Pass thread_info pointer to various inferior control functions
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "target-connection.h"
32 #include "gdbthread.h"
33 #include "annotate.h"
34 #include "symfile.h"
35 #include "top.h"
36 #include "inf-loop.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "language.h"
41 #include "solib.h"
42 #include "main.h"
43 #include "block.h"
44 #include "mi/mi-common.h"
45 #include "event-top.h"
46 #include "record.h"
47 #include "record-full.h"
48 #include "inline-frame.h"
49 #include "jit.h"
50 #include "tracepoint.h"
51 #include "skip.h"
52 #include "probe.h"
53 #include "objfiles.h"
54 #include "completer.h"
55 #include "target-descriptions.h"
56 #include "target-dcache.h"
57 #include "terminal.h"
58 #include "solist.h"
59 #include "event-loop.h"
60 #include "thread-fsm.h"
61 #include "gdbsupport/enum-flags.h"
62 #include "progspace-and-thread.h"
63 #include "gdbsupport/gdb_optional.h"
64 #include "arch-utils.h"
65 #include "gdbsupport/scope-exit.h"
66 #include "gdbsupport/forward-scope-exit.h"
67 #include "gdb_select.h"
68 #include <unordered_map>
69
70 /* Prototypes for local functions */
71
72 static void sig_print_info (enum gdb_signal);
73
74 static void sig_print_header (void);
75
76 static int follow_fork (void);
77
78 static int follow_fork_inferior (int follow_child, int detach_fork);
79
80 static void follow_inferior_reset_breakpoints (void);
81
82 static int currently_stepping (struct thread_info *tp);
83
84 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
85
86 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
87
88 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
89
90 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
91
92 static void resume (gdb_signal sig);
93
94 static void wait_for_inferior (inferior *inf);
95
96 /* Asynchronous signal handler registered as event loop source for
97 when we have pending events ready to be passed to the core. */
98 static struct async_event_handler *infrun_async_inferior_event_token;
99
100 /* Stores whether infrun_async was previously enabled or disabled.
101 Starts off as -1, indicating "never enabled/disabled". */
102 static int infrun_is_async = -1;
103
104 /* See infrun.h. */
105
106 void
107 infrun_async (int enable)
108 {
109 if (infrun_is_async != enable)
110 {
111 infrun_is_async = enable;
112
113 if (debug_infrun)
114 fprintf_unfiltered (gdb_stdlog,
115 "infrun: infrun_async(%d)\n",
116 enable);
117
118 if (enable)
119 mark_async_event_handler (infrun_async_inferior_event_token);
120 else
121 clear_async_event_handler (infrun_async_inferior_event_token);
122 }
123 }
124
125 /* See infrun.h. */
126
127 void
128 mark_infrun_async_event_handler (void)
129 {
130 mark_async_event_handler (infrun_async_inferior_event_token);
131 }
132
133 /* When set, stop the 'step' command if we enter a function which has
134 no line number information. The normal behavior is that we step
135 over such function. */
136 bool step_stop_if_no_debug = false;
137 static void
138 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
139 struct cmd_list_element *c, const char *value)
140 {
141 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
142 }
143
144 /* proceed and normal_stop use this to notify the user when the
145 inferior stopped in a different thread than it had been running
146 in. */
147
148 static ptid_t previous_inferior_ptid;
149
150 /* If set (default for legacy reasons), when following a fork, GDB
151 will detach from one of the fork branches, child or parent.
152 Exactly which branch is detached depends on 'set follow-fork-mode'
153 setting. */
154
155 static bool detach_fork = true;
156
157 bool debug_displaced = false;
158 static void
159 show_debug_displaced (struct ui_file *file, int from_tty,
160 struct cmd_list_element *c, const char *value)
161 {
162 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
163 }
164
165 unsigned int debug_infrun = 0;
166 static void
167 show_debug_infrun (struct ui_file *file, int from_tty,
168 struct cmd_list_element *c, const char *value)
169 {
170 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
171 }
172
173
174 /* Support for disabling address space randomization. */
175
176 bool disable_randomization = true;
177
178 static void
179 show_disable_randomization (struct ui_file *file, int from_tty,
180 struct cmd_list_element *c, const char *value)
181 {
182 if (target_supports_disable_randomization ())
183 fprintf_filtered (file,
184 _("Disabling randomization of debuggee's "
185 "virtual address space is %s.\n"),
186 value);
187 else
188 fputs_filtered (_("Disabling randomization of debuggee's "
189 "virtual address space is unsupported on\n"
190 "this platform.\n"), file);
191 }
192
193 static void
194 set_disable_randomization (const char *args, int from_tty,
195 struct cmd_list_element *c)
196 {
197 if (!target_supports_disable_randomization ())
198 error (_("Disabling randomization of debuggee's "
199 "virtual address space is unsupported on\n"
200 "this platform."));
201 }
202
203 /* User interface for non-stop mode. */
204
205 bool non_stop = false;
206 static bool non_stop_1 = false;
207
208 static void
209 set_non_stop (const char *args, int from_tty,
210 struct cmd_list_element *c)
211 {
212 if (target_has_execution)
213 {
214 non_stop_1 = non_stop;
215 error (_("Cannot change this setting while the inferior is running."));
216 }
217
218 non_stop = non_stop_1;
219 }
220
221 static void
222 show_non_stop (struct ui_file *file, int from_tty,
223 struct cmd_list_element *c, const char *value)
224 {
225 fprintf_filtered (file,
226 _("Controlling the inferior in non-stop mode is %s.\n"),
227 value);
228 }
229
230 /* "Observer mode" is somewhat like a more extreme version of
231 non-stop, in which all GDB operations that might affect the
232 target's execution have been disabled. */
233
234 bool observer_mode = false;
235 static bool observer_mode_1 = false;
236
237 static void
238 set_observer_mode (const char *args, int from_tty,
239 struct cmd_list_element *c)
240 {
241 if (target_has_execution)
242 {
243 observer_mode_1 = observer_mode;
244 error (_("Cannot change this setting while the inferior is running."));
245 }
246
247 observer_mode = observer_mode_1;
248
249 may_write_registers = !observer_mode;
250 may_write_memory = !observer_mode;
251 may_insert_breakpoints = !observer_mode;
252 may_insert_tracepoints = !observer_mode;
253 /* We can insert fast tracepoints in or out of observer mode,
254 but enable them if we're going into this mode. */
255 if (observer_mode)
256 may_insert_fast_tracepoints = true;
257 may_stop = !observer_mode;
258 update_target_permissions ();
259
260 /* Going *into* observer mode we must force non-stop, then
261 going out we leave it that way. */
262 if (observer_mode)
263 {
264 pagination_enabled = 0;
265 non_stop = non_stop_1 = true;
266 }
267
268 if (from_tty)
269 printf_filtered (_("Observer mode is now %s.\n"),
270 (observer_mode ? "on" : "off"));
271 }
272
273 static void
274 show_observer_mode (struct ui_file *file, int from_tty,
275 struct cmd_list_element *c, const char *value)
276 {
277 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
278 }
279
280 /* This updates the value of observer mode based on changes in
281 permissions. Note that we are deliberately ignoring the values of
282 may-write-registers and may-write-memory, since the user may have
283 reason to enable these during a session, for instance to turn on a
284 debugging-related global. */
285
286 void
287 update_observer_mode (void)
288 {
289 bool newval = (!may_insert_breakpoints
290 && !may_insert_tracepoints
291 && may_insert_fast_tracepoints
292 && !may_stop
293 && non_stop);
294
295 /* Let the user know if things change. */
296 if (newval != observer_mode)
297 printf_filtered (_("Observer mode is now %s.\n"),
298 (newval ? "on" : "off"));
299
300 observer_mode = observer_mode_1 = newval;
301 }
302
303 /* Tables of how to react to signals; the user sets them. */
304
305 static unsigned char signal_stop[GDB_SIGNAL_LAST];
306 static unsigned char signal_print[GDB_SIGNAL_LAST];
307 static unsigned char signal_program[GDB_SIGNAL_LAST];
308
309 /* Table of signals that are registered with "catch signal". A
310 non-zero entry indicates that the signal is caught by some "catch
311 signal" command. */
312 static unsigned char signal_catch[GDB_SIGNAL_LAST];
313
314 /* Table of signals that the target may silently handle.
315 This is automatically determined from the flags above,
316 and simply cached here. */
317 static unsigned char signal_pass[GDB_SIGNAL_LAST];
318
319 #define SET_SIGS(nsigs,sigs,flags) \
320 do { \
321 int signum = (nsigs); \
322 while (signum-- > 0) \
323 if ((sigs)[signum]) \
324 (flags)[signum] = 1; \
325 } while (0)
326
327 #define UNSET_SIGS(nsigs,sigs,flags) \
328 do { \
329 int signum = (nsigs); \
330 while (signum-- > 0) \
331 if ((sigs)[signum]) \
332 (flags)[signum] = 0; \
333 } while (0)
334
335 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
336 this function is to avoid exporting `signal_program'. */
337
338 void
339 update_signals_program_target (void)
340 {
341 target_program_signals (signal_program);
342 }
343
344 /* Value to pass to target_resume() to cause all threads to resume. */
345
346 #define RESUME_ALL minus_one_ptid
347
348 /* Command list pointer for the "stop" placeholder. */
349
350 static struct cmd_list_element *stop_command;
351
352 /* Nonzero if we want to give control to the user when we're notified
353 of shared library events by the dynamic linker. */
354 int stop_on_solib_events;
355
356 /* Enable or disable optional shared library event breakpoints
357 as appropriate when the above flag is changed. */
358
359 static void
360 set_stop_on_solib_events (const char *args,
361 int from_tty, struct cmd_list_element *c)
362 {
363 update_solib_breakpoints ();
364 }
365
366 static void
367 show_stop_on_solib_events (struct ui_file *file, int from_tty,
368 struct cmd_list_element *c, const char *value)
369 {
370 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
371 value);
372 }
373
374 /* Nonzero after stop if current stack frame should be printed. */
375
376 static int stop_print_frame;
377
378 /* This is a cached copy of the target/ptid/waitstatus of the last
379 event returned by target_wait()/deprecated_target_wait_hook().
380 This information is returned by get_last_target_status(). */
381 static process_stratum_target *target_last_proc_target;
382 static ptid_t target_last_wait_ptid;
383 static struct target_waitstatus target_last_waitstatus;
384
385 void init_thread_stepping_state (struct thread_info *tss);
386
387 static const char follow_fork_mode_child[] = "child";
388 static const char follow_fork_mode_parent[] = "parent";
389
390 static const char *const follow_fork_mode_kind_names[] = {
391 follow_fork_mode_child,
392 follow_fork_mode_parent,
393 NULL
394 };
395
396 static const char *follow_fork_mode_string = follow_fork_mode_parent;
397 static void
398 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
399 struct cmd_list_element *c, const char *value)
400 {
401 fprintf_filtered (file,
402 _("Debugger response to a program "
403 "call of fork or vfork is \"%s\".\n"),
404 value);
405 }
406 \f
407
408 /* Handle changes to the inferior list based on the type of fork,
409 which process is being followed, and whether the other process
410 should be detached. On entry inferior_ptid must be the ptid of
411 the fork parent. At return inferior_ptid is the ptid of the
412 followed inferior. */
413
414 static int
415 follow_fork_inferior (int follow_child, int detach_fork)
416 {
417 int has_vforked;
418 ptid_t parent_ptid, child_ptid;
419
420 has_vforked = (inferior_thread ()->pending_follow.kind
421 == TARGET_WAITKIND_VFORKED);
422 parent_ptid = inferior_ptid;
423 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
424
425 if (has_vforked
426 && !non_stop /* Non-stop always resumes both branches. */
427 && current_ui->prompt_state == PROMPT_BLOCKED
428 && !(follow_child || detach_fork || sched_multi))
429 {
430 /* The parent stays blocked inside the vfork syscall until the
431 child execs or exits. If we don't let the child run, then
432 the parent stays blocked. If we're telling the parent to run
433 in the foreground, the user will not be able to ctrl-c to get
434 back the terminal, effectively hanging the debug session. */
435 fprintf_filtered (gdb_stderr, _("\
436 Can not resume the parent process over vfork in the foreground while\n\
437 holding the child stopped. Try \"set detach-on-fork\" or \
438 \"set schedule-multiple\".\n"));
439 return 1;
440 }
441
442 if (!follow_child)
443 {
444 /* Detach new forked process? */
445 if (detach_fork)
446 {
447 /* Before detaching from the child, remove all breakpoints
448 from it. If we forked, then this has already been taken
449 care of by infrun.c. If we vforked however, any
450 breakpoint inserted in the parent is visible in the
451 child, even those added while stopped in a vfork
452 catchpoint. This will remove the breakpoints from the
453 parent also, but they'll be reinserted below. */
454 if (has_vforked)
455 {
456 /* Keep breakpoints list in sync. */
457 remove_breakpoints_inf (current_inferior ());
458 }
459
460 if (print_inferior_events)
461 {
462 /* Ensure that we have a process ptid. */
463 ptid_t process_ptid = ptid_t (child_ptid.pid ());
464
465 target_terminal::ours_for_output ();
466 fprintf_filtered (gdb_stdlog,
467 _("[Detaching after %s from child %s]\n"),
468 has_vforked ? "vfork" : "fork",
469 target_pid_to_str (process_ptid).c_str ());
470 }
471 }
472 else
473 {
474 struct inferior *parent_inf, *child_inf;
475
476 /* Add process to GDB's tables. */
477 child_inf = add_inferior (child_ptid.pid ());
478
479 parent_inf = current_inferior ();
480 child_inf->attach_flag = parent_inf->attach_flag;
481 copy_terminal_info (child_inf, parent_inf);
482 child_inf->gdbarch = parent_inf->gdbarch;
483 copy_inferior_target_desc_info (child_inf, parent_inf);
484
485 scoped_restore_current_pspace_and_thread restore_pspace_thread;
486
487 set_current_inferior (child_inf);
488 switch_to_no_thread ();
489 child_inf->symfile_flags = SYMFILE_NO_READ;
490 push_target (parent_inf->process_target ());
491 add_thread_silent (child_inf->process_target (), child_ptid);
492 inferior_ptid = child_ptid;
493
494 /* If this is a vfork child, then the address-space is
495 shared with the parent. */
496 if (has_vforked)
497 {
498 child_inf->pspace = parent_inf->pspace;
499 child_inf->aspace = parent_inf->aspace;
500
501 exec_on_vfork ();
502
503 /* The parent will be frozen until the child is done
504 with the shared region. Keep track of the
505 parent. */
506 child_inf->vfork_parent = parent_inf;
507 child_inf->pending_detach = 0;
508 parent_inf->vfork_child = child_inf;
509 parent_inf->pending_detach = 0;
510 }
511 else
512 {
513 child_inf->aspace = new_address_space ();
514 child_inf->pspace = new program_space (child_inf->aspace);
515 child_inf->removable = 1;
516 set_current_program_space (child_inf->pspace);
517 clone_program_space (child_inf->pspace, parent_inf->pspace);
518
519 /* Let the shared library layer (e.g., solib-svr4) learn
520 about this new process, relocate the cloned exec, pull
521 in shared libraries, and install the solib event
522 breakpoint. If a "cloned-VM" event was propagated
523 better throughout the core, this wouldn't be
524 required. */
525 solib_create_inferior_hook (0);
526 }
527 }
528
529 if (has_vforked)
530 {
531 struct inferior *parent_inf;
532
533 parent_inf = current_inferior ();
534
535 /* If we detached from the child, then we have to be careful
536 to not insert breakpoints in the parent until the child
537 is done with the shared memory region. However, if we're
538 staying attached to the child, then we can and should
539 insert breakpoints, so that we can debug it. A
540 subsequent child exec or exit is enough to know when does
541 the child stops using the parent's address space. */
542 parent_inf->waiting_for_vfork_done = detach_fork;
543 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
544 }
545 }
546 else
547 {
548 /* Follow the child. */
549 struct inferior *parent_inf, *child_inf;
550 struct program_space *parent_pspace;
551
552 if (print_inferior_events)
553 {
554 std::string parent_pid = target_pid_to_str (parent_ptid);
555 std::string child_pid = target_pid_to_str (child_ptid);
556
557 target_terminal::ours_for_output ();
558 fprintf_filtered (gdb_stdlog,
559 _("[Attaching after %s %s to child %s]\n"),
560 parent_pid.c_str (),
561 has_vforked ? "vfork" : "fork",
562 child_pid.c_str ());
563 }
564
565 /* Add the new inferior first, so that the target_detach below
566 doesn't unpush the target. */
567
568 child_inf = add_inferior (child_ptid.pid ());
569
570 parent_inf = current_inferior ();
571 child_inf->attach_flag = parent_inf->attach_flag;
572 copy_terminal_info (child_inf, parent_inf);
573 child_inf->gdbarch = parent_inf->gdbarch;
574 copy_inferior_target_desc_info (child_inf, parent_inf);
575
576 parent_pspace = parent_inf->pspace;
577
578 process_stratum_target *target = parent_inf->process_target ();
579
580 {
581 /* Hold a strong reference to the target while (maybe)
582 detaching the parent. Otherwise detaching could close the
583 target. */
584 auto target_ref = target_ops_ref::new_reference (target);
585
586 /* If we're vforking, we want to hold on to the parent until
587 the child exits or execs. At child exec or exit time we
588 can remove the old breakpoints from the parent and detach
589 or resume debugging it. Otherwise, detach the parent now;
590 we'll want to reuse it's program/address spaces, but we
591 can't set them to the child before removing breakpoints
592 from the parent, otherwise, the breakpoints module could
593 decide to remove breakpoints from the wrong process (since
594 they'd be assigned to the same address space). */
595
596 if (has_vforked)
597 {
598 gdb_assert (child_inf->vfork_parent == NULL);
599 gdb_assert (parent_inf->vfork_child == NULL);
600 child_inf->vfork_parent = parent_inf;
601 child_inf->pending_detach = 0;
602 parent_inf->vfork_child = child_inf;
603 parent_inf->pending_detach = detach_fork;
604 parent_inf->waiting_for_vfork_done = 0;
605 }
606 else if (detach_fork)
607 {
608 if (print_inferior_events)
609 {
610 /* Ensure that we have a process ptid. */
611 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
612
613 target_terminal::ours_for_output ();
614 fprintf_filtered (gdb_stdlog,
615 _("[Detaching after fork from "
616 "parent %s]\n"),
617 target_pid_to_str (process_ptid).c_str ());
618 }
619
620 target_detach (parent_inf, 0);
621 parent_inf = NULL;
622 }
623
624 /* Note that the detach above makes PARENT_INF dangling. */
625
626 /* Add the child thread to the appropriate lists, and switch
627 to this new thread, before cloning the program space, and
628 informing the solib layer about this new process. */
629
630 set_current_inferior (child_inf);
631 push_target (target);
632 }
633
634 add_thread_silent (target, child_ptid);
635 inferior_ptid = child_ptid;
636
637 /* If this is a vfork child, then the address-space is shared
638 with the parent. If we detached from the parent, then we can
639 reuse the parent's program/address spaces. */
640 if (has_vforked || detach_fork)
641 {
642 child_inf->pspace = parent_pspace;
643 child_inf->aspace = child_inf->pspace->aspace;
644
645 exec_on_vfork ();
646 }
647 else
648 {
649 child_inf->aspace = new_address_space ();
650 child_inf->pspace = new program_space (child_inf->aspace);
651 child_inf->removable = 1;
652 child_inf->symfile_flags = SYMFILE_NO_READ;
653 set_current_program_space (child_inf->pspace);
654 clone_program_space (child_inf->pspace, parent_pspace);
655
656 /* Let the shared library layer (e.g., solib-svr4) learn
657 about this new process, relocate the cloned exec, pull in
658 shared libraries, and install the solib event breakpoint.
659 If a "cloned-VM" event was propagated better throughout
660 the core, this wouldn't be required. */
661 solib_create_inferior_hook (0);
662 }
663 }
664
665 return target_follow_fork (follow_child, detach_fork);
666 }
667
668 /* Tell the target to follow the fork we're stopped at. Returns true
669 if the inferior should be resumed; false, if the target for some
670 reason decided it's best not to resume. */
671
672 static int
673 follow_fork (void)
674 {
675 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
676 int should_resume = 1;
677 struct thread_info *tp;
678
679 /* Copy user stepping state to the new inferior thread. FIXME: the
680 followed fork child thread should have a copy of most of the
681 parent thread structure's run control related fields, not just these.
682 Initialized to avoid "may be used uninitialized" warnings from gcc. */
683 struct breakpoint *step_resume_breakpoint = NULL;
684 struct breakpoint *exception_resume_breakpoint = NULL;
685 CORE_ADDR step_range_start = 0;
686 CORE_ADDR step_range_end = 0;
687 struct frame_id step_frame_id = { 0 };
688 struct thread_fsm *thread_fsm = NULL;
689
690 if (!non_stop)
691 {
692 process_stratum_target *wait_target;
693 ptid_t wait_ptid;
694 struct target_waitstatus wait_status;
695
696 /* Get the last target status returned by target_wait(). */
697 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
698
699 /* If not stopped at a fork event, then there's nothing else to
700 do. */
701 if (wait_status.kind != TARGET_WAITKIND_FORKED
702 && wait_status.kind != TARGET_WAITKIND_VFORKED)
703 return 1;
704
705 /* Check if we switched over from WAIT_PTID, since the event was
706 reported. */
707 if (wait_ptid != minus_one_ptid
708 && (current_inferior ()->process_target () != wait_target
709 || inferior_ptid != wait_ptid))
710 {
711 /* We did. Switch back to WAIT_PTID thread, to tell the
712 target to follow it (in either direction). We'll
713 afterwards refuse to resume, and inform the user what
714 happened. */
715 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
716 switch_to_thread (wait_thread);
717 should_resume = 0;
718 }
719 }
720
721 tp = inferior_thread ();
722
723 /* If there were any forks/vforks that were caught and are now to be
724 followed, then do so now. */
725 switch (tp->pending_follow.kind)
726 {
727 case TARGET_WAITKIND_FORKED:
728 case TARGET_WAITKIND_VFORKED:
729 {
730 ptid_t parent, child;
731
732 /* If the user did a next/step, etc, over a fork call,
733 preserve the stepping state in the fork child. */
734 if (follow_child && should_resume)
735 {
736 step_resume_breakpoint = clone_momentary_breakpoint
737 (tp->control.step_resume_breakpoint);
738 step_range_start = tp->control.step_range_start;
739 step_range_end = tp->control.step_range_end;
740 step_frame_id = tp->control.step_frame_id;
741 exception_resume_breakpoint
742 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
743 thread_fsm = tp->thread_fsm;
744
745 /* For now, delete the parent's sr breakpoint, otherwise,
746 parent/child sr breakpoints are considered duplicates,
747 and the child version will not be installed. Remove
748 this when the breakpoints module becomes aware of
749 inferiors and address spaces. */
750 delete_step_resume_breakpoint (tp);
751 tp->control.step_range_start = 0;
752 tp->control.step_range_end = 0;
753 tp->control.step_frame_id = null_frame_id;
754 delete_exception_resume_breakpoint (tp);
755 tp->thread_fsm = NULL;
756 }
757
758 parent = inferior_ptid;
759 child = tp->pending_follow.value.related_pid;
760
761 process_stratum_target *parent_targ = tp->inf->process_target ();
762 /* Set up inferior(s) as specified by the caller, and tell the
763 target to do whatever is necessary to follow either parent
764 or child. */
765 if (follow_fork_inferior (follow_child, detach_fork))
766 {
767 /* Target refused to follow, or there's some other reason
768 we shouldn't resume. */
769 should_resume = 0;
770 }
771 else
772 {
773 /* This pending follow fork event is now handled, one way
774 or another. The previous selected thread may be gone
775 from the lists by now, but if it is still around, need
776 to clear the pending follow request. */
777 tp = find_thread_ptid (parent_targ, parent);
778 if (tp)
779 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
780
781 /* This makes sure we don't try to apply the "Switched
782 over from WAIT_PID" logic above. */
783 nullify_last_target_wait_ptid ();
784
785 /* If we followed the child, switch to it... */
786 if (follow_child)
787 {
788 thread_info *child_thr = find_thread_ptid (parent_targ, child);
789 switch_to_thread (child_thr);
790
791 /* ... and preserve the stepping state, in case the
792 user was stepping over the fork call. */
793 if (should_resume)
794 {
795 tp = inferior_thread ();
796 tp->control.step_resume_breakpoint
797 = step_resume_breakpoint;
798 tp->control.step_range_start = step_range_start;
799 tp->control.step_range_end = step_range_end;
800 tp->control.step_frame_id = step_frame_id;
801 tp->control.exception_resume_breakpoint
802 = exception_resume_breakpoint;
803 tp->thread_fsm = thread_fsm;
804 }
805 else
806 {
807 /* If we get here, it was because we're trying to
808 resume from a fork catchpoint, but, the user
809 has switched threads away from the thread that
810 forked. In that case, the resume command
811 issued is most likely not applicable to the
812 child, so just warn, and refuse to resume. */
813 warning (_("Not resuming: switched threads "
814 "before following fork child."));
815 }
816
817 /* Reset breakpoints in the child as appropriate. */
818 follow_inferior_reset_breakpoints ();
819 }
820 }
821 }
822 break;
823 case TARGET_WAITKIND_SPURIOUS:
824 /* Nothing to follow. */
825 break;
826 default:
827 internal_error (__FILE__, __LINE__,
828 "Unexpected pending_follow.kind %d\n",
829 tp->pending_follow.kind);
830 break;
831 }
832
833 return should_resume;
834 }
835
836 static void
837 follow_inferior_reset_breakpoints (void)
838 {
839 struct thread_info *tp = inferior_thread ();
840
841 /* Was there a step_resume breakpoint? (There was if the user
842 did a "next" at the fork() call.) If so, explicitly reset its
843 thread number. Cloned step_resume breakpoints are disabled on
844 creation, so enable it here now that it is associated with the
845 correct thread.
846
847 step_resumes are a form of bp that are made to be per-thread.
848 Since we created the step_resume bp when the parent process
849 was being debugged, and now are switching to the child process,
850 from the breakpoint package's viewpoint, that's a switch of
851 "threads". We must update the bp's notion of which thread
852 it is for, or it'll be ignored when it triggers. */
853
854 if (tp->control.step_resume_breakpoint)
855 {
856 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
857 tp->control.step_resume_breakpoint->loc->enabled = 1;
858 }
859
860 /* Treat exception_resume breakpoints like step_resume breakpoints. */
861 if (tp->control.exception_resume_breakpoint)
862 {
863 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
864 tp->control.exception_resume_breakpoint->loc->enabled = 1;
865 }
866
867 /* Reinsert all breakpoints in the child. The user may have set
868 breakpoints after catching the fork, in which case those
869 were never set in the child, but only in the parent. This makes
870 sure the inserted breakpoints match the breakpoint list. */
871
872 breakpoint_re_set ();
873 insert_breakpoints ();
874 }
875
876 /* The child has exited or execed: resume threads of the parent the
877 user wanted to be executing. */
878
879 static int
880 proceed_after_vfork_done (struct thread_info *thread,
881 void *arg)
882 {
883 int pid = * (int *) arg;
884
885 if (thread->ptid.pid () == pid
886 && thread->state == THREAD_RUNNING
887 && !thread->executing
888 && !thread->stop_requested
889 && thread->suspend.stop_signal == GDB_SIGNAL_0)
890 {
891 if (debug_infrun)
892 fprintf_unfiltered (gdb_stdlog,
893 "infrun: resuming vfork parent thread %s\n",
894 target_pid_to_str (thread->ptid).c_str ());
895
896 switch_to_thread (thread);
897 clear_proceed_status (0);
898 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
899 }
900
901 return 0;
902 }
903
904 /* Save/restore inferior_ptid, current program space and current
905 inferior. Only use this if the current context points at an exited
906 inferior (and therefore there's no current thread to save). */
907 class scoped_restore_exited_inferior
908 {
909 public:
910 scoped_restore_exited_inferior ()
911 : m_saved_ptid (&inferior_ptid)
912 {}
913
914 private:
915 scoped_restore_tmpl<ptid_t> m_saved_ptid;
916 scoped_restore_current_program_space m_pspace;
917 scoped_restore_current_inferior m_inferior;
918 };
919
920 /* Called whenever we notice an exec or exit event, to handle
921 detaching or resuming a vfork parent. */
922
923 static void
924 handle_vfork_child_exec_or_exit (int exec)
925 {
926 struct inferior *inf = current_inferior ();
927
928 if (inf->vfork_parent)
929 {
930 int resume_parent = -1;
931
932 /* This exec or exit marks the end of the shared memory region
933 between the parent and the child. Break the bonds. */
934 inferior *vfork_parent = inf->vfork_parent;
935 inf->vfork_parent->vfork_child = NULL;
936 inf->vfork_parent = NULL;
937
938 /* If the user wanted to detach from the parent, now is the
939 time. */
940 if (vfork_parent->pending_detach)
941 {
942 struct thread_info *tp;
943 struct program_space *pspace;
944 struct address_space *aspace;
945
946 /* follow-fork child, detach-on-fork on. */
947
948 vfork_parent->pending_detach = 0;
949
950 gdb::optional<scoped_restore_exited_inferior>
951 maybe_restore_inferior;
952 gdb::optional<scoped_restore_current_pspace_and_thread>
953 maybe_restore_thread;
954
955 /* If we're handling a child exit, then inferior_ptid points
956 at the inferior's pid, not to a thread. */
957 if (!exec)
958 maybe_restore_inferior.emplace ();
959 else
960 maybe_restore_thread.emplace ();
961
962 /* We're letting loose of the parent. */
963 tp = any_live_thread_of_inferior (vfork_parent);
964 switch_to_thread (tp);
965
966 /* We're about to detach from the parent, which implicitly
967 removes breakpoints from its address space. There's a
968 catch here: we want to reuse the spaces for the child,
969 but, parent/child are still sharing the pspace at this
970 point, although the exec in reality makes the kernel give
971 the child a fresh set of new pages. The problem here is
972 that the breakpoints module being unaware of this, would
973 likely chose the child process to write to the parent
974 address space. Swapping the child temporarily away from
975 the spaces has the desired effect. Yes, this is "sort
976 of" a hack. */
977
978 pspace = inf->pspace;
979 aspace = inf->aspace;
980 inf->aspace = NULL;
981 inf->pspace = NULL;
982
983 if (print_inferior_events)
984 {
985 std::string pidstr
986 = target_pid_to_str (ptid_t (vfork_parent->pid));
987
988 target_terminal::ours_for_output ();
989
990 if (exec)
991 {
992 fprintf_filtered (gdb_stdlog,
993 _("[Detaching vfork parent %s "
994 "after child exec]\n"), pidstr.c_str ());
995 }
996 else
997 {
998 fprintf_filtered (gdb_stdlog,
999 _("[Detaching vfork parent %s "
1000 "after child exit]\n"), pidstr.c_str ());
1001 }
1002 }
1003
1004 target_detach (vfork_parent, 0);
1005
1006 /* Put it back. */
1007 inf->pspace = pspace;
1008 inf->aspace = aspace;
1009 }
1010 else if (exec)
1011 {
1012 /* We're staying attached to the parent, so, really give the
1013 child a new address space. */
1014 inf->pspace = new program_space (maybe_new_address_space ());
1015 inf->aspace = inf->pspace->aspace;
1016 inf->removable = 1;
1017 set_current_program_space (inf->pspace);
1018
1019 resume_parent = vfork_parent->pid;
1020 }
1021 else
1022 {
1023 /* If this is a vfork child exiting, then the pspace and
1024 aspaces were shared with the parent. Since we're
1025 reporting the process exit, we'll be mourning all that is
1026 found in the address space, and switching to null_ptid,
1027 preparing to start a new inferior. But, since we don't
1028 want to clobber the parent's address/program spaces, we
1029 go ahead and create a new one for this exiting
1030 inferior. */
1031
1032 /* Switch to null_ptid while running clone_program_space, so
1033 that clone_program_space doesn't want to read the
1034 selected frame of a dead process. */
1035 scoped_restore restore_ptid
1036 = make_scoped_restore (&inferior_ptid, null_ptid);
1037
1038 inf->pspace = new program_space (maybe_new_address_space ());
1039 inf->aspace = inf->pspace->aspace;
1040 set_current_program_space (inf->pspace);
1041 inf->removable = 1;
1042 inf->symfile_flags = SYMFILE_NO_READ;
1043 clone_program_space (inf->pspace, vfork_parent->pspace);
1044
1045 resume_parent = vfork_parent->pid;
1046 }
1047
1048 gdb_assert (current_program_space == inf->pspace);
1049
1050 if (non_stop && resume_parent != -1)
1051 {
1052 /* If the user wanted the parent to be running, let it go
1053 free now. */
1054 scoped_restore_current_thread restore_thread;
1055
1056 if (debug_infrun)
1057 fprintf_unfiltered (gdb_stdlog,
1058 "infrun: resuming vfork parent process %d\n",
1059 resume_parent);
1060
1061 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1062 }
1063 }
1064 }
1065
1066 /* Enum strings for "set|show follow-exec-mode". */
1067
1068 static const char follow_exec_mode_new[] = "new";
1069 static const char follow_exec_mode_same[] = "same";
1070 static const char *const follow_exec_mode_names[] =
1071 {
1072 follow_exec_mode_new,
1073 follow_exec_mode_same,
1074 NULL,
1075 };
1076
1077 static const char *follow_exec_mode_string = follow_exec_mode_same;
1078 static void
1079 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1080 struct cmd_list_element *c, const char *value)
1081 {
1082 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1083 }
1084
1085 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1086
1087 static void
1088 follow_exec (ptid_t ptid, const char *exec_file_target)
1089 {
1090 struct inferior *inf = current_inferior ();
1091 int pid = ptid.pid ();
1092 ptid_t process_ptid;
1093
1094 /* Switch terminal for any messages produced e.g. by
1095 breakpoint_re_set. */
1096 target_terminal::ours_for_output ();
1097
1098 /* This is an exec event that we actually wish to pay attention to.
1099 Refresh our symbol table to the newly exec'd program, remove any
1100 momentary bp's, etc.
1101
1102 If there are breakpoints, they aren't really inserted now,
1103 since the exec() transformed our inferior into a fresh set
1104 of instructions.
1105
1106 We want to preserve symbolic breakpoints on the list, since
1107 we have hopes that they can be reset after the new a.out's
1108 symbol table is read.
1109
1110 However, any "raw" breakpoints must be removed from the list
1111 (e.g., the solib bp's), since their address is probably invalid
1112 now.
1113
1114 And, we DON'T want to call delete_breakpoints() here, since
1115 that may write the bp's "shadow contents" (the instruction
1116 value that was overwritten with a TRAP instruction). Since
1117 we now have a new a.out, those shadow contents aren't valid. */
1118
1119 mark_breakpoints_out ();
1120
1121 /* The target reports the exec event to the main thread, even if
1122 some other thread does the exec, and even if the main thread was
1123 stopped or already gone. We may still have non-leader threads of
1124 the process on our list. E.g., on targets that don't have thread
1125 exit events (like remote); or on native Linux in non-stop mode if
1126 there were only two threads in the inferior and the non-leader
1127 one is the one that execs (and nothing forces an update of the
1128 thread list up to here). When debugging remotely, it's best to
1129 avoid extra traffic, when possible, so avoid syncing the thread
1130 list with the target, and instead go ahead and delete all threads
1131 of the process but one that reported the event. Note this must
1132 be done before calling update_breakpoints_after_exec, as
1133 otherwise clearing the threads' resources would reference stale
1134 thread breakpoints -- it may have been one of these threads that
1135 stepped across the exec. We could just clear their stepping
1136 states, but as long as we're iterating, might as well delete
1137 them. Deleting them now rather than at the next user-visible
1138 stop provides a nicer sequence of events for user and MI
1139 notifications. */
1140 for (thread_info *th : all_threads_safe ())
1141 if (th->ptid.pid () == pid && th->ptid != ptid)
1142 delete_thread (th);
1143
1144 /* We also need to clear any left over stale state for the
1145 leader/event thread. E.g., if there was any step-resume
1146 breakpoint or similar, it's gone now. We cannot truly
1147 step-to-next statement through an exec(). */
1148 thread_info *th = inferior_thread ();
1149 th->control.step_resume_breakpoint = NULL;
1150 th->control.exception_resume_breakpoint = NULL;
1151 th->control.single_step_breakpoints = NULL;
1152 th->control.step_range_start = 0;
1153 th->control.step_range_end = 0;
1154
1155 /* The user may have had the main thread held stopped in the
1156 previous image (e.g., schedlock on, or non-stop). Release
1157 it now. */
1158 th->stop_requested = 0;
1159
1160 update_breakpoints_after_exec ();
1161
1162 /* What is this a.out's name? */
1163 process_ptid = ptid_t (pid);
1164 printf_unfiltered (_("%s is executing new program: %s\n"),
1165 target_pid_to_str (process_ptid).c_str (),
1166 exec_file_target);
1167
1168 /* We've followed the inferior through an exec. Therefore, the
1169 inferior has essentially been killed & reborn. */
1170
1171 breakpoint_init_inferior (inf_execd);
1172
1173 gdb::unique_xmalloc_ptr<char> exec_file_host
1174 = exec_file_find (exec_file_target, NULL);
1175
1176 /* If we were unable to map the executable target pathname onto a host
1177 pathname, tell the user that. Otherwise GDB's subsequent behavior
1178 is confusing. Maybe it would even be better to stop at this point
1179 so that the user can specify a file manually before continuing. */
1180 if (exec_file_host == NULL)
1181 warning (_("Could not load symbols for executable %s.\n"
1182 "Do you need \"set sysroot\"?"),
1183 exec_file_target);
1184
1185 /* Reset the shared library package. This ensures that we get a
1186 shlib event when the child reaches "_start", at which point the
1187 dld will have had a chance to initialize the child. */
1188 /* Also, loading a symbol file below may trigger symbol lookups, and
1189 we don't want those to be satisfied by the libraries of the
1190 previous incarnation of this process. */
1191 no_shared_libraries (NULL, 0);
1192
1193 if (follow_exec_mode_string == follow_exec_mode_new)
1194 {
1195 /* The user wants to keep the old inferior and program spaces
1196 around. Create a new fresh one, and switch to it. */
1197
1198 /* Do exit processing for the original inferior before setting the new
1199 inferior's pid. Having two inferiors with the same pid would confuse
1200 find_inferior_p(t)id. Transfer the terminal state and info from the
1201 old to the new inferior. */
1202 inf = add_inferior_with_spaces ();
1203 swap_terminal_info (inf, current_inferior ());
1204 exit_inferior_silent (current_inferior ());
1205
1206 inf->pid = pid;
1207 target_follow_exec (inf, exec_file_target);
1208
1209 inferior *org_inferior = current_inferior ();
1210 switch_to_inferior_no_thread (inf);
1211 push_target (org_inferior->process_target ());
1212 thread_info *thr = add_thread (inf->process_target (), ptid);
1213 switch_to_thread (thr);
1214 }
1215 else
1216 {
1217 /* The old description may no longer be fit for the new image.
