v850 files that weren't being removed if !keep-v850
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior process.
2 Copyright 1986, 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "gdbthread.h"
33 #include "annotate.h"
34
35 #include <signal.h>
36
37 /* Prototypes for local functions */
38
39 static void signals_info PARAMS ((char *, int));
40
41 static void handle_command PARAMS ((char *, int));
42
43 static void sig_print_info PARAMS ((enum target_signal));
44
45 static void sig_print_header PARAMS ((void));
46
47 static void resume_cleanups PARAMS ((int));
48
49 static int hook_stop_stub PARAMS ((char *));
50
51 static void delete_breakpoint_current_contents PARAMS ((PTR));
52
53 /* GET_LONGJMP_TARGET returns the PC at which longjmp() will resume the
54 program. It needs to examine the jmp_buf argument and extract the PC
55 from it. The return value is non-zero on success, zero otherwise. */
56
57 #ifndef GET_LONGJMP_TARGET
58 #define GET_LONGJMP_TARGET(PC_ADDR) 0
59 #endif
60
61
62 /* Some machines have trampoline code that sits between function callers
63 and the actual functions themselves. If this machine doesn't have
64 such things, disable their processing. */
65
66 #ifndef SKIP_TRAMPOLINE_CODE
67 #define SKIP_TRAMPOLINE_CODE(pc) 0
68 #endif
69
70 /* Dynamic function trampolines are similar to solib trampolines in that they
71 are between the caller and the callee. The difference is that when you
72 enter a dynamic trampoline, you can't determine the callee's address. Some
73 (usually complex) code needs to run in the dynamic trampoline to figure out
74 the callee's address. This macro is usually called twice. First, when we
75 enter the trampoline (looks like a normal function call at that point). It
76 should return the PC of a point within the trampoline where the callee's
77 address is known. Second, when we hit the breakpoint, this routine returns
78 the callee's address. At that point, things proceed as per a step resume
79 breakpoint. */
80
81 #ifndef DYNAMIC_TRAMPOLINE_NEXTPC
82 #define DYNAMIC_TRAMPOLINE_NEXTPC(pc) 0
83 #endif
84
85 /* For SVR4 shared libraries, each call goes through a small piece of
86 trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
87 to nonzero if we are current stopped in one of these. */
88
89 #ifndef IN_SOLIB_CALL_TRAMPOLINE
90 #define IN_SOLIB_CALL_TRAMPOLINE(pc,name) 0
91 #endif
92
93 /* In some shared library schemes, the return path from a shared library
94 call may need to go through a trampoline too. */
95
96 #ifndef IN_SOLIB_RETURN_TRAMPOLINE
97 #define IN_SOLIB_RETURN_TRAMPOLINE(pc,name) 0
98 #endif
99
100 /* On MIPS16, a function that returns a floating point value may call
101 a library helper function to copy the return value to a floating point
102 register. The IGNORE_HELPER_CALL macro returns non-zero if we
103 should ignore (i.e. step over) this function call. */
104 #ifndef IGNORE_HELPER_CALL
105 #define IGNORE_HELPER_CALL(pc) 0
106 #endif
107
108 /* On some systems, the PC may be left pointing at an instruction that won't
109 actually be executed. This is usually indicated by a bit in the PSW. If
110 we find ourselves in such a state, then we step the target beyond the
111 nullified instruction before returning control to the user so as to avoid
112 confusion. */
113
114 #ifndef INSTRUCTION_NULLIFIED
115 #define INSTRUCTION_NULLIFIED 0
116 #endif
117
118 /* Tables of how to react to signals; the user sets them. */
119
120 static unsigned char *signal_stop;
121 static unsigned char *signal_print;
122 static unsigned char *signal_program;
123
124 #define SET_SIGS(nsigs,sigs,flags) \
125 do { \
126 int signum = (nsigs); \
127 while (signum-- > 0) \
128 if ((sigs)[signum]) \
129 (flags)[signum] = 1; \
130 } while (0)
131
132 #define UNSET_SIGS(nsigs,sigs,flags) \
133 do { \
134 int signum = (nsigs); \
135 while (signum-- > 0) \
136 if ((sigs)[signum]) \
137 (flags)[signum] = 0; \
138 } while (0)
139
140
141 /* Command list pointer for the "stop" placeholder. */
142
143 static struct cmd_list_element *stop_command;
144
145 /* Nonzero if breakpoints are now inserted in the inferior. */
146
147 static int breakpoints_inserted;
148
149 /* Function inferior was in as of last step command. */
150
151 static struct symbol *step_start_function;
152
153 /* Nonzero if we are expecting a trace trap and should proceed from it. */
154
155 static int trap_expected;
156
157 #ifdef SOLIB_ADD
158 /* Nonzero if we want to give control to the user when we're notified
159 of shared library events by the dynamic linker. */
160 static int stop_on_solib_events;
161 #endif
162
163 #ifdef HP_OS_BUG
164 /* Nonzero if the next time we try to continue the inferior, it will
165 step one instruction and generate a spurious trace trap.
166 This is used to compensate for a bug in HP-UX. */
167
168 static int trap_expected_after_continue;
169 #endif
170
171 /* Nonzero means expecting a trace trap
172 and should stop the inferior and return silently when it happens. */
173
174 int stop_after_trap;
175
176 /* Nonzero means expecting a trap and caller will handle it themselves.
177 It is used after attach, due to attaching to a process;
178 when running in the shell before the child program has been exec'd;
179 and when running some kinds of remote stuff (FIXME?). */
180
181 int stop_soon_quietly;
182
183 /* Nonzero if proceed is being used for a "finish" command or a similar
184 situation when stop_registers should be saved. */
185
186 int proceed_to_finish;
187
188 /* Save register contents here when about to pop a stack dummy frame,
189 if-and-only-if proceed_to_finish is set.
190 Thus this contains the return value from the called function (assuming
191 values are returned in a register). */
192
193 char stop_registers[REGISTER_BYTES];
194
195 /* Nonzero if program stopped due to error trying to insert breakpoints. */
196
197 static int breakpoints_failed;
198
199 /* Nonzero after stop if current stack frame should be printed. */
200
201 static int stop_print_frame;
202
203 \f
204 /* Things to clean up if we QUIT out of resume (). */
205 /* ARGSUSED */
206 static void
207 resume_cleanups (arg)
208 int arg;
209 {
210 normal_stop ();
211 }
212
213 /* Resume the inferior, but allow a QUIT. This is useful if the user
214 wants to interrupt some lengthy single-stepping operation
215 (for child processes, the SIGINT goes to the inferior, and so
216 we get a SIGINT random_signal, but for remote debugging and perhaps
217 other targets, that's not true).
218
219 STEP nonzero if we should step (zero to continue instead).
220 SIG is the signal to give the inferior (zero for none). */
221 void
222 resume (step, sig)
223 int step;
224 enum target_signal sig;
225 {
226 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
227 QUIT;
228
229 #ifdef CANNOT_STEP_BREAKPOINT
230 /* Most targets can step a breakpoint instruction, thus executing it
231 normally. But if this one cannot, just continue and we will hit
232 it anyway. */
233 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
234 step = 0;
235 #endif
236
237 #ifdef NO_SINGLE_STEP
238 if (step) {
239 single_step(sig); /* Do it the hard way, w/temp breakpoints */
240 step = 0; /* ...and don't ask hardware to do it. */
241 }
242 #endif
243
244 /* Handle any optimized stores to the inferior NOW... */
245 #ifdef DO_DEFERRED_STORES
246 DO_DEFERRED_STORES;
247 #endif
248
249 /* Install inferior's terminal modes. */
250 target_terminal_inferior ();
251
252 target_resume (-1, step, sig);
253 discard_cleanups (old_cleanups);
254 }
255
256 \f
257 /* Clear out all variables saying what to do when inferior is continued.
258 First do this, then set the ones you want, then call `proceed'. */
259
260 void
261 clear_proceed_status ()
262 {
263 trap_expected = 0;
264 step_range_start = 0;
265 step_range_end = 0;
266 step_frame_address = 0;
267 step_over_calls = -1;
268 stop_after_trap = 0;
269 stop_soon_quietly = 0;
270 proceed_to_finish = 0;
271 breakpoint_proceeded = 1; /* We're about to proceed... */
272
273 /* Discard any remaining commands or status from previous stop. */
274 bpstat_clear (&stop_bpstat);
275 }
276
277 /* Basic routine for continuing the program in various fashions.
278
279 ADDR is the address to resume at, or -1 for resume where stopped.
280 SIGGNAL is the signal to give it, or 0 for none,
281 or -1 for act according to how it stopped.
282 STEP is nonzero if should trap after one instruction.
283 -1 means return after that and print nothing.
284 You should probably set various step_... variables
285 before calling here, if you are stepping.
286
287 You should call clear_proceed_status before calling proceed. */
288
289 void
290 proceed (addr, siggnal, step)
291 CORE_ADDR addr;
292 enum target_signal siggnal;
293 int step;
294 {
295 int oneproc = 0;
296
297 if (step > 0)
298 step_start_function = find_pc_function (read_pc ());
299 if (step < 0)
300 stop_after_trap = 1;
301
302 if (addr == (CORE_ADDR)-1)
303 {
304 /* If there is a breakpoint at the address we will resume at,
305 step one instruction before inserting breakpoints
306 so that we do not stop right away. */
307
308 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
309 oneproc = 1;
310
311 #ifdef STEP_SKIPS_DELAY
312 /* Check breakpoint_here_p first, because breakpoint_here_p is fast
313 (it just checks internal GDB data structures) and STEP_SKIPS_DELAY
314 is slow (it needs to read memory from the target). */
315 if (breakpoint_here_p (read_pc () + 4)
316 && STEP_SKIPS_DELAY (read_pc ()))
317 oneproc = 1;
318 #endif /* STEP_SKIPS_DELAY */
319 }
320 else
321 write_pc (addr);
322
323 #ifdef PREPARE_TO_PROCEED
324 /* In a multi-threaded task we may select another thread and then continue.
