record-btrace: extend unwinder
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2014 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include <string.h>
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "exceptions.h"
28 #include "breakpoint.h"
29 #include "gdb_wait.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "cli/cli-script.h"
33 #include "target.h"
34 #include "gdbthread.h"
35 #include "annotate.h"
36 #include "symfile.h"
37 #include "top.h"
38 #include <signal.h>
39 #include "inf-loop.h"
40 #include "regcache.h"
41 #include "value.h"
42 #include "observer.h"
43 #include "language.h"
44 #include "solib.h"
45 #include "main.h"
46 #include "dictionary.h"
47 #include "block.h"
48 #include "gdb_assert.h"
49 #include "mi/mi-common.h"
50 #include "event-top.h"
51 #include "record.h"
52 #include "record-full.h"
53 #include "inline-frame.h"
54 #include "jit.h"
55 #include "tracepoint.h"
56 #include "continuations.h"
57 #include "interps.h"
58 #include "skip.h"
59 #include "probe.h"
60 #include "objfiles.h"
61 #include "completer.h"
62 #include "target-descriptions.h"
63 #include "target-dcache.h"
64
65 /* Prototypes for local functions */
66
67 static void signals_info (char *, int);
68
69 static void handle_command (char *, int);
70
71 static void sig_print_info (enum gdb_signal);
72
73 static void sig_print_header (void);
74
75 static void resume_cleanups (void *);
76
77 static int hook_stop_stub (void *);
78
79 static int restore_selected_frame (void *);
80
81 static int follow_fork (void);
82
83 static void set_schedlock_func (char *args, int from_tty,
84 struct cmd_list_element *c);
85
86 static int currently_stepping (struct thread_info *tp);
87
88 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
89 void *data);
90
91 static void xdb_handle_command (char *args, int from_tty);
92
93 static int prepare_to_proceed (int);
94
95 static void print_exited_reason (int exitstatus);
96
97 static void print_signal_exited_reason (enum gdb_signal siggnal);
98
99 static void print_no_history_reason (void);
100
101 static void print_signal_received_reason (enum gdb_signal siggnal);
102
103 static void print_end_stepping_range_reason (void);
104
105 void _initialize_infrun (void);
106
107 void nullify_last_target_wait_ptid (void);
108
109 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
110
111 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
112
113 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
114
115 /* When set, stop the 'step' command if we enter a function which has
116 no line number information. The normal behavior is that we step
117 over such function. */
118 int step_stop_if_no_debug = 0;
119 static void
120 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
121 struct cmd_list_element *c, const char *value)
122 {
123 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
124 }
125
126 /* In asynchronous mode, but simulating synchronous execution. */
127
128 int sync_execution = 0;
129
130 /* wait_for_inferior and normal_stop use this to notify the user
131 when the inferior stopped in a different thread than it had been
132 running in. */
133
134 static ptid_t previous_inferior_ptid;
135
136 /* If set (default for legacy reasons), when following a fork, GDB
137 will detach from one of the fork branches, child or parent.
138 Exactly which branch is detached depends on 'set follow-fork-mode'
139 setting. */
140
141 static int detach_fork = 1;
142
143 int debug_displaced = 0;
144 static void
145 show_debug_displaced (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147 {
148 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
149 }
150
151 unsigned int debug_infrun = 0;
152 static void
153 show_debug_infrun (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
157 }
158
159
160 /* Support for disabling address space randomization. */
161
162 int disable_randomization = 1;
163
164 static void
165 show_disable_randomization (struct ui_file *file, int from_tty,
166 struct cmd_list_element *c, const char *value)
167 {
168 if (target_supports_disable_randomization ())
169 fprintf_filtered (file,
170 _("Disabling randomization of debuggee's "
171 "virtual address space is %s.\n"),
172 value);
173 else
174 fputs_filtered (_("Disabling randomization of debuggee's "
175 "virtual address space is unsupported on\n"
176 "this platform.\n"), file);
177 }
178
179 static void
180 set_disable_randomization (char *args, int from_tty,
181 struct cmd_list_element *c)
182 {
183 if (!target_supports_disable_randomization ())
184 error (_("Disabling randomization of debuggee's "
185 "virtual address space is unsupported on\n"
186 "this platform."));
187 }
188
189 /* User interface for non-stop mode. */
190
191 int non_stop = 0;
192 static int non_stop_1 = 0;
193
194 static void
195 set_non_stop (char *args, int from_tty,
196 struct cmd_list_element *c)
197 {
198 if (target_has_execution)
199 {
200 non_stop_1 = non_stop;
201 error (_("Cannot change this setting while the inferior is running."));
202 }
203
204 non_stop = non_stop_1;
205 }
206
207 static void
208 show_non_stop (struct ui_file *file, int from_tty,
209 struct cmd_list_element *c, const char *value)
210 {
211 fprintf_filtered (file,
212 _("Controlling the inferior in non-stop mode is %s.\n"),
213 value);
214 }
215
216 /* "Observer mode" is somewhat like a more extreme version of
217 non-stop, in which all GDB operations that might affect the
218 target's execution have been disabled. */
219
220 int observer_mode = 0;
221 static int observer_mode_1 = 0;
222
223 static void
224 set_observer_mode (char *args, int from_tty,
225 struct cmd_list_element *c)
226 {
227 if (target_has_execution)
228 {
229 observer_mode_1 = observer_mode;
230 error (_("Cannot change this setting while the inferior is running."));
231 }
232
233 observer_mode = observer_mode_1;
234
235 may_write_registers = !observer_mode;
236 may_write_memory = !observer_mode;
237 may_insert_breakpoints = !observer_mode;
238 may_insert_tracepoints = !observer_mode;
239 /* We can insert fast tracepoints in or out of observer mode,
240 but enable them if we're going into this mode. */
241 if (observer_mode)
242 may_insert_fast_tracepoints = 1;
243 may_stop = !observer_mode;
244 update_target_permissions ();
245
246 /* Going *into* observer mode we must force non-stop, then
247 going out we leave it that way. */
248 if (observer_mode)
249 {
250 target_async_permitted = 1;
251 pagination_enabled = 0;
252 non_stop = non_stop_1 = 1;
253 }
254
255 if (from_tty)
256 printf_filtered (_("Observer mode is now %s.\n"),
257 (observer_mode ? "on" : "off"));
258 }
259
260 static void
261 show_observer_mode (struct ui_file *file, int from_tty,
262 struct cmd_list_element *c, const char *value)
263 {
264 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
265 }
266
267 /* This updates the value of observer mode based on changes in
268 permissions. Note that we are deliberately ignoring the values of
269 may-write-registers and may-write-memory, since the user may have
270 reason to enable these during a session, for instance to turn on a
271 debugging-related global. */
272
273 void
274 update_observer_mode (void)
275 {
276 int newval;
277
278 newval = (!may_insert_breakpoints
279 && !may_insert_tracepoints
280 && may_insert_fast_tracepoints
281 && !may_stop
282 && non_stop);
283
284 /* Let the user know if things change. */
285 if (newval != observer_mode)
286 printf_filtered (_("Observer mode is now %s.\n"),
287 (newval ? "on" : "off"));
288
289 observer_mode = observer_mode_1 = newval;
290 }
291
292 /* Tables of how to react to signals; the user sets them. */
293
294 static unsigned char *signal_stop;
295 static unsigned char *signal_print;
296 static unsigned char *signal_program;
297
298 /* Table of signals that are registered with "catch signal". A
299 non-zero entry indicates that the signal is caught by some "catch
300 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
301 signals. */
302 static unsigned char *signal_catch;
303
304 /* Table of signals that the target may silently handle.
305 This is automatically determined from the flags above,
306 and simply cached here. */
307 static unsigned char *signal_pass;
308
309 #define SET_SIGS(nsigs,sigs,flags) \
310 do { \
311 int signum = (nsigs); \
312 while (signum-- > 0) \
313 if ((sigs)[signum]) \
314 (flags)[signum] = 1; \
315 } while (0)
316
317 #define UNSET_SIGS(nsigs,sigs,flags) \
318 do { \
319 int signum = (nsigs); \
320 while (signum-- > 0) \
321 if ((sigs)[signum]) \
322 (flags)[signum] = 0; \
323 } while (0)
324
325 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
326 this function is to avoid exporting `signal_program'. */
327
328 void
329 update_signals_program_target (void)
330 {
331 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
332 }
333
334 /* Value to pass to target_resume() to cause all threads to resume. */
335
336 #define RESUME_ALL minus_one_ptid
337
338 /* Command list pointer for the "stop" placeholder. */
339
340 static struct cmd_list_element *stop_command;
341
342 /* Function inferior was in as of last step command. */
343
344 static struct symbol *step_start_function;
345
346 /* Nonzero if we want to give control to the user when we're notified
347 of shared library events by the dynamic linker. */
348 int stop_on_solib_events;
349
350 /* Enable or disable optional shared library event breakpoints
351 as appropriate when the above flag is changed. */
352
353 static void
354 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
355 {
356 update_solib_breakpoints ();
357 }
358
359 static void
360 show_stop_on_solib_events (struct ui_file *file, int from_tty,
361 struct cmd_list_element *c, const char *value)
362 {
363 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
364 value);
365 }
366
367 /* Nonzero means expecting a trace trap
368 and should stop the inferior and return silently when it happens. */
369
370 int stop_after_trap;
371
372 /* Save register contents here when executing a "finish" command or are
373 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
374 Thus this contains the return value from the called function (assuming
375 values are returned in a register). */
376
377 struct regcache *stop_registers;
378
379 /* Nonzero after stop if current stack frame should be printed. */
380
381 static int stop_print_frame;
382
383 /* This is a cached copy of the pid/waitstatus of the last event
384 returned by target_wait()/deprecated_target_wait_hook(). This
385 information is returned by get_last_target_status(). */
386 static ptid_t target_last_wait_ptid;
387 static struct target_waitstatus target_last_waitstatus;
388
389 static void context_switch (ptid_t ptid);
390
391 void init_thread_stepping_state (struct thread_info *tss);
392
393 static void init_infwait_state (void);
394
395 static const char follow_fork_mode_child[] = "child";
396 static const char follow_fork_mode_parent[] = "parent";
397
398 static const char *const follow_fork_mode_kind_names[] = {
399 follow_fork_mode_child,
400 follow_fork_mode_parent,
401 NULL
402 };
403
404 static const char *follow_fork_mode_string = follow_fork_mode_parent;
405 static void
406 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
407 struct cmd_list_element *c, const char *value)
408 {
409 fprintf_filtered (file,
410 _("Debugger response to a program "
411 "call of fork or vfork is \"%s\".\n"),
412 value);
413 }
414 \f
415
416 /* Tell the target to follow the fork we're stopped at. Returns true
417 if the inferior should be resumed; false, if the target for some
418 reason decided it's best not to resume. */
419
420 static int
421 follow_fork (void)
422 {
423 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
424 int should_resume = 1;
425 struct thread_info *tp;
426
427 /* Copy user stepping state to the new inferior thread. FIXME: the
428 followed fork child thread should have a copy of most of the
429 parent thread structure's run control related fields, not just these.
430 Initialized to avoid "may be used uninitialized" warnings from gcc. */
431 struct breakpoint *step_resume_breakpoint = NULL;
432 struct breakpoint *exception_resume_breakpoint = NULL;
433 CORE_ADDR step_range_start = 0;
434 CORE_ADDR step_range_end = 0;
435 struct frame_id step_frame_id = { 0 };
436
437 if (!non_stop)
438 {
439 ptid_t wait_ptid;
440 struct target_waitstatus wait_status;
441
442 /* Get the last target status returned by target_wait(). */
443 get_last_target_status (&wait_ptid, &wait_status);
444
445 /* If not stopped at a fork event, then there's nothing else to
446 do. */
447 if (wait_status.kind != TARGET_WAITKIND_FORKED
448 && wait_status.kind != TARGET_WAITKIND_VFORKED)
449 return 1;
450
451 /* Check if we switched over from WAIT_PTID, since the event was
452 reported. */
453 if (!ptid_equal (wait_ptid, minus_one_ptid)
454 && !ptid_equal (inferior_ptid, wait_ptid))
455 {
456 /* We did. Switch back to WAIT_PTID thread, to tell the
457 target to follow it (in either direction). We'll
458 afterwards refuse to resume, and inform the user what
459 happened. */
460 switch_to_thread (wait_ptid);
461 should_resume = 0;
462 }
463 }
464
465 tp = inferior_thread ();
466
467 /* If there were any forks/vforks that were caught and are now to be
468 followed, then do so now. */
469 switch (tp->pending_follow.kind)
470 {
471 case TARGET_WAITKIND_FORKED:
472 case TARGET_WAITKIND_VFORKED:
473 {
474 ptid_t parent, child;
475
476 /* If the user did a next/step, etc, over a fork call,
477 preserve the stepping state in the fork child. */
478 if (follow_child && should_resume)
479 {
480 step_resume_breakpoint = clone_momentary_breakpoint
481 (tp->control.step_resume_breakpoint);
482 step_range_start = tp->control.step_range_start;
483 step_range_end = tp->control.step_range_end;
484 step_frame_id = tp->control.step_frame_id;
485 exception_resume_breakpoint
486 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
487
488 /* For now, delete the parent's sr breakpoint, otherwise,
489 parent/child sr breakpoints are considered duplicates,
490 and the child version will not be installed. Remove
491 this when the breakpoints module becomes aware of
492 inferiors and address spaces. */
493 delete_step_resume_breakpoint (tp);
494 tp->control.step_range_start = 0;
495 tp->control.step_range_end = 0;
496 tp->control.step_frame_id = null_frame_id;
497 delete_exception_resume_breakpoint (tp);
498 }
499
500 parent = inferior_ptid;
501 child = tp->pending_follow.value.related_pid;
502
503 /* Tell the target to do whatever is necessary to follow
504 either parent or child. */
505 if (target_follow_fork (follow_child, detach_fork))
506 {
507 /* Target refused to follow, or there's some other reason
508 we shouldn't resume. */
509 should_resume = 0;
510 }
511 else
512 {
513 /* This pending follow fork event is now handled, one way
514 or another. The previous selected thread may be gone
515 from the lists by now, but if it is still around, need
516 to clear the pending follow request. */
517 tp = find_thread_ptid (parent);
518 if (tp)
519 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
520
521 /* This makes sure we don't try to apply the "Switched
522 over from WAIT_PID" logic above. */
523 nullify_last_target_wait_ptid ();
524
525 /* If we followed the child, switch to it... */
526 if (follow_child)
527 {
528 switch_to_thread (child);
529
530 /* ... and preserve the stepping state, in case the
531 user was stepping over the fork call. */
532 if (should_resume)
533 {
534 tp = inferior_thread ();
535 tp->control.step_resume_breakpoint
536 = step_resume_breakpoint;
537 tp->control.step_range_start = step_range_start;
538 tp->control.step_range_end = step_range_end;
539 tp->control.step_frame_id = step_frame_id;
540 tp->control.exception_resume_breakpoint
541 = exception_resume_breakpoint;
542 }
543 else
544 {
545 /* If we get here, it was because we're trying to
546 resume from a fork catchpoint, but, the user
547 has switched threads away from the thread that
548 forked. In that case, the resume command
549 issued is most likely not applicable to the
550 child, so just warn, and refuse to resume. */
551 warning (_("Not resuming: switched threads "
552 "before following fork child.\n"));
553 }
554
555 /* Reset breakpoints in the child as appropriate. */
556 follow_inferior_reset_breakpoints ();
557 }
558 else
559 switch_to_thread (parent);
560 }
561 }
562 break;
563 case TARGET_WAITKIND_SPURIOUS:
564 /* Nothing to follow. */
565 break;
566 default:
567 internal_error (__FILE__, __LINE__,
568 "Unexpected pending_follow.kind %d\n",
569 tp->pending_follow.kind);
570 break;
571 }
572
573 return should_resume;
574 }
575
576 void
577 follow_inferior_reset_breakpoints (void)
578 {
579 struct thread_info *tp = inferior_thread ();
580
581 /* Was there a step_resume breakpoint? (There was if the user
582 did a "next" at the fork() call.) If so, explicitly reset its
583 thread number.
584
585 step_resumes are a form of bp that are made to be per-thread.
586 Since we created the step_resume bp when the parent process
587 was being debugged, and now are switching to the child process,
588 from the breakpoint package's viewpoint, that's a switch of
589 "threads". We must update the bp's notion of which thread
590 it is for, or it'll be ignored when it triggers. */
591
592 if (tp->control.step_resume_breakpoint)
593 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
594
595 if (tp->control.exception_resume_breakpoint)
596 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
597
598 /* Reinsert all breakpoints in the child. The user may have set
599 breakpoints after catching the fork, in which case those
600 were never set in the child, but only in the parent. This makes
601 sure the inserted breakpoints match the breakpoint list. */
602
603 breakpoint_re_set ();
604 insert_breakpoints ();
605 }
606
607 /* The child has exited or execed: resume threads of the parent the
608 user wanted to be executing. */
609
610 static int
611 proceed_after_vfork_done (struct thread_info *thread,
612 void *arg)
613 {
614 int pid = * (int *) arg;
615
616 if (ptid_get_pid (thread->ptid) == pid
617 && is_running (thread->ptid)
618 && !is_executing (thread->ptid)
619 && !thread->stop_requested
620 && thread->suspend.stop_signal == GDB_SIGNAL_0)
621 {
622 if (debug_infrun)
623 fprintf_unfiltered (gdb_stdlog,
624 "infrun: resuming vfork parent thread %s\n",
625 target_pid_to_str (thread->ptid));
626
627 switch_to_thread (thread->ptid);
628 clear_proceed_status ();
629 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
630 }
631
632 return 0;
633 }
634
635 /* Called whenever we notice an exec or exit event, to handle
636 detaching or resuming a vfork parent. */
637
638 static void
639 handle_vfork_child_exec_or_exit (int exec)
640 {
641 struct inferior *inf = current_inferior ();
642
643 if (inf->vfork_parent)
644 {
645 int resume_parent = -1;
646
647 /* This exec or exit marks the end of the shared memory region
648 between the parent and the child. If the user wanted to
649 detach from the parent, now is the time. */
650
651 if (inf->vfork_parent->pending_detach)
652 {
653 struct thread_info *tp;
654 struct cleanup *old_chain;
655 struct program_space *pspace;
656 struct address_space *aspace;
657
658 /* follow-fork child, detach-on-fork on. */
659
660 inf->vfork_parent->pending_detach = 0;
661
662 if (!exec)
663 {
664 /* If we're handling a child exit, then inferior_ptid
665 points at the inferior's pid, not to a thread. */
666 old_chain = save_inferior_ptid ();
667 save_current_program_space ();
668 save_current_inferior ();
669 }
670 else
671 old_chain = save_current_space_and_thread ();
672
673 /* We're letting loose of the parent. */
674 tp = any_live_thread_of_process (inf->vfork_parent->pid);
675 switch_to_thread (tp->ptid);
676
677 /* We're about to detach from the parent, which implicitly
678 removes breakpoints from its address space. There's a
679 catch here: we want to reuse the spaces for the child,
680 but, parent/child are still sharing the pspace at this
681 point, although the exec in reality makes the kernel give
682 the child a fresh set of new pages. The problem here is
683 that the breakpoints module being unaware of this, would
684 likely chose the child process to write to the parent
685 address space. Swapping the child temporarily away from
686 the spaces has the desired effect. Yes, this is "sort
687 of" a hack. */
688
689 pspace = inf->pspace;
690 aspace = inf->aspace;
691 inf->aspace = NULL;
692 inf->pspace = NULL;
693
694 if (debug_infrun || info_verbose)
695 {
696 target_terminal_ours ();
697
698 if (exec)
699 fprintf_filtered (gdb_stdlog,
700 "Detaching vfork parent process "
701 "%d after child exec.\n",
702 inf->vfork_parent->pid);
703 else
704 fprintf_filtered (gdb_stdlog,
705 "Detaching vfork parent process "
706 "%d after child exit.\n",
707 inf->vfork_parent->pid);
708 }
709
710 target_detach (NULL, 0);
711
712 /* Put it back. */
713 inf->pspace = pspace;
714 inf->aspace = aspace;
715
716 do_cleanups (old_chain);
717 }
718 else if (exec)
719 {
720 /* We're staying attached to the parent, so, really give the
721 child a new address space. */
722 inf->pspace = add_program_space (maybe_new_address_space ());
723 inf->aspace = inf->pspace->aspace;
724 inf->removable = 1;
725 set_current_program_space (inf->pspace);
726
727 resume_parent = inf->vfork_parent->pid;
728
729 /* Break the bonds. */
730 inf->vfork_parent->vfork_child = NULL;
731 }
732 else
733 {
734 struct cleanup *old_chain;
735 struct program_space *pspace;
736
737 /* If this is a vfork child exiting, then the pspace and
738 aspaces were shared with the parent. Since we're
739 reporting the process exit, we'll be mourning all that is
740 found in the address space, and switching to null_ptid,
741 preparing to start a new inferior. But, since we don't
742 want to clobber the parent's address/program spaces, we
743 go ahead and create a new one for this exiting
744 inferior. */
745
746 /* Switch to null_ptid, so that clone_program_space doesn't want
747 to read the selected frame of a dead process. */
748 old_chain = save_inferior_ptid ();
749 inferior_ptid = null_ptid;
750
751 /* This inferior is dead, so avoid giving the breakpoints
752 module the option to write through to it (cloning a
753 program space resets breakpoints). */
754 inf->aspace = NULL;
755 inf->pspace = NULL;
756 pspace = add_program_space (maybe_new_address_space ());
757 set_current_program_space (pspace);
758 inf->removable = 1;
759 inf->symfile_flags = SYMFILE_NO_READ;
760 clone_program_space (pspace, inf->vfork_parent->pspace);
761 inf->pspace = pspace;
762 inf->aspace = pspace->aspace;
763
764 /* Put back inferior_ptid. We'll continue mourning this
765 inferior. */
766 do_cleanups (old_chain);
767
768 resume_parent = inf->vfork_parent->pid;
769 /* Break the bonds. */
770 inf->vfork_parent->vfork_child = NULL;
771 }
772
773 inf->vfork_parent = NULL;
774
775 gdb_assert (current_program_space == inf->pspace);
776
777 if (non_stop && resume_parent != -1)
778 {
779 /* If the user wanted the parent to be running, let it go
780 free now. */
781 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
782
783 if (debug_infrun)
784 fprintf_unfiltered (gdb_stdlog,
785 "infrun: resuming vfork parent process %d\n",
786 resume_parent);
787
788 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
789
790 do_cleanups (old_chain);
791 }
792 }
793 }
794
795 /* Enum strings for "set|show follow-exec-mode". */
796
797 static const char follow_exec_mode_new[] = "new";
798 static const char follow_exec_mode_same[] = "same";
799 static const char *const follow_exec_mode_names[] =
800 {
801 follow_exec_mode_new,
802 follow_exec_mode_same,
803 NULL,
804 };
805
806 static const char *follow_exec_mode_string = follow_exec_mode_same;
807 static void
808 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
809 struct cmd_list_element *c, const char *value)
810 {
811 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
812 }
813
814 /* EXECD_PATHNAME is assumed to be non-NULL. */
815
816 static void
817 follow_exec (ptid_t pid, char *execd_pathname)
818 {
819 struct thread_info *th = inferior_thread ();
820 struct inferior *inf = current_inferior ();
821
822 /* This is an exec event that we actually wish to pay attention to.
823 Refresh our symbol table to the newly exec'd program, remove any
824 momentary bp's, etc.
825
826 If there are breakpoints, they aren't really inserted now,
827 since the exec() transformed our inferior into a fresh set
828 of instructions.
829
830 We want to preserve symbolic breakpoints on the list, since
831 we have hopes that they can be reset after the new a.out's
832 symbol table is read.
833
834 However, any "raw" breakpoints must be removed from the list
835 (e.g., the solib bp's), since their address is probably invalid
836 now.
837
838 And, we DON'T want to call delete_breakpoints() here, since
839 that may write the bp's "shadow contents" (the instruction
840 value that was overwritten witha TRAP instruction). Since
841 we now have a new a.out, those shadow contents aren't valid. */
842
843 mark_breakpoints_out ();
844
845 update_breakpoints_after_exec ();
846
847 /* If there was one, it's gone now. We cannot truly step-to-next
848 statement through an exec(). */
849 th->control.step_resume_breakpoint = NULL;
850 th->control.exception_resume_breakpoint = NULL;
851 th->control.step_range_start = 0;
852 th->control.step_range_end = 0;
853
854 /* The target reports the exec event to the main thread, even if
855 some other thread does the exec, and even if the main thread was
856 already stopped --- if debugging in non-stop mode, it's possible
857 the user had the main thread held stopped in the previous image
858 --- release it now. This is the same behavior as step-over-exec
859 with scheduler-locking on in all-stop mode. */
860 th->stop_requested = 0;
861
862 /* What is this a.out's name? */
863 printf_unfiltered (_("%s is executing new program: %s\n"),
864 target_pid_to_str (inferior_ptid),
865 execd_pathname);
866
867 /* We've followed the inferior through an exec. Therefore, the
868 inferior has essentially been killed & reborn. */
869
870 gdb_flush (gdb_stdout);
871
872 breakpoint_init_inferior (inf_execd);
873
874 if (gdb_sysroot && *gdb_sysroot)
875 {
876 char *name = alloca (strlen (gdb_sysroot)
877 + strlen (execd_pathname)
878 + 1);
879
880 strcpy (name, gdb_sysroot);
881 strcat (name, execd_pathname);
882 execd_pathname = name;
883 }
884
885 /* Reset the shared library package. This ensures that we get a
886 shlib event when the child reaches "_start", at which point the
887 dld will have had a chance to initialize the child. */
888 /* Also, loading a symbol file below may trigger symbol lookups, and
889 we don't want those to be satisfied by the libraries of the
890 previous incarnation of this process. */
891 no_shared_libraries (NULL, 0);
892
893 if (follow_exec_mode_string == follow_exec_mode_new)
894 {
895 struct program_space *pspace;
896
897 /* The user wants to keep the old inferior and program spaces
898 around. Create a new fresh one, and switch to it. */
899
900 inf = add_inferior (current_inferior ()->pid);
901 pspace = add_program_space (maybe_new_address_space ());
902 inf->pspace = pspace;
903 inf->aspace = pspace->aspace;
904
905 exit_inferior_num_silent (current_inferior ()->num);
906
907 set_current_inferior (inf);
908 set_current_program_space (pspace);
909 }
910 else
911 {
912 /* The old description may no longer be fit for the new image.
913 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
914 old description; we'll read a new one below. No need to do
915 this on "follow-exec-mode new", as the old inferior stays
916 around (its description is later cleared/refetched on
917 restart). */
918 target_clear_description ();
919 }
920
921 gdb_assert (current_program_space == inf->pspace);
922
923 /* That a.out is now the one to use. */
924 exec_file_attach (execd_pathname, 0);
925
926 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
927 (Position Independent Executable) main symbol file will get applied by
928 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
929 the breakpoints with the zero displacement. */
930
931 symbol_file_add (execd_pathname,
932 (inf->symfile_flags
933 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
934 NULL, 0);
935
936 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
937 set_initial_language ();
938
939 /* If the target can specify a description, read it. Must do this
940 after flipping to the new executable (because the target supplied
941 description must be compatible with the executable's
942 architecture, and the old executable may e.g., be 32-bit, while
943 the new one 64-bit), and before anything involving memory or
944 registers. */
945 target_find_description ();
946
947 solib_create_inferior_hook (0);
948
949 jit_inferior_created_hook ();
950
951 breakpoint_re_set ();
952
953 /* Reinsert all breakpoints. (Those which were symbolic have
954 been reset to the proper address in the new a.out, thanks
955 to symbol_file_command...). */
956 insert_breakpoints ();
957
958 /* The next resume of this inferior should bring it to the shlib
959 startup breakpoints. (If the user had also set bp's on
960 "main" from the old (parent) process, then they'll auto-
961 matically get reset there in the new process.). */
962 }
963
964 /* Non-zero if we just simulating a single-step. This is needed
965 because we cannot remove the breakpoints in the inferior process
966 until after the `wait' in `wait_for_inferior'. */
967 static int singlestep_breakpoints_inserted_p = 0;
968
969 /* The thread we inserted single-step breakpoints for. */
970 static ptid_t singlestep_ptid;
971
972 /* PC when we started this single-step. */
973 static CORE_ADDR singlestep_pc;
974
975 /* If another thread hit the singlestep breakpoint, we save the original
976 thread here so that we can resume single-stepping it later. */
977 static ptid_t saved_singlestep_ptid;
978 static int stepping_past_singlestep_breakpoint;
979
980 /* If not equal to null_ptid, this means that after stepping over breakpoint
981 is finished, we need to switch to deferred_step_ptid, and step it.
982
983 The use case is when one thread has hit a breakpoint, and then the user
984 has switched to another thread and issued 'step'. We need to step over
985 breakpoint in the thread which hit the breakpoint, but then continue
986 stepping the thread user has selected. */
987 static ptid_t deferred_step_ptid;
988 \f
989 /* Displaced stepping. */
990
991 /* In non-stop debugging mode, we must take special care to manage
992 breakpoints properly; in particular, the traditional strategy for
993 stepping a thread past a breakpoint it has hit is unsuitable.
994 'Displaced stepping' is a tactic for stepping one thread past a
995 breakpoint it has hit while ensuring that other threads running
996 concurrently will hit the breakpoint as they should.
997
998 The traditional way to step a thread T off a breakpoint in a
999 multi-threaded program in all-stop mode is as follows:
1000
1001 a0) Initially, all threads are stopped, and breakpoints are not
1002 inserted.
1003 a1) We single-step T, leaving breakpoints uninserted.
1004 a2) We insert breakpoints, and resume all threads.
1005
1006 In non-stop debugging, however, this strategy is unsuitable: we
1007 don't want to have to stop all threads in the system in order to
1008 continue or step T past a breakpoint. Instead, we use displaced
1009 stepping:
1010
1011 n0) Initially, T is stopped, other threads are running, and
1012 breakpoints are inserted.
1013 n1) We copy the instruction "under" the breakpoint to a separate
1014 location, outside the main code stream, making any adjustments
1015 to the instruction, register, and memory state as directed by
1016 T's architecture.
1017 n2) We single-step T over the instruction at its new location.
1018 n3) We adjust the resulting register and memory state as directed
1019 by T's architecture. This includes resetting T's PC to point
1020 back into the main instruction stream.
1021 n4) We resume T.
1022
1023 This approach depends on the following gdbarch methods:
1024
1025 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1026 indicate where to copy the instruction, and how much space must
1027 be reserved there. We use these in step n1.
1028
1029 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1030 address, and makes any necessary adjustments to the instruction,
1031 register contents, and memory. We use this in step n1.
