541 which should take us back to the function call. */
4542 ecs->event_thread->stepping_over_breakpoint = 1;
4543 keep_going (ecs);
4544 return;
4545 }
4546 break;
4547
4548 case BPSTAT_WHAT_STOP_NOISY:
4549 if (debug_infrun)
4550 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4551 stop_print_frame = 1;
4552
4553 /* We are about to nuke the step_resume_breakpointt via the
4554 cleanup chain, so no need to worry about it here. */
4555
4556 stop_stepping (ecs);
4557 return;
4558
4559 case BPSTAT_WHAT_STOP_SILENT:
4560 if (debug_infrun)
4561 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4562 stop_print_frame = 0;
4563
4564 /* We are about to nuke the step_resume_breakpoin via the
4565 cleanup chain, so no need to worry about it here. */
4566
4567 stop_stepping (ecs);
4568 return;
4569
4570 case BPSTAT_WHAT_HP_STEP_RESUME:
4571 if (debug_infrun)
4572 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4573
4574 delete_step_resume_breakpoint (ecs->event_thread);
4575 if (ecs->event_thread->step_after_step_resume_breakpoint)
4576 {
4577 /* Back when the step-resume breakpoint was inserted, we
4578 were trying to single-step off a breakpoint. Go back
4579 to doing that. */
4580 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4581 ecs->event_thread->stepping_over_breakpoint = 1;
4582 keep_going (ecs);
4583 return;
4584 }
4585 break;
4586
4587 case BPSTAT_WHAT_KEEP_CHECKING:
4588 break;
4589 }
4590 }
4591
4592 /* We come here if we hit a breakpoint but should not
4593 stop for it. Possibly we also were stepping
4594 and should stop for that. So fall through and
4595 test for stepping. But, if not stepping,
4596 do not stop. */
4597
4598 /* In all-stop mode, if we're currently stepping but have stopped in
4599 some other thread, we need to switch back to the stepped thread. */
4600 if (!non_stop)
4601 {
4602 struct thread_info *tp;
4603
4604 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
4605 ecs->event_thread);
4606 if (tp)
4607 {
4608 /* However, if the current thread is blocked on some internal
4609 breakpoint, and we simply need to step over that breakpoint
4610 to get it going again, do that first. */
4611 if ((ecs->event_thread->control.trap_expected
4612 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
4613 || ecs->event_thread->stepping_over_breakpoint)
4614 {
4615 keep_going (ecs);
4616 return;
4617 }
4618
4619 /* If the stepping thread exited, then don't try to switch
4620 back and resume it, which could fail in several different
4621 ways depending on the target. Instead, just keep going.
4622
4623 We can find a stepping dead thread in the thread list in
4624 two cases:
4625
4626 - The target supports thread exit events, and when the
4627 target tries to delete the thread from the thread list,
4628 inferior_ptid pointed at the exiting thread. In such
4629 case, calling delete_thread does not really remove the
4630 thread from the list; instead, the thread is left listed,
4631 with 'exited' state.
4632
4633 - The target's debug interface does not support thread
4634 exit events, and so we have no idea whatsoever if the
4635 previously stepping thread is still alive. For that
4636 reason, we need to synchronously query the target
4637 now. */
4638 if (is_exited (tp->ptid)
4639 || !target_thread_alive (tp->ptid))
4640 {
4641 if (debug_infrun)
4642 fprintf_unfiltered (gdb_stdlog,
4643 "infrun: not switching back to "
4644 "stepped thread, it has vanished\n");
4645
4646 delete_thread (tp->ptid);
4647 keep_going (ecs);
4648 return;
4649 }
4650
4651 /* Otherwise, we no longer expect a trap in the current thread.
4652 Clear the trap_expected flag before switching back -- this is
4653 what keep_going would do as well, if we called it. */
4654 ecs->event_thread->control.trap_expected = 0;
4655
4656 if (debug_infrun)
4657 fprintf_unfiltered (gdb_stdlog,
4658 "infrun: switching back to stepped thread\n");
4659
4660 ecs->event_thread = tp;
4661 ecs->ptid = tp->ptid;
4662 context_switch (ecs->ptid);
4663 keep_going (ecs);
4664 return;
4665 }
4666 }
4667
4668 if (ecs->event_thread->control.step_resume_breakpoint)
4669 {
4670 if (debug_infrun)
4671 fprintf_unfiltered (gdb_stdlog,
4672 "infrun: step-resume breakpoint is inserted\n");
4673
4674 /* Having a step-resume breakpoint overrides anything
4675 else having to do with stepping commands until
4676 that breakpoint is reached. */
4677 keep_going (ecs);
4678 return;
4679 }
4680
4681 if (ecs->event_thread->control.step_range_end == 0)
4682 {
4683 if (debug_infrun)
4684 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4685 /* Likewise if we aren't even stepping. */
4686 keep_going (ecs);
4687 return;
4688 }
4689
4690 /* Re-fetch current thread's frame in case the code above caused
4691 the frame cache to be re-initialized, making our FRAME variable
4692 a dangling pointer. */
4693 frame = get_current_frame ();
4694 gdbarch = get_frame_arch (frame);
4695 fill_in_stop_func (gdbarch, ecs);
4696
4697 /* If stepping through a line, keep going if still within it.
4698
4699 Note that step_range_end is the address of the first instruction
4700 beyond the step range, and NOT the address of the last instruction
4701 within it!
4702
4703 Note also that during reverse execution, we may be stepping
4704 through a function epilogue and therefore must detect when
4705 the current-frame changes in the middle of a line. */
4706
4707 if (stop_pc >= ecs->event_thread->control.step_range_start
4708 && stop_pc < ecs->event_thread->control.step_range_end
4709 && (execution_direction != EXEC_REVERSE
4710 || frame_id_eq (get_frame_id (frame),
4711 ecs->event_thread->control.step_frame_id)))
4712 {
4713 if (debug_infrun)
4714 fprintf_unfiltered
4715 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4716 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4717 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4718
4719 /* When stepping backward, stop at beginning of line range
4720 (unless it's the function entry point, in which case
4721 keep going back to the call point). */
4722 if (stop_pc == ecs->event_thread->control.step_range_start
4723 && stop_pc != ecs->stop_func_start
4724 && execution_direction == EXEC_REVERSE)
4725 {
4726 ecs->event_thread->control.stop_step = 1;
4727 print_end_stepping_range_reason ();
4728 stop_stepping (ecs);
4729 }
4730 else
4731 keep_going (ecs);
4732
4733 return;
4734 }
4735
4736 /* We stepped out of the stepping range. */
4737
4738 /* If we are stepping at the source level and entered the runtime
4739 loader dynamic symbol resolution code...
4740
4741 EXEC_FORWARD: we keep on single stepping until we exit the run
4742 time loader code and reach the callee's address.
4743
4744 EXEC_REVERSE: we've already executed the callee (backward), and
4745 the runtime loader code is handled just like any other
4746 undebuggable function call. Now we need only keep stepping
4747 backward through the trampoline code, and that's handled further
4748 down, so there is nothing for us to do here. */
4749
4750 if (execution_direction != EXEC_REVERSE
4751 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4752 && in_solib_dynsym_resolve_code (stop_pc))
4753 {
4754 CORE_ADDR pc_after_resolver =
4755 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4756
4757 if (debug_infrun)
4758 fprintf_unfiltered (gdb_stdlog,
4759 "infrun: stepped into dynsym resolve code\n");
4760
4761 if (pc_after_resolver)
4762 {
4763 /* Set up a step-resume breakpoint at the address
4764 indicated by SKIP_SOLIB_RESOLVER. */
4765 struct symtab_and_line sr_sal;
4766
4767 init_sal (&sr_sal);
4768 sr_sal.pc = pc_after_resolver;
4769 sr_sal.pspace = get_frame_program_space (frame);
4770
4771 insert_step_resume_breakpoint_at_sal (gdbarch,
4772 sr_sal, null_frame_id);
4773 }
4774
4775 keep_going (ecs);
4776 return;
4777 }
4778
4779 if (ecs->event_thread->control.step_range_end != 1
4780 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4781 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4782 && get_frame_type (frame) == SIGTRAMP_FRAME)
4783 {
4784 if (debug_infrun)
4785 fprintf_unfiltered (gdb_stdlog,
4786 "infrun: stepped into signal trampoline\n");
4787 /* The inferior, while doing a "step" or "next", has ended up in
4788 a signal trampoline (either by a signal being delivered or by
4789 the signal handler returning). Just single-step until the
4790 inferior leaves the trampoline (either by calling the handler
4791 or returning). */
4792 keep_going (ecs);
4793 return;
4794 }
4795
4796 /* If we're in the return path from a shared library trampoline,
4797 we want to proceed through the trampoline when stepping. */
4798 /* macro/2012-04-25: This needs to come before the subroutine
4799 call check below as on some targets return trampolines look
4800 like subroutine calls (MIPS16 return thunks). */
4801 if (gdbarch_in_solib_return_trampoline (gdbarch,
4802 stop_pc, ecs->stop_func_name)
4803 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4804 {
4805 /* Determine where this trampoline returns. */
4806 CORE_ADDR real_stop_pc;
4807
4808 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4809
4810 if (debug_infrun)
4811 fprintf_unfiltered (gdb_stdlog,
4812 "infrun: stepped into solib return tramp\n");
4813
4814 /* Only proceed through if we know where it's going. */
4815 if (real_stop_pc)
4816 {
4817 /* And put the step-breakpoint there and go until there. */
4818 struct symtab_and_line sr_sal;
4819
4820 init_sal (&sr_sal); /* initialize to zeroes */
4821 sr_sal.pc = real_stop_pc;
4822 sr_sal.section = find_pc_overlay (sr_sal.pc);
4823 sr_sal.pspace = get_frame_program_space (frame);
4824
4825 /* Do not specify what the fp should be when we stop since
4826 on some machines the prologue is where the new fp value
4827 is established. */
4828 insert_step_resume_breakpoint_at_sal (gdbarch,
4829 sr_sal, null_frame_id);
4830
4831 /* Restart without fiddling with the step ranges or
4832 other state. */
4833 keep_going (ecs);
4834 return;
4835 }
4836 }
4837
4838 /* Check for subroutine calls. The check for the current frame
4839 equalling the step ID is not necessary - the check of the
4840 previous frame's ID is sufficient - but it is a common case and
4841 cheaper than checking the previous frame's ID.
4842
4843 NOTE: frame_id_eq will never report two invalid frame IDs as
4844 being equal, so to get into this block, both the current and
4845 previous frame must have valid frame IDs. */
4846 /* The outer_frame_id check is a heuristic to detect stepping
4847 through startup code. If we step over an instruction which
4848 sets the stack pointer from an invalid value to a valid value,
4849 we may detect that as a subroutine call from the mythical
4850 "outermost" function. This could be fixed by marking
4851 outermost frames as !stack_p,code_p,special_p. Then the
4852 initial outermost frame, before sp was valid, would
4853 have code_addr == &_start. See the comment in frame_id_eq
4854 for more. */
4855 if (!frame_id_eq (get_stack_frame_id (frame),
4856 ecs->event_thread->control.step_stack_frame_id)
4857 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4858 ecs->event_thread->control.step_stack_frame_id)
4859 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4860 outer_frame_id)
4861 || step_start_function != find_pc_function (stop_pc))))
4862 {
4863 CORE_ADDR real_stop_pc;
4864
4865 if (debug_infrun)
4866 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4867
4868 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4869 || ((ecs->event_thread->control.step_range_end == 1)
4870 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4871 ecs->stop_func_start)))
4872 {
4873 /* I presume that step_over_calls is only 0 when we're
4874 supposed to be stepping at the assembly language level
4875 ("stepi"). Just stop. */
4876 /* Also, maybe we just did a "nexti" inside a prolog, so we
4877 thought it was a subroutine call but it was not. Stop as
4878 well. FENN */
4879 /* And this works the same backward as frontward. MVS */
4880 ecs->event_thread->control.stop_step = 1;
4881 print_end_stepping_range_reason ();
4882 stop_stepping (ecs);
4883 return;
4884 }
4885
4886 /* Reverse stepping through solib trampolines. */
4887
4888 if (execution_direction == EXEC_REVERSE
4889 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
4890 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4891 || (ecs->stop_func_start == 0
4892 && in_solib_dynsym_resolve_code (stop_pc))))
4893 {
4894 /* Any solib trampoline code can be handled in reverse
4895 by simply continuing to single-step. We have already
4896 executed the solib function (backwards), and a few
4897 steps will take us back through the trampoline to the
4898 caller. */
4899 keep_going (ecs);
4900 return;
4901 }
4902
4903 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4904 {
4905 /* We're doing a "next".
