3a67ac5400a64bfbebc54e2e9c8b6c17adf398a6
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008, 2009 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48 #include "gdb_assert.h"
49 #include "mi/mi-common.h"
50 #include "event-top.h"
51
52 /* Prototypes for local functions */
53
54 static void signals_info (char *, int);
55
56 static void handle_command (char *, int);
57
58 static void sig_print_info (enum target_signal);
59
60 static void sig_print_header (void);
61
62 static void resume_cleanups (void *);
63
64 static int hook_stop_stub (void *);
65
66 static int restore_selected_frame (void *);
67
68 static void build_infrun (void);
69
70 static int follow_fork (void);
71
72 static void set_schedlock_func (char *args, int from_tty,
73 struct cmd_list_element *c);
74
75 static int currently_stepping (struct thread_info *tp);
76
77 static int currently_stepping_callback (struct thread_info *tp, void *data);
78
79 static void xdb_handle_command (char *args, int from_tty);
80
81 static int prepare_to_proceed (int);
82
83 void _initialize_infrun (void);
84
85 /* When set, stop the 'step' command if we enter a function which has
86 no line number information. The normal behavior is that we step
87 over such function. */
88 int step_stop_if_no_debug = 0;
89 static void
90 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
91 struct cmd_list_element *c, const char *value)
92 {
93 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
94 }
95
96 /* In asynchronous mode, but simulating synchronous execution. */
97
98 int sync_execution = 0;
99
100 /* wait_for_inferior and normal_stop use this to notify the user
101 when the inferior stopped in a different thread than it had been
102 running in. */
103
104 static ptid_t previous_inferior_ptid;
105
106 int debug_displaced = 0;
107 static void
108 show_debug_displaced (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110 {
111 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
112 }
113
114 static int debug_infrun = 0;
115 static void
116 show_debug_infrun (struct ui_file *file, int from_tty,
117 struct cmd_list_element *c, const char *value)
118 {
119 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
120 }
121
122 /* If the program uses ELF-style shared libraries, then calls to
123 functions in shared libraries go through stubs, which live in a
124 table called the PLT (Procedure Linkage Table). The first time the
125 function is called, the stub sends control to the dynamic linker,
126 which looks up the function's real address, patches the stub so
127 that future calls will go directly to the function, and then passes
128 control to the function.
129
130 If we are stepping at the source level, we don't want to see any of
131 this --- we just want to skip over the stub and the dynamic linker.
132 The simple approach is to single-step until control leaves the
133 dynamic linker.
134
135 However, on some systems (e.g., Red Hat's 5.2 distribution) the
136 dynamic linker calls functions in the shared C library, so you
137 can't tell from the PC alone whether the dynamic linker is still
138 running. In this case, we use a step-resume breakpoint to get us
139 past the dynamic linker, as if we were using "next" to step over a
140 function call.
141
142 in_solib_dynsym_resolve_code() says whether we're in the dynamic
143 linker code or not. Normally, this means we single-step. However,
144 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
145 address where we can place a step-resume breakpoint to get past the
146 linker's symbol resolution function.
147
148 in_solib_dynsym_resolve_code() can generally be implemented in a
149 pretty portable way, by comparing the PC against the address ranges
150 of the dynamic linker's sections.
151
152 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
153 it depends on internal details of the dynamic linker. It's usually
154 not too hard to figure out where to put a breakpoint, but it
155 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
156 sanity checking. If it can't figure things out, returning zero and
157 getting the (possibly confusing) stepping behavior is better than
158 signalling an error, which will obscure the change in the
159 inferior's state. */
160
161 /* This function returns TRUE if pc is the address of an instruction
162 that lies within the dynamic linker (such as the event hook, or the
163 dld itself).