1218 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1219 old description; we'll read a new one below. No need to do
1220 this on "follow-exec-mode new", as the old inferior stays
1221 around (its description is later cleared/refetched on
1222 restart). */
1223 target_clear_description ();
1224 }
1225
1226 gdb_assert (current_program_space == inf->pspace);
1227
1228 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1229 because the proper displacement for a PIE (Position Independent
1230 Executable) main symbol file will only be computed by
1231 solib_create_inferior_hook below. breakpoint_re_set would fail
1232 to insert the breakpoints with the zero displacement. */
1233 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1234
1235 /* If the target can specify a description, read it. Must do this
1236 after flipping to the new executable (because the target supplied
1237 description must be compatible with the executable's
1238 architecture, and the old executable may e.g., be 32-bit, while
1239 the new one 64-bit), and before anything involving memory or
1240 registers. */
1241 target_find_description ();
1242
1243 solib_create_inferior_hook (0);
1244
1245 jit_inferior_created_hook ();
1246
1247 breakpoint_re_set ();
1248
1249 /* Reinsert all breakpoints. (Those which were symbolic have
1250 been reset to the proper address in the new a.out, thanks
1251 to symbol_file_command...). */
1252 insert_breakpoints ();
1253
1254 /* The next resume of this inferior should bring it to the shlib
1255 startup breakpoints. (If the user had also set bp's on
1256 "main" from the old (parent) process, then they'll auto-
1257 matically get reset there in the new process.). */
1258 }
1259
1260 /* The queue of threads that need to do a step-over operation to get
1261 past e.g., a breakpoint. What technique is used to step over the
1262 breakpoint/watchpoint does not matter -- all threads end up in the
1263 same queue, to maintain rough temporal order of execution, in order
1264 to avoid starvation, otherwise, we could e.g., find ourselves
1265 constantly stepping the same couple threads past their breakpoints
1266 over and over, if the single-step finish fast enough. */
1267 struct thread_info *step_over_queue_head;
1268
1269 /* Bit flags indicating what the thread needs to step over. */
1270
1271 enum step_over_what_flag
1272 {
1273 /* Step over a breakpoint. */
1274 STEP_OVER_BREAKPOINT = 1,
1275
1276 /* Step past a non-continuable watchpoint, in order to let the
1277 instruction execute so we can evaluate the watchpoint
1278 expression. */
1279 STEP_OVER_WATCHPOINT = 2
1280 };
1281 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1282
1283 /* Info about an instruction that is being stepped over. */
1284
1285 struct step_over_info
1286 {
1287 /* If we're stepping past a breakpoint, this is the address space
1288 and address of the instruction the breakpoint is set at. We'll
1289 skip inserting all breakpoints here. Valid iff ASPACE is
1290 non-NULL. */
1291 const address_space *aspace;
1292 CORE_ADDR address;
1293
1294 /* The instruction being stepped over triggers a nonsteppable
1295 watchpoint. If true, we'll skip inserting watchpoints. */
1296 int nonsteppable_watchpoint_p;
1297
1298 /* The thread's global number. */
1299 int thread;
1300 };
1301
1302 /* The step-over info of the location that is being stepped over.
1303
1304 Note that with async/breakpoint always-inserted mode, a user might
1305 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1306 being stepped over. As setting a new breakpoint inserts all
1307 breakpoints, we need to make sure the breakpoint being stepped over
1308 isn't inserted then. We do that by only clearing the step-over
1309 info when the step-over is actually finished (or aborted).
1310
1311 Presently GDB can only step over one breakpoint at any given time.
1312 Given threads that can't run code in the same address space as the
1313 breakpoint's can't really miss the breakpoint, GDB could be taught
1314 to step-over at most one breakpoint per address space (so this info
1315 could move to the address space object if/when GDB is extended).
1316 The set of breakpoints being stepped over will normally be much
1317 smaller than the set of all breakpoints, so a flag in the
1318 breakpoint location structure would be wasteful. A separate list
1319 also saves complexity and run-time, as otherwise we'd have to go
1320 through all breakpoint locations clearing their flag whenever we
1321 start a new sequence. Similar considerations weigh against storing
1322 this info in the thread object. Plus, not all step overs actually
1323 have breakpoint locations -- e.g., stepping past a single-step
1324 breakpoint, or stepping to complete a non-continuable
1325 watchpoint. */
1326 static struct step_over_info step_over_info;
1327
1328 /* Record the address of the breakpoint/instruction we're currently
1329 stepping over.
1330 N.B. We record the aspace and address now, instead of say just the thread,
1331 because when we need the info later the thread may be running. */
1332
1333 static void
1334 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1335 int nonsteppable_watchpoint_p,
1336 int thread)
1337 {
1338 step_over_info.aspace = aspace;
1339 step_over_info.address = address;
1340 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1341 step_over_info.thread = thread;
1342 }
1343
1344 /* Called when we're not longer stepping over a breakpoint / an
1345 instruction, so all breakpoints are free to be (re)inserted. */
1346
1347 static void
1348 clear_step_over_info (void)
1349 {
1350 if (debug_infrun)
1351 fprintf_unfiltered (gdb_stdlog,
1352 "infrun: clear_step_over_info\n");
1353 step_over_info.aspace = NULL;
1354 step_over_info.address = 0;
1355 step_over_info.nonsteppable_watchpoint_p = 0;
1356 step_over_info.thread = -1;
1357 }
1358
1359 /* See infrun.h. */
1360
1361 int
1362 stepping_past_instruction_at (struct address_space *aspace,
1363 CORE_ADDR address)
1364 {
1365 return (step_over_info.aspace != NULL
1366 && breakpoint_address_match (aspace, address,
1367 step_over_info.aspace,
1368 step_over_info.address));
1369 }
1370
1371 /* See infrun.h. */
1372
1373 int
1374 thread_is_stepping_over_breakpoint (int thread)
1375 {
1376 return (step_over_info.thread != -1
1377 && thread == step_over_info.thread);
1378 }
1379
1380 /* See infrun.h. */
1381
1382 int
1383 stepping_past_nonsteppable_watchpoint (void)
1384 {
1385 return step_over_info.nonsteppable_watchpoint_p;
1386 }
1387
1388 /* Returns true if step-over info is valid. */
1389
1390 static int
1391 step_over_info_valid_p (void)
1392 {
1393 return (step_over_info.aspace != NULL
1394 || stepping_past_nonsteppable_watchpoint ());
1395 }
1396
1397 \f
1398 /* Displaced stepping. */
1399
1400 /* In non-stop debugging mode, we must take special care to manage
1401 breakpoints properly; in particular, the traditional strategy for
1402 stepping a thread past a breakpoint it has hit is unsuitable.
1403 'Displaced stepping' is a tactic for stepping one thread past a
1404 breakpoint it has hit while ensuring that other threads running
1405 concurrently will hit the breakpoint as they should.
1406
1407 The traditional way to step a thread T off a breakpoint in a
1408 multi-threaded program in all-stop mode is as follows:
1409
1410 a0) Initially, all threads are stopped, and breakpoints are not
1411 inserted.
1412 a1) We single-step T, leaving breakpoints uninserted.
1413 a2) We insert breakpoints, and resume all threads.
1414
1415 In non-stop debugging, however, this strategy is unsuitable: we
1416 don't want to have to stop all threads in the system in order to
1417 continue or step T past a breakpoint. Instead, we use displaced
1418 stepping:
1419
1420 n0) Initially, T is stopped, other threads are running, and
1421 breakpoints are inserted.
1422 n1) We copy the instruction "under" the breakpoint to a separate
1423 location, outside the main code stream, making any adjustments
1424 to the instruction, register, and memory state as directed by
1425 T's architecture.
1426 n2) We single-step T over the instruction at its new location.
1427 n3) We adjust the resulting register and memory state as directed
1428 by T's architecture. This includes resetting T's PC to point
1429 back into the main instruction stream.
1430 n4) We resume T.
1431
1432 This approach depends on the following gdbarch methods:
1433
1434 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1435 indicate where to copy the instruction, and how much space must
1436 be reserved there. We use these in step n1.
1437
1438 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1439 address, and makes any necessary adjustments to the instruction,
1440 register contents, and memory. We use this in step n1.
1441
1442 - gdbarch_displaced_step_fixup adjusts registers and memory after
1443 we have successfully single-stepped the instruction, to yield the
1444 same effect the instruction would have had if we had executed it
1445 at its original address. We use this in step n3.
1446
1447 The gdbarch_displaced_step_copy_insn and
1448 gdbarch_displaced_step_fixup functions must be written so that
1449 copying an instruction with gdbarch_displaced_step_copy_insn,
1450 single-stepping across the copied instruction, and then applying
1451 gdbarch_displaced_insn_fixup should have the same effects on the
1452 thread's memory and registers as stepping the instruction in place
1453 would have. Exactly which responsibilities fall to the copy and
1454 which fall to the fixup is up to the author of those functions.
1455
1456 See the comments in gdbarch.sh for details.
1457
1458 Note that displaced stepping and software single-step cannot
1459 currently be used in combination, although with some care I think
1460 they could be made to. Software single-step works by placing
1461 breakpoints on all possible subsequent instructions; if the
1462 displaced instruction is a PC-relative jump, those breakpoints
1463 could fall in very strange places --- on pages that aren't
1464 executable, or at addresses that are not proper instruction
1465 boundaries. (We do generally let other threads run while we wait
1466 to hit the software single-step breakpoint, and they might
1467 encounter such a corrupted instruction.) One way to work around
1468 this would be to have gdbarch_displaced_step_copy_insn fully
1469 simulate the effect of PC-relative instructions (and return NULL)
1470 on architectures that use software single-stepping.
1471
1472 In non-stop mode, we can have independent and simultaneous step
1473 requests, so more than one thread may need to simultaneously step
1474 over a breakpoint. The current implementation assumes there is
1475 only one scratch space per process. In this case, we have to
1476 serialize access to the scratch space. If thread A wants to step
1477 over a breakpoint, but we are currently waiting for some other
1478 thread to complete a displaced step, we leave thread A stopped and
1479 place it in the displaced_step_request_queue. Whenever a displaced
1480 step finishes, we pick the next thread in the queue and start a new
1481 displaced step operation on it. See displaced_step_prepare and
1482 displaced_step_fixup for details. */
1483
1484 /* Default destructor for displaced_step_closure. */
1485
1486 displaced_step_closure::~displaced_step_closure () = default;
1487
1488 /* Get the displaced stepping state of process PID. */
1489
1490 static displaced_step_inferior_state *
1491 get_displaced_stepping_state (inferior *inf)
1492 {
1493 return &inf->displaced_step_state;
1494 }
1495
1496 /* Returns true if any inferior has a thread doing a displaced
1497 step. */
1498
1499 static bool
1500 displaced_step_in_progress_any_inferior ()
1501 {
1502 for (inferior *i : all_inferiors ())
1503 {
1504 if (i->displaced_step_state.step_thread != nullptr)
1505 return true;
1506 }
1507
1508 return false;
1509 }
1510
1511 /* Return true if thread represented by PTID is doing a displaced
1512 step. */
1513
1514 static int
1515 displaced_step_in_progress_thread (thread_info *thread)
1516 {
1517 gdb_assert (thread != NULL);
1518
1519 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
1520 }
1521
1522 /* Return true if process PID has a thread doing a displaced step. */
1523
1524 static int
1525 displaced_step_in_progress (inferior *inf)
1526 {
1527 return get_displaced_stepping_state (inf)->step_thread != nullptr;
1528 }
1529
1530 /* If inferior is in displaced stepping, and ADDR equals to starting address
1531 of copy area, return corresponding displaced_step_closure. Otherwise,
1532 return NULL. */
1533
1534 struct displaced_step_closure*
1535 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1536 {
1537 displaced_step_inferior_state *displaced
1538 = get_displaced_stepping_state (current_inferior ());
1539
1540 /* If checking the mode of displaced instruction in copy area. */
1541 if (displaced->step_thread != nullptr
1542 && displaced->step_copy == addr)
1543 return displaced->step_closure.get ();
1544
1545 return NULL;
1546 }
1547
1548 static void
1549 infrun_inferior_exit (struct inferior *inf)
1550 {
1551 inf->displaced_step_state.reset ();
1552 }
1553
1554 /* If ON, and the architecture supports it, GDB will use displaced
1555 stepping to step over breakpoints. If OFF, or if the architecture
1556 doesn't support it, GDB will instead use the traditional
1557 hold-and-step approach. If AUTO (which is the default), GDB will
1558 decide which technique to use to step over breakpoints depending on
1559 whether the target works in a non-stop way (see use_displaced_stepping). */
1560
1561 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1562
1563 static void
1564 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1565 struct cmd_list_element *c,
1566 const char *value)
1567 {
1568 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1569 fprintf_filtered (file,
1570 _("Debugger's willingness to use displaced stepping "
1571 "to step over breakpoints is %s (currently %s).\n"),
1572 value, target_is_non_stop_p () ? "on" : "off");
1573 else
1574 fprintf_filtered (file,
1575 _("Debugger's willingness to use displaced stepping "
1576 "to step over breakpoints is %s.\n"), value);
1577 }
1578
1579 /* Return true if the gdbarch implements the required methods to use
1580 displaced stepping. */
1581
1582 static bool
1583 gdbarch_supports_displaced_stepping (gdbarch *arch)
1584 {
1585 /* Only check for the presence of step_copy_insn. Other required methods
1586 are checked by the gdbarch validation. */
1587 return gdbarch_displaced_step_copy_insn_p (arch);
1588 }
1589
1590 /* Return non-zero if displaced stepping can/should be used to step
1591 over breakpoints of thread TP. */
1592
1593 static bool
1594 use_displaced_stepping (thread_info *tp)
1595 {
1596 /* If the user disabled it explicitly, don't use displaced stepping. */
1597 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1598 return false;
1599
1600 /* If "auto", only use displaced stepping if the target operates in a non-stop
1601 way. */
1602 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1603 && !target_is_non_stop_p ())
1604 return false;
1605
1606 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1607
1608 /* If the architecture doesn't implement displaced stepping, don't use
1609 it. */
1610 if (!gdbarch_supports_displaced_stepping (gdbarch))
1611 return false;
1612
1613 /* If recording, don't use displaced stepping. */
1614 if (find_record_target () != nullptr)
1615 return false;
1616
1617 displaced_step_inferior_state *displaced_state
1618 = get_displaced_stepping_state (tp->inf);
1619
1620 /* If displaced stepping failed before for this inferior, don't bother trying
1621 again. */
1622 if (displaced_state->failed_before)
1623 return false;
1624
1625 return true;
1626 }
1627
1628 /* Simple function wrapper around displaced_step_inferior_state::reset. */
1629
1630 static void
1631 displaced_step_reset (displaced_step_inferior_state *displaced)
1632 {
1633 displaced->reset ();
1634 }
1635
1636 /* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1637 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1638
1639 using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
1640
1641 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1642 void
1643 displaced_step_dump_bytes (struct ui_file *file,
1644 const gdb_byte *buf,
1645 size_t len)
1646 {
1647 int i;
1648
1649 for (i = 0; i < len; i++)
1650 fprintf_unfiltered (file, "%02x ", buf[i]);
1651 fputs_unfiltered ("\n", file);
1652 }
1653
1654 /* Prepare to single-step, using displaced stepping.
1655
1656 Note that we cannot use displaced stepping when we have a signal to
1657 deliver. If we have a signal to deliver and an instruction to step
1658 over, then after the step, there will be no indication from the
1659 target whether the thread entered a signal handler or ignored the
1660 signal and stepped over the instruction successfully --- both cases
1661 result in a simple SIGTRAP. In the first case we mustn't do a
1662 fixup, and in the second case we must --- but we can't tell which.
1663 Comments in the code for 'random signals' in handle_inferior_event
1664 explain how we handle this case instead.
1665
1666 Returns 1 if preparing was successful -- this thread is going to be
1667 stepped now; 0 if displaced stepping this thread got queued; or -1
1668 if this instruction can't be displaced stepped. */
1669
1670 static int
1671 displaced_step_prepare_throw (thread_info *tp)
1672 {
1673 regcache *regcache = get_thread_regcache (tp);
1674 struct gdbarch *gdbarch = regcache->arch ();
1675 const address_space *aspace = regcache->aspace ();
1676 CORE_ADDR original, copy;
1677 ULONGEST len;
1678 int status;
1679
1680 /* We should never reach this function if the architecture does not
1681 support displaced stepping. */
1682 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
1683
1684 /* Nor if the thread isn't meant to step over a breakpoint. */
1685 gdb_assert (tp->control.trap_expected);
1686
1687 /* Disable range stepping while executing in the scratch pad. We
1688 want a single-step even if executing the displaced instruction in
1689 the scratch buffer lands within the stepping range (e.g., a
1690 jump/branch). */
1691 tp->control.may_range_step = 0;
1692
1693 /* We have to displaced step one thread at a time, as we only have
1694 access to a single scratch space per inferior. */
1695
1696 displaced_step_inferior_state *displaced
1697 = get_displaced_stepping_state (tp->inf);
1698
1699 if (displaced->step_thread != nullptr)
1700 {
1701 /* Already waiting for a displaced step to finish. Defer this
1702 request and place in queue. */
1703
1704 if (debug_displaced)
1705 fprintf_unfiltered (gdb_stdlog,
1706 "displaced: deferring step of %s\n",
1707 target_pid_to_str (tp->ptid).c_str ());
1708
1709 thread_step_over_chain_enqueue (tp);
1710 return 0;
1711 }
1712 else
1713 {
1714 if (debug_displaced)
1715 fprintf_unfiltered (gdb_stdlog,
1716 "displaced: stepping %s now\n",
1717 target_pid_to_str (tp->ptid).c_str ());
1718 }
1719
1720 displaced_step_reset (displaced);
1721
1722 scoped_restore_current_thread restore_thread;
1723
1724 switch_to_thread (tp);
1725
1726 original = regcache_read_pc (regcache);
1727
1728 copy = gdbarch_displaced_step_location (gdbarch);
1729 len = gdbarch_max_insn_length (gdbarch);
1730
1731 if (breakpoint_in_range_p (aspace, copy, len))
1732 {
1733 /* There's a breakpoint set in the scratch pad location range
1734 (which is usually around the entry point). We'd either
1735 install it before resuming, which would overwrite/corrupt the
1736 scratch pad, or if it was already inserted, this displaced
1737 step would overwrite it. The latter is OK in the sense that
1738 we already assume that no thread is going to execute the code
1739 in the scratch pad range (after initial startup) anyway, but
1740 the former is unacceptable. Simply punt and fallback to
1741 stepping over this breakpoint in-line. */
1742 if (debug_displaced)
1743 {
1744 fprintf_unfiltered (gdb_stdlog,
1745 "displaced: breakpoint set in scratch pad. "
1746 "Stepping over breakpoint in-line instead.\n");
1747 }
1748
1749 return -1;
1750 }
1751
1752 /* Save the original contents of the copy area. */
1753 displaced->step_saved_copy.resize (len);
1754 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
1755 if (status != 0)
1756 throw_error (MEMORY_ERROR,
1757 _("Error accessing memory address %s (%s) for "
1758 "displaced-stepping scratch space."),
1759 paddress (gdbarch, copy), safe_strerror (status));
1760 if (debug_displaced)
1761 {
1762 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1763 paddress (gdbarch, copy));
1764 displaced_step_dump_bytes (gdb_stdlog,
1765 displaced->step_saved_copy.data (),
1766 len);
1767 };
1768
1769 displaced->step_closure
1770 = gdbarch_displaced_step_copy_insn (gdbarch, original, copy, regcache);
1771 if (displaced->step_closure == NULL)
1772 {
1773 /* The architecture doesn't know how or want to displaced step
1774 this instruction or instruction sequence. Fallback to
1775 stepping over the breakpoint in-line. */
1776 return -1;
1777 }
1778
1779 /* Save the information we need to fix things up if the step
1780 succeeds. */
1781 displaced->step_thread = tp;
1782 displaced->step_gdbarch = gdbarch;
1783 displaced->step_original = original;
1784 displaced->step_copy = copy;
1785
1786 {
1787 displaced_step_reset_cleanup cleanup (displaced);
1788
1789 /* Resume execution at the copy. */
1790 regcache_write_pc (regcache, copy);
1791
1792 cleanup.release ();
1793 }
1794
1795 if (debug_displaced)
1796 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1797 paddress (gdbarch, copy));
1798
1799 return 1;
1800 }
1801
1802 /* Wrapper for displaced_step_prepare_throw that disabled further
1803 attempts at displaced stepping if we get a memory error. */
1804
1805 static int
1806 displaced_step_prepare (thread_info *thread)
1807 {
1808 int prepared = -1;
1809
1810 try
1811 {
1812 prepared = displaced_step_prepare_throw (thread);
1813 }
1814 catch (const gdb_exception_error &ex)
1815 {
1816 struct displaced_step_inferior_state *displaced_state;
1817
1818 if (ex.error != MEMORY_ERROR
1819 && ex.error != NOT_SUPPORTED_ERROR)
1820 throw;
1821
1822 if (debug_infrun)
1823 {
1824 fprintf_unfiltered (gdb_stdlog,
1825 "infrun: disabling displaced stepping: %s\n",
1826 ex.what ());
1827 }
1828
1829 /* Be verbose if "set displaced-stepping" is "on", silent if
1830 "auto". */
1831 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1832 {
1833 warning (_("disabling displaced stepping: %s"),
1834 ex.what ());
1835 }
1836
1837 /* Disable further displaced stepping attempts. */
1838 displaced_state
1839 = get_displaced_stepping_state (thread->inf);
1840 displaced_state->failed_before = 1;
1841 }
1842
1843 return prepared;
1844 }
1845
1846 static void
1847 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1848 const gdb_byte *myaddr, int len)
1849 {
1850 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1851
1852 inferior_ptid = ptid;
1853 write_memory (memaddr, myaddr, len);
1854 }
1855
1856 /* Restore the contents of the copy area for thread PTID. */
1857
1858 static void
1859 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1860 ptid_t ptid)
1861 {
1862 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1863
1864 write_memory_ptid (ptid, displaced->step_copy,
1865 displaced->step_saved_copy.data (), len);
1866 if (debug_displaced)
1867 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1868 target_pid_to_str (ptid).c_str (),
1869 paddress (displaced->step_gdbarch,
1870 displaced->step_copy));
1871 }
1872
1873 /* If we displaced stepped an instruction successfully, adjust
1874 registers and memory to yield the same effect the instruction would
1875 have had if we had executed it at its original address, and return
1876 1. If the instruction didn't complete, relocate the PC and return
1877 -1. If the thread wasn't displaced stepping, return 0. */
1878
1879 static int
1880 displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
1881 {
1882 struct displaced_step_inferior_state *displaced
1883 = get_displaced_stepping_state (event_thread->inf);
1884 int ret;
1885
1886 /* Was this event for the thread we displaced? */
1887 if (displaced->step_thread != event_thread)
1888 return 0;
1889
1890 displaced_step_reset_cleanup cleanup (displaced);
1891
1892 displaced_step_restore (displaced, displaced->step_thread->ptid);
1893
1894 /* Fixup may need to read memory/registers. Switch to the thread
1895 that we're fixing up. Also, target_stopped_by_watchpoint checks
1896 the current thread. */
1897 switch_to_thread (event_thread);
1898
1899 /* Did the instruction complete successfully? */
1900 if (signal == GDB_SIGNAL_TRAP
1901 && !(target_stopped_by_watchpoint ()
1902 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1903 || target_have_steppable_watchpoint)))
1904 {
1905 /* Fix up the resulting state. */
1906 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1907 displaced->step_closure.get (),
1908 displaced->step_original,
1909 displaced->step_copy,
1910 get_thread_regcache (displaced->step_thread));
1911 ret = 1;
1912 }
1913 else
1914 {
1915 /* Since the instruction didn't complete, all we can do is
1916 relocate the PC. */
1917 struct regcache *regcache = get_thread_regcache (event_thread);
1918 CORE_ADDR pc = regcache_read_pc (regcache);
1919
1920 pc = displaced->step_original + (pc - displaced->step_copy);
1921 regcache_write_pc (regcache, pc);
1922 ret = -1;
1923 }
1924
1925 return ret;
1926 }
1927
1928 /* Data to be passed around while handling an event. This data is
1929 discarded between events. */
1930 struct execution_control_state
1931 {
1932 process_stratum_target *target;
1933 ptid_t ptid;
1934 /* The thread that got the event, if this was a thread event; NULL
1935 otherwise. */
1936 struct thread_info *event_thread;
1937
1938 struct target_waitstatus ws;
1939 int stop_func_filled_in;
1940 CORE_ADDR stop_func_start;
1941 CORE_ADDR stop_func_end;
1942 const char *stop_func_name;
1943 int wait_some_more;
1944
1945 /* True if the event thread hit the single-step breakpoint of
1946 another thread. Thus the event doesn't cause a stop, the thread
1947 needs to be single-stepped past the single-step breakpoint before
1948 we can switch back to the original stepping thread. */
1949 int hit_singlestep_breakpoint;
1950 };
1951
1952 /* Clear ECS and set it to point at TP. */
1953
1954 static void
1955 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1956 {
1957 memset (ecs, 0, sizeof (*ecs));
1958 ecs->event_thread = tp;
1959 ecs->ptid = tp->ptid;
1960 }
1961
1962 static void keep_going_pass_signal (struct execution_control_state *ecs);
1963 static void prepare_to_wait (struct execution_control_state *ecs);
1964 static int keep_going_stepped_thread (struct thread_info *tp);
1965 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1966
1967 /* Are there any pending step-over requests? If so, run all we can
1968 now and return true. Otherwise, return false. */
1969
1970 static int
1971 start_step_over (void)
1972 {
1973 struct thread_info *tp, *next;
1974
1975 /* Don't start a new step-over if we already have an in-line
1976 step-over operation ongoing. */
1977 if (step_over_info_valid_p ())
1978 return 0;
1979
1980 for (tp = step_over_queue_head; tp != NULL; tp = next)
1981 {
1982 struct execution_control_state ecss;
1983 struct execution_control_state *ecs = &ecss;
1984 step_over_what step_what;
1985 int must_be_in_line;
1986
1987 gdb_assert (!tp->stop_requested);
1988
1989 next = thread_step_over_chain_next (tp);
1990
1991 /* If this inferior already has a displaced step in process,
1992 don't start a new one. */
1993 if (displaced_step_in_progress (tp->inf))
1994 continue;
1995
1996 step_what = thread_still_needs_step_over (tp);
1997 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1998 || ((step_what & STEP_OVER_BREAKPOINT)
1999 && !use_displaced_stepping (tp)));
2000
2001 /* We currently stop all threads of all processes to step-over
2002 in-line. If we need to start a new in-line step-over, let
2003 any pending displaced steps finish first. */
2004 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2005 return 0;
2006
2007 thread_step_over_chain_remove (tp);
2008
2009 if (step_over_queue_head == NULL)
2010 {
2011 if (debug_infrun)
2012 fprintf_unfiltered (gdb_stdlog,
2013 "infrun: step-over queue now empty\n");
2014 }
2015
2016 if (tp->control.trap_expected
2017 || tp->resumed
2018 || tp->executing)
2019 {
2020 internal_error (__FILE__, __LINE__,
2021 "[%s] has inconsistent state: "
2022 "trap_expected=%d, resumed=%d, executing=%d\n",
2023 target_pid_to_str (tp->ptid).c_str (),
2024 tp->control.trap_expected,
2025 tp->resumed,
2026 tp->executing);
2027 }
2028
2029 if (debug_infrun)
2030 fprintf_unfiltered (gdb_stdlog,
2031 "infrun: resuming [%s] for step-over\n",
2032 target_pid_to_str (tp->ptid).c_str ());
2033
2034 /* keep_going_pass_signal skips the step-over if the breakpoint
2035 is no longer inserted. In all-stop, we want to keep looking
2036 for a thread that needs a step-over instead of resuming TP,
2037 because we wouldn't be able to resume anything else until the
2038 target stops again. In non-stop, the resume always resumes
2039 only TP, so it's OK to let the thread resume freely. */
2040 if (!target_is_non_stop_p () && !step_what)
2041 continue;
2042
2043 switch_to_thread (tp);
2044 reset_ecs (ecs, tp);
2045 keep_going_pass_signal (ecs);
2046
2047 if (!ecs->wait_some_more)
2048 error (_("Command aborted."));
2049
2050 gdb_assert (tp->resumed);
2051
2052 /* If we started a new in-line step-over, we're done. */
2053 if (step_over_info_valid_p ())
2054 {
2055 gdb_assert (tp->control.trap_expected);
2056 return 1;
2057 }
2058
2059 if (!target_is_non_stop_p ())
2060 {
2061 /* On all-stop, shouldn't have resumed unless we needed a
2062 step over. */
2063 gdb_assert (tp->control.trap_expected
2064 || tp->step_after_step_resume_breakpoint);
2065
2066 /* With remote targets (at least), in all-stop, we can't
2067 issue any further remote commands until the program stops
2068 again. */
2069 return 1;
2070 }
2071
2072 /* Either the thread no longer needed a step-over, or a new
2073 displaced stepping sequence started. Even in the latter
2074 case, continue looking. Maybe we can also start another
2075 displaced step on a thread of other process. */
2076 }
2077
2078 return 0;
2079 }
2080
2081 /* Update global variables holding ptids to hold NEW_PTID if they were
2082 holding OLD_PTID. */
2083 static void
2084 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2085 {
2086 if (inferior_ptid == old_ptid)
2087 inferior_ptid = new_ptid;
2088 }
2089
2090 \f
2091
2092 static const char schedlock_off[] = "off";
2093 static const char schedlock_on[] = "on";
2094 static const char schedlock_step[] = "step";
2095 static const char schedlock_replay[] = "replay";
2096 static const char *const scheduler_enums[] = {
2097 schedlock_off,
2098 schedlock_on,
2099 schedlock_step,
2100 schedlock_replay,
2101 NULL
2102 };
2103 static const char *scheduler_mode = schedlock_replay;
2104 static void
2105 show_scheduler_mode (struct ui_file *file, int from_tty,
2106 struct cmd_list_element *c, const char *value)
2107 {
2108 fprintf_filtered (file,
2109 _("Mode for locking scheduler "
2110 "during execution is \"%s\".\n"),
2111 value);
2112 }
2113
2114 static void
2115 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2116 {
2117 if (!target_can_lock_scheduler)
2118 {
2119 scheduler_mode = schedlock_off;
2120 error (_("Target '%s' cannot support this command."), target_shortname);
2121 }
2122 }
2123
2124 /* True if execution commands resume all threads of all processes by
2125 default; otherwise, resume only threads of the current inferior
2126 process. */
2127 bool sched_multi = false;
2128
2129 /* Try to setup for software single stepping over the specified location.
2130 Return 1 if target_resume() should use hardware single step.
2131
2132 GDBARCH the current gdbarch.
2133 PC the location to step over. */
2134
2135 static int
2136 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2137 {
2138 int hw_step = 1;
2139
2140 if (execution_direction == EXEC_FORWARD
2141 && gdbarch_software_single_step_p (gdbarch))
2142 hw_step = !insert_single_step_breakpoints (gdbarch);
2143
2144 return hw_step;
2145 }
2146
2147 /* See infrun.h. */
2148
2149 ptid_t
2150 user_visible_resume_ptid (int step)
2151 {
2152 ptid_t resume_ptid;
2153
2154 if (non_stop)
2155 {
2156 /* With non-stop mode on, threads are always handled
2157 individually. */
2158 resume_ptid = inferior_ptid;
2159 }
2160 else if ((scheduler_mode == schedlock_on)
2161 || (scheduler_mode == schedlock_step && step))
2162 {
2163 /* User-settable 'scheduler' mode requires solo thread
2164 resume. */
2165 resume_ptid = inferior_ptid;
2166 }
2167 else if ((scheduler_mode == schedlock_replay)
2168 && target_record_will_replay (minus_one_ptid, execution_direction))
2169 {
2170 /* User-settable 'scheduler' mode requires solo thread resume in replay
2171 mode. */
2172 resume_ptid = inferior_ptid;
2173 }
2174 else if (!sched_multi && target_supports_multi_process ())
2175 {
2176 /* Resume all threads of the current process (and none of other
2177 processes). */
2178 resume_ptid = ptid_t (inferior_ptid.pid ());
2179 }
2180 else
2181 {
2182 /* Resume all threads of all processes. */
2183 resume_ptid = RESUME_ALL;
2184 }
2185
2186 return resume_ptid;
2187 }
2188
2189 /* See infrun.h. */
2190
2191 process_stratum_target *
2192 user_visible_resume_target (ptid_t resume_ptid)
2193 {
2194 return (resume_ptid == minus_one_ptid && sched_multi
2195 ? NULL
2196 : current_inferior ()->process_target ());
2197 }
2198
2199 /* Return a ptid representing the set of threads that we will resume,
2200 in the perspective of the target, assuming run control handling
2201 does not require leaving some threads stopped (e.g., stepping past
2202 breakpoint). USER_STEP indicates whether we're about to start the
2203 target for a stepping command. */
2204
2205 static ptid_t
2206 internal_resume_ptid (int user_step)
2207 {
2208 /* In non-stop, we always control threads individually. Note that
2209 the target may always work in non-stop mode even with "set
2210 non-stop off", in which case user_visible_resume_ptid could
2211 return a wildcard ptid. */
2212 if (target_is_non_stop_p ())
2213 return inferior_ptid;
2214 else
2215 return user_visible_resume_ptid (user_step);
2216 }
2217
2218 /* Wrapper for target_resume, that handles infrun-specific
2219 bookkeeping. */
2220
2221 static void
2222 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2223 {
2224 struct thread_info *tp = inferior_thread ();
2225
2226 gdb_assert (!tp->stop_requested);
2227
2228 /* Install inferior's terminal modes. */
2229 target_terminal::inferior ();
2230
2231 /* Avoid confusing the next resume, if the next stop/resume
2232 happens to apply to another thread. */
2233 tp->suspend.stop_signal = GDB_SIGNAL_0;
2234
2235 /* Advise target which signals may be handled silently.
2236
2237 If we have removed breakpoints because we are stepping over one
2238 in-line (in any thread), we need to receive all signals to avoid
2239 accidentally skipping a breakpoint during execution of a signal
2240 handler.
2241
2242 Likewise if we're displaced stepping, otherwise a trap for a
2243 breakpoint in a signal handler might be confused with the
2244 displaced step finishing. We don't make the displaced_step_fixup
2245 step distinguish the cases instead, because:
2246
2247 - a backtrace while stopped in the signal handler would show the
2248 scratch pad as frame older than the signal handler, instead of
2249 the real mainline code.
2250
2251 - when the thread is later resumed, the signal handler would
2252 return to the scratch pad area, which would no longer be
2253 valid. */
2254 if (step_over_info_valid_p ()
2255 || displaced_step_in_progress (tp->inf))
2256 target_pass_signals ({});
2257 else
2258 target_pass_signals (signal_pass);
2259
2260 target_resume (resume_ptid, step, sig);
2261
2262 target_commit_resume ();
2263
2264 if (target_can_async_p ())
2265 target_async (1);
2266 }
2267
2268 /* Resume the inferior. SIG is the signal to give the inferior
2269 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2270 call 'resume', which handles exceptions. */
2271
2272 static void
2273 resume_1 (enum gdb_signal sig)
2274 {
2275 struct regcache *regcache = get_current_regcache ();
2276 struct gdbarch *gdbarch = regcache->arch ();
2277 struct thread_info *tp = inferior_thread ();
2278 CORE_ADDR pc = regcache_read_pc (regcache);
2279 const address_space *aspace = regcache->aspace ();
2280 ptid_t resume_ptid;
2281 /* This represents the user's step vs continue request. When
2282 deciding whether "set scheduler-locking step" applies, it's the
2283 user's intention that counts. */
2284 const int user_step = tp->control.stepping_command;
2285 /* This represents what we'll actually request the target to do.
2286 This can decay from a step to a continue, if e.g., we need to
2287 implement single-stepping with breakpoints (software
2288 single-step). */
2289 int step;
2290
2291 gdb_assert (!tp->stop_requested);
2292 gdb_assert (!thread_is_in_step_over_chain (tp));
2293
2294 if (tp->suspend.waitstatus_pending_p)
2295 {
2296 if (debug_infrun)
2297 {
2298 std::string statstr
2299 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2300
2301 fprintf_unfiltered (gdb_stdlog,
2302 "infrun: resume: thread %s has pending wait "
2303 "status %s (currently_stepping=%d).\n",
2304 target_pid_to_str (tp->ptid).c_str (),
2305 statstr.c_str (),
2306 currently_stepping (tp));
2307 }
2308
2309 tp->inf->process_target ()->threads_executing = true;
2310 tp->resumed = true;
2311
2312 /* FIXME: What should we do if we are supposed to resume this
2313 thread with a signal? Maybe we should maintain a queue of
2314 pending signals to deliver. */
2315 if (sig != GDB_SIGNAL_0)
2316 {
2317 warning (_("Couldn't deliver signal %s to %s."),
2318 gdb_signal_to_name (sig),
2319 target_pid_to_str (tp->ptid).c_str ());
2320 }
2321
2322 tp->suspend.stop_signal = GDB_SIGNAL_0;
2323
2324 if (target_can_async_p ())
2325 {
2326 target_async (1);
2327 /* Tell the event loop we have an event to process. */
2328 mark_async_event_handler (infrun_async_inferior_event_token);
2329 }
2330 return;
2331 }
2332
2333 tp->stepped_breakpoint = 0;
2334
2335 /* Depends on stepped_breakpoint. */
2336 step = currently_stepping (tp);
2337
2338 if (current_inferior ()->waiting_for_vfork_done)
2339 {
2340 /* Don't try to single-step a vfork parent that is waiting for
2341 the child to get out of the shared memory region (by exec'ing
2342 or exiting). This is particularly important on software
2343 single-step archs, as the child process would trip on the
2344 software single step breakpoint inserted for the parent
2345 process. Since the parent will not actually execute any
2346 instruction until the child is out of the shared region (such
2347 are vfork's semantics), it is safe to simply continue it.
2348 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2349 the parent, and tell it to `keep_going', which automatically
2350 re-sets it stepping. */
2351 if (debug_infrun)
2352 fprintf_unfiltered (gdb_stdlog,
2353 "infrun: resume : clear step\n");
2354 step = 0;
2355 }
2356
2357 if (debug_infrun)
2358 fprintf_unfiltered (gdb_stdlog,
2359 "infrun: resume (step=%d, signal=%s), "
2360 "trap_expected=%d, current thread [%s] at %s\n",
2361 step, gdb_signal_to_symbol_string (sig),
2362 tp->control.trap_expected,
2363 target_pid_to_str (inferior_ptid).c_str (),
2364 paddress (gdbarch, pc));
2365
2366 /* Normally, by the time we reach `resume', the breakpoints are either
2367 removed or inserted, as appropriate. The exception is if we're sitting
2368 at a permanent breakpoint; we need to step over it, but permanent
2369 breakpoints can't be removed. So we have to test for it here. */
2370 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2371 {
2372 if (sig != GDB_SIGNAL_0)
2373 {
2374 /* We have a signal to pass to the inferior. The resume
2375 may, or may not take us to the signal handler. If this
2376 is a step, we'll need to stop in the signal handler, if
2377 there's one, (if the target supports stepping into
2378 handlers), or in the next mainline instruction, if
2379 there's no handler. If this is a continue, we need to be
2380 sure to run the handler with all breakpoints inserted.