325
326 In this case the thread that stopped at a breakpoint will immediately
327 cause another stop, if it is not stepped over first. On the other hand,
328 if (ADDR != -1) we only want to single step over the breakpoint if we did
329 switch to another thread.
330
331 If we are single stepping, don't do any of the above.
332 (Note that in the current implementation single stepping another
333 thread after a breakpoint and then continuing will cause the original
334 breakpoint to be hit again, but you can always continue, so it's not
335 a big deal.) */
336
337 if (! step && PREPARE_TO_PROCEED (1) && breakpoint_here_p (read_pc ()))
338 oneproc = 1;
339 #endif /* PREPARE_TO_PROCEED */
340
341 #ifdef HP_OS_BUG
342 if (trap_expected_after_continue)
343 {
344 /* If (step == 0), a trap will be automatically generated after
345 the first instruction is executed. Force step one
346 instruction to clear this condition. This should not occur
347 if step is nonzero, but it is harmless in that case. */
348 oneproc = 1;
349 trap_expected_after_continue = 0;
350 }
351 #endif /* HP_OS_BUG */
352
353 if (oneproc)
354 /* We will get a trace trap after one instruction.
355 Continue it automatically and insert breakpoints then. */
356 trap_expected = 1;
357 else
358 {
359 int temp = insert_breakpoints ();
360 if (temp)
361 {
362 print_sys_errmsg ("ptrace", temp);
363 error ("Cannot insert breakpoints.\n\
364 The same program may be running in another process.");
365 }
366 breakpoints_inserted = 1;
367 }
368
369 if (siggnal != TARGET_SIGNAL_DEFAULT)
370 stop_signal = siggnal;
371 /* If this signal should not be seen by program,
372 give it zero. Used for debugging signals. */
373 else if (!signal_program[stop_signal])
374 stop_signal = TARGET_SIGNAL_0;
375
376 annotate_starting ();
377
378 /* Make sure that output from GDB appears before output from the
379 inferior. */
380 gdb_flush (gdb_stdout);
381
382 /* Resume inferior. */
383 resume (oneproc || step || bpstat_should_step (), stop_signal);
384
385 /* Wait for it to stop (if not standalone)
386 and in any case decode why it stopped, and act accordingly. */
387
388 wait_for_inferior ();
389 normal_stop ();
390 }
391
392 /* Record the pc and sp of the program the last time it stopped.
393 These are just used internally by wait_for_inferior, but need
394 to be preserved over calls to it and cleared when the inferior
395 is started. */
396 static CORE_ADDR prev_pc;
397 static CORE_ADDR prev_func_start;
398 static char *prev_func_name;
399
400 \f
401 /* Start remote-debugging of a machine over a serial link. */
402
403 void
404 start_remote ()
405 {
406 init_thread_list ();
407 init_wait_for_inferior ();
408 clear_proceed_status ();
409 stop_soon_quietly = 1;
410 trap_expected = 0;
411 wait_for_inferior ();
412 normal_stop ();
413 }
414
415 /* Initialize static vars when a new inferior begins. */
416
417 void
418 init_wait_for_inferior ()
419 {
420 /* These are meaningless until the first time through wait_for_inferior. */
421 prev_pc = 0;
422 prev_func_start = 0;
423 prev_func_name = NULL;
424
425 #ifdef HP_OS_BUG
426 trap_expected_after_continue = 0;
427 #endif
428 breakpoints_inserted = 0;
429 breakpoint_init_inferior ();
430
431 /* Don't confuse first call to proceed(). */
432 stop_signal = TARGET_SIGNAL_0;
433 }
434
435 static void
436 delete_breakpoint_current_contents (arg)
437 PTR arg;
438 {
439 struct breakpoint **breakpointp = (struct breakpoint **)arg;
440 if (*breakpointp != NULL)
441 delete_breakpoint (*breakpointp);
442 }
443 \f
444 /* Wait for control to return from inferior to debugger.
445 If inferior gets a signal, we may decide to start it up again
446 instead of returning. That is why there is a loop in this function.
447 When this function actually returns it means the inferior
448 should be left stopped and GDB should read more commands. */
449
450 void
451 wait_for_inferior ()
452 {
453 struct cleanup *old_cleanups;
454 struct target_waitstatus w;
455 int another_trap;
456 int random_signal = 0;
457 CORE_ADDR stop_func_start;
458 CORE_ADDR stop_func_end;
459 char *stop_func_name;
460 #if 0
461 CORE_ADDR prologue_pc = 0;
462 #endif
463 CORE_ADDR tmp;
464 struct symtab_and_line sal;
465 int remove_breakpoints_on_following_step = 0;
466 int current_line;
467 struct symtab *current_symtab;
468 int handling_longjmp = 0; /* FIXME */
469 struct breakpoint *step_resume_breakpoint = NULL;
470 struct breakpoint *through_sigtramp_breakpoint = NULL;
471 int pid;
472 int update_step_sp = 0;
473
474 old_cleanups = make_cleanup (delete_breakpoint_current_contents,
475 &step_resume_breakpoint);
476 make_cleanup (delete_breakpoint_current_contents,
477 &through_sigtramp_breakpoint);
478 sal = find_pc_line(prev_pc, 0);
479 current_line = sal.line;
480 current_symtab = sal.symtab;
481
482 /* Are we stepping? */
483 #define CURRENTLY_STEPPING() \
484 ((through_sigtramp_breakpoint == NULL \
485 && !handling_longjmp \
486 && ((step_range_end && step_resume_breakpoint == NULL) \
487 || trap_expected)) \
488 || bpstat_should_step ())
489
490 while (1)
491 {
492 /* We have to invalidate the registers BEFORE calling target_wait because
493 they can be loaded from the target while in target_wait. This makes
494 remote debugging a bit more efficient for those targets that provide
495 critical registers as part of their normal status mechanism. */
496
497 registers_changed ();
498
499 if (target_wait_hook)
500 pid = target_wait_hook (-1, &w);
501 else
502 pid = target_wait (-1, &w);
503
504 /* Gross.
505
506 We goto this label from elsewhere in wait_for_inferior when we want
507 to continue the main loop without calling "wait" and trashing the
508 waitstatus contained in W. */
509 have_waited:
510
511 flush_cached_frames ();
512
513 /* If it's a new process, add it to the thread database */
514
515 if (pid != inferior_pid
516 && !in_thread_list (pid))
517 {
518 fprintf_unfiltered (gdb_stderr, "[New %s]\n", target_pid_to_str (pid));
519 add_thread (pid);
520
521 /* We may want to consider not doing a resume here in order to give
522 the user a chance to play with the new thread. It might be good
523 to make that a user-settable option. */
524
525 /* At this point, all threads are stopped (happens automatically in
526 either the OS or the native code). Therefore we need to continue
527 all threads in order to make progress. */
528
529 target_resume (-1, 0, TARGET_SIGNAL_0);
530 continue;
531 }
532
533 switch (w.kind)
534 {
535 case TARGET_WAITKIND_LOADED:
536 /* Ignore it gracefully. */
537 if (breakpoints_inserted)
538 {
539 mark_breakpoints_out ();
540 insert_breakpoints ();
541 }
542 resume (0, TARGET_SIGNAL_0);
543 continue;
544
545 case TARGET_WAITKIND_SPURIOUS:
546 resume (0, TARGET_SIGNAL_0);
547 continue;
548
549 case TARGET_WAITKIND_EXITED:
550 target_terminal_ours (); /* Must do this before mourn anyway */
551 annotate_exited (w.value.integer);
552 if (w.value.integer)
553 printf_filtered ("\nProgram exited with code 0%o.\n",
554 (unsigned int)w.value.integer);
555 else
556 printf_filtered ("\nProgram exited normally.\n");
557
558 /* Record the exit code in the convenience variable $_exitcode, so
559 that the user can inspect this again later. */
560 set_internalvar (lookup_internalvar ("_exitcode"),
561 value_from_longest (builtin_type_int,
562 (LONGEST) w.value.integer));
563 gdb_flush (gdb_stdout);
564 target_mourn_inferior ();
565 #ifdef NO_SINGLE_STEP
566 one_stepped = 0;
567 #endif
568 stop_print_frame = 0;
569 goto stop_stepping;
570
571 case TARGET_WAITKIND_SIGNALLED:
572 stop_print_frame = 0;
573 stop_signal = w.value.sig;
574 target_terminal_ours (); /* Must do this before mourn anyway */
575 annotate_signalled ();
576
577 /* This looks pretty bogus to me. Doesn't TARGET_WAITKIND_SIGNALLED
578 mean it is already dead? This has been here since GDB 2.8, so
579 perhaps it means rms didn't understand unix waitstatuses?