164
165 This function must be used only when a dynamic linker event has
166 been caught, and the inferior is being stepped out of the hook, or
167 undefined results are guaranteed. */
168
169 #ifndef SOLIB_IN_DYNAMIC_LINKER
170 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
171 #endif
172
173
174 /* Convert the #defines into values. This is temporary until wfi control
175 flow is completely sorted out. */
176
177 #ifndef CANNOT_STEP_HW_WATCHPOINTS
178 #define CANNOT_STEP_HW_WATCHPOINTS 0
179 #else
180 #undef CANNOT_STEP_HW_WATCHPOINTS
181 #define CANNOT_STEP_HW_WATCHPOINTS 1
182 #endif
183
184 /* Tables of how to react to signals; the user sets them. */
185
186 static unsigned char *signal_stop;
187 static unsigned char *signal_print;
188 static unsigned char *signal_program;
189
190 #define SET_SIGS(nsigs,sigs,flags) \
191 do { \
192 int signum = (nsigs); \
193 while (signum-- > 0) \
194 if ((sigs)[signum]) \
195 (flags)[signum] = 1; \
196 } while (0)
197
198 #define UNSET_SIGS(nsigs,sigs,flags) \
199 do { \
200 int signum = (nsigs); \
201 while (signum-- > 0) \
202 if ((sigs)[signum]) \
203 (flags)[signum] = 0; \
204 } while (0)
205
206 /* Value to pass to target_resume() to cause all threads to resume */
207
208 #define RESUME_ALL (pid_to_ptid (-1))
209
210 /* Command list pointer for the "stop" placeholder. */
211
212 static struct cmd_list_element *stop_command;
213
214 /* Function inferior was in as of last step command. */
215
216 static struct symbol *step_start_function;
217
218 /* Nonzero if we want to give control to the user when we're notified
219 of shared library events by the dynamic linker. */
220 static int stop_on_solib_events;
221 static void
222 show_stop_on_solib_events (struct ui_file *file, int from_tty,
223 struct cmd_list_element *c, const char *value)
224 {
225 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
226 value);
227 }
228
229 /* Nonzero means expecting a trace trap
230 and should stop the inferior and return silently when it happens. */
231
232 int stop_after_trap;
233
234 /* Save register contents here when executing a "finish" command or are
235 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
236 Thus this contains the return value from the called function (assuming
237 values are returned in a register). */
238
239 struct regcache *stop_registers;
240
241 /* Nonzero after stop if current stack frame should be printed. */
242
243 static int stop_print_frame;
244
245 /* This is a cached copy of the pid/waitstatus of the last event
246 returned by target_wait()/deprecated_target_wait_hook(). This
247 information is returned by get_last_target_status(). */
248 static ptid_t target_last_wait_ptid;
249 static struct target_waitstatus target_last_waitstatus;
250
251 static void context_switch (ptid_t ptid);
252
253 void init_thread_stepping_state (struct thread_info *tss);
254
255 void init_infwait_state (void);
256
257 /* This is used to remember when a fork, vfork or exec event
258 was caught by a catchpoint, and thus the event is to be
259 followed at the next resume of the inferior, and not
260 immediately. */
261 static struct
262 {
263 enum target_waitkind kind;
264 struct
265 {
266 ptid_t parent_pid;
267 ptid_t child_pid;
268 }
269 fork_event;
270 char *execd_pathname;
271 }
272 pending_follow;
273
274 static const char follow_fork_mode_child[] = "child";
275 static const char follow_fork_mode_parent[] = "parent";
276
277 static const char *follow_fork_mode_kind_names[] = {
278 follow_fork_mode_child,
279 follow_fork_mode_parent,
280 NULL
281 };
282
283 static const char *follow_fork_mode_string = follow_fork_mode_parent;
284 static void
285 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
286 struct cmd_list_element *c, const char *value)
287 {
288 fprintf_filtered (file, _("\
289 Debugger response to a program call of fork or vfork is \"%s\".\n"),
290 value);
291 }
292 \f
293
294 static int
295 follow_fork (void)
296 {
297 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
298
299 return target_follow_fork (follow_child);
300 }
301
302 void
303 follow_inferior_reset_breakpoints (void)
304 {
305 struct thread_info *tp = inferior_thread ();
306
307 /* Was there a step_resume breakpoint? (There was if the user
308 did a "next" at the fork() call.) If so, explicitly reset its
309 thread number.
310
311 step_resumes are a form of bp that are made to be per-thread.