1032
1033 - gdbarch_displaced_step_fixup adjusts registers and memory after
1034 we have successfuly single-stepped the instruction, to yield the
1035 same effect the instruction would have had if we had executed it
1036 at its original address. We use this in step n3.
1037
1038 - gdbarch_displaced_step_free_closure provides cleanup.
1039
1040 The gdbarch_displaced_step_copy_insn and
1041 gdbarch_displaced_step_fixup functions must be written so that
1042 copying an instruction with gdbarch_displaced_step_copy_insn,
1043 single-stepping across the copied instruction, and then applying
1044 gdbarch_displaced_insn_fixup should have the same effects on the
1045 thread's memory and registers as stepping the instruction in place
1046 would have. Exactly which responsibilities fall to the copy and
1047 which fall to the fixup is up to the author of those functions.
1048
1049 See the comments in gdbarch.sh for details.
1050
1051 Note that displaced stepping and software single-step cannot
1052 currently be used in combination, although with some care I think
1053 they could be made to. Software single-step works by placing
1054 breakpoints on all possible subsequent instructions; if the
1055 displaced instruction is a PC-relative jump, those breakpoints
1056 could fall in very strange places --- on pages that aren't
1057 executable, or at addresses that are not proper instruction
1058 boundaries. (We do generally let other threads run while we wait
1059 to hit the software single-step breakpoint, and they might
1060 encounter such a corrupted instruction.) One way to work around
1061 this would be to have gdbarch_displaced_step_copy_insn fully
1062 simulate the effect of PC-relative instructions (and return NULL)
1063 on architectures that use software single-stepping.
1064
1065 In non-stop mode, we can have independent and simultaneous step
1066 requests, so more than one thread may need to simultaneously step
1067 over a breakpoint. The current implementation assumes there is
1068 only one scratch space per process. In this case, we have to
1069 serialize access to the scratch space. If thread A wants to step
1070 over a breakpoint, but we are currently waiting for some other
1071 thread to complete a displaced step, we leave thread A stopped and
1072 place it in the displaced_step_request_queue. Whenever a displaced
1073 step finishes, we pick the next thread in the queue and start a new
1074 displaced step operation on it. See displaced_step_prepare and
1075 displaced_step_fixup for details. */
1076
1077 struct displaced_step_request
1078 {
1079 ptid_t ptid;
1080 struct displaced_step_request *next;
1081 };
1082
1083 /* Per-inferior displaced stepping state. */
1084 struct displaced_step_inferior_state
1085 {
1086 /* Pointer to next in linked list. */
1087 struct displaced_step_inferior_state *next;
1088
1089 /* The process this displaced step state refers to. */
1090 int pid;
1091
1092 /* A queue of pending displaced stepping requests. One entry per
1093 thread that needs to do a displaced step. */
1094 struct displaced_step_request *step_request_queue;
1095
1096 /* If this is not null_ptid, this is the thread carrying out a
1097 displaced single-step in process PID. This thread's state will
1098 require fixing up once it has completed its step. */
1099 ptid_t step_ptid;
1100
1101 /* The architecture the thread had when we stepped it. */
1102 struct gdbarch *step_gdbarch;
1103
1104 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1105 for post-step cleanup. */
1106 struct displaced_step_closure *step_closure;
1107
1108 /* The address of the original instruction, and the copy we
1109 made. */
1110 CORE_ADDR step_original, step_copy;
1111
1112 /* Saved contents of copy area. */
1113 gdb_byte *step_saved_copy;
1114 };
1115
1116 /* The list of states of processes involved in displaced stepping
1117 presently. */
1118 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1119
1120 /* Get the displaced stepping state of process PID. */
1121
1122 static struct displaced_step_inferior_state *
1123 get_displaced_stepping_state (int pid)
1124 {
1125 struct displaced_step_inferior_state *state;
1126
1127 for (state = displaced_step_inferior_states;
1128 state != NULL;
1129 state = state->next)
1130 if (state->pid == pid)
1131 return state;
1132
1133 return NULL;
1134 }
1135
1136 /* Add a new displaced stepping state for process PID to the displaced
1137 stepping state list, or return a pointer to an already existing
1138 entry, if it already exists. Never returns NULL. */
1139
1140 static struct displaced_step_inferior_state *
1141 add_displaced_stepping_state (int pid)
1142 {
1143 struct displaced_step_inferior_state *state;
1144
1145 for (state = displaced_step_inferior_states;
1146 state != NULL;
1147 state = state->next)
1148 if (state->pid == pid)
1149 return state;
1150
1151 state = xcalloc (1, sizeof (*state));
1152 state->pid = pid;
1153 state->next = displaced_step_inferior_states;
1154 displaced_step_inferior_states = state;
1155
1156 return state;
1157 }
1158
1159 /* If inferior is in displaced stepping, and ADDR equals to starting address
1160 of copy area, return corresponding displaced_step_closure. Otherwise,
1161 return NULL. */
1162
1163 struct displaced_step_closure*
1164 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1165 {
1166 struct displaced_step_inferior_state *displaced
1167 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1168
1169 /* If checking the mode of displaced instruction in copy area. */
1170 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1171 && (displaced->step_copy == addr))
1172 return displaced->step_closure;
1173
1174 return NULL;
1175 }
1176
1177 /* Remove the displaced stepping state of process PID. */
1178
1179 static void
1180 remove_displaced_stepping_state (int pid)
1181 {
1182 struct displaced_step_inferior_state *it, **prev_next_p;
1183
1184 gdb_assert (pid != 0);
1185
1186 it = displaced_step_inferior_states;
1187 prev_next_p = &displaced_step_inferior_states;
1188 while (it)
1189 {
1190 if (it->pid == pid)
1191 {
1192 *prev_next_p = it->next;
1193 xfree (it);
1194 return;
1195 }
1196
1197 prev_next_p = &it->next;
1198 it = *prev_next_p;
1199 }
1200 }
1201
1202 static void
1203 infrun_inferior_exit (struct inferior *inf)
1204 {
1205 remove_displaced_stepping_state (inf->pid);
1206 }
1207
1208 /* If ON, and the architecture supports it, GDB will use displaced
1209 stepping to step over breakpoints. If OFF, or if the architecture
1210 doesn't support it, GDB will instead use the traditional
1211 hold-and-step approach. If AUTO (which is the default), GDB will
1212 decide which technique to use to step over breakpoints depending on
1213 which of all-stop or non-stop mode is active --- displaced stepping
1214 in non-stop mode; hold-and-step in all-stop mode. */
1215
1216 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1217
1218 static void
1219 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1220 struct cmd_list_element *c,
1221 const char *value)
1222 {
1223 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1224 fprintf_filtered (file,
1225 _("Debugger's willingness to use displaced stepping "
1226 "to step over breakpoints is %s (currently %s).\n"),
1227 value, non_stop ? "on" : "off");
1228 else
1229 fprintf_filtered (file,
1230 _("Debugger's willingness to use displaced stepping "
1231 "to step over breakpoints is %s.\n"), value);
1232 }
1233
1234 /* Return non-zero if displaced stepping can/should be used to step
1235 over breakpoints. */
1236
1237 static int
1238 use_displaced_stepping (struct gdbarch *gdbarch)
1239 {
1240 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1241 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1242 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1243 && find_record_target () == NULL);
1244 }
1245
1246 /* Clean out any stray displaced stepping state. */
1247 static void
1248 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1249 {
1250 /* Indicate that there is no cleanup pending. */
1251 displaced->step_ptid = null_ptid;
1252
1253 if (displaced->step_closure)
1254 {
1255 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1256 displaced->step_closure);
1257 displaced->step_closure = NULL;
1258 }
1259 }
1260
1261 static void
1262 displaced_step_clear_cleanup (void *arg)
1263 {
1264 struct displaced_step_inferior_state *state = arg;
1265
1266 displaced_step_clear (state);
1267 }
1268
1269 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1270 void
1271 displaced_step_dump_bytes (struct ui_file *file,
1272 const gdb_byte *buf,
1273 size_t len)
1274 {
1275 int i;
1276
1277 for (i = 0; i < len; i++)
1278 fprintf_unfiltered (file, "%02x ", buf[i]);
1279 fputs_unfiltered ("\n", file);
1280 }
1281
1282 /* Prepare to single-step, using displaced stepping.
1283
1284 Note that we cannot use displaced stepping when we have a signal to
1285 deliver. If we have a signal to deliver and an instruction to step
1286 over, then after the step, there will be no indication from the
1287 target whether the thread entered a signal handler or ignored the
1288 signal and stepped over the instruction successfully --- both cases
1289 result in a simple SIGTRAP. In the first case we mustn't do a
1290 fixup, and in the second case we must --- but we can't tell which.
1291 Comments in the code for 'random signals' in handle_inferior_event
1292 explain how we handle this case instead.
1293
1294 Returns 1 if preparing was successful -- this thread is going to be
1295 stepped now; or 0 if displaced stepping this thread got queued. */
1296 static int
1297 displaced_step_prepare (ptid_t ptid)
1298 {
1299 struct cleanup *old_cleanups, *ignore_cleanups;
1300 struct thread_info *tp = find_thread_ptid (ptid);
1301 struct regcache *regcache = get_thread_regcache (ptid);
1302 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1303 CORE_ADDR original, copy;
1304 ULONGEST len;
1305 struct displaced_step_closure *closure;
1306 struct displaced_step_inferior_state *displaced;
1307 int status;
1308
1309 /* We should never reach this function if the architecture does not
1310 support displaced stepping. */
1311 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1312
1313 /* Disable range stepping while executing in the scratch pad. We
1314 want a single-step even if executing the displaced instruction in
1315 the scratch buffer lands within the stepping range (e.g., a
1316 jump/branch). */
1317 tp->control.may_range_step = 0;
1318
1319 /* We have to displaced step one thread at a time, as we only have
1320 access to a single scratch space per inferior. */
1321
1322 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1323
1324 if (!ptid_equal (displaced->step_ptid, null_ptid))
1325 {
1326 /* Already waiting for a displaced step to finish. Defer this
1327 request and place in queue. */
1328 struct displaced_step_request *req, *new_req;
1329
1330 if (debug_displaced)
1331 fprintf_unfiltered (gdb_stdlog,
1332 "displaced: defering step of %s\n",
1333 target_pid_to_str (ptid));
1334
1335 new_req = xmalloc (sizeof (*new_req));
1336 new_req->ptid = ptid;
1337 new_req->next = NULL;
1338
1339 if (displaced->step_request_queue)
1340 {
1341 for (req = displaced->step_request_queue;
1342 req && req->next;
1343 req = req->next)
1344 ;
1345 req->next = new_req;
1346 }
1347 else
1348 displaced->step_request_queue = new_req;
1349
1350 return 0;
1351 }
1352 else
1353 {
1354 if (debug_displaced)
1355 fprintf_unfiltered (gdb_stdlog,
1356 "displaced: stepping %s now\n",
1357 target_pid_to_str (ptid));
1358 }
1359
1360 displaced_step_clear (displaced);
1361
1362 old_cleanups = save_inferior_ptid ();
1363 inferior_ptid = ptid;
1364
1365 original = regcache_read_pc (regcache);
1366
1367 copy = gdbarch_displaced_step_location (gdbarch);
1368 len = gdbarch_max_insn_length (gdbarch);
1369
1370 /* Save the original contents of the copy area. */
1371 displaced->step_saved_copy = xmalloc (len);
1372 ignore_cleanups = make_cleanup (free_current_contents,
1373 &displaced->step_saved_copy);
1374 status = target_read_memory (copy, displaced->step_saved_copy, len);
1375 if (status != 0)
1376 throw_error (MEMORY_ERROR,
1377 _("Error accessing memory address %s (%s) for "
1378 "displaced-stepping scratch space."),
1379 paddress (gdbarch, copy), safe_strerror (status));
1380 if (debug_displaced)
1381 {
1382 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1383 paddress (gdbarch, copy));
1384 displaced_step_dump_bytes (gdb_stdlog,
1385 displaced->step_saved_copy,
1386 len);
1387 };
1388
1389 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1390 original, copy, regcache);
1391
1392 /* We don't support the fully-simulated case at present. */
1393 gdb_assert (closure);
1394
1395 /* Save the information we need to fix things up if the step
1396 succeeds. */
1397 displaced->step_ptid = ptid;
1398 displaced->step_gdbarch = gdbarch;
1399 displaced->step_closure = closure;
1400 displaced->step_original = original;
1401 displaced->step_copy = copy;
1402
1403 make_cleanup (displaced_step_clear_cleanup, displaced);
1404
1405 /* Resume execution at the copy. */
1406 regcache_write_pc (regcache, copy);
1407
1408 discard_cleanups (ignore_cleanups);
1409
1410 do_cleanups (old_cleanups);
1411
1412 if (debug_displaced)
1413 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1414 paddress (gdbarch, copy));
1415
1416 return 1;
1417 }
1418
1419 static void
1420 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1421 const gdb_byte *myaddr, int len)
1422 {
1423 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1424
1425 inferior_ptid = ptid;
1426 write_memory (memaddr, myaddr, len);
1427 do_cleanups (ptid_cleanup);
1428 }
1429
1430 /* Restore the contents of the copy area for thread PTID. */
1431
1432 static void
1433 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1434 ptid_t ptid)
1435 {
1436 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1437
1438 write_memory_ptid (ptid, displaced->step_copy,
1439 displaced->step_saved_copy, len);
1440 if (debug_displaced)
1441 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1442 target_pid_to_str (ptid),
1443 paddress (displaced->step_gdbarch,
1444 displaced->step_copy));
1445 }
1446
1447 static void
1448 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1449 {
1450 struct cleanup *old_cleanups;
1451 struct displaced_step_inferior_state *displaced
1452 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1453
1454 /* Was any thread of this process doing a displaced step? */
1455 if (displaced == NULL)
1456 return;
1457
1458 /* Was this event for the pid we displaced? */
1459 if (ptid_equal (displaced->step_ptid, null_ptid)
1460 || ! ptid_equal (displaced->step_ptid, event_ptid))
1461 return;
1462
1463 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1464
1465 displaced_step_restore (displaced, displaced->step_ptid);
1466
1467 /* Did the instruction complete successfully? */
1468 if (signal == GDB_SIGNAL_TRAP)
1469 {
1470 /* Fix up the resulting state. */
1471 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1472 displaced->step_closure,
1473 displaced->step_original,
1474 displaced->step_copy,
1475 get_thread_regcache (displaced->step_ptid));
1476 }
1477 else
1478 {
1479 /* Since the instruction didn't complete, all we can do is
1480 relocate the PC. */
1481 struct regcache *regcache = get_thread_regcache (event_ptid);
1482 CORE_ADDR pc = regcache_read_pc (regcache);
1483
1484 pc = displaced->step_original + (pc - displaced->step_copy);
1485 regcache_write_pc (regcache, pc);
1486 }
1487
1488 do_cleanups (old_cleanups);
1489
1490 displaced->step_ptid = null_ptid;
1491
1492 /* Are there any pending displaced stepping requests? If so, run
1493 one now. Leave the state object around, since we're likely to
1494 need it again soon. */
1495 while (displaced->step_request_queue)
1496 {
1497 struct displaced_step_request *head;
1498 ptid_t ptid;
1499 struct regcache *regcache;
1500 struct gdbarch *gdbarch;
1501 CORE_ADDR actual_pc;
1502 struct address_space *aspace;
1503
1504 head = displaced->step_request_queue;
1505 ptid = head->ptid;
1506 displaced->step_request_queue = head->next;
1507 xfree (head);
1508
1509 context_switch (ptid);
1510
1511 regcache = get_thread_regcache (ptid);
1512 actual_pc = regcache_read_pc (regcache);
1513 aspace = get_regcache_aspace (regcache);
1514
1515 if (breakpoint_here_p (aspace, actual_pc))
1516 {
1517 if (debug_displaced)
1518 fprintf_unfiltered (gdb_stdlog,
1519 "displaced: stepping queued %s now\n",
1520 target_pid_to_str (ptid));
1521
1522 displaced_step_prepare (ptid);
1523
1524 gdbarch = get_regcache_arch (regcache);
1525
1526 if (debug_displaced)
1527 {
1528 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1529 gdb_byte buf[4];
1530
1531 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1532 paddress (gdbarch, actual_pc));
1533 read_memory (actual_pc, buf, sizeof (buf));
1534 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1535 }
1536
1537 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1538 displaced->step_closure))
1539 target_resume (ptid, 1, GDB_SIGNAL_0);
1540 else
1541 target_resume (ptid, 0, GDB_SIGNAL_0);
1542
1543 /* Done, we're stepping a thread. */
1544 break;
1545 }
1546 else
1547 {
1548 int step;
1549 struct thread_info *tp = inferior_thread ();
1550
1551 /* The breakpoint we were sitting under has since been
1552 removed. */
1553 tp->control.trap_expected = 0;
1554
1555 /* Go back to what we were trying to do. */
1556 step = currently_stepping (tp);
1557
1558 if (debug_displaced)
1559 fprintf_unfiltered (gdb_stdlog,
1560 "displaced: breakpoint is gone: %s, step(%d)\n",
1561 target_pid_to_str (tp->ptid), step);
1562
1563 target_resume (ptid, step, GDB_SIGNAL_0);
1564 tp->suspend.stop_signal = GDB_SIGNAL_0;
1565
1566 /* This request was discarded. See if there's any other
1567 thread waiting for its turn. */
1568 }
1569 }
1570 }
1571
1572 /* Update global variables holding ptids to hold NEW_PTID if they were
1573 holding OLD_PTID. */
1574 static void
1575 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1576 {
1577 struct displaced_step_request *it;
1578 struct displaced_step_inferior_state *displaced;
1579
1580 if (ptid_equal (inferior_ptid, old_ptid))
1581 inferior_ptid = new_ptid;
1582
1583 if (ptid_equal (singlestep_ptid, old_ptid))
1584 singlestep_ptid = new_ptid;
1585
1586 if (ptid_equal (deferred_step_ptid, old_ptid))
1587 deferred_step_ptid = new_ptid;
1588
1589 for (displaced = displaced_step_inferior_states;
1590 displaced;
1591 displaced = displaced->next)
1592 {
1593 if (ptid_equal (displaced->step_ptid, old_ptid))
1594 displaced->step_ptid = new_ptid;
1595
1596 for (it = displaced->step_request_queue; it; it = it->next)
1597 if (ptid_equal (it->ptid, old_ptid))
1598 it->ptid = new_ptid;
1599 }
1600 }
1601
1602 \f
1603 /* Resuming. */
1604
1605 /* Things to clean up if we QUIT out of resume (). */
1606 static void
1607 resume_cleanups (void *ignore)
1608 {
1609 normal_stop ();
1610 }
1611
1612 static const char schedlock_off[] = "off";
1613 static const char schedlock_on[] = "on";
1614 static const char schedlock_step[] = "step";
1615 static const char *const scheduler_enums[] = {
1616 schedlock_off,
1617 schedlock_on,
1618 schedlock_step,
1619 NULL
1620 };
1621 static const char *scheduler_mode = schedlock_off;
1622 static void
1623 show_scheduler_mode (struct ui_file *file, int from_tty,
1624 struct cmd_list_element *c, const char *value)
1625 {
1626 fprintf_filtered (file,
1627 _("Mode for locking scheduler "
1628 "during execution is \"%s\".\n"),
1629 value);
1630 }
1631
1632 static void
1633 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1634 {
1635 if (!target_can_lock_scheduler)
1636 {
1637 scheduler_mode = schedlock_off;
1638 error (_("Target '%s' cannot support this command."), target_shortname);
1639 }
1640 }
1641
1642 /* True if execution commands resume all threads of all processes by
1643 default; otherwise, resume only threads of the current inferior
1644 process. */
1645 int sched_multi = 0;
1646
1647 /* Try to setup for software single stepping over the specified location.
1648 Return 1 if target_resume() should use hardware single step.
1649
1650 GDBARCH the current gdbarch.
1651 PC the location to step over. */
1652
1653 static int
1654 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1655 {
1656 int hw_step = 1;
1657
1658 if (execution_direction == EXEC_FORWARD
1659 && gdbarch_software_single_step_p (gdbarch)
1660 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1661 {
1662 hw_step = 0;
1663 /* Do not pull these breakpoints until after a `wait' in
1664 `wait_for_inferior'. */
1665 singlestep_breakpoints_inserted_p = 1;
1666 singlestep_ptid = inferior_ptid;
1667 singlestep_pc = pc;
1668 }
1669 return hw_step;
1670 }
1671
1672 /* Return a ptid representing the set of threads that we will proceed,
1673 in the perspective of the user/frontend. We may actually resume
1674 fewer threads at first, e.g., if a thread is stopped at a
1675 breakpoint that needs stepping-off, but that should not be visible
1676 to the user/frontend, and neither should the frontend/user be
1677 allowed to proceed any of the threads that happen to be stopped for
1678 internal run control handling, if a previous command wanted them
1679 resumed. */
1680
1681 ptid_t
1682 user_visible_resume_ptid (int step)
1683 {
1684 /* By default, resume all threads of all processes. */
1685 ptid_t resume_ptid = RESUME_ALL;
1686
1687 /* Maybe resume only all threads of the current process. */
1688 if (!sched_multi && target_supports_multi_process ())
1689 {
1690 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1691 }
1692
1693 /* Maybe resume a single thread after all. */
1694 if (non_stop)
1695 {
1696 /* With non-stop mode on, threads are always handled
1697 individually. */
1698 resume_ptid = inferior_ptid;
1699 }
1700 else if ((scheduler_mode == schedlock_on)
1701 || (scheduler_mode == schedlock_step
1702 && (step || singlestep_breakpoints_inserted_p)))
1703 {
1704 /* User-settable 'scheduler' mode requires solo thread resume. */
1705 resume_ptid = inferior_ptid;
1706 }
1707
1708 return resume_ptid;
1709 }
1710
1711 /* Resume the inferior, but allow a QUIT. This is useful if the user
1712 wants to interrupt some lengthy single-stepping operation
1713 (for child processes, the SIGINT goes to the inferior, and so
1714 we get a SIGINT random_signal, but for remote debugging and perhaps
1715 other targets, that's not true).
1716
1717 STEP nonzero if we should step (zero to continue instead).
1718 SIG is the signal to give the inferior (zero for none). */
1719 void
1720 resume (int step, enum gdb_signal sig)
1721 {
1722 int should_resume = 1;
1723 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1724 struct regcache *regcache = get_current_regcache ();
1725 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1726 struct thread_info *tp = inferior_thread ();
1727 CORE_ADDR pc = regcache_read_pc (regcache);
1728 struct address_space *aspace = get_regcache_aspace (regcache);
1729
1730 QUIT;
1731
1732 if (current_inferior ()->waiting_for_vfork_done)
1733 {
1734 /* Don't try to single-step a vfork parent that is waiting for
1735 the child to get out of the shared memory region (by exec'ing
1736 or exiting). This is particularly important on software
1737 single-step archs, as the child process would trip on the
1738 software single step breakpoint inserted for the parent
1739 process. Since the parent will not actually execute any
1740 instruction until the child is out of the shared region (such
1741 are vfork's semantics), it is safe to simply continue it.
1742 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1743 the parent, and tell it to `keep_going', which automatically
1744 re-sets it stepping. */
1745 if (debug_infrun)
1746 fprintf_unfiltered (gdb_stdlog,
1747 "infrun: resume : clear step\n");
1748 step = 0;
1749 }
1750
1751 if (debug_infrun)
1752 fprintf_unfiltered (gdb_stdlog,
1753 "infrun: resume (step=%d, signal=%s), "
1754 "trap_expected=%d, current thread [%s] at %s\n",
1755 step, gdb_signal_to_symbol_string (sig),
1756 tp->control.trap_expected,
1757 target_pid_to_str (inferior_ptid),
1758 paddress (gdbarch, pc));
1759
1760 /* Normally, by the time we reach `resume', the breakpoints are either
1761 removed or inserted, as appropriate. The exception is if we're sitting
1762 at a permanent breakpoint; we need to step over it, but permanent
1763 breakpoints can't be removed. So we have to test for it here. */
1764 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1765 {
1766 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1767 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1768 else
1769 error (_("\
1770 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1771 how to step past a permanent breakpoint on this architecture. Try using\n\
1772 a command like `return' or `jump' to continue execution."));
1773 }
1774
1775 /* If we have a breakpoint to step over, make sure to do a single
1776 step only. Same if we have software watchpoints. */
1777 if (tp->control.trap_expected || bpstat_should_step ())
1778 tp->control.may_range_step = 0;
1779
1780 /* If enabled, step over breakpoints by executing a copy of the
1781 instruction at a different address.
1782
1783 We can't use displaced stepping when we have a signal to deliver;
1784 the comments for displaced_step_prepare explain why. The
1785 comments in the handle_inferior event for dealing with 'random
1786 signals' explain what we do instead.
1787
1788 We can't use displaced stepping when we are waiting for vfork_done
1789 event, displaced stepping breaks the vfork child similarly as single
1790 step software breakpoint. */
1791 if (use_displaced_stepping (gdbarch)
1792 && (tp->control.trap_expected
1793 || (step && gdbarch_software_single_step_p (gdbarch)))
1794 && sig == GDB_SIGNAL_0
1795 && !current_inferior ()->waiting_for_vfork_done)
1796 {
1797 struct displaced_step_inferior_state *displaced;
1798
1799 if (!displaced_step_prepare (inferior_ptid))
1800 {
1801 /* Got placed in displaced stepping queue. Will be resumed
1802 later when all the currently queued displaced stepping
1803 requests finish. The thread is not executing at this point,
1804 and the call to set_executing will be made later. But we
1805 need to call set_running here, since from frontend point of view,
1806 the thread is running. */
1807 set_running (inferior_ptid, 1);
1808 discard_cleanups (old_cleanups);
1809 return;
1810 }
1811
1812 /* Update pc to reflect the new address from which we will execute
1813 instructions due to displaced stepping. */
1814 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1815
1816 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1817 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1818 displaced->step_closure);
1819 }
1820
1821 /* Do we need to do it the hard way, w/temp breakpoints? */
1822 else if (step)
1823 step = maybe_software_singlestep (gdbarch, pc);
1824
1825 /* Currently, our software single-step implementation leads to different
1826 results than hardware single-stepping in one situation: when stepping
1827 into delivering a signal which has an associated signal handler,
1828 hardware single-step will stop at the first instruction of the handler,
1829 while software single-step will simply skip execution of the handler.
1830
1831 For now, this difference in behavior is accepted since there is no
1832 easy way to actually implement single-stepping into a signal handler
1833 without kernel support.
1834
1835 However, there is one scenario where this difference leads to follow-on
1836 problems: if we're stepping off a breakpoint by removing all breakpoints
1837 and then single-stepping. In this case, the software single-step
1838 behavior means that even if there is a *breakpoint* in the signal
1839 handler, GDB still would not stop.
1840
1841 Fortunately, we can at least fix this particular issue. We detect
1842 here the case where we are about to deliver a signal while software
1843 single-stepping with breakpoints removed. In this situation, we
1844 revert the decisions to remove all breakpoints and insert single-
1845 step breakpoints, and instead we install a step-resume breakpoint
1846 at the current address, deliver the signal without stepping, and
1847 once we arrive back at the step-resume breakpoint, actually step
1848 over the breakpoint we originally wanted to step over. */
1849 if (singlestep_breakpoints_inserted_p
1850 && tp->control.trap_expected && sig != GDB_SIGNAL_0)
1851 {
1852 /* If we have nested signals or a pending signal is delivered
1853 immediately after a handler returns, might might already have
1854 a step-resume breakpoint set on the earlier handler. We cannot
1855 set another step-resume breakpoint; just continue on until the
1856 original breakpoint is hit. */
1857 if (tp->control.step_resume_breakpoint == NULL)
1858 {
1859 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
1860 tp->step_after_step_resume_breakpoint = 1;
1861 }
1862
1863 remove_single_step_breakpoints ();
1864 singlestep_breakpoints_inserted_p = 0;
1865
1866 insert_breakpoints ();
1867 tp->control.trap_expected = 0;
1868 }
1869
1870 if (should_resume)
1871 {
1872 ptid_t resume_ptid;
1873
1874 /* If STEP is set, it's a request to use hardware stepping
1875 facilities. But in that case, we should never
1876 use singlestep breakpoint. */
1877 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1878
1879 /* Decide the set of threads to ask the target to resume. Start
1880 by assuming everything will be resumed, than narrow the set
1881 by applying increasingly restricting conditions. */
1882 resume_ptid = user_visible_resume_ptid (step);
1883
1884 /* Maybe resume a single thread after all. */
1885 if (singlestep_breakpoints_inserted_p
1886 && stepping_past_singlestep_breakpoint)
1887 {
1888 /* The situation here is as follows. In thread T1 we wanted to
1889 single-step. Lacking hardware single-stepping we've
1890 set breakpoint at the PC of the next instruction -- call it
1891 P. After resuming, we've hit that breakpoint in thread T2.
1892 Now we've removed original breakpoint, inserted breakpoint
1893 at P+1, and try to step to advance T2 past breakpoint.
1894 We need to step only T2, as if T1 is allowed to freely run,
1895 it can run past P, and if other threads are allowed to run,
1896 they can hit breakpoint at P+1, and nested hits of single-step
1897 breakpoints is not something we'd want -- that's complicated
1898 to support, and has no value. */
1899 resume_ptid = inferior_ptid;
1900 }
1901 else if ((step || singlestep_breakpoints_inserted_p)
1902 && tp->control.trap_expected)
1903 {
1904 /* We're allowing a thread to run past a breakpoint it has
1905 hit, by single-stepping the thread with the breakpoint
1906 removed. In which case, we need to single-step only this
1907 thread, and keep others stopped, as they can miss this
1908 breakpoint if allowed to run.