580 For the moment I'm just kludging around this in remote.c
581 rather than trying to change it here --kingdon, 5 Dec 1994. */
582 target_kill (); /* kill mourns as well */
583
584 printf_filtered ("\nProgram terminated with signal ");
585 annotate_signal_name ();
586 printf_filtered ("%s", target_signal_to_name (stop_signal));
587 annotate_signal_name_end ();
588 printf_filtered (", ");
589 annotate_signal_string ();
590 printf_filtered ("%s", target_signal_to_string (stop_signal));
591 annotate_signal_string_end ();
592 printf_filtered (".\n");
593
594 printf_filtered ("The program no longer exists.\n");
595 gdb_flush (gdb_stdout);
596 #ifdef NO_SINGLE_STEP
597 one_stepped = 0;
598 #endif
599 goto stop_stepping;
600
601 case TARGET_WAITKIND_STOPPED:
602 /* This is the only case in which we keep going; the above cases
603 end in a continue or goto. */
604 break;
605 }
606
607 stop_signal = w.value.sig;
608
609 stop_pc = read_pc_pid (pid);
610
611 /* See if a thread hit a thread-specific breakpoint that was meant for
612 another thread. If so, then step that thread past the breakpoint,
613 and continue it. */
614
615 if (stop_signal == TARGET_SIGNAL_TRAP)
616 {
617 #ifdef NO_SINGLE_STEP
618 if (one_stepped)
619 random_signal = 0;
620 else
621 #endif
622 if (breakpoints_inserted
623 && breakpoint_here_p (stop_pc - DECR_PC_AFTER_BREAK))
624 {
625 random_signal = 0;
626 if (!breakpoint_thread_match (stop_pc - DECR_PC_AFTER_BREAK, pid))
627 {
628 /* Saw a breakpoint, but it was hit by the wrong thread. Just continue. */
629 write_pc_pid (stop_pc - DECR_PC_AFTER_BREAK, pid);
630
631 remove_breakpoints ();
632 target_resume (pid, 1, TARGET_SIGNAL_0); /* Single step */
633 /* FIXME: What if a signal arrives instead of the single-step
634 happening? */
635
636 if (target_wait_hook)
637 target_wait_hook (pid, &w);
638 else
639 target_wait (pid, &w);
640 insert_breakpoints ();
641
642 /* We need to restart all the threads now. */
643 target_resume (-1, 0, TARGET_SIGNAL_0);
644 continue;
645 }
646 }
647 }
648 else
649 random_signal = 1;
650
651 /* See if something interesting happened to the non-current thread. If
652 so, then switch to that thread, and eventually give control back to
653 the user. */
654
655 if (pid != inferior_pid)
656 {
657 int printed = 0;
658
659 /* If it's a random signal for a non-current thread, notify user
660 if he's expressed an interest. */
661
662 if (random_signal
663 && signal_print[stop_signal])
664 {
665 printed = 1;
666 target_terminal_ours_for_output ();
667 printf_filtered ("\nProgram received signal %s, %s.\n",
668 target_signal_to_name (stop_signal),
669 target_signal_to_string (stop_signal));
670 gdb_flush (gdb_stdout);
671 }
672
673 /* If it's not SIGTRAP and not a signal we want to stop for, then
674 continue the thread. */
675
676 if (stop_signal != TARGET_SIGNAL_TRAP
677 && !signal_stop[stop_signal])
678 {
679 if (printed)
680 target_terminal_inferior ();
681
682 /* Clear the signal if it should not be passed. */
683 if (signal_program[stop_signal] == 0)
684 stop_signal = TARGET_SIGNAL_0;
685
686 target_resume (pid, 0, stop_signal);
687 continue;
688 }
689
690 /* It's a SIGTRAP or a signal we're interested in. Switch threads,
691 and fall into the rest of wait_for_inferior(). */
692
693 /* Save infrun state for the old thread. */
694 save_infrun_state (inferior_pid, prev_pc,
695 prev_func_start, prev_func_name,
696 trap_expected, step_resume_breakpoint,
697 through_sigtramp_breakpoint,
698 step_range_start, step_range_end,
699 step_frame_address, handling_longjmp,
700 another_trap);
701
702 inferior_pid = pid;
703
704 /* Load infrun state for the new thread. */
705 load_infrun_state (inferior_pid, &prev_pc,
706 &prev_func_start, &prev_func_name,
707 &trap_expected, &step_resume_breakpoint,
708 &through_sigtramp_breakpoint,
709 &step_range_start, &step_range_end,
710 &step_frame_address, &handling_longjmp,
711 &another_trap);
712 printf_filtered ("[Switching to %s]\n", target_pid_to_str (pid));
713
714 flush_cached_frames ();
715 }
716
717 #ifdef NO_SINGLE_STEP
718 if (one_stepped)
719 single_step (0); /* This actually cleans up the ss */
720 #endif /* NO_SINGLE_STEP */
721
722 /* If PC is pointing at a nullified instruction, then step beyond
723 it so that the user won't be confused when GDB appears to be ready
724 to execute it. */
725
726 if (INSTRUCTION_NULLIFIED)
727 {
728 struct target_waitstatus tmpstatus;
729
730 registers_changed ();
731 target_resume (pid, 1, TARGET_SIGNAL_0);
732
733 /* We may have received a signal that we want to pass to
734 the inferior; therefore, we must not clobber the waitstatus
735 in W. So we call wait ourselves, then continue the loop
736 at the "have_waited" label. */
737 if (target_wait_hook)
738 target_wait_hook (pid, &tmpstatus);
739 else
740 target_wait (pid, &tmpstatus);
741
742
743 goto have_waited;
744 }
745
746 #ifdef HAVE_STEPPABLE_WATCHPOINT
747 /* It may not be necessary to disable the watchpoint to stop over
748 it. For example, the PA can (with some kernel cooperation)
749 single step over a watchpoint without disabling the watchpoint. */
750 if (STOPPED_BY_WATCHPOINT (w))
751 {
752 resume (1, 0);
753 continue;
754 }
755 #endif
756
757 #ifdef HAVE_NONSTEPPABLE_WATCHPOINT
758 /* It is far more common to need to disable a watchpoint
759 to step the inferior over it. FIXME. What else might
760 a debug register or page protection watchpoint scheme need
761 here? */
762 if (STOPPED_BY_WATCHPOINT (w))
763 {
764 /* At this point, we are stopped at an instruction which has attempted to write
765 to a piece of memory under control of a watchpoint. The instruction hasn't
766 actually executed yet. If we were to evaluate the watchpoint expression
767 now, we would get the old value, and therefore no change would seem to have
768 occurred.
769
770 In order to make watchpoints work `right', we really need to complete the
771 memory write, and then evaluate the watchpoint expression. The following
772 code does that by removing the watchpoint (actually, all watchpoints and
773 breakpoints), single-stepping the target, re-inserting watchpoints, and then
774 falling through to let normal single-step processing handle proceed. Since
775 this includes evaluating watchpoints, things will come to a stop in the
776 correct manner. */
777
778 write_pc (stop_pc - DECR_PC_AFTER_BREAK);
779
780 remove_breakpoints ();
781 target_resume (pid, 1, TARGET_SIGNAL_0); /* Single step */
782
783 if (target_wait_hook)
784 target_wait_hook (pid, &w);
785 else
786 target_wait (pid, &w);
787 insert_breakpoints ();
788 /* FIXME-maybe: is this cleaner than setting a flag? Does it
789 handle things like signals arriving and other things happening
790 in combination correctly? */
791 goto have_waited;
792 }
793 #endif
794
795 #ifdef HAVE_CONTINUABLE_WATCHPOINT
796 /* It may be possible to simply continue after a watchpoint. */
797 STOPPED_BY_WATCHPOINT (w);
798 #endif
799
800 stop_func_start = 0;
801 stop_func_end = 0;
802 stop_func_name = 0;
803 /* Don't care about return value; stop_func_start and stop_func_name
804 will both be 0 if it doesn't work. */
805 find_pc_partial_function (stop_pc, &stop_func_name, &stop_func_start,
806 &stop_func_end);
807 stop_func_start += FUNCTION_START_OFFSET;
808 another_trap = 0;
809 bpstat_clear (&stop_bpstat);
810 stop_step = 0;
811 stop_stack_dummy = 0;
812 stop_print_frame = 1;
813 random_signal = 0;
814 stopped_by_random_signal = 0;
815 breakpoints_failed = 0;
816
817 /* Look at the cause of the stop, and decide what to do.
818 The alternatives are:
819 1) break; to really stop and return to the debugger,
820 2) drop through to start up again
821 (set another_trap to 1 to single step once)
822 3) set random_signal to 1, and the decision between 1 and 2
823 will be made according to the signal handling tables. */
824
825 /* First, distinguish signals caused by the debugger from signals
826 that have to do with the program's own actions.
827 Note that breakpoint insns may cause SIGTRAP or SIGILL
828 or SIGEMT, depending on the operating system version.
829 Here we detect when a SIGILL or SIGEMT is really a breakpoint
830 and change it to SIGTRAP. */
831
832 if (stop_signal == TARGET_SIGNAL_TRAP
833 || (breakpoints_inserted &&
834 (stop_signal == TARGET_SIGNAL_ILL
835 || stop_signal == TARGET_SIGNAL_EMT
836 ))
837 || stop_soon_quietly)
838 {
839 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
840 {
841 stop_print_frame = 0;
842 break;
843 }
844 if (stop_soon_quietly)
845 break;
846
847 /* Don't even think about breakpoints
848 if just proceeded over a breakpoint.
849
850 However, if we are trying to proceed over a breakpoint
851 and end up in sigtramp, then through_sigtramp_breakpoint
852 will be set and we should check whether we've hit the
853 step breakpoint. */
854 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected
855 && through_sigtramp_breakpoint == NULL)
856 bpstat_clear (&stop_bpstat);
857 else
858 {
859 /* See if there is a breakpoint at the current PC. */
860 stop_bpstat = bpstat_stop_status
861 (&stop_pc,
862 (DECR_PC_AFTER_BREAK ?
863 /* Notice the case of stepping through a jump
864 that lands just after a breakpoint.