312 Since we created the step_resume bp when the parent process
313 was being debugged, and now are switching to the child process,
314 from the breakpoint package's viewpoint, that's a switch of
315 "threads". We must update the bp's notion of which thread
316 it is for, or it'll be ignored when it triggers. */
317
318 if (tp->step_resume_breakpoint)
319 breakpoint_re_set_thread (tp->step_resume_breakpoint);
320
321 /* Reinsert all breakpoints in the child. The user may have set
322 breakpoints after catching the fork, in which case those
323 were never set in the child, but only in the parent. This makes
324 sure the inserted breakpoints match the breakpoint list. */
325
326 breakpoint_re_set ();
327 insert_breakpoints ();
328 }
329
330 /* EXECD_PATHNAME is assumed to be non-NULL. */
331
332 static void
333 follow_exec (ptid_t pid, char *execd_pathname)
334 {
335 struct target_ops *tgt;
336 struct thread_info *th = inferior_thread ();
337
338 /* This is an exec event that we actually wish to pay attention to.
339 Refresh our symbol table to the newly exec'd program, remove any
340 momentary bp's, etc.
341
342 If there are breakpoints, they aren't really inserted now,
343 since the exec() transformed our inferior into a fresh set
344 of instructions.
345
346 We want to preserve symbolic breakpoints on the list, since
347 we have hopes that they can be reset after the new a.out's
348 symbol table is read.
349
350 However, any "raw" breakpoints must be removed from the list
351 (e.g., the solib bp's), since their address is probably invalid
352 now.
353
354 And, we DON'T want to call delete_breakpoints() here, since
355 that may write the bp's "shadow contents" (the instruction
356 value that was overwritten witha TRAP instruction). Since
357 we now have a new a.out, those shadow contents aren't valid. */
358 update_breakpoints_after_exec ();
359
360 /* If there was one, it's gone now. We cannot truly step-to-next
361 statement through an exec(). */
362 th->step_resume_breakpoint = NULL;
363 th->step_range_start = 0;
364 th->step_range_end = 0;
365
366 /* What is this a.out's name? */
367 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
368
369 /* We've followed the inferior through an exec. Therefore, the
370 inferior has essentially been killed & reborn. */
371
372 gdb_flush (gdb_stdout);
373
374 breakpoint_init_inferior (inf_execd);
375
376 if (gdb_sysroot && *gdb_sysroot)
377 {
378 char *name = alloca (strlen (gdb_sysroot)
379 + strlen (execd_pathname)
380 + 1);
381 strcpy (name, gdb_sysroot);
382 strcat (name, execd_pathname);
383 execd_pathname = name;
384 }
385
386 /* That a.out is now the one to use. */
387 exec_file_attach (execd_pathname, 0);
388
389 /* Reset the shared library package. This ensures that we get a
390 shlib event when the child reaches "_start", at which point the
391 dld will have had a chance to initialize the child. */
392 /* Also, loading a symbol file below may trigger symbol lookups, and
393 we don't want those to be satisfied by the libraries of the
394 previous incarnation of this process. */
395 no_shared_libraries (NULL, 0);
396
397 /* Load the main file's symbols. */
398 symbol_file_add_main (execd_pathname, 0);
399
400 #ifdef SOLIB_CREATE_INFERIOR_HOOK
401 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
402 #else
403 solib_create_inferior_hook ();
404 #endif
405
406 /* Reinsert all breakpoints. (Those which were symbolic have
407 been reset to the proper address in the new a.out, thanks
408 to symbol_file_command...) */
409 insert_breakpoints ();
410
411 /* The next resume of this inferior should bring it to the shlib
412 startup breakpoints. (If the user had also set bp's on
413 "main" from the old (parent) process, then they'll auto-
414 matically get reset there in the new process.) */
415 }
416
417 /* Non-zero if we just simulating a single-step. This is needed
418 because we cannot remove the breakpoints in the inferior process
419 until after the `wait' in `wait_for_inferior'. */
420 static int singlestep_breakpoints_inserted_p = 0;
421
422 /* The thread we inserted single-step breakpoints for. */
423 static ptid_t singlestep_ptid;
424
425 /* PC when we started this single-step. */
426 static CORE_ADDR singlestep_pc;
427
428 /* If another thread hit the singlestep breakpoint, we save the original
429 thread here so that we can resume single-stepping it later. */
430 static ptid_t saved_singlestep_ptid;
431 static int stepping_past_singlestep_breakpoint;
432
433 /* If not equal to null_ptid, this means that after stepping over breakpoint
434 is finished, we need to switch to deferred_step_ptid, and step it.