1909
1910 The current code actually removes all breakpoints when
1911 doing this, not just the one being stepped over, so if we
1912 let other threads run, we can actually miss any
1913 breakpoint, not just the one at PC. */
1914 resume_ptid = inferior_ptid;
1915 }
1916
1917 if (gdbarch_cannot_step_breakpoint (gdbarch))
1918 {
1919 /* Most targets can step a breakpoint instruction, thus
1920 executing it normally. But if this one cannot, just
1921 continue and we will hit it anyway. */
1922 if (step && breakpoint_inserted_here_p (aspace, pc))
1923 step = 0;
1924 }
1925
1926 if (debug_displaced
1927 && use_displaced_stepping (gdbarch)
1928 && tp->control.trap_expected)
1929 {
1930 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1931 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1932 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1933 gdb_byte buf[4];
1934
1935 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1936 paddress (resume_gdbarch, actual_pc));
1937 read_memory (actual_pc, buf, sizeof (buf));
1938 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1939 }
1940
1941 if (tp->control.may_range_step)
1942 {
1943 /* If we're resuming a thread with the PC out of the step
1944 range, then we're doing some nested/finer run control
1945 operation, like stepping the thread out of the dynamic
1946 linker or the displaced stepping scratch pad. We
1947 shouldn't have allowed a range step then. */
1948 gdb_assert (pc_in_thread_step_range (pc, tp));
1949 }
1950
1951 /* Install inferior's terminal modes. */
1952 target_terminal_inferior ();
1953
1954 /* Avoid confusing the next resume, if the next stop/resume
1955 happens to apply to another thread. */
1956 tp->suspend.stop_signal = GDB_SIGNAL_0;
1957
1958 /* Advise target which signals may be handled silently. If we have
1959 removed breakpoints because we are stepping over one (which can
1960 happen only if we are not using displaced stepping), we need to
1961 receive all signals to avoid accidentally skipping a breakpoint
1962 during execution of a signal handler. */
1963 if ((step || singlestep_breakpoints_inserted_p)
1964 && tp->control.trap_expected
1965 && !use_displaced_stepping (gdbarch))
1966 target_pass_signals (0, NULL);
1967 else
1968 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
1969
1970 target_resume (resume_ptid, step, sig);
1971 }
1972
1973 discard_cleanups (old_cleanups);
1974 }
1975 \f
1976 /* Proceeding. */
1977
1978 /* Clear out all variables saying what to do when inferior is continued.
1979 First do this, then set the ones you want, then call `proceed'. */
1980
1981 static void
1982 clear_proceed_status_thread (struct thread_info *tp)
1983 {
1984 if (debug_infrun)
1985 fprintf_unfiltered (gdb_stdlog,
1986 "infrun: clear_proceed_status_thread (%s)\n",
1987 target_pid_to_str (tp->ptid));
1988
1989 tp->control.trap_expected = 0;
1990 tp->control.step_range_start = 0;
1991 tp->control.step_range_end = 0;
1992 tp->control.may_range_step = 0;
1993 tp->control.step_frame_id = null_frame_id;
1994 tp->control.step_stack_frame_id = null_frame_id;
1995 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
1996 tp->stop_requested = 0;
1997
1998 tp->control.stop_step = 0;
1999
2000 tp->control.proceed_to_finish = 0;
2001
2002 /* Discard any remaining commands or status from previous stop. */
2003 bpstat_clear (&tp->control.stop_bpstat);
2004 }
2005
2006 static int
2007 clear_proceed_status_callback (struct thread_info *tp, void *data)
2008 {
2009 if (is_exited (tp->ptid))
2010 return 0;
2011
2012 clear_proceed_status_thread (tp);
2013 return 0;
2014 }
2015
2016 void
2017 clear_proceed_status (void)
2018 {
2019 if (!non_stop)
2020 {
2021 /* In all-stop mode, delete the per-thread status of all
2022 threads, even if inferior_ptid is null_ptid, there may be
2023 threads on the list. E.g., we may be launching a new
2024 process, while selecting the executable. */
2025 iterate_over_threads (clear_proceed_status_callback, NULL);
2026 }
2027
2028 if (!ptid_equal (inferior_ptid, null_ptid))
2029 {
2030 struct inferior *inferior;
2031
2032 if (non_stop)
2033 {
2034 /* If in non-stop mode, only delete the per-thread status of
2035 the current thread. */
2036 clear_proceed_status_thread (inferior_thread ());
2037 }
2038
2039 inferior = current_inferior ();
2040 inferior->control.stop_soon = NO_STOP_QUIETLY;
2041 }
2042
2043 stop_after_trap = 0;
2044
2045 observer_notify_about_to_proceed ();
2046
2047 if (stop_registers)
2048 {
2049 regcache_xfree (stop_registers);
2050 stop_registers = NULL;
2051 }
2052 }
2053
2054 /* Check the current thread against the thread that reported the most recent
2055 event. If a step-over is required return TRUE and set the current thread
2056 to the old thread. Otherwise return FALSE.
2057
2058 This should be suitable for any targets that support threads. */
2059
2060 static int
2061 prepare_to_proceed (int step)
2062 {
2063 ptid_t wait_ptid;
2064 struct target_waitstatus wait_status;
2065 int schedlock_enabled;
2066
2067 /* With non-stop mode on, threads are always handled individually. */
2068 gdb_assert (! non_stop);
2069
2070 /* Get the last target status returned by target_wait(). */
2071 get_last_target_status (&wait_ptid, &wait_status);
2072
2073 /* Make sure we were stopped at a breakpoint. */
2074 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2075 || (wait_status.value.sig != GDB_SIGNAL_TRAP
2076 && wait_status.value.sig != GDB_SIGNAL_ILL
2077 && wait_status.value.sig != GDB_SIGNAL_SEGV
2078 && wait_status.value.sig != GDB_SIGNAL_EMT))
2079 {
2080 return 0;
2081 }
2082
2083 schedlock_enabled = (scheduler_mode == schedlock_on
2084 || (scheduler_mode == schedlock_step
2085 && step));
2086
2087 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2088 if (schedlock_enabled)
2089 return 0;
2090
2091 /* Don't switch over if we're about to resume some other process
2092 other than WAIT_PTID's, and schedule-multiple is off. */
2093 if (!sched_multi
2094 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2095 return 0;
2096
2097 /* Switched over from WAIT_PID. */
2098 if (!ptid_equal (wait_ptid, minus_one_ptid)
2099 && !ptid_equal (inferior_ptid, wait_ptid))
2100 {
2101 struct regcache *regcache = get_thread_regcache (wait_ptid);
2102
2103 if (breakpoint_here_p (get_regcache_aspace (regcache),
2104 regcache_read_pc (regcache)))
2105 {
2106 /* If stepping, remember current thread to switch back to. */
2107 if (step)
2108 deferred_step_ptid = inferior_ptid;
2109
2110 /* Switch back to WAIT_PID thread. */
2111 switch_to_thread (wait_ptid);
2112
2113 if (debug_infrun)
2114 fprintf_unfiltered (gdb_stdlog,
2115 "infrun: prepare_to_proceed (step=%d), "
2116 "switched to [%s]\n",
2117 step, target_pid_to_str (inferior_ptid));
2118
2119 /* We return 1 to indicate that there is a breakpoint here,
2120 so we need to step over it before continuing to avoid
2121 hitting it straight away. */
2122 return 1;
2123 }
2124 }
2125
2126 return 0;
2127 }
2128
2129 /* Basic routine for continuing the program in various fashions.
2130
2131 ADDR is the address to resume at, or -1 for resume where stopped.
2132 SIGGNAL is the signal to give it, or 0 for none,
2133 or -1 for act according to how it stopped.
2134 STEP is nonzero if should trap after one instruction.
2135 -1 means return after that and print nothing.
2136 You should probably set various step_... variables
2137 before calling here, if you are stepping.
2138
2139 You should call clear_proceed_status before calling proceed. */
2140
2141 void
2142 proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
2143 {
2144 struct regcache *regcache;
2145 struct gdbarch *gdbarch;
2146 struct thread_info *tp;
2147 CORE_ADDR pc;
2148 struct address_space *aspace;
2149 /* GDB may force the inferior to step due to various reasons. */
2150 int force_step = 0;
2151
2152 /* If we're stopped at a fork/vfork, follow the branch set by the
2153 "set follow-fork-mode" command; otherwise, we'll just proceed
2154 resuming the current thread. */
2155 if (!follow_fork ())
2156 {
2157 /* The target for some reason decided not to resume. */
2158 normal_stop ();
2159 if (target_can_async_p ())
2160 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2161 return;
2162 }
2163
2164 /* We'll update this if & when we switch to a new thread. */
2165 previous_inferior_ptid = inferior_ptid;
2166
2167 regcache = get_current_regcache ();
2168 gdbarch = get_regcache_arch (regcache);
2169 aspace = get_regcache_aspace (regcache);
2170 pc = regcache_read_pc (regcache);
2171
2172 if (step > 0)
2173 step_start_function = find_pc_function (pc);
2174 if (step < 0)
2175 stop_after_trap = 1;
2176
2177 if (addr == (CORE_ADDR) -1)
2178 {
2179 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
2180 && execution_direction != EXEC_REVERSE)
2181 /* There is a breakpoint at the address we will resume at,
2182 step one instruction before inserting breakpoints so that
2183 we do not stop right away (and report a second hit at this
2184 breakpoint).
2185
2186 Note, we don't do this in reverse, because we won't
2187 actually be executing the breakpoint insn anyway.
2188 We'll be (un-)executing the previous instruction. */
2189
2190 force_step = 1;
2191 else if (gdbarch_single_step_through_delay_p (gdbarch)
2192 && gdbarch_single_step_through_delay (gdbarch,
2193 get_current_frame ()))
2194 /* We stepped onto an instruction that needs to be stepped
2195 again before re-inserting the breakpoint, do so. */
2196 force_step = 1;
2197 }
2198 else
2199 {
2200 regcache_write_pc (regcache, addr);
2201 }
2202
2203 if (debug_infrun)
2204 fprintf_unfiltered (gdb_stdlog,
2205 "infrun: proceed (addr=%s, signal=%s, step=%d)\n",
2206 paddress (gdbarch, addr),
2207 gdb_signal_to_symbol_string (siggnal), step);
2208
2209 if (non_stop)
2210 /* In non-stop, each thread is handled individually. The context
2211 must already be set to the right thread here. */
2212 ;
2213 else
2214 {
2215 /* In a multi-threaded task we may select another thread and
2216 then continue or step.
2217
2218 But if the old thread was stopped at a breakpoint, it will
2219 immediately cause another breakpoint stop without any
2220 execution (i.e. it will report a breakpoint hit incorrectly).
2221 So we must step over it first.
2222
2223 prepare_to_proceed checks the current thread against the
2224 thread that reported the most recent event. If a step-over
2225 is required it returns TRUE and sets the current thread to
2226 the old thread. */
2227 if (prepare_to_proceed (step))
2228 force_step = 1;
2229 }
2230
2231 /* prepare_to_proceed may change the current thread. */
2232 tp = inferior_thread ();
2233
2234 if (force_step)
2235 {
2236 tp->control.trap_expected = 1;
2237 /* If displaced stepping is enabled, we can step over the
2238 breakpoint without hitting it, so leave all breakpoints
2239 inserted. Otherwise we need to disable all breakpoints, step
2240 one instruction, and then re-add them when that step is
2241 finished. */
2242 if (!use_displaced_stepping (gdbarch))
2243 remove_breakpoints ();
2244 }
2245
2246 /* We can insert breakpoints if we're not trying to step over one,
2247 or if we are stepping over one but we're using displaced stepping
2248 to do so. */
2249 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2250 insert_breakpoints ();
2251
2252 if (!non_stop)
2253 {
2254 /* Pass the last stop signal to the thread we're resuming,
2255 irrespective of whether the current thread is the thread that
2256 got the last event or not. This was historically GDB's
2257 behaviour before keeping a stop_signal per thread. */
2258
2259 struct thread_info *last_thread;
2260 ptid_t last_ptid;
2261 struct target_waitstatus last_status;
2262
2263 get_last_target_status (&last_ptid, &last_status);
2264 if (!ptid_equal (inferior_ptid, last_ptid)
2265 && !ptid_equal (last_ptid, null_ptid)
2266 && !ptid_equal (last_ptid, minus_one_ptid))
2267 {
2268 last_thread = find_thread_ptid (last_ptid);
2269 if (last_thread)
2270 {
2271 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2272 last_thread->suspend.stop_signal = GDB_SIGNAL_0;
2273 }
2274 }
2275 }
2276
2277 if (siggnal != GDB_SIGNAL_DEFAULT)
2278 tp->suspend.stop_signal = siggnal;
2279 /* If this signal should not be seen by program,
2280 give it zero. Used for debugging signals. */
2281 else if (!signal_program[tp->suspend.stop_signal])
2282 tp->suspend.stop_signal = GDB_SIGNAL_0;
2283
2284 annotate_starting ();
2285
2286 /* Make sure that output from GDB appears before output from the
2287 inferior. */
2288 gdb_flush (gdb_stdout);
2289
2290 /* Refresh prev_pc value just prior to resuming. This used to be
2291 done in stop_stepping, however, setting prev_pc there did not handle
2292 scenarios such as inferior function calls or returning from
2293 a function via the return command. In those cases, the prev_pc
2294 value was not set properly for subsequent commands. The prev_pc value
2295 is used to initialize the starting line number in the ecs. With an
2296 invalid value, the gdb next command ends up stopping at the position
2297 represented by the next line table entry past our start position.
2298 On platforms that generate one line table entry per line, this
2299 is not a problem. However, on the ia64, the compiler generates
2300 extraneous line table entries that do not increase the line number.
2301 When we issue the gdb next command on the ia64 after an inferior call
2302 or a return command, we often end up a few instructions forward, still
2303 within the original line we started.
2304
2305 An attempt was made to refresh the prev_pc at the same time the
2306 execution_control_state is initialized (for instance, just before
2307 waiting for an inferior event). But this approach did not work
2308 because of platforms that use ptrace, where the pc register cannot
2309 be read unless the inferior is stopped. At that point, we are not
2310 guaranteed the inferior is stopped and so the regcache_read_pc() call
2311 can fail. Setting the prev_pc value here ensures the value is updated
2312 correctly when the inferior is stopped. */
2313 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2314
2315 /* Fill in with reasonable starting values. */
2316 init_thread_stepping_state (tp);
2317
2318 /* Reset to normal state. */
2319 init_infwait_state ();
2320
2321 /* Resume inferior. */
2322 resume (force_step || step || bpstat_should_step (),
2323 tp->suspend.stop_signal);
2324
2325 /* Wait for it to stop (if not standalone)
2326 and in any case decode why it stopped, and act accordingly. */
2327 /* Do this only if we are not using the event loop, or if the target
2328 does not support asynchronous execution. */
2329 if (!target_can_async_p ())
2330 {
2331 wait_for_inferior ();
2332 normal_stop ();
2333 }
2334 }
2335 \f
2336
2337 /* Start remote-debugging of a machine over a serial link. */
2338
2339 void
2340 start_remote (int from_tty)
2341 {
2342 struct inferior *inferior;
2343
2344 inferior = current_inferior ();
2345 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2346
2347 /* Always go on waiting for the target, regardless of the mode. */
2348 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2349 indicate to wait_for_inferior that a target should timeout if
2350 nothing is returned (instead of just blocking). Because of this,
2351 targets expecting an immediate response need to, internally, set
2352 things up so that the target_wait() is forced to eventually
2353 timeout. */
2354 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2355 differentiate to its caller what the state of the target is after
2356 the initial open has been performed. Here we're assuming that
2357 the target has stopped. It should be possible to eventually have
2358 target_open() return to the caller an indication that the target
2359 is currently running and GDB state should be set to the same as
2360 for an async run. */
2361 wait_for_inferior ();
2362
2363 /* Now that the inferior has stopped, do any bookkeeping like
2364 loading shared libraries. We want to do this before normal_stop,
2365 so that the displayed frame is up to date. */
2366 post_create_inferior (&current_target, from_tty);
2367
2368 normal_stop ();
2369 }
2370
2371 /* Initialize static vars when a new inferior begins. */
2372
2373 void
2374 init_wait_for_inferior (void)
2375 {
2376 /* These are meaningless until the first time through wait_for_inferior. */
2377
2378 breakpoint_init_inferior (inf_starting);
2379
2380 clear_proceed_status ();
2381
2382 stepping_past_singlestep_breakpoint = 0;
2383 deferred_step_ptid = null_ptid;
2384
2385 target_last_wait_ptid = minus_one_ptid;
2386
2387 previous_inferior_ptid = inferior_ptid;
2388 init_infwait_state ();
2389
2390 /* Discard any skipped inlined frames. */
2391 clear_inline_frame_state (minus_one_ptid);
2392 }
2393
2394 \f
2395 /* This enum encodes possible reasons for doing a target_wait, so that
2396 wfi can call target_wait in one place. (Ultimately the call will be
2397 moved out of the infinite loop entirely.) */
2398
2399 enum infwait_states
2400 {
2401 infwait_normal_state,
2402 infwait_thread_hop_state,
2403 infwait_step_watch_state,
2404 infwait_nonstep_watch_state
2405 };
2406
2407 /* The PTID we'll do a target_wait on.*/
2408 ptid_t waiton_ptid;
2409
2410 /* Current inferior wait state. */
2411 static enum infwait_states infwait_state;
2412
2413 /* Data to be passed around while handling an event. This data is
2414 discarded between events. */
2415 struct execution_control_state
2416 {
2417 ptid_t ptid;
2418 /* The thread that got the event, if this was a thread event; NULL
2419 otherwise. */
2420 struct thread_info *event_thread;
2421
2422 struct target_waitstatus ws;
2423 int stop_func_filled_in;
2424 CORE_ADDR stop_func_start;
2425 CORE_ADDR stop_func_end;
2426 const char *stop_func_name;
2427 int wait_some_more;
2428
2429 /* We were in infwait_step_watch_state or
2430 infwait_nonstep_watch_state state, and the thread reported an
2431 event. */
2432 int stepped_after_stopped_by_watchpoint;
2433 };
2434
2435 static void handle_inferior_event (struct execution_control_state *ecs);
2436
2437 static void handle_step_into_function (struct gdbarch *gdbarch,
2438 struct execution_control_state *ecs);
2439 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2440 struct execution_control_state *ecs);
2441 static void handle_signal_stop (struct execution_control_state *ecs);
2442 static void check_exception_resume (struct execution_control_state *,
2443 struct frame_info *);
2444
2445 static void stop_stepping (struct execution_control_state *ecs);
2446 static void prepare_to_wait (struct execution_control_state *ecs);
2447 static void keep_going (struct execution_control_state *ecs);
2448 static void process_event_stop_test (struct execution_control_state *ecs);
2449 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
2450
2451 /* Callback for iterate over threads. If the thread is stopped, but
2452 the user/frontend doesn't know about that yet, go through
2453 normal_stop, as if the thread had just stopped now. ARG points at
2454 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2455 ptid_is_pid(PTID) is true, applies to all threads of the process
2456 pointed at by PTID. Otherwise, apply only to the thread pointed by
2457 PTID. */
2458
2459 static int
2460 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2461 {
2462 ptid_t ptid = * (ptid_t *) arg;
2463
2464 if ((ptid_equal (info->ptid, ptid)
2465 || ptid_equal (minus_one_ptid, ptid)
2466 || (ptid_is_pid (ptid)
2467 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2468 && is_running (info->ptid)
2469 && !is_executing (info->ptid))
2470 {
2471 struct cleanup *old_chain;
2472 struct execution_control_state ecss;
2473 struct execution_control_state *ecs = &ecss;
2474
2475 memset (ecs, 0, sizeof (*ecs));
2476
2477 old_chain = make_cleanup_restore_current_thread ();
2478
2479 overlay_cache_invalid = 1;
2480 /* Flush target cache before starting to handle each event.
2481 Target was running and cache could be stale. This is just a
2482 heuristic. Running threads may modify target memory, but we
2483 don't get any event. */
2484 target_dcache_invalidate ();
2485
2486 /* Go through handle_inferior_event/normal_stop, so we always
2487 have consistent output as if the stop event had been
2488 reported. */
2489 ecs->ptid = info->ptid;
2490 ecs->event_thread = find_thread_ptid (info->ptid);
2491 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2492 ecs->ws.value.sig = GDB_SIGNAL_0;
2493
2494 handle_inferior_event (ecs);
2495
2496 if (!ecs->wait_some_more)
2497 {
2498 struct thread_info *tp;
2499
2500 normal_stop ();
2501
2502 /* Finish off the continuations. */
2503 tp = inferior_thread ();
2504 do_all_intermediate_continuations_thread (tp, 1);
2505 do_all_continuations_thread (tp, 1);
2506 }
2507
2508 do_cleanups (old_chain);
2509 }
2510
2511 return 0;
2512 }
2513
2514 /* This function is attached as a "thread_stop_requested" observer.
2515 Cleanup local state that assumed the PTID was to be resumed, and
2516 report the stop to the frontend. */
2517
2518 static void
2519 infrun_thread_stop_requested (ptid_t ptid)
2520 {
2521 struct displaced_step_inferior_state *displaced;
2522
2523 /* PTID was requested to stop. Remove it from the displaced
2524 stepping queue, so we don't try to resume it automatically. */
2525
2526 for (displaced = displaced_step_inferior_states;
2527 displaced;
2528 displaced = displaced->next)
2529 {
2530 struct displaced_step_request *it, **prev_next_p;
2531
2532 it = displaced->step_request_queue;
2533 prev_next_p = &displaced->step_request_queue;
2534 while (it)
2535 {
2536 if (ptid_match (it->ptid, ptid))
2537 {
2538 *prev_next_p = it->next;
2539 it->next = NULL;
2540 xfree (it);
2541 }
2542 else
2543 {
2544 prev_next_p = &it->next;
2545 }
2546
2547 it = *prev_next_p;
2548 }
2549 }
2550
2551 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2552 }
2553
2554 static void
2555 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2556 {
2557 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2558 nullify_last_target_wait_ptid ();
2559 }
2560
2561 /* Callback for iterate_over_threads. */
2562
2563 static int
2564 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2565 {
2566 if (is_exited (info->ptid))
2567 return 0;
2568
2569 delete_step_resume_breakpoint (info);
2570 delete_exception_resume_breakpoint (info);
2571 return 0;
2572 }
2573
2574 /* In all-stop, delete the step resume breakpoint of any thread that
2575 had one. In non-stop, delete the step resume breakpoint of the
2576 thread that just stopped. */
2577
2578 static void
2579 delete_step_thread_step_resume_breakpoint (void)
2580 {
2581 if (!target_has_execution
2582 || ptid_equal (inferior_ptid, null_ptid))
2583 /* If the inferior has exited, we have already deleted the step
2584 resume breakpoints out of GDB's lists. */
2585 return;
2586
2587 if (non_stop)
2588 {
2589 /* If in non-stop mode, only delete the step-resume or
2590 longjmp-resume breakpoint of the thread that just stopped
2591 stepping. */
2592 struct thread_info *tp = inferior_thread ();
2593
2594 delete_step_resume_breakpoint (tp);
2595 delete_exception_resume_breakpoint (tp);
2596 }
2597 else
2598 /* In all-stop mode, delete all step-resume and longjmp-resume
2599 breakpoints of any thread that had them. */
2600 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2601 }
2602
2603 /* A cleanup wrapper. */
2604
2605 static void
2606 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2607 {
2608 delete_step_thread_step_resume_breakpoint ();
2609 }
2610
2611 /* Pretty print the results of target_wait, for debugging purposes. */
2612
2613 static void
2614 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2615 const struct target_waitstatus *ws)
2616 {
2617 char *status_string = target_waitstatus_to_string (ws);
2618 struct ui_file *tmp_stream = mem_fileopen ();
2619 char *text;
2620
2621 /* The text is split over several lines because it was getting too long.
2622 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2623 output as a unit; we want only one timestamp printed if debug_timestamp
2624 is set. */
2625
2626 fprintf_unfiltered (tmp_stream,
2627 "infrun: target_wait (%d", ptid_get_pid (waiton_ptid));
2628 if (ptid_get_pid (waiton_ptid) != -1)
2629 fprintf_unfiltered (tmp_stream,
2630 " [%s]", target_pid_to_str (waiton_ptid));
2631 fprintf_unfiltered (tmp_stream, ", status) =\n");
2632 fprintf_unfiltered (tmp_stream,
2633 "infrun: %d [%s],\n",
2634 ptid_get_pid (result_ptid),
2635 target_pid_to_str (result_ptid));
2636 fprintf_unfiltered (tmp_stream,
2637 "infrun: %s\n",
2638 status_string);
2639
2640 text = ui_file_xstrdup (tmp_stream, NULL);
2641
2642 /* This uses %s in part to handle %'s in the text, but also to avoid
2643 a gcc error: the format attribute requires a string literal. */
2644 fprintf_unfiltered (gdb_stdlog, "%s", text);
2645
2646 xfree (status_string);
2647 xfree (text);
2648 ui_file_delete (tmp_stream);
2649 }
2650
2651 /* Prepare and stabilize the inferior for detaching it. E.g.,
2652 detaching while a thread is displaced stepping is a recipe for
2653 crashing it, as nothing would readjust the PC out of the scratch
2654 pad. */
2655
2656 void
2657 prepare_for_detach (void)
2658 {
2659 struct inferior *inf = current_inferior ();
2660 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2661 struct cleanup *old_chain_1;
2662 struct displaced_step_inferior_state *displaced;
2663
2664 displaced = get_displaced_stepping_state (inf->pid);
2665
2666 /* Is any thread of this process displaced stepping? If not,
2667 there's nothing else to do. */
2668 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2669 return;
2670
2671 if (debug_infrun)
2672 fprintf_unfiltered (gdb_stdlog,
2673 "displaced-stepping in-process while detaching");
2674
2675 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2676 inf->detaching = 1;
2677
2678 while (!ptid_equal (displaced->step_ptid, null_ptid))
2679 {
2680 struct cleanup *old_chain_2;
2681 struct execution_control_state ecss;
2682 struct execution_control_state *ecs;
2683
2684 ecs = &ecss;
2685 memset (ecs, 0, sizeof (*ecs));
2686
2687 overlay_cache_invalid = 1;
2688 /* Flush target cache before starting to handle each event.
2689 Target was running and cache could be stale. This is just a
2690 heuristic. Running threads may modify target memory, but we
2691 don't get any event. */
2692 target_dcache_invalidate ();
2693
2694 if (deprecated_target_wait_hook)
2695 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2696 else
2697 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2698
2699 if (debug_infrun)
2700 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2701
2702 /* If an error happens while handling the event, propagate GDB's
2703 knowledge of the executing state to the frontend/user running
2704 state. */
2705 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2706 &minus_one_ptid);
2707
2708 /* Now figure out what to do with the result of the result. */
2709 handle_inferior_event (ecs);
2710
2711 /* No error, don't finish the state yet. */
2712 discard_cleanups (old_chain_2);
2713
2714 /* Breakpoints and watchpoints are not installed on the target
2715 at this point, and signals are passed directly to the
2716 inferior, so this must mean the process is gone. */
2717 if (!ecs->wait_some_more)
2718 {
2719 discard_cleanups (old_chain_1);
2720 error (_("Program exited while detaching"));
2721 }
2722 }
2723
2724 discard_cleanups (old_chain_1);
2725 }
2726
2727 /* Wait for control to return from inferior to debugger.
2728
2729 If inferior gets a signal, we may decide to start it up again
2730 instead of returning. That is why there is a loop in this function.
2731 When this function actually returns it means the inferior
2732 should be left stopped and GDB should read more commands. */
2733
2734 void
2735 wait_for_inferior (void)
2736 {
2737 struct cleanup *old_cleanups;
2738
2739 if (debug_infrun)
2740 fprintf_unfiltered
2741 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
2742
2743 old_cleanups =
2744 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2745
2746 while (1)
2747 {
2748 struct execution_control_state ecss;
2749 struct execution_control_state *ecs = &ecss;
2750 struct cleanup *old_chain;
2751
2752 memset (ecs, 0, sizeof (*ecs));
2753
2754 overlay_cache_invalid = 1;
2755
2756 /* Flush target cache before starting to handle each event.
2757 Target was running and cache could be stale. This is just a
2758 heuristic. Running threads may modify target memory, but we
2759 don't get any event. */
2760 target_dcache_invalidate ();
2761
2762 if (deprecated_target_wait_hook)
2763 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2764 else
2765 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2766
2767 if (debug_infrun)
2768 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2769
2770 /* If an error happens while handling the event, propagate GDB's
2771 knowledge of the executing state to the frontend/user running
2772 state. */
2773 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2774
2775 /* Now figure out what to do with the result of the result. */
2776 handle_inferior_event (ecs);
2777
2778 /* No error, don't finish the state yet. */
2779 discard_cleanups (old_chain);
2780
2781 if (!ecs->wait_some_more)
2782 break;
2783 }
2784
2785 do_cleanups (old_cleanups);
2786 }
2787
2788 /* Asynchronous version of wait_for_inferior. It is called by the
2789 event loop whenever a change of state is detected on the file
2790 descriptor corresponding to the target. It can be called more than
2791 once to complete a single execution command. In such cases we need
2792 to keep the state in a global variable ECSS. If it is the last time
2793 that this function is called for a single execution command, then
2794 report to the user that the inferior has stopped, and do the
2795 necessary cleanups. */
2796
2797 void
2798 fetch_inferior_event (void *client_data)
2799 {
2800 struct execution_control_state ecss;
2801 struct execution_control_state *ecs = &ecss;
2802 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2803 struct cleanup *ts_old_chain;
2804 int was_sync = sync_execution;
2805 int cmd_done = 0;
2806
2807 memset (ecs, 0, sizeof (*ecs));
2808
2809 /* We're handling a live event, so make sure we're doing live
2810 debugging. If we're looking at traceframes while the target is
2811 running, we're going to need to get back to that mode after
2812 handling the event. */
2813 if (non_stop)
2814 {
2815 make_cleanup_restore_current_traceframe ();
2816 set_current_traceframe (-1);
2817 }
2818
2819 if (non_stop)
2820 /* In non-stop mode, the user/frontend should not notice a thread
2821 switch due to internal events. Make sure we reverse to the
2822 user selected thread and frame after handling the event and
2823 running any breakpoint commands. */
2824 make_cleanup_restore_current_thread ();
2825
2826 overlay_cache_invalid = 1;
2827 /* Flush target cache before starting to handle each event. Target
2828 was running and cache could be stale. This is just a heuristic.