2381 In all cases, set a breakpoint at the current address
2382 (where the handler returns to), and once that breakpoint
2383 is hit, resume skipping the permanent breakpoint. If
2384 that breakpoint isn't hit, then we've stepped into the
2385 signal handler (or hit some other event). We'll delete
2386 the step-resume breakpoint then. */
2387
2388 if (debug_infrun)
2389 fprintf_unfiltered (gdb_stdlog,
2390 "infrun: resume: skipping permanent breakpoint, "
2391 "deliver signal first\n");
2392
2393 clear_step_over_info ();
2394 tp->control.trap_expected = 0;
2395
2396 if (tp->control.step_resume_breakpoint == NULL)
2397 {
2398 /* Set a "high-priority" step-resume, as we don't want
2399 user breakpoints at PC to trigger (again) when this
2400 hits. */
2401 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2402 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2403
2404 tp->step_after_step_resume_breakpoint = step;
2405 }
2406
2407 insert_breakpoints ();
2408 }
2409 else
2410 {
2411 /* There's no signal to pass, we can go ahead and skip the
2412 permanent breakpoint manually. */
2413 if (debug_infrun)
2414 fprintf_unfiltered (gdb_stdlog,
2415 "infrun: resume: skipping permanent breakpoint\n");
2416 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2417 /* Update pc to reflect the new address from which we will
2418 execute instructions. */
2419 pc = regcache_read_pc (regcache);
2420
2421 if (step)
2422 {
2423 /* We've already advanced the PC, so the stepping part
2424 is done. Now we need to arrange for a trap to be
2425 reported to handle_inferior_event. Set a breakpoint
2426 at the current PC, and run to it. Don't update
2427 prev_pc, because if we end in
2428 switch_back_to_stepped_thread, we want the "expected
2429 thread advanced also" branch to be taken. IOW, we
2430 don't want this thread to step further from PC
2431 (overstep). */
2432 gdb_assert (!step_over_info_valid_p ());
2433 insert_single_step_breakpoint (gdbarch, aspace, pc);
2434 insert_breakpoints ();
2435
2436 resume_ptid = internal_resume_ptid (user_step);
2437 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2438 tp->resumed = true;
2439 return;
2440 }
2441 }
2442 }
2443
2444 /* If we have a breakpoint to step over, make sure to do a single
2445 step only. Same if we have software watchpoints. */
2446 if (tp->control.trap_expected || bpstat_should_step ())
2447 tp->control.may_range_step = 0;
2448
2449 /* If displaced stepping is enabled, step over breakpoints by executing a
2450 copy of the instruction at a different address.
2451
2452 We can't use displaced stepping when we have a signal to deliver;
2453 the comments for displaced_step_prepare explain why. The
2454 comments in the handle_inferior event for dealing with 'random
2455 signals' explain what we do instead.
2456
2457 We can't use displaced stepping when we are waiting for vfork_done
2458 event, displaced stepping breaks the vfork child similarly as single
2459 step software breakpoint. */
2460 if (tp->control.trap_expected
2461 && use_displaced_stepping (tp)
2462 && !step_over_info_valid_p ()
2463 && sig == GDB_SIGNAL_0
2464 && !current_inferior ()->waiting_for_vfork_done)
2465 {
2466 int prepared = displaced_step_prepare (tp);
2467
2468 if (prepared == 0)
2469 {
2470 if (debug_infrun)
2471 fprintf_unfiltered (gdb_stdlog,
2472 "Got placed in step-over queue\n");
2473
2474 tp->control.trap_expected = 0;
2475 return;
2476 }
2477 else if (prepared < 0)
2478 {
2479 /* Fallback to stepping over the breakpoint in-line. */
2480
2481 if (target_is_non_stop_p ())
2482 stop_all_threads ();
2483
2484 set_step_over_info (regcache->aspace (),
2485 regcache_read_pc (regcache), 0, tp->global_num);
2486
2487 step = maybe_software_singlestep (gdbarch, pc);
2488
2489 insert_breakpoints ();
2490 }
2491 else if (prepared > 0)
2492 {
2493 struct displaced_step_inferior_state *displaced;
2494
2495 /* Update pc to reflect the new address from which we will
2496 execute instructions due to displaced stepping. */
2497 pc = regcache_read_pc (get_thread_regcache (tp));
2498
2499 displaced = get_displaced_stepping_state (tp->inf);
2500 step = gdbarch_displaced_step_hw_singlestep
2501 (gdbarch, displaced->step_closure.get ());
2502 }
2503 }
2504
2505 /* Do we need to do it the hard way, w/temp breakpoints? */
2506 else if (step)
2507 step = maybe_software_singlestep (gdbarch, pc);
2508
2509 /* Currently, our software single-step implementation leads to different
2510 results than hardware single-stepping in one situation: when stepping
2511 into delivering a signal which has an associated signal handler,
2512 hardware single-step will stop at the first instruction of the handler,
2513 while software single-step will simply skip execution of the handler.
2514
2515 For now, this difference in behavior is accepted since there is no
2516 easy way to actually implement single-stepping into a signal handler
2517 without kernel support.
2518
2519 However, there is one scenario where this difference leads to follow-on
2520 problems: if we're stepping off a breakpoint by removing all breakpoints
2521 and then single-stepping. In this case, the software single-step
2522 behavior means that even if there is a *breakpoint* in the signal
2523 handler, GDB still would not stop.
2524
2525 Fortunately, we can at least fix this particular issue. We detect
2526 here the case where we are about to deliver a signal while software
2527 single-stepping with breakpoints removed. In this situation, we
2528 revert the decisions to remove all breakpoints and insert single-
2529 step breakpoints, and instead we install a step-resume breakpoint
2530 at the current address, deliver the signal without stepping, and
2531 once we arrive back at the step-resume breakpoint, actually step
2532 over the breakpoint we originally wanted to step over. */
2533 if (thread_has_single_step_breakpoints_set (tp)
2534 && sig != GDB_SIGNAL_0
2535 && step_over_info_valid_p ())
2536 {
2537 /* If we have nested signals or a pending signal is delivered
2538 immediately after a handler returns, might already have
2539 a step-resume breakpoint set on the earlier handler. We cannot
2540 set another step-resume breakpoint; just continue on until the
2541 original breakpoint is hit. */
2542 if (tp->control.step_resume_breakpoint == NULL)
2543 {
2544 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2545 tp->step_after_step_resume_breakpoint = 1;
2546 }
2547
2548 delete_single_step_breakpoints (tp);
2549
2550 clear_step_over_info ();
2551 tp->control.trap_expected = 0;
2552
2553 insert_breakpoints ();
2554 }
2555
2556 /* If STEP is set, it's a request to use hardware stepping
2557 facilities. But in that case, we should never
2558 use singlestep breakpoint. */
2559 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2560
2561 /* Decide the set of threads to ask the target to resume. */
2562 if (tp->control.trap_expected)
2563 {
2564 /* We're allowing a thread to run past a breakpoint it has
2565 hit, either by single-stepping the thread with the breakpoint
2566 removed, or by displaced stepping, with the breakpoint inserted.
2567 In the former case, we need to single-step only this thread,
2568 and keep others stopped, as they can miss this breakpoint if
2569 allowed to run. That's not really a problem for displaced
2570 stepping, but, we still keep other threads stopped, in case
2571 another thread is also stopped for a breakpoint waiting for
2572 its turn in the displaced stepping queue. */
2573 resume_ptid = inferior_ptid;
2574 }
2575 else
2576 resume_ptid = internal_resume_ptid (user_step);
2577
2578 if (execution_direction != EXEC_REVERSE
2579 && step && breakpoint_inserted_here_p (aspace, pc))
2580 {
2581 /* There are two cases where we currently need to step a
2582 breakpoint instruction when we have a signal to deliver:
2583
2584 - See handle_signal_stop where we handle random signals that
2585 could take out us out of the stepping range. Normally, in
2586 that case we end up continuing (instead of stepping) over the
2587 signal handler with a breakpoint at PC, but there are cases
2588 where we should _always_ single-step, even if we have a
2589 step-resume breakpoint, like when a software watchpoint is
2590 set. Assuming single-stepping and delivering a signal at the
2591 same time would takes us to the signal handler, then we could
2592 have removed the breakpoint at PC to step over it. However,
2593 some hardware step targets (like e.g., Mac OS) can't step
2594 into signal handlers, and for those, we need to leave the
2595 breakpoint at PC inserted, as otherwise if the handler
2596 recurses and executes PC again, it'll miss the breakpoint.
2597 So we leave the breakpoint inserted anyway, but we need to
2598 record that we tried to step a breakpoint instruction, so
2599 that adjust_pc_after_break doesn't end up confused.
2600
2601 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2602 in one thread after another thread that was stepping had been
2603 momentarily paused for a step-over. When we re-resume the
2604 stepping thread, it may be resumed from that address with a
2605 breakpoint that hasn't trapped yet. Seen with
2606 gdb.threads/non-stop-fair-events.exp, on targets that don't
2607 do displaced stepping. */
2608
2609 if (debug_infrun)
2610 fprintf_unfiltered (gdb_stdlog,
2611 "infrun: resume: [%s] stepped breakpoint\n",
2612 target_pid_to_str (tp->ptid).c_str ());
2613
2614 tp->stepped_breakpoint = 1;
2615
2616 /* Most targets can step a breakpoint instruction, thus
2617 executing it normally. But if this one cannot, just
2618 continue and we will hit it anyway. */
2619 if (gdbarch_cannot_step_breakpoint (gdbarch))
2620 step = 0;
2621 }
2622
2623 if (debug_displaced
2624 && tp->control.trap_expected
2625 && use_displaced_stepping (tp)
2626 && !step_over_info_valid_p ())
2627 {
2628 struct regcache *resume_regcache = get_thread_regcache (tp);
2629 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2630 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2631 gdb_byte buf[4];
2632
2633 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2634 paddress (resume_gdbarch, actual_pc));
2635 read_memory (actual_pc, buf, sizeof (buf));
2636 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2637 }
2638
2639 if (tp->control.may_range_step)
2640 {
2641 /* If we're resuming a thread with the PC out of the step
2642 range, then we're doing some nested/finer run control
2643 operation, like stepping the thread out of the dynamic
2644 linker or the displaced stepping scratch pad. We
2645 shouldn't have allowed a range step then. */
2646 gdb_assert (pc_in_thread_step_range (pc, tp));
2647 }
2648
2649 do_target_resume (resume_ptid, step, sig);
2650 tp->resumed = true;
2651 }
2652
2653 /* Resume the inferior. SIG is the signal to give the inferior
2654 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2655 rolls back state on error. */
2656
2657 static void
2658 resume (gdb_signal sig)
2659 {
2660 try
2661 {
2662 resume_1 (sig);
2663 }
2664 catch (const gdb_exception &ex)
2665 {
2666 /* If resuming is being aborted for any reason, delete any
2667 single-step breakpoint resume_1 may have created, to avoid
2668 confusing the following resumption, and to avoid leaving
2669 single-step breakpoints perturbing other threads, in case
2670 we're running in non-stop mode. */
2671 if (inferior_ptid != null_ptid)
2672 delete_single_step_breakpoints (inferior_thread ());
2673 throw;
2674 }
2675 }
2676
2677 \f
2678 /* Proceeding. */
2679
2680 /* See infrun.h. */
2681
2682 /* Counter that tracks number of user visible stops. This can be used
2683 to tell whether a command has proceeded the inferior past the
2684 current location. This allows e.g., inferior function calls in
2685 breakpoint commands to not interrupt the command list. When the
2686 call finishes successfully, the inferior is standing at the same
2687 breakpoint as if nothing happened (and so we don't call
2688 normal_stop). */
2689 static ULONGEST current_stop_id;
2690
2691 /* See infrun.h. */
2692
2693 ULONGEST
2694 get_stop_id (void)
2695 {
2696 return current_stop_id;
2697 }
2698
2699 /* Called when we report a user visible stop. */
2700
2701 static void
2702 new_stop_id (void)
2703 {
2704 current_stop_id++;
2705 }
2706
2707 /* Clear out all variables saying what to do when inferior is continued.
2708 First do this, then set the ones you want, then call `proceed'. */
2709
2710 static void
2711 clear_proceed_status_thread (struct thread_info *tp)
2712 {
2713 if (debug_infrun)
2714 fprintf_unfiltered (gdb_stdlog,
2715 "infrun: clear_proceed_status_thread (%s)\n",
2716 target_pid_to_str (tp->ptid).c_str ());
2717
2718 /* If we're starting a new sequence, then the previous finished
2719 single-step is no longer relevant. */
2720 if (tp->suspend.waitstatus_pending_p)
2721 {
2722 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2723 {
2724 if (debug_infrun)
2725 fprintf_unfiltered (gdb_stdlog,
2726 "infrun: clear_proceed_status: pending "
2727 "event of %s was a finished step. "
2728 "Discarding.\n",
2729 target_pid_to_str (tp->ptid).c_str ());
2730
2731 tp->suspend.waitstatus_pending_p = 0;
2732 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2733 }
2734 else if (debug_infrun)
2735 {
2736 std::string statstr
2737 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2738
2739 fprintf_unfiltered (gdb_stdlog,
2740 "infrun: clear_proceed_status_thread: thread %s "
2741 "has pending wait status %s "
2742 "(currently_stepping=%d).\n",
2743 target_pid_to_str (tp->ptid).c_str (),
2744 statstr.c_str (),
2745 currently_stepping (tp));
2746 }
2747 }
2748
2749 /* If this signal should not be seen by program, give it zero.
2750 Used for debugging signals. */
2751 if (!signal_pass_state (tp->suspend.stop_signal))
2752 tp->suspend.stop_signal = GDB_SIGNAL_0;
2753
2754 delete tp->thread_fsm;
2755 tp->thread_fsm = NULL;
2756
2757 tp->control.trap_expected = 0;
2758 tp->control.step_range_start = 0;
2759 tp->control.step_range_end = 0;
2760 tp->control.may_range_step = 0;
2761 tp->control.step_frame_id = null_frame_id;
2762 tp->control.step_stack_frame_id = null_frame_id;
2763 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2764 tp->control.step_start_function = NULL;
2765 tp->stop_requested = 0;
2766
2767 tp->control.stop_step = 0;
2768
2769 tp->control.proceed_to_finish = 0;
2770
2771 tp->control.stepping_command = 0;
2772
2773 /* Discard any remaining commands or status from previous stop. */
2774 bpstat_clear (&tp->control.stop_bpstat);
2775 }
2776
2777 void
2778 clear_proceed_status (int step)
2779 {
2780 /* With scheduler-locking replay, stop replaying other threads if we're
2781 not replaying the user-visible resume ptid.
2782
2783 This is a convenience feature to not require the user to explicitly
2784 stop replaying the other threads. We're assuming that the user's
2785 intent is to resume tracing the recorded process. */
2786 if (!non_stop && scheduler_mode == schedlock_replay
2787 && target_record_is_replaying (minus_one_ptid)
2788 && !target_record_will_replay (user_visible_resume_ptid (step),
2789 execution_direction))
2790 target_record_stop_replaying ();
2791
2792 if (!non_stop && inferior_ptid != null_ptid)
2793 {
2794 ptid_t resume_ptid = user_visible_resume_ptid (step);
2795 process_stratum_target *resume_target
2796 = user_visible_resume_target (resume_ptid);
2797
2798 /* In all-stop mode, delete the per-thread status of all threads
2799 we're about to resume, implicitly and explicitly. */
2800 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
2801 clear_proceed_status_thread (tp);
2802 }
2803
2804 if (inferior_ptid != null_ptid)
2805 {
2806 struct inferior *inferior;
2807
2808 if (non_stop)
2809 {
2810 /* If in non-stop mode, only delete the per-thread status of
2811 the current thread. */
2812 clear_proceed_status_thread (inferior_thread ());
2813 }
2814
2815 inferior = current_inferior ();
2816 inferior->control.stop_soon = NO_STOP_QUIETLY;
2817 }
2818
2819 gdb::observers::about_to_proceed.notify ();
2820 }
2821
2822 /* Returns true if TP is still stopped at a breakpoint that needs
2823 stepping-over in order to make progress. If the breakpoint is gone
2824 meanwhile, we can skip the whole step-over dance. */
2825
2826 static int
2827 thread_still_needs_step_over_bp (struct thread_info *tp)
2828 {
2829 if (tp->stepping_over_breakpoint)
2830 {
2831 struct regcache *regcache = get_thread_regcache (tp);
2832
2833 if (breakpoint_here_p (regcache->aspace (),
2834 regcache_read_pc (regcache))
2835 == ordinary_breakpoint_here)
2836 return 1;
2837
2838 tp->stepping_over_breakpoint = 0;
2839 }
2840
2841 return 0;
2842 }
2843
2844 /* Check whether thread TP still needs to start a step-over in order
2845 to make progress when resumed. Returns an bitwise or of enum
2846 step_over_what bits, indicating what needs to be stepped over. */
2847
2848 static step_over_what
2849 thread_still_needs_step_over (struct thread_info *tp)
2850 {
2851 step_over_what what = 0;
2852
2853 if (thread_still_needs_step_over_bp (tp))
2854 what |= STEP_OVER_BREAKPOINT;
2855
2856 if (tp->stepping_over_watchpoint
2857 && !target_have_steppable_watchpoint)
2858 what |= STEP_OVER_WATCHPOINT;
2859
2860 return what;
2861 }
2862
2863 /* Returns true if scheduler locking applies. STEP indicates whether
2864 we're about to do a step/next-like command to a thread. */
2865
2866 static int
2867 schedlock_applies (struct thread_info *tp)
2868 {
2869 return (scheduler_mode == schedlock_on
2870 || (scheduler_mode == schedlock_step
2871 && tp->control.stepping_command)
2872 || (scheduler_mode == schedlock_replay
2873 && target_record_will_replay (minus_one_ptid,
2874 execution_direction)));
2875 }
2876
2877 /* Calls target_commit_resume on all targets. */
2878
2879 static void
2880 commit_resume_all_targets ()
2881 {
2882 scoped_restore_current_thread restore_thread;
2883
2884 /* Map between process_target and a representative inferior. This
2885 is to avoid committing a resume in the same target more than
2886 once. Resumptions must be idempotent, so this is an
2887 optimization. */
2888 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2889
2890 for (inferior *inf : all_non_exited_inferiors ())
2891 if (inf->has_execution ())
2892 conn_inf[inf->process_target ()] = inf;
2893
2894 for (const auto &ci : conn_inf)
2895 {
2896 inferior *inf = ci.second;
2897 switch_to_inferior_no_thread (inf);
2898 target_commit_resume ();
2899 }
2900 }
2901
2902 /* Check that all the targets we're about to resume are in non-stop
2903 mode. Ideally, we'd only care whether all targets support
2904 target-async, but we're not there yet. E.g., stop_all_threads
2905 doesn't know how to handle all-stop targets. Also, the remote
2906 protocol in all-stop mode is synchronous, irrespective of
2907 target-async, which means that things like a breakpoint re-set
2908 triggered by one target would try to read memory from all targets
2909 and fail. */
2910
2911 static void
2912 check_multi_target_resumption (process_stratum_target *resume_target)
2913 {
2914 if (!non_stop && resume_target == nullptr)
2915 {
2916 scoped_restore_current_thread restore_thread;
2917
2918 /* This is used to track whether we're resuming more than one
2919 target. */
2920 process_stratum_target *first_connection = nullptr;
2921
2922 /* The first inferior we see with a target that does not work in
2923 always-non-stop mode. */
2924 inferior *first_not_non_stop = nullptr;
2925
2926 for (inferior *inf : all_non_exited_inferiors (resume_target))
2927 {
2928 switch_to_inferior_no_thread (inf);
2929
2930 if (!target_has_execution)
2931 continue;
2932
2933 process_stratum_target *proc_target
2934 = current_inferior ()->process_target();
2935
2936 if (!target_is_non_stop_p ())
2937 first_not_non_stop = inf;
2938
2939 if (first_connection == nullptr)
2940 first_connection = proc_target;
2941 else if (first_connection != proc_target
2942 && first_not_non_stop != nullptr)
2943 {
2944 switch_to_inferior_no_thread (first_not_non_stop);
2945
2946 proc_target = current_inferior ()->process_target();
2947
2948 error (_("Connection %d (%s) does not support "
2949 "multi-target resumption."),
2950 proc_target->connection_number,
2951 make_target_connection_string (proc_target).c_str ());
2952 }
2953 }
2954 }
2955 }
2956
2957 /* Basic routine for continuing the program in various fashions.
2958
2959 ADDR is the address to resume at, or -1 for resume where stopped.
2960 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2961 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
2962
2963 You should call clear_proceed_status before calling proceed. */
2964
2965 void
2966 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2967 {
2968 struct regcache *regcache;
2969 struct gdbarch *gdbarch;
2970 CORE_ADDR pc;
2971 struct execution_control_state ecss;
2972 struct execution_control_state *ecs = &ecss;
2973 int started;
2974
2975 /* If we're stopped at a fork/vfork, follow the branch set by the
2976 "set follow-fork-mode" command; otherwise, we'll just proceed
2977 resuming the current thread. */
2978 if (!follow_fork ())
2979 {
2980 /* The target for some reason decided not to resume. */
2981 normal_stop ();
2982 if (target_can_async_p ())
2983 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2984 return;
2985 }
2986
2987 /* We'll update this if & when we switch to a new thread. */
2988 previous_inferior_ptid = inferior_ptid;
2989
2990 regcache = get_current_regcache ();
2991 gdbarch = regcache->arch ();
2992 const address_space *aspace = regcache->aspace ();
2993
2994 pc = regcache_read_pc (regcache);
2995 thread_info *cur_thr = inferior_thread ();
2996
2997 /* Fill in with reasonable starting values. */
2998 init_thread_stepping_state (cur_thr);
2999
3000 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
3001
3002 ptid_t resume_ptid
3003 = user_visible_resume_ptid (cur_thr->control.stepping_command);
3004 process_stratum_target *resume_target
3005 = user_visible_resume_target (resume_ptid);
3006
3007 check_multi_target_resumption (resume_target);
3008
3009 if (addr == (CORE_ADDR) -1)
3010 {
3011 if (pc == cur_thr->suspend.stop_pc
3012 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
3013 && execution_direction != EXEC_REVERSE)
3014 /* There is a breakpoint at the address we will resume at,
3015 step one instruction before inserting breakpoints so that
3016 we do not stop right away (and report a second hit at this
3017 breakpoint).
3018
3019 Note, we don't do this in reverse, because we won't
3020 actually be executing the breakpoint insn anyway.
3021 We'll be (un-)executing the previous instruction. */
3022 cur_thr->stepping_over_breakpoint = 1;
3023 else if (gdbarch_single_step_through_delay_p (gdbarch)
3024 && gdbarch_single_step_through_delay (gdbarch,
3025 get_current_frame ()))
3026 /* We stepped onto an instruction that needs to be stepped
3027 again before re-inserting the breakpoint, do so. */
3028 cur_thr->stepping_over_breakpoint = 1;
3029 }
3030 else
3031 {
3032 regcache_write_pc (regcache, addr);
3033 }
3034
3035 if (siggnal != GDB_SIGNAL_DEFAULT)
3036 cur_thr->suspend.stop_signal = siggnal;
3037
3038 /* If an exception is thrown from this point on, make sure to
3039 propagate GDB's knowledge of the executing state to the
3040 frontend/user running state. */
3041 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
3042
3043 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3044 threads (e.g., we might need to set threads stepping over
3045 breakpoints first), from the user/frontend's point of view, all
3046 threads in RESUME_PTID are now running. Unless we're calling an
3047 inferior function, as in that case we pretend the inferior
3048 doesn't run at all. */
3049 if (!cur_thr->control.in_infcall)
3050 set_running (resume_target, resume_ptid, true);
3051
3052 if (debug_infrun)
3053 fprintf_unfiltered (gdb_stdlog,
3054 "infrun: proceed (addr=%s, signal=%s)\n",
3055 paddress (gdbarch, addr),
3056 gdb_signal_to_symbol_string (siggnal));
3057
3058 annotate_starting ();
3059
3060 /* Make sure that output from GDB appears before output from the
3061 inferior. */
3062 gdb_flush (gdb_stdout);
3063
3064 /* Since we've marked the inferior running, give it the terminal. A
3065 QUIT/Ctrl-C from here on is forwarded to the target (which can
3066 still detect attempts to unblock a stuck connection with repeated
3067 Ctrl-C from within target_pass_ctrlc). */
3068 target_terminal::inferior ();
3069
3070 /* In a multi-threaded task we may select another thread and
3071 then continue or step.
3072
3073 But if a thread that we're resuming had stopped at a breakpoint,
3074 it will immediately cause another breakpoint stop without any
3075 execution (i.e. it will report a breakpoint hit incorrectly). So
3076 we must step over it first.
3077
3078 Look for threads other than the current (TP) that reported a
3079 breakpoint hit and haven't been resumed yet since. */
3080
3081 /* If scheduler locking applies, we can avoid iterating over all
3082 threads. */
3083 if (!non_stop && !schedlock_applies (cur_thr))
3084 {
3085 for (thread_info *tp : all_non_exited_threads (resume_target,
3086 resume_ptid))
3087 {
3088 switch_to_thread_no_regs (tp);
3089
3090 /* Ignore the current thread here. It's handled
3091 afterwards. */
3092 if (tp == cur_thr)
3093 continue;
3094
3095 if (!thread_still_needs_step_over (tp))
3096 continue;
3097
3098 gdb_assert (!thread_is_in_step_over_chain (tp));
3099
3100 if (debug_infrun)
3101 fprintf_unfiltered (gdb_stdlog,
3102 "infrun: need to step-over [%s] first\n",
3103 target_pid_to_str (tp->ptid).c_str ());
3104
3105 thread_step_over_chain_enqueue (tp);
3106 }
3107
3108 switch_to_thread (cur_thr);
3109 }
3110
3111 /* Enqueue the current thread last, so that we move all other
3112 threads over their breakpoints first. */
3113 if (cur_thr->stepping_over_breakpoint)
3114 thread_step_over_chain_enqueue (cur_thr);
3115
3116 /* If the thread isn't started, we'll still need to set its prev_pc,
3117 so that switch_back_to_stepped_thread knows the thread hasn't
3118 advanced. Must do this before resuming any thread, as in
3119 all-stop/remote, once we resume we can't send any other packet
3120 until the target stops again. */
3121 cur_thr->prev_pc = regcache_read_pc (regcache);
3122
3123 {
3124 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
3125
3126 started = start_step_over ();
3127
3128 if (step_over_info_valid_p ())
3129 {
3130 /* Either this thread started a new in-line step over, or some
3131 other thread was already doing one. In either case, don't
3132 resume anything else until the step-over is finished. */
3133 }
3134 else if (started && !target_is_non_stop_p ())
3135 {
3136 /* A new displaced stepping sequence was started. In all-stop,
3137 we can't talk to the target anymore until it next stops. */
3138 }
3139 else if (!non_stop && target_is_non_stop_p ())
3140 {
3141 /* In all-stop, but the target is always in non-stop mode.
3142 Start all other threads that are implicitly resumed too. */
3143 for (thread_info *tp : all_non_exited_threads (resume_target,
3144 resume_ptid))
3145 {
3146 switch_to_thread_no_regs (tp);
3147
3148 if (!tp->inf->has_execution ())
3149 {
3150 if (debug_infrun)
3151 fprintf_unfiltered (gdb_stdlog,
3152 "infrun: proceed: [%s] target has "
3153 "no execution\n",
3154 target_pid_to_str (tp->ptid).c_str ());
3155 continue;
3156 }
3157
3158 if (tp->resumed)
3159 {
3160 if (debug_infrun)
3161 fprintf_unfiltered (gdb_stdlog,
3162 "infrun: proceed: [%s] resumed\n",
3163 target_pid_to_str (tp->ptid).c_str ());
3164 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3165 continue;
3166 }
3167
3168 if (thread_is_in_step_over_chain (tp))
3169 {
3170 if (debug_infrun)
3171 fprintf_unfiltered (gdb_stdlog,
3172 "infrun: proceed: [%s] needs step-over\n",
3173 target_pid_to_str (tp->ptid).c_str ());
3174 continue;
3175 }
3176
3177 if (debug_infrun)
3178 fprintf_unfiltered (gdb_stdlog,
3179 "infrun: proceed: resuming %s\n",
3180 target_pid_to_str (tp->ptid).c_str ());
3181
3182 reset_ecs (ecs, tp);
3183 switch_to_thread (tp);
3184 keep_going_pass_signal (ecs);
3185 if (!ecs->wait_some_more)
3186 error (_("Command aborted."));
3187 }
3188 }
3189 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
3190 {
3191 /* The thread wasn't started, and isn't queued, run it now. */
3192 reset_ecs (ecs, cur_thr);
3193 switch_to_thread (cur_thr);
3194 keep_going_pass_signal (ecs);
3195 if (!ecs->wait_some_more)
3196 error (_("Command aborted."));
3197 }
3198 }
3199
3200 commit_resume_all_targets ();
3201
3202 finish_state.release ();
3203
3204 /* If we've switched threads above, switch back to the previously
3205 current thread. We don't want the user to see a different
3206 selected thread. */
3207 switch_to_thread (cur_thr);
3208
3209 /* Tell the event loop to wait for it to stop. If the target
3210 supports asynchronous execution, it'll do this from within
3211 target_resume. */
3212 if (!target_can_async_p ())
3213 mark_async_event_handler (infrun_async_inferior_event_token);
3214 }
3215 \f
3216
3217 /* Start remote-debugging of a machine over a serial link. */
3218
3219 void
3220 start_remote (int from_tty)
3221 {
3222 inferior *inf = current_inferior ();
3223 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
3224
3225 /* Always go on waiting for the target, regardless of the mode. */
3226 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3227 indicate to wait_for_inferior that a target should timeout if
3228 nothing is returned (instead of just blocking). Because of this,
3229 targets expecting an immediate response need to, internally, set
3230 things up so that the target_wait() is forced to eventually
3231 timeout. */
3232 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3233 differentiate to its caller what the state of the target is after
3234 the initial open has been performed. Here we're assuming that
3235 the target has stopped. It should be possible to eventually have
3236 target_open() return to the caller an indication that the target
3237 is currently running and GDB state should be set to the same as
3238 for an async run. */
3239 wait_for_inferior (inf);
3240
3241 /* Now that the inferior has stopped, do any bookkeeping like
3242 loading shared libraries. We want to do this before normal_stop,
3243 so that the displayed frame is up to date. */
3244 post_create_inferior (current_top_target (), from_tty);
3245
3246 normal_stop ();
3247 }
3248
3249 /* Initialize static vars when a new inferior begins. */
3250
3251 void
3252 init_wait_for_inferior (void)
3253 {
3254 /* These are meaningless until the first time through wait_for_inferior. */
3255
3256 breakpoint_init_inferior (inf_starting);
3257
3258 clear_proceed_status (0);
3259
3260 nullify_last_target_wait_ptid ();
3261
3262 previous_inferior_ptid = inferior_ptid;
3263 }
3264
3265 \f
3266
3267 static void handle_inferior_event (struct execution_control_state *ecs);
3268
3269 static void handle_step_into_function (struct gdbarch *gdbarch,
3270 struct execution_control_state *ecs);
3271 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3272 struct execution_control_state *ecs);
3273 static void handle_signal_stop (struct execution_control_state *ecs);
3274 static void check_exception_resume (struct execution_control_state *,
3275 struct frame_info *);
3276
3277 static void end_stepping_range (struct execution_control_state *ecs);
3278 static void stop_waiting (struct execution_control_state *ecs);
3279 static void keep_going (struct execution_control_state *ecs);
3280 static void process_event_stop_test (struct execution_control_state *ecs);
3281 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3282
3283 /* This function is attached as a "thread_stop_requested" observer.
3284 Cleanup local state that assumed the PTID was to be resumed, and
3285 report the stop to the frontend. */
3286
3287 static void
3288 infrun_thread_stop_requested (ptid_t ptid)
3289 {
3290 process_stratum_target *curr_target = current_inferior ()->process_target ();
3291
3292 /* PTID was requested to stop. If the thread was already stopped,
3293 but the user/frontend doesn't know about that yet (e.g., the
3294 thread had been temporarily paused for some step-over), set up
3295 for reporting the stop now. */
3296 for (thread_info *tp : all_threads (curr_target, ptid))
3297 {
3298 if (tp->state != THREAD_RUNNING)
3299 continue;
3300 if (tp->executing)
3301 continue;
3302
3303 /* Remove matching threads from the step-over queue, so
3304 start_step_over doesn't try to resume them
3305 automatically. */
3306 if (thread_is_in_step_over_chain (tp))
3307 thread_step_over_chain_remove (tp);
3308
3309 /* If the thread is stopped, but the user/frontend doesn't
3310 know about that yet, queue a pending event, as if the
3311 thread had just stopped now. Unless the thread already had
3312 a pending event. */
3313 if (!tp->suspend.waitstatus_pending_p)
3314 {
3315 tp->suspend.waitstatus_pending_p = 1;
3316 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3317 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3318 }
3319
3320 /* Clear the inline-frame state, since we're re-processing the
3321 stop. */
3322 clear_inline_frame_state (tp);
3323
3324 /* If this thread was paused because some other thread was
3325 doing an inline-step over, let that finish first. Once
3326 that happens, we'll restart all threads and consume pending
3327 stop events then. */
3328 if (step_over_info_valid_p ())
3329 continue;
3330
3331 /* Otherwise we can process the (new) pending event now. Set
3332 it so this pending event is considered by
3333 do_target_wait. */
3334 tp->resumed = true;
3335 }
3336 }
3337
3338 static void
3339 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3340 {
3341 if (target_last_proc_target == tp->inf->process_target ()
3342 && target_last_wait_ptid == tp->ptid)
3343 nullify_last_target_wait_ptid ();
3344 }
3345
3346 /* Delete the step resume, single-step and longjmp/exception resume
3347 breakpoints of TP. */
3348
3349 static void
3350 delete_thread_infrun_breakpoints (struct thread_info *tp)
3351 {
3352 delete_step_resume_breakpoint (tp);
3353 delete_exception_resume_breakpoint (tp);
3354 delete_single_step_breakpoints (tp);
3355 }
3356
3357 /* If the target still has execution, call FUNC for each thread that
3358 just stopped. In all-stop, that's all the non-exited threads; in
3359 non-stop, that's the current thread, only. */
3360
3361 typedef void (*for_each_just_stopped_thread_callback_func)
3362 (struct thread_info *tp);
3363
3364 static void
3365 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3366 {
3367 if (!target_has_execution || inferior_ptid == null_ptid)
3368 return;
3369
3370 if (target_is_non_stop_p ())
3371 {
3372 /* If in non-stop mode, only the current thread stopped. */
3373 func (inferior_thread ());
3374 }
3375 else
3376 {
3377 /* In all-stop mode, all threads have stopped. */
3378 for (thread_info *tp : all_non_exited_threads ())
3379 func (tp);
3380 }
3381 }
3382
3383 /* Delete the step resume and longjmp/exception resume breakpoints of
3384 the threads that just stopped. */
3385
3386 static void
3387 delete_just_stopped_threads_infrun_breakpoints (void)
3388 {
3389 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3390 }
3391
3392 /* Delete the single-step breakpoints of the threads that just
3393 stopped. */
3394
3395 static void
3396 delete_just_stopped_threads_single_step_breakpoints (void)
3397 {
3398 for_each_just_stopped_thread (delete_single_step_breakpoints);
3399 }
3400
3401 /* See infrun.h. */
3402
3403 void
3404 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3405 const struct target_waitstatus *ws)
3406 {
3407 std::string status_string = target_waitstatus_to_string (ws);
3408 string_file stb;
3409
3410 /* The text is split over several lines because it was getting too long.