4906
4907 Normal (forward) execution: set a breakpoint at the
4908 callee's return address (the address at which the caller
4909 will resume).
4910
4911 Reverse (backward) execution. set the step-resume
4912 breakpoint at the start of the function that we just
4913 stepped into (backwards), and continue to there. When we
4914 get there, we'll need to single-step back to the caller. */
4915
4916 if (execution_direction == EXEC_REVERSE)
4917 {
4918 /* If we're already at the start of the function, we've either
4919 just stepped backward into a single instruction function,
4920 or stepped back out of a signal handler to the first instruction
4921 of the function. Just keep going, which will single-step back
4922 to the caller. */
4923 if (ecs->stop_func_start != stop_pc)
4924 {
4925 struct symtab_and_line sr_sal;
4926
4927 /* Normal function call return (static or dynamic). */
4928 init_sal (&sr_sal);
4929 sr_sal.pc = ecs->stop_func_start;
4930 sr_sal.pspace = get_frame_program_space (frame);
4931 insert_step_resume_breakpoint_at_sal (gdbarch,
4932 sr_sal, null_frame_id);
4933 }
4934 }
4935 else
4936 insert_step_resume_breakpoint_at_caller (frame);
4937
4938 keep_going (ecs);
4939 return;
4940 }
4941
4942 /* If we are in a function call trampoline (a stub between the
4943 calling routine and the real function), locate the real
4944 function. That's what tells us (a) whether we want to step
4945 into it at all, and (b) what prologue we want to run to the
4946 end of, if we do step into it. */
4947 real_stop_pc = skip_language_trampoline (frame, stop_pc);
4948 if (real_stop_pc == 0)
4949 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4950 if (real_stop_pc != 0)
4951 ecs->stop_func_start = real_stop_pc;
4952
4953 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4954 {
4955 struct symtab_and_line sr_sal;
4956
4957 init_sal (&sr_sal);
4958 sr_sal.pc = ecs->stop_func_start;
4959 sr_sal.pspace = get_frame_program_space (frame);
4960
4961 insert_step_resume_breakpoint_at_sal (gdbarch,
4962 sr_sal, null_frame_id);
4963 keep_going (ecs);
4964 return;
4965 }
4966
4967 /* If we have line number information for the function we are
4968 thinking of stepping into and the function isn't on the skip
4969 list, step into it.
4970
4971 If there are several symtabs at that PC (e.g. with include
4972 files), just want to know whether *any* of them have line
4973 numbers. find_pc_line handles this. */
4974 {
4975 struct symtab_and_line tmp_sal;
4976
4977 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4978 if (tmp_sal.line != 0
4979 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4980 &tmp_sal))
4981 {
4982 if (execution_direction == EXEC_REVERSE)
4983 handle_step_into_function_backward (gdbarch, ecs);
4984 else
4985 handle_step_into_function (gdbarch, ecs);
4986 return;
4987 }
4988 }
4989
4990 /* If we have no line number and the step-stop-if-no-debug is
4991 set, we stop the step so that the user has a chance to switch
4992 in assembly mode. */
4993 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4994 && step_stop_if_no_debug)
4995 {
4996 ecs->event_thread->control.stop_step = 1;
4997 print_end_stepping_range_reason ();
4998 stop_stepping (ecs);
4999 return;
5000 }
5001
5002 if (execution_direction == EXEC_REVERSE)
5003 {
5004 /* If we're already at the start of the function, we've either just
5005 stepped backward into a single instruction function without line
5006 number info, or stepped back out of a signal handler to the first
5007 instruction of the function without line number info. Just keep
5008 going, which will single-step back to the caller. */
5009 if (ecs->stop_func_start != stop_pc)
5010 {
5011 /* Set a breakpoint at callee's start address.
5012 From there we can step once and be back in the caller. */
5013 struct symtab_and_line sr_sal;
5014
5015 init_sal (&sr_sal);
5016 sr_sal.pc = ecs->stop_func_start;
5017 sr_sal.pspace = get_frame_program_space (frame);
5018 insert_step_resume_breakpoint_at_sal (gdbarch,
5019 sr_sal, null_frame_id);
5020 }
5021 }
5022 else
5023 /* Set a breakpoint at callee's return address (the address
5024 at which the caller will resume). */
5025 insert_step_resume_breakpoint_at_caller (frame);
5026
5027 keep_going (ecs);
5028 return;
5029 }
5030
5031 /* Reverse stepping through solib trampolines. */
5032
5033 if (execution_direction == EXEC_REVERSE
5034 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5035 {
5036 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5037 || (ecs->stop_func_start == 0
5038 && in_solib_dynsym_resolve_code (stop_pc)))
5039 {
5040 /* Any solib trampoline code can be handled in reverse
5041 by simply continuing to single-step. We have already
5042 executed the solib function (backwards), and a few
5043 steps will take us back through the trampoline to the
5044 caller. */
5045 keep_going (ecs);
5046 return;
5047 }
5048 else if (in_solib_dynsym_resolve_code (stop_pc))
5049 {
5050 /* Stepped backward into the solib dynsym resolver.
5051 Set a breakpoint at its start and continue, then
5052 one more step will take us out. */
5053 struct symtab_and_line sr_sal;
5054
5055 init_sal (&sr_sal);
5056 sr_sal.pc = ecs->stop_func_start;
5057 sr_sal.pspace = get_frame_program_space (frame);
5058 insert_step_resume_breakpoint_at_sal (gdbarch,
5059 sr_sal, null_frame_id);
5060 keep_going (ecs);
5061 return;
5062 }
5063 }
5064
5065 stop_pc_sal = find_pc_line (stop_pc, 0);
5066
5067 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5068 the trampoline processing logic, however, there are some trampolines
5069 that have no names, so we should do trampoline handling first. */
5070 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5071 && ecs->stop_func_name == NULL
5072 && stop_pc_sal.line == 0)
5073 {
5074 if (debug_infrun)
5075 fprintf_unfiltered (gdb_stdlog,
5076 "infrun: stepped into undebuggable function\n");
5077
5078 /* The inferior just stepped into, or returned to, an
5079 undebuggable function (where there is no debugging information
5080 and no line number corresponding to the address where the
5081 inferior stopped). Since we want to skip this kind of code,
5082 we keep going until the inferior returns from this
5083 function - unless the user has asked us not to (via
5084 set step-mode) or we no longer know how to get back
5085 to the call site. */
5086 if (step_stop_if_no_debug
5087 || !frame_id_p (frame_unwind_caller_id (frame)))
5088 {
5089 /* If we have no line number and the step-stop-if-no-debug
5090 is set, we stop the step so that the user has a chance to
5091 switch in assembly mode. */
5092 ecs->event_thread->control.stop_step = 1;
5093 print_end_stepping_range_reason ();
5094 stop_stepping (ecs);
5095 return;
5096 }
5097 else
5098 {
5099 /* Set a breakpoint at callee's return address (the address
5100 at which the caller will resume). */
5101 insert_step_resume_breakpoint_at_caller (frame);
5102 keep_going (ecs);
5103 return;
5104 }
5105 }
5106
5107 if (ecs->event_thread->control.step_range_end == 1)
5108 {
5109 /* It is stepi or nexti. We always want to stop stepping after
5110 one instruction. */
5111 if (debug_infrun)
5112 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
5113 ecs->event_thread->control.stop_step = 1;
5114 print_end_stepping_range_reason ();
5115 stop_stepping (ecs);
5116 return;
5117 }
5118
5119 if (stop_pc_sal.line == 0)
5120 {
5121 /* We have no line number information. That means to stop
5122 stepping (does this always happen right after one instruction,
5123 when we do "s" in a function with no line numbers,
5124 or can this happen as a result of a return or longjmp?). */
5125 if (debug_infrun)
5126 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
5127 ecs->event_thread->control.stop_step = 1;
5128 print_end_stepping_range_reason ();
5129 stop_stepping (ecs);
5130 return;
5131 }
5132
5133 /* Look for "calls" to inlined functions, part one. If the inline
5134 frame machinery detected some skipped call sites, we have entered
5135 a new inline function. */
5136
5137 if (frame_id_eq (get_frame_id (get_current_frame ()),
5138 ecs->event_thread->control.step_frame_id)
5139 && inline_skipped_frames (ecs->ptid))
5140 {
5141 struct symtab_and_line call_sal;
5142
5143 if (debug_infrun)
5144 fprintf_unfiltered (gdb_stdlog,
5145 "infrun: stepped into inlined function\n");
5146
5147 find_frame_sal (get_current_frame (), &call_sal);
5148
5149 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5150 {
5151 /* For "step", we're going to stop. But if the call site
5152 for this inlined function is on the same source line as
5153 we were previously stepping, go down into the function
5154 first. Otherwise stop at the call site. */
5155
5156 if (call_sal.line == ecs->event_thread->current_line
5157 && call_sal.symtab == ecs->event_thread->current_symtab)
5158 step_into_inline_frame (ecs->ptid);
5159
5160 ecs->event_thread->control.stop_step = 1;
5161 print_end_stepping_range_reason ();
5162 stop_stepping (ecs);
5163 return;
5164 }
5165 else
5166 {
5167 /* For "next", we should stop at the call site if it is on a
5168 different source line. Otherwise continue through the
5169 inlined function. */
5170 if (call_sal.line == ecs->event_thread->current_line
5171 && call_sal.symtab == ecs->event_thread->current_symtab)
5172 keep_going (ecs);
5173 else
5174 {
5175 ecs->event_thread->control.stop_step = 1;
5176 print_end_stepping_range_reason ();
5177 stop_stepping (ecs);
5178 }
5179 return;
5180 }
5181 }
5182
5183 /* Look for "calls" to inlined functions, part two. If we are still
5184 in the same real function we were stepping through, but we have
5185 to go further up to find the exact frame ID, we are stepping
5186 through a more inlined call beyond its call site. */
5187
5188 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5189 && !frame_id_eq (get_frame_id (get_current_frame ()),
5190 ecs->event_thread->control.step_frame_id)
5191 && stepped_in_from (get_current_frame (),
5192 ecs->event_thread->control.step_frame_id))
5193 {
5194 if (debug_infrun)
5195 fprintf_unfiltered (gdb_stdlog,
5196 "infrun: stepping through inlined function\n");
5197
5198 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5199 keep_going (ecs);
5200 else
5201 {
5202 ecs->event_thread->control.stop_step = 1;
5203 print_end_stepping_range_reason ();
5204 stop_stepping (ecs);
5205 }
5206 return;
5207 }
5208
5209 if ((stop_pc == stop_pc_sal.pc)
5210 && (ecs->event_thread->current_line != stop_pc_sal.line
5211 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5212 {
5213 /* We are at the start of a different line. So stop. Note that
5214 we don't stop if we step into the middle of a different line.
5215 That is said to make things like for (;;) statements work
5216 better. */
5217 if (debug_infrun)
5218 fprintf_unfiltered (gdb_stdlog,
5219 "infrun: stepped to a different line\n");
5220 ecs->event_thread->control.stop_step = 1;
5221 print_end_stepping_range_reason ();
5222 stop_stepping (ecs);
5223 return;
5224 }
5225
5226 /* We aren't done stepping.