2829 Running threads may modify target memory, but we don't get any
2830 event. */
2831 target_dcache_invalidate ();
2832
2833 make_cleanup_restore_integer (&execution_direction);
2834 execution_direction = target_execution_direction ();
2835
2836 if (deprecated_target_wait_hook)
2837 ecs->ptid =
2838 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2839 else
2840 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2841
2842 if (debug_infrun)
2843 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2844
2845 /* If an error happens while handling the event, propagate GDB's
2846 knowledge of the executing state to the frontend/user running
2847 state. */
2848 if (!non_stop)
2849 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2850 else
2851 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2852
2853 /* Get executed before make_cleanup_restore_current_thread above to apply
2854 still for the thread which has thrown the exception. */
2855 make_bpstat_clear_actions_cleanup ();
2856
2857 /* Now figure out what to do with the result of the result. */
2858 handle_inferior_event (ecs);
2859
2860 if (!ecs->wait_some_more)
2861 {
2862 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2863
2864 delete_step_thread_step_resume_breakpoint ();
2865
2866 /* We may not find an inferior if this was a process exit. */
2867 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
2868 normal_stop ();
2869
2870 if (target_has_execution
2871 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
2872 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2873 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2874 && ecs->event_thread->step_multi
2875 && ecs->event_thread->control.stop_step)
2876 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2877 else
2878 {
2879 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2880 cmd_done = 1;
2881 }
2882 }
2883
2884 /* No error, don't finish the thread states yet. */
2885 discard_cleanups (ts_old_chain);
2886
2887 /* Revert thread and frame. */
2888 do_cleanups (old_chain);
2889
2890 /* If the inferior was in sync execution mode, and now isn't,
2891 restore the prompt (a synchronous execution command has finished,
2892 and we're ready for input). */
2893 if (interpreter_async && was_sync && !sync_execution)
2894 display_gdb_prompt (0);
2895
2896 if (cmd_done
2897 && !was_sync
2898 && exec_done_display_p
2899 && (ptid_equal (inferior_ptid, null_ptid)
2900 || !is_running (inferior_ptid)))
2901 printf_unfiltered (_("completed.\n"));
2902 }
2903
2904 /* Record the frame and location we're currently stepping through. */
2905 void
2906 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2907 {
2908 struct thread_info *tp = inferior_thread ();
2909
2910 tp->control.step_frame_id = get_frame_id (frame);
2911 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
2912
2913 tp->current_symtab = sal.symtab;
2914 tp->current_line = sal.line;
2915 }
2916
2917 /* Clear context switchable stepping state. */
2918
2919 void
2920 init_thread_stepping_state (struct thread_info *tss)
2921 {
2922 tss->stepping_over_breakpoint = 0;
2923 tss->step_after_step_resume_breakpoint = 0;
2924 }
2925
2926 /* Return the cached copy of the last pid/waitstatus returned by
2927 target_wait()/deprecated_target_wait_hook(). The data is actually
2928 cached by handle_inferior_event(), which gets called immediately
2929 after target_wait()/deprecated_target_wait_hook(). */
2930
2931 void
2932 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2933 {
2934 *ptidp = target_last_wait_ptid;
2935 *status = target_last_waitstatus;
2936 }
2937
2938 void
2939 nullify_last_target_wait_ptid (void)
2940 {
2941 target_last_wait_ptid = minus_one_ptid;
2942 }
2943
2944 /* Switch thread contexts. */
2945
2946 static void
2947 context_switch (ptid_t ptid)
2948 {
2949 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
2950 {
2951 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2952 target_pid_to_str (inferior_ptid));
2953 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2954 target_pid_to_str (ptid));
2955 }
2956
2957 switch_to_thread (ptid);
2958 }
2959
2960 static void
2961 adjust_pc_after_break (struct execution_control_state *ecs)
2962 {
2963 struct regcache *regcache;
2964 struct gdbarch *gdbarch;
2965 struct address_space *aspace;
2966 CORE_ADDR breakpoint_pc;
2967
2968 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2969 we aren't, just return.
2970
2971 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2972 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2973 implemented by software breakpoints should be handled through the normal
2974 breakpoint layer.
2975
2976 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2977 different signals (SIGILL or SIGEMT for instance), but it is less
2978 clear where the PC is pointing afterwards. It may not match
2979 gdbarch_decr_pc_after_break. I don't know any specific target that
2980 generates these signals at breakpoints (the code has been in GDB since at
2981 least 1992) so I can not guess how to handle them here.
2982
2983 In earlier versions of GDB, a target with
2984 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2985 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2986 target with both of these set in GDB history, and it seems unlikely to be
2987 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2988
2989 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2990 return;
2991
2992 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
2993 return;
2994
2995 /* In reverse execution, when a breakpoint is hit, the instruction
2996 under it has already been de-executed. The reported PC always
2997 points at the breakpoint address, so adjusting it further would
2998 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2999 architecture:
3000
3001 B1 0x08000000 : INSN1
3002 B2 0x08000001 : INSN2
3003 0x08000002 : INSN3
3004 PC -> 0x08000003 : INSN4
3005
3006 Say you're stopped at 0x08000003 as above. Reverse continuing
3007 from that point should hit B2 as below. Reading the PC when the
3008 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3009 been de-executed already.
3010
3011 B1 0x08000000 : INSN1
3012 B2 PC -> 0x08000001 : INSN2
3013 0x08000002 : INSN3
3014 0x08000003 : INSN4
3015
3016 We can't apply the same logic as for forward execution, because
3017 we would wrongly adjust the PC to 0x08000000, since there's a
3018 breakpoint at PC - 1. We'd then report a hit on B1, although
3019 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3020 behaviour. */
3021 if (execution_direction == EXEC_REVERSE)
3022 return;
3023
3024 /* If this target does not decrement the PC after breakpoints, then
3025 we have nothing to do. */
3026 regcache = get_thread_regcache (ecs->ptid);
3027 gdbarch = get_regcache_arch (regcache);
3028 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
3029 return;
3030
3031 aspace = get_regcache_aspace (regcache);
3032
3033 /* Find the location where (if we've hit a breakpoint) the
3034 breakpoint would be. */
3035 breakpoint_pc = regcache_read_pc (regcache)
3036 - gdbarch_decr_pc_after_break (gdbarch);
3037
3038 /* Check whether there actually is a software breakpoint inserted at
3039 that location.
3040
3041 If in non-stop mode, a race condition is possible where we've
3042 removed a breakpoint, but stop events for that breakpoint were
3043 already queued and arrive later. To suppress those spurious
3044 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3045 and retire them after a number of stop events are reported. */
3046 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3047 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
3048 {
3049 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
3050
3051 if (record_full_is_used ())
3052 record_full_gdb_operation_disable_set ();
3053
3054 /* When using hardware single-step, a SIGTRAP is reported for both
3055 a completed single-step and a software breakpoint. Need to
3056 differentiate between the two, as the latter needs adjusting
3057 but the former does not.
3058
3059 The SIGTRAP can be due to a completed hardware single-step only if
3060 - we didn't insert software single-step breakpoints
3061 - the thread to be examined is still the current thread
3062 - this thread is currently being stepped
3063
3064 If any of these events did not occur, we must have stopped due
3065 to hitting a software breakpoint, and have to back up to the
3066 breakpoint address.
3067
3068 As a special case, we could have hardware single-stepped a
3069 software breakpoint. In this case (prev_pc == breakpoint_pc),
3070 we also need to back up to the breakpoint address. */
3071
3072 if (singlestep_breakpoints_inserted_p
3073 || !ptid_equal (ecs->ptid, inferior_ptid)
3074 || !currently_stepping (ecs->event_thread)
3075 || ecs->event_thread->prev_pc == breakpoint_pc)
3076 regcache_write_pc (regcache, breakpoint_pc);
3077
3078 do_cleanups (old_cleanups);
3079 }
3080 }
3081
3082 static void
3083 init_infwait_state (void)
3084 {
3085 waiton_ptid = pid_to_ptid (-1);
3086 infwait_state = infwait_normal_state;
3087 }
3088
3089 static int
3090 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3091 {
3092 for (frame = get_prev_frame (frame);
3093 frame != NULL;
3094 frame = get_prev_frame (frame))
3095 {
3096 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3097 return 1;
3098 if (get_frame_type (frame) != INLINE_FRAME)
3099 break;
3100 }
3101
3102 return 0;
3103 }
3104
3105 /* Auxiliary function that handles syscall entry/return events.
3106 It returns 1 if the inferior should keep going (and GDB
3107 should ignore the event), or 0 if the event deserves to be
3108 processed. */
3109
3110 static int
3111 handle_syscall_event (struct execution_control_state *ecs)
3112 {
3113 struct regcache *regcache;
3114 int syscall_number;
3115
3116 if (!ptid_equal (ecs->ptid, inferior_ptid))
3117 context_switch (ecs->ptid);
3118
3119 regcache = get_thread_regcache (ecs->ptid);
3120 syscall_number = ecs->ws.value.syscall_number;
3121 stop_pc = regcache_read_pc (regcache);
3122
3123 if (catch_syscall_enabled () > 0
3124 && catching_syscall_number (syscall_number) > 0)
3125 {
3126 if (debug_infrun)
3127 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3128 syscall_number);
3129
3130 ecs->event_thread->control.stop_bpstat
3131 = bpstat_stop_status (get_regcache_aspace (regcache),
3132 stop_pc, ecs->ptid, &ecs->ws);
3133
3134 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3135 {
3136 /* Catchpoint hit. */
3137 return 0;
3138 }
3139 }
3140
3141 /* If no catchpoint triggered for this, then keep going. */
3142 keep_going (ecs);
3143 return 1;
3144 }
3145
3146 /* Lazily fill in the execution_control_state's stop_func_* fields. */
3147
3148 static void
3149 fill_in_stop_func (struct gdbarch *gdbarch,
3150 struct execution_control_state *ecs)
3151 {
3152 if (!ecs->stop_func_filled_in)
3153 {
3154 /* Don't care about return value; stop_func_start and stop_func_name
3155 will both be 0 if it doesn't work. */
3156 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3157 &ecs->stop_func_start, &ecs->stop_func_end);
3158 ecs->stop_func_start
3159 += gdbarch_deprecated_function_start_offset (gdbarch);
3160
3161 ecs->stop_func_filled_in = 1;
3162 }
3163 }
3164
3165
3166 /* Return the STOP_SOON field of the inferior pointed at by PTID. */
3167
3168 static enum stop_kind
3169 get_inferior_stop_soon (ptid_t ptid)
3170 {
3171 struct inferior *inf = find_inferior_pid (ptid_get_pid (ptid));
3172
3173 gdb_assert (inf != NULL);
3174 return inf->control.stop_soon;
3175 }
3176
3177 /* Given an execution control state that has been freshly filled in by
3178 an event from the inferior, figure out what it means and take
3179 appropriate action.
3180
3181 The alternatives are:
3182
3183 1) stop_stepping and return; to really stop and return to the
3184 debugger.
3185
3186 2) keep_going and return; to wait for the next event (set
3187 ecs->event_thread->stepping_over_breakpoint to 1 to single step
3188 once). */
3189
3190 static void
3191 handle_inferior_event (struct execution_control_state *ecs)
3192 {
3193 enum stop_kind stop_soon;
3194
3195 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3196 {
3197 /* We had an event in the inferior, but we are not interested in
3198 handling it at this level. The lower layers have already
3199 done what needs to be done, if anything.
3200
3201 One of the possible circumstances for this is when the
3202 inferior produces output for the console. The inferior has
3203 not stopped, and we are ignoring the event. Another possible
3204 circumstance is any event which the lower level knows will be
3205 reported multiple times without an intervening resume. */
3206 if (debug_infrun)
3207 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3208 prepare_to_wait (ecs);
3209 return;
3210 }
3211
3212 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3213 && target_can_async_p () && !sync_execution)
3214 {
3215 /* There were no unwaited-for children left in the target, but,
3216 we're not synchronously waiting for events either. Just
3217 ignore. Otherwise, if we were running a synchronous
3218 execution command, we need to cancel it and give the user
3219 back the terminal. */
3220 if (debug_infrun)
3221 fprintf_unfiltered (gdb_stdlog,
3222 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3223 prepare_to_wait (ecs);
3224 return;
3225 }
3226
3227 /* Cache the last pid/waitstatus. */
3228 target_last_wait_ptid = ecs->ptid;
3229 target_last_waitstatus = ecs->ws;
3230
3231 /* Always clear state belonging to the previous time we stopped. */
3232 stop_stack_dummy = STOP_NONE;
3233
3234 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3235 {
3236 /* No unwaited-for children left. IOW, all resumed children
3237 have exited. */
3238 if (debug_infrun)
3239 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3240
3241 stop_print_frame = 0;
3242 stop_stepping (ecs);
3243 return;
3244 }
3245
3246 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3247 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
3248 {
3249 ecs->event_thread = find_thread_ptid (ecs->ptid);
3250 /* If it's a new thread, add it to the thread database. */
3251 if (ecs->event_thread == NULL)
3252 ecs->event_thread = add_thread (ecs->ptid);
3253
3254 /* Disable range stepping. If the next step request could use a
3255 range, this will be end up re-enabled then. */
3256 ecs->event_thread->control.may_range_step = 0;
3257 }
3258
3259 /* Dependent on valid ECS->EVENT_THREAD. */
3260 adjust_pc_after_break (ecs);
3261
3262 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3263 reinit_frame_cache ();
3264
3265 breakpoint_retire_moribund ();
3266
3267 /* First, distinguish signals caused by the debugger from signals
3268 that have to do with the program's own actions. Note that
3269 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3270 on the operating system version. Here we detect when a SIGILL or
3271 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3272 something similar for SIGSEGV, since a SIGSEGV will be generated
3273 when we're trying to execute a breakpoint instruction on a
3274 non-executable stack. This happens for call dummy breakpoints
3275 for architectures like SPARC that place call dummies on the
3276 stack. */
3277 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3278 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3279 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3280 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
3281 {
3282 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3283
3284 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3285 regcache_read_pc (regcache)))
3286 {
3287 if (debug_infrun)
3288 fprintf_unfiltered (gdb_stdlog,
3289 "infrun: Treating signal as SIGTRAP\n");
3290 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
3291 }
3292 }
3293
3294 /* Mark the non-executing threads accordingly. In all-stop, all
3295 threads of all processes are stopped when we get any event
3296 reported. In non-stop mode, only the event thread stops. If
3297 we're handling a process exit in non-stop mode, there's nothing
3298 to do, as threads of the dead process are gone, and threads of
3299 any other process were left running. */
3300 if (!non_stop)
3301 set_executing (minus_one_ptid, 0);
3302 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3303 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3304 set_executing (ecs->ptid, 0);
3305
3306 switch (infwait_state)
3307 {
3308 case infwait_thread_hop_state:
3309 if (debug_infrun)
3310 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
3311 break;
3312
3313 case infwait_normal_state:
3314 if (debug_infrun)
3315 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
3316 break;
3317
3318 case infwait_step_watch_state:
3319 if (debug_infrun)
3320 fprintf_unfiltered (gdb_stdlog,
3321 "infrun: infwait_step_watch_state\n");
3322
3323 ecs->stepped_after_stopped_by_watchpoint = 1;
3324 break;
3325
3326 case infwait_nonstep_watch_state:
3327 if (debug_infrun)
3328 fprintf_unfiltered (gdb_stdlog,
3329 "infrun: infwait_nonstep_watch_state\n");
3330 insert_breakpoints ();
3331
3332 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3333 handle things like signals arriving and other things happening
3334 in combination correctly? */
3335 ecs->stepped_after_stopped_by_watchpoint = 1;
3336 break;
3337
3338 default:
3339 internal_error (__FILE__, __LINE__, _("bad switch"));
3340 }
3341
3342 infwait_state = infwait_normal_state;
3343 waiton_ptid = pid_to_ptid (-1);
3344
3345 switch (ecs->ws.kind)
3346 {
3347 case TARGET_WAITKIND_LOADED:
3348 if (debug_infrun)
3349 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3350 if (!ptid_equal (ecs->ptid, inferior_ptid))
3351 context_switch (ecs->ptid);
3352 /* Ignore gracefully during startup of the inferior, as it might
3353 be the shell which has just loaded some objects, otherwise
3354 add the symbols for the newly loaded objects. Also ignore at
3355 the beginning of an attach or remote session; we will query
3356 the full list of libraries once the connection is
3357 established. */
3358
3359 stop_soon = get_inferior_stop_soon (ecs->ptid);
3360 if (stop_soon == NO_STOP_QUIETLY)
3361 {
3362 struct regcache *regcache;
3363
3364 regcache = get_thread_regcache (ecs->ptid);
3365
3366 handle_solib_event ();
3367
3368 ecs->event_thread->control.stop_bpstat
3369 = bpstat_stop_status (get_regcache_aspace (regcache),
3370 stop_pc, ecs->ptid, &ecs->ws);
3371
3372 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3373 {
3374 /* A catchpoint triggered. */
3375 process_event_stop_test (ecs);
3376 return;
3377 }
3378
3379 /* If requested, stop when the dynamic linker notifies
3380 gdb of events. This allows the user to get control
3381 and place breakpoints in initializer routines for
3382 dynamically loaded objects (among other things). */
3383 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3384 if (stop_on_solib_events)
3385 {
3386 /* Make sure we print "Stopped due to solib-event" in
3387 normal_stop. */
3388 stop_print_frame = 1;
3389
3390 stop_stepping (ecs);
3391 return;
3392 }
3393 }
3394
3395 /* If we are skipping through a shell, or through shared library
3396 loading that we aren't interested in, resume the program. If
3397 we're running the program normally, also resume. */
3398 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3399 {
3400 /* Loading of shared libraries might have changed breakpoint
3401 addresses. Make sure new breakpoints are inserted. */
3402 if (stop_soon == NO_STOP_QUIETLY
3403 && !breakpoints_always_inserted_mode ())
3404 insert_breakpoints ();
3405 resume (0, GDB_SIGNAL_0);
3406 prepare_to_wait (ecs);
3407 return;
3408 }
3409
3410 /* But stop if we're attaching or setting up a remote
3411 connection. */
3412 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3413 || stop_soon == STOP_QUIETLY_REMOTE)
3414 {
3415 if (debug_infrun)
3416 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
3417 stop_stepping (ecs);
3418 return;
3419 }
3420
3421 internal_error (__FILE__, __LINE__,
3422 _("unhandled stop_soon: %d"), (int) stop_soon);
3423
3424 case TARGET_WAITKIND_SPURIOUS:
3425 if (debug_infrun)
3426 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3427 if (!ptid_equal (ecs->ptid, inferior_ptid))
3428 context_switch (ecs->ptid);
3429 resume (0, GDB_SIGNAL_0);
3430 prepare_to_wait (ecs);
3431 return;
3432
3433 case TARGET_WAITKIND_EXITED:
3434 case TARGET_WAITKIND_SIGNALLED:
3435 if (debug_infrun)
3436 {
3437 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3438 fprintf_unfiltered (gdb_stdlog,
3439 "infrun: TARGET_WAITKIND_EXITED\n");
3440 else
3441 fprintf_unfiltered (gdb_stdlog,
3442 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3443 }
3444
3445 inferior_ptid = ecs->ptid;
3446 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3447 set_current_program_space (current_inferior ()->pspace);
3448 handle_vfork_child_exec_or_exit (0);
3449 target_terminal_ours (); /* Must do this before mourn anyway. */
3450
3451 /* Clearing any previous state of convenience variables. */
3452 clear_exit_convenience_vars ();
3453
3454 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3455 {
3456 /* Record the exit code in the convenience variable $_exitcode, so
3457 that the user can inspect this again later. */
3458 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3459 (LONGEST) ecs->ws.value.integer);
3460
3461 /* Also record this in the inferior itself. */
3462 current_inferior ()->has_exit_code = 1;
3463 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3464
3465 print_exited_reason (ecs->ws.value.integer);
3466 }
3467 else
3468 {
3469 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3470 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3471
3472 if (gdbarch_gdb_signal_to_target_p (gdbarch))
3473 {
3474 /* Set the value of the internal variable $_exitsignal,
3475 which holds the signal uncaught by the inferior. */
3476 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
3477 gdbarch_gdb_signal_to_target (gdbarch,
3478 ecs->ws.value.sig));
3479 }
3480 else
3481 {
3482 /* We don't have access to the target's method used for
3483 converting between signal numbers (GDB's internal
3484 representation <-> target's representation).
3485 Therefore, we cannot do a good job at displaying this
3486 information to the user. It's better to just warn
3487 her about it (if infrun debugging is enabled), and
3488 give up. */
3489 if (debug_infrun)
3490 fprintf_filtered (gdb_stdlog, _("\
3491 Cannot fill $_exitsignal with the correct signal number.\n"));
3492 }
3493
3494 print_signal_exited_reason (ecs->ws.value.sig);
3495 }
3496
3497 gdb_flush (gdb_stdout);
3498 target_mourn_inferior ();
3499 singlestep_breakpoints_inserted_p = 0;
3500 cancel_single_step_breakpoints ();
3501 stop_print_frame = 0;
3502 stop_stepping (ecs);
3503 return;
3504
3505 /* The following are the only cases in which we keep going;
3506 the above cases end in a continue or goto. */
3507 case TARGET_WAITKIND_FORKED:
3508 case TARGET_WAITKIND_VFORKED:
3509 if (debug_infrun)
3510 {
3511 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3512 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3513 else
3514 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3515 }
3516
3517 /* Check whether the inferior is displaced stepping. */
3518 {
3519 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3520 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3521 struct displaced_step_inferior_state *displaced
3522 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3523
3524 /* If checking displaced stepping is supported, and thread
3525 ecs->ptid is displaced stepping. */
3526 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3527 {
3528 struct inferior *parent_inf
3529 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3530 struct regcache *child_regcache;
3531 CORE_ADDR parent_pc;
3532
3533 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3534 indicating that the displaced stepping of syscall instruction
3535 has been done. Perform cleanup for parent process here. Note
3536 that this operation also cleans up the child process for vfork,
3537 because their pages are shared. */
3538 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
3539
3540 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3541 {
3542 /* Restore scratch pad for child process. */
3543 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3544 }
3545
3546 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3547 the child's PC is also within the scratchpad. Set the child's PC
3548 to the parent's PC value, which has already been fixed up.
3549 FIXME: we use the parent's aspace here, although we're touching
3550 the child, because the child hasn't been added to the inferior
3551 list yet at this point. */
3552
3553 child_regcache
3554 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3555 gdbarch,
3556 parent_inf->aspace);
3557 /* Read PC value of parent process. */
3558 parent_pc = regcache_read_pc (regcache);
3559
3560 if (debug_displaced)
3561 fprintf_unfiltered (gdb_stdlog,
3562 "displaced: write child pc from %s to %s\n",
3563 paddress (gdbarch,
3564 regcache_read_pc (child_regcache)),
3565 paddress (gdbarch, parent_pc));
3566
3567 regcache_write_pc (child_regcache, parent_pc);
3568 }
3569 }
3570
3571 if (!ptid_equal (ecs->ptid, inferior_ptid))
3572 context_switch (ecs->ptid);
3573
3574 /* Immediately detach breakpoints from the child before there's
3575 any chance of letting the user delete breakpoints from the
3576 breakpoint lists. If we don't do this early, it's easy to
3577 leave left over traps in the child, vis: "break foo; catch
3578 fork; c; <fork>; del; c; <child calls foo>". We only follow
3579 the fork on the last `continue', and by that time the
3580 breakpoint at "foo" is long gone from the breakpoint table.
3581 If we vforked, then we don't need to unpatch here, since both
3582 parent and child are sharing the same memory pages; we'll
3583 need to unpatch at follow/detach time instead to be certain
3584 that new breakpoints added between catchpoint hit time and
3585 vfork follow are detached. */
3586 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3587 {
3588 /* This won't actually modify the breakpoint list, but will
3589 physically remove the breakpoints from the child. */
3590 detach_breakpoints (ecs->ws.value.related_pid);
3591 }
3592
3593 if (singlestep_breakpoints_inserted_p)
3594 {
3595 /* Pull the single step breakpoints out of the target. */
3596 remove_single_step_breakpoints ();
3597 singlestep_breakpoints_inserted_p = 0;
3598 }
3599
3600 /* In case the event is caught by a catchpoint, remember that
3601 the event is to be followed at the next resume of the thread,
3602 and not immediately. */
3603 ecs->event_thread->pending_follow = ecs->ws;
3604
3605 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3606
3607 ecs->event_thread->control.stop_bpstat
3608 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3609 stop_pc, ecs->ptid, &ecs->ws);
3610
3611 /* If no catchpoint triggered for this, then keep going. Note
3612 that we're interested in knowing the bpstat actually causes a
3613 stop, not just if it may explain the signal. Software
3614 watchpoints, for example, always appear in the bpstat. */
3615 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3616 {
3617 ptid_t parent;
3618 ptid_t child;
3619 int should_resume;
3620 int follow_child
3621 = (follow_fork_mode_string == follow_fork_mode_child);
3622
3623 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3624
3625 should_resume = follow_fork ();
3626
3627 parent = ecs->ptid;
3628 child = ecs->ws.value.related_pid;
3629
3630 /* In non-stop mode, also resume the other branch. */
3631 if (non_stop && !detach_fork)
3632 {
3633 if (follow_child)
3634 switch_to_thread (parent);
3635 else
3636 switch_to_thread (child);
3637
3638 ecs->event_thread = inferior_thread ();
3639 ecs->ptid = inferior_ptid;
3640 keep_going (ecs);
3641 }
3642
3643 if (follow_child)
3644 switch_to_thread (child);
3645 else
3646 switch_to_thread (parent);
3647
3648 ecs->event_thread = inferior_thread ();
3649 ecs->ptid = inferior_ptid;
3650
3651 if (should_resume)
3652 keep_going (ecs);
3653 else
3654 stop_stepping (ecs);
3655 return;
3656 }
3657 process_event_stop_test (ecs);
3658 return;
3659
3660 case TARGET_WAITKIND_VFORK_DONE:
3661 /* Done with the shared memory region. Re-insert breakpoints in
3662 the parent, and keep going. */
3663
3664 if (debug_infrun)
3665 fprintf_unfiltered (gdb_stdlog,
3666 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3667
3668 if (!ptid_equal (ecs->ptid, inferior_ptid))
3669 context_switch (ecs->ptid);
3670
3671 current_inferior ()->waiting_for_vfork_done = 0;
3672 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3673 /* This also takes care of reinserting breakpoints in the
3674 previously locked inferior. */
3675 keep_going (ecs);
3676 return;
3677
3678 case TARGET_WAITKIND_EXECD:
3679 if (debug_infrun)
3680 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3681
3682 if (!ptid_equal (ecs->ptid, inferior_ptid))
3683 context_switch (ecs->ptid);
3684
3685 singlestep_breakpoints_inserted_p = 0;
3686 cancel_single_step_breakpoints ();
3687
3688 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3689
3690 /* Do whatever is necessary to the parent branch of the vfork. */
3691 handle_vfork_child_exec_or_exit (1);
3692
3693 /* This causes the eventpoints and symbol table to be reset.
3694 Must do this now, before trying to determine whether to
3695 stop. */
3696 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3697
3698 ecs->event_thread->control.stop_bpstat
3699 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3700 stop_pc, ecs->ptid, &ecs->ws);
3701
3702 /* Note that this may be referenced from inside
3703 bpstat_stop_status above, through inferior_has_execd. */
3704 xfree (ecs->ws.value.execd_pathname);
3705 ecs->ws.value.execd_pathname = NULL;
3706
3707 /* If no catchpoint triggered for this, then keep going. */
3708 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3709 {
3710 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3711 keep_going (ecs);
3712 return;
3713 }
3714 process_event_stop_test (ecs);
3715 return;
3716
3717 /* Be careful not to try to gather much state about a thread
3718 that's in a syscall. It's frequently a losing proposition. */
3719 case TARGET_WAITKIND_SYSCALL_ENTRY:
3720 if (debug_infrun)
3721 fprintf_unfiltered (gdb_stdlog,
3722 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3723 /* Getting the current syscall number. */
3724 if (handle_syscall_event (ecs) == 0)
3725 process_event_stop_test (ecs);
3726 return;
3727
3728 /* Before examining the threads further, step this thread to
3729 get it entirely out of the syscall. (We get notice of the
3730 event when the thread is just on the verge of exiting a
3731 syscall. Stepping one instruction seems to get it back
3732 into user code.) */
3733 case TARGET_WAITKIND_SYSCALL_RETURN:
3734 if (debug_infrun)
3735 fprintf_unfiltered (gdb_stdlog,
3736 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3737 if (handle_syscall_event (ecs) == 0)
3738 process_event_stop_test (ecs);
3739 return;
3740
3741 case TARGET_WAITKIND_STOPPED:
3742 if (debug_infrun)
3743 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3744 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
3745 handle_signal_stop (ecs);
3746 return;
3747
3748 case TARGET_WAITKIND_NO_HISTORY:
3749 if (debug_infrun)
3750 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
3751 /* Reverse execution: target ran out of history info. */
3752
3753 /* Pull the single step breakpoints out of the target. */
3754 if (singlestep_breakpoints_inserted_p)
3755 {
3756 if (!ptid_equal (ecs->ptid, inferior_ptid))
3757 context_switch (ecs->ptid);
3758 remove_single_step_breakpoints ();
3759 singlestep_breakpoints_inserted_p = 0;
3760 }
3761 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3762 print_no_history_reason ();
3763 stop_stepping (ecs);
3764 return;
3765 }
3766 }
3767
3768 /* Come here when the program has stopped with a signal. */
3769
3770 static void
3771 handle_signal_stop (struct execution_control_state *ecs)
3772 {
3773 struct frame_info *frame;
3774 struct gdbarch *gdbarch;
3775 int stopped_by_watchpoint;
3776 enum stop_kind stop_soon;
3777 int random_signal;
3778
3779 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
3780 {
3781 /* Do we need to clean up the state of a thread that has
3782 completed a displaced single-step? (Doing so usually affects
3783 the PC, so do it here, before we set stop_pc.) */
3784 displaced_step_fixup (ecs->ptid,
3785 ecs->event_thread->suspend.stop_signal);
3786
3787 /* If we either finished a single-step or hit a breakpoint, but
3788 the user wanted this thread to be stopped, pretend we got a
3789 SIG0 (generic unsignaled stop). */
3790
3791 if (ecs->event_thread->stop_requested
3792 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3793 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3794 }
3795
3796 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3797
3798 if (debug_infrun)
3799 {
3800 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3801 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3802 struct cleanup *old_chain = save_inferior_ptid ();
3803
3804 inferior_ptid = ecs->ptid;
3805
3806 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3807 paddress (gdbarch, stop_pc));
3808 if (target_stopped_by_watchpoint ())
3809 {
3810 CORE_ADDR addr;
3811
3812 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3813
3814 if (target_stopped_data_address (&current_target, &addr))
3815 fprintf_unfiltered (gdb_stdlog,
3816 "infrun: stopped data address = %s\n",
3817 paddress (gdbarch, addr));
3818 else
3819 fprintf_unfiltered (gdb_stdlog,
3820 "infrun: (no data address available)\n");
3821 }
3822
3823 do_cleanups (old_chain);
3824 }
3825
3826 /* This is originated from start_remote(), start_inferior() and
3827 shared libraries hook functions. */
3828 stop_soon = get_inferior_stop_soon (ecs->ptid);
3829 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
3830 {
3831 if (!ptid_equal (ecs->ptid, inferior_ptid))
3832 context_switch (ecs->ptid);
3833 if (debug_infrun)
3834 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
3835 stop_print_frame = 1;
3836 stop_stepping (ecs);
3837 return;
3838 }
3839
3840 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
3841 && stop_after_trap)
3842 {
3843 if (!ptid_equal (ecs->ptid, inferior_ptid))
3844 context_switch (ecs->ptid);
3845 if (debug_infrun)
3846 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
3847 stop_print_frame = 0;
3848 stop_stepping (ecs);
3849 return;
3850 }
3851
3852 /* This originates from attach_command(). We need to overwrite
3853 the stop_signal here, because some kernels don't ignore a
3854 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
3855 See more comments in inferior.h. On the other hand, if we
3856 get a non-SIGSTOP, report it to the user - assume the backend
3857 will handle the SIGSTOP if it should show up later.