865 Don't confuse that with hitting the breakpoint.
866 What we check for is that 1) stepping is going on
867 and 2) the pc before the last insn does not match
868 the address of the breakpoint before the current pc. */
869 (prev_pc != stop_pc - DECR_PC_AFTER_BREAK
870 && CURRENTLY_STEPPING ()) :
871 0)
872 );
873 /* Following in case break condition called a
874 function. */
875 stop_print_frame = 1;
876 }
877
878 if (stop_signal == TARGET_SIGNAL_TRAP)
879 random_signal
880 = !(bpstat_explains_signal (stop_bpstat)
881 || trap_expected
882 #ifndef CALL_DUMMY_BREAKPOINT_OFFSET
883 || PC_IN_CALL_DUMMY (stop_pc, read_sp (),
884 FRAME_FP (get_current_frame ()))
885 #endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
886 || (step_range_end && step_resume_breakpoint == NULL));
887 else
888 {
889 random_signal
890 = !(bpstat_explains_signal (stop_bpstat)
891 /* End of a stack dummy. Some systems (e.g. Sony
892 news) give another signal besides SIGTRAP,
893 so check here as well as above. */
894 #ifndef CALL_DUMMY_BREAKPOINT_OFFSET
895 || PC_IN_CALL_DUMMY (stop_pc, read_sp (),
896 FRAME_FP (get_current_frame ()))
897 #endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
898 );
899 if (!random_signal)
900 stop_signal = TARGET_SIGNAL_TRAP;
901 }
902 }
903 else
904 random_signal = 1;
905
906 /* For the program's own signals, act according to
907 the signal handling tables. */
908
909 if (random_signal)
910 {
911 /* Signal not for debugging purposes. */
912 int printed = 0;
913
914 stopped_by_random_signal = 1;
915
916 if (signal_print[stop_signal])
917 {
918 printed = 1;
919 target_terminal_ours_for_output ();
920 annotate_signal ();
921 printf_filtered ("\nProgram received signal ");
922 annotate_signal_name ();
923 printf_filtered ("%s", target_signal_to_name (stop_signal));
924 annotate_signal_name_end ();
925 printf_filtered (", ");
926 annotate_signal_string ();
927 printf_filtered ("%s", target_signal_to_string (stop_signal));
928 annotate_signal_string_end ();
929 printf_filtered (".\n");
930 gdb_flush (gdb_stdout);
931 }
932 if (signal_stop[stop_signal])
933 break;
934 /* If not going to stop, give terminal back
935 if we took it away. */
936 else if (printed)
937 target_terminal_inferior ();
938
939 /* Clear the signal if it should not be passed. */
940 if (signal_program[stop_signal] == 0)
941 stop_signal = TARGET_SIGNAL_0;
942
943 /* I'm not sure whether this needs to be check_sigtramp2 or
944 whether it could/should be keep_going. */
945 goto check_sigtramp2;
946 }
947
948 /* Handle cases caused by hitting a breakpoint. */
949 {
950 CORE_ADDR jmp_buf_pc;
951 struct bpstat_what what;
952
953 what = bpstat_what (stop_bpstat);
954
955 if (what.call_dummy)
956 {
957 stop_stack_dummy = 1;
958 #ifdef HP_OS_BUG
959 trap_expected_after_continue = 1;
960 #endif
961 }
962
963 switch (what.main_action)
964 {
965 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
966 /* If we hit the breakpoint at longjmp, disable it for the
967 duration of this command. Then, install a temporary
968 breakpoint at the target of the jmp_buf. */
969 disable_longjmp_breakpoint();
970 remove_breakpoints ();
971 breakpoints_inserted = 0;
972 if (!GET_LONGJMP_TARGET(&jmp_buf_pc)) goto keep_going;
973
974 /* Need to blow away step-resume breakpoint, as it
975 interferes with us */
976 if (step_resume_breakpoint != NULL)
977 {
978 delete_breakpoint (step_resume_breakpoint);
979 step_resume_breakpoint = NULL;
980 }
981 /* Not sure whether we need to blow this away too, but probably
982 it is like the step-resume breakpoint. */
983 if (through_sigtramp_breakpoint != NULL)
984 {
985 delete_breakpoint (through_sigtramp_breakpoint);
986 through_sigtramp_breakpoint = NULL;
987 }
988
989 #if 0
990 /* FIXME - Need to implement nested temporary breakpoints */
991 if (step_over_calls > 0)
992 set_longjmp_resume_breakpoint(jmp_buf_pc,
993 get_current_frame());
994 else
995 #endif /* 0 */
996 set_longjmp_resume_breakpoint(jmp_buf_pc, NULL);
997 handling_longjmp = 1; /* FIXME */
998 goto keep_going;
999
1000 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
1001 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
1002 remove_breakpoints ();
1003 breakpoints_inserted = 0;
1004 #if 0
1005 /* FIXME - Need to implement nested temporary breakpoints */
1006 if (step_over_calls
1007 && (FRAME_FP (get_current_frame ())
1008 INNER_THAN step_frame_address))
1009 {
1010 another_trap = 1;
1011 goto keep_going;
1012 }
1013 #endif /* 0 */
1014 disable_longjmp_breakpoint();
1015 handling_longjmp = 0; /* FIXME */
1016 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
1017 break;
1018 /* else fallthrough */
1019
1020 case BPSTAT_WHAT_SINGLE:
1021 if (breakpoints_inserted)
1022 remove_breakpoints ();
1023 breakpoints_inserted = 0;
1024 another_trap = 1;
1025 /* Still need to check other stuff, at least the case
1026 where we are stepping and step out of the right range. */
1027 break;
1028
1029 case BPSTAT_WHAT_STOP_NOISY:
1030 stop_print_frame = 1;
1031
1032 /* We are about to nuke the step_resume_breakpoint and
1033 through_sigtramp_breakpoint via the cleanup chain, so
1034 no need to worry about it here. */
1035
1036 goto stop_stepping;
1037
1038 case BPSTAT_WHAT_STOP_SILENT:
1039 stop_print_frame = 0;
1040
1041 /* We are about to nuke the step_resume_breakpoint and
1042 through_sigtramp_breakpoint via the cleanup chain, so
1043 no need to worry about it here. */
1044
1045 goto stop_stepping;
1046
1047 case BPSTAT_WHAT_STEP_RESUME:
1048 delete_breakpoint (step_resume_breakpoint);
1049 step_resume_breakpoint = NULL;
1050 break;
1051
1052 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
1053 if (through_sigtramp_breakpoint)
1054 delete_breakpoint (through_sigtramp_breakpoint);
1055 through_sigtramp_breakpoint = NULL;
1056
1057 /* If were waiting for a trap, hitting the step_resume_break
1058 doesn't count as getting it. */
1059 if (trap_expected)
1060 another_trap = 1;
1061 break;
1062
1063 case BPSTAT_WHAT_CHECK_SHLIBS:
1064 #ifdef SOLIB_ADD
1065 {
1066 extern int auto_solib_add;
1067
1068 /* Remove breakpoints, we eventually want to step over the
1069 shlib event breakpoint, and SOLIB_ADD might adjust
1070 breakpoint addresses via breakpoint_re_set. */
1071 if (breakpoints_inserted)
1072 remove_breakpoints ();
1073 breakpoints_inserted = 0;
1074
1075 /* Check for any newly added shared libraries if we're
1076 supposed to be adding them automatically. */
1077 if (auto_solib_add)
1078 {
1079 /* Switch terminal for any messages produced by
1080 breakpoint_re_set. */
1081 target_terminal_ours_for_output ();
1082 SOLIB_ADD (NULL, 0, NULL);
1083 target_terminal_inferior ();
1084 }
1085
1086 /* Try to reenable shared library breakpoints, additional
1087 code segments in shared libraries might be mapped in now. */
1088 re_enable_breakpoints_in_shlibs ();
1089
1090 /* If requested, stop when the dynamic linker notifies
1091 gdb of events. This allows the user to get control
1092 and place breakpoints in initializer routines for
1093 dynamically loaded objects (among other things). */
1094 if (stop_on_solib_events)
1095 {
1096 stop_print_frame = 0;
1097 goto stop_stepping;
1098 }
1099 else
1100 {
1101 /* We want to step over this breakpoint, then keep going. */
1102 another_trap = 1;
1103 break;
1104 }
1105 }
1106 #endif
1107 break;
1108
1109 case BPSTAT_WHAT_LAST:
1110 /* Not a real code, but listed here to shut up gcc -Wall. */
1111
1112 case BPSTAT_WHAT_KEEP_CHECKING:
1113 break;
1114 }
1115 }
1116
1117 /* We come here if we hit a breakpoint but should not
1118 stop for it. Possibly we also were stepping
1119 and should stop for that. So fall through and
1120 test for stepping. But, if not stepping,
1121 do not stop. */
1122
1123 #ifndef CALL_DUMMY_BREAKPOINT_OFFSET
1124 /* This is the old way of detecting the end of the stack dummy.
1125 An architecture which defines CALL_DUMMY_BREAKPOINT_OFFSET gets
1126 handled above. As soon as we can test it on all of them, all
1127 architectures should define it. */
1128
1129 /* If this is the breakpoint at the end of a stack dummy,
1130 just stop silently, unless the user was doing an si/ni, in which
1131 case she'd better know what she's doing. */
1132
1133 if (PC_IN_CALL_DUMMY (stop_pc, read_sp (), FRAME_FP (get_current_frame ()))
1134 && !step_range_end)
1135 {
1136 stop_print_frame = 0;
1137 stop_stack_dummy = 1;
1138 #ifdef HP_OS_BUG
1139 trap_expected_after_continue = 1;
1140 #endif
1141 break;
1142 }
1143 #endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
1144
1145 if (step_resume_breakpoint)
1146 /* Having a step-resume breakpoint overrides anything
1147 else having to do with stepping commands until
1148 that breakpoint is reached. */
1149 /* I'm not sure whether this needs to be check_sigtramp2 or
1150 whether it could/should be keep_going. */
1151 goto check_sigtramp2;
1152
1153 if (step_range_end == 0)
1154 /* Likewise if we aren't even stepping. */
1155 /* I'm not sure whether this needs to be check_sigtramp2 or
1156 whether it could/should be keep_going. */
1157 goto check_sigtramp2;
1158
1159 /* If stepping through a line, keep going if still within it. */
1160 if (stop_pc >= step_range_start
1161 && stop_pc < step_range_end
1162 #if 0
1163 /* I haven't a clue what might trigger this clause, and it seems wrong anyway,
1164 so I've disabled it until someone complains. -Stu 10/24/95 */
1165
1166 /* The step range might include the start of the
1167 function, so if we are at the start of the
1168 step range and either the stack or frame pointers
1169 just changed, we've stepped outside */
1170 && !(stop_pc == step_range_start
1171 && FRAME_FP (get_current_frame ())
1172 && (read_sp () INNER_THAN step_sp
1173 || FRAME_FP (get_current_frame ()) != step_frame_address))
1174 #endif
1175 )
1176 {
1177 /* We might be doing a BPSTAT_WHAT_SINGLE and getting a signal.