435
436 The use case is when one thread has hit a breakpoint, and then the user
437 has switched to another thread and issued 'step'. We need to step over
438 breakpoint in the thread which hit the breakpoint, but then continue
439 stepping the thread user has selected. */
440 static ptid_t deferred_step_ptid;
441 \f
442 /* Displaced stepping. */
443
444 /* In non-stop debugging mode, we must take special care to manage
445 breakpoints properly; in particular, the traditional strategy for
446 stepping a thread past a breakpoint it has hit is unsuitable.
447 'Displaced stepping' is a tactic for stepping one thread past a
448 breakpoint it has hit while ensuring that other threads running
449 concurrently will hit the breakpoint as they should.
450
451 The traditional way to step a thread T off a breakpoint in a
452 multi-threaded program in all-stop mode is as follows:
453
454 a0) Initially, all threads are stopped, and breakpoints are not
455 inserted.
456 a1) We single-step T, leaving breakpoints uninserted.
457 a2) We insert breakpoints, and resume all threads.
458
459 In non-stop debugging, however, this strategy is unsuitable: we
460 don't want to have to stop all threads in the system in order to
461 continue or step T past a breakpoint. Instead, we use displaced
462 stepping:
463
464 n0) Initially, T is stopped, other threads are running, and
465 breakpoints are inserted.
466 n1) We copy the instruction "under" the breakpoint to a separate
467 location, outside the main code stream, making any adjustments
468 to the instruction, register, and memory state as directed by
469 T's architecture.
470 n2) We single-step T over the instruction at its new location.
471 n3) We adjust the resulting register and memory state as directed
472 by T's architecture. This includes resetting T's PC to point
473 back into the main instruction stream.
474 n4) We resume T.
475
476 This approach depends on the following gdbarch methods:
477
478 - gdbarch_max_insn_length and gdbarch_displaced_step_location
479 indicate where to copy the instruction, and how much space must
480 be reserved there. We use these in step n1.
481
482 - gdbarch_displaced_step_copy_insn copies a instruction to a new
483 address, and makes any necessary adjustments to the instruction,
484 register contents, and memory. We use this in step n1.
485
486 - gdbarch_displaced_step_fixup adjusts registers and memory after
487 we have successfuly single-stepped the instruction, to yield the
488 same effect the instruction would have had if we had executed it
489 at its original address. We use this in step n3.
490
491 - gdbarch_displaced_step_free_closure provides cleanup.
492
493 The gdbarch_displaced_step_copy_insn and
494 gdbarch_displaced_step_fixup functions must be written so that
495 copying an instruction with gdbarch_displaced_step_copy_insn,
496 single-stepping across the copied instruction, and then applying
497 gdbarch_displaced_insn_fixup should have the same effects on the
498 thread's memory and registers as stepping the instruction in place
499 would have. Exactly which responsibilities fall to the copy and
500 which fall to the fixup is up to the author of those functions.
501
502 See the comments in gdbarch.sh for details.
503
504 Note that displaced stepping and software single-step cannot
505 currently be used in combination, although with some care I think
506 they could be made to. Software single-step works by placing
507 breakpoints on all possible subsequent instructions; if the
508 displaced instruction is a PC-relative jump, those breakpoints
509 could fall in very strange places --- on pages that aren't
510 executable, or at addresses that are not proper instruction
511 boundaries. (We do generally let other threads run while we wait
512 to hit the software single-step breakpoint, and they might
513 encounter such a corrupted instruction.) One way to work around
514 this would be to have gdbarch_displaced_step_copy_insn fully
515 simulate the effect of PC-relative instructions (and return NULL)
516 on architectures that use software single-stepping.