3858
3859 Also consider that the attach is complete when we see a
3860 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
3861 target extended-remote report it instead of a SIGSTOP
3862 (e.g. gdbserver). We already rely on SIGTRAP being our
3863 signal, so this is no exception.
3864
3865 Also consider that the attach is complete when we see a
3866 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
3867 the target to stop all threads of the inferior, in case the
3868 low level attach operation doesn't stop them implicitly. If
3869 they weren't stopped implicitly, then the stub will report a
3870 GDB_SIGNAL_0, meaning: stopped for no particular reason
3871 other than GDB's request. */
3872 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3873 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
3874 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
3875 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
3876 {
3877 stop_print_frame = 1;
3878 stop_stepping (ecs);
3879 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3880 return;
3881 }
3882
3883 if (stepping_past_singlestep_breakpoint)
3884 {
3885 gdb_assert (singlestep_breakpoints_inserted_p);
3886 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3887 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3888
3889 stepping_past_singlestep_breakpoint = 0;
3890
3891 /* We've either finished single-stepping past the single-step
3892 breakpoint, or stopped for some other reason. It would be nice if
3893 we could tell, but we can't reliably. */
3894 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3895 {
3896 if (debug_infrun)
3897 fprintf_unfiltered (gdb_stdlog,
3898 "infrun: stepping_past_"
3899 "singlestep_breakpoint\n");
3900 /* Pull the single step breakpoints out of the target. */
3901 if (!ptid_equal (ecs->ptid, inferior_ptid))
3902 context_switch (ecs->ptid);
3903 remove_single_step_breakpoints ();
3904 singlestep_breakpoints_inserted_p = 0;
3905
3906 ecs->event_thread->control.trap_expected = 0;
3907
3908 context_switch (saved_singlestep_ptid);
3909 if (deprecated_context_hook)
3910 deprecated_context_hook (pid_to_thread_id (saved_singlestep_ptid));
3911
3912 resume (1, GDB_SIGNAL_0);
3913 prepare_to_wait (ecs);
3914 return;
3915 }
3916 }
3917
3918 if (!ptid_equal (deferred_step_ptid, null_ptid))
3919 {
3920 /* In non-stop mode, there's never a deferred_step_ptid set. */
3921 gdb_assert (!non_stop);
3922
3923 /* If we stopped for some other reason than single-stepping, ignore
3924 the fact that we were supposed to switch back. */
3925 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3926 {
3927 if (debug_infrun)
3928 fprintf_unfiltered (gdb_stdlog,
3929 "infrun: handling deferred step\n");
3930
3931 /* Pull the single step breakpoints out of the target. */
3932 if (singlestep_breakpoints_inserted_p)
3933 {
3934 if (!ptid_equal (ecs->ptid, inferior_ptid))
3935 context_switch (ecs->ptid);
3936 remove_single_step_breakpoints ();
3937 singlestep_breakpoints_inserted_p = 0;
3938 }
3939
3940 ecs->event_thread->control.trap_expected = 0;
3941
3942 context_switch (deferred_step_ptid);
3943 deferred_step_ptid = null_ptid;
3944 /* Suppress spurious "Switching to ..." message. */
3945 previous_inferior_ptid = inferior_ptid;
3946
3947 resume (1, GDB_SIGNAL_0);
3948 prepare_to_wait (ecs);
3949 return;
3950 }
3951
3952 deferred_step_ptid = null_ptid;
3953 }
3954
3955 /* See if a thread hit a thread-specific breakpoint that was meant for
3956 another thread. If so, then step that thread past the breakpoint,
3957 and continue it. */
3958
3959 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3960 {
3961 int thread_hop_needed = 0;
3962 struct address_space *aspace =
3963 get_regcache_aspace (get_thread_regcache (ecs->ptid));
3964
3965 /* Check if a regular breakpoint has been hit before checking
3966 for a potential single step breakpoint. Otherwise, GDB will
3967 not see this breakpoint hit when stepping onto breakpoints. */
3968 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3969 {
3970 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3971 thread_hop_needed = 1;
3972 }
3973 else if (singlestep_breakpoints_inserted_p)
3974 {
3975 /* We have not context switched yet, so this should be true
3976 no matter which thread hit the singlestep breakpoint. */
3977 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3978 if (debug_infrun)
3979 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3980 "trap for %s\n",
3981 target_pid_to_str (ecs->ptid));
3982
3983 /* The call to in_thread_list is necessary because PTIDs sometimes
3984 change when we go from single-threaded to multi-threaded. If
3985 the singlestep_ptid is still in the list, assume that it is
3986 really different from ecs->ptid. */
3987 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3988 && in_thread_list (singlestep_ptid))
3989 {
3990 /* If the PC of the thread we were trying to single-step
3991 has changed, discard this event (which we were going
3992 to ignore anyway), and pretend we saw that thread
3993 trap. This prevents us continuously moving the
3994 single-step breakpoint forward, one instruction at a
3995 time. If the PC has changed, then the thread we were
3996 trying to single-step has trapped or been signalled,
3997 but the event has not been reported to GDB yet.
3998
3999 There might be some cases where this loses signal
4000 information, if a signal has arrived at exactly the
4001 same time that the PC changed, but this is the best
4002 we can do with the information available. Perhaps we
4003 should arrange to report all events for all threads
4004 when they stop, or to re-poll the remote looking for
4005 this particular thread (i.e. temporarily enable
4006 schedlock). */
4007
4008 CORE_ADDR new_singlestep_pc
4009 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
4010
4011 if (new_singlestep_pc != singlestep_pc)
4012 {
4013 enum gdb_signal stop_signal;
4014
4015 if (debug_infrun)
4016 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
4017 " but expected thread advanced also\n");
4018
4019 /* The current context still belongs to
4020 singlestep_ptid. Don't swap here, since that's
4021 the context we want to use. Just fudge our
4022 state and continue. */
4023 stop_signal = ecs->event_thread->suspend.stop_signal;
4024 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4025 ecs->ptid = singlestep_ptid;
4026 ecs->event_thread = find_thread_ptid (ecs->ptid);
4027 ecs->event_thread->suspend.stop_signal = stop_signal;
4028 stop_pc = new_singlestep_pc;
4029 }
4030 else
4031 {
4032 if (debug_infrun)
4033 fprintf_unfiltered (gdb_stdlog,
4034 "infrun: unexpected thread\n");
4035
4036 thread_hop_needed = 1;
4037 stepping_past_singlestep_breakpoint = 1;
4038 saved_singlestep_ptid = singlestep_ptid;
4039 }
4040 }
4041 }
4042
4043 if (thread_hop_needed)
4044 {
4045 struct regcache *thread_regcache;
4046 int remove_status = 0;
4047
4048 if (debug_infrun)
4049 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
4050
4051 /* Switch context before touching inferior memory, the
4052 previous thread may have exited. */
4053 if (!ptid_equal (inferior_ptid, ecs->ptid))
4054 context_switch (ecs->ptid);
4055
4056 /* Saw a breakpoint, but it was hit by the wrong thread.
4057 Just continue. */
4058
4059 if (singlestep_breakpoints_inserted_p)
4060 {
4061 /* Pull the single step breakpoints out of the target. */
4062 remove_single_step_breakpoints ();
4063 singlestep_breakpoints_inserted_p = 0;
4064 }
4065
4066 /* If the arch can displace step, don't remove the
4067 breakpoints. */
4068 thread_regcache = get_thread_regcache (ecs->ptid);
4069 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
4070 remove_status = remove_breakpoints ();
4071
4072 /* Did we fail to remove breakpoints? If so, try
4073 to set the PC past the bp. (There's at least
4074 one situation in which we can fail to remove
4075 the bp's: On HP-UX's that use ttrace, we can't
4076 change the address space of a vforking child
4077 process until the child exits (well, okay, not
4078 then either :-) or execs. */
4079 if (remove_status != 0)
4080 error (_("Cannot step over breakpoint hit in wrong thread"));
4081 else
4082 { /* Single step */
4083 if (!non_stop)
4084 {
4085 /* Only need to require the next event from this
4086 thread in all-stop mode. */
4087 waiton_ptid = ecs->ptid;
4088 infwait_state = infwait_thread_hop_state;
4089 }
4090
4091 ecs->event_thread->stepping_over_breakpoint = 1;
4092 keep_going (ecs);
4093 return;
4094 }
4095 }
4096 }
4097
4098 /* See if something interesting happened to the non-current thread. If
4099 so, then switch to that thread. */
4100 if (!ptid_equal (ecs->ptid, inferior_ptid))
4101 {
4102 if (debug_infrun)
4103 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
4104
4105 context_switch (ecs->ptid);
4106
4107 if (deprecated_context_hook)
4108 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
4109 }
4110
4111 /* At this point, get hold of the now-current thread's frame. */
4112 frame = get_current_frame ();
4113 gdbarch = get_frame_arch (frame);
4114
4115 if (singlestep_breakpoints_inserted_p)
4116 {
4117 /* Pull the single step breakpoints out of the target. */
4118 remove_single_step_breakpoints ();
4119 singlestep_breakpoints_inserted_p = 0;
4120 }
4121
4122 if (ecs->stepped_after_stopped_by_watchpoint)
4123 stopped_by_watchpoint = 0;
4124 else
4125 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4126
4127 /* If necessary, step over this watchpoint. We'll be back to display
4128 it in a moment. */
4129 if (stopped_by_watchpoint
4130 && (target_have_steppable_watchpoint
4131 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
4132 {
4133 /* At this point, we are stopped at an instruction which has
4134 attempted to write to a piece of memory under control of
4135 a watchpoint. The instruction hasn't actually executed
4136 yet. If we were to evaluate the watchpoint expression
4137 now, we would get the old value, and therefore no change
4138 would seem to have occurred.
4139
4140 In order to make watchpoints work `right', we really need
4141 to complete the memory write, and then evaluate the
4142 watchpoint expression. We do this by single-stepping the
4143 target.
4144
4145 It may not be necessary to disable the watchpoint to stop over
4146 it. For example, the PA can (with some kernel cooperation)
4147 single step over a watchpoint without disabling the watchpoint.
4148
4149 It is far more common to need to disable a watchpoint to step
4150 the inferior over it. If we have non-steppable watchpoints,
4151 we must disable the current watchpoint; it's simplest to
4152 disable all watchpoints and breakpoints. */
4153 int hw_step = 1;
4154
4155 if (!target_have_steppable_watchpoint)
4156 {
4157 remove_breakpoints ();
4158 /* See comment in resume why we need to stop bypassing signals
4159 while breakpoints have been removed. */
4160 target_pass_signals (0, NULL);
4161 }
4162 /* Single step */
4163 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
4164 target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
4165 waiton_ptid = ecs->ptid;
4166 if (target_have_steppable_watchpoint)
4167 infwait_state = infwait_step_watch_state;
4168 else
4169 infwait_state = infwait_nonstep_watch_state;
4170 prepare_to_wait (ecs);
4171 return;
4172 }
4173
4174 ecs->event_thread->stepping_over_breakpoint = 0;
4175 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4176 ecs->event_thread->control.stop_step = 0;
4177 stop_print_frame = 1;
4178 stopped_by_random_signal = 0;
4179
4180 /* Hide inlined functions starting here, unless we just performed stepi or
4181 nexti. After stepi and nexti, always show the innermost frame (not any
4182 inline function call sites). */
4183 if (ecs->event_thread->control.step_range_end != 1)
4184 {
4185 struct address_space *aspace =
4186 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4187
4188 /* skip_inline_frames is expensive, so we avoid it if we can
4189 determine that the address is one where functions cannot have
4190 been inlined. This improves performance with inferiors that
4191 load a lot of shared libraries, because the solib event
4192 breakpoint is defined as the address of a function (i.e. not
4193 inline). Note that we have to check the previous PC as well
4194 as the current one to catch cases when we have just
4195 single-stepped off a breakpoint prior to reinstating it.
4196 Note that we're assuming that the code we single-step to is
4197 not inline, but that's not definitive: there's nothing
4198 preventing the event breakpoint function from containing
4199 inlined code, and the single-step ending up there. If the
4200 user had set a breakpoint on that inlined code, the missing
4201 skip_inline_frames call would break things. Fortunately
4202 that's an extremely unlikely scenario. */
4203 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
4204 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4205 && ecs->event_thread->control.trap_expected
4206 && pc_at_non_inline_function (aspace,
4207 ecs->event_thread->prev_pc,
4208 &ecs->ws)))
4209 {
4210 skip_inline_frames (ecs->ptid);
4211
4212 /* Re-fetch current thread's frame in case that invalidated
4213 the frame cache. */
4214 frame = get_current_frame ();
4215 gdbarch = get_frame_arch (frame);
4216 }
4217 }
4218
4219 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4220 && ecs->event_thread->control.trap_expected
4221 && gdbarch_single_step_through_delay_p (gdbarch)
4222 && currently_stepping (ecs->event_thread))
4223 {
4224 /* We're trying to step off a breakpoint. Turns out that we're
4225 also on an instruction that needs to be stepped multiple
4226 times before it's been fully executing. E.g., architectures
4227 with a delay slot. It needs to be stepped twice, once for
4228 the instruction and once for the delay slot. */
4229 int step_through_delay
4230 = gdbarch_single_step_through_delay (gdbarch, frame);
4231
4232 if (debug_infrun && step_through_delay)
4233 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4234 if (ecs->event_thread->control.step_range_end == 0
4235 && step_through_delay)
4236 {
4237 /* The user issued a continue when stopped at a breakpoint.
4238 Set up for another trap and get out of here. */
4239 ecs->event_thread->stepping_over_breakpoint = 1;
4240 keep_going (ecs);
4241 return;
4242 }
4243 else if (step_through_delay)
4244 {
4245 /* The user issued a step when stopped at a breakpoint.
4246 Maybe we should stop, maybe we should not - the delay
4247 slot *might* correspond to a line of source. In any
4248 case, don't decide that here, just set
4249 ecs->stepping_over_breakpoint, making sure we
4250 single-step again before breakpoints are re-inserted. */
4251 ecs->event_thread->stepping_over_breakpoint = 1;
4252 }
4253 }
4254
4255 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4256 handles this event. */
4257 ecs->event_thread->control.stop_bpstat
4258 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4259 stop_pc, ecs->ptid, &ecs->ws);
4260
4261 /* Following in case break condition called a
4262 function. */
4263 stop_print_frame = 1;
4264
4265 /* This is where we handle "moribund" watchpoints. Unlike
4266 software breakpoints traps, hardware watchpoint traps are
4267 always distinguishable from random traps. If no high-level
4268 watchpoint is associated with the reported stop data address
4269 anymore, then the bpstat does not explain the signal ---
4270 simply make sure to ignore it if `stopped_by_watchpoint' is
4271 set. */
4272
4273 if (debug_infrun
4274 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4275 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4276 GDB_SIGNAL_TRAP)
4277 && stopped_by_watchpoint)
4278 fprintf_unfiltered (gdb_stdlog,
4279 "infrun: no user watchpoint explains "
4280 "watchpoint SIGTRAP, ignoring\n");
4281
4282 /* NOTE: cagney/2003-03-29: These checks for a random signal
4283 at one stage in the past included checks for an inferior
4284 function call's call dummy's return breakpoint. The original
4285 comment, that went with the test, read:
4286
4287 ``End of a stack dummy. Some systems (e.g. Sony news) give
4288 another signal besides SIGTRAP, so check here as well as
4289 above.''
4290
4291 If someone ever tries to get call dummys on a
4292 non-executable stack to work (where the target would stop
4293 with something like a SIGSEGV), then those tests might need
4294 to be re-instated. Given, however, that the tests were only
4295 enabled when momentary breakpoints were not being used, I
4296 suspect that it won't be the case.
4297
4298 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4299 be necessary for call dummies on a non-executable stack on
4300 SPARC. */
4301
4302 /* See if the breakpoints module can explain the signal. */
4303 random_signal
4304 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4305 ecs->event_thread->suspend.stop_signal);
4306
4307 /* If not, perhaps stepping/nexting can. */
4308 if (random_signal)
4309 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4310 && currently_stepping (ecs->event_thread));
4311
4312 /* No? Perhaps we got a moribund watchpoint. */
4313 if (random_signal)
4314 random_signal = !stopped_by_watchpoint;
4315
4316 /* For the program's own signals, act according to
4317 the signal handling tables. */
4318
4319 if (random_signal)
4320 {
4321 /* Signal not for debugging purposes. */
4322 int printed = 0;
4323 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4324 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
4325
4326 if (debug_infrun)
4327 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
4328 gdb_signal_to_symbol_string (stop_signal));
4329
4330 stopped_by_random_signal = 1;
4331
4332 if (signal_print[ecs->event_thread->suspend.stop_signal])
4333 {
4334 printed = 1;
4335 target_terminal_ours_for_output ();
4336 print_signal_received_reason
4337 (ecs->event_thread->suspend.stop_signal);
4338 }
4339 /* Always stop on signals if we're either just gaining control
4340 of the program, or the user explicitly requested this thread
4341 to remain stopped. */
4342 if (stop_soon != NO_STOP_QUIETLY
4343 || ecs->event_thread->stop_requested
4344 || (!inf->detaching
4345 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4346 {
4347 stop_stepping (ecs);
4348 return;
4349 }
4350 /* If not going to stop, give terminal back
4351 if we took it away. */
4352 else if (printed)
4353 target_terminal_inferior ();
4354
4355 /* Clear the signal if it should not be passed. */
4356 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4357 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4358
4359 if (ecs->event_thread->prev_pc == stop_pc
4360 && ecs->event_thread->control.trap_expected
4361 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4362 {
4363 /* We were just starting a new sequence, attempting to
4364 single-step off of a breakpoint and expecting a SIGTRAP.
4365 Instead this signal arrives. This signal will take us out
4366 of the stepping range so GDB needs to remember to, when
4367 the signal handler returns, resume stepping off that
4368 breakpoint. */
4369 /* To simplify things, "continue" is forced to use the same
4370 code paths as single-step - set a breakpoint at the
4371 signal return address and then, once hit, step off that
4372 breakpoint. */
4373 if (debug_infrun)
4374 fprintf_unfiltered (gdb_stdlog,
4375 "infrun: signal arrived while stepping over "
4376 "breakpoint\n");
4377
4378 insert_hp_step_resume_breakpoint_at_frame (frame);
4379 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4380 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4381 ecs->event_thread->control.trap_expected = 0;
4382 keep_going (ecs);
4383 return;
4384 }
4385
4386 if (ecs->event_thread->control.step_range_end != 0
4387 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4388 && pc_in_thread_step_range (stop_pc, ecs->event_thread)
4389 && frame_id_eq (get_stack_frame_id (frame),
4390 ecs->event_thread->control.step_stack_frame_id)
4391 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4392 {
4393 /* The inferior is about to take a signal that will take it
4394 out of the single step range. Set a breakpoint at the
4395 current PC (which is presumably where the signal handler
4396 will eventually return) and then allow the inferior to
4397 run free.
4398
4399 Note that this is only needed for a signal delivered
4400 while in the single-step range. Nested signals aren't a
4401 problem as they eventually all return. */
4402 if (debug_infrun)
4403 fprintf_unfiltered (gdb_stdlog,
4404 "infrun: signal may take us out of "
4405 "single-step range\n");
4406
4407 insert_hp_step_resume_breakpoint_at_frame (frame);
4408 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4409 ecs->event_thread->control.trap_expected = 0;
4410 keep_going (ecs);
4411 return;
4412 }
4413
4414 /* Note: step_resume_breakpoint may be non-NULL. This occures
4415 when either there's a nested signal, or when there's a
4416 pending signal enabled just as the signal handler returns
4417 (leaving the inferior at the step-resume-breakpoint without
4418 actually executing it). Either way continue until the
4419 breakpoint is really hit. */
4420
4421 if (!switch_back_to_stepped_thread (ecs))
4422 {
4423 if (debug_infrun)
4424 fprintf_unfiltered (gdb_stdlog,
4425 "infrun: random signal, keep going\n");
4426
4427 keep_going (ecs);
4428 }
4429 return;
4430 }
4431
4432 process_event_stop_test (ecs);
4433 }
4434
4435 /* Come here when we've got some debug event / signal we can explain
4436 (IOW, not a random signal), and test whether it should cause a
4437 stop, or whether we should resume the inferior (transparently).
4438 E.g., could be a breakpoint whose condition evaluates false; we
4439 could be still stepping within the line; etc. */
4440
4441 static void
4442 process_event_stop_test (struct execution_control_state *ecs)
4443 {
4444 struct symtab_and_line stop_pc_sal;
4445 struct frame_info *frame;
4446 struct gdbarch *gdbarch;
4447 CORE_ADDR jmp_buf_pc;
4448 struct bpstat_what what;
4449
4450 /* Handle cases caused by hitting a breakpoint. */
4451
4452 frame = get_current_frame ();
4453 gdbarch = get_frame_arch (frame);
4454
4455 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4456
4457 if (what.call_dummy)
4458 {
4459 stop_stack_dummy = what.call_dummy;
4460 }
4461
4462 /* If we hit an internal event that triggers symbol changes, the
4463 current frame will be invalidated within bpstat_what (e.g., if we
4464 hit an internal solib event). Re-fetch it. */
4465 frame = get_current_frame ();
4466 gdbarch = get_frame_arch (frame);
4467
4468 switch (what.main_action)
4469 {
4470 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4471 /* If we hit the breakpoint at longjmp while stepping, we
4472 install a momentary breakpoint at the target of the
4473 jmp_buf. */
4474
4475 if (debug_infrun)
4476 fprintf_unfiltered (gdb_stdlog,
4477 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4478
4479 ecs->event_thread->stepping_over_breakpoint = 1;
4480
4481 if (what.is_longjmp)
4482 {
4483 struct value *arg_value;
4484
4485 /* If we set the longjmp breakpoint via a SystemTap probe,
4486 then use it to extract the arguments. The destination PC
4487 is the third argument to the probe. */
4488 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4489 if (arg_value)
4490 jmp_buf_pc = value_as_address (arg_value);
4491 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4492 || !gdbarch_get_longjmp_target (gdbarch,
4493 frame, &jmp_buf_pc))
4494 {
4495 if (debug_infrun)
4496 fprintf_unfiltered (gdb_stdlog,
4497 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4498 "(!gdbarch_get_longjmp_target)\n");
4499 keep_going (ecs);
4500 return;
4501 }
4502
4503 /* Insert a breakpoint at resume address. */
4504 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4505 }
4506 else
4507 check_exception_resume (ecs, frame);
4508 keep_going (ecs);
4509 return;
4510
4511 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4512 {
4513 struct frame_info *init_frame;
4514
4515 /* There are several cases to consider.
4516
4517 1. The initiating frame no longer exists. In this case we
4518 must stop, because the exception or longjmp has gone too
4519 far.
4520
4521 2. The initiating frame exists, and is the same as the
4522 current frame. We stop, because the exception or longjmp
4523 has been caught.
4524
4525 3. The initiating frame exists and is different from the
4526 current frame. This means the exception or longjmp has
4527 been caught beneath the initiating frame, so keep going.
4528
4529 4. longjmp breakpoint has been placed just to protect
4530 against stale dummy frames and user is not interested in
4531 stopping around longjmps. */
4532
4533 if (debug_infrun)
4534 fprintf_unfiltered (gdb_stdlog,
4535 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4536
4537 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4538 != NULL);
4539 delete_exception_resume_breakpoint (ecs->event_thread);
4540
4541 if (what.is_longjmp)
4542 {
4543 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread->num);
4544
4545 if (!frame_id_p (ecs->event_thread->initiating_frame))
4546 {
4547 /* Case 4. */
4548 keep_going (ecs);
4549 return;
4550 }
4551 }
4552
4553 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
4554
4555 if (init_frame)
4556 {
4557 struct frame_id current_id
4558 = get_frame_id (get_current_frame ());
4559 if (frame_id_eq (current_id,
4560 ecs->event_thread->initiating_frame))
4561 {
4562 /* Case 2. Fall through. */
4563 }
4564 else
4565 {
4566 /* Case 3. */
4567 keep_going (ecs);
4568 return;
4569 }
4570 }
4571
4572 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
4573 exists. */
4574 delete_step_resume_breakpoint (ecs->event_thread);
4575
4576 ecs->event_thread->control.stop_step = 1;
4577 print_end_stepping_range_reason ();
4578 stop_stepping (ecs);
4579 }
4580 return;
4581
4582 case BPSTAT_WHAT_SINGLE:
4583 if (debug_infrun)
4584 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4585 ecs->event_thread->stepping_over_breakpoint = 1;
4586 /* Still need to check other stuff, at least the case where we
4587 are stepping and step out of the right range. */
4588 break;
4589
4590 case BPSTAT_WHAT_STEP_RESUME:
4591 if (debug_infrun)
4592 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4593
4594 delete_step_resume_breakpoint (ecs->event_thread);
4595 if (ecs->event_thread->control.proceed_to_finish
4596 && execution_direction == EXEC_REVERSE)
4597 {
4598 struct thread_info *tp = ecs->event_thread;
4599
4600 /* We are finishing a function in reverse, and just hit the
4601 step-resume breakpoint at the start address of the
4602 function, and we're almost there -- just need to back up
4603 by one more single-step, which should take us back to the
4604 function call. */
4605 tp->control.step_range_start = tp->control.step_range_end = 1;
4606 keep_going (ecs);
4607 return;
4608 }
4609 fill_in_stop_func (gdbarch, ecs);
4610 if (stop_pc == ecs->stop_func_start
4611 && execution_direction == EXEC_REVERSE)
4612 {
4613 /* We are stepping over a function call in reverse, and just
4614 hit the step-resume breakpoint at the start address of
4615 the function. Go back to single-stepping, which should
4616 take us back to the function call. */
4617 ecs->event_thread->stepping_over_breakpoint = 1;
4618 keep_going (ecs);
4619 return;
4620 }
4621 break;
4622
4623 case BPSTAT_WHAT_STOP_NOISY:
4624 if (debug_infrun)
4625 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4626 stop_print_frame = 1;
4627
4628 /* We are about to nuke the step_resume_breakpointt via the
4629 cleanup chain, so no need to worry about it here. */
4630
4631 stop_stepping (ecs);
4632 return;
4633
4634 case BPSTAT_WHAT_STOP_SILENT:
4635 if (debug_infrun)
4636 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4637 stop_print_frame = 0;
4638
4639 /* We are about to nuke the step_resume_breakpoin via the
4640 cleanup chain, so no need to worry about it here. */
4641
4642 stop_stepping (ecs);
4643 return;
4644
4645 case BPSTAT_WHAT_HP_STEP_RESUME:
4646 if (debug_infrun)
4647 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4648
4649 delete_step_resume_breakpoint (ecs->event_thread);
4650 if (ecs->event_thread->step_after_step_resume_breakpoint)
4651 {
4652 /* Back when the step-resume breakpoint was inserted, we
4653 were trying to single-step off a breakpoint. Go back to
4654 doing that. */
4655 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4656 ecs->event_thread->stepping_over_breakpoint = 1;
4657 keep_going (ecs);
4658 return;
4659 }
4660 break;
4661
4662 case BPSTAT_WHAT_KEEP_CHECKING:
4663 break;
4664 }
4665
4666 /* We come here if we hit a breakpoint but should not stop for it.
4667 Possibly we also were stepping and should stop for that. So fall
4668 through and test for stepping. But, if not stepping, do not
4669 stop. */
4670
4671 /* In all-stop mode, if we're currently stepping but have stopped in
4672 some other thread, we need to switch back to the stepped thread. */
4673 if (switch_back_to_stepped_thread (ecs))
4674 return;
4675
4676 if (ecs->event_thread->control.step_resume_breakpoint)
4677 {
4678 if (debug_infrun)
4679 fprintf_unfiltered (gdb_stdlog,
4680 "infrun: step-resume breakpoint is inserted\n");
4681
4682 /* Having a step-resume breakpoint overrides anything
4683 else having to do with stepping commands until
4684 that breakpoint is reached. */
4685 keep_going (ecs);
4686 return;
4687 }
4688
4689 if (ecs->event_thread->control.step_range_end == 0)
4690 {
4691 if (debug_infrun)
4692 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4693 /* Likewise if we aren't even stepping. */
4694 keep_going (ecs);
4695 return;
4696 }
4697
4698 /* Re-fetch current thread's frame in case the code above caused
4699 the frame cache to be re-initialized, making our FRAME variable
4700 a dangling pointer. */
4701 frame = get_current_frame ();
4702 gdbarch = get_frame_arch (frame);
4703 fill_in_stop_func (gdbarch, ecs);
4704
4705 /* If stepping through a line, keep going if still within it.
4706
4707 Note that step_range_end is the address of the first instruction
4708 beyond the step range, and NOT the address of the last instruction
4709 within it!
4710
4711 Note also that during reverse execution, we may be stepping
4712 through a function epilogue and therefore must detect when
4713 the current-frame changes in the middle of a line. */
4714
4715 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
4716 && (execution_direction != EXEC_REVERSE
4717 || frame_id_eq (get_frame_id (frame),
4718 ecs->event_thread->control.step_frame_id)))
4719 {
4720 if (debug_infrun)
4721 fprintf_unfiltered
4722 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4723 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4724 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4725
4726 /* Tentatively re-enable range stepping; `resume' disables it if
4727 necessary (e.g., if we're stepping over a breakpoint or we
4728 have software watchpoints). */
4729 ecs->event_thread->control.may_range_step = 1;
4730
4731 /* When stepping backward, stop at beginning of line range
4732 (unless it's the function entry point, in which case
4733 keep going back to the call point). */
4734 if (stop_pc == ecs->event_thread->control.step_range_start
4735 && stop_pc != ecs->stop_func_start
4736 && execution_direction == EXEC_REVERSE)
4737 {
4738 ecs->event_thread->control.stop_step = 1;
4739 print_end_stepping_range_reason ();
4740 stop_stepping (ecs);
4741 }
4742 else
4743 keep_going (ecs);
4744
4745 return;
4746 }
4747
4748 /* We stepped out of the stepping range. */
4749
4750 /* If we are stepping at the source level and entered the runtime
4751 loader dynamic symbol resolution code...
4752
4753 EXEC_FORWARD: we keep on single stepping until we exit the run
4754 time loader code and reach the callee's address.