3411 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3412 output as a unit; we want only one timestamp printed if debug_timestamp
3413 is set. */
3414
3415 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3416 waiton_ptid.pid (),
3417 waiton_ptid.lwp (),
3418 waiton_ptid.tid ());
3419 if (waiton_ptid.pid () != -1)
3420 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
3421 stb.printf (", status) =\n");
3422 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3423 result_ptid.pid (),
3424 result_ptid.lwp (),
3425 result_ptid.tid (),
3426 target_pid_to_str (result_ptid).c_str ());
3427 stb.printf ("infrun: %s\n", status_string.c_str ());
3428
3429 /* This uses %s in part to handle %'s in the text, but also to avoid
3430 a gcc error: the format attribute requires a string literal. */
3431 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3432 }
3433
3434 /* Select a thread at random, out of those which are resumed and have
3435 had events. */
3436
3437 static struct thread_info *
3438 random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
3439 {
3440 int num_events = 0;
3441
3442 auto has_event = [&] (thread_info *tp)
3443 {
3444 return (tp->ptid.matches (waiton_ptid)
3445 && tp->resumed
3446 && tp->suspend.waitstatus_pending_p);
3447 };
3448
3449 /* First see how many events we have. Count only resumed threads
3450 that have an event pending. */
3451 for (thread_info *tp : inf->non_exited_threads ())
3452 if (has_event (tp))
3453 num_events++;
3454
3455 if (num_events == 0)
3456 return NULL;
3457
3458 /* Now randomly pick a thread out of those that have had events. */
3459 int random_selector = (int) ((num_events * (double) rand ())
3460 / (RAND_MAX + 1.0));
3461
3462 if (debug_infrun && num_events > 1)
3463 fprintf_unfiltered (gdb_stdlog,
3464 "infrun: Found %d events, selecting #%d\n",
3465 num_events, random_selector);
3466
3467 /* Select the Nth thread that has had an event. */
3468 for (thread_info *tp : inf->non_exited_threads ())
3469 if (has_event (tp))
3470 if (random_selector-- == 0)
3471 return tp;
3472
3473 gdb_assert_not_reached ("event thread not found");
3474 }
3475
3476 /* Wrapper for target_wait that first checks whether threads have
3477 pending statuses to report before actually asking the target for
3478 more events. INF is the inferior we're using to call target_wait
3479 on. */
3480
3481 static ptid_t
3482 do_target_wait_1 (inferior *inf, ptid_t ptid,
3483 target_waitstatus *status, int options)
3484 {
3485 ptid_t event_ptid;
3486 struct thread_info *tp;
3487
3488 /* We know that we are looking for an event in the target of inferior
3489 INF, but we don't know which thread the event might come from. As
3490 such we want to make sure that INFERIOR_PTID is reset so that none of
3491 the wait code relies on it - doing so is always a mistake. */
3492 switch_to_inferior_no_thread (inf);
3493
3494 /* First check if there is a resumed thread with a wait status
3495 pending. */
3496 if (ptid == minus_one_ptid || ptid.is_pid ())
3497 {
3498 tp = random_pending_event_thread (inf, ptid);
3499 }
3500 else
3501 {
3502 if (debug_infrun)
3503 fprintf_unfiltered (gdb_stdlog,
3504 "infrun: Waiting for specific thread %s.\n",
3505 target_pid_to_str (ptid).c_str ());
3506
3507 /* We have a specific thread to check. */
3508 tp = find_thread_ptid (inf, ptid);
3509 gdb_assert (tp != NULL);
3510 if (!tp->suspend.waitstatus_pending_p)
3511 tp = NULL;
3512 }
3513
3514 if (tp != NULL
3515 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3516 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3517 {
3518 struct regcache *regcache = get_thread_regcache (tp);
3519 struct gdbarch *gdbarch = regcache->arch ();
3520 CORE_ADDR pc;
3521 int discard = 0;
3522
3523 pc = regcache_read_pc (regcache);
3524
3525 if (pc != tp->suspend.stop_pc)
3526 {
3527 if (debug_infrun)
3528 fprintf_unfiltered (gdb_stdlog,
3529 "infrun: PC of %s changed. was=%s, now=%s\n",
3530 target_pid_to_str (tp->ptid).c_str (),
3531 paddress (gdbarch, tp->suspend.stop_pc),
3532 paddress (gdbarch, pc));
3533 discard = 1;
3534 }
3535 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3536 {
3537 if (debug_infrun)
3538 fprintf_unfiltered (gdb_stdlog,
3539 "infrun: previous breakpoint of %s, at %s gone\n",
3540 target_pid_to_str (tp->ptid).c_str (),
3541 paddress (gdbarch, pc));
3542
3543 discard = 1;
3544 }
3545
3546 if (discard)
3547 {
3548 if (debug_infrun)
3549 fprintf_unfiltered (gdb_stdlog,
3550 "infrun: pending event of %s cancelled.\n",
3551 target_pid_to_str (tp->ptid).c_str ());
3552
3553 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3554 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3555 }
3556 }
3557
3558 if (tp != NULL)
3559 {
3560 if (debug_infrun)
3561 {
3562 std::string statstr
3563 = target_waitstatus_to_string (&tp->suspend.waitstatus);
3564
3565 fprintf_unfiltered (gdb_stdlog,
3566 "infrun: Using pending wait status %s for %s.\n",
3567 statstr.c_str (),
3568 target_pid_to_str (tp->ptid).c_str ());
3569 }
3570
3571 /* Now that we've selected our final event LWP, un-adjust its PC
3572 if it was a software breakpoint (and the target doesn't
3573 always adjust the PC itself). */
3574 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3575 && !target_supports_stopped_by_sw_breakpoint ())
3576 {
3577 struct regcache *regcache;
3578 struct gdbarch *gdbarch;
3579 int decr_pc;
3580
3581 regcache = get_thread_regcache (tp);
3582 gdbarch = regcache->arch ();
3583
3584 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3585 if (decr_pc != 0)
3586 {
3587 CORE_ADDR pc;
3588
3589 pc = regcache_read_pc (regcache);
3590 regcache_write_pc (regcache, pc + decr_pc);
3591 }
3592 }
3593
3594 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3595 *status = tp->suspend.waitstatus;
3596 tp->suspend.waitstatus_pending_p = 0;
3597
3598 /* Wake up the event loop again, until all pending events are
3599 processed. */
3600 if (target_is_async_p ())
3601 mark_async_event_handler (infrun_async_inferior_event_token);
3602 return tp->ptid;
3603 }
3604
3605 /* But if we don't find one, we'll have to wait. */
3606
3607 if (deprecated_target_wait_hook)
3608 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3609 else
3610 event_ptid = target_wait (ptid, status, options);
3611
3612 return event_ptid;
3613 }
3614
3615 /* Returns true if INF has any resumed thread with a status
3616 pending. */
3617
3618 static bool
3619 threads_are_resumed_pending_p (inferior *inf)
3620 {
3621 for (thread_info *tp : inf->non_exited_threads ())
3622 if (tp->resumed
3623 && tp->suspend.waitstatus_pending_p)
3624 return true;
3625
3626 return false;
3627 }
3628
3629 /* Wrapper for target_wait that first checks whether threads have
3630 pending statuses to report before actually asking the target for
3631 more events. Polls for events from all inferiors/targets. */
3632
3633 static bool
3634 do_target_wait (ptid_t wait_ptid, execution_control_state *ecs, int options)
3635 {
3636 int num_inferiors = 0;
3637 int random_selector;
3638
3639 /* For fairness, we pick the first inferior/target to poll at
3640 random, and then continue polling the rest of the inferior list
3641 starting from that one in a circular fashion until the whole list
3642 is polled once. */
3643
3644 auto inferior_matches = [&wait_ptid] (inferior *inf)
3645 {
3646 return (inf->process_target () != NULL
3647 && (threads_are_executing (inf->process_target ())
3648 || threads_are_resumed_pending_p (inf))
3649 && ptid_t (inf->pid).matches (wait_ptid));
3650 };
3651
3652 /* First see how many resumed inferiors we have. */
3653 for (inferior *inf : all_inferiors ())
3654 if (inferior_matches (inf))
3655 num_inferiors++;
3656
3657 if (num_inferiors == 0)
3658 {
3659 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3660 return false;
3661 }
3662
3663 /* Now randomly pick an inferior out of those that were resumed. */
3664 random_selector = (int)
3665 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3666
3667 if (debug_infrun && num_inferiors > 1)
3668 fprintf_unfiltered (gdb_stdlog,
3669 "infrun: Found %d inferiors, starting at #%d\n",
3670 num_inferiors, random_selector);
3671
3672 /* Select the Nth inferior that was resumed. */
3673
3674 inferior *selected = nullptr;
3675
3676 for (inferior *inf : all_inferiors ())
3677 if (inferior_matches (inf))
3678 if (random_selector-- == 0)
3679 {
3680 selected = inf;
3681 break;
3682 }
3683
3684 /* Now poll for events out of each of the resumed inferior's
3685 targets, starting from the selected one. */
3686
3687 auto do_wait = [&] (inferior *inf)
3688 {
3689 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3690 ecs->target = inf->process_target ();
3691 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3692 };
3693
3694 /* Needed in all-stop+target-non-stop mode, because we end up here
3695 spuriously after the target is all stopped and we've already
3696 reported the stop to the user, polling for events. */
3697 scoped_restore_current_thread restore_thread;
3698
3699 int inf_num = selected->num;
3700 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3701 if (inferior_matches (inf))
3702 if (do_wait (inf))
3703 return true;
3704
3705 for (inferior *inf = inferior_list;
3706 inf != NULL && inf->num < inf_num;
3707 inf = inf->next)
3708 if (inferior_matches (inf))
3709 if (do_wait (inf))
3710 return true;
3711
3712 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3713 return false;
3714 }
3715
3716 /* Prepare and stabilize the inferior for detaching it. E.g.,
3717 detaching while a thread is displaced stepping is a recipe for
3718 crashing it, as nothing would readjust the PC out of the scratch
3719 pad. */
3720
3721 void
3722 prepare_for_detach (void)
3723 {
3724 struct inferior *inf = current_inferior ();
3725 ptid_t pid_ptid = ptid_t (inf->pid);
3726
3727 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
3728
3729 /* Is any thread of this process displaced stepping? If not,
3730 there's nothing else to do. */
3731 if (displaced->step_thread == nullptr)
3732 return;
3733
3734 if (debug_infrun)
3735 fprintf_unfiltered (gdb_stdlog,
3736 "displaced-stepping in-process while detaching");
3737
3738 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3739
3740 while (displaced->step_thread != nullptr)
3741 {
3742 struct execution_control_state ecss;
3743 struct execution_control_state *ecs;
3744
3745 ecs = &ecss;
3746 memset (ecs, 0, sizeof (*ecs));
3747
3748 overlay_cache_invalid = 1;
3749 /* Flush target cache before starting to handle each event.
3750 Target was running and cache could be stale. This is just a
3751 heuristic. Running threads may modify target memory, but we
3752 don't get any event. */
3753 target_dcache_invalidate ();
3754
3755 do_target_wait (pid_ptid, ecs, 0);
3756
3757 if (debug_infrun)
3758 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3759
3760 /* If an error happens while handling the event, propagate GDB's
3761 knowledge of the executing state to the frontend/user running
3762 state. */
3763 scoped_finish_thread_state finish_state (inf->process_target (),
3764 minus_one_ptid);
3765
3766 /* Now figure out what to do with the result of the result. */
3767 handle_inferior_event (ecs);
3768
3769 /* No error, don't finish the state yet. */
3770 finish_state.release ();
3771
3772 /* Breakpoints and watchpoints are not installed on the target
3773 at this point, and signals are passed directly to the
3774 inferior, so this must mean the process is gone. */
3775 if (!ecs->wait_some_more)
3776 {
3777 restore_detaching.release ();
3778 error (_("Program exited while detaching"));
3779 }
3780 }
3781
3782 restore_detaching.release ();
3783 }
3784
3785 /* Wait for control to return from inferior to debugger.
3786
3787 If inferior gets a signal, we may decide to start it up again
3788 instead of returning. That is why there is a loop in this function.
3789 When this function actually returns it means the inferior
3790 should be left stopped and GDB should read more commands. */
3791
3792 static void
3793 wait_for_inferior (inferior *inf)
3794 {
3795 if (debug_infrun)
3796 fprintf_unfiltered
3797 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3798
3799 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3800
3801 /* If an error happens while handling the event, propagate GDB's
3802 knowledge of the executing state to the frontend/user running
3803 state. */
3804 scoped_finish_thread_state finish_state
3805 (inf->process_target (), minus_one_ptid);
3806
3807 while (1)
3808 {
3809 struct execution_control_state ecss;
3810 struct execution_control_state *ecs = &ecss;
3811
3812 memset (ecs, 0, sizeof (*ecs));
3813
3814 overlay_cache_invalid = 1;
3815
3816 /* Flush target cache before starting to handle each event.
3817 Target was running and cache could be stale. This is just a
3818 heuristic. Running threads may modify target memory, but we
3819 don't get any event. */
3820 target_dcache_invalidate ();
3821
3822 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3823 ecs->target = inf->process_target ();
3824
3825 if (debug_infrun)
3826 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3827
3828 /* Now figure out what to do with the result of the result. */
3829 handle_inferior_event (ecs);
3830
3831 if (!ecs->wait_some_more)
3832 break;
3833 }
3834
3835 /* No error, don't finish the state yet. */
3836 finish_state.release ();
3837 }
3838
3839 /* Cleanup that reinstalls the readline callback handler, if the
3840 target is running in the background. If while handling the target
3841 event something triggered a secondary prompt, like e.g., a
3842 pagination prompt, we'll have removed the callback handler (see
3843 gdb_readline_wrapper_line). Need to do this as we go back to the
3844 event loop, ready to process further input. Note this has no
3845 effect if the handler hasn't actually been removed, because calling
3846 rl_callback_handler_install resets the line buffer, thus losing
3847 input. */
3848
3849 static void
3850 reinstall_readline_callback_handler_cleanup ()
3851 {
3852 struct ui *ui = current_ui;
3853
3854 if (!ui->async)
3855 {
3856 /* We're not going back to the top level event loop yet. Don't
3857 install the readline callback, as it'd prep the terminal,
3858 readline-style (raw, noecho) (e.g., --batch). We'll install
3859 it the next time the prompt is displayed, when we're ready
3860 for input. */
3861 return;
3862 }
3863
3864 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3865 gdb_rl_callback_handler_reinstall ();
3866 }
3867
3868 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3869 that's just the event thread. In all-stop, that's all threads. */
3870
3871 static void
3872 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3873 {
3874 if (ecs->event_thread != NULL
3875 && ecs->event_thread->thread_fsm != NULL)
3876 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
3877
3878 if (!non_stop)
3879 {
3880 for (thread_info *thr : all_non_exited_threads ())
3881 {
3882 if (thr->thread_fsm == NULL)
3883 continue;
3884 if (thr == ecs->event_thread)
3885 continue;
3886
3887 switch_to_thread (thr);
3888 thr->thread_fsm->clean_up (thr);
3889 }
3890
3891 if (ecs->event_thread != NULL)
3892 switch_to_thread (ecs->event_thread);
3893 }
3894 }
3895
3896 /* Helper for all_uis_check_sync_execution_done that works on the
3897 current UI. */
3898
3899 static void
3900 check_curr_ui_sync_execution_done (void)
3901 {
3902 struct ui *ui = current_ui;
3903
3904 if (ui->prompt_state == PROMPT_NEEDED
3905 && ui->async
3906 && !gdb_in_secondary_prompt_p (ui))
3907 {
3908 target_terminal::ours ();
3909 gdb::observers::sync_execution_done.notify ();
3910 ui_register_input_event_handler (ui);
3911 }
3912 }
3913
3914 /* See infrun.h. */
3915
3916 void
3917 all_uis_check_sync_execution_done (void)
3918 {
3919 SWITCH_THRU_ALL_UIS ()
3920 {
3921 check_curr_ui_sync_execution_done ();
3922 }
3923 }
3924
3925 /* See infrun.h. */
3926
3927 void
3928 all_uis_on_sync_execution_starting (void)
3929 {
3930 SWITCH_THRU_ALL_UIS ()
3931 {
3932 if (current_ui->prompt_state == PROMPT_NEEDED)
3933 async_disable_stdin ();
3934 }
3935 }
3936
3937 /* Asynchronous version of wait_for_inferior. It is called by the
3938 event loop whenever a change of state is detected on the file
3939 descriptor corresponding to the target. It can be called more than
3940 once to complete a single execution command. In such cases we need
3941 to keep the state in a global variable ECSS. If it is the last time
3942 that this function is called for a single execution command, then
3943 report to the user that the inferior has stopped, and do the
3944 necessary cleanups. */
3945
3946 void
3947 fetch_inferior_event (void *client_data)
3948 {
3949 struct execution_control_state ecss;
3950 struct execution_control_state *ecs = &ecss;
3951 int cmd_done = 0;
3952
3953 memset (ecs, 0, sizeof (*ecs));
3954
3955 /* Events are always processed with the main UI as current UI. This
3956 way, warnings, debug output, etc. are always consistently sent to
3957 the main console. */
3958 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3959
3960 /* End up with readline processing input, if necessary. */
3961 {
3962 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3963
3964 /* We're handling a live event, so make sure we're doing live
3965 debugging. If we're looking at traceframes while the target is
3966 running, we're going to need to get back to that mode after
3967 handling the event. */
3968 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3969 if (non_stop)
3970 {
3971 maybe_restore_traceframe.emplace ();
3972 set_current_traceframe (-1);
3973 }
3974
3975 /* The user/frontend should not notice a thread switch due to
3976 internal events. Make sure we revert to the user selected
3977 thread and frame after handling the event and running any
3978 breakpoint commands. */
3979 scoped_restore_current_thread restore_thread;
3980
3981 overlay_cache_invalid = 1;
3982 /* Flush target cache before starting to handle each event. Target
3983 was running and cache could be stale. This is just a heuristic.
3984 Running threads may modify target memory, but we don't get any
3985 event. */
3986 target_dcache_invalidate ();
3987
3988 scoped_restore save_exec_dir
3989 = make_scoped_restore (&execution_direction,
3990 target_execution_direction ());
3991
3992 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3993 return;
3994
3995 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3996
3997 /* Switch to the target that generated the event, so we can do
3998 target calls. Any inferior bound to the target will do, so we
3999 just switch to the first we find. */
4000 for (inferior *inf : all_inferiors (ecs->target))
4001 {
4002 switch_to_inferior_no_thread (inf);
4003 break;
4004 }
4005
4006 if (debug_infrun)
4007 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
4008
4009 /* If an error happens while handling the event, propagate GDB's
4010 knowledge of the executing state to the frontend/user running
4011 state. */
4012 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
4013 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
4014
4015 /* Get executed before scoped_restore_current_thread above to apply
4016 still for the thread which has thrown the exception. */
4017 auto defer_bpstat_clear
4018 = make_scope_exit (bpstat_clear_actions);
4019 auto defer_delete_threads
4020 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
4021
4022 /* Now figure out what to do with the result of the result. */
4023 handle_inferior_event (ecs);
4024
4025 if (!ecs->wait_some_more)
4026 {
4027 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4028 int should_stop = 1;
4029 struct thread_info *thr = ecs->event_thread;
4030
4031 delete_just_stopped_threads_infrun_breakpoints ();
4032
4033 if (thr != NULL)
4034 {
4035 struct thread_fsm *thread_fsm = thr->thread_fsm;
4036
4037 if (thread_fsm != NULL)
4038 should_stop = thread_fsm->should_stop (thr);
4039 }
4040
4041 if (!should_stop)
4042 {
4043 keep_going (ecs);
4044 }
4045 else
4046 {
4047 bool should_notify_stop = true;
4048 int proceeded = 0;
4049
4050 clean_up_just_stopped_threads_fsms (ecs);
4051
4052 if (thr != NULL && thr->thread_fsm != NULL)
4053 should_notify_stop = thr->thread_fsm->should_notify_stop ();
4054
4055 if (should_notify_stop)
4056 {
4057 /* We may not find an inferior if this was a process exit. */
4058 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4059 proceeded = normal_stop ();
4060 }
4061
4062 if (!proceeded)
4063 {
4064 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
4065 cmd_done = 1;
4066 }
4067
4068 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
4069 previously selected thread is gone. We have two
4070 choices - switch to no thread selected, or restore the
4071 previously selected thread (now exited). We chose the
4072 later, just because that's what GDB used to do. After
4073 this, "info threads" says "The current thread <Thread
4074 ID 2> has terminated." instead of "No thread
4075 selected.". */
4076 if (!non_stop
4077 && cmd_done
4078 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
4079 restore_thread.dont_restore ();
4080 }
4081 }
4082
4083 defer_delete_threads.release ();
4084 defer_bpstat_clear.release ();
4085
4086 /* No error, don't finish the thread states yet. */
4087 finish_state.release ();
4088
4089 /* This scope is used to ensure that readline callbacks are
4090 reinstalled here. */
4091 }
4092
4093 /* If a UI was in sync execution mode, and now isn't, restore its
4094 prompt (a synchronous execution command has finished, and we're
4095 ready for input). */
4096 all_uis_check_sync_execution_done ();
4097
4098 if (cmd_done
4099 && exec_done_display_p
4100 && (inferior_ptid == null_ptid
4101 || inferior_thread ()->state != THREAD_RUNNING))
4102 printf_unfiltered (_("completed.\n"));
4103 }
4104
4105 /* See infrun.h. */
4106
4107 void
4108 set_step_info (thread_info *tp, struct frame_info *frame,
4109 struct symtab_and_line sal)
4110 {
4111 /* This can be removed once this function no longer implicitly relies on the
4112 inferior_ptid value. */
4113 gdb_assert (inferior_ptid == tp->ptid);
4114
4115 tp->control.step_frame_id = get_frame_id (frame);
4116 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4117
4118 tp->current_symtab = sal.symtab;
4119 tp->current_line = sal.line;
4120 }
4121
4122 /* Clear context switchable stepping state. */
4123
4124 void
4125 init_thread_stepping_state (struct thread_info *tss)
4126 {
4127 tss->stepped_breakpoint = 0;
4128 tss->stepping_over_breakpoint = 0;
4129 tss->stepping_over_watchpoint = 0;
4130 tss->step_after_step_resume_breakpoint = 0;
4131 }
4132
4133 /* See infrun.h. */
4134
4135 void
4136 set_last_target_status (process_stratum_target *target, ptid_t ptid,
4137 target_waitstatus status)
4138 {
4139 target_last_proc_target = target;
4140 target_last_wait_ptid = ptid;
4141 target_last_waitstatus = status;
4142 }
4143
4144 /* See infrun.h. */
4145
4146 void
4147 get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4148 target_waitstatus *status)
4149 {
4150 if (target != nullptr)
4151 *target = target_last_proc_target;
4152 if (ptid != nullptr)
4153 *ptid = target_last_wait_ptid;
4154 if (status != nullptr)
4155 *status = target_last_waitstatus;
4156 }
4157
4158 /* See infrun.h. */
4159
4160 void
4161 nullify_last_target_wait_ptid (void)
4162 {
4163 target_last_proc_target = nullptr;
4164 target_last_wait_ptid = minus_one_ptid;
4165 target_last_waitstatus = {};
4166 }
4167
4168 /* Switch thread contexts. */
4169
4170 static void
4171 context_switch (execution_control_state *ecs)
4172 {
4173 if (debug_infrun
4174 && ecs->ptid != inferior_ptid
4175 && (inferior_ptid == null_ptid
4176 || ecs->event_thread != inferior_thread ()))
4177 {
4178 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4179 target_pid_to_str (inferior_ptid).c_str ());
4180 fprintf_unfiltered (gdb_stdlog, "to %s\n",
4181 target_pid_to_str (ecs->ptid).c_str ());
4182 }
4183
4184 switch_to_thread (ecs->event_thread);
4185 }
4186
4187 /* If the target can't tell whether we've hit breakpoints
4188 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4189 check whether that could have been caused by a breakpoint. If so,
4190 adjust the PC, per gdbarch_decr_pc_after_break. */
4191
4192 static void
4193 adjust_pc_after_break (struct thread_info *thread,
4194 struct target_waitstatus *ws)
4195 {
4196 struct regcache *regcache;
4197 struct gdbarch *gdbarch;
4198 CORE_ADDR breakpoint_pc, decr_pc;
4199
4200 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4201 we aren't, just return.
4202
4203 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4204 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4205 implemented by software breakpoints should be handled through the normal
4206 breakpoint layer.
4207
4208 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4209 different signals (SIGILL or SIGEMT for instance), but it is less
4210 clear where the PC is pointing afterwards. It may not match
4211 gdbarch_decr_pc_after_break. I don't know any specific target that
4212 generates these signals at breakpoints (the code has been in GDB since at
4213 least 1992) so I can not guess how to handle them here.
4214
4215 In earlier versions of GDB, a target with
4216 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4217 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4218 target with both of these set in GDB history, and it seems unlikely to be
4219 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4220
4221 if (ws->kind != TARGET_WAITKIND_STOPPED)
4222 return;
4223
4224 if (ws->value.sig != GDB_SIGNAL_TRAP)
4225 return;
4226
4227 /* In reverse execution, when a breakpoint is hit, the instruction
4228 under it has already been de-executed. The reported PC always
4229 points at the breakpoint address, so adjusting it further would
4230 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4231 architecture:
4232
4233 B1 0x08000000 : INSN1
4234 B2 0x08000001 : INSN2
4235 0x08000002 : INSN3
4236 PC -> 0x08000003 : INSN4
4237
4238 Say you're stopped at 0x08000003 as above. Reverse continuing
4239 from that point should hit B2 as below. Reading the PC when the
4240 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4241 been de-executed already.
4242
4243 B1 0x08000000 : INSN1
4244 B2 PC -> 0x08000001 : INSN2
4245 0x08000002 : INSN3
4246 0x08000003 : INSN4
4247
4248 We can't apply the same logic as for forward execution, because
4249 we would wrongly adjust the PC to 0x08000000, since there's a
4250 breakpoint at PC - 1. We'd then report a hit on B1, although
4251 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4252 behaviour. */
4253 if (execution_direction == EXEC_REVERSE)
4254 return;
4255
4256 /* If the target can tell whether the thread hit a SW breakpoint,
4257 trust it. Targets that can tell also adjust the PC
4258 themselves. */
4259 if (target_supports_stopped_by_sw_breakpoint ())
4260 return;
4261
4262 /* Note that relying on whether a breakpoint is planted in memory to
4263 determine this can fail. E.g,. the breakpoint could have been
4264 removed since. Or the thread could have been told to step an
4265 instruction the size of a breakpoint instruction, and only
4266 _after_ was a breakpoint inserted at its address. */
4267
4268 /* If this target does not decrement the PC after breakpoints, then
4269 we have nothing to do. */
4270 regcache = get_thread_regcache (thread);
4271 gdbarch = regcache->arch ();
4272
4273 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4274 if (decr_pc == 0)
4275 return;
4276
4277 const address_space *aspace = regcache->aspace ();
4278
4279 /* Find the location where (if we've hit a breakpoint) the
4280 breakpoint would be. */
4281 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4282
4283 /* If the target can't tell whether a software breakpoint triggered,
4284 fallback to figuring it out based on breakpoints we think were
4285 inserted in the target, and on whether the thread was stepped or
4286 continued. */
4287
4288 /* Check whether there actually is a software breakpoint inserted at
4289 that location.
4290
4291 If in non-stop mode, a race condition is possible where we've
4292 removed a breakpoint, but stop events for that breakpoint were
4293 already queued and arrive later. To suppress those spurious
4294 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4295 and retire them after a number of stop events are reported. Note
4296 this is an heuristic and can thus get confused. The real fix is
4297 to get the "stopped by SW BP and needs adjustment" info out of
4298 the target/kernel (and thus never reach here; see above). */
4299 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4300 || (target_is_non_stop_p ()
4301 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4302 {
4303 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4304
4305 if (record_full_is_used ())
4306 restore_operation_disable.emplace
4307 (record_full_gdb_operation_disable_set ());
4308
4309 /* When using hardware single-step, a SIGTRAP is reported for both
4310 a completed single-step and a software breakpoint. Need to
4311 differentiate between the two, as the latter needs adjusting
4312 but the former does not.
4313
4314 The SIGTRAP can be due to a completed hardware single-step only if
4315 - we didn't insert software single-step breakpoints
4316 - this thread is currently being stepped
4317
4318 If any of these events did not occur, we must have stopped due
4319 to hitting a software breakpoint, and have to back up to the
4320 breakpoint address.
4321
4322 As a special case, we could have hardware single-stepped a
4323 software breakpoint. In this case (prev_pc == breakpoint_pc),
4324 we also need to back up to the breakpoint address. */
4325
4326 if (thread_has_single_step_breakpoints_set (thread)
4327 || !currently_stepping (thread)
4328 || (thread->stepped_breakpoint
4329 && thread->prev_pc == breakpoint_pc))
4330 regcache_write_pc (regcache, breakpoint_pc);
4331 }
4332 }
4333
4334 static int
4335 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4336 {
4337 for (frame = get_prev_frame (frame);
4338 frame != NULL;
4339 frame = get_prev_frame (frame))
4340 {
4341 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4342 return 1;
4343 if (get_frame_type (frame) != INLINE_FRAME)
4344 break;
4345 }
4346
4347 return 0;
4348 }
4349
4350 /* Look for an inline frame that is marked for skip.
4351 If PREV_FRAME is TRUE start at the previous frame,
4352 otherwise start at the current frame. Stop at the
4353 first non-inline frame, or at the frame where the
4354 step started. */
4355
4356 static bool
4357 inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4358 {
4359 struct frame_info *frame = get_current_frame ();
4360
4361 if (prev_frame)
4362 frame = get_prev_frame (frame);
4363
4364 for (; frame != NULL; frame = get_prev_frame (frame))
4365 {
4366 const char *fn = NULL;
4367 symtab_and_line sal;
4368 struct symbol *sym;
4369
4370 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4371 break;
4372 if (get_frame_type (frame) != INLINE_FRAME)
4373 break;
4374
4375 sal = find_frame_sal (frame);
4376 sym = get_frame_function (frame);
4377
4378 if (sym != NULL)
4379 fn = sym->print_name ();
4380
4381 if (sal.line != 0
4382 && function_name_is_marked_for_skip (fn, sal))
4383 return true;
4384 }
4385
4386 return false;
4387 }
4388
4389 /* If the event thread has the stop requested flag set, pretend it
4390 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4391 target_stop). */
4392
4393 static bool
4394 handle_stop_requested (struct execution_control_state *ecs)
4395 {
4396 if (ecs->event_thread->stop_requested)
4397 {
4398 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4399 ecs->ws.value.sig = GDB_SIGNAL_0;
4400 handle_signal_stop (ecs);
4401 return true;
4402 }
4403 return false;
4404 }
4405
4406 /* Auxiliary function that handles syscall entry/return events.
4407 It returns 1 if the inferior should keep going (and GDB
4408 should ignore the event), or 0 if the event deserves to be
4409 processed. */
4410
4411 static int
4412 handle_syscall_event (struct execution_control_state *ecs)
4413 {
4414 struct regcache *regcache;
4415 int syscall_number;
4416
4417 context_switch (ecs);
4418
4419 regcache = get_thread_regcache (ecs->event_thread);
4420 syscall_number = ecs->ws.value.syscall_number;
4421 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4422
4423 if (catch_syscall_enabled () > 0
4424 && catching_syscall_number (syscall_number) > 0)
4425 {
4426 if (debug_infrun)
4427 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4428 syscall_number);
4429
4430 ecs->event_thread->control.stop_bpstat
4431 = bpstat_stop_status (regcache->aspace (),
4432 ecs->event_thread->suspend.stop_pc,
4433 ecs->event_thread, &ecs->ws);
4434
4435 if (handle_stop_requested (ecs))
4436 return 0;
4437
4438 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4439 {
4440 /* Catchpoint hit. */
4441 return 0;
4442 }
4443 }
4444
4445 if (handle_stop_requested (ecs))
4446 return 0;
4447
4448 /* If no catchpoint triggered for this, then keep going. */
4449 keep_going (ecs);
4450 return 1;
4451 }
4452
4453 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4454
4455 static void
4456 fill_in_stop_func (struct gdbarch *gdbarch,
4457 struct execution_control_state *ecs)
4458 {
4459 if (!ecs->stop_func_filled_in)
4460 {
4461 const block *block;
4462
4463 /* Don't care about return value; stop_func_start and stop_func_name
4464 will both be 0 if it doesn't work. */
4465 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4466 &ecs->stop_func_name,
4467 &ecs->stop_func_start,
4468 &ecs->stop_func_end,
4469 &block);
4470
4471 /* The call to find_pc_partial_function, above, will set
4472 stop_func_start and stop_func_end to the start and end
4473 of the range containing the stop pc. If this range
4474 contains the entry pc for the block (which is always the
4475 case for contiguous blocks), advance stop_func_start past
4476 the function's start offset and entrypoint. Note that
4477 stop_func_start is NOT advanced when in a range of a
4478 non-contiguous block that does not contain the entry pc. */
4479 if (block != nullptr
4480 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4481 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4482 {
4483 ecs->stop_func_start
4484 += gdbarch_deprecated_function_start_offset (gdbarch);
4485
4486 if (gdbarch_skip_entrypoint_p (gdbarch))
4487 ecs->stop_func_start
4488 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4489 }
4490
4491 ecs->stop_func_filled_in = 1;
4492 }
4493 }
4494
4495
4496 /* Return the STOP_SOON field of the inferior pointed at by ECS. */
4497
4498 static enum stop_kind
4499 get_inferior_stop_soon (execution_control_state *ecs)
4500 {
4501 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4502
4503 gdb_assert (inf != NULL);
4504 return inf->control.stop_soon;
4505 }
4506
4507 /* Poll for one event out of the current target. Store the resulting
4508 waitstatus in WS, and return the event ptid. Does not block. */
4509
4510 static ptid_t
4511 poll_one_curr_target (struct target_waitstatus *ws)
4512 {
4513 ptid_t event_ptid;
4514
4515 overlay_cache_invalid = 1;
4516
4517 /* Flush target cache before starting to handle each event.
4518 Target was running and cache could be stale. This is just a
4519 heuristic. Running threads may modify target memory, but we
4520 don't get any event. */
4521 target_dcache_invalidate ();
4522
4523 if (deprecated_target_wait_hook)
4524 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
4525 else
4526 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
4527
4528 if (debug_infrun)
4529 print_target_wait_results (minus_one_ptid, event_ptid, ws);
4530
4531 return event_ptid;
4532 }
4533
4534 /* An event reported by wait_one. */
4535
4536 struct wait_one_event
4537 {
4538 /* The target the event came out of. */
4539 process_stratum_target *target;
4540
4541 /* The PTID the event was for. */
4542 ptid_t ptid;
4543
4544 /* The waitstatus. */
4545 target_waitstatus ws;
4546 };
4547
4548 /* Wait for one event out of any target. */
4549
4550 static wait_one_event
4551 wait_one ()
4552 {
4553 while (1)
4554 {
4555 for (inferior *inf : all_inferiors ())
4556 {
4557 process_stratum_target *target = inf->process_target ();
4558 if (target == NULL
4559 || !target->is_async_p ()
4560 || !target->threads_executing)
4561 continue;
4562
4563 switch_to_inferior_no_thread (inf);
4564
4565 wait_one_event event;
4566 event.target = target;
4567 event.ptid = poll_one_curr_target (&event.ws);
4568
4569 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4570 {
4571 /* If nothing is resumed, remove the target from the
4572 event loop. */
4573 target_async (0);
4574 }
4575 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4576 return event;
4577 }
4578
4579 /* Block waiting for some event. */
4580
4581 fd_set readfds;
4582 int nfds = 0;
4583
4584 FD_ZERO (&readfds);
4585
4586 for (inferior *inf : all_inferiors ())
4587 {
4588 process_stratum_target *target = inf->process_target ();
4589 if (target == NULL
4590 || !target->is_async_p ()
4591 || !target->threads_executing)
4592 continue;
4593
4594 int fd = target->async_wait_fd ();
4595 FD_SET (fd, &readfds);
4596 if (nfds <= fd)
4597 nfds = fd + 1;
4598 }
4599
4600 if (nfds == 0)
4601 {
4602 /* No waitable targets left. All must be stopped. */
4603 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4604 }
4605
4606 QUIT;
4607
4608 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4609 if (numfds < 0)
4610 {
4611 if (errno == EINTR)
4612 continue;
4613 else
4614 perror_with_name ("interruptible_select");
4615 }
4616 }
4617 }
4618
4619 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4620 instead of the current thread. */
4621 #define THREAD_STOPPED_BY(REASON) \
4622 static int \
4623 thread_stopped_by_ ## REASON (ptid_t ptid) \
4624 { \
4625 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
4626 inferior_ptid = ptid; \
4627 \
4628 return target_stopped_by_ ## REASON (); \
4629 }
4630
4631 /* Generate thread_stopped_by_watchpoint. */
4632 THREAD_STOPPED_BY (watchpoint)
4633 /* Generate thread_stopped_by_sw_breakpoint. */
4634 THREAD_STOPPED_BY (sw_breakpoint)
4635 /* Generate thread_stopped_by_hw_breakpoint. */
4636 THREAD_STOPPED_BY (hw_breakpoint)
4637
4638 /* Save the thread's event and stop reason to process it later. */
4639
4640 static void
4641 save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
4642 {
4643 if (debug_infrun)
4644 {
4645 std::string statstr = target_waitstatus_to_string (ws);
4646
4647 fprintf_unfiltered (gdb_stdlog,
4648 "infrun: saving status %s for %d.%ld.%ld\n",
4649 statstr.c_str (),
4650 tp->ptid.pid (),
4651 tp->ptid.lwp (),
4652 tp->ptid.tid ());
4653 }
4654
4655 /* Record for later. */
4656 tp->suspend.waitstatus = *ws;
4657 tp->suspend.waitstatus_pending_p = 1;
4658
4659 struct regcache *regcache = get_thread_regcache (tp);
4660 const address_space *aspace = regcache->aspace ();
4661
4662 if (ws->kind == TARGET_WAITKIND_STOPPED
4663 && ws->value.sig == GDB_SIGNAL_TRAP)
4664 {
4665 CORE_ADDR pc = regcache_read_pc (regcache);
4666
4667 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4668
4669 if (thread_stopped_by_watchpoint (tp->ptid))
4670 {
4671 tp->suspend.stop_reason
4672 = TARGET_STOPPED_BY_WATCHPOINT;
4673 }
4674 else if (target_supports_stopped_by_sw_breakpoint ()
4675 && thread_stopped_by_sw_breakpoint (tp->ptid))
4676 {
4677 tp->suspend.stop_reason
4678 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4679 }
4680 else if (target_supports_stopped_by_hw_breakpoint ()
4681 && thread_stopped_by_hw_breakpoint (tp->ptid))
4682 {
4683 tp->suspend.stop_reason
4684 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4685 }
4686 else if (!target_supports_stopped_by_hw_breakpoint ()
4687 && hardware_breakpoint_inserted_here_p (aspace,
4688 pc))
4689 {
4690 tp->suspend.stop_reason
4691 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4692 }
4693 else if (!target_supports_stopped_by_sw_breakpoint ()
4694 && software_breakpoint_inserted_here_p (aspace,
4695 pc))
4696 {
4697 tp->suspend.stop_reason
4698 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4699 }
4700 else if (!thread_has_single_step_breakpoints_set (tp)
4701 && currently_stepping (tp))
4702 {
4703 tp->suspend.stop_reason
4704 = TARGET_STOPPED_BY_SINGLE_STEP;
4705 }
4706 }
4707 }
4708
4709 /* See infrun.h. */
4710
4711 void
4712 stop_all_threads (void)
4713 {
4714 /* We may need multiple passes to discover all threads. */
4715 int pass;
4716 int iterations = 0;
4717
4718 gdb_assert (target_is_non_stop_p ());
4719
4720 if (debug_infrun)
4721 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4722
4723 scoped_restore_current_thread restore_thread;
4724
4725 target_thread_events (1);
4726 SCOPE_EXIT { target_thread_events (0); };
4727
4728 /* Request threads to stop, and then wait for the stops. Because
4729 threads we already know about can spawn more threads while we're
4730 trying to stop them, and we only learn about new threads when we
4731 update the thread list, do this in a loop, and keep iterating
4732 until two passes find no threads that need to be stopped. */
4733 for (pass = 0; pass < 2; pass++, iterations++)
4734 {
4735 if (debug_infrun)
4736 fprintf_unfiltered (gdb_stdlog,
4737 "infrun: stop_all_threads, pass=%d, "
4738 "iterations=%d\n", pass, iterations);
4739 while (1)
4740 {
4741 int need_wait = 0;
4742
4743 update_thread_list ();
4744
4745 /* Go through all threads looking for threads that we need
4746 to tell the target to stop. */
4747 for (thread_info *t : all_non_exited_threads ())
4748 {
4749 if (t->executing)
4750 {
4751 /* If already stopping, don't request a stop again.