1178 So definately need to check for sigtramp here. */
1179 goto check_sigtramp2;
1180 }
1181
1182 /* We stepped out of the stepping range. */
1183
1184 /* We can't update step_sp every time through the loop, because
1185 reading the stack pointer would slow down stepping too much.
1186 But we can update it every time we leave the step range. */
1187 update_step_sp = 1;
1188
1189 /* Did we just take a signal? */
1190 if (IN_SIGTRAMP (stop_pc, stop_func_name)
1191 && !IN_SIGTRAMP (prev_pc, prev_func_name)
1192 && read_sp () INNER_THAN step_sp)
1193 {
1194 /* We've just taken a signal; go until we are back to
1195 the point where we took it and one more. */
1196
1197 /* This code is needed at least in the following case:
1198 The user types "next" and then a signal arrives (before
1199 the "next" is done). */
1200
1201 /* Note that if we are stopped at a breakpoint, then we need
1202 the step_resume breakpoint to override any breakpoints at
1203 the same location, so that we will still step over the
1204 breakpoint even though the signal happened. */
1205
1206 {
1207 struct symtab_and_line sr_sal;
1208
1209 INIT_SAL (&sr_sal); /* initialize to zeroes */
1210 sr_sal.pc = prev_pc;
1211 /* We could probably be setting the frame to
1212 step_frame_address; I don't think anyone thought to try it. */
1213 step_resume_breakpoint =
1214 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
1215 if (breakpoints_inserted)
1216 insert_breakpoints ();
1217 }
1218
1219 /* If this is stepi or nexti, make sure that the stepping range
1220 gets us past that instruction. */
1221 if (step_range_end == 1)
1222 /* FIXME: Does this run afoul of the code below which, if
1223 we step into the middle of a line, resets the stepping
1224 range? */
1225 step_range_end = (step_range_start = prev_pc) + 1;
1226
1227 remove_breakpoints_on_following_step = 1;
1228 goto keep_going;
1229 }
1230
1231 #if 0
1232 /* I disabled this test because it was too complicated and slow. The
1233 SKIP_PROLOGUE was especially slow, because it caused unnecessary
1234 prologue examination on various architectures. The code in the #else
1235 clause has been tested on the Sparc, Mips, PA, and Power
1236 architectures, so it's pretty likely to be correct. -Stu 10/24/95 */
1237
1238 /* See if we left the step range due to a subroutine call that
1239 we should proceed to the end of. */
1240
1241 if (stop_func_start)
1242 {
1243 struct symtab *s;
1244
1245 /* Do this after the IN_SIGTRAMP check; it might give
1246 an error. */
1247 prologue_pc = stop_func_start;
1248
1249 /* Don't skip the prologue if this is assembly source */
1250 s = find_pc_symtab (stop_pc);
1251 if (s && s->language != language_asm)
1252 SKIP_PROLOGUE (prologue_pc);
1253 }
1254
1255 if (!(step_sp INNER_THAN read_sp ()) /* don't mistake (sig)return as a call */
1256 && (/* Might be a non-recursive call. If the symbols are missing
1257 enough that stop_func_start == prev_func_start even though
1258 they are really two functions, we will treat some calls as
1259 jumps. */
1260 stop_func_start != prev_func_start
1261
1262 /* Might be a recursive call if either we have a prologue
1263 or the call instruction itself saves the PC on the stack. */
1264 || prologue_pc != stop_func_start
1265 || read_sp () != step_sp)
1266 && (/* PC is completely out of bounds of any known objfiles. Treat
1267 like a subroutine call. */
1268 ! stop_func_start
1269
1270 /* If we do a call, we will be at the start of a function... */
1271 || stop_pc == stop_func_start
1272
1273 /* ...except on the Alpha with -O (and also Irix 5 and
1274 perhaps others), in which we might call the address
1275 after the load of gp. Since prologues don't contain
1276 calls, we can't return to within one, and we don't
1277 jump back into them, so this check is OK. */
1278
1279 || stop_pc < prologue_pc
1280
1281 /* ...and if it is a leaf function, the prologue might
1282 consist of gp loading only, so the call transfers to
1283 the first instruction after the prologue. */
1284 || (stop_pc == prologue_pc
1285
1286 /* Distinguish this from the case where we jump back
1287 to the first instruction after the prologue,
1288 within a function. */
1289 && stop_func_start != prev_func_start)
1290
1291 /* If we end up in certain places, it means we did a subroutine
1292 call. I'm not completely sure this is necessary now that we
1293 have the above checks with stop_func_start (and now that
1294 find_pc_partial_function is pickier). */
1295 || IN_SOLIB_CALL_TRAMPOLINE (stop_pc, stop_func_name)
1296
1297 /* If none of the above apply, it is a jump within a function,
1298 or a return from a subroutine. The other case is longjmp,
1299 which can no longer happen here as long as the
1300 handling_longjmp stuff is working. */
1301 ))
1302 #else
1303 /* This test is a much more streamlined, (but hopefully correct)
1304 replacement for the code above. It's been tested on the Sparc,
1305 Mips, PA, and Power architectures with good results. */
1306
1307 if (stop_pc == stop_func_start /* Quick test */
1308 || in_prologue (stop_pc, stop_func_start)
1309 || IN_SOLIB_CALL_TRAMPOLINE (stop_pc, stop_func_name)
1310 || stop_func_start == 0)
1311 #endif
1312
1313 {
1314 /* It's a subroutine call. */
1315
1316 if (step_over_calls == 0)
1317 {
1318 /* I presume that step_over_calls is only 0 when we're
1319 supposed to be stepping at the assembly language level
1320 ("stepi"). Just stop. */
1321 stop_step = 1;
1322 break;
1323 }
1324
1325 if (step_over_calls > 0 || IGNORE_HELPER_CALL (stop_pc))
1326 /* We're doing a "next". */
1327 goto step_over_function;
1328
1329 /* If we are in a function call trampoline (a stub between
1330 the calling routine and the real function), locate the real
1331 function. That's what tells us (a) whether we want to step
1332 into it at all, and (b) what prologue we want to run to
1333 the end of, if we do step into it. */
1334 tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
1335 if (tmp != 0)
1336 stop_func_start = tmp;
1337 else
1338 {
1339 tmp = DYNAMIC_TRAMPOLINE_NEXTPC (stop_pc);
1340 if (tmp)
1341 {
1342 struct symtab_and_line xxx;
1343 /* Why isn't this s_a_l called "sr_sal", like all of the
1344 other s_a_l's where this code is duplicated? */
1345 INIT_SAL (&xxx); /* initialize to zeroes */
1346 xxx.pc = tmp;
1347 step_resume_breakpoint =
1348 set_momentary_breakpoint (xxx, NULL, bp_step_resume);
1349 insert_breakpoints ();
1350 goto keep_going;
1351 }
1352 }
1353
1354 /* If we have line number information for the function we
1355 are thinking of stepping into, step into it.
1356
1357 If there are several symtabs at that PC (e.g. with include
1358 files), just want to know whether *any* of them have line
1359 numbers. find_pc_line handles this. */
1360 {
1361 struct symtab_and_line tmp_sal;
1362
1363 tmp_sal = find_pc_line (stop_func_start, 0);
1364 if (tmp_sal.line != 0)
1365 goto step_into_function;
1366 }
1367
1368 step_over_function:
1369 /* A subroutine call has happened. */
1370 {
1371 /* Set a special breakpoint after the return */
1372 struct symtab_and_line sr_sal;
1373
1374 INIT_SAL (&sr_sal); /* initialize to zeroes */
1375 sr_sal.pc =
1376 ADDR_BITS_REMOVE
1377 (SAVED_PC_AFTER_CALL (get_current_frame ()));
1378 step_resume_breakpoint =
1379 set_momentary_breakpoint (sr_sal, get_current_frame (),
1380 bp_step_resume);
1381 step_resume_breakpoint->frame = step_frame_address;
1382 if (breakpoints_inserted)
1383 insert_breakpoints ();
1384 }
1385 goto keep_going;
1386
1387 step_into_function:
1388 /* Subroutine call with source code we should not step over.