4755
4756 EXEC_REVERSE: we've already executed the callee (backward), and
4757 the runtime loader code is handled just like any other
4758 undebuggable function call. Now we need only keep stepping
4759 backward through the trampoline code, and that's handled further
4760 down, so there is nothing for us to do here. */
4761
4762 if (execution_direction != EXEC_REVERSE
4763 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4764 && in_solib_dynsym_resolve_code (stop_pc))
4765 {
4766 CORE_ADDR pc_after_resolver =
4767 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4768
4769 if (debug_infrun)
4770 fprintf_unfiltered (gdb_stdlog,
4771 "infrun: stepped into dynsym resolve code\n");
4772
4773 if (pc_after_resolver)
4774 {
4775 /* Set up a step-resume breakpoint at the address
4776 indicated by SKIP_SOLIB_RESOLVER. */
4777 struct symtab_and_line sr_sal;
4778
4779 init_sal (&sr_sal);
4780 sr_sal.pc = pc_after_resolver;
4781 sr_sal.pspace = get_frame_program_space (frame);
4782
4783 insert_step_resume_breakpoint_at_sal (gdbarch,
4784 sr_sal, null_frame_id);
4785 }
4786
4787 keep_going (ecs);
4788 return;
4789 }
4790
4791 if (ecs->event_thread->control.step_range_end != 1
4792 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4793 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4794 && get_frame_type (frame) == SIGTRAMP_FRAME)
4795 {
4796 if (debug_infrun)
4797 fprintf_unfiltered (gdb_stdlog,
4798 "infrun: stepped into signal trampoline\n");
4799 /* The inferior, while doing a "step" or "next", has ended up in
4800 a signal trampoline (either by a signal being delivered or by
4801 the signal handler returning). Just single-step until the
4802 inferior leaves the trampoline (either by calling the handler
4803 or returning). */
4804 keep_going (ecs);
4805 return;
4806 }
4807
4808 /* If we're in the return path from a shared library trampoline,
4809 we want to proceed through the trampoline when stepping. */
4810 /* macro/2012-04-25: This needs to come before the subroutine
4811 call check below as on some targets return trampolines look
4812 like subroutine calls (MIPS16 return thunks). */
4813 if (gdbarch_in_solib_return_trampoline (gdbarch,
4814 stop_pc, ecs->stop_func_name)
4815 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4816 {
4817 /* Determine where this trampoline returns. */
4818 CORE_ADDR real_stop_pc;
4819
4820 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4821
4822 if (debug_infrun)
4823 fprintf_unfiltered (gdb_stdlog,
4824 "infrun: stepped into solib return tramp\n");
4825
4826 /* Only proceed through if we know where it's going. */
4827 if (real_stop_pc)
4828 {
4829 /* And put the step-breakpoint there and go until there. */
4830 struct symtab_and_line sr_sal;
4831
4832 init_sal (&sr_sal); /* initialize to zeroes */
4833 sr_sal.pc = real_stop_pc;
4834 sr_sal.section = find_pc_overlay (sr_sal.pc);
4835 sr_sal.pspace = get_frame_program_space (frame);
4836
4837 /* Do not specify what the fp should be when we stop since
4838 on some machines the prologue is where the new fp value
4839 is established. */
4840 insert_step_resume_breakpoint_at_sal (gdbarch,
4841 sr_sal, null_frame_id);
4842
4843 /* Restart without fiddling with the step ranges or
4844 other state. */
4845 keep_going (ecs);
4846 return;
4847 }
4848 }
4849
4850 /* Check for subroutine calls. The check for the current frame
4851 equalling the step ID is not necessary - the check of the
4852 previous frame's ID is sufficient - but it is a common case and
4853 cheaper than checking the previous frame's ID.
4854
4855 NOTE: frame_id_eq will never report two invalid frame IDs as
4856 being equal, so to get into this block, both the current and
4857 previous frame must have valid frame IDs. */
4858 /* The outer_frame_id check is a heuristic to detect stepping
4859 through startup code. If we step over an instruction which
4860 sets the stack pointer from an invalid value to a valid value,
4861 we may detect that as a subroutine call from the mythical
4862 "outermost" function. This could be fixed by marking
4863 outermost frames as !stack_p,code_p,special_p. Then the
4864 initial outermost frame, before sp was valid, would
4865 have code_addr == &_start. See the comment in frame_id_eq
4866 for more. */
4867 if (!frame_id_eq (get_stack_frame_id (frame),
4868 ecs->event_thread->control.step_stack_frame_id)
4869 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4870 ecs->event_thread->control.step_stack_frame_id)
4871 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4872 outer_frame_id)
4873 || step_start_function != find_pc_function (stop_pc))))
4874 {
4875 CORE_ADDR real_stop_pc;
4876
4877 if (debug_infrun)
4878 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4879
4880 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4881 || ((ecs->event_thread->control.step_range_end == 1)
4882 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4883 ecs->stop_func_start)))
4884 {
4885 /* I presume that step_over_calls is only 0 when we're
4886 supposed to be stepping at the assembly language level
4887 ("stepi"). Just stop. */
4888 /* Also, maybe we just did a "nexti" inside a prolog, so we
4889 thought it was a subroutine call but it was not. Stop as
4890 well. FENN */
4891 /* And this works the same backward as frontward. MVS */
4892 ecs->event_thread->control.stop_step = 1;
4893 print_end_stepping_range_reason ();
4894 stop_stepping (ecs);
4895 return;
4896 }
4897
4898 /* Reverse stepping through solib trampolines. */
4899
4900 if (execution_direction == EXEC_REVERSE
4901 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
4902 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4903 || (ecs->stop_func_start == 0
4904 && in_solib_dynsym_resolve_code (stop_pc))))
4905 {
4906 /* Any solib trampoline code can be handled in reverse
4907 by simply continuing to single-step. We have already
4908 executed the solib function (backwards), and a few
4909 steps will take us back through the trampoline to the
4910 caller. */
4911 keep_going (ecs);
4912 return;
4913 }
4914
4915 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4916 {
4917 /* We're doing a "next".
4918
4919 Normal (forward) execution: set a breakpoint at the
4920 callee's return address (the address at which the caller
4921 will resume).
4922
4923 Reverse (backward) execution. set the step-resume
4924 breakpoint at the start of the function that we just
4925 stepped into (backwards), and continue to there. When we
4926 get there, we'll need to single-step back to the caller. */
4927
4928 if (execution_direction == EXEC_REVERSE)
4929 {
4930 /* If we're already at the start of the function, we've either
4931 just stepped backward into a single instruction function,
4932 or stepped back out of a signal handler to the first instruction
4933 of the function. Just keep going, which will single-step back
4934 to the caller. */
4935 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
4936 {
4937 struct symtab_and_line sr_sal;
4938
4939 /* Normal function call return (static or dynamic). */
4940 init_sal (&sr_sal);
4941 sr_sal.pc = ecs->stop_func_start;
4942 sr_sal.pspace = get_frame_program_space (frame);
4943 insert_step_resume_breakpoint_at_sal (gdbarch,
4944 sr_sal, null_frame_id);
4945 }
4946 }
4947 else
4948 insert_step_resume_breakpoint_at_caller (frame);
4949
4950 keep_going (ecs);
4951 return;
4952 }
4953
4954 /* If we are in a function call trampoline (a stub between the
4955 calling routine and the real function), locate the real
4956 function. That's what tells us (a) whether we want to step
4957 into it at all, and (b) what prologue we want to run to the
4958 end of, if we do step into it. */
4959 real_stop_pc = skip_language_trampoline (frame, stop_pc);
4960 if (real_stop_pc == 0)
4961 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4962 if (real_stop_pc != 0)
4963 ecs->stop_func_start = real_stop_pc;
4964
4965 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4966 {
4967 struct symtab_and_line sr_sal;
4968
4969 init_sal (&sr_sal);
4970 sr_sal.pc = ecs->stop_func_start;
4971 sr_sal.pspace = get_frame_program_space (frame);
4972
4973 insert_step_resume_breakpoint_at_sal (gdbarch,
4974 sr_sal, null_frame_id);
4975 keep_going (ecs);
4976 return;
4977 }
4978
4979 /* If we have line number information for the function we are
4980 thinking of stepping into and the function isn't on the skip
4981 list, step into it.
4982
4983 If there are several symtabs at that PC (e.g. with include
4984 files), just want to know whether *any* of them have line
4985 numbers. find_pc_line handles this. */
4986 {
4987 struct symtab_and_line tmp_sal;
4988
4989 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4990 if (tmp_sal.line != 0
4991 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4992 &tmp_sal))
4993 {
4994 if (execution_direction == EXEC_REVERSE)
4995 handle_step_into_function_backward (gdbarch, ecs);
4996 else
4997 handle_step_into_function (gdbarch, ecs);
4998 return;
4999 }
5000 }
5001
5002 /* If we have no line number and the step-stop-if-no-debug is
5003 set, we stop the step so that the user has a chance to switch
5004 in assembly mode. */
5005 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5006 && step_stop_if_no_debug)
5007 {
5008 ecs->event_thread->control.stop_step = 1;
5009 print_end_stepping_range_reason ();
5010 stop_stepping (ecs);
5011 return;
5012 }
5013
5014 if (execution_direction == EXEC_REVERSE)
5015 {
5016 /* If we're already at the start of the function, we've either just
5017 stepped backward into a single instruction function without line
5018 number info, or stepped back out of a signal handler to the first
5019 instruction of the function without line number info. Just keep
5020 going, which will single-step back to the caller. */
5021 if (ecs->stop_func_start != stop_pc)
5022 {
5023 /* Set a breakpoint at callee's start address.
5024 From there we can step once and be back in the caller. */
5025 struct symtab_and_line sr_sal;
5026
5027 init_sal (&sr_sal);
5028 sr_sal.pc = ecs->stop_func_start;
5029 sr_sal.pspace = get_frame_program_space (frame);
5030 insert_step_resume_breakpoint_at_sal (gdbarch,
5031 sr_sal, null_frame_id);
5032 }
5033 }
5034 else
5035 /* Set a breakpoint at callee's return address (the address
5036 at which the caller will resume). */
5037 insert_step_resume_breakpoint_at_caller (frame);
5038
5039 keep_going (ecs);
5040 return;
5041 }
5042
5043 /* Reverse stepping through solib trampolines. */
5044
5045 if (execution_direction == EXEC_REVERSE
5046 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5047 {
5048 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5049 || (ecs->stop_func_start == 0
5050 && in_solib_dynsym_resolve_code (stop_pc)))
5051 {
5052 /* Any solib trampoline code can be handled in reverse
5053 by simply continuing to single-step. We have already
5054 executed the solib function (backwards), and a few
5055 steps will take us back through the trampoline to the
5056 caller. */
5057 keep_going (ecs);
5058 return;
5059 }
5060 else if (in_solib_dynsym_resolve_code (stop_pc))
5061 {
5062 /* Stepped backward into the solib dynsym resolver.
5063 Set a breakpoint at its start and continue, then
5064 one more step will take us out. */
5065 struct symtab_and_line sr_sal;
5066
5067 init_sal (&sr_sal);
5068 sr_sal.pc = ecs->stop_func_start;
5069 sr_sal.pspace = get_frame_program_space (frame);
5070 insert_step_resume_breakpoint_at_sal (gdbarch,
5071 sr_sal, null_frame_id);
5072 keep_going (ecs);
5073 return;
5074 }
5075 }
5076
5077 stop_pc_sal = find_pc_line (stop_pc, 0);
5078
5079 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5080 the trampoline processing logic, however, there are some trampolines
5081 that have no names, so we should do trampoline handling first. */
5082 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5083 && ecs->stop_func_name == NULL
5084 && stop_pc_sal.line == 0)
5085 {
5086 if (debug_infrun)
5087 fprintf_unfiltered (gdb_stdlog,
5088 "infrun: stepped into undebuggable function\n");
5089
5090 /* The inferior just stepped into, or returned to, an
5091 undebuggable function (where there is no debugging information
5092 and no line number corresponding to the address where the
5093 inferior stopped). Since we want to skip this kind of code,
5094 we keep going until the inferior returns from this
5095 function - unless the user has asked us not to (via
5096 set step-mode) or we no longer know how to get back
5097 to the call site. */
5098 if (step_stop_if_no_debug
5099 || !frame_id_p (frame_unwind_caller_id (frame)))
5100 {
5101 /* If we have no line number and the step-stop-if-no-debug
5102 is set, we stop the step so that the user has a chance to
5103 switch in assembly mode. */
5104 ecs->event_thread->control.stop_step = 1;
5105 print_end_stepping_range_reason ();
5106 stop_stepping (ecs);
5107 return;
5108 }
5109 else
5110 {
5111 /* Set a breakpoint at callee's return address (the address
5112 at which the caller will resume). */
5113 insert_step_resume_breakpoint_at_caller (frame);
5114 keep_going (ecs);
5115 return;
5116 }
5117 }
5118
5119 if (ecs->event_thread->control.step_range_end == 1)
5120 {
5121 /* It is stepi or nexti. We always want to stop stepping after
5122 one instruction. */
5123 if (debug_infrun)
5124 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
5125 ecs->event_thread->control.stop_step = 1;
5126 print_end_stepping_range_reason ();
5127 stop_stepping (ecs);
5128 return;
5129 }
5130
5131 if (stop_pc_sal.line == 0)
5132 {
5133 /* We have no line number information. That means to stop
5134 stepping (does this always happen right after one instruction,
5135 when we do "s" in a function with no line numbers,
5136 or can this happen as a result of a return or longjmp?). */
5137 if (debug_infrun)
5138 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
5139 ecs->event_thread->control.stop_step = 1;
5140 print_end_stepping_range_reason ();
5141 stop_stepping (ecs);
5142 return;
5143 }
5144
5145 /* Look for "calls" to inlined functions, part one. If the inline
5146 frame machinery detected some skipped call sites, we have entered
5147 a new inline function. */
5148
5149 if (frame_id_eq (get_frame_id (get_current_frame ()),
5150 ecs->event_thread->control.step_frame_id)
5151 && inline_skipped_frames (ecs->ptid))
5152 {
5153 struct symtab_and_line call_sal;
5154
5155 if (debug_infrun)
5156 fprintf_unfiltered (gdb_stdlog,
5157 "infrun: stepped into inlined function\n");
5158
5159 find_frame_sal (get_current_frame (), &call_sal);
5160
5161 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5162 {
5163 /* For "step", we're going to stop. But if the call site
5164 for this inlined function is on the same source line as
5165 we were previously stepping, go down into the function
5166 first. Otherwise stop at the call site. */
5167
5168 if (call_sal.line == ecs->event_thread->current_line
5169 && call_sal.symtab == ecs->event_thread->current_symtab)
5170 step_into_inline_frame (ecs->ptid);
5171
5172 ecs->event_thread->control.stop_step = 1;
5173 print_end_stepping_range_reason ();
5174 stop_stepping (ecs);
5175 return;
5176 }
5177 else
5178 {
5179 /* For "next", we should stop at the call site if it is on a
5180 different source line. Otherwise continue through the
5181 inlined function. */
5182 if (call_sal.line == ecs->event_thread->current_line
5183 && call_sal.symtab == ecs->event_thread->current_symtab)
5184 keep_going (ecs);
5185 else
5186 {
5187 ecs->event_thread->control.stop_step = 1;
5188 print_end_stepping_range_reason ();
5189 stop_stepping (ecs);
5190 }
5191 return;
5192 }
5193 }
5194
5195 /* Look for "calls" to inlined functions, part two. If we are still
5196 in the same real function we were stepping through, but we have
5197 to go further up to find the exact frame ID, we are stepping
5198 through a more inlined call beyond its call site. */
5199
5200 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5201 && !frame_id_eq (get_frame_id (get_current_frame ()),
5202 ecs->event_thread->control.step_frame_id)
5203 && stepped_in_from (get_current_frame (),
5204 ecs->event_thread->control.step_frame_id))
5205 {
5206 if (debug_infrun)
5207 fprintf_unfiltered (gdb_stdlog,
5208 "infrun: stepping through inlined function\n");
5209
5210 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5211 keep_going (ecs);
5212 else
5213 {
5214 ecs->event_thread->control.stop_step = 1;
5215 print_end_stepping_range_reason ();
5216 stop_stepping (ecs);
5217 }
5218 return;
5219 }
5220
5221 if ((stop_pc == stop_pc_sal.pc)
5222 && (ecs->event_thread->current_line != stop_pc_sal.line
5223 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5224 {
5225 /* We are at the start of a different line. So stop. Note that
5226 we don't stop if we step into the middle of a different line.
5227 That is said to make things like for (;;) statements work
5228 better. */
5229 if (debug_infrun)
5230 fprintf_unfiltered (gdb_stdlog,
5231 "infrun: stepped to a different line\n");
5232 ecs->event_thread->control.stop_step = 1;
5233 print_end_stepping_range_reason ();
5234 stop_stepping (ecs);
5235 return;
5236 }
5237
5238 /* We aren't done stepping.
5239
5240 Optimize by setting the stepping range to the line.
5241 (We might not be in the original line, but if we entered a
5242 new line in mid-statement, we continue stepping. This makes
5243 things like for(;;) statements work better.) */
5244
5245 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5246 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5247 ecs->event_thread->control.may_range_step = 1;
5248 set_step_info (frame, stop_pc_sal);
5249
5250 if (debug_infrun)
5251 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5252 keep_going (ecs);
5253 }
5254
5255 /* In all-stop mode, if we're currently stepping but have stopped in
5256 some other thread, we may need to switch back to the stepped
5257 thread. Returns true we set the inferior running, false if we left
5258 it stopped (and the event needs further processing). */
5259
5260 static int
5261 switch_back_to_stepped_thread (struct execution_control_state *ecs)
5262 {
5263 if (!non_stop)
5264 {
5265 struct thread_info *tp;
5266
5267 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
5268 ecs->event_thread);
5269 if (tp)
5270 {
5271 /* However, if the current thread is blocked on some internal
5272 breakpoint, and we simply need to step over that breakpoint
5273 to get it going again, do that first. */
5274 if ((ecs->event_thread->control.trap_expected
5275 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5276 || ecs->event_thread->stepping_over_breakpoint)
5277 {
5278 keep_going (ecs);
5279 return 1;
5280 }
5281
5282 /* If the stepping thread exited, then don't try to switch
5283 back and resume it, which could fail in several different
5284 ways depending on the target. Instead, just keep going.
5285
5286 We can find a stepping dead thread in the thread list in
5287 two cases:
5288
5289 - The target supports thread exit events, and when the
5290 target tries to delete the thread from the thread list,
5291 inferior_ptid pointed at the exiting thread. In such
5292 case, calling delete_thread does not really remove the
5293 thread from the list; instead, the thread is left listed,
5294 with 'exited' state.
5295
5296 - The target's debug interface does not support thread
5297 exit events, and so we have no idea whatsoever if the
5298 previously stepping thread is still alive. For that
5299 reason, we need to synchronously query the target
5300 now. */
5301 if (is_exited (tp->ptid)
5302 || !target_thread_alive (tp->ptid))
5303 {
5304 if (debug_infrun)
5305 fprintf_unfiltered (gdb_stdlog,
5306 "infrun: not switching back to "
5307 "stepped thread, it has vanished\n");
5308
5309 delete_thread (tp->ptid);
5310 keep_going (ecs);
5311 return 1;
5312 }
5313
5314 /* Otherwise, we no longer expect a trap in the current thread.
5315 Clear the trap_expected flag before switching back -- this is
5316 what keep_going would do as well, if we called it. */
5317 ecs->event_thread->control.trap_expected = 0;
5318
5319 if (debug_infrun)
5320 fprintf_unfiltered (gdb_stdlog,
5321 "infrun: switching back to stepped thread\n");
5322
5323 ecs->event_thread = tp;
5324 ecs->ptid = tp->ptid;
5325 context_switch (ecs->ptid);
5326 keep_going (ecs);
5327 return 1;
5328 }
5329 }
5330 return 0;
5331 }
5332
5333 /* Is thread TP in the middle of single-stepping? */
5334
5335 static int
5336 currently_stepping (struct thread_info *tp)
5337 {
5338 return ((tp->control.step_range_end
5339 && tp->control.step_resume_breakpoint == NULL)
5340 || tp->control.trap_expected
5341 || bpstat_should_step ());
5342 }
5343
5344 /* Returns true if any thread *but* the one passed in "data" is in the
5345 middle of stepping or of handling a "next". */
5346
5347 static int
5348 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
5349 {
5350 if (tp == data)
5351 return 0;
5352
5353 return (tp->control.step_range_end
5354 || tp->control.trap_expected);
5355 }
5356
5357 /* Inferior has stepped into a subroutine call with source code that
5358 we should not step over. Do step to the first line of code in
5359 it. */
5360
5361 static void
5362 handle_step_into_function (struct gdbarch *gdbarch,
5363 struct execution_control_state *ecs)
5364 {
5365 struct symtab *s;
5366 struct symtab_and_line stop_func_sal, sr_sal;
5367
5368 fill_in_stop_func (gdbarch, ecs);
5369
5370 s = find_pc_symtab (stop_pc);
5371 if (s && s->language != language_asm)
5372 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5373 ecs->stop_func_start);
5374
5375 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5376 /* Use the step_resume_break to step until the end of the prologue,
5377 even if that involves jumps (as it seems to on the vax under
5378 4.2). */
5379 /* If the prologue ends in the middle of a source line, continue to
5380 the end of that source line (if it is still within the function).
5381 Otherwise, just go to end of prologue. */
5382 if (stop_func_sal.end
5383 && stop_func_sal.pc != ecs->stop_func_start
5384 && stop_func_sal.end < ecs->stop_func_end)
5385 ecs->stop_func_start = stop_func_sal.end;
5386
5387 /* Architectures which require breakpoint adjustment might not be able
5388 to place a breakpoint at the computed address. If so, the test
5389 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5390 ecs->stop_func_start to an address at which a breakpoint may be
5391 legitimately placed.
5392
5393 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5394 made, GDB will enter an infinite loop when stepping through
5395 optimized code consisting of VLIW instructions which contain
5396 subinstructions corresponding to different source lines. On
5397 FR-V, it's not permitted to place a breakpoint on any but the
5398 first subinstruction of a VLIW instruction. When a breakpoint is
5399 set, GDB will adjust the breakpoint address to the beginning of
5400 the VLIW instruction. Thus, we need to make the corresponding
5401 adjustment here when computing the stop address. */
5402
5403 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5404 {
5405 ecs->stop_func_start
5406 = gdbarch_adjust_breakpoint_address (gdbarch,
5407 ecs->stop_func_start);
5408 }
5409
5410 if (ecs->stop_func_start == stop_pc)
5411 {
5412 /* We are already there: stop now. */
5413 ecs->event_thread->control.stop_step = 1;
5414 print_end_stepping_range_reason ();
5415 stop_stepping (ecs);
5416 return;
5417 }
5418 else
5419 {
5420 /* Put the step-breakpoint there and go until there. */
5421 init_sal (&sr_sal); /* initialize to zeroes */
5422 sr_sal.pc = ecs->stop_func_start;
5423 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5424 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5425
5426 /* Do not specify what the fp should be when we stop since on
5427 some machines the prologue is where the new fp value is
5428 established. */
5429 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5430
5431 /* And make sure stepping stops right away then. */
5432 ecs->event_thread->control.step_range_end
5433 = ecs->event_thread->control.step_range_start;
5434 }
5435 keep_going (ecs);
5436 }
5437
5438 /* Inferior has stepped backward into a subroutine call with source
5439 code that we should not step over. Do step to the beginning of the
5440 last line of code in it. */
5441
5442 static void
5443 handle_step_into_function_backward (struct gdbarch *gdbarch,
5444 struct execution_control_state *ecs)
5445 {
5446 struct symtab *s;
5447 struct symtab_and_line stop_func_sal;
5448
5449 fill_in_stop_func (gdbarch, ecs);
5450
5451 s = find_pc_symtab (stop_pc);
5452 if (s && s->language != language_asm)
5453 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5454 ecs->stop_func_start);
5455
5456 stop_func_sal = find_pc_line (stop_pc, 0);
5457
5458 /* OK, we're just going to keep stepping here. */
5459 if (stop_func_sal.pc == stop_pc)
5460 {
5461 /* We're there already. Just stop stepping now. */
5462 ecs->event_thread->control.stop_step = 1;
5463 print_end_stepping_range_reason ();
5464 stop_stepping (ecs);
5465 }
5466 else
5467 {
5468 /* Else just reset the step range and keep going.
5469 No step-resume breakpoint, they don't work for
5470 epilogues, which can have multiple entry paths. */
5471 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5472 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5473 keep_going (ecs);
5474 }
5475 return;
5476 }
5477
5478 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5479 This is used to both functions and to skip over code. */
5480
5481 static void
5482 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5483 struct symtab_and_line sr_sal,
5484 struct frame_id sr_id,
5485 enum bptype sr_type)
5486 {
5487 /* There should never be more than one step-resume or longjmp-resume
5488 breakpoint per thread, so we should never be setting a new
5489 step_resume_breakpoint when one is already active. */
5490 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5491 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5492
5493 if (debug_infrun)
5494 fprintf_unfiltered (gdb_stdlog,
5495 "infrun: inserting step-resume breakpoint at %s\n",
5496 paddress (gdbarch, sr_sal.pc));
5497
5498 inferior_thread ()->control.step_resume_breakpoint
5499 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5500 }
5501
5502 void
5503 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5504 struct symtab_and_line sr_sal,
5505 struct frame_id sr_id)
5506 {
5507 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5508 sr_sal, sr_id,
5509 bp_step_resume);
5510 }
5511
5512 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5513 This is used to skip a potential signal handler.
5514
5515 This is called with the interrupted function's frame. The signal
5516 handler, when it returns, will resume the interrupted function at
5517 RETURN_FRAME.pc. */
5518
5519 static void
5520 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5521 {
5522 struct symtab_and_line sr_sal;
5523 struct gdbarch *gdbarch;
5524
5525 gdb_assert (return_frame != NULL);
5526 init_sal (&sr_sal); /* initialize to zeros */
5527
5528 gdbarch = get_frame_arch (return_frame);
5529 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5530 sr_sal.section = find_pc_overlay (sr_sal.pc);
5531 sr_sal.pspace = get_frame_program_space (return_frame);
5532
5533 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5534 get_stack_frame_id (return_frame),
5535 bp_hp_step_resume);
5536 }
5537
5538 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
5539 is used to skip a function after stepping into it (for "next" or if
5540 the called function has no debugging information).
5541
5542 The current function has almost always been reached by single
5543 stepping a call or return instruction. NEXT_FRAME belongs to the
5544 current function, and the breakpoint will be set at the caller's
5545 resume address.
5546
5547 This is a separate function rather than reusing
5548 insert_hp_step_resume_breakpoint_at_frame in order to avoid
5549 get_prev_frame, which may stop prematurely (see the implementation
5550 of frame_unwind_caller_id for an example). */
5551
5552 static void
5553 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5554 {
5555 struct symtab_and_line sr_sal;
5556 struct gdbarch *gdbarch;
5557
5558 /* We shouldn't have gotten here if we don't know where the call site
5559 is. */
5560 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5561
5562 init_sal (&sr_sal); /* initialize to zeros */
5563
5564 gdbarch = frame_unwind_caller_arch (next_frame);
5565 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5566 frame_unwind_caller_pc (next_frame));
5567 sr_sal.section = find_pc_overlay (sr_sal.pc);
5568 sr_sal.pspace = frame_unwind_program_space (next_frame);
5569
5570 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5571 frame_unwind_caller_id (next_frame));
5572 }
5573
5574 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5575 new breakpoint at the target of a jmp_buf. The handling of
5576 longjmp-resume uses the same mechanisms used for handling
5577 "step-resume" breakpoints. */
5578
5579 static void
5580 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5581 {
5582 /* There should never be more than one longjmp-resume breakpoint per
5583 thread, so we should never be setting a new
5584 longjmp_resume_breakpoint when one is already active. */
5585 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
5586
5587 if (debug_infrun)
5588 fprintf_unfiltered (gdb_stdlog,
5589 "infrun: inserting longjmp-resume breakpoint at %s\n",
5590 paddress (gdbarch, pc));
5591
5592 inferior_thread ()->control.exception_resume_breakpoint =
5593 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5594 }
5595
5596 /* Insert an exception resume breakpoint. TP is the thread throwing
5597 the exception. The block B is the block of the unwinder debug hook
5598 function. FRAME is the frame corresponding to the call to this
5599 function. SYM is the symbol of the function argument holding the
5600 target PC of the exception. */
5601
5602 static void
5603 insert_exception_resume_breakpoint (struct thread_info *tp,
5604 struct block *b,
5605 struct frame_info *frame,
5606 struct symbol *sym)
5607 {
5608 volatile struct gdb_exception e;
5609
5610 /* We want to ignore errors here. */
5611 TRY_CATCH (e, RETURN_MASK_ERROR)
5612 {
5613 struct symbol *vsym;
5614 struct value *value;
5615 CORE_ADDR handler;
5616 struct breakpoint *bp;
5617
5618 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5619 value = read_var_value (vsym, frame);
5620 /* If the value was optimized out, revert to the old behavior. */
5621 if (! value_optimized_out (value))
5622 {
5623 handler = value_as_address (value);
5624
5625 if (debug_infrun)
5626 fprintf_unfiltered (gdb_stdlog,
5627 "infrun: exception resume at %lx\n",
5628 (unsigned long) handler);
5629
5630 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5631 handler, bp_exception_resume);
5632
5633 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5634 frame = NULL;
5635
5636 bp->thread = tp->num;
5637 inferior_thread ()->control.exception_resume_breakpoint = bp;
5638 }
5639 }
5640 }
5641
5642 /* A helper for check_exception_resume that sets an
5643 exception-breakpoint based on a SystemTap probe. */
5644
5645 static void
5646 insert_exception_resume_from_probe (struct thread_info *tp,
5647 const struct probe *probe,
5648 struct frame_info *frame)
5649 {
5650 struct value *arg_value;
5651 CORE_ADDR handler;
5652 struct breakpoint *bp;
5653
5654 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5655 if (!arg_value)
5656 return;
5657
5658 handler = value_as_address (arg_value);
5659
5660 if (debug_infrun)
5661 fprintf_unfiltered (gdb_stdlog,
5662 "infrun: exception resume at %s\n",
5663 paddress (get_objfile_arch (probe->objfile),
5664 handler));
5665
5666 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5667 handler, bp_exception_resume);
5668 bp->thread = tp->num;
5669 inferior_thread ()->control.exception_resume_breakpoint = bp;
5670 }
5671
5672 /* This is called when an exception has been intercepted. Check to
5673 see whether the exception's destination is of interest, and if so,
5674 set an exception resume breakpoint there. */
5675
5676 static void
5677 check_exception_resume (struct execution_control_state *ecs,
5678 struct frame_info *frame)
5679 {
5680 volatile struct gdb_exception e;
5681 const struct probe *probe;
5682 struct symbol *func;
5683
5684 /* First see if this exception unwinding breakpoint was set via a
5685 SystemTap probe point. If so, the probe has two arguments: the
5686 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5687 set a breakpoint there. */
5688 probe = find_probe_by_pc (get_frame_pc (frame));
5689 if (probe)
5690 {
5691 insert_exception_resume_from_probe (ecs->event_thread, probe, frame);
5692 return;
5693 }
5694
5695 func = get_frame_function (frame);
5696 if (!func)
5697 return;
5698
5699 TRY_CATCH (e, RETURN_MASK_ERROR)
5700 {
5701 struct block *b;
5702 struct block_iterator iter;
5703 struct symbol *sym;
5704 int argno = 0;
5705
5706 /* The exception breakpoint is a thread-specific breakpoint on
5707 the unwinder's debug hook, declared as:
5708
5709 void _Unwind_DebugHook (void *cfa, void *handler);
5710
5711 The CFA argument indicates the frame to which control is
5712 about to be transferred. HANDLER is the destination PC.