4752 We just haven't seen the notification yet. */
4753 if (!t->stop_requested)
4754 {
4755 if (debug_infrun)
4756 fprintf_unfiltered (gdb_stdlog,
4757 "infrun: %s executing, "
4758 "need stop\n",
4759 target_pid_to_str (t->ptid).c_str ());
4760 switch_to_thread_no_regs (t);
4761 target_stop (t->ptid);
4762 t->stop_requested = 1;
4763 }
4764 else
4765 {
4766 if (debug_infrun)
4767 fprintf_unfiltered (gdb_stdlog,
4768 "infrun: %s executing, "
4769 "already stopping\n",
4770 target_pid_to_str (t->ptid).c_str ());
4771 }
4772
4773 if (t->stop_requested)
4774 need_wait = 1;
4775 }
4776 else
4777 {
4778 if (debug_infrun)
4779 fprintf_unfiltered (gdb_stdlog,
4780 "infrun: %s not executing\n",
4781 target_pid_to_str (t->ptid).c_str ());
4782
4783 /* The thread may be not executing, but still be
4784 resumed with a pending status to process. */
4785 t->resumed = false;
4786 }
4787 }
4788
4789 if (!need_wait)
4790 break;
4791
4792 /* If we find new threads on the second iteration, restart
4793 over. We want to see two iterations in a row with all
4794 threads stopped. */
4795 if (pass > 0)
4796 pass = -1;
4797
4798 wait_one_event event = wait_one ();
4799
4800 if (debug_infrun)
4801 {
4802 fprintf_unfiltered (gdb_stdlog,
4803 "infrun: stop_all_threads %s %s\n",
4804 target_waitstatus_to_string (&event.ws).c_str (),
4805 target_pid_to_str (event.ptid).c_str ());
4806 }
4807
4808 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED
4809 || event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4810 || event.ws.kind == TARGET_WAITKIND_EXITED
4811 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
4812 {
4813 /* All resumed threads exited
4814 or one thread/process exited/signalled. */
4815 }
4816 else
4817 {
4818 thread_info *t = find_thread_ptid (event.target, event.ptid);
4819 if (t == NULL)
4820 t = add_thread (event.target, event.ptid);
4821
4822 t->stop_requested = 0;
4823 t->executing = 0;
4824 t->resumed = false;
4825 t->control.may_range_step = 0;
4826
4827 /* This may be the first time we see the inferior report
4828 a stop. */
4829 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4830 if (inf->needs_setup)
4831 {
4832 switch_to_thread_no_regs (t);
4833 setup_inferior (0);
4834 }
4835
4836 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4837 && event.ws.value.sig == GDB_SIGNAL_0)
4838 {
4839 /* We caught the event that we intended to catch, so
4840 there's no event pending. */
4841 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4842 t->suspend.waitstatus_pending_p = 0;
4843
4844 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
4845 {
4846 /* Add it back to the step-over queue. */
4847 if (debug_infrun)
4848 {
4849 fprintf_unfiltered (gdb_stdlog,
4850 "infrun: displaced-step of %s "
4851 "canceled: adding back to the "
4852 "step-over queue\n",
4853 target_pid_to_str (t->ptid).c_str ());
4854 }
4855 t->control.trap_expected = 0;
4856 thread_step_over_chain_enqueue (t);
4857 }
4858 }
4859 else
4860 {
4861 enum gdb_signal sig;
4862 struct regcache *regcache;
4863
4864 if (debug_infrun)
4865 {
4866 std::string statstr = target_waitstatus_to_string (&event.ws);
4867
4868 fprintf_unfiltered (gdb_stdlog,
4869 "infrun: target_wait %s, saving "
4870 "status for %d.%ld.%ld\n",
4871 statstr.c_str (),
4872 t->ptid.pid (),
4873 t->ptid.lwp (),
4874 t->ptid.tid ());
4875 }
4876
4877 /* Record for later. */
4878 save_waitstatus (t, &event.ws);
4879
4880 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4881 ? event.ws.value.sig : GDB_SIGNAL_0);
4882
4883 if (displaced_step_fixup (t, sig) < 0)
4884 {
4885 /* Add it back to the step-over queue. */
4886 t->control.trap_expected = 0;
4887 thread_step_over_chain_enqueue (t);
4888 }
4889
4890 regcache = get_thread_regcache (t);
4891 t->suspend.stop_pc = regcache_read_pc (regcache);
4892
4893 if (debug_infrun)
4894 {
4895 fprintf_unfiltered (gdb_stdlog,
4896 "infrun: saved stop_pc=%s for %s "
4897 "(currently_stepping=%d)\n",
4898 paddress (target_gdbarch (),
4899 t->suspend.stop_pc),
4900 target_pid_to_str (t->ptid).c_str (),
4901 currently_stepping (t));
4902 }
4903 }
4904 }
4905 }
4906 }
4907
4908 if (debug_infrun)
4909 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4910 }
4911
4912 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4913
4914 static int
4915 handle_no_resumed (struct execution_control_state *ecs)
4916 {
4917 if (target_can_async_p ())
4918 {
4919 struct ui *ui;
4920 int any_sync = 0;
4921
4922 ALL_UIS (ui)
4923 {
4924 if (ui->prompt_state == PROMPT_BLOCKED)
4925 {
4926 any_sync = 1;
4927 break;
4928 }
4929 }
4930 if (!any_sync)
4931 {
4932 /* There were no unwaited-for children left in the target, but,
4933 we're not synchronously waiting for events either. Just
4934 ignore. */
4935
4936 if (debug_infrun)
4937 fprintf_unfiltered (gdb_stdlog,
4938 "infrun: TARGET_WAITKIND_NO_RESUMED "
4939 "(ignoring: bg)\n");
4940 prepare_to_wait (ecs);
4941 return 1;
4942 }
4943 }
4944
4945 /* Otherwise, if we were running a synchronous execution command, we
4946 may need to cancel it and give the user back the terminal.
4947
4948 In non-stop mode, the target can't tell whether we've already
4949 consumed previous stop events, so it can end up sending us a
4950 no-resumed event like so:
4951
4952 #0 - thread 1 is left stopped
4953
4954 #1 - thread 2 is resumed and hits breakpoint
4955 -> TARGET_WAITKIND_STOPPED
4956
4957 #2 - thread 3 is resumed and exits
4958 this is the last resumed thread, so
4959 -> TARGET_WAITKIND_NO_RESUMED
4960
4961 #3 - gdb processes stop for thread 2 and decides to re-resume
4962 it.
4963
4964 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4965 thread 2 is now resumed, so the event should be ignored.
4966
4967 IOW, if the stop for thread 2 doesn't end a foreground command,
4968 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4969 event. But it could be that the event meant that thread 2 itself
4970 (or whatever other thread was the last resumed thread) exited.
4971
4972 To address this we refresh the thread list and check whether we
4973 have resumed threads _now_. In the example above, this removes
4974 thread 3 from the thread list. If thread 2 was re-resumed, we
4975 ignore this event. If we find no thread resumed, then we cancel
4976 the synchronous command show "no unwaited-for " to the user. */
4977 update_thread_list ();
4978
4979 for (thread_info *thread : all_non_exited_threads (ecs->target))
4980 {
4981 if (thread->executing
4982 || thread->suspend.waitstatus_pending_p)
4983 {
4984 /* There were no unwaited-for children left in the target at
4985 some point, but there are now. Just ignore. */
4986 if (debug_infrun)
4987 fprintf_unfiltered (gdb_stdlog,
4988 "infrun: TARGET_WAITKIND_NO_RESUMED "
4989 "(ignoring: found resumed)\n");
4990 prepare_to_wait (ecs);
4991 return 1;
4992 }
4993 }
4994
4995 /* Note however that we may find no resumed thread because the whole
4996 process exited meanwhile (thus updating the thread list results
4997 in an empty thread list). In this case we know we'll be getting
4998 a process exit event shortly. */
4999 for (inferior *inf : all_non_exited_inferiors (ecs->target))
5000 {
5001 thread_info *thread = any_live_thread_of_inferior (inf);
5002 if (thread == NULL)
5003 {
5004 if (debug_infrun)
5005 fprintf_unfiltered (gdb_stdlog,
5006 "infrun: TARGET_WAITKIND_NO_RESUMED "
5007 "(expect process exit)\n");
5008 prepare_to_wait (ecs);
5009 return 1;
5010 }
5011 }
5012
5013 /* Go ahead and report the event. */
5014 return 0;
5015 }
5016
5017 /* Given an execution control state that has been freshly filled in by
5018 an event from the inferior, figure out what it means and take
5019 appropriate action.
5020
5021 The alternatives are:
5022
5023 1) stop_waiting and return; to really stop and return to the
5024 debugger.
5025
5026 2) keep_going and return; to wait for the next event (set
5027 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5028 once). */
5029
5030 static void
5031 handle_inferior_event (struct execution_control_state *ecs)
5032 {
5033 /* Make sure that all temporary struct value objects that were
5034 created during the handling of the event get deleted at the
5035 end. */
5036 scoped_value_mark free_values;
5037
5038 enum stop_kind stop_soon;
5039
5040 if (debug_infrun)
5041 fprintf_unfiltered (gdb_stdlog, "infrun: handle_inferior_event %s\n",
5042 target_waitstatus_to_string (&ecs->ws).c_str ());
5043
5044 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5045 {
5046 /* We had an event in the inferior, but we are not interested in
5047 handling it at this level. The lower layers have already
5048 done what needs to be done, if anything.
5049
5050 One of the possible circumstances for this is when the
5051 inferior produces output for the console. The inferior has
5052 not stopped, and we are ignoring the event. Another possible
5053 circumstance is any event which the lower level knows will be
5054 reported multiple times without an intervening resume. */
5055 prepare_to_wait (ecs);
5056 return;
5057 }
5058
5059 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5060 {
5061 prepare_to_wait (ecs);
5062 return;
5063 }
5064
5065 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
5066 && handle_no_resumed (ecs))
5067 return;
5068
5069 /* Cache the last target/ptid/waitstatus. */
5070 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
5071
5072 /* Always clear state belonging to the previous time we stopped. */
5073 stop_stack_dummy = STOP_NONE;
5074
5075 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5076 {
5077 /* No unwaited-for children left. IOW, all resumed children
5078 have exited. */
5079 stop_print_frame = 0;
5080 stop_waiting (ecs);
5081 return;
5082 }
5083
5084 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
5085 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
5086 {
5087 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
5088 /* If it's a new thread, add it to the thread database. */
5089 if (ecs->event_thread == NULL)
5090 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
5091
5092 /* Disable range stepping. If the next step request could use a
5093 range, this will be end up re-enabled then. */
5094 ecs->event_thread->control.may_range_step = 0;
5095 }
5096
5097 /* Dependent on valid ECS->EVENT_THREAD. */
5098 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
5099
5100 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5101 reinit_frame_cache ();
5102
5103 breakpoint_retire_moribund ();
5104
5105 /* First, distinguish signals caused by the debugger from signals
5106 that have to do with the program's own actions. Note that
5107 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5108 on the operating system version. Here we detect when a SIGILL or
5109 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5110 something similar for SIGSEGV, since a SIGSEGV will be generated
5111 when we're trying to execute a breakpoint instruction on a
5112 non-executable stack. This happens for call dummy breakpoints
5113 for architectures like SPARC that place call dummies on the
5114 stack. */
5115 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
5116 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5117 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5118 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
5119 {
5120 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5121
5122 if (breakpoint_inserted_here_p (regcache->aspace (),
5123 regcache_read_pc (regcache)))
5124 {
5125 if (debug_infrun)
5126 fprintf_unfiltered (gdb_stdlog,
5127 "infrun: Treating signal as SIGTRAP\n");
5128 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
5129 }
5130 }
5131
5132 /* Mark the non-executing threads accordingly. In all-stop, all
5133 threads of all processes are stopped when we get any event
5134 reported. In non-stop mode, only the event thread stops. */
5135 {
5136 ptid_t mark_ptid;
5137
5138 if (!target_is_non_stop_p ())
5139 mark_ptid = minus_one_ptid;
5140 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
5141 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
5142 {
5143 /* If we're handling a process exit in non-stop mode, even
5144 though threads haven't been deleted yet, one would think
5145 that there is nothing to do, as threads of the dead process
5146 will be soon deleted, and threads of any other process were
5147 left running. However, on some targets, threads survive a
5148 process exit event. E.g., for the "checkpoint" command,
5149 when the current checkpoint/fork exits, linux-fork.c
5150 automatically switches to another fork from within
5151 target_mourn_inferior, by associating the same
5152 inferior/thread to another fork. We haven't mourned yet at
5153 this point, but we must mark any threads left in the
5154 process as not-executing so that finish_thread_state marks
5155 them stopped (in the user's perspective) if/when we present
5156 the stop to the user. */
5157 mark_ptid = ptid_t (ecs->ptid.pid ());
5158 }
5159 else
5160 mark_ptid = ecs->ptid;
5161
5162 set_executing (ecs->target, mark_ptid, false);
5163
5164 /* Likewise the resumed flag. */
5165 set_resumed (ecs->target, mark_ptid, false);
5166 }
5167
5168 switch (ecs->ws.kind)
5169 {
5170 case TARGET_WAITKIND_LOADED:
5171 context_switch (ecs);
5172 /* Ignore gracefully during startup of the inferior, as it might
5173 be the shell which has just loaded some objects, otherwise
5174 add the symbols for the newly loaded objects. Also ignore at
5175 the beginning of an attach or remote session; we will query
5176 the full list of libraries once the connection is
5177 established. */
5178
5179 stop_soon = get_inferior_stop_soon (ecs);
5180 if (stop_soon == NO_STOP_QUIETLY)
5181 {
5182 struct regcache *regcache;
5183
5184 regcache = get_thread_regcache (ecs->event_thread);
5185
5186 handle_solib_event ();
5187
5188 ecs->event_thread->control.stop_bpstat
5189 = bpstat_stop_status (regcache->aspace (),
5190 ecs->event_thread->suspend.stop_pc,
5191 ecs->event_thread, &ecs->ws);
5192
5193 if (handle_stop_requested (ecs))
5194 return;
5195
5196 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5197 {
5198 /* A catchpoint triggered. */
5199 process_event_stop_test (ecs);
5200 return;
5201 }
5202
5203 /* If requested, stop when the dynamic linker notifies
5204 gdb of events. This allows the user to get control
5205 and place breakpoints in initializer routines for
5206 dynamically loaded objects (among other things). */
5207 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5208 if (stop_on_solib_events)
5209 {
5210 /* Make sure we print "Stopped due to solib-event" in
5211 normal_stop. */
5212 stop_print_frame = 1;
5213
5214 stop_waiting (ecs);
5215 return;
5216 }
5217 }
5218
5219 /* If we are skipping through a shell, or through shared library
5220 loading that we aren't interested in, resume the program. If
5221 we're running the program normally, also resume. */
5222 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5223 {
5224 /* Loading of shared libraries might have changed breakpoint
5225 addresses. Make sure new breakpoints are inserted. */
5226 if (stop_soon == NO_STOP_QUIETLY)
5227 insert_breakpoints ();
5228 resume (GDB_SIGNAL_0);
5229 prepare_to_wait (ecs);
5230 return;
5231 }
5232
5233 /* But stop if we're attaching or setting up a remote
5234 connection. */
5235 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5236 || stop_soon == STOP_QUIETLY_REMOTE)
5237 {
5238 if (debug_infrun)
5239 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5240 stop_waiting (ecs);
5241 return;
5242 }
5243
5244 internal_error (__FILE__, __LINE__,
5245 _("unhandled stop_soon: %d"), (int) stop_soon);
5246
5247 case TARGET_WAITKIND_SPURIOUS:
5248 if (handle_stop_requested (ecs))
5249 return;
5250 context_switch (ecs);
5251 resume (GDB_SIGNAL_0);
5252 prepare_to_wait (ecs);
5253 return;
5254
5255 case TARGET_WAITKIND_THREAD_CREATED:
5256 if (handle_stop_requested (ecs))
5257 return;
5258 context_switch (ecs);
5259 if (!switch_back_to_stepped_thread (ecs))
5260 keep_going (ecs);
5261 return;
5262
5263 case TARGET_WAITKIND_EXITED:
5264 case TARGET_WAITKIND_SIGNALLED:
5265 inferior_ptid = ecs->ptid;
5266 set_current_inferior (find_inferior_ptid (ecs->target, ecs->ptid));
5267 set_current_program_space (current_inferior ()->pspace);
5268 handle_vfork_child_exec_or_exit (0);
5269 target_terminal::ours (); /* Must do this before mourn anyway. */
5270
5271 /* Clearing any previous state of convenience variables. */
5272 clear_exit_convenience_vars ();
5273
5274 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5275 {
5276 /* Record the exit code in the convenience variable $_exitcode, so
5277 that the user can inspect this again later. */
5278 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5279 (LONGEST) ecs->ws.value.integer);
5280
5281 /* Also record this in the inferior itself. */
5282 current_inferior ()->has_exit_code = 1;
5283 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5284
5285 /* Support the --return-child-result option. */
5286 return_child_result_value = ecs->ws.value.integer;
5287
5288 gdb::observers::exited.notify (ecs->ws.value.integer);
5289 }
5290 else
5291 {
5292 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
5293
5294 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5295 {
5296 /* Set the value of the internal variable $_exitsignal,
5297 which holds the signal uncaught by the inferior. */
5298 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5299 gdbarch_gdb_signal_to_target (gdbarch,
5300 ecs->ws.value.sig));
5301 }
5302 else
5303 {
5304 /* We don't have access to the target's method used for
5305 converting between signal numbers (GDB's internal
5306 representation <-> target's representation).
5307 Therefore, we cannot do a good job at displaying this
5308 information to the user. It's better to just warn
5309 her about it (if infrun debugging is enabled), and
5310 give up. */
5311 if (debug_infrun)
5312 fprintf_filtered (gdb_stdlog, _("\
5313 Cannot fill $_exitsignal with the correct signal number.\n"));
5314 }
5315
5316 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
5317 }
5318
5319 gdb_flush (gdb_stdout);
5320 target_mourn_inferior (inferior_ptid);
5321 stop_print_frame = 0;
5322 stop_waiting (ecs);
5323 return;
5324
5325 case TARGET_WAITKIND_FORKED:
5326 case TARGET_WAITKIND_VFORKED:
5327 /* Check whether the inferior is displaced stepping. */
5328 {
5329 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5330 struct gdbarch *gdbarch = regcache->arch ();
5331
5332 /* If checking displaced stepping is supported, and thread
5333 ecs->ptid is displaced stepping. */
5334 if (displaced_step_in_progress_thread (ecs->event_thread))
5335 {
5336 struct inferior *parent_inf
5337 = find_inferior_ptid (ecs->target, ecs->ptid);
5338 struct regcache *child_regcache;
5339 CORE_ADDR parent_pc;
5340
5341 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5342 {
5343 struct displaced_step_inferior_state *displaced
5344 = get_displaced_stepping_state (parent_inf);
5345
5346 /* Restore scratch pad for child process. */
5347 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5348 }
5349
5350 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5351 indicating that the displaced stepping of syscall instruction
5352 has been done. Perform cleanup for parent process here. Note
5353 that this operation also cleans up the child process for vfork,
5354 because their pages are shared. */
5355 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
5356 /* Start a new step-over in another thread if there's one
5357 that needs it. */
5358 start_step_over ();
5359
5360 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5361 the child's PC is also within the scratchpad. Set the child's PC
5362 to the parent's PC value, which has already been fixed up.
5363 FIXME: we use the parent's aspace here, although we're touching
5364 the child, because the child hasn't been added to the inferior
5365 list yet at this point. */
5366
5367 child_regcache
5368 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5369 ecs->ws.value.related_pid,
5370 gdbarch,
5371 parent_inf->aspace);
5372 /* Read PC value of parent process. */
5373 parent_pc = regcache_read_pc (regcache);
5374
5375 if (debug_displaced)
5376 fprintf_unfiltered (gdb_stdlog,
5377 "displaced: write child pc from %s to %s\n",
5378 paddress (gdbarch,
5379 regcache_read_pc (child_regcache)),
5380 paddress (gdbarch, parent_pc));
5381
5382 regcache_write_pc (child_regcache, parent_pc);
5383 }
5384 }
5385
5386 context_switch (ecs);
5387
5388 /* Immediately detach breakpoints from the child before there's
5389 any chance of letting the user delete breakpoints from the
5390 breakpoint lists. If we don't do this early, it's easy to
5391 leave left over traps in the child, vis: "break foo; catch
5392 fork; c; <fork>; del; c; <child calls foo>". We only follow
5393 the fork on the last `continue', and by that time the
5394 breakpoint at "foo" is long gone from the breakpoint table.
5395 If we vforked, then we don't need to unpatch here, since both
5396 parent and child are sharing the same memory pages; we'll
5397 need to unpatch at follow/detach time instead to be certain
5398 that new breakpoints added between catchpoint hit time and
5399 vfork follow are detached. */
5400 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5401 {
5402 /* This won't actually modify the breakpoint list, but will
5403 physically remove the breakpoints from the child. */
5404 detach_breakpoints (ecs->ws.value.related_pid);
5405 }
5406
5407 delete_just_stopped_threads_single_step_breakpoints ();
5408
5409 /* In case the event is caught by a catchpoint, remember that
5410 the event is to be followed at the next resume of the thread,
5411 and not immediately. */
5412 ecs->event_thread->pending_follow = ecs->ws;
5413
5414 ecs->event_thread->suspend.stop_pc
5415 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5416
5417 ecs->event_thread->control.stop_bpstat
5418 = bpstat_stop_status (get_current_regcache ()->aspace (),
5419 ecs->event_thread->suspend.stop_pc,
5420 ecs->event_thread, &ecs->ws);
5421
5422 if (handle_stop_requested (ecs))
5423 return;
5424
5425 /* If no catchpoint triggered for this, then keep going. Note
5426 that we're interested in knowing the bpstat actually causes a
5427 stop, not just if it may explain the signal. Software
5428 watchpoints, for example, always appear in the bpstat. */
5429 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5430 {
5431 int should_resume;
5432 int follow_child
5433 = (follow_fork_mode_string == follow_fork_mode_child);
5434
5435 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5436
5437 process_stratum_target *targ
5438 = ecs->event_thread->inf->process_target ();
5439
5440 should_resume = follow_fork ();
5441
5442 /* Note that one of these may be an invalid pointer,
5443 depending on detach_fork. */
5444 thread_info *parent = ecs->event_thread;
5445 thread_info *child
5446 = find_thread_ptid (targ, ecs->ws.value.related_pid);
5447
5448 /* At this point, the parent is marked running, and the
5449 child is marked stopped. */
5450
5451 /* If not resuming the parent, mark it stopped. */
5452 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5453 parent->set_running (false);
5454
5455 /* If resuming the child, mark it running. */
5456 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5457 child->set_running (true);
5458
5459 /* In non-stop mode, also resume the other branch. */
5460 if (!detach_fork && (non_stop
5461 || (sched_multi && target_is_non_stop_p ())))
5462 {
5463 if (follow_child)
5464 switch_to_thread (parent);
5465 else
5466 switch_to_thread (child);
5467
5468 ecs->event_thread = inferior_thread ();
5469 ecs->ptid = inferior_ptid;
5470 keep_going (ecs);
5471 }
5472
5473 if (follow_child)
5474 switch_to_thread (child);
5475 else
5476 switch_to_thread (parent);
5477
5478 ecs->event_thread = inferior_thread ();
5479 ecs->ptid = inferior_ptid;
5480
5481 if (should_resume)
5482 keep_going (ecs);
5483 else
5484 stop_waiting (ecs);
5485 return;
5486 }
5487 process_event_stop_test (ecs);
5488 return;
5489
5490 case TARGET_WAITKIND_VFORK_DONE:
5491 /* Done with the shared memory region. Re-insert breakpoints in
5492 the parent, and keep going. */
5493
5494 context_switch (ecs);
5495
5496 current_inferior ()->waiting_for_vfork_done = 0;
5497 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5498
5499 if (handle_stop_requested (ecs))
5500 return;
5501
5502 /* This also takes care of reinserting breakpoints in the
5503 previously locked inferior. */
5504 keep_going (ecs);
5505 return;
5506
5507 case TARGET_WAITKIND_EXECD:
5508
5509 /* Note we can't read registers yet (the stop_pc), because we
5510 don't yet know the inferior's post-exec architecture.
5511 'stop_pc' is explicitly read below instead. */
5512 switch_to_thread_no_regs (ecs->event_thread);
5513
5514 /* Do whatever is necessary to the parent branch of the vfork. */
5515 handle_vfork_child_exec_or_exit (1);
5516
5517 /* This causes the eventpoints and symbol table to be reset.
5518 Must do this now, before trying to determine whether to
5519 stop. */
5520 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5521
5522 /* In follow_exec we may have deleted the original thread and
5523 created a new one. Make sure that the event thread is the
5524 execd thread for that case (this is a nop otherwise). */
5525 ecs->event_thread = inferior_thread ();
5526
5527 ecs->event_thread->suspend.stop_pc
5528 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5529
5530 ecs->event_thread->control.stop_bpstat
5531 = bpstat_stop_status (get_current_regcache ()->aspace (),
5532 ecs->event_thread->suspend.stop_pc,
5533 ecs->event_thread, &ecs->ws);
5534
5535 /* Note that this may be referenced from inside
5536 bpstat_stop_status above, through inferior_has_execd. */
5537 xfree (ecs->ws.value.execd_pathname);
5538 ecs->ws.value.execd_pathname = NULL;
5539
5540 if (handle_stop_requested (ecs))
5541 return;
5542
5543 /* If no catchpoint triggered for this, then keep going. */
5544 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5545 {
5546 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5547 keep_going (ecs);
5548 return;
5549 }
5550 process_event_stop_test (ecs);
5551 return;
5552
5553 /* Be careful not to try to gather much state about a thread
5554 that's in a syscall. It's frequently a losing proposition. */
5555 case TARGET_WAITKIND_SYSCALL_ENTRY:
5556 /* Getting the current syscall number. */
5557 if (handle_syscall_event (ecs) == 0)
5558 process_event_stop_test (ecs);
5559 return;
5560
5561 /* Before examining the threads further, step this thread to
5562 get it entirely out of the syscall. (We get notice of the
5563 event when the thread is just on the verge of exiting a
5564 syscall. Stepping one instruction seems to get it back
5565 into user code.) */
5566 case TARGET_WAITKIND_SYSCALL_RETURN:
5567 if (handle_syscall_event (ecs) == 0)
5568 process_event_stop_test (ecs);
5569 return;
5570
5571 case TARGET_WAITKIND_STOPPED:
5572 handle_signal_stop (ecs);
5573 return;
5574
5575 case TARGET_WAITKIND_NO_HISTORY:
5576 /* Reverse execution: target ran out of history info. */
5577
5578 /* Switch to the stopped thread. */
5579 context_switch (ecs);
5580 if (debug_infrun)
5581 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5582
5583 delete_just_stopped_threads_single_step_breakpoints ();
5584 ecs->event_thread->suspend.stop_pc
5585 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5586
5587 if (handle_stop_requested (ecs))
5588 return;
5589
5590 gdb::observers::no_history.notify ();
5591 stop_waiting (ecs);
5592 return;
5593 }
5594 }
5595
5596 /* Restart threads back to what they were trying to do back when we
5597 paused them for an in-line step-over. The EVENT_THREAD thread is
5598 ignored. */
5599
5600 static void
5601 restart_threads (struct thread_info *event_thread)
5602 {
5603 /* In case the instruction just stepped spawned a new thread. */
5604 update_thread_list ();
5605
5606 for (thread_info *tp : all_non_exited_threads ())
5607 {
5608 switch_to_thread_no_regs (tp);
5609
5610 if (tp == event_thread)
5611 {
5612 if (debug_infrun)
5613 fprintf_unfiltered (gdb_stdlog,
5614 "infrun: restart threads: "
5615 "[%s] is event thread\n",
5616 target_pid_to_str (tp->ptid).c_str ());
5617 continue;
5618 }
5619
5620 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5621 {
5622 if (debug_infrun)
5623 fprintf_unfiltered (gdb_stdlog,
5624 "infrun: restart threads: "
5625 "[%s] not meant to be running\n",
5626 target_pid_to_str (tp->ptid).c_str ());
5627 continue;
5628 }
5629
5630 if (tp->resumed)
5631 {
5632 if (debug_infrun)
5633 fprintf_unfiltered (gdb_stdlog,
5634 "infrun: restart threads: [%s] resumed\n",
5635 target_pid_to_str (tp->ptid).c_str ());
5636 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5637 continue;
5638 }
5639
5640 if (thread_is_in_step_over_chain (tp))
5641 {
5642 if (debug_infrun)
5643 fprintf_unfiltered (gdb_stdlog,
5644 "infrun: restart threads: "
5645 "[%s] needs step-over\n",
5646 target_pid_to_str (tp->ptid).c_str ());
5647 gdb_assert (!tp->resumed);
5648 continue;
5649 }
5650
5651
5652 if (tp->suspend.waitstatus_pending_p)
5653 {
5654 if (debug_infrun)
5655 fprintf_unfiltered (gdb_stdlog,
5656 "infrun: restart threads: "
5657 "[%s] has pending status\n",
5658 target_pid_to_str (tp->ptid).c_str ());
5659 tp->resumed = true;
5660 continue;
5661 }
5662
5663 gdb_assert (!tp->stop_requested);
5664
5665 /* If some thread needs to start a step-over at this point, it
5666 should still be in the step-over queue, and thus skipped
5667 above. */
5668 if (thread_still_needs_step_over (tp))
5669 {
5670 internal_error (__FILE__, __LINE__,
5671 "thread [%s] needs a step-over, but not in "
5672 "step-over queue\n",
5673 target_pid_to_str (tp->ptid).c_str ());
5674 }
5675
5676 if (currently_stepping (tp))
5677 {
5678 if (debug_infrun)
5679 fprintf_unfiltered (gdb_stdlog,
5680 "infrun: restart threads: [%s] was stepping\n",
5681 target_pid_to_str (tp->ptid).c_str ());
5682 keep_going_stepped_thread (tp);
5683 }
5684 else
5685 {
5686 struct execution_control_state ecss;
5687 struct execution_control_state *ecs = &ecss;
5688
5689 if (debug_infrun)
5690 fprintf_unfiltered (gdb_stdlog,
5691 "infrun: restart threads: [%s] continuing\n",
5692 target_pid_to_str (tp->ptid).c_str ());
5693 reset_ecs (ecs, tp);
5694 switch_to_thread (tp);
5695 keep_going_pass_signal (ecs);
5696 }
5697 }
5698 }
5699
5700 /* Callback for iterate_over_threads. Find a resumed thread that has
5701 a pending waitstatus. */
5702
5703 static int
5704 resumed_thread_with_pending_status (struct thread_info *tp,
5705 void *arg)
5706 {
5707 return (tp->resumed
5708 && tp->suspend.waitstatus_pending_p);
5709 }
5710
5711 /* Called when we get an event that may finish an in-line or
5712 out-of-line (displaced stepping) step-over started previously.
5713 Return true if the event is processed and we should go back to the
5714 event loop; false if the caller should continue processing the
5715 event. */
5716
5717 static int
5718 finish_step_over (struct execution_control_state *ecs)
5719 {
5720 int had_step_over_info;
5721
5722 displaced_step_fixup (ecs->event_thread,
5723 ecs->event_thread->suspend.stop_signal);
5724
5725 had_step_over_info = step_over_info_valid_p ();
5726
5727 if (had_step_over_info)
5728 {
5729 /* If we're stepping over a breakpoint with all threads locked,
5730 then only the thread that was stepped should be reporting
5731 back an event. */
5732 gdb_assert (ecs->event_thread->control.trap_expected);
5733
5734 clear_step_over_info ();
5735 }
5736
5737 if (!target_is_non_stop_p ())
5738 return 0;
5739
5740 /* Start a new step-over in another thread if there's one that
5741 needs it. */
5742 start_step_over ();
5743
5744 /* If we were stepping over a breakpoint before, and haven't started
5745 a new in-line step-over sequence, then restart all other threads
5746 (except the event thread). We can't do this in all-stop, as then
5747 e.g., we wouldn't be able to issue any other remote packet until
5748 these other threads stop. */
5749 if (had_step_over_info && !step_over_info_valid_p ())
5750 {
5751 struct thread_info *pending;
5752
5753 /* If we only have threads with pending statuses, the restart
5754 below won't restart any thread and so nothing re-inserts the
5755 breakpoint we just stepped over. But we need it inserted
5756 when we later process the pending events, otherwise if
5757 another thread has a pending event for this breakpoint too,
5758 we'd discard its event (because the breakpoint that
5759 originally caused the event was no longer inserted). */
5760 context_switch (ecs);
5761 insert_breakpoints ();
5762
5763 restart_threads (ecs->event_thread);
5764
5765 /* If we have events pending, go through handle_inferior_event
5766 again, picking up a pending event at random. This avoids
5767 thread starvation. */
5768
5769 /* But not if we just stepped over a watchpoint in order to let
5770 the instruction execute so we can evaluate its expression.
5771 The set of watchpoints that triggered is recorded in the
5772 breakpoint objects themselves (see bp->watchpoint_triggered).
5773 If we processed another event first, that other event could
5774 clobber this info. */
5775 if (ecs->event_thread->stepping_over_watchpoint)
5776 return 0;
5777
5778 pending = iterate_over_threads (resumed_thread_with_pending_status,
5779 NULL);
5780 if (pending != NULL)
5781 {
5782 struct thread_info *tp = ecs->event_thread;
5783 struct regcache *regcache;
5784
5785 if (debug_infrun)
5786 {
5787 fprintf_unfiltered (gdb_stdlog,
5788 "infrun: found resumed threads with "
5789 "pending events, saving status\n");
5790 }
5791
5792 gdb_assert (pending != tp);
5793
5794 /* Record the event thread's event for later. */
5795 save_waitstatus (tp, &ecs->ws);
5796 /* This was cleared early, by handle_inferior_event. Set it
5797 so this pending event is considered by
5798 do_target_wait. */
5799 tp->resumed = true;
5800
5801 gdb_assert (!tp->executing);
5802
5803 regcache = get_thread_regcache (tp);
5804 tp->suspend.stop_pc = regcache_read_pc (regcache);
5805
5806 if (debug_infrun)
5807 {
5808 fprintf_unfiltered (gdb_stdlog,
5809 "infrun: saved stop_pc=%s for %s "
5810 "(currently_stepping=%d)\n",
5811 paddress (target_gdbarch (),
5812 tp->suspend.stop_pc),
5813 target_pid_to_str (tp->ptid).c_str (),
5814 currently_stepping (tp));
5815 }
5816
5817 /* This in-line step-over finished; clear this so we won't
5818 start a new one. This is what handle_signal_stop would
5819 do, if we returned false. */
5820 tp->stepping_over_breakpoint = 0;
5821
5822 /* Wake up the event loop again. */
5823 mark_async_event_handler (infrun_async_inferior_event_token);
5824
5825 prepare_to_wait (ecs);
5826 return 1;
5827 }
5828 }
5829
5830 return 0;
5831 }
5832
5833 /* Come here when the program has stopped with a signal. */
5834
5835 static void
5836 handle_signal_stop (struct execution_control_state *ecs)
5837 {
5838 struct frame_info *frame;
5839 struct gdbarch *gdbarch;
5840 int stopped_by_watchpoint;
5841 enum stop_kind stop_soon;
5842 int random_signal;
5843
5844 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5845
5846 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5847
5848 /* Do we need to clean up the state of a thread that has
5849 completed a displaced single-step? (Doing so usually affects
5850 the PC, so do it here, before we set stop_pc.) */
5851 if (finish_step_over (ecs))
5852 return;
5853
5854 /* If we either finished a single-step or hit a breakpoint, but
5855 the user wanted this thread to be stopped, pretend we got a
5856 SIG0 (generic unsignaled stop). */
5857 if (ecs->event_thread->stop_requested
5858 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5859 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5860
5861 ecs->event_thread->suspend.stop_pc
5862 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5863
5864 if (debug_infrun)
5865 {
5866 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5867 struct gdbarch *reg_gdbarch = regcache->arch ();
5868
5869 switch_to_thread (ecs->event_thread);
5870
5871 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5872 paddress (reg_gdbarch,
5873 ecs->event_thread->suspend.stop_pc));
5874 if (target_stopped_by_watchpoint ())
5875 {
5876 CORE_ADDR addr;
5877
5878 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5879
5880 if (target_stopped_data_address (current_top_target (), &addr))
5881 fprintf_unfiltered (gdb_stdlog,
5882 "infrun: stopped data address = %s\n",
5883 paddress (reg_gdbarch, addr));
5884 else
5885 fprintf_unfiltered (gdb_stdlog,
5886 "infrun: (no data address available)\n");
5887 }
5888 }
5889
5890 /* This is originated from start_remote(), start_inferior() and
5891 shared libraries hook functions. */
5892 stop_soon = get_inferior_stop_soon (ecs);
5893 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5894 {
5895 context_switch (ecs);
5896 if (debug_infrun)
5897 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5898 stop_print_frame = 1;
5899 stop_waiting (ecs);
5900 return;
5901 }
5902
5903 /* This originates from attach_command(). We need to overwrite
5904 the stop_signal here, because some kernels don't ignore a
5905 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5906 See more comments in inferior.h. On the other hand, if we
5907 get a non-SIGSTOP, report it to the user - assume the backend
5908 will handle the SIGSTOP if it should show up later.
5909
5910 Also consider that the attach is complete when we see a
5911 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5912 target extended-remote report it instead of a SIGSTOP
5913 (e.g. gdbserver). We already rely on SIGTRAP being our
5914 signal, so this is no exception.
5915
5916 Also consider that the attach is complete when we see a
5917 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5918 the target to stop all threads of the inferior, in case the
5919 low level attach operation doesn't stop them implicitly. If
5920 they weren't stopped implicitly, then the stub will report a
5921 GDB_SIGNAL_0, meaning: stopped for no particular reason
5922 other than GDB's request. */
5923 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5924 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5925 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5926 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5927 {
5928 stop_print_frame = 1;
5929 stop_waiting (ecs);
5930 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5931 return;
5932 }
5933
5934 /* See if something interesting happened to the non-current thread. If
5935 so, then switch to that thread. */
5936 if (ecs->ptid != inferior_ptid)
5937 {
5938 if (debug_infrun)
5939 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5940
5941 context_switch (ecs);
5942
5943 if (deprecated_context_hook)
5944 deprecated_context_hook (ecs->event_thread->global_num);
5945 }
5946
5947 /* At this point, get hold of the now-current thread's frame. */
5948 frame = get_current_frame ();
5949 gdbarch = get_frame_arch (frame);
5950
5951 /* Pull the single step breakpoints out of the target. */
5952 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5953 {
5954 struct regcache *regcache;
5955 CORE_ADDR pc;
5956
5957 regcache = get_thread_regcache (ecs->event_thread);
5958 const address_space *aspace = regcache->aspace ();
5959
5960 pc = regcache_read_pc (regcache);
5961
5962 /* However, before doing so, if this single-step breakpoint was
5963 actually for another thread, set this thread up for moving
5964 past it. */
5965 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5966 aspace, pc))
5967 {
5968 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5969 {
5970 if (debug_infrun)
5971 {
5972 fprintf_unfiltered (gdb_stdlog,
5973 "infrun: [%s] hit another thread's "
5974 "single-step breakpoint\n",
5975 target_pid_to_str (ecs->ptid).c_str ());
5976 }
5977 ecs->hit_singlestep_breakpoint = 1;
5978 }
5979 }
5980 else
5981 {
5982 if (debug_infrun)
5983 {
5984 fprintf_unfiltered (gdb_stdlog,
5985 "infrun: [%s] hit its "
5986 "single-step breakpoint\n",
5987 target_pid_to_str (ecs->ptid).c_str ());
5988 }
5989 }
5990 }
5991 delete_just_stopped_threads_single_step_breakpoints ();
5992
5993 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5994 && ecs->event_thread->control.trap_expected
5995 && ecs->event_thread->stepping_over_watchpoint)
5996 stopped_by_watchpoint = 0;
5997 else
5998 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5999
6000 /* If necessary, step over this watchpoint. We'll be back to display
6001 it in a moment. */
6002 if (stopped_by_watchpoint
6003 && (target_have_steppable_watchpoint
6004 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
6005 {
6006 /* At this point, we are stopped at an instruction which has
6007 attempted to write to a piece of memory under control of
6008 a watchpoint. The instruction hasn't actually executed
6009 yet. If we were to evaluate the watchpoint expression
6010 now, we would get the old value, and therefore no change
6011 would seem to have occurred.
6012
6013 In order to make watchpoints work `right', we really need
6014 to complete the memory write, and then evaluate the
6015 watchpoint expression. We do this by single-stepping the
6016 target.
6017
6018 It may not be necessary to disable the watchpoint to step over
6019 it. For example, the PA can (with some kernel cooperation)
6020 single step over a watchpoint without disabling the watchpoint.