1389 Do step to the first line of code in it. */
1390 {
1391 struct symtab *s;
1392
1393 s = find_pc_symtab (stop_pc);
1394 if (s && s->language != language_asm)
1395 SKIP_PROLOGUE (stop_func_start);
1396 }
1397 sal = find_pc_line (stop_func_start, 0);
1398 /* Use the step_resume_break to step until
1399 the end of the prologue, even if that involves jumps
1400 (as it seems to on the vax under 4.2). */
1401 /* If the prologue ends in the middle of a source line,
1402 continue to the end of that source line (if it is still
1403 within the function). Otherwise, just go to end of prologue. */
1404 #ifdef PROLOGUE_FIRSTLINE_OVERLAP
1405 /* no, don't either. It skips any code that's
1406 legitimately on the first line. */
1407 #else
1408 if (sal.end && sal.pc != stop_func_start && sal.end < stop_func_end)
1409 stop_func_start = sal.end;
1410 #endif
1411
1412 if (stop_func_start == stop_pc)
1413 {
1414 /* We are already there: stop now. */
1415 stop_step = 1;
1416 break;
1417 }
1418 else
1419 /* Put the step-breakpoint there and go until there. */
1420 {
1421 struct symtab_and_line sr_sal;
1422
1423 INIT_SAL (&sr_sal); /* initialize to zeroes */
1424 sr_sal.pc = stop_func_start;
1425 /* Do not specify what the fp should be when we stop
1426 since on some machines the prologue
1427 is where the new fp value is established. */
1428 step_resume_breakpoint =
1429 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
1430 if (breakpoints_inserted)
1431 insert_breakpoints ();
1432
1433 /* And make sure stepping stops right away then. */
1434 step_range_end = step_range_start;
1435 }
1436 goto keep_going;
1437 }
1438
1439 /* We've wandered out of the step range. */
1440
1441 sal = find_pc_line(stop_pc, 0);
1442
1443 if (step_range_end == 1)
1444 {
1445 /* It is stepi or nexti. We always want to stop stepping after
1446 one instruction. */
1447 stop_step = 1;
1448 break;
1449 }
1450
1451 /* If we're in the return path from a shared library trampoline,
1452 we want to proceed through the trampoline when stepping. */
1453 if (IN_SOLIB_RETURN_TRAMPOLINE(stop_pc, stop_func_name))
1454 {
1455 CORE_ADDR tmp;
1456
1457 /* Determine where this trampoline returns. */
1458 tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
1459
1460 /* Only proceed through if we know where it's going. */
1461 if (tmp)
1462 {
1463 /* And put the step-breakpoint there and go until there. */
1464 struct symtab_and_line sr_sal;
1465
1466 INIT_SAL (&sr_sal); /* initialize to zeroes */
1467 sr_sal.pc = tmp;
1468 /* Do not specify what the fp should be when we stop
1469 since on some machines the prologue
1470 is where the new fp value is established. */
1471 step_resume_breakpoint =
1472 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
1473 if (breakpoints_inserted)
1474 insert_breakpoints ();
1475
1476 /* Restart without fiddling with the step ranges or
1477 other state. */
1478 goto keep_going;
1479 }
1480 }
1481
1482 if (sal.line == 0)
1483 {
1484 /* We have no line number information. That means to stop
1485 stepping (does this always happen right after one instruction,
1486 when we do "s" in a function with no line numbers,
1487 or can this happen as a result of a return or longjmp?). */
1488 stop_step = 1;
1489 break;
1490 }
1491
1492 if (stop_pc == sal.pc
1493 && (current_line != sal.line || current_symtab != sal.symtab))
1494 {
1495 /* We are at the start of a different line. So stop. Note that
1496 we don't stop if we step into the middle of a different line.
1497 That is said to make things like for (;;) statements work
1498 better. */
1499 stop_step = 1;
1500 break;
1501 }
1502
1503 /* We aren't done stepping.
1504
1505 Optimize by setting the stepping range to the line.
1506 (We might not be in the original line, but if we entered a
1507 new line in mid-statement, we continue stepping. This makes
1508 things like for(;;) statements work better.) */
1509
1510 if (stop_func_end && sal.end >= stop_func_end)
1511 {
1512 /* If this is the last line of the function, don't keep stepping
1513 (it would probably step us out of the function).
1514 This is particularly necessary for a one-line function,
1515 in which after skipping the prologue we better stop even though
1516 we will be in mid-line. */
1517 stop_step = 1;
1518 break;
1519 }
1520 step_range_start = sal.pc;
1521 step_range_end = sal.end;
1522 step_frame_address = FRAME_FP (get_current_frame ());
1523 current_line = sal.line;
1524 current_symtab = sal.symtab;
1525 goto keep_going;
1526
1527 check_sigtramp2:
1528 if (trap_expected
1529 && IN_SIGTRAMP (stop_pc, stop_func_name)
1530 && !IN_SIGTRAMP (prev_pc, prev_func_name)
1531 && read_sp () INNER_THAN step_sp)
1532 {
1533 /* What has happened here is that we have just stepped the inferior
1534 with a signal (because it is a signal which shouldn't make
1535 us stop), thus stepping into sigtramp.
1536
1537 So we need to set a step_resume_break_address breakpoint
1538 and continue until we hit it, and then step. FIXME: This should
1539 be more enduring than a step_resume breakpoint; we should know
1540 that we will later need to keep going rather than re-hitting
1541 the breakpoint here (see testsuite/gdb.t06/signals.exp where
1542 it says "exceedingly difficult"). */
1543 struct symtab_and_line sr_sal;
1544
1545 INIT_SAL (&sr_sal); /* initialize to zeroes */
1546 sr_sal.pc = prev_pc;
1547 /* We perhaps could set the frame if we kept track of what
1548 the frame corresponding to prev_pc was. But we don't,
1549 so don't. */
1550 through_sigtramp_breakpoint =
1551 set_momentary_breakpoint (sr_sal, NULL, bp_through_sigtramp);
1552 if (breakpoints_inserted)
1553 insert_breakpoints ();
1554
1555 remove_breakpoints_on_following_step = 1;
1556 another_trap = 1;
1557 }
1558
1559 keep_going:
1560 /* Come to this label when you need to resume the inferior.
1561 It's really much cleaner to do a goto than a maze of if-else
1562 conditions. */
1563
1564 /* Save the pc before execution, to compare with pc after stop. */
1565 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
1566 prev_func_start = stop_func_start; /* Ok, since if DECR_PC_AFTER
1567 BREAK is defined, the
1568 original pc would not have
1569 been at the start of a
1570 function. */
1571 prev_func_name = stop_func_name;
1572
1573 if (update_step_sp)
1574 step_sp = read_sp ();
1575 update_step_sp = 0;
1576
1577 /* If we did not do break;, it means we should keep
1578 running the inferior and not return to debugger. */
1579
1580 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
1581 {
1582 /* We took a signal (which we are supposed to pass through to
1583 the inferior, else we'd have done a break above) and we
1584 haven't yet gotten our trap. Simply continue. */
1585 resume (CURRENTLY_STEPPING (), stop_signal);
1586 }
1587 else
1588 {
1589 /* Either the trap was not expected, but we are continuing
1590 anyway (the user asked that this signal be passed to the
1591 child)
1592 -- or --
1593 The signal was SIGTRAP, e.g. it was our signal, but we
1594 decided we should resume from it.
1595
1596 We're going to run this baby now!
1597
1598 Insert breakpoints now, unless we are trying
1599 to one-proceed past a breakpoint. */
1600 /* If we've just finished a special step resume and we don't
1601 want to hit a breakpoint, pull em out. */
1602 if (step_resume_breakpoint == NULL
1603 && through_sigtramp_breakpoint == NULL
1604 && remove_breakpoints_on_following_step)
1605 {
1606 remove_breakpoints_on_following_step = 0;
1607 remove_breakpoints ();
1608 breakpoints_inserted = 0;
1609 }
1610 else if (!breakpoints_inserted &&
1611 (through_sigtramp_breakpoint != NULL || !another_trap))
1612 {
1613 breakpoints_failed = insert_breakpoints ();
1614 if (breakpoints_failed)
1615 break;
1616 breakpoints_inserted = 1;
1617 }
1618
1619 trap_expected = another_trap;
1620
1621 if (stop_signal == TARGET_SIGNAL_TRAP)
1622 stop_signal = TARGET_SIGNAL_0;
1623
1624 #ifdef SHIFT_INST_REGS
1625 /* I'm not sure when this following segment applies. I do know, now,
1626 that we shouldn't rewrite the regs when we were stopped by a
1627 random signal from the inferior process. */
1628 /* FIXME: Shouldn't this be based on the valid bit of the SXIP?
1629 (this is only used on the 88k). */
1630
1631 if (!bpstat_explains_signal (stop_bpstat)
1632 && (stop_signal != TARGET_SIGNAL_CHLD)
1633 && !stopped_by_random_signal)
1634 SHIFT_INST_REGS();
1635 #endif /* SHIFT_INST_REGS */
1636
1637 resume (CURRENTLY_STEPPING (), stop_signal);
1638 }
1639 }
1640
1641 stop_stepping:
1642 if (target_has_execution)
1643 {
1644 /* Assuming the inferior still exists, set these up for next
1645 time, just like we did above if we didn't break out of the
1646 loop. */
1647 prev_pc = read_pc ();
1648 prev_func_start = stop_func_start;
1649 prev_func_name = stop_func_name;
1650 }
1651 do_cleanups (old_cleanups);
1652 }
1653 \f
1654 /* Here to return control to GDB when the inferior stops for real.
1655 Print appropriate messages, remove breakpoints, give terminal our modes.
1656
1657 STOP_PRINT_FRAME nonzero means print the executing frame
1658 (pc, function, args, file, line number and line text).
1659 BREAKPOINTS_FAILED nonzero means stop was due to error
1660 attempting to insert breakpoints. */
1661
1662 void
1663 normal_stop ()
1664 {
1665 /* Make sure that the current_frame's pc is correct. This
1666 is a correction for setting up the frame info before doing
1667 DECR_PC_AFTER_BREAK */
1668 if (target_has_execution && get_current_frame())
1669 (get_current_frame ())->pc = read_pc ();
1670
1671 if (breakpoints_failed)
1672 {
1673 target_terminal_ours_for_output ();
1674 print_sys_errmsg ("ptrace", breakpoints_failed);
1675 printf_filtered ("Stopped; cannot insert breakpoints.\n\
1676 The same program may be running in another process.\n");
1677 }
1678
1679 if (target_has_execution && breakpoints_inserted)
1680 if (remove_breakpoints ())
1681 {
1682 target_terminal_ours_for_output ();
1683 printf_filtered ("Cannot remove breakpoints because program is no longer writable.\n\
1684 It might be running in another process.\n\
1685 Further execution is probably impossible.\n");
1686 }
1687
1688 breakpoints_inserted = 0;
1689
1690 /* Delete the breakpoint we stopped at, if it wants to be deleted.