5227
5228 Optimize by setting the stepping range to the line.
5229 (We might not be in the original line, but if we entered a
5230 new line in mid-statement, we continue stepping. This makes
5231 things like for(;;) statements work better.) */
5232
5233 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5234 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5235 set_step_info (frame, stop_pc_sal);
5236
5237 if (debug_infrun)
5238 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5239 keep_going (ecs);
5240 }
5241
5242 /* Is thread TP in the middle of single-stepping? */
5243
5244 static int
5245 currently_stepping (struct thread_info *tp)
5246 {
5247 return ((tp->control.step_range_end
5248 && tp->control.step_resume_breakpoint == NULL)
5249 || tp->control.trap_expected
5250 || bpstat_should_step ());
5251 }
5252
5253 /* Returns true if any thread *but* the one passed in "data" is in the
5254 middle of stepping or of handling a "next". */
5255
5256 static int
5257 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
5258 {
5259 if (tp == data)
5260 return 0;
5261
5262 return (tp->control.step_range_end
5263 || tp->control.trap_expected);
5264 }
5265
5266 /* Inferior has stepped into a subroutine call with source code that
5267 we should not step over. Do step to the first line of code in
5268 it. */
5269
5270 static void
5271 handle_step_into_function (struct gdbarch *gdbarch,
5272 struct execution_control_state *ecs)
5273 {
5274 struct symtab *s;
5275 struct symtab_and_line stop_func_sal, sr_sal;
5276
5277 fill_in_stop_func (gdbarch, ecs);
5278
5279 s = find_pc_symtab (stop_pc);
5280 if (s && s->language != language_asm)
5281 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5282 ecs->stop_func_start);
5283
5284 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5285 /* Use the step_resume_break to step until the end of the prologue,
5286 even if that involves jumps (as it seems to on the vax under
5287 4.2). */
5288 /* If the prologue ends in the middle of a source line, continue to
5289 the end of that source line (if it is still within the function).
5290 Otherwise, just go to end of prologue. */
5291 if (stop_func_sal.end
5292 && stop_func_sal.pc != ecs->stop_func_start
5293 && stop_func_sal.end < ecs->stop_func_end)
5294 ecs->stop_func_start = stop_func_sal.end;
5295
5296 /* Architectures which require breakpoint adjustment might not be able
5297 to place a breakpoint at the computed address. If so, the test
5298 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5299 ecs->stop_func_start to an address at which a breakpoint may be
5300 legitimately placed.
5301
5302 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5303 made, GDB will enter an infinite loop when stepping through
5304 optimized code consisting of VLIW instructions which contain
5305 subinstructions corresponding to different source lines. On
5306 FR-V, it's not permitted to place a breakpoint on any but the
5307 first subinstruction of a VLIW instruction. When a breakpoint is
5308 set, GDB will adjust the breakpoint address to the beginning of
5309 the VLIW instruction. Thus, we need to make the corresponding
5310 adjustment here when computing the stop address. */
5311
5312 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5313 {
5314 ecs->stop_func_start
5315 = gdbarch_adjust_breakpoint_address (gdbarch,
5316 ecs->stop_func_start);
5317 }
5318
5319 if (ecs->stop_func_start == stop_pc)
5320 {
5321 /* We are already there: stop now. */
5322 ecs->event_thread->control.stop_step = 1;
5323 print_end_stepping_range_reason ();
5324 stop_stepping (ecs);
5325 return;
5326 }
5327 else
5328 {
5329 /* Put the step-breakpoint there and go until there. */
5330 init_sal (&sr_sal); /* initialize to zeroes */
5331 sr_sal.pc = ecs->stop_func_start;
5332 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5333 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5334
5335 /* Do not specify what the fp should be when we stop since on
5336 some machines the prologue is where the new fp value is
5337 established. */
5338 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5339
5340 /* And make sure stepping stops right away then. */
5341 ecs->event_thread->control.step_range_end
5342 = ecs->event_thread->control.step_range_start;
5343 }
5344 keep_going (ecs);
5345 }
5346
5347 /* Inferior has stepped backward into a subroutine call with source
5348 code that we should not step over. Do step to the beginning of the
5349 last line of code in it. */
5350
5351 static void
5352 handle_step_into_function_backward (struct gdbarch *gdbarch,
5353 struct execution_control_state *ecs)
5354 {
5355 struct symtab *s;
5356 struct symtab_and_line stop_func_sal;
5357
5358 fill_in_stop_func (gdbarch, ecs);
5359
5360 s = find_pc_symtab (stop_pc);
5361 if (s && s->language != language_asm)
5362 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5363 ecs->stop_func_start);
5364
5365 stop_func_sal = find_pc_line (stop_pc, 0);
5366
5367 /* OK, we're just going to keep stepping here. */
5368 if (stop_func_sal.pc == stop_pc)
5369 {
5370 /* We're there already. Just stop stepping now. */
5371 ecs->event_thread->control.stop_step = 1;
5372 print_end_stepping_range_reason ();
5373 stop_stepping (ecs);
5374 }
5375 else
5376 {
5377 /* Else just reset the step range and keep going.
5378 No step-resume breakpoint, they don't work for
5379 epilogues, which can have multiple entry paths. */
5380 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5381 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5382 keep_going (ecs);
5383 }
5384 return;
5385 }
5386
5387 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5388 This is used to both functions and to skip over code. */
5389
5390 static void
5391 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5392 struct symtab_and_line sr_sal,
5393 struct frame_id sr_id,
5394 enum bptype sr_type)
5395 {
5396 /* There should never be more than one step-resume or longjmp-resume
5397 breakpoint per thread, so we should never be setting a new
5398 step_resume_breakpoint when one is already active. */
5399 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5400 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5401
5402 if (debug_infrun)
5403 fprintf_unfiltered (gdb_stdlog,
5404 "infrun: inserting step-resume breakpoint at %s\n",
5405 paddress (gdbarch, sr_sal.pc));
5406
5407 inferior_thread ()->control.step_resume_breakpoint
5408 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5409 }
5410
5411 void
5412 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5413 struct symtab_and_line sr_sal,
5414 struct frame_id sr_id)
5415 {
5416 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5417 sr_sal, sr_id,
5418 bp_step_resume);
5419 }
5420
5421 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5422 This is used to skip a potential signal handler.
5423
5424 This is called with the interrupted function's frame. The signal
5425 handler, when it returns, will resume the interrupted function at
5426 RETURN_FRAME.pc. */
5427
5428 static void
5429 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5430 {
5431 struct symtab_and_line sr_sal;
5432 struct gdbarch *gdbarch;
5433
5434 gdb_assert (return_frame != NULL);
5435 init_sal (&sr_sal); /* initialize to zeros */
5436
5437 gdbarch = get_frame_arch (return_frame);
5438 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5439 sr_sal.section = find_pc_overlay (sr_sal.pc);
5440 sr_sal.pspace = get_frame_program_space (return_frame);
5441
5442 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5443 get_stack_frame_id (return_frame),
5444 bp_hp_step_resume);
5445 }
5446
5447 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
5448 is used to skip a function after stepping into it (for "next" or if
5449 the called function has no debugging information).
5450
5451 The current function has almost always been reached by single
5452 stepping a call or return instruction. NEXT_FRAME belongs to the
5453 current function, and the breakpoint will be set at the caller's
5454 resume address.
5455
5456 This is a separate function rather than reusing
5457 insert_hp_step_resume_breakpoint_at_frame in order to avoid
5458 get_prev_frame, which may stop prematurely (see the implementation
5459 of frame_unwind_caller_id for an example). */
5460
5461 static void
5462 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5463 {
5464 struct symtab_and_line sr_sal;
5465 struct gdbarch *gdbarch;
5466
5467 /* We shouldn't have gotten here if we don't know where the call site
5468 is. */
5469 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5470
5471 init_sal (&sr_sal); /* initialize to zeros */
5472
5473 gdbarch = frame_unwind_caller_arch (next_frame);
5474 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5475 frame_unwind_caller_pc (next_frame));
5476 sr_sal.section = find_pc_overlay (sr_sal.pc);
5477 sr_sal.pspace = frame_unwind_program_space (next_frame);
5478
5479 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5480 frame_unwind_caller_id (next_frame));
5481 }
5482
5483 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5484 new breakpoint at the target of a jmp_buf. The handling of
5485 longjmp-resume uses the same mechanisms used for handling
5486 "step-resume" breakpoints. */
5487
5488 static void
5489 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5490 {
5491 /* There should never be more than one longjmp-resume breakpoint per
5492 thread, so we should never be setting a new
5493 longjmp_resume_breakpoint when one is already active. */
5494 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
5495
5496 if (debug_infrun)
5497 fprintf_unfiltered (gdb_stdlog,
5498 "infrun: inserting longjmp-resume breakpoint at %s\n",
5499 paddress (gdbarch, pc));
5500
5501 inferior_thread ()->control.exception_resume_breakpoint =
5502 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5503 }
5504
5505 /* Insert an exception resume breakpoint. TP is the thread throwing
5506 the exception. The block B is the block of the unwinder debug hook
5507 function. FRAME is the frame corresponding to the call to this
5508 function. SYM is the symbol of the function argument holding the
5509 target PC of the exception. */
5510
5511 static void
5512 insert_exception_resume_breakpoint (struct thread_info *tp,
5513 struct block *b,
5514 struct frame_info *frame,
5515 struct symbol *sym)
5516 {
5517 volatile struct gdb_exception e;
5518
5519 /* We want to ignore errors here. */
5520 TRY_CATCH (e, RETURN_MASK_ERROR)
5521 {
5522 struct symbol *vsym;
5523 struct value *value;
5524 CORE_ADDR handler;
5525 struct breakpoint *bp;
5526
5527 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5528 value = read_var_value (vsym, frame);
5529 /* If the value was optimized out, revert to the old behavior. */
5530 if (! value_optimized_out (value))
5531 {
5532 handler = value_as_address (value);
5533
5534 if (debug_infrun)
5535 fprintf_unfiltered (gdb_stdlog,
5536 "infrun: exception resume at %lx\n",
5537 (unsigned long) handler);
5538
5539 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5540 handler, bp_exception_resume);
5541
5542 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5543 frame = NULL;
5544
5545 bp->thread = tp->num;
5546 inferior_thread ()->control.exception_resume_breakpoint = bp;
5547 }
5548 }
5549 }
5550
5551 /* A helper for check_exception_resume that sets an
5552 exception-breakpoint based on a SystemTap probe. */
5553
5554 static void
5555 insert_exception_resume_from_probe (struct thread_info *tp,
5556 const struct probe *probe,
5557 struct frame_info *frame)
5558 {
5559 struct value *arg_value;
5560 CORE_ADDR handler;
5561 struct breakpoint *bp;
5562
5563 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5564 if (!arg_value)
5565 return;
5566
5567 handler = value_as_address (arg_value);
5568
5569 if (debug_infrun)
5570 fprintf_unfiltered (gdb_stdlog,
5571 "infrun: exception resume at %s\n",
5572 paddress (get_objfile_arch (probe->objfile),
5573 handler));
5574
5575 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5576 handler, bp_exception_resume);
5577 bp->thread = tp->num;
5578 inferior_thread ()->control.exception_resume_breakpoint = bp;
5579 }
5580
5581 /* This is called when an exception has been intercepted. Check to
5582 see whether the exception's destination is of interest, and if so,
5583 set an exception resume breakpoint there. */
5584
5585 static void
5586 check_exception_resume (struct execution_control_state *ecs,
5587 struct frame_info *frame)
5588 {
5589 volatile struct gdb_exception e;
5590 const struct probe *probe;
5591 struct symbol *func;
5592
5593 /* First see if this exception unwinding breakpoint was set via a
5594 SystemTap probe point. If so, the probe has two arguments: the
5595 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5596 set a breakpoint there. */
5597 probe = find_probe_by_pc (get_frame_pc (frame));
5598 if (probe)
5599 {
5600 insert_exception_resume_from_probe (ecs->event_thread, probe, frame);
5601 return;
5602 }
5603
5604 func = get_frame_function (frame);
5605 if (!func)
5606 return;
5607
5608 TRY_CATCH (e, RETURN_MASK_ERROR)
5609 {
5610 struct block *b;
5611 struct block_iterator iter;
5612 struct symbol *sym;
5613 int argno = 0;
5614
5615 /* The exception breakpoint is a thread-specific breakpoint on
5616 the unwinder's debug hook, declared as:
5617
5618 void _Unwind_DebugHook (void *cfa, void *handler);
5619
5620 The CFA argument indicates the frame to which control is
5621 about to be transferred. HANDLER is the destination PC.