6021
6022 It is far more common to need to disable a watchpoint to step
6023 the inferior over it. If we have non-steppable watchpoints,
6024 we must disable the current watchpoint; it's simplest to
6025 disable all watchpoints.
6026
6027 Any breakpoint at PC must also be stepped over -- if there's
6028 one, it will have already triggered before the watchpoint
6029 triggered, and we either already reported it to the user, or
6030 it didn't cause a stop and we called keep_going. In either
6031 case, if there was a breakpoint at PC, we must be trying to
6032 step past it. */
6033 ecs->event_thread->stepping_over_watchpoint = 1;
6034 keep_going (ecs);
6035 return;
6036 }
6037
6038 ecs->event_thread->stepping_over_breakpoint = 0;
6039 ecs->event_thread->stepping_over_watchpoint = 0;
6040 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
6041 ecs->event_thread->control.stop_step = 0;
6042 stop_print_frame = 1;
6043 stopped_by_random_signal = 0;
6044 bpstat stop_chain = NULL;
6045
6046 /* Hide inlined functions starting here, unless we just performed stepi or
6047 nexti. After stepi and nexti, always show the innermost frame (not any
6048 inline function call sites). */
6049 if (ecs->event_thread->control.step_range_end != 1)
6050 {
6051 const address_space *aspace
6052 = get_thread_regcache (ecs->event_thread)->aspace ();
6053
6054 /* skip_inline_frames is expensive, so we avoid it if we can
6055 determine that the address is one where functions cannot have
6056 been inlined. This improves performance with inferiors that
6057 load a lot of shared libraries, because the solib event
6058 breakpoint is defined as the address of a function (i.e. not
6059 inline). Note that we have to check the previous PC as well
6060 as the current one to catch cases when we have just
6061 single-stepped off a breakpoint prior to reinstating it.
6062 Note that we're assuming that the code we single-step to is
6063 not inline, but that's not definitive: there's nothing
6064 preventing the event breakpoint function from containing
6065 inlined code, and the single-step ending up there. If the
6066 user had set a breakpoint on that inlined code, the missing
6067 skip_inline_frames call would break things. Fortunately
6068 that's an extremely unlikely scenario. */
6069 if (!pc_at_non_inline_function (aspace,
6070 ecs->event_thread->suspend.stop_pc,
6071 &ecs->ws)
6072 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6073 && ecs->event_thread->control.trap_expected
6074 && pc_at_non_inline_function (aspace,
6075 ecs->event_thread->prev_pc,
6076 &ecs->ws)))
6077 {
6078 stop_chain = build_bpstat_chain (aspace,
6079 ecs->event_thread->suspend.stop_pc,
6080 &ecs->ws);
6081 skip_inline_frames (ecs->event_thread, stop_chain);
6082
6083 /* Re-fetch current thread's frame in case that invalidated
6084 the frame cache. */
6085 frame = get_current_frame ();
6086 gdbarch = get_frame_arch (frame);
6087 }
6088 }
6089
6090 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6091 && ecs->event_thread->control.trap_expected
6092 && gdbarch_single_step_through_delay_p (gdbarch)
6093 && currently_stepping (ecs->event_thread))
6094 {
6095 /* We're trying to step off a breakpoint. Turns out that we're
6096 also on an instruction that needs to be stepped multiple
6097 times before it's been fully executing. E.g., architectures
6098 with a delay slot. It needs to be stepped twice, once for
6099 the instruction and once for the delay slot. */
6100 int step_through_delay
6101 = gdbarch_single_step_through_delay (gdbarch, frame);
6102
6103 if (debug_infrun && step_through_delay)
6104 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
6105 if (ecs->event_thread->control.step_range_end == 0
6106 && step_through_delay)
6107 {
6108 /* The user issued a continue when stopped at a breakpoint.
6109 Set up for another trap and get out of here. */
6110 ecs->event_thread->stepping_over_breakpoint = 1;
6111 keep_going (ecs);
6112 return;
6113 }
6114 else if (step_through_delay)
6115 {
6116 /* The user issued a step when stopped at a breakpoint.
6117 Maybe we should stop, maybe we should not - the delay
6118 slot *might* correspond to a line of source. In any
6119 case, don't decide that here, just set
6120 ecs->stepping_over_breakpoint, making sure we
6121 single-step again before breakpoints are re-inserted. */
6122 ecs->event_thread->stepping_over_breakpoint = 1;
6123 }
6124 }
6125
6126 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6127 handles this event. */
6128 ecs->event_thread->control.stop_bpstat
6129 = bpstat_stop_status (get_current_regcache ()->aspace (),
6130 ecs->event_thread->suspend.stop_pc,
6131 ecs->event_thread, &ecs->ws, stop_chain);
6132
6133 /* Following in case break condition called a
6134 function. */
6135 stop_print_frame = 1;
6136
6137 /* This is where we handle "moribund" watchpoints. Unlike
6138 software breakpoints traps, hardware watchpoint traps are
6139 always distinguishable from random traps. If no high-level
6140 watchpoint is associated with the reported stop data address
6141 anymore, then the bpstat does not explain the signal ---
6142 simply make sure to ignore it if `stopped_by_watchpoint' is
6143 set. */
6144
6145 if (debug_infrun
6146 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6147 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6148 GDB_SIGNAL_TRAP)
6149 && stopped_by_watchpoint)
6150 fprintf_unfiltered (gdb_stdlog,
6151 "infrun: no user watchpoint explains "
6152 "watchpoint SIGTRAP, ignoring\n");
6153
6154 /* NOTE: cagney/2003-03-29: These checks for a random signal
6155 at one stage in the past included checks for an inferior
6156 function call's call dummy's return breakpoint. The original
6157 comment, that went with the test, read:
6158
6159 ``End of a stack dummy. Some systems (e.g. Sony news) give
6160 another signal besides SIGTRAP, so check here as well as
6161 above.''
6162
6163 If someone ever tries to get call dummys on a
6164 non-executable stack to work (where the target would stop
6165 with something like a SIGSEGV), then those tests might need
6166 to be re-instated. Given, however, that the tests were only
6167 enabled when momentary breakpoints were not being used, I
6168 suspect that it won't be the case.
6169
6170 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6171 be necessary for call dummies on a non-executable stack on
6172 SPARC. */
6173
6174 /* See if the breakpoints module can explain the signal. */
6175 random_signal
6176 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6177 ecs->event_thread->suspend.stop_signal);
6178
6179 /* Maybe this was a trap for a software breakpoint that has since
6180 been removed. */
6181 if (random_signal && target_stopped_by_sw_breakpoint ())
6182 {
6183 if (gdbarch_program_breakpoint_here_p (gdbarch,
6184 ecs->event_thread->suspend.stop_pc))
6185 {
6186 struct regcache *regcache;
6187 int decr_pc;
6188
6189 /* Re-adjust PC to what the program would see if GDB was not
6190 debugging it. */
6191 regcache = get_thread_regcache (ecs->event_thread);
6192 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6193 if (decr_pc != 0)
6194 {
6195 gdb::optional<scoped_restore_tmpl<int>>
6196 restore_operation_disable;
6197
6198 if (record_full_is_used ())
6199 restore_operation_disable.emplace
6200 (record_full_gdb_operation_disable_set ());
6201
6202 regcache_write_pc (regcache,
6203 ecs->event_thread->suspend.stop_pc + decr_pc);
6204 }
6205 }
6206 else
6207 {
6208 /* A delayed software breakpoint event. Ignore the trap. */
6209 if (debug_infrun)
6210 fprintf_unfiltered (gdb_stdlog,
6211 "infrun: delayed software breakpoint "
6212 "trap, ignoring\n");
6213 random_signal = 0;
6214 }
6215 }
6216
6217 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6218 has since been removed. */
6219 if (random_signal && target_stopped_by_hw_breakpoint ())
6220 {
6221 /* A delayed hardware breakpoint event. Ignore the trap. */
6222 if (debug_infrun)
6223 fprintf_unfiltered (gdb_stdlog,
6224 "infrun: delayed hardware breakpoint/watchpoint "
6225 "trap, ignoring\n");
6226 random_signal = 0;
6227 }
6228
6229 /* If not, perhaps stepping/nexting can. */
6230 if (random_signal)
6231 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6232 && currently_stepping (ecs->event_thread));
6233
6234 /* Perhaps the thread hit a single-step breakpoint of _another_
6235 thread. Single-step breakpoints are transparent to the
6236 breakpoints module. */
6237 if (random_signal)
6238 random_signal = !ecs->hit_singlestep_breakpoint;
6239
6240 /* No? Perhaps we got a moribund watchpoint. */
6241 if (random_signal)
6242 random_signal = !stopped_by_watchpoint;
6243
6244 /* Always stop if the user explicitly requested this thread to
6245 remain stopped. */
6246 if (ecs->event_thread->stop_requested)
6247 {
6248 random_signal = 1;
6249 if (debug_infrun)
6250 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6251 }
6252
6253 /* For the program's own signals, act according to
6254 the signal handling tables. */
6255
6256 if (random_signal)
6257 {
6258 /* Signal not for debugging purposes. */
6259 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
6260 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6261
6262 if (debug_infrun)
6263 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6264 gdb_signal_to_symbol_string (stop_signal));
6265
6266 stopped_by_random_signal = 1;
6267
6268 /* Always stop on signals if we're either just gaining control
6269 of the program, or the user explicitly requested this thread
6270 to remain stopped. */
6271 if (stop_soon != NO_STOP_QUIETLY
6272 || ecs->event_thread->stop_requested
6273 || (!inf->detaching
6274 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6275 {
6276 stop_waiting (ecs);
6277 return;
6278 }
6279
6280 /* Notify observers the signal has "handle print" set. Note we
6281 returned early above if stopping; normal_stop handles the
6282 printing in that case. */
6283 if (signal_print[ecs->event_thread->suspend.stop_signal])
6284 {
6285 /* The signal table tells us to print about this signal. */
6286 target_terminal::ours_for_output ();
6287 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
6288 target_terminal::inferior ();
6289 }
6290
6291 /* Clear the signal if it should not be passed. */
6292 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6293 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6294
6295 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
6296 && ecs->event_thread->control.trap_expected
6297 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6298 {
6299 /* We were just starting a new sequence, attempting to
6300 single-step off of a breakpoint and expecting a SIGTRAP.
6301 Instead this signal arrives. This signal will take us out
6302 of the stepping range so GDB needs to remember to, when
6303 the signal handler returns, resume stepping off that
6304 breakpoint. */
6305 /* To simplify things, "continue" is forced to use the same
6306 code paths as single-step - set a breakpoint at the
6307 signal return address and then, once hit, step off that
6308 breakpoint. */
6309 if (debug_infrun)
6310 fprintf_unfiltered (gdb_stdlog,
6311 "infrun: signal arrived while stepping over "
6312 "breakpoint\n");
6313
6314 insert_hp_step_resume_breakpoint_at_frame (frame);
6315 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6316 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6317 ecs->event_thread->control.trap_expected = 0;
6318
6319 /* If we were nexting/stepping some other thread, switch to
6320 it, so that we don't continue it, losing control. */
6321 if (!switch_back_to_stepped_thread (ecs))
6322 keep_going (ecs);
6323 return;
6324 }
6325
6326 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6327 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6328 ecs->event_thread)
6329 || ecs->event_thread->control.step_range_end == 1)
6330 && frame_id_eq (get_stack_frame_id (frame),
6331 ecs->event_thread->control.step_stack_frame_id)
6332 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6333 {
6334 /* The inferior is about to take a signal that will take it
6335 out of the single step range. Set a breakpoint at the
6336 current PC (which is presumably where the signal handler
6337 will eventually return) and then allow the inferior to
6338 run free.
6339
6340 Note that this is only needed for a signal delivered
6341 while in the single-step range. Nested signals aren't a
6342 problem as they eventually all return. */
6343 if (debug_infrun)
6344 fprintf_unfiltered (gdb_stdlog,
6345 "infrun: signal may take us out of "
6346 "single-step range\n");
6347
6348 clear_step_over_info ();
6349 insert_hp_step_resume_breakpoint_at_frame (frame);
6350 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6351 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6352 ecs->event_thread->control.trap_expected = 0;
6353 keep_going (ecs);
6354 return;
6355 }
6356
6357 /* Note: step_resume_breakpoint may be non-NULL. This occurs
6358 when either there's a nested signal, or when there's a
6359 pending signal enabled just as the signal handler returns
6360 (leaving the inferior at the step-resume-breakpoint without
6361 actually executing it). Either way continue until the
6362 breakpoint is really hit. */
6363
6364 if (!switch_back_to_stepped_thread (ecs))
6365 {
6366 if (debug_infrun)
6367 fprintf_unfiltered (gdb_stdlog,
6368 "infrun: random signal, keep going\n");
6369
6370 keep_going (ecs);
6371 }
6372 return;
6373 }
6374
6375 process_event_stop_test (ecs);
6376 }
6377
6378 /* Come here when we've got some debug event / signal we can explain
6379 (IOW, not a random signal), and test whether it should cause a
6380 stop, or whether we should resume the inferior (transparently).
6381 E.g., could be a breakpoint whose condition evaluates false; we
6382 could be still stepping within the line; etc. */
6383
6384 static void
6385 process_event_stop_test (struct execution_control_state *ecs)
6386 {
6387 struct symtab_and_line stop_pc_sal;
6388 struct frame_info *frame;
6389 struct gdbarch *gdbarch;
6390 CORE_ADDR jmp_buf_pc;
6391 struct bpstat_what what;
6392
6393 /* Handle cases caused by hitting a breakpoint. */
6394
6395 frame = get_current_frame ();
6396 gdbarch = get_frame_arch (frame);
6397
6398 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6399
6400 if (what.call_dummy)
6401 {
6402 stop_stack_dummy = what.call_dummy;
6403 }
6404
6405 /* A few breakpoint types have callbacks associated (e.g.,
6406 bp_jit_event). Run them now. */
6407 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6408
6409 /* If we hit an internal event that triggers symbol changes, the
6410 current frame will be invalidated within bpstat_what (e.g., if we
6411 hit an internal solib event). Re-fetch it. */
6412 frame = get_current_frame ();
6413 gdbarch = get_frame_arch (frame);
6414
6415 switch (what.main_action)
6416 {
6417 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6418 /* If we hit the breakpoint at longjmp while stepping, we
6419 install a momentary breakpoint at the target of the
6420 jmp_buf. */
6421
6422 if (debug_infrun)
6423 fprintf_unfiltered (gdb_stdlog,
6424 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6425
6426 ecs->event_thread->stepping_over_breakpoint = 1;
6427
6428 if (what.is_longjmp)
6429 {
6430 struct value *arg_value;
6431
6432 /* If we set the longjmp breakpoint via a SystemTap probe,
6433 then use it to extract the arguments. The destination PC
6434 is the third argument to the probe. */
6435 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6436 if (arg_value)
6437 {
6438 jmp_buf_pc = value_as_address (arg_value);
6439 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6440 }
6441 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6442 || !gdbarch_get_longjmp_target (gdbarch,
6443 frame, &jmp_buf_pc))
6444 {
6445 if (debug_infrun)
6446 fprintf_unfiltered (gdb_stdlog,
6447 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6448 "(!gdbarch_get_longjmp_target)\n");
6449 keep_going (ecs);
6450 return;
6451 }
6452
6453 /* Insert a breakpoint at resume address. */
6454 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6455 }
6456 else
6457 check_exception_resume (ecs, frame);
6458 keep_going (ecs);
6459 return;
6460
6461 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6462 {
6463 struct frame_info *init_frame;
6464
6465 /* There are several cases to consider.
6466
6467 1. The initiating frame no longer exists. In this case we
6468 must stop, because the exception or longjmp has gone too
6469 far.
6470
6471 2. The initiating frame exists, and is the same as the
6472 current frame. We stop, because the exception or longjmp
6473 has been caught.
6474
6475 3. The initiating frame exists and is different from the
6476 current frame. This means the exception or longjmp has
6477 been caught beneath the initiating frame, so keep going.
6478
6479 4. longjmp breakpoint has been placed just to protect
6480 against stale dummy frames and user is not interested in
6481 stopping around longjmps. */
6482
6483 if (debug_infrun)
6484 fprintf_unfiltered (gdb_stdlog,
6485 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6486
6487 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6488 != NULL);
6489 delete_exception_resume_breakpoint (ecs->event_thread);
6490
6491 if (what.is_longjmp)
6492 {
6493 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6494
6495 if (!frame_id_p (ecs->event_thread->initiating_frame))
6496 {
6497 /* Case 4. */
6498 keep_going (ecs);
6499 return;
6500 }
6501 }
6502
6503 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6504
6505 if (init_frame)
6506 {
6507 struct frame_id current_id
6508 = get_frame_id (get_current_frame ());
6509 if (frame_id_eq (current_id,
6510 ecs->event_thread->initiating_frame))
6511 {
6512 /* Case 2. Fall through. */
6513 }
6514 else
6515 {
6516 /* Case 3. */
6517 keep_going (ecs);
6518 return;
6519 }
6520 }
6521
6522 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6523 exists. */
6524 delete_step_resume_breakpoint (ecs->event_thread);
6525
6526 end_stepping_range (ecs);
6527 }
6528 return;
6529
6530 case BPSTAT_WHAT_SINGLE:
6531 if (debug_infrun)
6532 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6533 ecs->event_thread->stepping_over_breakpoint = 1;
6534 /* Still need to check other stuff, at least the case where we
6535 are stepping and step out of the right range. */
6536 break;
6537
6538 case BPSTAT_WHAT_STEP_RESUME:
6539 if (debug_infrun)
6540 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6541
6542 delete_step_resume_breakpoint (ecs->event_thread);
6543 if (ecs->event_thread->control.proceed_to_finish
6544 && execution_direction == EXEC_REVERSE)
6545 {
6546 struct thread_info *tp = ecs->event_thread;
6547
6548 /* We are finishing a function in reverse, and just hit the
6549 step-resume breakpoint at the start address of the
6550 function, and we're almost there -- just need to back up
6551 by one more single-step, which should take us back to the
6552 function call. */
6553 tp->control.step_range_start = tp->control.step_range_end = 1;
6554 keep_going (ecs);
6555 return;
6556 }
6557 fill_in_stop_func (gdbarch, ecs);
6558 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6559 && execution_direction == EXEC_REVERSE)
6560 {
6561 /* We are stepping over a function call in reverse, and just
6562 hit the step-resume breakpoint at the start address of
6563 the function. Go back to single-stepping, which should
6564 take us back to the function call. */
6565 ecs->event_thread->stepping_over_breakpoint = 1;
6566 keep_going (ecs);
6567 return;
6568 }
6569 break;
6570
6571 case BPSTAT_WHAT_STOP_NOISY:
6572 if (debug_infrun)
6573 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6574 stop_print_frame = 1;
6575
6576 /* Assume the thread stopped for a breapoint. We'll still check
6577 whether a/the breakpoint is there when the thread is next
6578 resumed. */
6579 ecs->event_thread->stepping_over_breakpoint = 1;
6580
6581 stop_waiting (ecs);
6582 return;
6583
6584 case BPSTAT_WHAT_STOP_SILENT:
6585 if (debug_infrun)
6586 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6587 stop_print_frame = 0;
6588
6589 /* Assume the thread stopped for a breapoint. We'll still check
6590 whether a/the breakpoint is there when the thread is next
6591 resumed. */
6592 ecs->event_thread->stepping_over_breakpoint = 1;
6593 stop_waiting (ecs);
6594 return;
6595
6596 case BPSTAT_WHAT_HP_STEP_RESUME:
6597 if (debug_infrun)
6598 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6599
6600 delete_step_resume_breakpoint (ecs->event_thread);
6601 if (ecs->event_thread->step_after_step_resume_breakpoint)
6602 {
6603 /* Back when the step-resume breakpoint was inserted, we
6604 were trying to single-step off a breakpoint. Go back to
6605 doing that. */
6606 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6607 ecs->event_thread->stepping_over_breakpoint = 1;
6608 keep_going (ecs);
6609 return;
6610 }
6611 break;
6612
6613 case BPSTAT_WHAT_KEEP_CHECKING:
6614 break;
6615 }
6616
6617 /* If we stepped a permanent breakpoint and we had a high priority
6618 step-resume breakpoint for the address we stepped, but we didn't
6619 hit it, then we must have stepped into the signal handler. The
6620 step-resume was only necessary to catch the case of _not_
6621 stepping into the handler, so delete it, and fall through to
6622 checking whether the step finished. */
6623 if (ecs->event_thread->stepped_breakpoint)
6624 {
6625 struct breakpoint *sr_bp
6626 = ecs->event_thread->control.step_resume_breakpoint;
6627
6628 if (sr_bp != NULL
6629 && sr_bp->loc->permanent
6630 && sr_bp->type == bp_hp_step_resume
6631 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6632 {
6633 if (debug_infrun)
6634 fprintf_unfiltered (gdb_stdlog,
6635 "infrun: stepped permanent breakpoint, stopped in "
6636 "handler\n");
6637 delete_step_resume_breakpoint (ecs->event_thread);
6638 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6639 }
6640 }
6641
6642 /* We come here if we hit a breakpoint but should not stop for it.
6643 Possibly we also were stepping and should stop for that. So fall
6644 through and test for stepping. But, if not stepping, do not
6645 stop. */
6646
6647 /* In all-stop mode, if we're currently stepping but have stopped in
6648 some other thread, we need to switch back to the stepped thread. */
6649 if (switch_back_to_stepped_thread (ecs))
6650 return;
6651
6652 if (ecs->event_thread->control.step_resume_breakpoint)
6653 {
6654 if (debug_infrun)
6655 fprintf_unfiltered (gdb_stdlog,
6656 "infrun: step-resume breakpoint is inserted\n");
6657
6658 /* Having a step-resume breakpoint overrides anything
6659 else having to do with stepping commands until
6660 that breakpoint is reached. */
6661 keep_going (ecs);
6662 return;
6663 }
6664
6665 if (ecs->event_thread->control.step_range_end == 0)
6666 {
6667 if (debug_infrun)
6668 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6669 /* Likewise if we aren't even stepping. */
6670 keep_going (ecs);
6671 return;
6672 }
6673
6674 /* Re-fetch current thread's frame in case the code above caused
6675 the frame cache to be re-initialized, making our FRAME variable
6676 a dangling pointer. */
6677 frame = get_current_frame ();
6678 gdbarch = get_frame_arch (frame);
6679 fill_in_stop_func (gdbarch, ecs);
6680
6681 /* If stepping through a line, keep going if still within it.
6682
6683 Note that step_range_end is the address of the first instruction
6684 beyond the step range, and NOT the address of the last instruction
6685 within it!
6686
6687 Note also that during reverse execution, we may be stepping
6688 through a function epilogue and therefore must detect when
6689 the current-frame changes in the middle of a line. */
6690
6691 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6692 ecs->event_thread)
6693 && (execution_direction != EXEC_REVERSE
6694 || frame_id_eq (get_frame_id (frame),
6695 ecs->event_thread->control.step_frame_id)))
6696 {
6697 if (debug_infrun)
6698 fprintf_unfiltered
6699 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6700 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6701 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6702
6703 /* Tentatively re-enable range stepping; `resume' disables it if
6704 necessary (e.g., if we're stepping over a breakpoint or we
6705 have software watchpoints). */
6706 ecs->event_thread->control.may_range_step = 1;
6707
6708 /* When stepping backward, stop at beginning of line range
6709 (unless it's the function entry point, in which case
6710 keep going back to the call point). */
6711 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6712 if (stop_pc == ecs->event_thread->control.step_range_start
6713 && stop_pc != ecs->stop_func_start
6714 && execution_direction == EXEC_REVERSE)
6715 end_stepping_range (ecs);
6716 else
6717 keep_going (ecs);
6718
6719 return;
6720 }
6721
6722 /* We stepped out of the stepping range. */
6723
6724 /* If we are stepping at the source level and entered the runtime
6725 loader dynamic symbol resolution code...
6726
6727 EXEC_FORWARD: we keep on single stepping until we exit the run
6728 time loader code and reach the callee's address.
6729
6730 EXEC_REVERSE: we've already executed the callee (backward), and
6731 the runtime loader code is handled just like any other
6732 undebuggable function call. Now we need only keep stepping
6733 backward through the trampoline code, and that's handled further
6734 down, so there is nothing for us to do here. */
6735
6736 if (execution_direction != EXEC_REVERSE
6737 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6738 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6739 {
6740 CORE_ADDR pc_after_resolver =
6741 gdbarch_skip_solib_resolver (gdbarch,
6742 ecs->event_thread->suspend.stop_pc);
6743
6744 if (debug_infrun)
6745 fprintf_unfiltered (gdb_stdlog,
6746 "infrun: stepped into dynsym resolve code\n");
6747
6748 if (pc_after_resolver)
6749 {
6750 /* Set up a step-resume breakpoint at the address
6751 indicated by SKIP_SOLIB_RESOLVER. */
6752 symtab_and_line sr_sal;
6753 sr_sal.pc = pc_after_resolver;
6754 sr_sal.pspace = get_frame_program_space (frame);
6755
6756 insert_step_resume_breakpoint_at_sal (gdbarch,
6757 sr_sal, null_frame_id);
6758 }
6759
6760 keep_going (ecs);
6761 return;
6762 }
6763
6764 /* Step through an indirect branch thunk. */
6765 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6766 && gdbarch_in_indirect_branch_thunk (gdbarch,
6767 ecs->event_thread->suspend.stop_pc))
6768 {
6769 if (debug_infrun)
6770 fprintf_unfiltered (gdb_stdlog,
6771 "infrun: stepped into indirect branch thunk\n");
6772 keep_going (ecs);
6773 return;
6774 }
6775
6776 if (ecs->event_thread->control.step_range_end != 1
6777 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6778 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6779 && get_frame_type (frame) == SIGTRAMP_FRAME)
6780 {
6781 if (debug_infrun)
6782 fprintf_unfiltered (gdb_stdlog,
6783 "infrun: stepped into signal trampoline\n");
6784 /* The inferior, while doing a "step" or "next", has ended up in
6785 a signal trampoline (either by a signal being delivered or by
6786 the signal handler returning). Just single-step until the
6787 inferior leaves the trampoline (either by calling the handler
6788 or returning). */
6789 keep_going (ecs);
6790 return;
6791 }
6792
6793 /* If we're in the return path from a shared library trampoline,
6794 we want to proceed through the trampoline when stepping. */
6795 /* macro/2012-04-25: This needs to come before the subroutine
6796 call check below as on some targets return trampolines look
6797 like subroutine calls (MIPS16 return thunks). */
6798 if (gdbarch_in_solib_return_trampoline (gdbarch,
6799 ecs->event_thread->suspend.stop_pc,
6800 ecs->stop_func_name)
6801 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6802 {
6803 /* Determine where this trampoline returns. */
6804 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6805 CORE_ADDR real_stop_pc
6806 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6807
6808 if (debug_infrun)
6809 fprintf_unfiltered (gdb_stdlog,
6810 "infrun: stepped into solib return tramp\n");
6811
6812 /* Only proceed through if we know where it's going. */
6813 if (real_stop_pc)
6814 {
6815 /* And put the step-breakpoint there and go until there. */
6816 symtab_and_line sr_sal;
6817 sr_sal.pc = real_stop_pc;
6818 sr_sal.section = find_pc_overlay (sr_sal.pc);
6819 sr_sal.pspace = get_frame_program_space (frame);
6820
6821 /* Do not specify what the fp should be when we stop since
6822 on some machines the prologue is where the new fp value
6823 is established. */
6824 insert_step_resume_breakpoint_at_sal (gdbarch,
6825 sr_sal, null_frame_id);
6826
6827 /* Restart without fiddling with the step ranges or
6828 other state. */
6829 keep_going (ecs);
6830 return;
6831 }
6832 }
6833
6834 /* Check for subroutine calls. The check for the current frame
6835 equalling the step ID is not necessary - the check of the
6836 previous frame's ID is sufficient - but it is a common case and
6837 cheaper than checking the previous frame's ID.
6838
6839 NOTE: frame_id_eq will never report two invalid frame IDs as
6840 being equal, so to get into this block, both the current and
6841 previous frame must have valid frame IDs. */
6842 /* The outer_frame_id check is a heuristic to detect stepping
6843 through startup code. If we step over an instruction which
6844 sets the stack pointer from an invalid value to a valid value,
6845 we may detect that as a subroutine call from the mythical
6846 "outermost" function. This could be fixed by marking
6847 outermost frames as !stack_p,code_p,special_p. Then the
6848 initial outermost frame, before sp was valid, would
6849 have code_addr == &_start. See the comment in frame_id_eq
6850 for more. */
6851 if (!frame_id_eq (get_stack_frame_id (frame),
6852 ecs->event_thread->control.step_stack_frame_id)
6853 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6854 ecs->event_thread->control.step_stack_frame_id)
6855 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6856 outer_frame_id)
6857 || (ecs->event_thread->control.step_start_function
6858 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6859 {
6860 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6861 CORE_ADDR real_stop_pc;
6862
6863 if (debug_infrun)
6864 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6865
6866 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6867 {
6868 /* I presume that step_over_calls is only 0 when we're
6869 supposed to be stepping at the assembly language level
6870 ("stepi"). Just stop. */
6871 /* And this works the same backward as frontward. MVS */
6872 end_stepping_range (ecs);
6873 return;
6874 }
6875
6876 /* Reverse stepping through solib trampolines. */
6877
6878 if (execution_direction == EXEC_REVERSE
6879 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6880 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6881 || (ecs->stop_func_start == 0
6882 && in_solib_dynsym_resolve_code (stop_pc))))
6883 {
6884 /* Any solib trampoline code can be handled in reverse
6885 by simply continuing to single-step. We have already
6886 executed the solib function (backwards), and a few
6887 steps will take us back through the trampoline to the
6888 caller. */
6889 keep_going (ecs);
6890 return;
6891 }
6892
6893 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6894 {
6895 /* We're doing a "next".
6896
6897 Normal (forward) execution: set a breakpoint at the
6898 callee's return address (the address at which the caller
6899 will resume).
6900
6901 Reverse (backward) execution. set the step-resume
6902 breakpoint at the start of the function that we just
6903 stepped into (backwards), and continue to there. When we
6904 get there, we'll need to single-step back to the caller. */
6905
6906 if (execution_direction == EXEC_REVERSE)
6907 {
6908 /* If we're already at the start of the function, we've either
6909 just stepped backward into a single instruction function,
6910 or stepped back out of a signal handler to the first instruction
6911 of the function. Just keep going, which will single-step back
6912 to the caller. */
6913 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6914 {
6915 /* Normal function call return (static or dynamic). */
6916 symtab_and_line sr_sal;
6917 sr_sal.pc = ecs->stop_func_start;
6918 sr_sal.pspace = get_frame_program_space (frame);
6919 insert_step_resume_breakpoint_at_sal (gdbarch,
6920 sr_sal, null_frame_id);
6921 }
6922 }
6923 else
6924 insert_step_resume_breakpoint_at_caller (frame);
6925
6926 keep_going (ecs);
6927 return;
6928 }
6929
6930 /* If we are in a function call trampoline (a stub between the
6931 calling routine and the real function), locate the real
6932 function. That's what tells us (a) whether we want to step
6933 into it at all, and (b) what prologue we want to run to the
6934 end of, if we do step into it. */
6935 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6936 if (real_stop_pc == 0)
6937 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6938 if (real_stop_pc != 0)
6939 ecs->stop_func_start = real_stop_pc;
6940
6941 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6942 {
6943 symtab_and_line sr_sal;
6944 sr_sal.pc = ecs->stop_func_start;
6945 sr_sal.pspace = get_frame_program_space (frame);
6946
6947 insert_step_resume_breakpoint_at_sal (gdbarch,
6948 sr_sal, null_frame_id);
6949 keep_going (ecs);
6950 return;
6951 }
6952
6953 /* If we have line number information for the function we are
6954 thinking of stepping into and the function isn't on the skip
6955 list, step into it.
6956
6957 If there are several symtabs at that PC (e.g. with include
6958 files), just want to know whether *any* of them have line
6959 numbers. find_pc_line handles this. */
6960 {
6961 struct symtab_and_line tmp_sal;
6962
6963 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6964 if (tmp_sal.line != 0
6965 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6966 tmp_sal)
6967 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
6968 {
6969 if (execution_direction == EXEC_REVERSE)
6970 handle_step_into_function_backward (gdbarch, ecs);
6971 else
6972 handle_step_into_function (gdbarch, ecs);
6973 return;
6974 }
6975 }
6976
6977 /* If we have no line number and the step-stop-if-no-debug is
6978 set, we stop the step so that the user has a chance to switch
6979 in assembly mode. */
6980 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6981 && step_stop_if_no_debug)
6982 {
6983 end_stepping_range (ecs);
6984 return;
6985 }
6986
6987 if (execution_direction == EXEC_REVERSE)
6988 {
6989 /* If we're already at the start of the function, we've either just
6990 stepped backward into a single instruction function without line
6991 number info, or stepped back out of a signal handler to the first
6992 instruction of the function without line number info. Just keep
6993 going, which will single-step back to the caller. */
6994 if (ecs->stop_func_start != stop_pc)
6995 {
6996 /* Set a breakpoint at callee's start address.
6997 From there we can step once and be back in the caller. */
6998 symtab_and_line sr_sal;
6999 sr_sal.pc = ecs->stop_func_start;
7000 sr_sal.pspace = get_frame_program_space (frame);
7001 insert_step_resume_breakpoint_at_sal (gdbarch,
7002 sr_sal, null_frame_id);
7003 }
7004 }
7005 else
7006 /* Set a breakpoint at callee's return address (the address
7007 at which the caller will resume). */
7008 insert_step_resume_breakpoint_at_caller (frame);
7009
7010 keep_going (ecs);
7011 return;
7012 }
7013
7014 /* Reverse stepping through solib trampolines. */
7015
7016 if (execution_direction == EXEC_REVERSE
7017 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
7018 {
7019 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
7020
7021 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
7022 || (ecs->stop_func_start == 0
7023 && in_solib_dynsym_resolve_code (stop_pc)))
7024 {
7025 /* Any solib trampoline code can be handled in reverse
7026 by simply continuing to single-step. We have already
7027 executed the solib function (backwards), and a few
7028 steps will take us back through the trampoline to the
7029 caller. */
7030 keep_going (ecs);
7031 return;
7032 }
7033 else if (in_solib_dynsym_resolve_code (stop_pc))
7034 {
7035 /* Stepped backward into the solib dynsym resolver.
7036 Set a breakpoint at its start and continue, then
7037 one more step will take us out. */
7038 symtab_and_line sr_sal;
7039 sr_sal.pc = ecs->stop_func_start;
7040 sr_sal.pspace = get_frame_program_space (frame);
7041 insert_step_resume_breakpoint_at_sal (gdbarch,
7042 sr_sal, null_frame_id);
7043 keep_going (ecs);
7044 return;
7045 }
7046 }
7047
7048 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7049
7050 /* NOTE: tausq/2004-05-24: This if block used to be done before all
7051 the trampoline processing logic, however, there are some trampolines
7052 that have no names, so we should do trampoline handling first. */
7053 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7054 && ecs->stop_func_name == NULL
7055 && stop_pc_sal.line == 0)
7056 {
7057 if (debug_infrun)
7058 fprintf_unfiltered (gdb_stdlog,
7059 "infrun: stepped into undebuggable function\n");
7060
7061 /* The inferior just stepped into, or returned to, an
7062 undebuggable function (where there is no debugging information
7063 and no line number corresponding to the address where the
7064 inferior stopped). Since we want to skip this kind of code,
7065 we keep going until the inferior returns from this
7066 function - unless the user has asked us not to (via
7067 set step-mode) or we no longer know how to get back
7068 to the call site. */
7069 if (step_stop_if_no_debug
7070 || !frame_id_p (frame_unwind_caller_id (frame)))
7071 {
7072 /* If we have no line number and the step-stop-if-no-debug
7073 is set, we stop the step so that the user has a chance to
7074 switch in assembly mode. */
7075 end_stepping_range (ecs);
7076 return;
7077 }
7078 else
7079 {
7080 /* Set a breakpoint at callee's return address (the address
7081 at which the caller will resume). */
7082 insert_step_resume_breakpoint_at_caller (frame);
7083 keep_going (ecs);
7084 return;
7085 }
7086 }
7087
7088 if (ecs->event_thread->control.step_range_end == 1)
7089 {
7090 /* It is stepi or nexti. We always want to stop stepping after
7091 one instruction. */
7092 if (debug_infrun)
7093 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
7094 end_stepping_range (ecs);
7095 return;
7096 }
7097
7098 if (stop_pc_sal.line == 0)
7099 {
7100 /* We have no line number information. That means to stop
7101 stepping (does this always happen right after one instruction,
7102 when we do "s" in a function with no line numbers,
7103 or can this happen as a result of a return or longjmp?). */
7104 if (debug_infrun)
7105 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
7106 end_stepping_range (ecs);
7107 return;
7108 }
7109
7110 /* Look for "calls" to inlined functions, part one. If the inline
7111 frame machinery detected some skipped call sites, we have entered
7112 a new inline function. */
7113
7114 if (frame_id_eq (get_frame_id (get_current_frame ()),
7115 ecs->event_thread->control.step_frame_id)
7116 && inline_skipped_frames (ecs->event_thread))
7117 {
7118 if (debug_infrun)
7119 fprintf_unfiltered (gdb_stdlog,
7120 "infrun: stepped into inlined function\n");
7121
7122 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
7123
7124 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
7125 {
7126 /* For "step", we're going to stop. But if the call site
7127 for this inlined function is on the same source line as
7128 we were previously stepping, go down into the function
7129 first. Otherwise stop at the call site. */
7130
7131 if (call_sal.line == ecs->event_thread->current_line
7132 && call_sal.symtab == ecs->event_thread->current_symtab)
7133 {
7134 step_into_inline_frame (ecs->event_thread);
7135 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7136 {
7137 keep_going (ecs);
7138 return;
7139 }
7140 }
7141
7142 end_stepping_range (ecs);
7143 return;
7144 }
7145 else
7146 {
7147 /* For "next", we should stop at the call site if it is on a
7148 different source line. Otherwise continue through the
7149 inlined function. */
7150 if (call_sal.line == ecs->event_thread->current_line
7151 && call_sal.symtab == ecs->event_thread->current_symtab)
7152 keep_going (ecs);
7153 else
7154 end_stepping_range (ecs);
7155 return;
7156 }
7157 }
7158
7159 /* Look for "calls" to inlined functions, part two. If we are still
7160 in the same real function we were stepping through, but we have
7161 to go further up to find the exact frame ID, we are stepping
7162 through a more inlined call beyond its call site. */
7163
7164 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7165 && !frame_id_eq (get_frame_id (get_current_frame ()),
7166 ecs->event_thread->control.step_frame_id)
7167 && stepped_in_from (get_current_frame (),
7168 ecs->event_thread->control.step_frame_id))
7169 {
7170 if (debug_infrun)
7171 fprintf_unfiltered (gdb_stdlog,
7172 "infrun: stepping through inlined function\n");
7173
7174 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7175 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
7176 keep_going (ecs);
7177 else
7178 end_stepping_range (ecs);
7179 return;
7180 }
7181
7182 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
7183 && (ecs->event_thread->current_line != stop_pc_sal.line
7184 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
7185 {
7186 /* We are at the start of a different line. So stop. Note that
7187 we don't stop if we step into the middle of a different line.