1691 Delete any breakpoint that is to be deleted at the next stop. */
1692
1693 breakpoint_auto_delete (stop_bpstat);
1694
1695 /* If an auto-display called a function and that got a signal,
1696 delete that auto-display to avoid an infinite recursion. */
1697
1698 if (stopped_by_random_signal)
1699 disable_current_display ();
1700
1701 if (step_multi && stop_step)
1702 goto done;
1703
1704 target_terminal_ours ();
1705
1706 if (stop_bpstat
1707 && stop_bpstat->breakpoint_at
1708 && stop_bpstat->breakpoint_at->type == bp_shlib_event)
1709 printf_filtered ("Stopped due to shared library event\n");
1710
1711 /* Look up the hook_stop and run it if it exists. */
1712
1713 if (stop_command->hook)
1714 {
1715 catch_errors (hook_stop_stub, (char *)stop_command->hook,
1716 "Error while running hook_stop:\n", RETURN_MASK_ALL);
1717 }
1718
1719 if (!target_has_stack)
1720 goto done;
1721
1722 /* Select innermost stack frame except on return from a stack dummy routine,
1723 or if the program has exited. Print it without a level number if
1724 we have changed functions or hit a breakpoint. Print source line
1725 if we have one. */
1726 if (!stop_stack_dummy)
1727 {
1728 select_frame (get_current_frame (), 0);
1729
1730 if (stop_print_frame)
1731 {
1732 int source_only;
1733
1734 source_only = bpstat_print (stop_bpstat);
1735 source_only = source_only ||
1736 ( stop_step
1737 && step_frame_address == FRAME_FP (get_current_frame ())
1738 && step_start_function == find_pc_function (stop_pc));
1739
1740 print_stack_frame (selected_frame, -1, source_only? -1: 1);
1741
1742 /* Display the auto-display expressions. */
1743 do_displays ();
1744 }
1745 }
1746
1747 /* Save the function value return registers, if we care.
1748 We might be about to restore their previous contents. */
1749 if (proceed_to_finish)
1750 read_register_bytes (0, stop_registers, REGISTER_BYTES);
1751
1752 if (stop_stack_dummy)
1753 {
1754 /* Pop the empty frame that contains the stack dummy.
1755 POP_FRAME ends with a setting of the current frame, so we
1756 can use that next. */
1757 POP_FRAME;
1758 /* Set stop_pc to what it was before we called the function. Can't rely
1759 on restore_inferior_status because that only gets called if we don't
1760 stop in the called function. */
1761 stop_pc = read_pc();
1762 select_frame (get_current_frame (), 0);
1763 }
1764 done:
1765 annotate_stopped ();
1766 }
1767
1768 static int
1769 hook_stop_stub (cmd)
1770 char *cmd;
1771 {
1772 execute_user_command ((struct cmd_list_element *)cmd, 0);
1773 return (0);
1774 }
1775 \f
1776 int signal_stop_state (signo)
1777 int signo;
1778 {
1779 return signal_stop[signo];
1780 }
1781
1782 int signal_print_state (signo)
1783 int signo;
1784 {
1785 return signal_print[signo];
1786 }
1787
1788 int signal_pass_state (signo)
1789 int signo;
1790 {
1791 return signal_program[signo];
1792 }
1793
1794 static void
1795 sig_print_header ()
1796 {
1797 printf_filtered ("\
1798 Signal Stop\tPrint\tPass to program\tDescription\n");
1799 }
1800
1801 static void
1802 sig_print_info (oursig)
1803 enum target_signal oursig;
1804 {
1805 char *name = target_signal_to_name (oursig);
1806 printf_filtered ("%s", name);
1807 printf_filtered ("%*.*s ", 13 - strlen (name), 13 - strlen (name),
1808 " ");
1809 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
1810 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
1811 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
1812 printf_filtered ("%s\n", target_signal_to_string (oursig));
1813 }
1814
1815 /* Specify how various signals in the inferior should be handled. */
1816
1817 static void
1818 handle_command (args, from_tty)
1819 char *args;
1820 int from_tty;
1821 {
1822 char **argv;
1823 int digits, wordlen;
1824 int sigfirst, signum, siglast;
1825 enum target_signal oursig;
1826 int allsigs;
1827 int nsigs;
1828 unsigned char *sigs;
1829 struct cleanup *old_chain;
1830
1831 if (args == NULL)
1832 {
1833 error_no_arg ("signal to handle");
1834 }
1835
1836 /* Allocate and zero an array of flags for which signals to handle. */
1837
1838 nsigs = (int)TARGET_SIGNAL_LAST;
1839 sigs = (unsigned char *) alloca (nsigs);
1840 memset (sigs, 0, nsigs);
1841
1842 /* Break the command line up into args. */
1843
1844 argv = buildargv (args);
1845 if (argv == NULL)
1846 {
1847 nomem (0);
1848 }
1849 old_chain = make_cleanup (freeargv, (char *) argv);
1850
1851 /* Walk through the args, looking for signal oursigs, signal names, and
1852 actions. Signal numbers and signal names may be interspersed with
1853 actions, with the actions being performed for all signals cumulatively
1854 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
1855
1856 while (*argv != NULL)
1857 {
1858 wordlen = strlen (*argv);
1859 for (digits = 0; isdigit ((*argv)[digits]); digits++) {;}
1860 allsigs = 0;
1861 sigfirst = siglast = -1;
1862
1863 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
1864 {
1865 /* Apply action to all signals except those used by the
1866 debugger. Silently skip those. */
1867 allsigs = 1;
1868 sigfirst = 0;
1869 siglast = nsigs - 1;
1870 }
1871 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
1872 {
1873 SET_SIGS (nsigs, sigs, signal_stop);
1874 SET_SIGS (nsigs, sigs, signal_print);
1875 }
1876 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
1877 {
1878 UNSET_SIGS (nsigs, sigs, signal_program);
1879 }
1880 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
1881 {
1882 SET_SIGS (nsigs, sigs, signal_print);
1883 }
1884 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
1885 {
1886 SET_SIGS (nsigs, sigs, signal_program);
1887 }
1888 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
1889 {
1890 UNSET_SIGS (nsigs, sigs, signal_stop);
1891 }
1892 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
1893 {
1894 SET_SIGS (nsigs, sigs, signal_program);
1895 }
1896 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
1897 {
1898 UNSET_SIGS (nsigs, sigs, signal_print);
1899 UNSET_SIGS (nsigs, sigs, signal_stop);
1900 }
1901 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
1902 {
1903 UNSET_SIGS (nsigs, sigs, signal_program);
1904 }
1905 else if (digits > 0)
1906 {
1907 /* It is numeric. The numeric signal refers to our own internal
1908 signal numbering from target.h, not to host/target signal number.
1909 This is a feature; users really should be using symbolic names
1910 anyway, and the common ones like SIGHUP, SIGINT, SIGALRM, etc.
1911 will work right anyway. */
1912
1913 sigfirst = siglast = (int) target_signal_from_command (atoi (*argv));
1914 if ((*argv)[digits] == '-')
1915 {
1916 siglast =
1917 (int) target_signal_from_command (atoi ((*argv) + digits + 1));
1918 }
1919 if (sigfirst > siglast)
1920 {
1921 /* Bet he didn't figure we'd think of this case... */
1922 signum = sigfirst;
1923 sigfirst = siglast;
1924 siglast = signum;
1925 }
1926 }
1927 else
1928 {
1929 oursig = target_signal_from_name (*argv);
1930 if (oursig != TARGET_SIGNAL_UNKNOWN)
1931 {
1932 sigfirst = siglast = (int)oursig;
1933 }
1934 else
1935 {
1936 /* Not a number and not a recognized flag word => complain. */
1937 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
1938 }
1939 }
1940
1941 /* If any signal numbers or symbol names were found, set flags for
1942 which signals to apply actions to. */
1943
1944 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
1945 {
1946 switch ((enum target_signal)signum)
1947 {
1948 case TARGET_SIGNAL_TRAP:
1949 case TARGET_SIGNAL_INT:
1950 if (!allsigs && !sigs[signum])
1951 {
1952 if (query ("%s is used by the debugger.\n\
1953 Are you sure you want to change it? ",
1954 target_signal_to_name
1955 ((enum target_signal)signum)))
1956 {
1957 sigs[signum] = 1;
1958 }
1959 else
1960 {
1961 printf_unfiltered ("Not confirmed, unchanged.\n");
1962 gdb_flush (gdb_stdout);
1963 }
1964 }
1965 break;
1966 case TARGET_SIGNAL_0:
1967 case TARGET_SIGNAL_DEFAULT:
1968 case TARGET_SIGNAL_UNKNOWN:
1969 /* Make sure that "all" doesn't print these. */
1970 break;
1971 default:
1972 sigs[signum] = 1;
1973 break;
1974 }
1975 }
1976
1977 argv++;
1978 }
1979
1980 target_notice_signals(inferior_pid);
1981
1982 if (from_tty)
1983 {
1984 /* Show the results. */
1985 sig_print_header ();
1986 for (signum = 0; signum < nsigs; signum++)
1987 {
1988 if (sigs[signum])
1989 {
1990 sig_print_info (signum);
1991 }
1992 }
1993 }
1994
1995 do_cleanups (old_chain);
1996 }
1997
1998 /* Print current contents of the tables set by the handle command.