5622
5623 We ignore the CFA and set a temporary breakpoint at HANDLER.
5624 This is not extremely efficient but it avoids issues in gdb
5625 with computing the DWARF CFA, and it also works even in weird
5626 cases such as throwing an exception from inside a signal
5627 handler. */
5628
5629 b = SYMBOL_BLOCK_VALUE (func);
5630 ALL_BLOCK_SYMBOLS (b, iter, sym)
5631 {
5632 if (!SYMBOL_IS_ARGUMENT (sym))
5633 continue;
5634
5635 if (argno == 0)
5636 ++argno;
5637 else
5638 {
5639 insert_exception_resume_breakpoint (ecs->event_thread,
5640 b, frame, sym);
5641 break;
5642 }
5643 }
5644 }
5645 }
5646
5647 static void
5648 stop_stepping (struct execution_control_state *ecs)
5649 {
5650 if (debug_infrun)
5651 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
5652
5653 /* Let callers know we don't want to wait for the inferior anymore. */
5654 ecs->wait_some_more = 0;
5655 }
5656
5657 /* This function handles various cases where we need to continue
5658 waiting for the inferior. */
5659 /* (Used to be the keep_going: label in the old wait_for_inferior). */
5660
5661 static void
5662 keep_going (struct execution_control_state *ecs)
5663 {
5664 /* Make sure normal_stop is called if we get a QUIT handled before
5665 reaching resume. */
5666 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5667
5668 /* Save the pc before execution, to compare with pc after stop. */
5669 ecs->event_thread->prev_pc
5670 = regcache_read_pc (get_thread_regcache (ecs->ptid));
5671
5672 /* If we did not do break;, it means we should keep running the
5673 inferior and not return to debugger. */
5674
5675 if (ecs->event_thread->control.trap_expected
5676 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5677 {
5678 /* We took a signal (which we are supposed to pass through to
5679 the inferior, else we'd not get here) and we haven't yet
5680 gotten our trap. Simply continue. */
5681
5682 discard_cleanups (old_cleanups);
5683 resume (currently_stepping (ecs->event_thread),
5684 ecs->event_thread->suspend.stop_signal);
5685 }
5686 else
5687 {
5688 /* Either the trap was not expected, but we are continuing
5689 anyway (the user asked that this signal be passed to the
5690 child)
5691 -- or --
5692 The signal was SIGTRAP, e.g. it was our signal, but we
5693 decided we should resume from it.
5694
5695 We're going to run this baby now!
5696
5697 Note that insert_breakpoints won't try to re-insert
5698 already inserted breakpoints. Therefore, we don't
5699 care if breakpoints were already inserted, or not. */
5700
5701 if (ecs->event_thread->stepping_over_breakpoint)
5702 {
5703 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
5704
5705 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
5706 /* Since we can't do a displaced step, we have to remove
5707 the breakpoint while we step it. To keep things
5708 simple, we remove them all. */
5709 remove_breakpoints ();
5710 }
5711 else
5712 {
5713 volatile struct gdb_exception e;
5714
5715 /* Stop stepping when inserting breakpoints
5716 has failed. */
5717 TRY_CATCH (e, RETURN_MASK_ERROR)
5718 {
5719 insert_breakpoints ();
5720 }
5721 if (e.reason < 0)
5722 {
5723 exception_print (gdb_stderr, e);
5724 stop_stepping (ecs);
5725 return;
5726 }
5727 }
5728
5729 ecs->event_thread->control.trap_expected
5730 = ecs->event_thread->stepping_over_breakpoint;
5731
5732 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
5733 specifies that such a signal should be delivered to the
5734 target program).
5735
5736 Typically, this would occure when a user is debugging a
5737 target monitor on a simulator: the target monitor sets a
5738 breakpoint; the simulator encounters this break-point and
5739 halts the simulation handing control to GDB; GDB, noteing
5740 that the break-point isn't valid, returns control back to the
5741 simulator; the simulator then delivers the hardware
5742 equivalent of a SIGNAL_TRAP to the program being debugged. */
5743
5744 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5745 && !signal_program[ecs->event_thread->suspend.stop_signal])
5746 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5747
5748 discard_cleanups (old_cleanups);
5749 resume (currently_stepping (ecs->event_thread),
5750 ecs->event_thread->suspend.stop_signal);
5751 }
5752
5753 prepare_to_wait (ecs);
5754 }
5755
5756 /* This function normally comes after a resume, before
5757 handle_inferior_event exits. It takes care of any last bits of
5758 housekeeping, and sets the all-important wait_some_more flag. */
5759
5760 static void
5761 prepare_to_wait (struct execution_control_state *ecs)
5762 {
5763 if (debug_infrun)
5764 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
5765
5766 /* This is the old end of the while loop. Let everybody know we
5767 want to wait for the inferior some more and get called again
5768 soon. */
5769 ecs->wait_some_more = 1;
5770 }
5771
5772 /* Several print_*_reason functions to print why the inferior has stopped.
5773 We always print something when the inferior exits, or receives a signal.
5774 The rest of the cases are dealt with later on in normal_stop and
5775 print_it_typical. Ideally there should be a call to one of these
5776 print_*_reason functions functions from handle_inferior_event each time
5777 stop_stepping is called. */
5778
5779 /* Print why the inferior has stopped.
5780 We are done with a step/next/si/ni command, print why the inferior has
5781 stopped. For now print nothing. Print a message only if not in the middle
5782 of doing a "step n" operation for n > 1. */
5783
5784 static void
5785 print_end_stepping_range_reason (void)
5786 {
5787 if ((!inferior_thread ()->step_multi
5788 || !inferior_thread ()->control.stop_step)
5789 && ui_out_is_mi_like_p (current_uiout))
5790 ui_out_field_string (current_uiout, "reason",
5791 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5792 }
5793
5794 /* The inferior was terminated by a signal, print why it stopped. */
5795
5796 static void
5797 print_signal_exited_reason (enum gdb_signal siggnal)
5798 {
5799 struct ui_out *uiout = current_uiout;
5800
5801 annotate_signalled ();
5802 if (ui_out_is_mi_like_p (uiout))
5803 ui_out_field_string
5804 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5805 ui_out_text (uiout, "\nProgram terminated with signal ");
5806 annotate_signal_name ();
5807 ui_out_field_string (uiout, "signal-name",
5808 gdb_signal_to_name (siggnal));
5809 annotate_signal_name_end ();
5810 ui_out_text (uiout, ", ");
5811 annotate_signal_string ();
5812 ui_out_field_string (uiout, "signal-meaning",
5813 gdb_signal_to_string (siggnal));
5814 annotate_signal_string_end ();
5815 ui_out_text (uiout, ".\n");
5816 ui_out_text (uiout, "The program no longer exists.\n");
5817 }
5818
5819 /* The inferior program is finished, print why it stopped. */
5820
5821 static void
5822 print_exited_reason (int exitstatus)
5823 {
5824 struct inferior *inf = current_inferior ();
5825 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5826 struct ui_out *uiout = current_uiout;
5827
5828 annotate_exited (exitstatus);
5829 if (exitstatus)
5830 {
5831 if (ui_out_is_mi_like_p (uiout))
5832 ui_out_field_string (uiout, "reason",
5833 async_reason_lookup (EXEC_ASYNC_EXITED));
5834 ui_out_text (uiout, "[Inferior ");
5835 ui_out_text (uiout, plongest (inf->num));
5836 ui_out_text (uiout, " (");
5837 ui_out_text (uiout, pidstr);
5838 ui_out_text (uiout, ") exited with code ");
5839 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
5840 ui_out_text (uiout, "]\n");
5841 }
5842 else
5843 {
5844 if (ui_out_is_mi_like_p (uiout))
5845 ui_out_field_string
5846 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5847 ui_out_text (uiout, "[Inferior ");
5848 ui_out_text (uiout, plongest (inf->num));
5849 ui_out_text (uiout, " (");
5850 ui_out_text (uiout, pidstr);
5851 ui_out_text (uiout, ") exited normally]\n");
5852 }
5853 /* Support the --return-child-result option. */
5854 return_child_result_value = exitstatus;
5855 }
5856
5857 /* Signal received, print why the inferior has stopped. The signal table
5858 tells us to print about it. */
5859
5860 static void
5861 print_signal_received_reason (enum gdb_signal siggnal)
5862 {
5863 struct ui_out *uiout = current_uiout;
5864
5865 annotate_signal ();
5866
5867 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5868 {
5869 struct thread_info *t = inferior_thread ();
5870
5871 ui_out_text (uiout, "\n[");
5872 ui_out_field_string (uiout, "thread-name",
5873 target_pid_to_str (t->ptid));
5874 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5875 ui_out_text (uiout, " stopped");
5876 }
5877 else
5878 {
5879 ui_out_text (uiout, "\nProgram received signal ");
5880 annotate_signal_name ();
5881 if (ui_out_is_mi_like_p (uiout))
5882 ui_out_field_string
5883 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5884 ui_out_field_string (uiout, "signal-name",
5885 gdb_signal_to_name (siggnal));
5886 annotate_signal_name_end ();
5887 ui_out_text (uiout, ", ");
5888 annotate_signal_string ();
5889 ui_out_field_string (uiout, "signal-meaning",
5890 gdb_signal_to_string (siggnal));
5891 annotate_signal_string_end ();
5892 }
5893 ui_out_text (uiout, ".\n");
5894 }
5895
5896 /* Reverse execution: target ran out of history info, print why the inferior
5897 has stopped. */
5898
5899 static void
5900 print_no_history_reason (void)
5901 {
5902 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
5903 }
5904
5905 /* Here to return control to GDB when the inferior stops for real.
5906 Print appropriate messages, remove breakpoints, give terminal our modes.
5907
5908 STOP_PRINT_FRAME nonzero means print the executing frame
5909 (pc, function, args, file, line number and line text).
5910 BREAKPOINTS_FAILED nonzero means stop was due to error
5911 attempting to insert breakpoints. */
5912
5913 void
5914 normal_stop (void)
5915 {
5916 struct target_waitstatus last;
5917 ptid_t last_ptid;
5918 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5919
5920 get_last_target_status (&last_ptid, &last);
5921
5922 /* If an exception is thrown from this point on, make sure to
5923 propagate GDB's knowledge of the executing state to the
5924 frontend/user running state. A QUIT is an easy exception to see
5925 here, so do this before any filtered output. */
5926 if (!non_stop)
5927 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5928 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5929 && last.kind != TARGET_WAITKIND_EXITED
5930 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5931 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
5932
5933 /* In non-stop mode, we don't want GDB to switch threads behind the
5934 user's back, to avoid races where the user is typing a command to
5935 apply to thread x, but GDB switches to thread y before the user
5936 finishes entering the command. */
5937
5938 /* As with the notification of thread events, we want to delay
5939 notifying the user that we've switched thread context until
5940 the inferior actually stops.