7188 That is said to make things like for (;;) statements work
7189 better. */
7190 if (debug_infrun)
7191 fprintf_unfiltered (gdb_stdlog,
7192 "infrun: stepped to a different line\n");
7193 end_stepping_range (ecs);
7194 return;
7195 }
7196
7197 /* We aren't done stepping.
7198
7199 Optimize by setting the stepping range to the line.
7200 (We might not be in the original line, but if we entered a
7201 new line in mid-statement, we continue stepping. This makes
7202 things like for(;;) statements work better.) */
7203
7204 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7205 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7206 ecs->event_thread->control.may_range_step = 1;
7207 set_step_info (ecs->event_thread, frame, stop_pc_sal);
7208
7209 if (debug_infrun)
7210 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
7211 keep_going (ecs);
7212 }
7213
7214 /* In all-stop mode, if we're currently stepping but have stopped in
7215 some other thread, we may need to switch back to the stepped
7216 thread. Returns true we set the inferior running, false if we left
7217 it stopped (and the event needs further processing). */
7218
7219 static int
7220 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7221 {
7222 if (!target_is_non_stop_p ())
7223 {
7224 struct thread_info *stepping_thread;
7225
7226 /* If any thread is blocked on some internal breakpoint, and we
7227 simply need to step over that breakpoint to get it going
7228 again, do that first. */
7229
7230 /* However, if we see an event for the stepping thread, then we
7231 know all other threads have been moved past their breakpoints
7232 already. Let the caller check whether the step is finished,
7233 etc., before deciding to move it past a breakpoint. */
7234 if (ecs->event_thread->control.step_range_end != 0)
7235 return 0;
7236
7237 /* Check if the current thread is blocked on an incomplete
7238 step-over, interrupted by a random signal. */
7239 if (ecs->event_thread->control.trap_expected
7240 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7241 {
7242 if (debug_infrun)
7243 {
7244 fprintf_unfiltered (gdb_stdlog,
7245 "infrun: need to finish step-over of [%s]\n",
7246 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7247 }
7248 keep_going (ecs);
7249 return 1;
7250 }
7251
7252 /* Check if the current thread is blocked by a single-step
7253 breakpoint of another thread. */
7254 if (ecs->hit_singlestep_breakpoint)
7255 {
7256 if (debug_infrun)
7257 {
7258 fprintf_unfiltered (gdb_stdlog,
7259 "infrun: need to step [%s] over single-step "
7260 "breakpoint\n",
7261 target_pid_to_str (ecs->ptid).c_str ());
7262 }
7263 keep_going (ecs);
7264 return 1;
7265 }
7266
7267 /* If this thread needs yet another step-over (e.g., stepping
7268 through a delay slot), do it first before moving on to
7269 another thread. */
7270 if (thread_still_needs_step_over (ecs->event_thread))
7271 {
7272 if (debug_infrun)
7273 {
7274 fprintf_unfiltered (gdb_stdlog,
7275 "infrun: thread [%s] still needs step-over\n",
7276 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7277 }
7278 keep_going (ecs);
7279 return 1;
7280 }
7281
7282 /* If scheduler locking applies even if not stepping, there's no
7283 need to walk over threads. Above we've checked whether the
7284 current thread is stepping. If some other thread not the
7285 event thread is stepping, then it must be that scheduler
7286 locking is not in effect. */
7287 if (schedlock_applies (ecs->event_thread))
7288 return 0;
7289
7290 /* Otherwise, we no longer expect a trap in the current thread.
7291 Clear the trap_expected flag before switching back -- this is
7292 what keep_going does as well, if we call it. */
7293 ecs->event_thread->control.trap_expected = 0;
7294
7295 /* Likewise, clear the signal if it should not be passed. */
7296 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7297 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7298
7299 /* Do all pending step-overs before actually proceeding with
7300 step/next/etc. */
7301 if (start_step_over ())
7302 {
7303 prepare_to_wait (ecs);
7304 return 1;
7305 }
7306
7307 /* Look for the stepping/nexting thread. */
7308 stepping_thread = NULL;
7309
7310 for (thread_info *tp : all_non_exited_threads ())
7311 {
7312 switch_to_thread_no_regs (tp);
7313
7314 /* Ignore threads of processes the caller is not
7315 resuming. */
7316 if (!sched_multi
7317 && (tp->inf->process_target () != ecs->target
7318 || tp->inf->pid != ecs->ptid.pid ()))
7319 continue;
7320
7321 /* When stepping over a breakpoint, we lock all threads
7322 except the one that needs to move past the breakpoint.
7323 If a non-event thread has this set, the "incomplete
7324 step-over" check above should have caught it earlier. */
7325 if (tp->control.trap_expected)
7326 {
7327 internal_error (__FILE__, __LINE__,
7328 "[%s] has inconsistent state: "
7329 "trap_expected=%d\n",
7330 target_pid_to_str (tp->ptid).c_str (),
7331 tp->control.trap_expected);
7332 }
7333
7334 /* Did we find the stepping thread? */
7335 if (tp->control.step_range_end)
7336 {
7337 /* Yep. There should only one though. */
7338 gdb_assert (stepping_thread == NULL);
7339
7340 /* The event thread is handled at the top, before we
7341 enter this loop. */
7342 gdb_assert (tp != ecs->event_thread);
7343
7344 /* If some thread other than the event thread is
7345 stepping, then scheduler locking can't be in effect,
7346 otherwise we wouldn't have resumed the current event
7347 thread in the first place. */
7348 gdb_assert (!schedlock_applies (tp));
7349
7350 stepping_thread = tp;
7351 }
7352 }
7353
7354 if (stepping_thread != NULL)
7355 {
7356 if (debug_infrun)
7357 fprintf_unfiltered (gdb_stdlog,
7358 "infrun: switching back to stepped thread\n");
7359
7360 if (keep_going_stepped_thread (stepping_thread))
7361 {
7362 prepare_to_wait (ecs);
7363 return 1;
7364 }
7365 }
7366
7367 switch_to_thread (ecs->event_thread);
7368 }
7369
7370 return 0;
7371 }
7372
7373 /* Set a previously stepped thread back to stepping. Returns true on
7374 success, false if the resume is not possible (e.g., the thread
7375 vanished). */
7376
7377 static int
7378 keep_going_stepped_thread (struct thread_info *tp)
7379 {
7380 struct frame_info *frame;
7381 struct execution_control_state ecss;
7382 struct execution_control_state *ecs = &ecss;
7383
7384 /* If the stepping thread exited, then don't try to switch back and
7385 resume it, which could fail in several different ways depending
7386 on the target. Instead, just keep going.
7387
7388 We can find a stepping dead thread in the thread list in two
7389 cases:
7390
7391 - The target supports thread exit events, and when the target
7392 tries to delete the thread from the thread list, inferior_ptid
7393 pointed at the exiting thread. In such case, calling
7394 delete_thread does not really remove the thread from the list;
7395 instead, the thread is left listed, with 'exited' state.
7396
7397 - The target's debug interface does not support thread exit
7398 events, and so we have no idea whatsoever if the previously
7399 stepping thread is still alive. For that reason, we need to
7400 synchronously query the target now. */
7401
7402 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
7403 {
7404 if (debug_infrun)
7405 fprintf_unfiltered (gdb_stdlog,
7406 "infrun: not resuming previously "
7407 "stepped thread, it has vanished\n");
7408
7409 delete_thread (tp);
7410 return 0;
7411 }
7412
7413 if (debug_infrun)
7414 fprintf_unfiltered (gdb_stdlog,
7415 "infrun: resuming previously stepped thread\n");
7416
7417 reset_ecs (ecs, tp);
7418 switch_to_thread (tp);
7419
7420 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
7421 frame = get_current_frame ();
7422
7423 /* If the PC of the thread we were trying to single-step has
7424 changed, then that thread has trapped or been signaled, but the
7425 event has not been reported to GDB yet. Re-poll the target
7426 looking for this particular thread's event (i.e. temporarily
7427 enable schedlock) by:
7428
7429 - setting a break at the current PC
7430 - resuming that particular thread, only (by setting trap
7431 expected)
7432
7433 This prevents us continuously moving the single-step breakpoint
7434 forward, one instruction at a time, overstepping. */
7435
7436 if (tp->suspend.stop_pc != tp->prev_pc)
7437 {
7438 ptid_t resume_ptid;
7439
7440 if (debug_infrun)
7441 fprintf_unfiltered (gdb_stdlog,
7442 "infrun: expected thread advanced also (%s -> %s)\n",
7443 paddress (target_gdbarch (), tp->prev_pc),
7444 paddress (target_gdbarch (), tp->suspend.stop_pc));
7445
7446 /* Clear the info of the previous step-over, as it's no longer
7447 valid (if the thread was trying to step over a breakpoint, it
7448 has already succeeded). It's what keep_going would do too,
7449 if we called it. Do this before trying to insert the sss
7450 breakpoint, otherwise if we were previously trying to step
7451 over this exact address in another thread, the breakpoint is
7452 skipped. */
7453 clear_step_over_info ();
7454 tp->control.trap_expected = 0;
7455
7456 insert_single_step_breakpoint (get_frame_arch (frame),
7457 get_frame_address_space (frame),
7458 tp->suspend.stop_pc);
7459
7460 tp->resumed = true;
7461 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7462 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7463 }
7464 else
7465 {
7466 if (debug_infrun)
7467 fprintf_unfiltered (gdb_stdlog,
7468 "infrun: expected thread still hasn't advanced\n");
7469
7470 keep_going_pass_signal (ecs);
7471 }
7472 return 1;
7473 }
7474
7475 /* Is thread TP in the middle of (software or hardware)
7476 single-stepping? (Note the result of this function must never be
7477 passed directly as target_resume's STEP parameter.) */
7478
7479 static int
7480 currently_stepping (struct thread_info *tp)
7481 {
7482 return ((tp->control.step_range_end
7483 && tp->control.step_resume_breakpoint == NULL)
7484 || tp->control.trap_expected
7485 || tp->stepped_breakpoint
7486 || bpstat_should_step ());
7487 }
7488
7489 /* Inferior has stepped into a subroutine call with source code that
7490 we should not step over. Do step to the first line of code in
7491 it. */
7492
7493 static void
7494 handle_step_into_function (struct gdbarch *gdbarch,
7495 struct execution_control_state *ecs)
7496 {
7497 fill_in_stop_func (gdbarch, ecs);
7498
7499 compunit_symtab *cust
7500 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7501 if (cust != NULL && compunit_language (cust) != language_asm)
7502 ecs->stop_func_start
7503 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7504
7505 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7506 /* Use the step_resume_break to step until the end of the prologue,
7507 even if that involves jumps (as it seems to on the vax under
7508 4.2). */
7509 /* If the prologue ends in the middle of a source line, continue to
7510 the end of that source line (if it is still within the function).
7511 Otherwise, just go to end of prologue. */
7512 if (stop_func_sal.end
7513 && stop_func_sal.pc != ecs->stop_func_start
7514 && stop_func_sal.end < ecs->stop_func_end)
7515 ecs->stop_func_start = stop_func_sal.end;
7516
7517 /* Architectures which require breakpoint adjustment might not be able
7518 to place a breakpoint at the computed address. If so, the test
7519 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7520 ecs->stop_func_start to an address at which a breakpoint may be
7521 legitimately placed.
7522
7523 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7524 made, GDB will enter an infinite loop when stepping through
7525 optimized code consisting of VLIW instructions which contain
7526 subinstructions corresponding to different source lines. On
7527 FR-V, it's not permitted to place a breakpoint on any but the
7528 first subinstruction of a VLIW instruction. When a breakpoint is
7529 set, GDB will adjust the breakpoint address to the beginning of
7530 the VLIW instruction. Thus, we need to make the corresponding
7531 adjustment here when computing the stop address. */
7532
7533 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7534 {
7535 ecs->stop_func_start
7536 = gdbarch_adjust_breakpoint_address (gdbarch,
7537 ecs->stop_func_start);
7538 }
7539
7540 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7541 {
7542 /* We are already there: stop now. */
7543 end_stepping_range (ecs);
7544 return;
7545 }
7546 else
7547 {
7548 /* Put the step-breakpoint there and go until there. */
7549 symtab_and_line sr_sal;
7550 sr_sal.pc = ecs->stop_func_start;
7551 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7552 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7553
7554 /* Do not specify what the fp should be when we stop since on
7555 some machines the prologue is where the new fp value is
7556 established. */
7557 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7558
7559 /* And make sure stepping stops right away then. */
7560 ecs->event_thread->control.step_range_end
7561 = ecs->event_thread->control.step_range_start;
7562 }
7563 keep_going (ecs);
7564 }
7565
7566 /* Inferior has stepped backward into a subroutine call with source
7567 code that we should not step over. Do step to the beginning of the
7568 last line of code in it. */
7569
7570 static void
7571 handle_step_into_function_backward (struct gdbarch *gdbarch,
7572 struct execution_control_state *ecs)
7573 {
7574 struct compunit_symtab *cust;
7575 struct symtab_and_line stop_func_sal;
7576
7577 fill_in_stop_func (gdbarch, ecs);
7578
7579 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7580 if (cust != NULL && compunit_language (cust) != language_asm)
7581 ecs->stop_func_start
7582 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7583
7584 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7585
7586 /* OK, we're just going to keep stepping here. */
7587 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7588 {
7589 /* We're there already. Just stop stepping now. */
7590 end_stepping_range (ecs);
7591 }
7592 else
7593 {
7594 /* Else just reset the step range and keep going.
7595 No step-resume breakpoint, they don't work for
7596 epilogues, which can have multiple entry paths. */
7597 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7598 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7599 keep_going (ecs);
7600 }
7601 return;
7602 }
7603
7604 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7605 This is used to both functions and to skip over code. */
7606
7607 static void
7608 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7609 struct symtab_and_line sr_sal,
7610 struct frame_id sr_id,
7611 enum bptype sr_type)
7612 {
7613 /* There should never be more than one step-resume or longjmp-resume
7614 breakpoint per thread, so we should never be setting a new
7615 step_resume_breakpoint when one is already active. */
7616 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7617 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7618
7619 if (debug_infrun)
7620 fprintf_unfiltered (gdb_stdlog,
7621 "infrun: inserting step-resume breakpoint at %s\n",
7622 paddress (gdbarch, sr_sal.pc));
7623
7624 inferior_thread ()->control.step_resume_breakpoint
7625 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7626 }
7627
7628 void
7629 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7630 struct symtab_and_line sr_sal,
7631 struct frame_id sr_id)
7632 {
7633 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7634 sr_sal, sr_id,
7635 bp_step_resume);
7636 }
7637
7638 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7639 This is used to skip a potential signal handler.
7640
7641 This is called with the interrupted function's frame. The signal
7642 handler, when it returns, will resume the interrupted function at
7643 RETURN_FRAME.pc. */
7644
7645 static void
7646 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7647 {
7648 gdb_assert (return_frame != NULL);
7649
7650 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7651
7652 symtab_and_line sr_sal;
7653 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7654 sr_sal.section = find_pc_overlay (sr_sal.pc);
7655 sr_sal.pspace = get_frame_program_space (return_frame);
7656
7657 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7658 get_stack_frame_id (return_frame),
7659 bp_hp_step_resume);
7660 }
7661
7662 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7663 is used to skip a function after stepping into it (for "next" or if
7664 the called function has no debugging information).
7665
7666 The current function has almost always been reached by single
7667 stepping a call or return instruction. NEXT_FRAME belongs to the
7668 current function, and the breakpoint will be set at the caller's
7669 resume address.
7670
7671 This is a separate function rather than reusing
7672 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7673 get_prev_frame, which may stop prematurely (see the implementation
7674 of frame_unwind_caller_id for an example). */
7675
7676 static void
7677 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7678 {
7679 /* We shouldn't have gotten here if we don't know where the call site
7680 is. */
7681 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7682
7683 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7684
7685 symtab_and_line sr_sal;
7686 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7687 frame_unwind_caller_pc (next_frame));
7688 sr_sal.section = find_pc_overlay (sr_sal.pc);
7689 sr_sal.pspace = frame_unwind_program_space (next_frame);
7690
7691 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7692 frame_unwind_caller_id (next_frame));
7693 }
7694
7695 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7696 new breakpoint at the target of a jmp_buf. The handling of
7697 longjmp-resume uses the same mechanisms used for handling
7698 "step-resume" breakpoints. */
7699
7700 static void
7701 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7702 {
7703 /* There should never be more than one longjmp-resume breakpoint per
7704 thread, so we should never be setting a new
7705 longjmp_resume_breakpoint when one is already active. */
7706 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7707
7708 if (debug_infrun)
7709 fprintf_unfiltered (gdb_stdlog,
7710 "infrun: inserting longjmp-resume breakpoint at %s\n",
7711 paddress (gdbarch, pc));
7712
7713 inferior_thread ()->control.exception_resume_breakpoint =
7714 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7715 }
7716
7717 /* Insert an exception resume breakpoint. TP is the thread throwing
7718 the exception. The block B is the block of the unwinder debug hook
7719 function. FRAME is the frame corresponding to the call to this
7720 function. SYM is the symbol of the function argument holding the
7721 target PC of the exception. */
7722
7723 static void
7724 insert_exception_resume_breakpoint (struct thread_info *tp,
7725 const struct block *b,
7726 struct frame_info *frame,
7727 struct symbol *sym)
7728 {
7729 try
7730 {
7731 struct block_symbol vsym;
7732 struct value *value;
7733 CORE_ADDR handler;
7734 struct breakpoint *bp;
7735
7736 vsym = lookup_symbol_search_name (sym->search_name (),
7737 b, VAR_DOMAIN);
7738 value = read_var_value (vsym.symbol, vsym.block, frame);
7739 /* If the value was optimized out, revert to the old behavior. */
7740 if (! value_optimized_out (value))
7741 {
7742 handler = value_as_address (value);
7743
7744 if (debug_infrun)
7745 fprintf_unfiltered (gdb_stdlog,
7746 "infrun: exception resume at %lx\n",
7747 (unsigned long) handler);
7748
7749 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7750 handler,
7751 bp_exception_resume).release ();
7752
7753 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7754 frame = NULL;
7755
7756 bp->thread = tp->global_num;
7757 inferior_thread ()->control.exception_resume_breakpoint = bp;
7758 }
7759 }
7760 catch (const gdb_exception_error &e)
7761 {
7762 /* We want to ignore errors here. */
7763 }
7764 }
7765
7766 /* A helper for check_exception_resume that sets an
7767 exception-breakpoint based on a SystemTap probe. */
7768
7769 static void
7770 insert_exception_resume_from_probe (struct thread_info *tp,
7771 const struct bound_probe *probe,
7772 struct frame_info *frame)
7773 {
7774 struct value *arg_value;
7775 CORE_ADDR handler;
7776 struct breakpoint *bp;
7777
7778 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7779 if (!arg_value)
7780 return;
7781
7782 handler = value_as_address (arg_value);
7783
7784 if (debug_infrun)
7785 fprintf_unfiltered (gdb_stdlog,
7786 "infrun: exception resume at %s\n",
7787 paddress (get_objfile_arch (probe->objfile),
7788 handler));
7789
7790 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7791 handler, bp_exception_resume).release ();
7792 bp->thread = tp->global_num;
7793 inferior_thread ()->control.exception_resume_breakpoint = bp;
7794 }
7795
7796 /* This is called when an exception has been intercepted. Check to
7797 see whether the exception's destination is of interest, and if so,
7798 set an exception resume breakpoint there. */
7799
7800 static void
7801 check_exception_resume (struct execution_control_state *ecs,
7802 struct frame_info *frame)
7803 {
7804 struct bound_probe probe;
7805 struct symbol *func;
7806
7807 /* First see if this exception unwinding breakpoint was set via a
7808 SystemTap probe point. If so, the probe has two arguments: the
7809 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7810 set a breakpoint there. */
7811 probe = find_probe_by_pc (get_frame_pc (frame));
7812 if (probe.prob)
7813 {
7814 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7815 return;
7816 }
7817
7818 func = get_frame_function (frame);
7819 if (!func)
7820 return;
7821
7822 try
7823 {
7824 const struct block *b;
7825 struct block_iterator iter;
7826 struct symbol *sym;
7827 int argno = 0;
7828
7829 /* The exception breakpoint is a thread-specific breakpoint on
7830 the unwinder's debug hook, declared as:
7831
7832 void _Unwind_DebugHook (void *cfa, void *handler);
7833
7834 The CFA argument indicates the frame to which control is
7835 about to be transferred. HANDLER is the destination PC.
7836
7837 We ignore the CFA and set a temporary breakpoint at HANDLER.
7838 This is not extremely efficient but it avoids issues in gdb
7839 with computing the DWARF CFA, and it also works even in weird
7840 cases such as throwing an exception from inside a signal
7841 handler. */
7842
7843 b = SYMBOL_BLOCK_VALUE (func);
7844 ALL_BLOCK_SYMBOLS (b, iter, sym)
7845 {
7846 if (!SYMBOL_IS_ARGUMENT (sym))
7847 continue;
7848
7849 if (argno == 0)
7850 ++argno;
7851 else
7852 {
7853 insert_exception_resume_breakpoint (ecs->event_thread,
7854 b, frame, sym);
7855 break;
7856 }
7857 }
7858 }
7859 catch (const gdb_exception_error &e)
7860 {
7861 }
7862 }
7863
7864 static void
7865 stop_waiting (struct execution_control_state *ecs)
7866 {
7867 if (debug_infrun)
7868 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7869
7870 /* Let callers know we don't want to wait for the inferior anymore. */
7871 ecs->wait_some_more = 0;
7872
7873 /* If all-stop, but the target is always in non-stop mode, stop all
7874 threads now that we're presenting the stop to the user. */
7875 if (!non_stop && target_is_non_stop_p ())
7876 stop_all_threads ();
7877 }
7878
7879 /* Like keep_going, but passes the signal to the inferior, even if the
7880 signal is set to nopass. */
7881
7882 static void
7883 keep_going_pass_signal (struct execution_control_state *ecs)
7884 {
7885 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
7886 gdb_assert (!ecs->event_thread->resumed);
7887
7888 /* Save the pc before execution, to compare with pc after stop. */
7889 ecs->event_thread->prev_pc
7890 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
7891
7892 if (ecs->event_thread->control.trap_expected)
7893 {
7894 struct thread_info *tp = ecs->event_thread;
7895
7896 if (debug_infrun)
7897 fprintf_unfiltered (gdb_stdlog,
7898 "infrun: %s has trap_expected set, "
7899 "resuming to collect trap\n",
7900 target_pid_to_str (tp->ptid).c_str ());
7901
7902 /* We haven't yet gotten our trap, and either: intercepted a
7903 non-signal event (e.g., a fork); or took a signal which we
7904 are supposed to pass through to the inferior. Simply
7905 continue. */
7906 resume (ecs->event_thread->suspend.stop_signal);
7907 }
7908 else if (step_over_info_valid_p ())
7909 {
7910 /* Another thread is stepping over a breakpoint in-line. If
7911 this thread needs a step-over too, queue the request. In
7912 either case, this resume must be deferred for later. */
7913 struct thread_info *tp = ecs->event_thread;
7914
7915 if (ecs->hit_singlestep_breakpoint
7916 || thread_still_needs_step_over (tp))
7917 {
7918 if (debug_infrun)
7919 fprintf_unfiltered (gdb_stdlog,
7920 "infrun: step-over already in progress: "
7921 "step-over for %s deferred\n",
7922 target_pid_to_str (tp->ptid).c_str ());
7923 thread_step_over_chain_enqueue (tp);
7924 }
7925 else
7926 {
7927 if (debug_infrun)
7928 fprintf_unfiltered (gdb_stdlog,
7929 "infrun: step-over in progress: "
7930 "resume of %s deferred\n",
7931 target_pid_to_str (tp->ptid).c_str ());
7932 }
7933 }
7934 else
7935 {
7936 struct regcache *regcache = get_current_regcache ();
7937 int remove_bp;
7938 int remove_wps;
7939 step_over_what step_what;
7940
7941 /* Either the trap was not expected, but we are continuing
7942 anyway (if we got a signal, the user asked it be passed to
7943 the child)
7944 -- or --
7945 We got our expected trap, but decided we should resume from
7946 it.
7947
7948 We're going to run this baby now!
7949
7950 Note that insert_breakpoints won't try to re-insert
7951 already inserted breakpoints. Therefore, we don't
7952 care if breakpoints were already inserted, or not. */
7953
7954 /* If we need to step over a breakpoint, and we're not using
7955 displaced stepping to do so, insert all breakpoints
7956 (watchpoints, etc.) but the one we're stepping over, step one
7957 instruction, and then re-insert the breakpoint when that step
7958 is finished. */
7959
7960 step_what = thread_still_needs_step_over (ecs->event_thread);
7961
7962 remove_bp = (ecs->hit_singlestep_breakpoint
7963 || (step_what & STEP_OVER_BREAKPOINT));
7964 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7965
7966 /* We can't use displaced stepping if we need to step past a
7967 watchpoint. The instruction copied to the scratch pad would
7968 still trigger the watchpoint. */
7969 if (remove_bp
7970 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7971 {
7972 set_step_over_info (regcache->aspace (),
7973 regcache_read_pc (regcache), remove_wps,
7974 ecs->event_thread->global_num);
7975 }
7976 else if (remove_wps)
7977 set_step_over_info (NULL, 0, remove_wps, -1);
7978
7979 /* If we now need to do an in-line step-over, we need to stop
7980 all other threads. Note this must be done before
7981 insert_breakpoints below, because that removes the breakpoint
7982 we're about to step over, otherwise other threads could miss
7983 it. */
7984 if (step_over_info_valid_p () && target_is_non_stop_p ())
7985 stop_all_threads ();
7986
7987 /* Stop stepping if inserting breakpoints fails. */
7988 try
7989 {
7990 insert_breakpoints ();
7991 }
7992 catch (const gdb_exception_error &e)
7993 {
7994 exception_print (gdb_stderr, e);
7995 stop_waiting (ecs);
7996 clear_step_over_info ();
7997 return;
7998 }
7999
8000 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
8001
8002 resume (ecs->event_thread->suspend.stop_signal);
8003 }
8004
8005 prepare_to_wait (ecs);
8006 }
8007
8008 /* Called when we should continue running the inferior, because the
8009 current event doesn't cause a user visible stop. This does the
8010 resuming part; waiting for the next event is done elsewhere. */
8011
8012 static void
8013 keep_going (struct execution_control_state *ecs)
8014 {
8015 if (ecs->event_thread->control.trap_expected
8016 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
8017 ecs->event_thread->control.trap_expected = 0;
8018
8019 if (!signal_program[ecs->event_thread->suspend.stop_signal])
8020 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
8021 keep_going_pass_signal (ecs);
8022 }
8023
8024 /* This function normally comes after a resume, before
8025 handle_inferior_event exits. It takes care of any last bits of
8026 housekeeping, and sets the all-important wait_some_more flag. */
8027
8028 static void
8029 prepare_to_wait (struct execution_control_state *ecs)
8030 {
8031 if (debug_infrun)
8032 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
8033
8034 ecs->wait_some_more = 1;
8035
8036 if (!target_is_async_p ())
8037 mark_infrun_async_event_handler ();
8038 }
8039
8040 /* We are done with the step range of a step/next/si/ni command.
8041 Called once for each n of a "step n" operation. */
8042
8043 static void
8044 end_stepping_range (struct execution_control_state *ecs)
8045 {
8046 ecs->event_thread->control.stop_step = 1;
8047 stop_waiting (ecs);
8048 }
8049
8050 /* Several print_*_reason functions to print why the inferior has stopped.
8051 We always print something when the inferior exits, or receives a signal.
8052 The rest of the cases are dealt with later on in normal_stop and
8053 print_it_typical. Ideally there should be a call to one of these
8054 print_*_reason functions functions from handle_inferior_event each time
8055 stop_waiting is called.
8056
8057 Note that we don't call these directly, instead we delegate that to
8058 the interpreters, through observers. Interpreters then call these
8059 with whatever uiout is right. */
8060
8061 void
8062 print_end_stepping_range_reason (struct ui_out *uiout)
8063 {
8064 /* For CLI-like interpreters, print nothing. */
8065
8066 if (uiout->is_mi_like_p ())
8067 {
8068 uiout->field_string ("reason",
8069 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
8070 }
8071 }
8072
8073 void
8074 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8075 {
8076 annotate_signalled ();
8077 if (uiout->is_mi_like_p ())
8078 uiout->field_string
8079 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8080 uiout->text ("\nProgram terminated with signal ");
8081 annotate_signal_name ();
8082 uiout->field_string ("signal-name",
8083 gdb_signal_to_name (siggnal));
8084 annotate_signal_name_end ();
8085 uiout->text (", ");
8086 annotate_signal_string ();
8087 uiout->field_string ("signal-meaning",
8088 gdb_signal_to_string (siggnal));
8089 annotate_signal_string_end ();
8090 uiout->text (".\n");
8091 uiout->text ("The program no longer exists.\n");
8092 }
8093
8094 void
8095 print_exited_reason (struct ui_out *uiout, int exitstatus)
8096 {
8097 struct inferior *inf = current_inferior ();
8098 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
8099
8100 annotate_exited (exitstatus);
8101 if (exitstatus)
8102 {
8103 if (uiout->is_mi_like_p ())
8104 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
8105 std::string exit_code_str
8106 = string_printf ("0%o", (unsigned int) exitstatus);
8107 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
8108 plongest (inf->num), pidstr.c_str (),
8109 string_field ("exit-code", exit_code_str.c_str ()));
8110 }
8111 else
8112 {
8113 if (uiout->is_mi_like_p ())
8114 uiout->field_string
8115 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8116 uiout->message ("[Inferior %s (%s) exited normally]\n",
8117 plongest (inf->num), pidstr.c_str ());
8118 }
8119 }
8120
8121 /* Some targets/architectures can do extra processing/display of
8122 segmentation faults. E.g., Intel MPX boundary faults.
8123 Call the architecture dependent function to handle the fault. */
8124
8125 static void
8126 handle_segmentation_fault (struct ui_out *uiout)
8127 {
8128 struct regcache *regcache = get_current_regcache ();
8129 struct gdbarch *gdbarch = regcache->arch ();
8130
8131 if (gdbarch_handle_segmentation_fault_p (gdbarch))
8132 gdbarch_handle_segmentation_fault (gdbarch, uiout);
8133 }
8134
8135 void
8136 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8137 {
8138 struct thread_info *thr = inferior_thread ();
8139
8140 annotate_signal ();
8141
8142 if (uiout->is_mi_like_p ())
8143 ;
8144 else if (show_thread_that_caused_stop ())
8145 {
8146 const char *name;
8147
8148 uiout->text ("\nThread ");
8149 uiout->field_string ("thread-id", print_thread_id (thr));
8150
8151 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8152 if (name != NULL)
8153 {
8154 uiout->text (" \"");
8155 uiout->field_string ("name", name);
8156 uiout->text ("\"");
8157 }
8158 }
8159 else
8160 uiout->text ("\nProgram");
8161
8162 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8163 uiout->text (" stopped");
8164 else
8165 {
8166 uiout->text (" received signal ");
8167 annotate_signal_name ();
8168 if (uiout->is_mi_like_p ())
8169 uiout->field_string
8170 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8171 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8172 annotate_signal_name_end ();
8173 uiout->text (", ");
8174 annotate_signal_string ();
8175 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
8176
8177 if (siggnal == GDB_SIGNAL_SEGV)
8178 handle_segmentation_fault (uiout);
8179
8180 annotate_signal_string_end ();
8181 }
8182 uiout->text (".\n");
8183 }
8184
8185 void
8186 print_no_history_reason (struct ui_out *uiout)
8187 {
8188 uiout->text ("\nNo more reverse-execution history.\n");
8189 }
8190
8191 /* Print current location without a level number, if we have changed
8192 functions or hit a breakpoint. Print source line if we have one.
8193 bpstat_print contains the logic deciding in detail what to print,
8194 based on the event(s) that just occurred. */
8195
8196 static void
8197 print_stop_location (struct target_waitstatus *ws)
8198 {
8199 int bpstat_ret;
8200 enum print_what source_flag;
8201 int do_frame_printing = 1;
8202 struct thread_info *tp = inferior_thread ();
8203
8204 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8205 switch (bpstat_ret)
8206 {
8207 case PRINT_UNKNOWN:
8208 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8209 should) carry around the function and does (or should) use
8210 that when doing a frame comparison. */
8211 if (tp->control.stop_step
8212 && frame_id_eq (tp->control.step_frame_id,
8213 get_frame_id (get_current_frame ()))
8214 && (tp->control.step_start_function
8215 == find_pc_function (tp->suspend.stop_pc)))
8216 {
8217 /* Finished step, just print source line. */
8218 source_flag = SRC_LINE;
8219 }
8220 else
8221 {
8222 /* Print location and source line. */
8223 source_flag = SRC_AND_LOC;
8224 }
8225 break;
8226 case PRINT_SRC_AND_LOC:
8227 /* Print location and source line. */
8228 source_flag = SRC_AND_LOC;
8229 break;
8230 case PRINT_SRC_ONLY:
8231 source_flag = SRC_LINE;
8232 break;
8233 case PRINT_NOTHING:
8234 /* Something bogus. */
8235 source_flag = SRC_LINE;
8236 do_frame_printing = 0;
8237 break;
8238 default:
8239 internal_error (__FILE__, __LINE__, _("Unknown value."));
8240 }
8241
8242 /* The behavior of this routine with respect to the source
8243 flag is:
8244 SRC_LINE: Print only source line
8245 LOCATION: Print only location
8246 SRC_AND_LOC: Print location and source line. */
8247 if (do_frame_printing)
8248 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8249 }
8250
8251 /* See infrun.h. */
8252
8253 void
8254 print_stop_event (struct ui_out *uiout, bool displays)
8255 {
8256 struct target_waitstatus last;
8257 struct thread_info *tp;
8258
8259 get_last_target_status (nullptr, nullptr, &last);
8260
8261 {
8262 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8263
8264 print_stop_location (&last);
8265
8266 /* Display the auto-display expressions. */
8267 if (displays)
8268 do_displays ();
8269 }
8270
8271 tp = inferior_thread ();
8272 if (tp->thread_fsm != NULL
8273 && tp->thread_fsm->finished_p ())
8274 {
8275 struct return_value_info *rv;
8276
8277 rv = tp->thread_fsm->return_value ();
8278 if (rv != NULL)
8279 print_return_value (uiout, rv);
8280 }
8281 }
8282
8283 /* See infrun.h. */
8284
8285 void
8286 maybe_remove_breakpoints (void)
8287 {
8288 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8289 {
8290 if (remove_breakpoints ())
8291 {
8292 target_terminal::ours_for_output ();
8293 printf_filtered (_("Cannot remove breakpoints because "
8294 "program is no longer writable.\nFurther "
8295 "execution is probably impossible.\n"));
8296 }
8297 }
8298 }
8299
8300 /* The execution context that just caused a normal stop. */
8301
8302 struct stop_context
8303 {
8304 stop_context ();
8305 ~stop_context ();
8306
8307 DISABLE_COPY_AND_ASSIGN (stop_context);
8308
8309 bool changed () const;
8310
8311 /* The stop ID. */
8312 ULONGEST stop_id;
8313
8314 /* The event PTID. */
8315
8316 ptid_t ptid;
8317
8318 /* If stopp for a thread event, this is the thread that caused the
8319 stop. */
8320 struct thread_info *thread;
8321
8322 /* The inferior that caused the stop. */
8323 int inf_num;
8324 };
8325
8326 /* Initializes a new stop context. If stopped for a thread event, this
8327 takes a strong reference to the thread. */
8328
8329 stop_context::stop_context ()
8330 {
8331 stop_id = get_stop_id ();
8332 ptid = inferior_ptid;
8333 inf_num = current_inferior ()->num;
8334
8335 if (inferior_ptid != null_ptid)
8336 {
8337 /* Take a strong reference so that the thread can't be deleted
8338 yet. */
8339 thread = inferior_thread ();
8340 thread->incref ();
8341 }
8342 else
8343 thread = NULL;
8344 }
8345
8346 /* Release a stop context previously created with save_stop_context.
8347 Releases the strong reference to the thread as well. */
8348
8349 stop_context::~stop_context ()
8350 {
8351 if (thread != NULL)
8352 thread->decref ();
8353 }
8354
8355 /* Return true if the current context no longer matches the saved stop
8356 context. */
8357
8358 bool
8359 stop_context::changed () const
8360 {
8361 if (ptid != inferior_ptid)
8362 return true;
8363 if (inf_num != current_inferior ()->num)
8364 return true;
8365 if (thread != NULL && thread->state != THREAD_STOPPED)
8366 return true;
8367 if (get_stop_id () != stop_id)
8368 return true;
8369 return false;
8370 }
8371
8372 /* See infrun.h. */
8373
8374 int
8375 normal_stop (void)
8376 {
8377 struct target_waitstatus last;
8378
8379 get_last_target_status (nullptr, nullptr, &last);
8380
8381 new_stop_id ();
8382
8383 /* If an exception is thrown from this point on, make sure to
8384 propagate GDB's knowledge of the executing state to the
8385 frontend/user running state. A QUIT is an easy exception to see
8386 here, so do this before any filtered output. */
8387
8388 ptid_t finish_ptid = null_ptid;
8389
8390 if (!non_stop)
8391 finish_ptid = minus_one_ptid;
8392 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8393 || last.kind == TARGET_WAITKIND_EXITED)
8394 {
8395 /* On some targets, we may still have live threads in the
8396 inferior when we get a process exit event. E.g., for
8397 "checkpoint", when the current checkpoint/fork exits,
8398 linux-fork.c automatically switches to another fork from
8399 within target_mourn_inferior. */
8400 if (inferior_ptid != null_ptid)
8401 finish_ptid = ptid_t (inferior_ptid.pid ());
8402 }
8403 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8404 finish_ptid = inferior_ptid;
8405
8406 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8407 if (finish_ptid != null_ptid)
8408 {
8409 maybe_finish_thread_state.emplace
8410 (user_visible_resume_target (finish_ptid), finish_ptid);
8411 }
8412
8413 /* As we're presenting a stop, and potentially removing breakpoints,
8414 update the thread list so we can tell whether there are threads
8415 running on the target. With target remote, for example, we can
8416 only learn about new threads when we explicitly update the thread
8417 list. Do this before notifying the interpreters about signal
8418 stops, end of stepping ranges, etc., so that the "new thread"
8419 output is emitted before e.g., "Program received signal FOO",
8420 instead of after. */
8421 update_thread_list ();
8422
8423 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8424 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
8425
8426 /* As with the notification of thread events, we want to delay
8427 notifying the user that we've switched thread context until
8428 the inferior actually stops.
8429
8430 There's no point in saying anything if the inferior has exited.
8431 Note that SIGNALLED here means "exited with a signal", not
8432 "received a signal".