5713
5714 We ignore the CFA and set a temporary breakpoint at HANDLER.
5715 This is not extremely efficient but it avoids issues in gdb
5716 with computing the DWARF CFA, and it also works even in weird
5717 cases such as throwing an exception from inside a signal
5718 handler. */
5719
5720 b = SYMBOL_BLOCK_VALUE (func);
5721 ALL_BLOCK_SYMBOLS (b, iter, sym)
5722 {
5723 if (!SYMBOL_IS_ARGUMENT (sym))
5724 continue;
5725
5726 if (argno == 0)
5727 ++argno;
5728 else
5729 {
5730 insert_exception_resume_breakpoint (ecs->event_thread,
5731 b, frame, sym);
5732 break;
5733 }
5734 }
5735 }
5736 }
5737
5738 static void
5739 stop_stepping (struct execution_control_state *ecs)
5740 {
5741 if (debug_infrun)
5742 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
5743
5744 /* Let callers know we don't want to wait for the inferior anymore. */
5745 ecs->wait_some_more = 0;
5746 }
5747
5748 /* Called when we should continue running the inferior, because the
5749 current event doesn't cause a user visible stop. This does the
5750 resuming part; waiting for the next event is done elsewhere. */
5751
5752 static void
5753 keep_going (struct execution_control_state *ecs)
5754 {
5755 /* Make sure normal_stop is called if we get a QUIT handled before
5756 reaching resume. */
5757 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5758
5759 /* Save the pc before execution, to compare with pc after stop. */
5760 ecs->event_thread->prev_pc
5761 = regcache_read_pc (get_thread_regcache (ecs->ptid));
5762
5763 if (ecs->event_thread->control.trap_expected
5764 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5765 {
5766 /* We haven't yet gotten our trap, and either: intercepted a
5767 non-signal event (e.g., a fork); or took a signal which we
5768 are supposed to pass through to the inferior. Simply
5769 continue. */
5770 discard_cleanups (old_cleanups);
5771 resume (currently_stepping (ecs->event_thread),
5772 ecs->event_thread->suspend.stop_signal);
5773 }
5774 else
5775 {
5776 /* Either the trap was not expected, but we are continuing
5777 anyway (if we got a signal, the user asked it be passed to
5778 the child)
5779 -- or --
5780 We got our expected trap, but decided we should resume from
5781 it.
5782
5783 We're going to run this baby now!
5784
5785 Note that insert_breakpoints won't try to re-insert
5786 already inserted breakpoints. Therefore, we don't
5787 care if breakpoints were already inserted, or not. */
5788
5789 if (ecs->event_thread->stepping_over_breakpoint)
5790 {
5791 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
5792
5793 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
5794 {
5795 /* Since we can't do a displaced step, we have to remove
5796 the breakpoint while we step it. To keep things
5797 simple, we remove them all. */
5798 remove_breakpoints ();
5799 }
5800 }
5801 else
5802 {
5803 volatile struct gdb_exception e;
5804
5805 /* Stop stepping if inserting breakpoints fails. */
5806 TRY_CATCH (e, RETURN_MASK_ERROR)
5807 {
5808 insert_breakpoints ();
5809 }
5810 if (e.reason < 0)
5811 {
5812 exception_print (gdb_stderr, e);
5813 stop_stepping (ecs);
5814 return;
5815 }
5816 }
5817
5818 ecs->event_thread->control.trap_expected
5819 = ecs->event_thread->stepping_over_breakpoint;
5820
5821 /* Do not deliver GDB_SIGNAL_TRAP (except when the user
5822 explicitly specifies that such a signal should be delivered
5823 to the target program). Typically, that would occur when a
5824 user is debugging a target monitor on a simulator: the target
5825 monitor sets a breakpoint; the simulator encounters this
5826 breakpoint and halts the simulation handing control to GDB;
5827 GDB, noting that the stop address doesn't map to any known
5828 breakpoint, returns control back to the simulator; the
5829 simulator then delivers the hardware equivalent of a
5830 GDB_SIGNAL_TRAP to the program being debugged. */
5831 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5832 && !signal_program[ecs->event_thread->suspend.stop_signal])
5833 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5834
5835 discard_cleanups (old_cleanups);
5836 resume (currently_stepping (ecs->event_thread),
5837 ecs->event_thread->suspend.stop_signal);
5838 }
5839
5840 prepare_to_wait (ecs);
5841 }
5842
5843 /* This function normally comes after a resume, before
5844 handle_inferior_event exits. It takes care of any last bits of
5845 housekeeping, and sets the all-important wait_some_more flag. */
5846
5847 static void
5848 prepare_to_wait (struct execution_control_state *ecs)
5849 {
5850 if (debug_infrun)
5851 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
5852
5853 /* This is the old end of the while loop. Let everybody know we
5854 want to wait for the inferior some more and get called again
5855 soon. */
5856 ecs->wait_some_more = 1;
5857 }
5858
5859 /* Several print_*_reason functions to print why the inferior has stopped.
5860 We always print something when the inferior exits, or receives a signal.
5861 The rest of the cases are dealt with later on in normal_stop and
5862 print_it_typical. Ideally there should be a call to one of these
5863 print_*_reason functions functions from handle_inferior_event each time
5864 stop_stepping is called. */
5865
5866 /* Print why the inferior has stopped.
5867 We are done with a step/next/si/ni command, print why the inferior has
5868 stopped. For now print nothing. Print a message only if not in the middle
5869 of doing a "step n" operation for n > 1. */
5870
5871 static void
5872 print_end_stepping_range_reason (void)
5873 {
5874 if ((!inferior_thread ()->step_multi
5875 || !inferior_thread ()->control.stop_step)
5876 && ui_out_is_mi_like_p (current_uiout))
5877 ui_out_field_string (current_uiout, "reason",
5878 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5879 }
5880
5881 /* The inferior was terminated by a signal, print why it stopped. */
5882
5883 static void
5884 print_signal_exited_reason (enum gdb_signal siggnal)
5885 {
5886 struct ui_out *uiout = current_uiout;
5887
5888 annotate_signalled ();
5889 if (ui_out_is_mi_like_p (uiout))
5890 ui_out_field_string
5891 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5892 ui_out_text (uiout, "\nProgram terminated with signal ");
5893 annotate_signal_name ();
5894 ui_out_field_string (uiout, "signal-name",
5895 gdb_signal_to_name (siggnal));
5896 annotate_signal_name_end ();
5897 ui_out_text (uiout, ", ");
5898 annotate_signal_string ();
5899 ui_out_field_string (uiout, "signal-meaning",
5900 gdb_signal_to_string (siggnal));
5901 annotate_signal_string_end ();
5902 ui_out_text (uiout, ".\n");
5903 ui_out_text (uiout, "The program no longer exists.\n");
5904 }
5905
5906 /* The inferior program is finished, print why it stopped. */
5907
5908 static void
5909 print_exited_reason (int exitstatus)
5910 {
5911 struct inferior *inf = current_inferior ();
5912 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5913 struct ui_out *uiout = current_uiout;
5914
5915 annotate_exited (exitstatus);
5916 if (exitstatus)
5917 {
5918 if (ui_out_is_mi_like_p (uiout))
5919 ui_out_field_string (uiout, "reason",
5920 async_reason_lookup (EXEC_ASYNC_EXITED));
5921 ui_out_text (uiout, "[Inferior ");
5922 ui_out_text (uiout, plongest (inf->num));
5923 ui_out_text (uiout, " (");
5924 ui_out_text (uiout, pidstr);
5925 ui_out_text (uiout, ") exited with code ");
5926 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
5927 ui_out_text (uiout, "]\n");
5928 }
5929 else
5930 {
5931 if (ui_out_is_mi_like_p (uiout))
5932 ui_out_field_string
5933 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5934 ui_out_text (uiout, "[Inferior ");
5935 ui_out_text (uiout, plongest (inf->num));
5936 ui_out_text (uiout, " (");
5937 ui_out_text (uiout, pidstr);
5938 ui_out_text (uiout, ") exited normally]\n");
5939 }
5940 /* Support the --return-child-result option. */
5941 return_child_result_value = exitstatus;
5942 }
5943
5944 /* Signal received, print why the inferior has stopped. The signal table
5945 tells us to print about it. */
5946
5947 static void
5948 print_signal_received_reason (enum gdb_signal siggnal)
5949 {
5950 struct ui_out *uiout = current_uiout;
5951
5952 annotate_signal ();
5953
5954 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5955 {
5956 struct thread_info *t = inferior_thread ();
5957
5958 ui_out_text (uiout, "\n[");
5959 ui_out_field_string (uiout, "thread-name",
5960 target_pid_to_str (t->ptid));
5961 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5962 ui_out_text (uiout, " stopped");
5963 }
5964 else
5965 {
5966 ui_out_text (uiout, "\nProgram received signal ");
5967 annotate_signal_name ();
5968 if (ui_out_is_mi_like_p (uiout))
5969 ui_out_field_string
5970 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5971 ui_out_field_string (uiout, "signal-name",
5972 gdb_signal_to_name (siggnal));
5973 annotate_signal_name_end ();
5974 ui_out_text (uiout, ", ");
5975 annotate_signal_string ();
5976 ui_out_field_string (uiout, "signal-meaning",
5977 gdb_signal_to_string (siggnal));
5978 annotate_signal_string_end ();
5979 }
5980 ui_out_text (uiout, ".\n");
5981 }
5982
5983 /* Reverse execution: target ran out of history info, print why the inferior
5984 has stopped. */
5985
5986 static void
5987 print_no_history_reason (void)
5988 {
5989 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
5990 }
5991
5992 /* Here to return control to GDB when the inferior stops for real.
5993 Print appropriate messages, remove breakpoints, give terminal our modes.
5994
5995 STOP_PRINT_FRAME nonzero means print the executing frame
5996 (pc, function, args, file, line number and line text).
5997 BREAKPOINTS_FAILED nonzero means stop was due to error
5998 attempting to insert breakpoints. */
5999
6000 void
6001 normal_stop (void)
6002 {
6003 struct target_waitstatus last;
6004 ptid_t last_ptid;
6005 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6006
6007 get_last_target_status (&last_ptid, &last);
6008
6009 /* If an exception is thrown from this point on, make sure to
6010 propagate GDB's knowledge of the executing state to the
6011 frontend/user running state. A QUIT is an easy exception to see
6012 here, so do this before any filtered output. */
6013 if (!non_stop)
6014 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
6015 else if (last.kind != TARGET_WAITKIND_SIGNALLED
6016 && last.kind != TARGET_WAITKIND_EXITED
6017 && last.kind != TARGET_WAITKIND_NO_RESUMED)
6018 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
6019
6020 /* In non-stop mode, we don't want GDB to switch threads behind the
6021 user's back, to avoid races where the user is typing a command to
6022 apply to thread x, but GDB switches to thread y before the user
6023 finishes entering the command. */
6024
6025 /* As with the notification of thread events, we want to delay
6026 notifying the user that we've switched thread context until
6027 the inferior actually stops.
6028
6029 There's no point in saying anything if the inferior has exited.
6030 Note that SIGNALLED here means "exited with a signal", not
6031 "received a signal". */
6032 if (!non_stop
6033 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
6034 && target_has_execution
6035 && last.kind != TARGET_WAITKIND_SIGNALLED
6036 && last.kind != TARGET_WAITKIND_EXITED
6037 && last.kind != TARGET_WAITKIND_NO_RESUMED)
6038 {
6039 target_terminal_ours_for_output ();
6040 printf_filtered (_("[Switching to %s]\n"),
6041 target_pid_to_str (inferior_ptid));
6042 annotate_thread_changed ();
6043 previous_inferior_ptid = inferior_ptid;
6044 }
6045
6046 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
6047 {
6048 gdb_assert (sync_execution || !target_can_async_p ());
6049
6050 target_terminal_ours_for_output ();
6051 printf_filtered (_("No unwaited-for children left.\n"));
6052 }
6053
6054 if (!breakpoints_always_inserted_mode () && target_has_execution)
6055 {
6056 if (remove_breakpoints ())
6057 {
6058 target_terminal_ours_for_output ();
6059 printf_filtered (_("Cannot remove breakpoints because "
6060 "program is no longer writable.\nFurther "
6061 "execution is probably impossible.\n"));
6062 }
6063 }
6064
6065 /* If an auto-display called a function and that got a signal,
6066 delete that auto-display to avoid an infinite recursion. */
6067
6068 if (stopped_by_random_signal)
6069 disable_current_display ();
6070
6071 /* Don't print a message if in the middle of doing a "step n"
6072 operation for n > 1 */
6073 if (target_has_execution
6074 && last.kind != TARGET_WAITKIND_SIGNALLED
6075 && last.kind != TARGET_WAITKIND_EXITED
6076 && inferior_thread ()->step_multi
6077 && inferior_thread ()->control.stop_step)
6078 goto done;
6079
6080 target_terminal_ours ();
6081 async_enable_stdin ();
6082
6083 /* Set the current source location. This will also happen if we
6084 display the frame below, but the current SAL will be incorrect
6085 during a user hook-stop function. */
6086 if (has_stack_frames () && !stop_stack_dummy)
6087 set_current_sal_from_frame (get_current_frame (), 1);
6088
6089 /* Let the user/frontend see the threads as stopped. */
6090 do_cleanups (old_chain);
6091
6092 /* Look up the hook_stop and run it (CLI internally handles problem
6093 of stop_command's pre-hook not existing). */
6094 if (stop_command)
6095 catch_errors (hook_stop_stub, stop_command,
6096 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6097
6098 if (!has_stack_frames ())
6099 goto done;
6100
6101 if (last.kind == TARGET_WAITKIND_SIGNALLED
6102 || last.kind == TARGET_WAITKIND_EXITED)
6103 goto done;
6104
6105 /* Select innermost stack frame - i.e., current frame is frame 0,
6106 and current location is based on that.
6107 Don't do this on return from a stack dummy routine,
6108 or if the program has exited. */
6109
6110 if (!stop_stack_dummy)
6111 {
6112 select_frame (get_current_frame ());
6113
6114 /* Print current location without a level number, if
6115 we have changed functions or hit a breakpoint.
6116 Print source line if we have one.
6117 bpstat_print() contains the logic deciding in detail
6118 what to print, based on the event(s) that just occurred. */
6119
6120 /* If --batch-silent is enabled then there's no need to print the current
6121 source location, and to try risks causing an error message about
6122 missing source files. */
6123 if (stop_print_frame && !batch_silent)
6124 {
6125 int bpstat_ret;
6126 int source_flag;
6127 int do_frame_printing = 1;
6128 struct thread_info *tp = inferior_thread ();
6129
6130 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
6131 switch (bpstat_ret)
6132 {
6133 case PRINT_UNKNOWN:
6134 /* FIXME: cagney/2002-12-01: Given that a frame ID does
6135 (or should) carry around the function and does (or
6136 should) use that when doing a frame comparison. */
6137 if (tp->control.stop_step
6138 && frame_id_eq (tp->control.step_frame_id,
6139 get_frame_id (get_current_frame ()))
6140 && step_start_function == find_pc_function (stop_pc))
6141 source_flag = SRC_LINE; /* Finished step, just
6142 print source line. */
6143 else
6144 source_flag = SRC_AND_LOC; /* Print location and
6145 source line. */
6146 break;
6147 case PRINT_SRC_AND_LOC:
6148 source_flag = SRC_AND_LOC; /* Print location and
6149 source line. */
6150 break;
6151 case PRINT_SRC_ONLY:
6152 source_flag = SRC_LINE;
6153 break;
6154 case PRINT_NOTHING:
6155 source_flag = SRC_LINE; /* something bogus */
6156 do_frame_printing = 0;
6157 break;
6158 default:
6159 internal_error (__FILE__, __LINE__, _("Unknown value."));
6160 }
6161
6162 /* The behavior of this routine with respect to the source
6163 flag is:
6164 SRC_LINE: Print only source line
6165 LOCATION: Print only location
6166 SRC_AND_LOC: Print location and source line. */
6167 if (do_frame_printing)
6168 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
6169
6170 /* Display the auto-display expressions. */
6171 do_displays ();
6172 }
6173 }
6174
6175 /* Save the function value return registers, if we care.
6176 We might be about to restore their previous contents. */
6177 if (inferior_thread ()->control.proceed_to_finish
6178 && execution_direction != EXEC_REVERSE)
6179 {
6180 /* This should not be necessary. */
6181 if (stop_registers)
6182 regcache_xfree (stop_registers);
6183
6184 /* NB: The copy goes through to the target picking up the value of
6185 all the registers. */
6186 stop_registers = regcache_dup (get_current_regcache ());
6187 }
6188
6189 if (stop_stack_dummy == STOP_STACK_DUMMY)
6190 {
6191 /* Pop the empty frame that contains the stack dummy.
6192 This also restores inferior state prior to the call
6193 (struct infcall_suspend_state). */
6194 struct frame_info *frame = get_current_frame ();
6195
6196 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6197 frame_pop (frame);
6198 /* frame_pop() calls reinit_frame_cache as the last thing it
6199 does which means there's currently no selected frame. We
6200 don't need to re-establish a selected frame if the dummy call
6201 returns normally, that will be done by
6202 restore_infcall_control_state. However, we do have to handle
6203 the case where the dummy call is returning after being
6204 stopped (e.g. the dummy call previously hit a breakpoint).
6205 We can't know which case we have so just always re-establish
6206 a selected frame here. */
6207 select_frame (get_current_frame ());
6208 }
6209
6210 done:
6211 annotate_stopped ();
6212
6213 /* Suppress the stop observer if we're in the middle of:
6214
6215 - a step n (n > 1), as there still more steps to be done.
6216
6217 - a "finish" command, as the observer will be called in
6218 finish_command_continuation, so it can include the inferior
6219 function's return value.
6220
6221 - calling an inferior function, as we pretend we inferior didn't
6222 run at all. The return value of the call is handled by the
6223 expression evaluator, through call_function_by_hand. */
6224
6225 if (!target_has_execution
6226 || last.kind == TARGET_WAITKIND_SIGNALLED
6227 || last.kind == TARGET_WAITKIND_EXITED
6228 || last.kind == TARGET_WAITKIND_NO_RESUMED
6229 || (!(inferior_thread ()->step_multi
6230 && inferior_thread ()->control.stop_step)
6231 && !(inferior_thread ()->control.stop_bpstat
6232 && inferior_thread ()->control.proceed_to_finish)
6233 && !inferior_thread ()->control.in_infcall))
6234 {
6235 if (!ptid_equal (inferior_ptid, null_ptid))
6236 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
6237 stop_print_frame);
6238 else
6239 observer_notify_normal_stop (NULL, stop_print_frame);
6240 }
6241
6242 if (target_has_execution)
6243 {
6244 if (last.kind != TARGET_WAITKIND_SIGNALLED
6245 && last.kind != TARGET_WAITKIND_EXITED)
6246 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6247 Delete any breakpoint that is to be deleted at the next stop. */
6248 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
6249 }
6250
6251 /* Try to get rid of automatically added inferiors that are no
6252 longer needed. Keeping those around slows down things linearly.
6253 Note that this never removes the current inferior. */
6254 prune_inferiors ();
6255 }
6256
6257 static int
6258 hook_stop_stub (void *cmd)
6259 {
6260 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
6261 return (0);
6262 }
6263 \f
6264 int
6265 signal_stop_state (int signo)
6266 {
6267 return signal_stop[signo];
6268 }
6269
6270 int
6271 signal_print_state (int signo)
6272 {
6273 return signal_print[signo];
6274 }
6275
6276 int
6277 signal_pass_state (int signo)
6278 {
6279 return signal_program[signo];
6280 }
6281
6282 static void
6283 signal_cache_update (int signo)
6284 {
6285 if (signo == -1)
6286 {
6287 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
6288 signal_cache_update (signo);
6289
6290 return;
6291 }
6292
6293 signal_pass[signo] = (signal_stop[signo] == 0
6294 && signal_print[signo] == 0
6295 && signal_program[signo] == 1
6296 && signal_catch[signo] == 0);
6297 }
6298
6299 int
6300 signal_stop_update (int signo, int state)
6301 {
6302 int ret = signal_stop[signo];
6303
6304 signal_stop[signo] = state;
6305 signal_cache_update (signo);
6306 return ret;
6307 }
6308
6309 int
6310 signal_print_update (int signo, int state)
6311 {
6312 int ret = signal_print[signo];
6313
6314 signal_print[signo] = state;
6315 signal_cache_update (signo);
6316 return ret;
6317 }
6318
6319 int
6320 signal_pass_update (int signo, int state)
6321 {
6322 int ret = signal_program[signo];
6323
6324 signal_program[signo] = state;
6325 signal_cache_update (signo);
6326 return ret;
6327 }
6328
6329 /* Update the global 'signal_catch' from INFO and notify the
6330 target. */
6331
6332 void
6333 signal_catch_update (const unsigned int *info)
6334 {
6335 int i;
6336
6337 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6338 signal_catch[i] = info[i] > 0;
6339 signal_cache_update (-1);
6340 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6341 }
6342
6343 static void
6344 sig_print_header (void)
6345 {
6346 printf_filtered (_("Signal Stop\tPrint\tPass "
6347 "to program\tDescription\n"));
6348 }
6349
6350 static void
6351 sig_print_info (enum gdb_signal oursig)
6352 {
6353 const char *name = gdb_signal_to_name (oursig);
6354 int name_padding = 13 - strlen (name);
6355
6356 if (name_padding <= 0)
6357 name_padding = 0;
6358
6359 printf_filtered ("%s", name);
6360 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6361 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6362 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6363 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6364 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
6365 }
6366
6367 /* Specify how various signals in the inferior should be handled. */
6368
6369 static void
6370 handle_command (char *args, int from_tty)
6371 {
6372 char **argv;
6373 int digits, wordlen;
6374 int sigfirst, signum, siglast;
6375 enum gdb_signal oursig;
6376 int allsigs;
6377 int nsigs;
6378 unsigned char *sigs;
6379 struct cleanup *old_chain;
6380
6381 if (args == NULL)
6382 {
6383 error_no_arg (_("signal to handle"));
6384 }
6385
6386 /* Allocate and zero an array of flags for which signals to handle. */
6387
6388 nsigs = (int) GDB_SIGNAL_LAST;
6389 sigs = (unsigned char *) alloca (nsigs);
6390 memset (sigs, 0, nsigs);
6391
6392 /* Break the command line up into args. */
6393
6394 argv = gdb_buildargv (args);
6395 old_chain = make_cleanup_freeargv (argv);
6396
6397 /* Walk through the args, looking for signal oursigs, signal names, and
6398 actions. Signal numbers and signal names may be interspersed with
6399 actions, with the actions being performed for all signals cumulatively
6400 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6401
6402 while (*argv != NULL)
6403 {
6404 wordlen = strlen (*argv);
6405 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6406 {;
6407 }
6408 allsigs = 0;
6409 sigfirst = siglast = -1;
6410
6411 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6412 {
6413 /* Apply action to all signals except those used by the
6414 debugger. Silently skip those. */
6415 allsigs = 1;
6416 sigfirst = 0;
6417 siglast = nsigs - 1;
6418 }
6419 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6420 {
6421 SET_SIGS (nsigs, sigs, signal_stop);
6422 SET_SIGS (nsigs, sigs, signal_print);
6423 }
6424 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6425 {
6426 UNSET_SIGS (nsigs, sigs, signal_program);
6427 }
6428 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6429 {
6430 SET_SIGS (nsigs, sigs, signal_print);
6431 }
6432 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6433 {
6434 SET_SIGS (nsigs, sigs, signal_program);
6435 }
6436 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6437 {
6438 UNSET_SIGS (nsigs, sigs, signal_stop);
6439 }
6440 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6441 {
6442 SET_SIGS (nsigs, sigs, signal_program);
6443 }
6444 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6445 {
6446 UNSET_SIGS (nsigs, sigs, signal_print);
6447 UNSET_SIGS (nsigs, sigs, signal_stop);
6448 }
6449 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6450 {
6451 UNSET_SIGS (nsigs, sigs, signal_program);
6452 }
6453 else if (digits > 0)
6454 {
6455 /* It is numeric. The numeric signal refers to our own
6456 internal signal numbering from target.h, not to host/target
6457 signal number. This is a feature; users really should be
6458 using symbolic names anyway, and the common ones like
6459 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6460
6461 sigfirst = siglast = (int)
6462 gdb_signal_from_command (atoi (*argv));
6463 if ((*argv)[digits] == '-')
6464 {
6465 siglast = (int)
6466 gdb_signal_from_command (atoi ((*argv) + digits + 1));
6467 }
6468 if (sigfirst > siglast)
6469 {
6470 /* Bet he didn't figure we'd think of this case... */
6471 signum = sigfirst;
6472 sigfirst = siglast;
6473 siglast = signum;
6474 }
6475 }
6476 else
6477 {
6478 oursig = gdb_signal_from_name (*argv);
6479 if (oursig != GDB_SIGNAL_UNKNOWN)
6480 {
6481 sigfirst = siglast = (int) oursig;
6482 }
6483 else
6484 {
6485 /* Not a number and not a recognized flag word => complain. */
6486 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6487 }
6488 }
6489
6490 /* If any signal numbers or symbol names were found, set flags for
6491 which signals to apply actions to. */
6492
6493 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6494 {
6495 switch ((enum gdb_signal) signum)
6496 {
6497 case GDB_SIGNAL_TRAP:
6498 case GDB_SIGNAL_INT:
6499 if (!allsigs && !sigs[signum])
6500 {
6501 if (query (_("%s is used by the debugger.\n\
6502 Are you sure you want to change it? "),
6503 gdb_signal_to_name ((enum gdb_signal) signum)))
6504 {
6505 sigs[signum] = 1;
6506 }
6507 else
6508 {
6509 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6510 gdb_flush (gdb_stdout);
6511 }
6512 }
6513 break;
6514 case GDB_SIGNAL_0:
6515 case GDB_SIGNAL_DEFAULT:
6516 case GDB_SIGNAL_UNKNOWN:
6517 /* Make sure that "all" doesn't print these. */
6518 break;
6519 default:
6520 sigs[signum] = 1;
6521 break;
6522 }
6523 }
6524
6525 argv++;
6526 }
6527
6528 for (signum = 0; signum < nsigs; signum++)
6529 if (sigs[signum])
6530 {
6531 signal_cache_update (-1);
6532 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6533 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
6534
6535 if (from_tty)
6536 {
6537 /* Show the results. */
6538 sig_print_header ();
6539 for (; signum < nsigs; signum++)
6540 if (sigs[signum])
6541 sig_print_info (signum);
6542 }
6543
6544 break;
6545 }
6546
6547 do_cleanups (old_chain);
6548 }
6549
6550 /* Complete the "handle" command. */
6551
6552 static VEC (char_ptr) *
6553 handle_completer (struct cmd_list_element *ignore,
6554 const char *text, const char *word)
6555 {
6556 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6557 static const char * const keywords[] =
6558 {
6559 "all",
6560 "stop",
6561 "ignore",
6562 "print",
6563 "pass",
6564 "nostop",
6565 "noignore",
6566 "noprint",
6567 "nopass",
6568 NULL,
6569 };
6570
6571 vec_signals = signal_completer (ignore, text, word);
6572 vec_keywords = complete_on_enum (keywords, word, word);
6573
6574 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6575 VEC_free (char_ptr, vec_signals);
6576 VEC_free (char_ptr, vec_keywords);
6577 return return_val;
6578 }
6579
6580 static void
6581 xdb_handle_command (char *args, int from_tty)
6582 {
6583 char **argv;
6584 struct cleanup *old_chain;
6585
6586 if (args == NULL)
6587 error_no_arg (_("xdb command"));
6588
6589 /* Break the command line up into args. */
6590
6591 argv = gdb_buildargv (args);
6592 old_chain = make_cleanup_freeargv (argv);
6593 if (argv[1] != (char *) NULL)
6594 {
6595 char *argBuf;
6596 int bufLen;
6597
6598 bufLen = strlen (argv[0]) + 20;
6599 argBuf = (char *) xmalloc (bufLen);
6600 if (argBuf)
6601 {
6602 int validFlag = 1;
6603 enum gdb_signal oursig;
6604
6605 oursig = gdb_signal_from_name (argv[0]);
6606 memset (argBuf, 0, bufLen);
6607 if (strcmp (argv[1], "Q") == 0)
6608 sprintf (argBuf, "%s %s", argv[0], "noprint");
6609 else
6610 {
6611 if (strcmp (argv[1], "s") == 0)
6612 {
6613 if (!signal_stop[oursig])
6614 sprintf (argBuf, "%s %s", argv[0], "stop");
6615 else
6616 sprintf (argBuf, "%s %s", argv[0], "nostop");
6617 }
6618 else if (strcmp (argv[1], "i") == 0)
6619 {
6620 if (!signal_program[oursig])
6621 sprintf (argBuf, "%s %s", argv[0], "pass");
6622 else
6623 sprintf (argBuf, "%s %s", argv[0], "nopass");
6624 }
6625 else if (strcmp (argv[1], "r") == 0)
6626 {
6627 if (!signal_print[oursig])
6628 sprintf (argBuf, "%s %s", argv[0], "print");
6629 else
6630 sprintf (argBuf, "%s %s", argv[0], "noprint");
6631 }
6632 else
6633 validFlag = 0;
6634 }
6635 if (validFlag)
6636 handle_command (argBuf, from_tty);
6637 else
6638 printf_filtered (_("Invalid signal handling flag.\n"));
6639 if (argBuf)
6640 xfree (argBuf);
6641 }
6642 }
6643 do_cleanups (old_chain);
6644 }
6645
6646 enum gdb_signal
6647 gdb_signal_from_command (int num)
6648 {
6649 if (num >= 1 && num <= 15)
6650 return (enum gdb_signal) num;
6651 error (_("Only signals 1-15 are valid as numeric signals.\n\
6652 Use \"info signals\" for a list of symbolic signals."));
6653 }
6654
6655 /* Print current contents of the tables set by the handle command.