5941
5942 There's no point in saying anything if the inferior has exited.
5943 Note that SIGNALLED here means "exited with a signal", not
5944 "received a signal". */
5945 if (!non_stop
5946 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
5947 && target_has_execution
5948 && last.kind != TARGET_WAITKIND_SIGNALLED
5949 && last.kind != TARGET_WAITKIND_EXITED
5950 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5951 {
5952 target_terminal_ours_for_output ();
5953 printf_filtered (_("[Switching to %s]\n"),
5954 target_pid_to_str (inferior_ptid));
5955 annotate_thread_changed ();
5956 previous_inferior_ptid = inferior_ptid;
5957 }
5958
5959 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
5960 {
5961 gdb_assert (sync_execution || !target_can_async_p ());
5962
5963 target_terminal_ours_for_output ();
5964 printf_filtered (_("No unwaited-for children left.\n"));
5965 }
5966
5967 if (!breakpoints_always_inserted_mode () && target_has_execution)
5968 {
5969 if (remove_breakpoints ())
5970 {
5971 target_terminal_ours_for_output ();
5972 printf_filtered (_("Cannot remove breakpoints because "
5973 "program is no longer writable.\nFurther "
5974 "execution is probably impossible.\n"));
5975 }
5976 }
5977
5978 /* If an auto-display called a function and that got a signal,
5979 delete that auto-display to avoid an infinite recursion. */
5980
5981 if (stopped_by_random_signal)
5982 disable_current_display ();
5983
5984 /* Don't print a message if in the middle of doing a "step n"
5985 operation for n > 1 */
5986 if (target_has_execution
5987 && last.kind != TARGET_WAITKIND_SIGNALLED
5988 && last.kind != TARGET_WAITKIND_EXITED
5989 && inferior_thread ()->step_multi
5990 && inferior_thread ()->control.stop_step)
5991 goto done;
5992
5993 target_terminal_ours ();
5994 async_enable_stdin ();
5995
5996 /* Set the current source location. This will also happen if we
5997 display the frame below, but the current SAL will be incorrect
5998 during a user hook-stop function. */
5999 if (has_stack_frames () && !stop_stack_dummy)
6000 set_current_sal_from_frame (get_current_frame (), 1);
6001
6002 /* Let the user/frontend see the threads as stopped. */
6003 do_cleanups (old_chain);
6004
6005 /* Look up the hook_stop and run it (CLI internally handles problem
6006 of stop_command's pre-hook not existing). */
6007 if (stop_command)
6008 catch_errors (hook_stop_stub, stop_command,
6009 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6010
6011 if (!has_stack_frames ())
6012 goto done;
6013
6014 if (last.kind == TARGET_WAITKIND_SIGNALLED
6015 || last.kind == TARGET_WAITKIND_EXITED)
6016 goto done;
6017
6018 /* Select innermost stack frame - i.e., current frame is frame 0,
6019 and current location is based on that.
6020 Don't do this on return from a stack dummy routine,
6021 or if the program has exited. */
6022
6023 if (!stop_stack_dummy)
6024 {
6025 select_frame (get_current_frame ());
6026
6027 /* Print current location without a level number, if
6028 we have changed functions or hit a breakpoint.
6029 Print source line if we have one.
6030 bpstat_print() contains the logic deciding in detail
6031 what to print, based on the event(s) that just occurred. */
6032
6033 /* If --batch-silent is enabled then there's no need to print the current
6034 source location, and to try risks causing an error message about
6035 missing source files. */
6036 if (stop_print_frame && !batch_silent)
6037 {
6038 int bpstat_ret;
6039 int source_flag;
6040 int do_frame_printing = 1;
6041 struct thread_info *tp = inferior_thread ();
6042
6043 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
6044 switch (bpstat_ret)
6045 {
6046 case PRINT_UNKNOWN:
6047 /* FIXME: cagney/2002-12-01: Given that a frame ID does
6048 (or should) carry around the function and does (or
6049 should) use that when doing a frame comparison. */
6050 if (tp->control.stop_step
6051 && frame_id_eq (tp->control.step_frame_id,
6052 get_frame_id (get_current_frame ()))
6053 && step_start_function == find_pc_function (stop_pc))
6054 source_flag = SRC_LINE; /* Finished step, just
6055 print source line. */
6056 else
6057 source_flag = SRC_AND_LOC; /* Print location and
6058 source line. */
6059 break;
6060 case PRINT_SRC_AND_LOC:
6061 source_flag = SRC_AND_LOC; /* Print location and
6062 source line. */
6063 break;
6064 case PRINT_SRC_ONLY:
6065 source_flag = SRC_LINE;
6066 break;
6067 case PRINT_NOTHING:
6068 source_flag = SRC_LINE; /* something bogus */
6069 do_frame_printing = 0;
6070 break;
6071 default:
6072 internal_error (__FILE__, __LINE__, _("Unknown value."));
6073 }
6074
6075 /* The behavior of this routine with respect to the source
6076 flag is:
6077 SRC_LINE: Print only source line
6078 LOCATION: Print only location
6079 SRC_AND_LOC: Print location and source line. */
6080 if (do_frame_printing)
6081 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
6082
6083 /* Display the auto-display expressions. */
6084 do_displays ();
6085 }
6086 }
6087
6088 /* Save the function value return registers, if we care.
6089 We might be about to restore their previous contents. */
6090 if (inferior_thread ()->control.proceed_to_finish
6091 && execution_direction != EXEC_REVERSE)
6092 {
6093 /* This should not be necessary. */
6094 if (stop_registers)
6095 regcache_xfree (stop_registers);
6096
6097 /* NB: The copy goes through to the target picking up the value of
6098 all the registers. */
6099 stop_registers = regcache_dup (get_current_regcache ());
6100 }
6101
6102 if (stop_stack_dummy == STOP_STACK_DUMMY)
6103 {
6104 /* Pop the empty frame that contains the stack dummy.
6105 This also restores inferior state prior to the call
6106 (struct infcall_suspend_state). */
6107 struct frame_info *frame = get_current_frame ();
6108
6109 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6110 frame_pop (frame);
6111 /* frame_pop() calls reinit_frame_cache as the last thing it
6112 does which means there's currently no selected frame. We
6113 don't need to re-establish a selected frame if the dummy call
6114 returns normally, that will be done by
6115 restore_infcall_control_state. However, we do have to handle
6116 the case where the dummy call is returning after being
6117 stopped (e.g. the dummy call previously hit a breakpoint).
6118 We can't know which case we have so just always re-establish
6119 a selected frame here. */
6120 select_frame (get_current_frame ());
6121 }
6122
6123 done:
6124 annotate_stopped ();
6125
6126 /* Suppress the stop observer if we're in the middle of:
6127
6128 - a step n (n > 1), as there still more steps to be done.
6129
6130 - a "finish" command, as the observer will be called in
6131 finish_command_continuation, so it can include the inferior
6132 function's return value.
6133
6134 - calling an inferior function, as we pretend we inferior didn't
6135 run at all. The return value of the call is handled by the
6136 expression evaluator, through call_function_by_hand. */
6137
6138 if (!target_has_execution
6139 || last.kind == TARGET_WAITKIND_SIGNALLED
6140 || last.kind == TARGET_WAITKIND_EXITED
6141 || last.kind == TARGET_WAITKIND_NO_RESUMED
6142 || (!(inferior_thread ()->step_multi
6143 && inferior_thread ()->control.stop_step)
6144 && !(inferior_thread ()->control.stop_bpstat
6145 && inferior_thread ()->control.proceed_to_finish)
6146 && !inferior_thread ()->control.in_infcall))
6147 {
6148 if (!ptid_equal (inferior_ptid, null_ptid))
6149 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
6150 stop_print_frame);
6151 else
6152 observer_notify_normal_stop (NULL, stop_print_frame);
6153 }
6154
6155 if (target_has_execution)
6156 {
6157 if (last.kind != TARGET_WAITKIND_SIGNALLED
6158 && last.kind != TARGET_WAITKIND_EXITED)
6159 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6160 Delete any breakpoint that is to be deleted at the next stop. */
6161 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
6162 }
6163
6164 /* Try to get rid of automatically added inferiors that are no
6165 longer needed. Keeping those around slows down things linearly.
6166 Note that this never removes the current inferior. */
6167 prune_inferiors ();
6168 }
6169
6170 static int
6171 hook_stop_stub (void *cmd)
6172 {
6173 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
6174 return (0);
6175 }
6176 \f
6177 int
6178 signal_stop_state (int signo)
6179 {
6180 return signal_stop[signo];
6181 }
6182
6183 int
6184 signal_print_state (int signo)
6185 {
6186 return signal_print[signo];
6187 }
6188
6189 int
6190 signal_pass_state (int signo)
6191 {
6192 return signal_program[signo];
6193 }
6194
6195 static void
6196 signal_cache_update (int signo)
6197 {
6198 if (signo == -1)
6199 {
6200 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
6201 signal_cache_update (signo);
6202
6203 return;
6204 }
6205
6206 signal_pass[signo] = (signal_stop[signo] == 0
6207 && signal_print[signo] == 0
6208 && signal_program[signo] == 1);
6209 }
6210
6211 int
6212 signal_stop_update (int signo, int state)
6213 {
6214 int ret = signal_stop[signo];
6215
6216 signal_stop[signo] = state;
6217 signal_cache_update (signo);
6218 return ret;
6219 }
6220
6221 int
6222 signal_print_update (int signo, int state)
6223 {
6224 int ret = signal_print[signo];
6225
6226 signal_print[signo] = state;
6227 signal_cache_update (signo);
6228 return ret;
6229 }
6230
6231 int
6232 signal_pass_update (int signo, int state)
6233 {
6234 int ret = signal_program[signo];
6235
6236 signal_program[signo] = state;
6237 signal_cache_update (signo);
6238 return ret;
6239 }
6240
6241 static void
6242 sig_print_header (void)
6243 {
6244 printf_filtered (_("Signal Stop\tPrint\tPass "
6245 "to program\tDescription\n"));
6246 }
6247
6248 static void
6249 sig_print_info (enum gdb_signal oursig)
6250 {
6251 const char *name = gdb_signal_to_name (oursig);
6252 int name_padding = 13 - strlen (name);
6253
6254 if (name_padding <= 0)
6255 name_padding = 0;
6256
6257 printf_filtered ("%s", name);
6258 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6259 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6260 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6261 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6262 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
6263 }
6264
6265 /* Specify how various signals in the inferior should be handled. */
6266
6267 static void
6268 handle_command (char *args, int from_tty)
6269 {
6270 char **argv;
6271 int digits, wordlen;
6272 int sigfirst, signum, siglast;
6273 enum gdb_signal oursig;
6274 int allsigs;
6275 int nsigs;
6276 unsigned char *sigs;
6277 struct cleanup *old_chain;
6278
6279 if (args == NULL)
6280 {
6281 error_no_arg (_("signal to handle"));
6282 }
6283
6284 /* Allocate and zero an array of flags for which signals to handle. */
6285
6286 nsigs = (int) GDB_SIGNAL_LAST;
6287 sigs = (unsigned char *) alloca (nsigs);
6288 memset (sigs, 0, nsigs);
6289
6290 /* Break the command line up into args. */
6291
6292 argv = gdb_buildargv (args);
6293 old_chain = make_cleanup_freeargv (argv);
6294