8433
8434 Also skip saying anything in non-stop mode. In that mode, as we
8435 don't want GDB to switch threads behind the user's back, to avoid
8436 races where the user is typing a command to apply to thread x,
8437 but GDB switches to thread y before the user finishes entering
8438 the command, fetch_inferior_event installs a cleanup to restore
8439 the current thread back to the thread the user had selected right
8440 after this event is handled, so we're not really switching, only
8441 informing of a stop. */
8442 if (!non_stop
8443 && previous_inferior_ptid != inferior_ptid
8444 && target_has_execution
8445 && last.kind != TARGET_WAITKIND_SIGNALLED
8446 && last.kind != TARGET_WAITKIND_EXITED
8447 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8448 {
8449 SWITCH_THRU_ALL_UIS ()
8450 {
8451 target_terminal::ours_for_output ();
8452 printf_filtered (_("[Switching to %s]\n"),
8453 target_pid_to_str (inferior_ptid).c_str ());
8454 annotate_thread_changed ();
8455 }
8456 previous_inferior_ptid = inferior_ptid;
8457 }
8458
8459 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8460 {
8461 SWITCH_THRU_ALL_UIS ()
8462 if (current_ui->prompt_state == PROMPT_BLOCKED)
8463 {
8464 target_terminal::ours_for_output ();
8465 printf_filtered (_("No unwaited-for children left.\n"));
8466 }
8467 }
8468
8469 /* Note: this depends on the update_thread_list call above. */
8470 maybe_remove_breakpoints ();
8471
8472 /* If an auto-display called a function and that got a signal,
8473 delete that auto-display to avoid an infinite recursion. */
8474
8475 if (stopped_by_random_signal)
8476 disable_current_display ();
8477
8478 SWITCH_THRU_ALL_UIS ()
8479 {
8480 async_enable_stdin ();
8481 }
8482
8483 /* Let the user/frontend see the threads as stopped. */
8484 maybe_finish_thread_state.reset ();
8485
8486 /* Select innermost stack frame - i.e., current frame is frame 0,
8487 and current location is based on that. Handle the case where the
8488 dummy call is returning after being stopped. E.g. the dummy call
8489 previously hit a breakpoint. (If the dummy call returns
8490 normally, we won't reach here.) Do this before the stop hook is
8491 run, so that it doesn't get to see the temporary dummy frame,
8492 which is not where we'll present the stop. */
8493 if (has_stack_frames ())
8494 {
8495 if (stop_stack_dummy == STOP_STACK_DUMMY)
8496 {
8497 /* Pop the empty frame that contains the stack dummy. This
8498 also restores inferior state prior to the call (struct
8499 infcall_suspend_state). */
8500 struct frame_info *frame = get_current_frame ();
8501
8502 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8503 frame_pop (frame);
8504 /* frame_pop calls reinit_frame_cache as the last thing it
8505 does which means there's now no selected frame. */
8506 }
8507
8508 select_frame (get_current_frame ());
8509
8510 /* Set the current source location. */
8511 set_current_sal_from_frame (get_current_frame ());
8512 }
8513
8514 /* Look up the hook_stop and run it (CLI internally handles problem
8515 of stop_command's pre-hook not existing). */
8516 if (stop_command != NULL)
8517 {
8518 stop_context saved_context;
8519
8520 try
8521 {
8522 execute_cmd_pre_hook (stop_command);
8523 }
8524 catch (const gdb_exception &ex)
8525 {
8526 exception_fprintf (gdb_stderr, ex,
8527 "Error while running hook_stop:\n");
8528 }
8529
8530 /* If the stop hook resumes the target, then there's no point in
8531 trying to notify about the previous stop; its context is
8532 gone. Likewise if the command switches thread or inferior --
8533 the observers would print a stop for the wrong
8534 thread/inferior. */
8535 if (saved_context.changed ())
8536 return 1;
8537 }
8538
8539 /* Notify observers about the stop. This is where the interpreters
8540 print the stop event. */
8541 if (inferior_ptid != null_ptid)
8542 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8543 stop_print_frame);
8544 else
8545 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8546
8547 annotate_stopped ();
8548
8549 if (target_has_execution)
8550 {
8551 if (last.kind != TARGET_WAITKIND_SIGNALLED
8552 && last.kind != TARGET_WAITKIND_EXITED
8553 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8554 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8555 Delete any breakpoint that is to be deleted at the next stop. */
8556 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8557 }
8558
8559 /* Try to get rid of automatically added inferiors that are no
8560 longer needed. Keeping those around slows down things linearly.
8561 Note that this never removes the current inferior. */
8562 prune_inferiors ();
8563
8564 return 0;
8565 }
8566 \f
8567 int
8568 signal_stop_state (int signo)
8569 {
8570 return signal_stop[signo];
8571 }
8572
8573 int
8574 signal_print_state (int signo)
8575 {
8576 return signal_print[signo];
8577 }
8578
8579 int
8580 signal_pass_state (int signo)
8581 {
8582 return signal_program[signo];
8583 }
8584
8585 static void
8586 signal_cache_update (int signo)
8587 {
8588 if (signo == -1)
8589 {
8590 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8591 signal_cache_update (signo);
8592
8593 return;
8594 }
8595
8596 signal_pass[signo] = (signal_stop[signo] == 0
8597 && signal_print[signo] == 0
8598 && signal_program[signo] == 1
8599 && signal_catch[signo] == 0);
8600 }
8601
8602 int
8603 signal_stop_update (int signo, int state)
8604 {
8605 int ret = signal_stop[signo];
8606
8607 signal_stop[signo] = state;
8608 signal_cache_update (signo);
8609 return ret;
8610 }
8611
8612 int
8613 signal_print_update (int signo, int state)
8614 {
8615 int ret = signal_print[signo];
8616
8617 signal_print[signo] = state;
8618 signal_cache_update (signo);
8619 return ret;
8620 }
8621
8622 int
8623 signal_pass_update (int signo, int state)
8624 {
8625 int ret = signal_program[signo];
8626
8627 signal_program[signo] = state;
8628 signal_cache_update (signo);
8629 return ret;
8630 }
8631
8632 /* Update the global 'signal_catch' from INFO and notify the
8633 target. */
8634
8635 void
8636 signal_catch_update (const unsigned int *info)
8637 {
8638 int i;
8639
8640 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8641 signal_catch[i] = info[i] > 0;
8642 signal_cache_update (-1);
8643 target_pass_signals (signal_pass);
8644 }
8645
8646 static void
8647 sig_print_header (void)
8648 {
8649 printf_filtered (_("Signal Stop\tPrint\tPass "
8650 "to program\tDescription\n"));
8651 }
8652
8653 static void
8654 sig_print_info (enum gdb_signal oursig)
8655 {
8656 const char *name = gdb_signal_to_name (oursig);
8657 int name_padding = 13 - strlen (name);
8658
8659 if (name_padding <= 0)
8660 name_padding = 0;
8661
8662 printf_filtered ("%s", name);
8663 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8664 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8665 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8666 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8667 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8668 }
8669
8670 /* Specify how various signals in the inferior should be handled. */
8671
8672 static void
8673 handle_command (const char *args, int from_tty)
8674 {
8675 int digits, wordlen;
8676 int sigfirst, siglast;
8677 enum gdb_signal oursig;
8678 int allsigs;
8679
8680 if (args == NULL)
8681 {
8682 error_no_arg (_("signal to handle"));
8683 }
8684
8685 /* Allocate and zero an array of flags for which signals to handle. */
8686
8687 const size_t nsigs = GDB_SIGNAL_LAST;
8688 unsigned char sigs[nsigs] {};
8689
8690 /* Break the command line up into args. */
8691
8692 gdb_argv built_argv (args);
8693
8694 /* Walk through the args, looking for signal oursigs, signal names, and
8695 actions. Signal numbers and signal names may be interspersed with
8696 actions, with the actions being performed for all signals cumulatively
8697 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8698
8699 for (char *arg : built_argv)
8700 {
8701 wordlen = strlen (arg);
8702 for (digits = 0; isdigit (arg[digits]); digits++)
8703 {;
8704 }
8705 allsigs = 0;
8706 sigfirst = siglast = -1;
8707
8708 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8709 {
8710 /* Apply action to all signals except those used by the
8711 debugger. Silently skip those. */
8712 allsigs = 1;
8713 sigfirst = 0;
8714 siglast = nsigs - 1;
8715 }
8716 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8717 {
8718 SET_SIGS (nsigs, sigs, signal_stop);
8719 SET_SIGS (nsigs, sigs, signal_print);
8720 }
8721 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8722 {
8723 UNSET_SIGS (nsigs, sigs, signal_program);
8724 }
8725 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8726 {
8727 SET_SIGS (nsigs, sigs, signal_print);
8728 }
8729 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8730 {
8731 SET_SIGS (nsigs, sigs, signal_program);
8732 }
8733 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8734 {
8735 UNSET_SIGS (nsigs, sigs, signal_stop);
8736 }
8737 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8738 {
8739 SET_SIGS (nsigs, sigs, signal_program);
8740 }
8741 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8742 {
8743 UNSET_SIGS (nsigs, sigs, signal_print);
8744 UNSET_SIGS (nsigs, sigs, signal_stop);
8745 }
8746 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8747 {
8748 UNSET_SIGS (nsigs, sigs, signal_program);
8749 }
8750 else if (digits > 0)
8751 {
8752 /* It is numeric. The numeric signal refers to our own
8753 internal signal numbering from target.h, not to host/target
8754 signal number. This is a feature; users really should be
8755 using symbolic names anyway, and the common ones like
8756 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8757
8758 sigfirst = siglast = (int)
8759 gdb_signal_from_command (atoi (arg));
8760 if (arg[digits] == '-')
8761 {
8762 siglast = (int)
8763 gdb_signal_from_command (atoi (arg + digits + 1));
8764 }
8765 if (sigfirst > siglast)
8766 {
8767 /* Bet he didn't figure we'd think of this case... */
8768 std::swap (sigfirst, siglast);
8769 }
8770 }
8771 else
8772 {
8773 oursig = gdb_signal_from_name (arg);
8774 if (oursig != GDB_SIGNAL_UNKNOWN)
8775 {
8776 sigfirst = siglast = (int) oursig;
8777 }
8778 else
8779 {
8780 /* Not a number and not a recognized flag word => complain. */
8781 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8782 }
8783 }
8784
8785 /* If any signal numbers or symbol names were found, set flags for
8786 which signals to apply actions to. */
8787
8788 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8789 {
8790 switch ((enum gdb_signal) signum)
8791 {
8792 case GDB_SIGNAL_TRAP:
8793 case GDB_SIGNAL_INT:
8794 if (!allsigs && !sigs[signum])
8795 {
8796 if (query (_("%s is used by the debugger.\n\
8797 Are you sure you want to change it? "),
8798 gdb_signal_to_name ((enum gdb_signal) signum)))
8799 {
8800 sigs[signum] = 1;
8801 }
8802 else
8803 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8804 }
8805 break;
8806 case GDB_SIGNAL_0:
8807 case GDB_SIGNAL_DEFAULT:
8808 case GDB_SIGNAL_UNKNOWN:
8809 /* Make sure that "all" doesn't print these. */
8810 break;
8811 default:
8812 sigs[signum] = 1;
8813 break;
8814 }
8815 }
8816 }
8817
8818 for (int signum = 0; signum < nsigs; signum++)
8819 if (sigs[signum])
8820 {
8821 signal_cache_update (-1);
8822 target_pass_signals (signal_pass);
8823 target_program_signals (signal_program);
8824
8825 if (from_tty)
8826 {
8827 /* Show the results. */
8828 sig_print_header ();
8829 for (; signum < nsigs; signum++)
8830 if (sigs[signum])
8831 sig_print_info ((enum gdb_signal) signum);
8832 }
8833
8834 break;
8835 }
8836 }
8837
8838 /* Complete the "handle" command. */
8839
8840 static void
8841 handle_completer (struct cmd_list_element *ignore,
8842 completion_tracker &tracker,
8843 const char *text, const char *word)
8844 {
8845 static const char * const keywords[] =
8846 {
8847 "all",
8848 "stop",
8849 "ignore",
8850 "print",
8851 "pass",
8852 "nostop",
8853 "noignore",
8854 "noprint",
8855 "nopass",
8856 NULL,
8857 };
8858
8859 signal_completer (ignore, tracker, text, word);
8860 complete_on_enum (tracker, keywords, word, word);
8861 }
8862
8863 enum gdb_signal
8864 gdb_signal_from_command (int num)
8865 {
8866 if (num >= 1 && num <= 15)
8867 return (enum gdb_signal) num;
8868 error (_("Only signals 1-15 are valid as numeric signals.\n\
8869 Use \"info signals\" for a list of symbolic signals."));
8870 }
8871
8872 /* Print current contents of the tables set by the handle command.
8873 It is possible we should just be printing signals actually used
8874 by the current target (but for things to work right when switching
8875 targets, all signals should be in the signal tables). */
8876
8877 static void
8878 info_signals_command (const char *signum_exp, int from_tty)
8879 {
8880 enum gdb_signal oursig;
8881
8882 sig_print_header ();
8883
8884 if (signum_exp)
8885 {
8886 /* First see if this is a symbol name. */
8887 oursig = gdb_signal_from_name (signum_exp);
8888 if (oursig == GDB_SIGNAL_UNKNOWN)
8889 {
8890 /* No, try numeric. */
8891 oursig =
8892 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8893 }
8894 sig_print_info (oursig);
8895 return;
8896 }
8897
8898 printf_filtered ("\n");
8899 /* These ugly casts brought to you by the native VAX compiler. */
8900 for (oursig = GDB_SIGNAL_FIRST;
8901 (int) oursig < (int) GDB_SIGNAL_LAST;
8902 oursig = (enum gdb_signal) ((int) oursig + 1))
8903 {
8904 QUIT;
8905
8906 if (oursig != GDB_SIGNAL_UNKNOWN
8907 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8908 sig_print_info (oursig);
8909 }
8910
8911 printf_filtered (_("\nUse the \"handle\" command "
8912 "to change these tables.\n"));
8913 }
8914
8915 /* The $_siginfo convenience variable is a bit special. We don't know
8916 for sure the type of the value until we actually have a chance to
8917 fetch the data. The type can change depending on gdbarch, so it is
8918 also dependent on which thread you have selected.
8919
8920 1. making $_siginfo be an internalvar that creates a new value on
8921 access.
8922
8923 2. making the value of $_siginfo be an lval_computed value. */
8924
8925 /* This function implements the lval_computed support for reading a
8926 $_siginfo value. */
8927
8928 static void
8929 siginfo_value_read (struct value *v)
8930 {
8931 LONGEST transferred;
8932
8933 /* If we can access registers, so can we access $_siginfo. Likewise
8934 vice versa. */
8935 validate_registers_access ();
8936
8937 transferred =
8938 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
8939 NULL,
8940 value_contents_all_raw (v),
8941 value_offset (v),
8942 TYPE_LENGTH (value_type (v)));
8943
8944 if (transferred != TYPE_LENGTH (value_type (v)))
8945 error (_("Unable to read siginfo"));
8946 }
8947
8948 /* This function implements the lval_computed support for writing a
8949 $_siginfo value. */
8950
8951 static void
8952 siginfo_value_write (struct value *v, struct value *fromval)
8953 {
8954 LONGEST transferred;
8955
8956 /* If we can access registers, so can we access $_siginfo. Likewise
8957 vice versa. */
8958 validate_registers_access ();
8959
8960 transferred = target_write (current_top_target (),
8961 TARGET_OBJECT_SIGNAL_INFO,
8962 NULL,
8963 value_contents_all_raw (fromval),
8964 value_offset (v),
8965 TYPE_LENGTH (value_type (fromval)));
8966
8967 if (transferred != TYPE_LENGTH (value_type (fromval)))
8968 error (_("Unable to write siginfo"));
8969 }
8970
8971 static const struct lval_funcs siginfo_value_funcs =
8972 {
8973 siginfo_value_read,
8974 siginfo_value_write
8975 };
8976
8977 /* Return a new value with the correct type for the siginfo object of
8978 the current thread using architecture GDBARCH. Return a void value
8979 if there's no object available. */
8980
8981 static struct value *
8982 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8983 void *ignore)
8984 {
8985 if (target_has_stack
8986 && inferior_ptid != null_ptid
8987 && gdbarch_get_siginfo_type_p (gdbarch))
8988 {
8989 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8990
8991 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8992 }
8993
8994 return allocate_value (builtin_type (gdbarch)->builtin_void);
8995 }
8996
8997 \f
8998 /* infcall_suspend_state contains state about the program itself like its
8999 registers and any signal it received when it last stopped.
9000 This state must be restored regardless of how the inferior function call
9001 ends (either successfully, or after it hits a breakpoint or signal)
9002 if the program is to properly continue where it left off. */
9003
9004 class infcall_suspend_state
9005 {
9006 public:
9007 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
9008 once the inferior function call has finished. */
9009 infcall_suspend_state (struct gdbarch *gdbarch,
9010 const struct thread_info *tp,
9011 struct regcache *regcache)
9012 : m_thread_suspend (tp->suspend),
9013 m_registers (new readonly_detached_regcache (*regcache))
9014 {
9015 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
9016
9017 if (gdbarch_get_siginfo_type_p (gdbarch))
9018 {
9019 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9020 size_t len = TYPE_LENGTH (type);
9021
9022 siginfo_data.reset ((gdb_byte *) xmalloc (len));
9023
9024 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9025 siginfo_data.get (), 0, len) != len)
9026 {
9027 /* Errors ignored. */
9028 siginfo_data.reset (nullptr);
9029 }
9030 }
9031
9032 if (siginfo_data)
9033 {
9034 m_siginfo_gdbarch = gdbarch;
9035 m_siginfo_data = std::move (siginfo_data);
9036 }
9037 }
9038
9039 /* Return a pointer to the stored register state. */
9040
9041 readonly_detached_regcache *registers () const
9042 {
9043 return m_registers.get ();
9044 }
9045
9046 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
9047
9048 void restore (struct gdbarch *gdbarch,
9049 struct thread_info *tp,
9050 struct regcache *regcache) const
9051 {
9052 tp->suspend = m_thread_suspend;
9053
9054 if (m_siginfo_gdbarch == gdbarch)
9055 {
9056 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9057
9058 /* Errors ignored. */
9059 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9060 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
9061 }
9062
9063 /* The inferior can be gone if the user types "print exit(0)"
9064 (and perhaps other times). */
9065 if (target_has_execution)
9066 /* NB: The register write goes through to the target. */
9067 regcache->restore (registers ());
9068 }
9069
9070 private:
9071 /* How the current thread stopped before the inferior function call was
9072 executed. */
9073 struct thread_suspend_state m_thread_suspend;
9074
9075 /* The registers before the inferior function call was executed. */
9076 std::unique_ptr<readonly_detached_regcache> m_registers;
9077
9078 /* Format of SIGINFO_DATA or NULL if it is not present. */
9079 struct gdbarch *m_siginfo_gdbarch = nullptr;
9080
9081 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
9082 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
9083 content would be invalid. */
9084 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
9085 };
9086
9087 infcall_suspend_state_up
9088 save_infcall_suspend_state ()
9089 {
9090 struct thread_info *tp = inferior_thread ();
9091 struct regcache *regcache = get_current_regcache ();
9092 struct gdbarch *gdbarch = regcache->arch ();
9093
9094 infcall_suspend_state_up inf_state
9095 (new struct infcall_suspend_state (gdbarch, tp, regcache));
9096
9097 /* Having saved the current state, adjust the thread state, discarding
9098 any stop signal information. The stop signal is not useful when
9099 starting an inferior function call, and run_inferior_call will not use
9100 the signal due to its `proceed' call with GDB_SIGNAL_0. */
9101 tp->suspend.stop_signal = GDB_SIGNAL_0;
9102
9103 return inf_state;
9104 }
9105
9106 /* Restore inferior session state to INF_STATE. */
9107
9108 void
9109 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
9110 {
9111 struct thread_info *tp = inferior_thread ();
9112 struct regcache *regcache = get_current_regcache ();
9113 struct gdbarch *gdbarch = regcache->arch ();
9114
9115 inf_state->restore (gdbarch, tp, regcache);
9116 discard_infcall_suspend_state (inf_state);
9117 }
9118
9119 void
9120 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
9121 {
9122 delete inf_state;
9123 }
9124
9125 readonly_detached_regcache *
9126 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
9127 {
9128 return inf_state->registers ();
9129 }
9130
9131 /* infcall_control_state contains state regarding gdb's control of the
9132 inferior itself like stepping control. It also contains session state like
9133 the user's currently selected frame. */
9134
9135 struct infcall_control_state
9136 {
9137 struct thread_control_state thread_control;
9138 struct inferior_control_state inferior_control;
9139
9140 /* Other fields: */
9141 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9142 int stopped_by_random_signal = 0;
9143
9144 /* ID if the selected frame when the inferior function call was made. */
9145 struct frame_id selected_frame_id {};
9146 };
9147
9148 /* Save all of the information associated with the inferior<==>gdb
9149 connection. */
9150
9151 infcall_control_state_up
9152 save_infcall_control_state ()
9153 {
9154 infcall_control_state_up inf_status (new struct infcall_control_state);
9155 struct thread_info *tp = inferior_thread ();
9156 struct inferior *inf = current_inferior ();
9157
9158 inf_status->thread_control = tp->control;
9159 inf_status->inferior_control = inf->control;
9160
9161 tp->control.step_resume_breakpoint = NULL;
9162 tp->control.exception_resume_breakpoint = NULL;
9163
9164 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9165 chain. If caller's caller is walking the chain, they'll be happier if we
9166 hand them back the original chain when restore_infcall_control_state is
9167 called. */
9168 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9169
9170 /* Other fields: */
9171 inf_status->stop_stack_dummy = stop_stack_dummy;
9172 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9173
9174 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
9175
9176 return inf_status;
9177 }
9178
9179 static void
9180 restore_selected_frame (const frame_id &fid)
9181 {
9182 frame_info *frame = frame_find_by_id (fid);
9183
9184 /* If inf_status->selected_frame_id is NULL, there was no previously
9185 selected frame. */
9186 if (frame == NULL)
9187 {
9188 warning (_("Unable to restore previously selected frame."));
9189 return;
9190 }
9191
9192 select_frame (frame);
9193 }
9194
9195 /* Restore inferior session state to INF_STATUS. */
9196
9197 void
9198 restore_infcall_control_state (struct infcall_control_state *inf_status)
9199 {
9200 struct thread_info *tp = inferior_thread ();
9201 struct inferior *inf = current_inferior ();
9202
9203 if (tp->control.step_resume_breakpoint)
9204 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9205
9206 if (tp->control.exception_resume_breakpoint)
9207 tp->control.exception_resume_breakpoint->disposition
9208 = disp_del_at_next_stop;
9209
9210 /* Handle the bpstat_copy of the chain. */
9211 bpstat_clear (&tp->control.stop_bpstat);
9212
9213 tp->control = inf_status->thread_control;
9214 inf->control = inf_status->inferior_control;
9215
9216 /* Other fields: */
9217 stop_stack_dummy = inf_status->stop_stack_dummy;
9218 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9219
9220 if (target_has_stack)
9221 {
9222 /* The point of the try/catch is that if the stack is clobbered,
9223 walking the stack might encounter a garbage pointer and
9224 error() trying to dereference it. */
9225 try
9226 {
9227 restore_selected_frame (inf_status->selected_frame_id);
9228 }
9229 catch (const gdb_exception_error &ex)
9230 {
9231 exception_fprintf (gdb_stderr, ex,
9232 "Unable to restore previously selected frame:\n");
9233 /* Error in restoring the selected frame. Select the
9234 innermost frame. */
9235 select_frame (get_current_frame ());
9236 }
9237 }
9238
9239 delete inf_status;
9240 }
9241
9242 void
9243 discard_infcall_control_state (struct infcall_control_state *inf_status)
9244 {
9245 if (inf_status->thread_control.step_resume_breakpoint)
9246 inf_status->thread_control.step_resume_breakpoint->disposition
9247 = disp_del_at_next_stop;
9248
9249 if (inf_status->thread_control.exception_resume_breakpoint)
9250 inf_status->thread_control.exception_resume_breakpoint->disposition
9251 = disp_del_at_next_stop;
9252
9253 /* See save_infcall_control_state for info on stop_bpstat. */
9254 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9255
9256 delete inf_status;
9257 }
9258 \f
9259 /* See infrun.h. */
9260
9261 void
9262 clear_exit_convenience_vars (void)
9263 {
9264 clear_internalvar (lookup_internalvar ("_exitsignal"));
9265 clear_internalvar (lookup_internalvar ("_exitcode"));
9266 }
9267 \f
9268
9269 /* User interface for reverse debugging:
9270 Set exec-direction / show exec-direction commands
9271 (returns error unless target implements to_set_exec_direction method). */
9272
9273 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9274 static const char exec_forward[] = "forward";
9275 static const char exec_reverse[] = "reverse";
9276 static const char *exec_direction = exec_forward;
9277 static const char *const exec_direction_names[] = {
9278 exec_forward,
9279 exec_reverse,
9280 NULL
9281 };
9282
9283 static void
9284 set_exec_direction_func (const char *args, int from_tty,
9285 struct cmd_list_element *cmd)
9286 {
9287 if (target_can_execute_reverse)
9288 {
9289 if (!strcmp (exec_direction, exec_forward))
9290 execution_direction = EXEC_FORWARD;
9291 else if (!strcmp (exec_direction, exec_reverse))
9292 execution_direction = EXEC_REVERSE;
9293 }
9294 else
9295 {
9296 exec_direction = exec_forward;
9297 error (_("Target does not support this operation."));
9298 }
9299 }
9300
9301 static void
9302 show_exec_direction_func (struct ui_file *out, int from_tty,
9303 struct cmd_list_element *cmd, const char *value)
9304 {
9305 switch (execution_direction) {
9306 case EXEC_FORWARD:
9307 fprintf_filtered (out, _("Forward.\n"));
9308 break;
9309 case EXEC_REVERSE:
9310 fprintf_filtered (out, _("Reverse.\n"));
9311 break;
9312 default:
9313 internal_error (__FILE__, __LINE__,
9314 _("bogus execution_direction value: %d"),
9315 (int) execution_direction);
9316 }
9317 }
9318
9319 static void
9320 show_schedule_multiple (struct ui_file *file, int from_tty,
9321 struct cmd_list_element *c, const char *value)
9322 {
9323 fprintf_filtered (file, _("Resuming the execution of threads "
9324 "of all processes is %s.\n"), value);
9325 }
9326
9327 /* Implementation of `siginfo' variable. */
9328
9329 static const struct internalvar_funcs siginfo_funcs =
9330 {
9331 siginfo_make_value,
9332 NULL,
9333 NULL
9334 };
9335
9336 /* Callback for infrun's target events source. This is marked when a
9337 thread has a pending status to process. */
9338
9339 static void
9340 infrun_async_inferior_event_handler (gdb_client_data data)
9341 {
9342 inferior_event_handler (INF_REG_EVENT, NULL);
9343 }
9344
9345 void _initialize_infrun ();
9346 void
9347 _initialize_infrun ()
9348 {
9349 struct cmd_list_element *c;
9350
9351 /* Register extra event sources in the event loop. */
9352 infrun_async_inferior_event_token
9353 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9354
9355 add_info ("signals", info_signals_command, _("\
9356 What debugger does when program gets various signals.\n\
9357 Specify a signal as argument to print info on that signal only."));
9358 add_info_alias ("handle", "signals", 0);
9359
9360 c = add_com ("handle", class_run, handle_command, _("\
9361 Specify how to handle signals.\n\
9362 Usage: handle SIGNAL [ACTIONS]\n\
9363 Args are signals and actions to apply to those signals.\n\
9364 If no actions are specified, the current settings for the specified signals\n\
9365 will be displayed instead.\n\
9366 \n\
9367 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9368 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9369 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9370 The special arg \"all\" is recognized to mean all signals except those\n\
9371 used by the debugger, typically SIGTRAP and SIGINT.\n\
9372 \n\
9373 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9374 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9375 Stop means reenter debugger if this signal happens (implies print).\n\
9376 Print means print a message if this signal happens.\n\
9377 Pass means let program see this signal; otherwise program doesn't know.\n\
9378 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9379 Pass and Stop may be combined.\n\
9380 \n\
9381 Multiple signals may be specified. Signal numbers and signal names\n\
9382 may be interspersed with actions, with the actions being performed for\n\
9383 all signals cumulatively specified."));
9384 set_cmd_completer (c, handle_completer);
9385
9386 if (!dbx_commands)
9387 stop_command = add_cmd ("stop", class_obscure,
9388 not_just_help_class_command, _("\
9389 There is no `stop' command, but you can set a hook on `stop'.\n\
9390 This allows you to set a list of commands to be run each time execution\n\
9391 of the program stops."), &cmdlist);
9392
9393 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9394 Set inferior debugging."), _("\
9395 Show inferior debugging."), _("\
9396 When non-zero, inferior specific debugging is enabled."),
9397 NULL,
9398 show_debug_infrun,
9399 &setdebuglist, &showdebuglist);
9400
9401 add_setshow_boolean_cmd ("displaced", class_maintenance,
9402 &debug_displaced, _("\
9403 Set displaced stepping debugging."), _("\
9404 Show displaced stepping debugging."), _("\
9405 When non-zero, displaced stepping specific debugging is enabled."),
9406 NULL,
9407 show_debug_displaced,
9408 &setdebuglist, &showdebuglist);
9409
9410 add_setshow_boolean_cmd ("non-stop", no_class,
9411 &non_stop_1, _("\
9412 Set whether gdb controls the inferior in non-stop mode."), _("\
9413 Show whether gdb controls the inferior in non-stop mode."), _("\
9414 When debugging a multi-threaded program and this setting is\n\
9415 off (the default, also called all-stop mode), when one thread stops\n\
9416 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9417 all other threads in the program while you interact with the thread of\n\
9418 interest. When you continue or step a thread, you can allow the other\n\
9419 threads to run, or have them remain stopped, but while you inspect any\n\
9420 thread's state, all threads stop.\n\
9421 \n\
9422 In non-stop mode, when one thread stops, other threads can continue\n\
9423 to run freely. You'll be able to step each thread independently,\n\
9424 leave it stopped or free to run as needed."),
9425 set_non_stop,
9426 show_non_stop,
9427 &setlist,
9428 &showlist);
9429
9430 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
9431 {
9432 signal_stop[i] = 1;
9433 signal_print[i] = 1;
9434 signal_program[i] = 1;
9435 signal_catch[i] = 0;
9436 }
9437
9438 /* Signals caused by debugger's own actions should not be given to
9439 the program afterwards.
9440
9441 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9442 explicitly specifies that it should be delivered to the target
9443 program. Typically, that would occur when a user is debugging a
9444 target monitor on a simulator: the target monitor sets a
9445 breakpoint; the simulator encounters this breakpoint and halts
9446 the simulation handing control to GDB; GDB, noting that the stop
9447 address doesn't map to any known breakpoint, returns control back
9448 to the simulator; the simulator then delivers the hardware
9449 equivalent of a GDB_SIGNAL_TRAP to the program being
9450 debugged. */
9451 signal_program[GDB_SIGNAL_TRAP] = 0;
9452 signal_program[GDB_SIGNAL_INT] = 0;
9453
9454 /* Signals that are not errors should not normally enter the debugger. */
9455 signal_stop[GDB_SIGNAL_ALRM] = 0;
9456 signal_print[GDB_SIGNAL_ALRM] = 0;
9457 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9458 signal_print[GDB_SIGNAL_VTALRM] = 0;
9459 signal_stop[GDB_SIGNAL_PROF] = 0;
9460 signal_print[GDB_SIGNAL_PROF] = 0;
9461 signal_stop[GDB_SIGNAL_CHLD] = 0;
9462 signal_print[GDB_SIGNAL_CHLD] = 0;
9463 signal_stop[GDB_SIGNAL_IO] = 0;
9464 signal_print[GDB_SIGNAL_IO] = 0;
9465 signal_stop[GDB_SIGNAL_POLL] = 0;
9466 signal_print[GDB_SIGNAL_POLL] = 0;
9467 signal_stop[GDB_SIGNAL_URG] = 0;
9468 signal_print[GDB_SIGNAL_URG] = 0;
9469 signal_stop[GDB_SIGNAL_WINCH] = 0;
9470 signal_print[GDB_SIGNAL_WINCH] = 0;
9471 signal_stop[GDB_SIGNAL_PRIO] = 0;
9472 signal_print[GDB_SIGNAL_PRIO] = 0;
9473
9474 /* These signals are used internally by user-level thread
9475 implementations. (See signal(5) on Solaris.) Like the above
9476 signals, a healthy program receives and handles them as part of
9477 its normal operation. */
9478 signal_stop[GDB_SIGNAL_LWP] = 0;
9479 signal_print[GDB_SIGNAL_LWP] = 0;
9480 signal_stop[GDB_SIGNAL_WAITING] = 0;
9481 signal_print[GDB_SIGNAL_WAITING] = 0;
9482 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9483 signal_print[GDB_SIGNAL_CANCEL] = 0;
9484 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9485 signal_print[GDB_SIGNAL_LIBRT] = 0;
9486
9487 /* Update cached state. */
9488 signal_cache_update (-1);
9489
9490 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9491 &stop_on_solib_events, _("\
9492 Set stopping for shared library events."), _("\
9493 Show stopping for shared library events."), _("\
9494 If nonzero, gdb will give control to the user when the dynamic linker\n\
9495 notifies gdb of shared library events. The most common event of interest\n\
9496 to the user would be loading/unloading of a new library."),
9497 set_stop_on_solib_events,
9498 show_stop_on_solib_events,
9499 &setlist, &showlist);
9500
9501 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9502 follow_fork_mode_kind_names,
9503 &follow_fork_mode_string, _("\
9504 Set debugger response to a program call of fork or vfork."), _("\
9505 Show debugger response to a program call of fork or vfork."), _("\
9506 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9507 parent - the original process is debugged after a fork\n\
9508 child - the new process is debugged after a fork\n\
9509 The unfollowed process will continue to run.\n\
9510 By default, the debugger will follow the parent process."),
9511 NULL,
9512 show_follow_fork_mode_string,
9513 &setlist, &showlist);
9514
9515 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9516 follow_exec_mode_names,
9517 &follow_exec_mode_string, _("\
9518 Set debugger response to a program call of exec."), _("\
9519 Show debugger response to a program call of exec."), _("\
9520 An exec call replaces the program image of a process.\n\
9521 \n\
9522 follow-exec-mode can be:\n\
9523 \n\
9524 new - the debugger creates a new inferior and rebinds the process\n\
9525 to this new inferior. The program the process was running before\n\
9526 the exec call can be restarted afterwards by restarting the original\n\
9527 inferior.\n\
9528 \n\
9529 same - the debugger keeps the process bound to the same inferior.\n\
9530 The new executable image replaces the previous executable loaded in\n\
9531 the inferior. Restarting the inferior after the exec call restarts\n\
9532 the executable the process was running after the exec call.\n\
9533 \n\
9534 By default, the debugger will use the same inferior."),
9535 NULL,
9536 show_follow_exec_mode_string,
9537 &setlist, &showlist);
9538
9539 add_setshow_enum_cmd ("scheduler-locking", class_run,
9540 scheduler_enums, &scheduler_mode, _("\
9541 Set mode for locking scheduler during execution."), _("\
9542 Show mode for locking scheduler during execution."), _("\
9543 off == no locking (threads may preempt at any time)\n\
9544 on == full locking (no thread except the current thread may run)\n\
9545 This applies to both normal execution and replay mode.\n\
9546 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9547 In this mode, other threads may run during other commands.\n\
9548 This applies to both normal execution and replay mode.\n\
9549 replay == scheduler locked in replay mode and unlocked during normal execution."),
9550 set_schedlock_func, /* traps on target vector */
9551 show_scheduler_mode,
9552 &setlist, &showlist);
9553
9554 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9555 Set mode for resuming threads of all processes."), _("\
9556 Show mode for resuming threads of all processes."), _("\
9557 When on, execution commands (such as 'continue' or 'next') resume all\n\
9558 threads of all processes. When off (which is the default), execution\n\
9559 commands only resume the threads of the current process. The set of\n\
9560 threads that are resumed is further refined by the scheduler-locking\n\
9561 mode (see help set scheduler-locking)."),
9562 NULL,
9563 show_schedule_multiple,
9564 &setlist, &showlist);
9565
9566 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9567 Set mode of the step operation."), _("\
9568 Show mode of the step operation."), _("\
9569 When set, doing a step over a function without debug line information\n\
9570 will stop at the first instruction of that function. Otherwise, the\n\
9571 function is skipped and the step command stops at a different source line."),
9572 NULL,
9573 show_step_stop_if_no_debug,
9574 &setlist, &showlist);
9575
9576 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9577 &can_use_displaced_stepping, _("\
9578 Set debugger's willingness to use displaced stepping."), _("\
9579 Show debugger's willingness to use displaced stepping."), _("\
9580 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9581 supported by the target architecture. If off, gdb will not use displaced\n\
9582 stepping to step over breakpoints, even if such is supported by the target\n\
9583 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9584 if the target architecture supports it and non-stop mode is active, but will not\n\
9585 use it in all-stop mode (see help set non-stop)."),
9586 NULL,
9587 show_can_use_displaced_stepping,
9588 &setlist, &showlist);
9589
9590 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9591 &exec_direction, _("Set direction of execution.\n\
9592 Options are 'forward' or 'reverse'."),
9593 _("Show direction of execution (forward/reverse)."),
9594 _("Tells gdb whether to execute forward or backward."),
9595 set_exec_direction_func, show_exec_direction_func,
9596 &setlist, &showlist);
9597
9598 /* Set/show detach-on-fork: user-settable mode. */
9599
9600 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9601 Set whether gdb will detach the child of a fork."), _("\
9602 Show whether gdb will detach the child of a fork."), _("\
9603 Tells gdb whether to detach the child of a fork."),
9604 NULL, NULL, &setlist, &showlist);
9605
9606 /* Set/show disable address space randomization mode. */
9607
9608 add_setshow_boolean_cmd ("disable-randomization", class_support,
9609 &disable_randomization, _("\
9610 Set disabling of debuggee's virtual address space randomization."), _("\
9611 Show disabling of debuggee's virtual address space randomization."), _("\
9612 When this mode is on (which is the default), randomization of the virtual\n\
9613 address space is disabled. Standalone programs run with the randomization\n\
9614 enabled by default on some platforms."),
9615 &set_disable_randomization,
9616 &show_disable_randomization,
9617 &setlist, &showlist);
9618
9619 /* ptid initializations */
9620 inferior_ptid = null_ptid;
9621 target_last_wait_ptid = minus_one_ptid;
9622
9623 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9624 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9625 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9626 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9627
9628 /* Explicitly create without lookup, since that tries to create a
9629 value with a void typed value, and when we get here, gdbarch
9630 isn't initialized yet. At this point, we're quite sure there
9631 isn't another convenience variable of the same name. */
9632 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9633
9634 add_setshow_boolean_cmd ("observer", no_class,
9635 &observer_mode_1, _("\
9636 Set whether gdb controls the inferior in observer mode."), _("\
9637 Show whether gdb controls the inferior in observer mode."), _("\
9638 In observer mode, GDB can get data from the inferior, but not\n\
9639 affect its execution. Registers and memory may not be changed,\n\
9640 breakpoints may not be set, and the program cannot be interrupted\n\
9641 or signalled."),
9642 set_observer_mode,
9643 show_observer_mode,
9644 &setlist,
9645 &showlist);
9646 }
This page took 0.274912 seconds and 4 git commands to generate.