6656 It is possible we should just be printing signals actually used
6657 by the current target (but for things to work right when switching
6658 targets, all signals should be in the signal tables). */
6659
6660 static void
6661 signals_info (char *signum_exp, int from_tty)
6662 {
6663 enum gdb_signal oursig;
6664
6665 sig_print_header ();
6666
6667 if (signum_exp)
6668 {
6669 /* First see if this is a symbol name. */
6670 oursig = gdb_signal_from_name (signum_exp);
6671 if (oursig == GDB_SIGNAL_UNKNOWN)
6672 {
6673 /* No, try numeric. */
6674 oursig =
6675 gdb_signal_from_command (parse_and_eval_long (signum_exp));
6676 }
6677 sig_print_info (oursig);
6678 return;
6679 }
6680
6681 printf_filtered ("\n");
6682 /* These ugly casts brought to you by the native VAX compiler. */
6683 for (oursig = GDB_SIGNAL_FIRST;
6684 (int) oursig < (int) GDB_SIGNAL_LAST;
6685 oursig = (enum gdb_signal) ((int) oursig + 1))
6686 {
6687 QUIT;
6688
6689 if (oursig != GDB_SIGNAL_UNKNOWN
6690 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
6691 sig_print_info (oursig);
6692 }
6693
6694 printf_filtered (_("\nUse the \"handle\" command "
6695 "to change these tables.\n"));
6696 }
6697
6698 /* Check if it makes sense to read $_siginfo from the current thread
6699 at this point. If not, throw an error. */
6700
6701 static void
6702 validate_siginfo_access (void)
6703 {
6704 /* No current inferior, no siginfo. */
6705 if (ptid_equal (inferior_ptid, null_ptid))
6706 error (_("No thread selected."));
6707
6708 /* Don't try to read from a dead thread. */
6709 if (is_exited (inferior_ptid))
6710 error (_("The current thread has terminated"));
6711
6712 /* ... or from a spinning thread. */
6713 if (is_running (inferior_ptid))
6714 error (_("Selected thread is running."));
6715 }
6716
6717 /* The $_siginfo convenience variable is a bit special. We don't know
6718 for sure the type of the value until we actually have a chance to
6719 fetch the data. The type can change depending on gdbarch, so it is
6720 also dependent on which thread you have selected.
6721
6722 1. making $_siginfo be an internalvar that creates a new value on
6723 access.
6724
6725 2. making the value of $_siginfo be an lval_computed value. */
6726
6727 /* This function implements the lval_computed support for reading a
6728 $_siginfo value. */
6729
6730 static void
6731 siginfo_value_read (struct value *v)
6732 {
6733 LONGEST transferred;
6734
6735 validate_siginfo_access ();
6736
6737 transferred =
6738 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6739 NULL,
6740 value_contents_all_raw (v),
6741 value_offset (v),
6742 TYPE_LENGTH (value_type (v)));
6743
6744 if (transferred != TYPE_LENGTH (value_type (v)))
6745 error (_("Unable to read siginfo"));
6746 }
6747
6748 /* This function implements the lval_computed support for writing a
6749 $_siginfo value. */
6750
6751 static void
6752 siginfo_value_write (struct value *v, struct value *fromval)
6753 {
6754 LONGEST transferred;
6755
6756 validate_siginfo_access ();
6757
6758 transferred = target_write (&current_target,
6759 TARGET_OBJECT_SIGNAL_INFO,
6760 NULL,
6761 value_contents_all_raw (fromval),
6762 value_offset (v),
6763 TYPE_LENGTH (value_type (fromval)));
6764
6765 if (transferred != TYPE_LENGTH (value_type (fromval)))
6766 error (_("Unable to write siginfo"));
6767 }
6768
6769 static const struct lval_funcs siginfo_value_funcs =
6770 {
6771 siginfo_value_read,
6772 siginfo_value_write
6773 };
6774
6775 /* Return a new value with the correct type for the siginfo object of
6776 the current thread using architecture GDBARCH. Return a void value
6777 if there's no object available. */
6778
6779 static struct value *
6780 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
6781 void *ignore)
6782 {
6783 if (target_has_stack
6784 && !ptid_equal (inferior_ptid, null_ptid)
6785 && gdbarch_get_siginfo_type_p (gdbarch))
6786 {
6787 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6788
6789 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
6790 }
6791
6792 return allocate_value (builtin_type (gdbarch)->builtin_void);
6793 }
6794
6795 \f
6796 /* infcall_suspend_state contains state about the program itself like its
6797 registers and any signal it received when it last stopped.
6798 This state must be restored regardless of how the inferior function call
6799 ends (either successfully, or after it hits a breakpoint or signal)
6800 if the program is to properly continue where it left off. */
6801
6802 struct infcall_suspend_state
6803 {
6804 struct thread_suspend_state thread_suspend;
6805 #if 0 /* Currently unused and empty structures are not valid C. */
6806 struct inferior_suspend_state inferior_suspend;
6807 #endif
6808
6809 /* Other fields: */
6810 CORE_ADDR stop_pc;
6811 struct regcache *registers;
6812
6813 /* Format of SIGINFO_DATA or NULL if it is not present. */
6814 struct gdbarch *siginfo_gdbarch;
6815
6816 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6817 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6818 content would be invalid. */
6819 gdb_byte *siginfo_data;
6820 };
6821
6822 struct infcall_suspend_state *
6823 save_infcall_suspend_state (void)
6824 {
6825 struct infcall_suspend_state *inf_state;
6826 struct thread_info *tp = inferior_thread ();
6827 #if 0
6828 struct inferior *inf = current_inferior ();
6829 #endif
6830 struct regcache *regcache = get_current_regcache ();
6831 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6832 gdb_byte *siginfo_data = NULL;
6833
6834 if (gdbarch_get_siginfo_type_p (gdbarch))
6835 {
6836 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6837 size_t len = TYPE_LENGTH (type);
6838 struct cleanup *back_to;
6839
6840 siginfo_data = xmalloc (len);
6841 back_to = make_cleanup (xfree, siginfo_data);
6842
6843 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6844 siginfo_data, 0, len) == len)
6845 discard_cleanups (back_to);
6846 else
6847 {
6848 /* Errors ignored. */
6849 do_cleanups (back_to);
6850 siginfo_data = NULL;
6851 }
6852 }
6853
6854 inf_state = XCNEW (struct infcall_suspend_state);
6855
6856 if (siginfo_data)
6857 {
6858 inf_state->siginfo_gdbarch = gdbarch;
6859 inf_state->siginfo_data = siginfo_data;
6860 }
6861
6862 inf_state->thread_suspend = tp->suspend;
6863 #if 0 /* Currently unused and empty structures are not valid C. */
6864 inf_state->inferior_suspend = inf->suspend;
6865 #endif
6866
6867 /* run_inferior_call will not use the signal due to its `proceed' call with
6868 GDB_SIGNAL_0 anyway. */
6869 tp->suspend.stop_signal = GDB_SIGNAL_0;
6870
6871 inf_state->stop_pc = stop_pc;
6872
6873 inf_state->registers = regcache_dup (regcache);
6874
6875 return inf_state;
6876 }
6877
6878 /* Restore inferior session state to INF_STATE. */
6879
6880 void
6881 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6882 {
6883 struct thread_info *tp = inferior_thread ();
6884 #if 0
6885 struct inferior *inf = current_inferior ();
6886 #endif
6887 struct regcache *regcache = get_current_regcache ();
6888 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6889
6890 tp->suspend = inf_state->thread_suspend;
6891 #if 0 /* Currently unused and empty structures are not valid C. */
6892 inf->suspend = inf_state->inferior_suspend;
6893 #endif
6894
6895 stop_pc = inf_state->stop_pc;
6896
6897 if (inf_state->siginfo_gdbarch == gdbarch)
6898 {
6899 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6900
6901 /* Errors ignored. */
6902 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6903 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
6904 }
6905
6906 /* The inferior can be gone if the user types "print exit(0)"
6907 (and perhaps other times). */
6908 if (target_has_execution)
6909 /* NB: The register write goes through to the target. */
6910 regcache_cpy (regcache, inf_state->registers);
6911
6912 discard_infcall_suspend_state (inf_state);
6913 }
6914
6915 static void
6916 do_restore_infcall_suspend_state_cleanup (void *state)
6917 {
6918 restore_infcall_suspend_state (state);
6919 }
6920
6921 struct cleanup *
6922 make_cleanup_restore_infcall_suspend_state
6923 (struct infcall_suspend_state *inf_state)
6924 {
6925 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
6926 }
6927
6928 void
6929 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6930 {
6931 regcache_xfree (inf_state->registers);
6932 xfree (inf_state->siginfo_data);
6933 xfree (inf_state);
6934 }
6935
6936 struct regcache *
6937 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
6938 {
6939 return inf_state->registers;
6940 }
6941
6942 /* infcall_control_state contains state regarding gdb's control of the
6943 inferior itself like stepping control. It also contains session state like
6944 the user's currently selected frame. */
6945
6946 struct infcall_control_state
6947 {
6948 struct thread_control_state thread_control;
6949 struct inferior_control_state inferior_control;
6950
6951 /* Other fields: */
6952 enum stop_stack_kind stop_stack_dummy;
6953 int stopped_by_random_signal;
6954 int stop_after_trap;
6955
6956 /* ID if the selected frame when the inferior function call was made. */
6957 struct frame_id selected_frame_id;
6958 };
6959
6960 /* Save all of the information associated with the inferior<==>gdb
6961 connection. */
6962
6963 struct infcall_control_state *
6964 save_infcall_control_state (void)
6965 {
6966 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
6967 struct thread_info *tp = inferior_thread ();
6968 struct inferior *inf = current_inferior ();
6969
6970 inf_status->thread_control = tp->control;
6971 inf_status->inferior_control = inf->control;
6972
6973 tp->control.step_resume_breakpoint = NULL;
6974 tp->control.exception_resume_breakpoint = NULL;
6975
6976 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6977 chain. If caller's caller is walking the chain, they'll be happier if we
6978 hand them back the original chain when restore_infcall_control_state is
6979 called. */
6980 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
6981
6982 /* Other fields: */
6983 inf_status->stop_stack_dummy = stop_stack_dummy;
6984 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6985 inf_status->stop_after_trap = stop_after_trap;
6986
6987 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
6988
6989 return inf_status;
6990 }
6991
6992 static int
6993 restore_selected_frame (void *args)
6994 {
6995 struct frame_id *fid = (struct frame_id *) args;
6996 struct frame_info *frame;
6997
6998 frame = frame_find_by_id (*fid);
6999
7000 /* If inf_status->selected_frame_id is NULL, there was no previously
7001 selected frame. */
7002 if (frame == NULL)
7003 {
7004 warning (_("Unable to restore previously selected frame."));
7005 return 0;
7006 }
7007
7008 select_frame (frame);
7009
7010 return (1);
7011 }
7012
7013 /* Restore inferior session state to INF_STATUS. */
7014
7015 void
7016 restore_infcall_control_state (struct infcall_control_state *inf_status)
7017 {
7018 struct thread_info *tp = inferior_thread ();
7019 struct inferior *inf = current_inferior ();
7020
7021 if (tp->control.step_resume_breakpoint)
7022 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
7023
7024 if (tp->control.exception_resume_breakpoint)
7025 tp->control.exception_resume_breakpoint->disposition
7026 = disp_del_at_next_stop;
7027
7028 /* Handle the bpstat_copy of the chain. */
7029 bpstat_clear (&tp->control.stop_bpstat);
7030
7031 tp->control = inf_status->thread_control;
7032 inf->control = inf_status->inferior_control;
7033
7034 /* Other fields: */
7035 stop_stack_dummy = inf_status->stop_stack_dummy;
7036 stopped_by_random_signal = inf_status->stopped_by_random_signal;
7037 stop_after_trap = inf_status->stop_after_trap;
7038
7039 if (target_has_stack)
7040 {
7041 /* The point of catch_errors is that if the stack is clobbered,
7042 walking the stack might encounter a garbage pointer and
7043 error() trying to dereference it. */
7044 if (catch_errors
7045 (restore_selected_frame, &inf_status->selected_frame_id,
7046 "Unable to restore previously selected frame:\n",
7047 RETURN_MASK_ERROR) == 0)
7048 /* Error in restoring the selected frame. Select the innermost
7049 frame. */
7050 select_frame (get_current_frame ());
7051 }
7052
7053 xfree (inf_status);
7054 }
7055
7056 static void
7057 do_restore_infcall_control_state_cleanup (void *sts)
7058 {
7059 restore_infcall_control_state (sts);
7060 }
7061
7062 struct cleanup *
7063 make_cleanup_restore_infcall_control_state
7064 (struct infcall_control_state *inf_status)
7065 {
7066 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
7067 }
7068
7069 void
7070 discard_infcall_control_state (struct infcall_control_state *inf_status)
7071 {
7072 if (inf_status->thread_control.step_resume_breakpoint)
7073 inf_status->thread_control.step_resume_breakpoint->disposition
7074 = disp_del_at_next_stop;
7075
7076 if (inf_status->thread_control.exception_resume_breakpoint)
7077 inf_status->thread_control.exception_resume_breakpoint->disposition
7078 = disp_del_at_next_stop;
7079
7080 /* See save_infcall_control_state for info on stop_bpstat. */
7081 bpstat_clear (&inf_status->thread_control.stop_bpstat);
7082
7083 xfree (inf_status);
7084 }
7085 \f
7086 int
7087 ptid_match (ptid_t ptid, ptid_t filter)
7088 {
7089 if (ptid_equal (filter, minus_one_ptid))
7090 return 1;
7091 if (ptid_is_pid (filter)
7092 && ptid_get_pid (ptid) == ptid_get_pid (filter))
7093 return 1;
7094 else if (ptid_equal (ptid, filter))
7095 return 1;
7096
7097 return 0;
7098 }
7099
7100 /* restore_inferior_ptid() will be used by the cleanup machinery
7101 to restore the inferior_ptid value saved in a call to
7102 save_inferior_ptid(). */
7103
7104 static void
7105 restore_inferior_ptid (void *arg)
7106 {
7107 ptid_t *saved_ptid_ptr = arg;
7108
7109 inferior_ptid = *saved_ptid_ptr;
7110 xfree (arg);
7111 }
7112
7113 /* Save the value of inferior_ptid so that it may be restored by a
7114 later call to do_cleanups(). Returns the struct cleanup pointer
7115 needed for later doing the cleanup. */
7116
7117 struct cleanup *
7118 save_inferior_ptid (void)
7119 {
7120 ptid_t *saved_ptid_ptr;
7121
7122 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7123 *saved_ptid_ptr = inferior_ptid;
7124 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7125 }
7126
7127 /* See inferior.h. */
7128
7129 void
7130 clear_exit_convenience_vars (void)
7131 {
7132 clear_internalvar (lookup_internalvar ("_exitsignal"));
7133 clear_internalvar (lookup_internalvar ("_exitcode"));
7134 }
7135 \f
7136
7137 /* User interface for reverse debugging:
7138 Set exec-direction / show exec-direction commands
7139 (returns error unless target implements to_set_exec_direction method). */
7140
7141 int execution_direction = EXEC_FORWARD;
7142 static const char exec_forward[] = "forward";
7143 static const char exec_reverse[] = "reverse";
7144 static const char *exec_direction = exec_forward;
7145 static const char *const exec_direction_names[] = {
7146 exec_forward,
7147 exec_reverse,
7148 NULL
7149 };
7150
7151 static void
7152 set_exec_direction_func (char *args, int from_tty,
7153 struct cmd_list_element *cmd)
7154 {
7155 if (target_can_execute_reverse)
7156 {
7157 if (!strcmp (exec_direction, exec_forward))
7158 execution_direction = EXEC_FORWARD;
7159 else if (!strcmp (exec_direction, exec_reverse))
7160 execution_direction = EXEC_REVERSE;
7161 }
7162 else
7163 {
7164 exec_direction = exec_forward;
7165 error (_("Target does not support this operation."));
7166 }
7167 }
7168
7169 static void
7170 show_exec_direction_func (struct ui_file *out, int from_tty,
7171 struct cmd_list_element *cmd, const char *value)
7172 {
7173 switch (execution_direction) {
7174 case EXEC_FORWARD:
7175 fprintf_filtered (out, _("Forward.\n"));
7176 break;
7177 case EXEC_REVERSE:
7178 fprintf_filtered (out, _("Reverse.\n"));
7179 break;
7180 default:
7181 internal_error (__FILE__, __LINE__,
7182 _("bogus execution_direction value: %d"),
7183 (int) execution_direction);
7184 }
7185 }
7186
7187 static void
7188 show_schedule_multiple (struct ui_file *file, int from_tty,
7189 struct cmd_list_element *c, const char *value)
7190 {
7191 fprintf_filtered (file, _("Resuming the execution of threads "
7192 "of all processes is %s.\n"), value);
7193 }
7194
7195 /* Implementation of `siginfo' variable. */
7196
7197 static const struct internalvar_funcs siginfo_funcs =
7198 {
7199 siginfo_make_value,
7200 NULL,
7201 NULL
7202 };
7203
7204 void
7205 _initialize_infrun (void)
7206 {
7207 int i;
7208 int numsigs;
7209 struct cmd_list_element *c;
7210
7211 add_info ("signals", signals_info, _("\
7212 What debugger does when program gets various signals.\n\
7213 Specify a signal as argument to print info on that signal only."));
7214 add_info_alias ("handle", "signals", 0);
7215
7216 c = add_com ("handle", class_run, handle_command, _("\
7217 Specify how to handle signals.\n\
7218 Usage: handle SIGNAL [ACTIONS]\n\
7219 Args are signals and actions to apply to those signals.\n\
7220 If no actions are specified, the current settings for the specified signals\n\
7221 will be displayed instead.\n\
7222 \n\
7223 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7224 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7225 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7226 The special arg \"all\" is recognized to mean all signals except those\n\
7227 used by the debugger, typically SIGTRAP and SIGINT.\n\
7228 \n\
7229 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
7230 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7231 Stop means reenter debugger if this signal happens (implies print).\n\
7232 Print means print a message if this signal happens.\n\
7233 Pass means let program see this signal; otherwise program doesn't know.\n\
7234 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7235 Pass and Stop may be combined.\n\
7236 \n\
7237 Multiple signals may be specified. Signal numbers and signal names\n\
7238 may be interspersed with actions, with the actions being performed for\n\
7239 all signals cumulatively specified."));
7240 set_cmd_completer (c, handle_completer);
7241
7242 if (xdb_commands)
7243 {
7244 add_com ("lz", class_info, signals_info, _("\
7245 What debugger does when program gets various signals.\n\
7246 Specify a signal as argument to print info on that signal only."));
7247 add_com ("z", class_run, xdb_handle_command, _("\
7248 Specify how to handle a signal.\n\
7249 Args are signals and actions to apply to those signals.\n\
7250 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7251 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7252 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7253 The special arg \"all\" is recognized to mean all signals except those\n\
7254 used by the debugger, typically SIGTRAP and SIGINT.\n\
7255 Recognized actions include \"s\" (toggles between stop and nostop),\n\
7256 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7257 nopass), \"Q\" (noprint)\n\
7258 Stop means reenter debugger if this signal happens (implies print).\n\
7259 Print means print a message if this signal happens.\n\
7260 Pass means let program see this signal; otherwise program doesn't know.\n\
7261 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7262 Pass and Stop may be combined."));
7263 }
7264
7265 if (!dbx_commands)
7266 stop_command = add_cmd ("stop", class_obscure,
7267 not_just_help_class_command, _("\
7268 There is no `stop' command, but you can set a hook on `stop'.\n\
7269 This allows you to set a list of commands to be run each time execution\n\
7270 of the program stops."), &cmdlist);
7271
7272 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7273 Set inferior debugging."), _("\
7274 Show inferior debugging."), _("\
7275 When non-zero, inferior specific debugging is enabled."),
7276 NULL,
7277 show_debug_infrun,
7278 &setdebuglist, &showdebuglist);
7279
7280 add_setshow_boolean_cmd ("displaced", class_maintenance,
7281 &debug_displaced, _("\
7282 Set displaced stepping debugging."), _("\
7283 Show displaced stepping debugging."), _("\
7284 When non-zero, displaced stepping specific debugging is enabled."),
7285 NULL,
7286 show_debug_displaced,
7287 &setdebuglist, &showdebuglist);
7288
7289 add_setshow_boolean_cmd ("non-stop", no_class,
7290 &non_stop_1, _("\
7291 Set whether gdb controls the inferior in non-stop mode."), _("\
7292 Show whether gdb controls the inferior in non-stop mode."), _("\
7293 When debugging a multi-threaded program and this setting is\n\
7294 off (the default, also called all-stop mode), when one thread stops\n\
7295 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7296 all other threads in the program while you interact with the thread of\n\
7297 interest. When you continue or step a thread, you can allow the other\n\
7298 threads to run, or have them remain stopped, but while you inspect any\n\
7299 thread's state, all threads stop.\n\
7300 \n\
7301 In non-stop mode, when one thread stops, other threads can continue\n\
7302 to run freely. You'll be able to step each thread independently,\n\
7303 leave it stopped or free to run as needed."),
7304 set_non_stop,
7305 show_non_stop,
7306 &setlist,
7307 &showlist);
7308
7309 numsigs = (int) GDB_SIGNAL_LAST;
7310 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7311 signal_print = (unsigned char *)
7312 xmalloc (sizeof (signal_print[0]) * numsigs);
7313 signal_program = (unsigned char *)
7314 xmalloc (sizeof (signal_program[0]) * numsigs);
7315 signal_catch = (unsigned char *)
7316 xmalloc (sizeof (signal_catch[0]) * numsigs);
7317 signal_pass = (unsigned char *)
7318 xmalloc (sizeof (signal_program[0]) * numsigs);
7319 for (i = 0; i < numsigs; i++)
7320 {
7321 signal_stop[i] = 1;
7322 signal_print[i] = 1;
7323 signal_program[i] = 1;
7324 signal_catch[i] = 0;
7325 }
7326
7327 /* Signals caused by debugger's own actions
7328 should not be given to the program afterwards. */
7329 signal_program[GDB_SIGNAL_TRAP] = 0;
7330 signal_program[GDB_SIGNAL_INT] = 0;
7331
7332 /* Signals that are not errors should not normally enter the debugger. */
7333 signal_stop[GDB_SIGNAL_ALRM] = 0;
7334 signal_print[GDB_SIGNAL_ALRM] = 0;
7335 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7336 signal_print[GDB_SIGNAL_VTALRM] = 0;
7337 signal_stop[GDB_SIGNAL_PROF] = 0;
7338 signal_print[GDB_SIGNAL_PROF] = 0;
7339 signal_stop[GDB_SIGNAL_CHLD] = 0;
7340 signal_print[GDB_SIGNAL_CHLD] = 0;
7341 signal_stop[GDB_SIGNAL_IO] = 0;
7342 signal_print[GDB_SIGNAL_IO] = 0;
7343 signal_stop[GDB_SIGNAL_POLL] = 0;
7344 signal_print[GDB_SIGNAL_POLL] = 0;
7345 signal_stop[GDB_SIGNAL_URG] = 0;
7346 signal_print[GDB_SIGNAL_URG] = 0;
7347 signal_stop[GDB_SIGNAL_WINCH] = 0;
7348 signal_print[GDB_SIGNAL_WINCH] = 0;
7349 signal_stop[GDB_SIGNAL_PRIO] = 0;
7350 signal_print[GDB_SIGNAL_PRIO] = 0;
7351
7352 /* These signals are used internally by user-level thread
7353 implementations. (See signal(5) on Solaris.) Like the above
7354 signals, a healthy program receives and handles them as part of
7355 its normal operation. */
7356 signal_stop[GDB_SIGNAL_LWP] = 0;
7357 signal_print[GDB_SIGNAL_LWP] = 0;
7358 signal_stop[GDB_SIGNAL_WAITING] = 0;
7359 signal_print[GDB_SIGNAL_WAITING] = 0;
7360 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7361 signal_print[GDB_SIGNAL_CANCEL] = 0;
7362
7363 /* Update cached state. */
7364 signal_cache_update (-1);
7365
7366 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7367 &stop_on_solib_events, _("\
7368 Set stopping for shared library events."), _("\
7369 Show stopping for shared library events."), _("\
7370 If nonzero, gdb will give control to the user when the dynamic linker\n\
7371 notifies gdb of shared library events. The most common event of interest\n\
7372 to the user would be loading/unloading of a new library."),
7373 set_stop_on_solib_events,
7374 show_stop_on_solib_events,
7375 &setlist, &showlist);
7376
7377 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7378 follow_fork_mode_kind_names,
7379 &follow_fork_mode_string, _("\
7380 Set debugger response to a program call of fork or vfork."), _("\
7381 Show debugger response to a program call of fork or vfork."), _("\
7382 A fork or vfork creates a new process. follow-fork-mode can be:\n\
7383 parent - the original process is debugged after a fork\n\
7384 child - the new process is debugged after a fork\n\
7385 The unfollowed process will continue to run.\n\
7386 By default, the debugger will follow the parent process."),
7387 NULL,
7388 show_follow_fork_mode_string,
7389 &setlist, &showlist);
7390
7391 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7392 follow_exec_mode_names,
7393 &follow_exec_mode_string, _("\
7394 Set debugger response to a program call of exec."), _("\
7395 Show debugger response to a program call of exec."), _("\
7396 An exec call replaces the program image of a process.\n\
7397 \n\
7398 follow-exec-mode can be:\n\
7399 \n\
7400 new - the debugger creates a new inferior and rebinds the process\n\
7401 to this new inferior. The program the process was running before\n\
7402 the exec call can be restarted afterwards by restarting the original\n\
7403 inferior.\n\
7404 \n\
7405 same - the debugger keeps the process bound to the same inferior.\n\
7406 The new executable image replaces the previous executable loaded in\n\
7407 the inferior. Restarting the inferior after the exec call restarts\n\
7408 the executable the process was running after the exec call.\n\
7409 \n\
7410 By default, the debugger will use the same inferior."),
7411 NULL,
7412 show_follow_exec_mode_string,
7413 &setlist, &showlist);
7414
7415 add_setshow_enum_cmd ("scheduler-locking", class_run,
7416 scheduler_enums, &scheduler_mode, _("\
7417 Set mode for locking scheduler during execution."), _("\
7418 Show mode for locking scheduler during execution."), _("\
7419 off == no locking (threads may preempt at any time)\n\
7420 on == full locking (no thread except the current thread may run)\n\
7421 step == scheduler locked during every single-step operation.\n\
7422 In this mode, no other thread may run during a step command.\n\
7423 Other threads may run while stepping over a function call ('next')."),
7424 set_schedlock_func, /* traps on target vector */
7425 show_scheduler_mode,
7426 &setlist, &showlist);
7427
7428 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7429 Set mode for resuming threads of all processes."), _("\
7430 Show mode for resuming threads of all processes."), _("\
7431 When on, execution commands (such as 'continue' or 'next') resume all\n\
7432 threads of all processes. When off (which is the default), execution\n\
7433 commands only resume the threads of the current process. The set of\n\
7434 threads that are resumed is further refined by the scheduler-locking\n\
7435 mode (see help set scheduler-locking)."),
7436 NULL,
7437 show_schedule_multiple,
7438 &setlist, &showlist);
7439
7440 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7441 Set mode of the step operation."), _("\
7442 Show mode of the step operation."), _("\
7443 When set, doing a step over a function without debug line information\n\
7444 will stop at the first instruction of that function. Otherwise, the\n\
7445 function is skipped and the step command stops at a different source line."),
7446 NULL,
7447 show_step_stop_if_no_debug,
7448 &setlist, &showlist);
7449
7450 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7451 &can_use_displaced_stepping, _("\
7452 Set debugger's willingness to use displaced stepping."), _("\
7453 Show debugger's willingness to use displaced stepping."), _("\
7454 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7455 supported by the target architecture. If off, gdb will not use displaced\n\
7456 stepping to step over breakpoints, even if such is supported by the target\n\
7457 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7458 if the target architecture supports it and non-stop mode is active, but will not\n\
7459 use it in all-stop mode (see help set non-stop)."),
7460 NULL,
7461 show_can_use_displaced_stepping,
7462 &setlist, &showlist);
7463
7464 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7465 &exec_direction, _("Set direction of execution.\n\
7466 Options are 'forward' or 'reverse'."),
7467 _("Show direction of execution (forward/reverse)."),
7468 _("Tells gdb whether to execute forward or backward."),
7469 set_exec_direction_func, show_exec_direction_func,
7470 &setlist, &showlist);
7471
7472 /* Set/show detach-on-fork: user-settable mode. */
7473
7474 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7475 Set whether gdb will detach the child of a fork."), _("\
7476 Show whether gdb will detach the child of a fork."), _("\
7477 Tells gdb whether to detach the child of a fork."),
7478 NULL, NULL, &setlist, &showlist);
7479
7480 /* Set/show disable address space randomization mode. */
7481
7482 add_setshow_boolean_cmd ("disable-randomization", class_support,
7483 &disable_randomization, _("\
7484 Set disabling of debuggee's virtual address space randomization."), _("\
7485 Show disabling of debuggee's virtual address space randomization."), _("\
7486 When this mode is on (which is the default), randomization of the virtual\n\
7487 address space is disabled. Standalone programs run with the randomization\n\
7488 enabled by default on some platforms."),
7489 &set_disable_randomization,
7490 &show_disable_randomization,
7491 &setlist, &showlist);
7492
7493 /* ptid initializations */
7494 inferior_ptid = null_ptid;
7495 target_last_wait_ptid = minus_one_ptid;
7496
7497 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7498 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7499 observer_attach_thread_exit (infrun_thread_thread_exit);
7500 observer_attach_inferior_exit (infrun_inferior_exit);
7501
7502 /* Explicitly create without lookup, since that tries to create a
7503 value with a void typed value, and when we get here, gdbarch
7504 isn't initialized yet. At this point, we're quite sure there
7505 isn't another convenience variable of the same name. */
7506 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
7507
7508 add_setshow_boolean_cmd ("observer", no_class,
7509 &observer_mode_1, _("\
7510 Set whether gdb controls the inferior in observer mode."), _("\
7511 Show whether gdb controls the inferior in observer mode."), _("\
7512 In observer mode, GDB can get data from the inferior, but not\n\
7513 affect its execution. Registers and memory may not be changed,\n\
7514 breakpoints may not be set, and the program cannot be interrupted\n\
7515 or signalled."),
7516 set_observer_mode,
7517 show_observer_mode,
7518 &setlist,
7519 &showlist);
7520 }
This page took 0.238442 seconds and 4 git commands to generate.