6295 /* Walk through the args, looking for signal oursigs, signal names, and
6296 actions. Signal numbers and signal names may be interspersed with
6297 actions, with the actions being performed for all signals cumulatively
6298 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6299
6300 while (*argv != NULL)
6301 {
6302 wordlen = strlen (*argv);
6303 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6304 {;
6305 }
6306 allsigs = 0;
6307 sigfirst = siglast = -1;
6308
6309 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6310 {
6311 /* Apply action to all signals except those used by the
6312 debugger. Silently skip those. */
6313 allsigs = 1;
6314 sigfirst = 0;
6315 siglast = nsigs - 1;
6316 }
6317 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6318 {
6319 SET_SIGS (nsigs, sigs, signal_stop);
6320 SET_SIGS (nsigs, sigs, signal_print);
6321 }
6322 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6323 {
6324 UNSET_SIGS (nsigs, sigs, signal_program);
6325 }
6326 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6327 {
6328 SET_SIGS (nsigs, sigs, signal_print);
6329 }
6330 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6331 {
6332 SET_SIGS (nsigs, sigs, signal_program);
6333 }
6334 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6335 {
6336 UNSET_SIGS (nsigs, sigs, signal_stop);
6337 }
6338 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6339 {
6340 SET_SIGS (nsigs, sigs, signal_program);
6341 }
6342 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6343 {
6344 UNSET_SIGS (nsigs, sigs, signal_print);
6345 UNSET_SIGS (nsigs, sigs, signal_stop);
6346 }
6347 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6348 {
6349 UNSET_SIGS (nsigs, sigs, signal_program);
6350 }
6351 else if (digits > 0)
6352 {
6353 /* It is numeric. The numeric signal refers to our own
6354 internal signal numbering from target.h, not to host/target
6355 signal number. This is a feature; users really should be
6356 using symbolic names anyway, and the common ones like
6357 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6358
6359 sigfirst = siglast = (int)
6360 gdb_signal_from_command (atoi (*argv));
6361 if ((*argv)[digits] == '-')
6362 {
6363 siglast = (int)
6364 gdb_signal_from_command (atoi ((*argv) + digits + 1));
6365 }
6366 if (sigfirst > siglast)
6367 {
6368 /* Bet he didn't figure we'd think of this case... */
6369 signum = sigfirst;
6370 sigfirst = siglast;
6371 siglast = signum;
6372 }
6373 }
6374 else
6375 {
6376 oursig = gdb_signal_from_name (*argv);
6377 if (oursig != GDB_SIGNAL_UNKNOWN)
6378 {
6379 sigfirst = siglast = (int) oursig;
6380 }
6381 else
6382 {
6383 /* Not a number and not a recognized flag word => complain. */
6384 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6385 }
6386 }
6387
6388 /* If any signal numbers or symbol names were found, set flags for
6389 which signals to apply actions to. */
6390
6391 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6392 {
6393 switch ((enum gdb_signal) signum)
6394 {
6395 case GDB_SIGNAL_TRAP:
6396 case GDB_SIGNAL_INT:
6397 if (!allsigs && !sigs[signum])
6398 {
6399 if (query (_("%s is used by the debugger.\n\
6400 Are you sure you want to change it? "),
6401 gdb_signal_to_name ((enum gdb_signal) signum)))
6402 {
6403 sigs[signum] = 1;
6404 }
6405 else
6406 {
6407 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6408 gdb_flush (gdb_stdout);
6409 }
6410 }
6411 break;
6412 case GDB_SIGNAL_0:
6413 case GDB_SIGNAL_DEFAULT:
6414 case GDB_SIGNAL_UNKNOWN:
6415 /* Make sure that "all" doesn't print these. */
6416 break;
6417 default:
6418 sigs[signum] = 1;
6419 break;
6420 }
6421 }
6422
6423 argv++;
6424 }
6425
6426 for (signum = 0; signum < nsigs; signum++)
6427 if (sigs[signum])
6428 {
6429 signal_cache_update (-1);
6430 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6431 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
6432
6433 if (from_tty)
6434 {
6435 /* Show the results. */
6436 sig_print_header ();
6437 for (; signum < nsigs; signum++)
6438 if (sigs[signum])
6439 sig_print_info (signum);
6440 }
6441
6442 break;
6443 }
6444
6445 do_cleanups (old_chain);
6446 }
6447
6448 /* Complete the "handle" command. */
6449
6450 static VEC (char_ptr) *
6451 handle_completer (struct cmd_list_element *ignore,
6452 char *text, char *word)
6453 {
6454 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6455 static const char * const keywords[] =
6456 {
6457 "all",
6458 "stop",
6459 "ignore",
6460 "print",
6461 "pass",
6462 "nostop",
6463 "noignore",
6464 "noprint",
6465 "nopass",
6466 NULL,
6467 };
6468
6469 vec_signals = signal_completer (ignore, text, word);
6470 vec_keywords = complete_on_enum (keywords, word, word);
6471
6472 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6473 VEC_free (char_ptr, vec_signals);
6474 VEC_free (char_ptr, vec_keywords);
6475 return return_val;
6476 }
6477
6478 static void
6479 xdb_handle_command (char *args, int from_tty)
6480 {
6481 char **argv;
6482 struct cleanup *old_chain;
6483
6484 if (args == NULL)
6485 error_no_arg (_("xdb command"));
6486
6487 /* Break the command line up into args. */
6488
6489 argv = gdb_buildargv (args);
6490 old_chain = make_cleanup_freeargv (argv);
6491 if (argv[1] != (char *) NULL)
6492 {
6493 char *argBuf;
6494 int bufLen;
6495
6496 bufLen = strlen (argv[0]) + 20;
6497 argBuf = (char *) xmalloc (bufLen);
6498 if (argBuf)
6499 {
6500 int validFlag = 1;
6501 enum gdb_signal oursig;
6502
6503 oursig = gdb_signal_from_name (argv[0]);
6504 memset (argBuf, 0, bufLen);
6505 if (strcmp (argv[1], "Q") == 0)
6506 sprintf (argBuf, "%s %s", argv[0], "noprint");
6507 else
6508 {
6509 if (strcmp (argv[1], "s") == 0)
6510 {
6511 if (!signal_stop[oursig])
6512 sprintf (argBuf, "%s %s", argv[0], "stop");
6513 else
6514 sprintf (argBuf, "%s %s", argv[0], "nostop");
6515 }
6516 else if (strcmp (argv[1], "i") == 0)
6517 {
6518 if (!signal_program[oursig])
6519 sprintf (argBuf, "%s %s", argv[0], "pass");
6520 else
6521 sprintf (argBuf, "%s %s", argv[0], "nopass");
6522 }
6523 else if (strcmp (argv[1], "r") == 0)
6524 {
6525 if (!signal_print[oursig])
6526 sprintf (argBuf, "%s %s", argv[0], "print");
6527 else
6528 sprintf (argBuf, "%s %s", argv[0], "noprint");
6529 }
6530 else
6531 validFlag = 0;
6532 }
6533 if (validFlag)
6534 handle_command (argBuf, from_tty);
6535 else
6536 printf_filtered (_("Invalid signal handling flag.\n"));
6537 if (argBuf)
6538 xfree (argBuf);
6539 }
6540 }
6541 do_cleanups (old_chain);
6542 }
6543
6544 enum gdb_signal
6545 gdb_signal_from_command (int num)
6546 {
6547 if (num >= 1 && num <= 15)
6548 return (enum gdb_signal) num;
6549 error (_("Only signals 1-15 are valid as numeric signals.\n\
6550 Use \"info signals\" for a list of symbolic signals."));
6551 }
6552
6553 /* Print current contents of the tables set by the handle command.
6554 It is possible we should just be printing signals actually used
6555 by the current target (but for things to work right when switching
6556 targets, all signals should be in the signal tables). */
6557
6558 static void
6559 signals_info (char *signum_exp, int from_tty)
6560 {
6561 enum gdb_signal oursig;
6562
6563 sig_print_header ();
6564
6565 if (signum_exp)
6566 {
6567 /* First see if this is a symbol name. */
6568 oursig = gdb_signal_from_name (signum_exp);
6569 if (oursig == GDB_SIGNAL_UNKNOWN)
6570 {
6571 /* No, try numeric. */
6572 oursig =
6573 gdb_signal_from_command (parse_and_eval_long (signum_exp));
6574 }
6575 sig_print_info (oursig);
6576 return;
6577 }
6578
6579 printf_filtered ("\n");
6580 /* These ugly casts brought to you by the native VAX compiler. */
6581 for (oursig = GDB_SIGNAL_FIRST;
6582 (int) oursig < (int) GDB_SIGNAL_LAST;
6583 oursig = (enum gdb_signal) ((int) oursig + 1))
6584 {
6585 QUIT;
6586
6587 if (oursig != GDB_SIGNAL_UNKNOWN
6588 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
6589 sig_print_info (oursig);
6590 }
6591
6592 printf_filtered (_("\nUse the \"handle\" command "
6593 "to change these tables.\n"));
6594 }
6595
6596 /* Check if it makes sense to read $_siginfo from the current thread
6597 at this point. If not, throw an error. */
6598
6599 static void
6600 validate_siginfo_access (void)
6601 {
6602 /* No current inferior, no siginfo. */
6603 if (ptid_equal (inferior_ptid, null_ptid))
6604 error (_("No thread selected."));
6605
6606 /* Don't try to read from a dead thread. */
6607 if (is_exited (inferior_ptid))
6608 error (_("The current thread has terminated"));
6609
6610 /* ... or from a spinning thread. */
6611 if (is_running (inferior_ptid))
6612 error (_("Selected thread is running."));
6613 }
6614
6615 /* The $_siginfo convenience variable is a bit special. We don't know
6616 for sure the type of the value until we actually have a chance to
6617 fetch the data. The type can change depending on gdbarch, so it is
6618 also dependent on which thread you have selected.
6619
6620 1. making $_siginfo be an internalvar that creates a new value on
6621 access.
6622
6623 2. making the value of $_siginfo be an lval_computed value. */
6624
6625 /* This function implements the lval_computed support for reading a
6626 $_siginfo value. */
6627
6628 static void
6629 siginfo_value_read (struct value *v)
6630 {
6631 LONGEST transferred;
6632
6633 validate_siginfo_access ();
6634
6635 transferred =
6636 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6637 NULL,
6638 value_contents_all_raw (v),
6639 value_offset (v),
6640 TYPE_LENGTH (value_type (v)));
6641
6642 if (transferred != TYPE_LENGTH (value_type (v)))
6643 error (_("Unable to read siginfo"));
6644 }
6645
6646 /* This function implements the lval_computed support for writing a
6647 $_siginfo value. */
6648
6649 static void
6650 siginfo_value_write (struct value *v, struct value *fromval)
6651 {
6652 LONGEST transferred;
6653
6654 validate_siginfo_access ();
6655
6656 transferred = target_write (&current_target,
6657 TARGET_OBJECT_SIGNAL_INFO,
6658 NULL,
6659 value_contents_all_raw (fromval),
6660 value_offset (v),
6661 TYPE_LENGTH (value_type (fromval)));
6662
6663 if (transferred != TYPE_LENGTH (value_type (fromval)))
6664 error (_("Unable to write siginfo"));
6665 }
6666
6667 static const struct lval_funcs siginfo_value_funcs =
6668 {
6669 siginfo_value_read,
6670 siginfo_value_write
6671 };
6672
6673 /* Return a new value with the correct type for the siginfo object of
6674 the current thread using architecture GDBARCH. Return a void value
6675 if there's no object available. */
6676
6677 static struct value *
6678 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
6679 void *ignore)
6680 {
6681 if (target_has_stack
6682 && !ptid_equal (inferior_ptid, null_ptid)
6683 && gdbarch_get_siginfo_type_p (gdbarch))
6684 {
6685 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6686
6687 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
6688 }
6689
6690 return allocate_value (builtin_type (gdbarch)->builtin_void);
6691 }
6692
6693 \f
6694 /* infcall_suspend_state contains state about the program itself like its
6695 registers and any signal it received when it last stopped.