517
518 In non-stop mode, we can have independent and simultaneous step
519 requests, so more than one thread may need to simultaneously step
520 over a breakpoint. The current implementation assumes there is
521 only one scratch space per process. In this case, we have to
522 serialize access to the scratch space. If thread A wants to step
523 over a breakpoint, but we are currently waiting for some other
524 thread to complete a displaced step, we leave thread A stopped and
525 place it in the displaced_step_request_queue. Whenever a displaced
526 step finishes, we pick the next thread in the queue and start a new
527 displaced step operation on it. See displaced_step_prepare and
528 displaced_step_fixup for details. */
529
530 /* If this is not null_ptid, this is the thread carrying out a
531 displaced single-step. This thread's state will require fixing up
532 once it has completed its step. */
533 static ptid_t displaced_step_ptid;
534
535 struct displaced_step_request
536 {
537 ptid_t ptid;
538 struct displaced_step_request *next;
539 };
540
541 /* A queue of pending displaced stepping requests. */
542 struct displaced_step_request *displaced_step_request_queue;
543
544 /* The architecture the thread had when we stepped it. */
545 static struct gdbarch *displaced_step_gdbarch;
546
547 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
548 for post-step cleanup. */
549 static struct displaced_step_closure *displaced_step_closure;
550
551 /* The address of the original instruction, and the copy we made. */
552 static CORE_ADDR displaced_step_original, displaced_step_copy;
553
554 /* Saved contents of copy area. */
555 static gdb_byte *displaced_step_saved_copy;
556
557 /* Enum strings for "set|show displaced-stepping". */
558
559 static const char can_use_displaced_stepping_auto[] = "auto";
560 static const char can_use_displaced_stepping_on[] = "on";
561 static const char can_use_displaced_stepping_off[] = "off";
562 static const char *can_use_displaced_stepping_enum[] =
563 {
564 can_use_displaced_stepping_auto,
565 can_use_displaced_stepping_on,
566 can_use_displaced_stepping_off,
567 NULL,
568 };
569
570 /* If ON, and the architecture supports it, GDB will use displaced
571 stepping to step over breakpoints. If OFF, or if the architecture
572 doesn't support it, GDB will instead use the traditional
573 hold-and-step approach. If AUTO (which is the default), GDB will
574 decide which technique to use to step over breakpoints depending on
575 which of all-stop or non-stop mode is active --- displaced stepping
576 in non-stop mode; hold-and-step in all-stop mode. */
577
578 static const char *can_use_displaced_stepping =
579 can_use_displaced_stepping_auto;
580
581 static void
582 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
583 struct cmd_list_element *c,
584 const char *value)
585 {
586 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
587 fprintf_filtered (file, _("\
588 Debugger's willingness to use displaced stepping to step over \
589 breakpoints is %s (currently %s).\n"),
590 value, non_stop ? "on" : "off");
591 else
592 fprintf_filtered (file, _("\
593 Debugger's willingness to use displaced stepping to step over \
594 breakpoints is %s.\n"), value);
595 }
596
597 /* Return non-zero if displaced stepping can/should be used to step
598 over breakpoints. */
599
600 static int
601 use_displaced_stepping (struct gdbarch *gdbarch)
602 {
603 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
604 && non_stop)
605 || can_use_displaced_stepping == can_use_displaced_stepping_on)
606 && gdbarch_displaced_step_copy_insn_p (gdbarch));
607 }
608
609 /* Clean out any stray displaced stepping state. */
610 static void
611 displaced_step_clear (void)
612 {
613 /* Indicate that there is no cleanup pending. */
614 displaced_step_ptid = null_ptid;
615
616 if (displaced_step_closure)
617 {
618 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
619 displaced_step_closure);
620 displaced_step_closure = NULL;
621 }
622 }
623
624 static void
625 cleanup_displaced_step_closure (void *ptr)
626 {
627 struct displaced_step_closure *closure = ptr;
628
629 gdbarch_displaced_step_free_closure (current_gdbarch, closure);
630 }
631
632 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
633 void
634 displaced_step_dump_bytes (struct ui_file *file,
635 const gdb_byte *buf,
636 size_t len)
637 {
638 int i;
639
640 for (i = 0; i < len; i++)
641 fprintf_unfiltered (file, "%02x ", buf[i]);
642 fputs_unfiltered ("\n", file);
643 }
644
645 /* Prepare to single-step, using displaced stepping.