1999 It is possible we should just be printing signals actually used
2000 by the current target (but for things to work right when switching
2001 targets, all signals should be in the signal tables). */
2002
2003 static void
2004 signals_info (signum_exp, from_tty)
2005 char *signum_exp;
2006 int from_tty;
2007 {
2008 enum target_signal oursig;
2009 sig_print_header ();
2010
2011 if (signum_exp)
2012 {
2013 /* First see if this is a symbol name. */
2014 oursig = target_signal_from_name (signum_exp);
2015 if (oursig == TARGET_SIGNAL_UNKNOWN)
2016 {
2017 /* No, try numeric. */
2018 oursig =
2019 target_signal_from_command (parse_and_eval_address (signum_exp));
2020 }
2021 sig_print_info (oursig);
2022 return;
2023 }
2024
2025 printf_filtered ("\n");
2026 /* These ugly casts brought to you by the native VAX compiler. */
2027 for (oursig = TARGET_SIGNAL_FIRST;
2028 (int)oursig < (int)TARGET_SIGNAL_LAST;
2029 oursig = (enum target_signal)((int)oursig + 1))
2030 {
2031 QUIT;
2032
2033 if (oursig != TARGET_SIGNAL_UNKNOWN
2034 && oursig != TARGET_SIGNAL_DEFAULT
2035 && oursig != TARGET_SIGNAL_0)
2036 sig_print_info (oursig);
2037 }
2038
2039 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
2040 }
2041 \f
2042 /* Save all of the information associated with the inferior<==>gdb
2043 connection. INF_STATUS is a pointer to a "struct inferior_status"
2044 (defined in inferior.h). */
2045
2046 void
2047 save_inferior_status (inf_status, restore_stack_info)
2048 struct inferior_status *inf_status;
2049 int restore_stack_info;
2050 {
2051 inf_status->stop_signal = stop_signal;
2052 inf_status->stop_pc = stop_pc;
2053 inf_status->stop_step = stop_step;
2054 inf_status->stop_stack_dummy = stop_stack_dummy;
2055 inf_status->stopped_by_random_signal = stopped_by_random_signal;
2056 inf_status->trap_expected = trap_expected;
2057 inf_status->step_range_start = step_range_start;
2058 inf_status->step_range_end = step_range_end;
2059 inf_status->step_frame_address = step_frame_address;
2060 inf_status->step_over_calls = step_over_calls;
2061 inf_status->stop_after_trap = stop_after_trap;
2062 inf_status->stop_soon_quietly = stop_soon_quietly;
2063 /* Save original bpstat chain here; replace it with copy of chain.
2064 If caller's caller is walking the chain, they'll be happier if we
2065 hand them back the original chain when restore_i_s is called. */
2066 inf_status->stop_bpstat = stop_bpstat;
2067 stop_bpstat = bpstat_copy (stop_bpstat);
2068 inf_status->breakpoint_proceeded = breakpoint_proceeded;
2069 inf_status->restore_stack_info = restore_stack_info;
2070 inf_status->proceed_to_finish = proceed_to_finish;
2071
2072 memcpy (inf_status->stop_registers, stop_registers, REGISTER_BYTES);
2073
2074 read_register_bytes (0, inf_status->registers, REGISTER_BYTES);
2075
2076 record_selected_frame (&(inf_status->selected_frame_address),
2077 &(inf_status->selected_level));
2078 return;
2079 }
2080
2081 struct restore_selected_frame_args {
2082 CORE_ADDR frame_address;
2083 int level;
2084 };
2085
2086 static int restore_selected_frame PARAMS ((char *));
2087
2088 /* Restore the selected frame. args is really a struct
2089 restore_selected_frame_args * (declared as char * for catch_errors)
2090 telling us what frame to restore. Returns 1 for success, or 0 for
2091 failure. An error message will have been printed on error. */
2092
2093 static int
2094 restore_selected_frame (args)
2095 char *args;
2096 {
2097 struct restore_selected_frame_args *fr =
2098 (struct restore_selected_frame_args *) args;
2099 struct frame_info *frame;
2100 int level = fr->level;
2101
2102 frame = find_relative_frame (get_current_frame (), &level);
2103
2104 /* If inf_status->selected_frame_address is NULL, there was no
2105 previously selected frame. */
2106 if (frame == NULL ||
2107 FRAME_FP (frame) != fr->frame_address ||
2108 level != 0)
2109 {
2110 warning ("Unable to restore previously selected frame.\n");
2111 return 0;
2112 }
2113 select_frame (frame, fr->level);
2114 return(1);
2115 }
2116
2117 void
2118 restore_inferior_status (inf_status)
2119 struct inferior_status *inf_status;
2120 {
2121 stop_signal = inf_status->stop_signal;
2122 stop_pc = inf_status->stop_pc;
2123 stop_step = inf_status->stop_step;
2124 stop_stack_dummy = inf_status->stop_stack_dummy;
2125 stopped_by_random_signal = inf_status->stopped_by_random_signal;
2126 trap_expected = inf_status->trap_expected;
2127 step_range_start = inf_status->step_range_start;
2128 step_range_end = inf_status->step_range_end;
2129 step_frame_address = inf_status->step_frame_address;
2130 step_over_calls = inf_status->step_over_calls;
2131 stop_after_trap = inf_status->stop_after_trap;
2132 stop_soon_quietly = inf_status->stop_soon_quietly;
2133 bpstat_clear (&stop_bpstat);
2134 stop_bpstat = inf_status->stop_bpstat;
2135 breakpoint_proceeded = inf_status->breakpoint_proceeded;
2136 proceed_to_finish = inf_status->proceed_to_finish;
2137
2138 memcpy (stop_registers, inf_status->stop_registers, REGISTER_BYTES);
2139
2140 /* The inferior can be gone if the user types "print exit(0)"
2141 (and perhaps other times). */
2142 if (target_has_execution)
2143 write_register_bytes (0, inf_status->registers, REGISTER_BYTES);
2144
2145 /* The inferior can be gone if the user types "print exit(0)"
2146 (and perhaps other times). */
2147
2148 /* FIXME: If we are being called after stopping in a function which
2149 is called from gdb, we should not be trying to restore the
2150 selected frame; it just prints a spurious error message (The
2151 message is useful, however, in detecting bugs in gdb (like if gdb
2152 clobbers the stack)). In fact, should we be restoring the
2153 inferior status at all in that case? . */
2154
2155 if (target_has_stack && inf_status->restore_stack_info)
2156 {
2157 struct restore_selected_frame_args fr;
2158 fr.level = inf_status->selected_level;
2159 fr.frame_address = inf_status->selected_frame_address;
2160 /* The point of catch_errors is that if the stack is clobbered,
2161 walking the stack might encounter a garbage pointer and error()
2162 trying to dereference it. */
2163 if (catch_errors (restore_selected_frame, &fr,
2164 "Unable to restore previously selected frame:\n",
2165 RETURN_MASK_ERROR) == 0)
2166 /* Error in restoring the selected frame. Select the innermost
2167 frame. */
2168 select_frame (get_current_frame (), 0);
2169 }
2170 }
2171
2172 \f
2173 void
2174 _initialize_infrun ()
2175 {
2176 register int i;
2177 register int numsigs;
2178
2179 add_info ("signals", signals_info,
2180 "What debugger does when program gets various signals.\n\
2181 Specify a signal as argument to print info on that signal only.");
2182 add_info_alias ("handle", "signals", 0);
2183
2184 add_com ("handle", class_run, handle_command,
2185 concat ("Specify how to handle a signal.\n\
2186 Args are signals and actions to apply to those signals.\n\
2187 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
2188 from 1-15 are allowed for compatibility with old versions of GDB.\n\
2189 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
2190 The special arg \"all\" is recognized to mean all signals except those\n\
2191 used by the debugger, typically SIGTRAP and SIGINT.\n",
2192 "Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
2193 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
2194 Stop means reenter debugger if this signal happens (implies print).\n\
2195 Print means print a message if this signal happens.\n\
2196 Pass means let program see this signal; otherwise program doesn't know.\n\
2197 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
2198 Pass and Stop may be combined.", NULL));
2199
2200 stop_command = add_cmd ("stop", class_obscure, not_just_help_class_command,
2201 "There is no `stop' command, but you can set a hook on `stop'.\n\
2202 This allows you to set a list of commands to be run each time execution\n\
2203 of the program stops.", &cmdlist);
2204
2205 numsigs = (int)TARGET_SIGNAL_LAST;
2206 signal_stop = (unsigned char *)
2207 xmalloc (sizeof (signal_stop[0]) * numsigs);
2208 signal_print = (unsigned char *)
2209 xmalloc (sizeof (signal_print[0]) * numsigs);
2210 signal_program = (unsigned char *)
2211 xmalloc (sizeof (signal_program[0]) * numsigs);
2212 for (i = 0; i < numsigs; i++)
2213 {
2214 signal_stop[i] = 1;
2215 signal_print[i] = 1;
2216 signal_program[i] = 1;
2217 }
2218
2219 /* Signals caused by debugger's own actions
2220 should not be given to the program afterwards. */
2221 signal_program[TARGET_SIGNAL_TRAP] = 0;
2222 signal_program[TARGET_SIGNAL_INT] = 0;
2223
2224 /* Signals that are not errors should not normally enter the debugger. */
2225 signal_stop[TARGET_SIGNAL_ALRM] = 0;
2226 signal_print[TARGET_SIGNAL_ALRM] = 0;
2227 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
2228 signal_print[TARGET_SIGNAL_VTALRM] = 0;
2229 signal_stop[TARGET_SIGNAL_PROF] = 0;
2230 signal_print[TARGET_SIGNAL_PROF] = 0;
2231 signal_stop[TARGET_SIGNAL_CHLD] = 0;
2232 signal_print[TARGET_SIGNAL_CHLD] = 0;
2233 signal_stop[TARGET_SIGNAL_IO] = 0;
2234 signal_print[TARGET_SIGNAL_IO] = 0;
2235 signal_stop[TARGET_SIGNAL_POLL] = 0;
2236 signal_print[TARGET_SIGNAL_POLL] = 0;
2237 signal_stop[TARGET_SIGNAL_URG] = 0;
2238 signal_print[TARGET_SIGNAL_URG] = 0;
2239
2240 #ifdef SOLIB_ADD
2241 add_show_from_set
2242 (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger,
2243 (char *) &stop_on_solib_events,
2244 "Set stopping for shared library events.\n\
2245 If nonzero, gdb will give control to the user when the dynamic linker\n\
2246 notifies gdb of shared library events. The most common event of interest\n\
2247 to the user would be loading/unloading of a new library.\n",
2248 &setlist),
2249 &showlist);
2250 #endif
2251 }
This page took 0.105297 seconds and 4 git commands to generate.