6696 This state must be restored regardless of how the inferior function call
6697 ends (either successfully, or after it hits a breakpoint or signal)
6698 if the program is to properly continue where it left off. */
6699
6700 struct infcall_suspend_state
6701 {
6702 struct thread_suspend_state thread_suspend;
6703 #if 0 /* Currently unused and empty structures are not valid C. */
6704 struct inferior_suspend_state inferior_suspend;
6705 #endif
6706
6707 /* Other fields: */
6708 CORE_ADDR stop_pc;
6709 struct regcache *registers;
6710
6711 /* Format of SIGINFO_DATA or NULL if it is not present. */
6712 struct gdbarch *siginfo_gdbarch;
6713
6714 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6715 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6716 content would be invalid. */
6717 gdb_byte *siginfo_data;
6718 };
6719
6720 struct infcall_suspend_state *
6721 save_infcall_suspend_state (void)
6722 {
6723 struct infcall_suspend_state *inf_state;
6724 struct thread_info *tp = inferior_thread ();
6725 struct inferior *inf = current_inferior ();
6726 struct regcache *regcache = get_current_regcache ();
6727 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6728 gdb_byte *siginfo_data = NULL;
6729
6730 if (gdbarch_get_siginfo_type_p (gdbarch))
6731 {
6732 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6733 size_t len = TYPE_LENGTH (type);
6734 struct cleanup *back_to;
6735
6736 siginfo_data = xmalloc (len);
6737 back_to = make_cleanup (xfree, siginfo_data);
6738
6739 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6740 siginfo_data, 0, len) == len)
6741 discard_cleanups (back_to);
6742 else
6743 {
6744 /* Errors ignored. */
6745 do_cleanups (back_to);
6746 siginfo_data = NULL;
6747 }
6748 }
6749
6750 inf_state = XZALLOC (struct infcall_suspend_state);
6751
6752 if (siginfo_data)
6753 {
6754 inf_state->siginfo_gdbarch = gdbarch;
6755 inf_state->siginfo_data = siginfo_data;
6756 }
6757
6758 inf_state->thread_suspend = tp->suspend;
6759 #if 0 /* Currently unused and empty structures are not valid C. */
6760 inf_state->inferior_suspend = inf->suspend;
6761 #endif
6762
6763 /* run_inferior_call will not use the signal due to its `proceed' call with
6764 GDB_SIGNAL_0 anyway. */
6765 tp->suspend.stop_signal = GDB_SIGNAL_0;
6766
6767 inf_state->stop_pc = stop_pc;
6768
6769 inf_state->registers = regcache_dup (regcache);
6770
6771 return inf_state;
6772 }
6773
6774 /* Restore inferior session state to INF_STATE. */
6775
6776 void
6777 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6778 {
6779 struct thread_info *tp = inferior_thread ();
6780 struct inferior *inf = current_inferior ();
6781 struct regcache *regcache = get_current_regcache ();
6782 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6783
6784 tp->suspend = inf_state->thread_suspend;
6785 #if 0 /* Currently unused and empty structures are not valid C. */
6786 inf->suspend = inf_state->inferior_suspend;
6787 #endif
6788
6789 stop_pc = inf_state->stop_pc;
6790
6791 if (inf_state->siginfo_gdbarch == gdbarch)
6792 {
6793 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6794
6795 /* Errors ignored. */
6796 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6797 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
6798 }
6799
6800 /* The inferior can be gone if the user types "print exit(0)"
6801 (and perhaps other times). */
6802 if (target_has_execution)
6803 /* NB: The register write goes through to the target. */
6804 regcache_cpy (regcache, inf_state->registers);
6805
6806 discard_infcall_suspend_state (inf_state);
6807 }
6808
6809 static void
6810 do_restore_infcall_suspend_state_cleanup (void *state)
6811 {
6812 restore_infcall_suspend_state (state);
6813 }
6814
6815 struct cleanup *
6816 make_cleanup_restore_infcall_suspend_state
6817 (struct infcall_suspend_state *inf_state)
6818 {
6819 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
6820 }
6821
6822 void
6823 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6824 {
6825 regcache_xfree (inf_state->registers);
6826 xfree (inf_state->siginfo_data);
6827 xfree (inf_state);
6828 }
6829
6830 struct regcache *
6831 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
6832 {
6833 return inf_state->registers;
6834 }
6835
6836 /* infcall_control_state contains state regarding gdb's control of the
6837 inferior itself like stepping control. It also contains session state like
6838 the user's currently selected frame. */
6839
6840 struct infcall_control_state
6841 {
6842 struct thread_control_state thread_control;
6843 struct inferior_control_state inferior_control;
6844
6845 /* Other fields: */
6846 enum stop_stack_kind stop_stack_dummy;
6847 int stopped_by_random_signal;
6848 int stop_after_trap;
6849
6850 /* ID if the selected frame when the inferior function call was made. */
6851 struct frame_id selected_frame_id;
6852 };
6853
6854 /* Save all of the information associated with the inferior<==>gdb
6855 connection. */
6856
6857 struct infcall_control_state *
6858 save_infcall_control_state (void)
6859 {
6860 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
6861 struct thread_info *tp = inferior_thread ();
6862 struct inferior *inf = current_inferior ();
6863
6864 inf_status->thread_control = tp->control;
6865 inf_status->inferior_control = inf->control;
6866
6867 tp->control.step_resume_breakpoint = NULL;
6868 tp->control.exception_resume_breakpoint = NULL;
6869
6870 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6871 chain. If caller's caller is walking the chain, they'll be happier if we
6872 hand them back the original chain when restore_infcall_control_state is
6873 called. */
6874 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
6875
6876 /* Other fields: */
6877 inf_status->stop_stack_dummy = stop_stack_dummy;
6878 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6879 inf_status->stop_after_trap = stop_after_trap;
6880
6881 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
6882
6883 return inf_status;
6884 }
6885
6886 static int
6887 restore_selected_frame (void *args)
6888 {
6889 struct frame_id *fid = (struct frame_id *) args;
6890 struct frame_info *frame;
6891
6892 frame = frame_find_by_id (*fid);
6893
6894 /* If inf_status->selected_frame_id is NULL, there was no previously
6895 selected frame. */
6896 if (frame == NULL)
6897 {
6898 warning (_("Unable to restore previously selected frame."));
6899 return 0;
6900 }
6901
6902 select_frame (frame);
6903
6904 return (1);
6905 }
6906
6907 /* Restore inferior session state to INF_STATUS. */
6908
6909 void
6910 restore_infcall_control_state (struct infcall_control_state *inf_status)
6911 {
6912 struct thread_info *tp = inferior_thread ();
6913 struct inferior *inf = current_inferior ();
6914
6915 if (tp->control.step_resume_breakpoint)
6916 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6917
6918 if (tp->control.exception_resume_breakpoint)
6919 tp->control.exception_resume_breakpoint->disposition
6920 = disp_del_at_next_stop;
6921
6922 /* Handle the bpstat_copy of the chain. */
6923 bpstat_clear (&tp->control.stop_bpstat);
6924
6925 tp->control = inf_status->thread_control;
6926 inf->control = inf_status->inferior_control;
6927
6928 /* Other fields: */
6929 stop_stack_dummy = inf_status->stop_stack_dummy;
6930 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6931 stop_after_trap = inf_status->stop_after_trap;
6932
6933 if (target_has_stack)
6934 {
6935 /* The point of catch_errors is that if the stack is clobbered,
6936 walking the stack might encounter a garbage pointer and
6937 error() trying to dereference it. */
6938 if (catch_errors
6939 (restore_selected_frame, &inf_status->selected_frame_id,
6940 "Unable to restore previously selected frame:\n",
6941 RETURN_MASK_ERROR) == 0)
6942 /* Error in restoring the selected frame. Select the innermost
6943 frame. */
6944 select_frame (get_current_frame ());
6945 }
6946
6947 xfree (inf_status);
6948 }
6949
6950 static void
6951 do_restore_infcall_control_state_cleanup (void *sts)
6952 {
6953 restore_infcall_control_state (sts);
6954 }
6955
6956 struct cleanup *
6957 make_cleanup_restore_infcall_control_state
6958 (struct infcall_control_state *inf_status)
6959 {
6960 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
6961 }
6962
6963 void
6964 discard_infcall_control_state (struct infcall_control_state *inf_status)
6965 {
6966 if (inf_status->thread_control.step_resume_breakpoint)
6967 inf_status->thread_control.step_resume_breakpoint->disposition
6968 = disp_del_at_next_stop;
6969
6970 if (inf_status->thread_control.exception_resume_breakpoint)
6971 inf_status->thread_control.exception_resume_breakpoint->disposition
6972 = disp_del_at_next_stop;
6973
6974 /* See save_infcall_control_state for info on stop_bpstat. */
6975 bpstat_clear (&inf_status->thread_control.stop_bpstat);
6976
6977 xfree (inf_status);
6978 }
6979 \f
6980 int
6981 ptid_match (ptid_t ptid, ptid_t filter)
6982 {
6983 if (ptid_equal (filter, minus_one_ptid))
6984 return 1;
6985 if (ptid_is_pid (filter)
6986 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6987 return 1;
6988 else if (ptid_equal (ptid, filter))
6989 return 1;
6990
6991 return 0;
6992 }
6993
6994 /* restore_inferior_ptid() will be used by the cleanup machinery
6995 to restore the inferior_ptid value saved in a call to
6996 save_inferior_ptid(). */
6997
6998 static void
6999 restore_inferior_ptid (void *arg)
7000 {
7001 ptid_t *saved_ptid_ptr = arg;
7002
7003 inferior_ptid = *saved_ptid_ptr;
7004 xfree (arg);
7005 }
7006
7007 /* Save the value of inferior_ptid so that it may be restored by a
7008 later call to do_cleanups(). Returns the struct cleanup pointer
7009 needed for later doing the cleanup. */
7010
7011 struct cleanup *
7012 save_inferior_ptid (void)
7013 {
7014 ptid_t *saved_ptid_ptr;
7015
7016 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7017 *saved_ptid_ptr = inferior_ptid;
7018 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7019 }
7020 \f
7021
7022 /* User interface for reverse debugging:
7023 Set exec-direction / show exec-direction commands
7024 (returns error unless target implements to_set_exec_direction method). */
7025
7026 int execution_direction = EXEC_FORWARD;
7027 static const char exec_forward[] = "forward";
7028 static const char exec_reverse[] = "reverse";
7029 static const char *exec_direction = exec_forward;
7030 static const char *const exec_direction_names[] = {
7031 exec_forward,
7032 exec_reverse,
7033 NULL
7034 };
7035
7036 static void
7037 set_exec_direction_func (char *args, int from_tty,
7038 struct cmd_list_element *cmd)
7039 {
7040 if (target_can_execute_reverse)
7041 {
7042 if (!strcmp (exec_direction, exec_forward))
7043 execution_direction = EXEC_FORWARD;
7044 else if (!strcmp (exec_direction, exec_reverse))
7045 execution_direction = EXEC_REVERSE;
7046 }
7047 else
7048 {
7049 exec_direction = exec_forward;
7050 error (_("Target does not support this operation."));
7051 }
7052 }
7053
7054 static void
7055 show_exec_direction_func (struct ui_file *out, int from_tty,
7056 struct cmd_list_element *cmd, const char *value)
7057 {
7058 switch (execution_direction) {
7059 case EXEC_FORWARD:
7060 fprintf_filtered (out, _("Forward.\n"));
7061 break;
7062 case EXEC_REVERSE:
7063 fprintf_filtered (out, _("Reverse.\n"));
7064 break;
7065 default:
7066 internal_error (__FILE__, __LINE__,
7067 _("bogus execution_direction value: %d"),
7068 (int) execution_direction);
7069 }
7070 }
7071
7072 /* User interface for non-stop mode. */
7073
7074 int non_stop = 0;
7075
7076 static void
7077 set_non_stop (char *args, int from_tty,
7078 struct cmd_list_element *c)
7079 {
7080 if (target_has_execution)
7081 {
7082 non_stop_1 = non_stop;
7083 error (_("Cannot change this setting while the inferior is running."));
7084 }
7085
7086 non_stop = non_stop_1;
7087 }
7088
7089 static void
7090 show_non_stop (struct ui_file *file, int from_tty,
7091 struct cmd_list_element *c, const char *value)
7092 {
7093 fprintf_filtered (file,
7094 _("Controlling the inferior in non-stop mode is %s.\n"),
7095 value);
7096 }
7097
7098 static void
7099 show_schedule_multiple (struct ui_file *file, int from_tty,
7100 struct cmd_list_element *c, const char *value)
7101 {
7102 fprintf_filtered (file, _("Resuming the execution of threads "
7103 "of all processes is %s.\n"), value);
7104 }
7105
7106 /* Implementation of `siginfo' variable. */
7107
7108 static const struct internalvar_funcs siginfo_funcs =
7109 {
7110 siginfo_make_value,
7111 NULL,
7112 NULL
7113 };
7114
7115 void
7116 _initialize_infrun (void)
7117 {
7118 int i;
7119 int numsigs;
7120 struct cmd_list_element *c;
7121
7122 add_info ("signals", signals_info, _("\
7123 What debugger does when program gets various signals.\n\
7124 Specify a signal as argument to print info on that signal only."));
7125 add_info_alias ("handle", "signals", 0);
7126
7127 c = add_com ("handle", class_run, handle_command, _("\
7128 Specify how to handle signals.\n\
7129 Usage: handle SIGNAL [ACTIONS]\n\
7130 Args are signals and actions to apply to those signals.\n\
7131 If no actions are specified, the current settings for the specified signals\n\
7132 will be displayed instead.\n\
7133 \n\
7134 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7135 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7136 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7137 The special arg \"all\" is recognized to mean all signals except those\n\