646
647 Note that we cannot use displaced stepping when we have a signal to
648 deliver. If we have a signal to deliver and an instruction to step
649 over, then after the step, there will be no indication from the
650 target whether the thread entered a signal handler or ignored the
651 signal and stepped over the instruction successfully --- both cases
652 result in a simple SIGTRAP. In the first case we mustn't do a
653 fixup, and in the second case we must --- but we can't tell which.
654 Comments in the code for 'random signals' in handle_inferior_event
655 explain how we handle this case instead.
656
657 Returns 1 if preparing was successful -- this thread is going to be
658 stepped now; or 0 if displaced stepping this thread got queued. */
659 static int
660 displaced_step_prepare (ptid_t ptid)
661 {
662 struct cleanup *old_cleanups, *ignore_cleanups;
663 struct regcache *regcache = get_thread_regcache (ptid);
664 struct gdbarch *gdbarch = get_regcache_arch (regcache);
665 CORE_ADDR original, copy;
666 ULONGEST len;
667 struct displaced_step_closure *closure;
668
669 /* We should never reach this function if the architecture does not
670 support displaced stepping. */
671 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
672
673 /* For the first cut, we're displaced stepping one thread at a
674 time. */
675
676 if (!ptid_equal (displaced_step_ptid, null_ptid))
677 {
678 /* Already waiting for a displaced step to finish. Defer this
679 request and place in queue. */
680 struct displaced_step_request *req, *new_req;
681
682 if (debug_displaced)
683 fprintf_unfiltered (gdb_stdlog,
684 "displaced: defering step of %s\n",
685 target_pid_to_str (ptid));
686
687 new_req = xmalloc (sizeof (*new_req));
688 new_req->ptid = ptid;
689 new_req->next = NULL;
690
691 if (displaced_step_request_queue)
692 {
693 for (req = displaced_step_request_queue;
694 req && req->next;
695 req = req->next)
696 ;
697 req->next = new_req;
698 }
699 else
700 displaced_step_request_queue = new_req;
701
702 return 0;
703 }
704 else
705 {
706 if (debug_displaced)
707 fprintf_unfiltered (gdb_stdlog,
708 "displaced: stepping %s now\n",
709 target_pid_to_str (ptid));
710 }
711
712 displaced_step_clear ();
713
714 old_cleanups = save_inferior_ptid ();
715 inferior_ptid = ptid;
716
717 original = regcache_read_pc (regcache);
718
719 copy = gdbarch_displaced_step_location (gdbarch);
720 len = gdbarch_max_insn_length (gdbarch);
721
722 /* Save the original contents of the copy area. */
723 displaced_step_saved_copy = xmalloc (len);
724 ignore_cleanups = make_cleanup (free_current_contents,
725 &displaced_step_saved_copy);
726 read_memory (copy, displaced_step_saved_copy, len);
727 if (debug_displaced)
728 {
729 fprintf_unfiltered (gdb_stdlog, "displaced: saved 0x%s: ",
730 paddr_nz (copy));
731 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
732 };
733
734 closure = gdbarch_displaced_step_copy_insn (gdbarch,
735 original, copy, regcache);
736
737 /* We don't support the fully-simulated case at present. */
738 gdb_assert (closure);
739
740 make_cleanup (cleanup_displaced_step_closure, closure);
741
742 /* Resume execution at the copy. */
743 regcache_write_pc (regcache, copy);
744
745 discard_cleanups (ignore_cleanups);
746
747 do_cleanups (old_cleanups);
748
749 if (debug_displaced)
750 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to 0x%s\n",
751 paddr_nz (copy));
752
753 /* Save the information we need to fix things up if the step
754 succeeds. */
755 displaced_step_ptid = ptid;
756 displaced_step_gdbarch = gdbarch;
757 displaced_step_closure = closure;
758 displaced_step_original = original;
759 displaced_step_copy = copy;
760 return 1;
761 }
762
763 static void
764 displaced_step_clear_cleanup (void *ignore)
765 {
766 displaced_step_clear ();
767 }
768