7138 used by the debugger, typically SIGTRAP and SIGINT.\n\
7139 \n\
7140 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
7141 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7142 Stop means reenter debugger if this signal happens (implies print).\n\
7143 Print means print a message if this signal happens.\n\
7144 Pass means let program see this signal; otherwise program doesn't know.\n\
7145 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7146 Pass and Stop may be combined.\n\
7147 \n\
7148 Multiple signals may be specified. Signal numbers and signal names\n\
7149 may be interspersed with actions, with the actions being performed for\n\
7150 all signals cumulatively specified."));
7151 set_cmd_completer (c, handle_completer);
7152
7153 if (xdb_commands)
7154 {
7155 add_com ("lz", class_info, signals_info, _("\
7156 What debugger does when program gets various signals.\n\
7157 Specify a signal as argument to print info on that signal only."));
7158 add_com ("z", class_run, xdb_handle_command, _("\
7159 Specify how to handle a signal.\n\
7160 Args are signals and actions to apply to those signals.\n\
7161 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7162 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7163 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7164 The special arg \"all\" is recognized to mean all signals except those\n\
7165 used by the debugger, typically SIGTRAP and SIGINT.\n\
7166 Recognized actions include \"s\" (toggles between stop and nostop),\n\
7167 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7168 nopass), \"Q\" (noprint)\n\
7169 Stop means reenter debugger if this signal happens (implies print).\n\
7170 Print means print a message if this signal happens.\n\
7171 Pass means let program see this signal; otherwise program doesn't know.\n\
7172 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7173 Pass and Stop may be combined."));
7174 }
7175
7176 if (!dbx_commands)
7177 stop_command = add_cmd ("stop", class_obscure,
7178 not_just_help_class_command, _("\
7179 There is no `stop' command, but you can set a hook on `stop'.\n\
7180 This allows you to set a list of commands to be run each time execution\n\
7181 of the program stops."), &cmdlist);
7182
7183 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7184 Set inferior debugging."), _("\
7185 Show inferior debugging."), _("\
7186 When non-zero, inferior specific debugging is enabled."),
7187 NULL,
7188 show_debug_infrun,
7189 &setdebuglist, &showdebuglist);
7190
7191 add_setshow_boolean_cmd ("displaced", class_maintenance,
7192 &debug_displaced, _("\
7193 Set displaced stepping debugging."), _("\
7194 Show displaced stepping debugging."), _("\
7195 When non-zero, displaced stepping specific debugging is enabled."),
7196 NULL,
7197 show_debug_displaced,
7198 &setdebuglist, &showdebuglist);
7199
7200 add_setshow_boolean_cmd ("non-stop", no_class,
7201 &non_stop_1, _("\
7202 Set whether gdb controls the inferior in non-stop mode."), _("\
7203 Show whether gdb controls the inferior in non-stop mode."), _("\
7204 When debugging a multi-threaded program and this setting is\n\
7205 off (the default, also called all-stop mode), when one thread stops\n\
7206 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7207 all other threads in the program while you interact with the thread of\n\
7208 interest. When you continue or step a thread, you can allow the other\n\
7209 threads to run, or have them remain stopped, but while you inspect any\n\
7210 thread's state, all threads stop.\n\
7211 \n\
7212 In non-stop mode, when one thread stops, other threads can continue\n\
7213 to run freely. You'll be able to step each thread independently,\n\
7214 leave it stopped or free to run as needed."),
7215 set_non_stop,
7216 show_non_stop,
7217 &setlist,
7218 &showlist);
7219
7220 numsigs = (int) GDB_SIGNAL_LAST;
7221 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7222 signal_print = (unsigned char *)
7223 xmalloc (sizeof (signal_print[0]) * numsigs);
7224 signal_program = (unsigned char *)
7225 xmalloc (sizeof (signal_program[0]) * numsigs);
7226 signal_pass = (unsigned char *)
7227 xmalloc (sizeof (signal_program[0]) * numsigs);
7228 for (i = 0; i < numsigs; i++)
7229 {
7230 signal_stop[i] = 1;
7231 signal_print[i] = 1;
7232 signal_program[i] = 1;
7233 }
7234
7235 /* Signals caused by debugger's own actions
7236 should not be given to the program afterwards. */
7237 signal_program[GDB_SIGNAL_TRAP] = 0;
7238 signal_program[GDB_SIGNAL_INT] = 0;
7239
7240 /* Signals that are not errors should not normally enter the debugger. */
7241 signal_stop[GDB_SIGNAL_ALRM] = 0;
7242 signal_print[GDB_SIGNAL_ALRM] = 0;
7243 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7244 signal_print[GDB_SIGNAL_VTALRM] = 0;
7245 signal_stop[GDB_SIGNAL_PROF] = 0;
7246 signal_print[GDB_SIGNAL_PROF] = 0;
7247 signal_stop[GDB_SIGNAL_CHLD] = 0;
7248 signal_print[GDB_SIGNAL_CHLD] = 0;
7249 signal_stop[GDB_SIGNAL_IO] = 0;
7250 signal_print[GDB_SIGNAL_IO] = 0;
7251 signal_stop[GDB_SIGNAL_POLL] = 0;
7252 signal_print[GDB_SIGNAL_POLL] = 0;
7253 signal_stop[GDB_SIGNAL_URG] = 0;
7254 signal_print[GDB_SIGNAL_URG] = 0;
7255 signal_stop[GDB_SIGNAL_WINCH] = 0;
7256 signal_print[GDB_SIGNAL_WINCH] = 0;
7257 signal_stop[GDB_SIGNAL_PRIO] = 0;
7258 signal_print[GDB_SIGNAL_PRIO] = 0;
7259
7260 /* These signals are used internally by user-level thread
7261 implementations. (See signal(5) on Solaris.) Like the above
7262 signals, a healthy program receives and handles them as part of
7263 its normal operation. */
7264 signal_stop[GDB_SIGNAL_LWP] = 0;
7265 signal_print[GDB_SIGNAL_LWP] = 0;
7266 signal_stop[GDB_SIGNAL_WAITING] = 0;
7267 signal_print[GDB_SIGNAL_WAITING] = 0;
7268 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7269 signal_print[GDB_SIGNAL_CANCEL] = 0;
7270
7271 /* Update cached state. */
7272 signal_cache_update (-1);
7273
7274 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7275 &stop_on_solib_events, _("\
7276 Set stopping for shared library events."), _("\
7277 Show stopping for shared library events."), _("\
7278 If nonzero, gdb will give control to the user when the dynamic linker\n\
7279 notifies gdb of shared library events. The most common event of interest\n\
7280 to the user would be loading/unloading of a new library."),
7281 NULL,
7282 show_stop_on_solib_events,
7283 &setlist, &showlist);
7284
7285 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7286 follow_fork_mode_kind_names,
7287 &follow_fork_mode_string, _("\
7288 Set debugger response to a program call of fork or vfork."), _("\
7289 Show debugger response to a program call of fork or vfork."), _("\
7290 A fork or vfork creates a new process. follow-fork-mode can be:\n\
7291 parent - the original process is debugged after a fork\n\
7292 child - the new process is debugged after a fork\n\
7293 The unfollowed process will continue to run.\n\
7294 By default, the debugger will follow the parent process."),
7295 NULL,
7296 show_follow_fork_mode_string,
7297 &setlist, &showlist);
7298
7299 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7300 follow_exec_mode_names,
7301 &follow_exec_mode_string, _("\
7302 Set debugger response to a program call of exec."), _("\
7303 Show debugger response to a program call of exec."), _("\
7304 An exec call replaces the program image of a process.\n\
7305 \n\
7306 follow-exec-mode can be:\n\
7307 \n\
7308 new - the debugger creates a new inferior and rebinds the process\n\
7309 to this new inferior. The program the process was running before\n\
7310 the exec call can be restarted afterwards by restarting the original\n\
7311 inferior.\n\
7312 \n\
7313 same - the debugger keeps the process bound to the same inferior.\n\
7314 The new executable image replaces the previous executable loaded in\n\
7315 the inferior. Restarting the inferior after the exec call restarts\n\
7316 the executable the process was running after the exec call.\n\
7317 \n\
7318 By default, the debugger will use the same inferior."),
7319 NULL,
7320 show_follow_exec_mode_string,
7321 &setlist, &showlist);
7322
7323 add_setshow_enum_cmd ("scheduler-locking", class_run,
7324 scheduler_enums, &scheduler_mode, _("\
7325 Set mode for locking scheduler during execution."), _("\
7326 Show mode for locking scheduler during execution."), _("\
7327 off == no locking (threads may preempt at any time)\n\
7328 on == full locking (no thread except the current thread may run)\n\
7329 step == scheduler locked during every single-step operation.\n\
7330 In this mode, no other thread may run during a step command.\n\
7331 Other threads may run while stepping over a function call ('next')."),
7332 set_schedlock_func, /* traps on target vector */
7333 show_scheduler_mode,
7334 &setlist, &showlist);
7335
7336 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7337 Set mode for resuming threads of all processes."), _("\
7338 Show mode for resuming threads of all processes."), _("\
7339 When on, execution commands (such as 'continue' or 'next') resume all\n\
7340 threads of all processes. When off (which is the default), execution\n\
7341 commands only resume the threads of the current process. The set of\n\
7342 threads that are resumed is further refined by the scheduler-locking\n\
7343 mode (see help set scheduler-locking)."),
7344 NULL,
7345 show_schedule_multiple,
7346 &setlist, &showlist);
7347
7348 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7349 Set mode of the step operation."), _("\
7350 Show mode of the step operation."), _("\
7351 When set, doing a step over a function without debug line information\n\
7352 will stop at the first instruction of that function. Otherwise, the\n\
7353 function is skipped and the step command stops at a different source line."),
7354 NULL,
7355 show_step_stop_if_no_debug,
7356 &setlist, &showlist);
7357
7358 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7359 &can_use_displaced_stepping, _("\
7360 Set debugger's willingness to use displaced stepping."), _("\
7361 Show debugger's willingness to use displaced stepping."), _("\
7362 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7363 supported by the target architecture. If off, gdb will not use displaced\n\
7364 stepping to step over breakpoints, even if such is supported by the target\n\
7365 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7366 if the target architecture supports it and non-stop mode is active, but will not\n\
7367 use it in all-stop mode (see help set non-stop)."),
7368 NULL,
7369 show_can_use_displaced_stepping,
7370 &setlist, &showlist);
7371
7372 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7373 &exec_direction, _("Set direction of execution.\n\
7374 Options are 'forward' or 'reverse'."),
7375 _("Show direction of execution (forward/reverse)."),
7376 _("Tells gdb whether to execute forward or backward."),
7377 set_exec_direction_func, show_exec_direction_func,
7378 &setlist, &showlist);
7379
7380 /* Set/show detach-on-fork: user-settable mode. */
7381
7382 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7383 Set whether gdb will detach the child of a fork."), _("\
7384 Show whether gdb will detach the child of a fork."), _("\
7385 Tells gdb whether to detach the child of a fork."),
7386 NULL, NULL, &setlist, &showlist);
7387
7388 /* Set/show disable address space randomization mode. */
7389
7390 add_setshow_boolean_cmd ("disable-randomization", class_support,
7391 &disable_randomization, _("\
7392 Set disabling of debuggee's virtual address space randomization."), _("\
7393 Show disabling of debuggee's virtual address space randomization."), _("\
7394 When this mode is on (which is the default), randomization of the virtual\n\
7395 address space is disabled. Standalone programs run with the randomization\n\
7396 enabled by default on some platforms."),
7397 &set_disable_randomization,
7398 &show_disable_randomization,
7399 &setlist, &showlist);
7400
7401 /* ptid initializations */
7402 inferior_ptid = null_ptid;
7403 target_last_wait_ptid = minus_one_ptid;
7404
7405 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7406 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7407 observer_attach_thread_exit (infrun_thread_thread_exit);
7408 observer_attach_inferior_exit (infrun_inferior_exit);
7409
7410 /* Explicitly create without lookup, since that tries to create a
7411 value with a void typed value, and when we get here, gdbarch
7412 isn't initialized yet. At this point, we're quite sure there
7413 isn't another convenience variable of the same name. */
7414 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
7415
7416 add_setshow_boolean_cmd ("observer", no_class,
7417 &observer_mode_1, _("\
7418 Set whether gdb controls the inferior in observer mode."), _("\
7419 Show whether gdb controls the inferior in observer mode."), _("\
7420 In observer mode, GDB can get data from the inferior, but not\n\
7421 affect its execution. Registers and memory may not be changed,\n\
7422 breakpoints may not be set, and the program cannot be interrupted\n\
7423 or signalled."),
7424 set_observer_mode,
7425 show_observer_mode,
7426 &setlist,
7427 &showlist);
7428 }
This page took 0.344621 seconds and 4 git commands to generate.