769 static void
770 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
771 {
772 struct cleanup *ptid_cleanup = save_inferior_ptid ();
773 inferior_ptid = ptid;
774 write_memory (memaddr, myaddr, len);
775 do_cleanups (ptid_cleanup);
776 }
777
778 static void
779 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
780 {
781 struct cleanup *old_cleanups;
782
783 /* Was this event for the pid we displaced? */
784 if (ptid_equal (displaced_step_ptid, null_ptid)
785 || ! ptid_equal (displaced_step_ptid, event_ptid))
786 return;
787
788 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
789
790 /* Restore the contents of the copy area. */
791 {
792 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
793 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
794 displaced_step_saved_copy, len);
795 if (debug_displaced)
796 fprintf_unfiltered (gdb_stdlog, "displaced: restored 0x%s\n",
797 paddr_nz (displaced_step_copy));
798 }
799
800 /* Did the instruction complete successfully? */
801 if (signal == TARGET_SIGNAL_TRAP)
802 {
803 /* Fix up the resulting state. */
804 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
805 displaced_step_closure,
806 displaced_step_original,
807 displaced_step_copy,
808 get_thread_regcache (displaced_step_ptid));
809 }
810 else
811 {
812 /* Since the instruction didn't complete, all we can do is
813 relocate the PC. */
814 struct regcache *regcache = get_thread_regcache (event_ptid);
815 CORE_ADDR pc = regcache_read_pc (regcache);
816 pc = displaced_step_original + (pc - displaced_step_copy);
817 regcache_write_pc (regcache, pc);
818 }
819
820 do_cleanups (old_cleanups);
821
822 displaced_step_ptid = null_ptid;
823
824 /* Are there any pending displaced stepping requests? If so, run
825 one now. */
826 while (displaced_step_request_queue)
827 {
828 struct displaced_step_request *head;
829 ptid_t ptid;
830 CORE_ADDR actual_pc;
831
832 head = displaced_step_request_queue;
833 ptid = head->ptid;
834 displaced_step_request_queue = head->next;
835 xfree (head);
836
837 context_switch (ptid);
838
839 actual_pc = read_pc ();
840
841 if (breakpoint_here_p (actual_pc))
842 {
843 if (debug_displaced)
844 fprintf_unfiltered (gdb_stdlog,
845 "displaced: stepping queued %s now\n",
846 target_pid_to_str (ptid));
847
848 displaced_step_prepare (ptid);
849
850 if (debug_displaced)
851 {
852 gdb_byte buf[4];
853
854 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
855 paddr_nz (actual_pc));
856 read_memory (actual_pc, buf, sizeof (buf));
857 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
858 }
859
860 target_resume (ptid, 1, TARGET_SIGNAL_0);
861
862 /* Done, we're stepping a thread. */
863 break;
864 }
865 else
866 {
867 int step;
868 struct thread_info *tp = inferior_thread ();
869
870 /* The breakpoint we were sitting under has since been
871 removed. */
872 tp->trap_expected = 0;
873
874 /* Go back to what we were trying to do. */
875 step = currently_stepping (tp);
876
877 if (debug_displaced)
878 fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n",
879 target_pid_to_str (tp->ptid), step);
880
881 target_resume (ptid, step, TARGET_SIGNAL_0);
882 tp->stop_signal = TARGET_SIGNAL_0;
883
884 /* This request was discarded. See if there's any other
885 thread waiting for its turn. */
886 }
887 }
888 }
889
890 /* Update global variables holding ptids to hold NEW_PTID if they were
891 holding OLD_PTID. */
892 static void
893 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
894 {
895 struct displaced_step_request *it;
896
897 if (ptid_equal (inferior_ptid, old_ptid))
898 inferior_ptid = new_ptid;
899
900 if (ptid_equal (singlestep_ptid, old_ptid))
901 singlestep_ptid = new_ptid;
902
903 if (ptid_equal (displaced_step_ptid, old_ptid))
904 displaced_step_ptid = new_ptid;
905
906 if (ptid_equal (deferred_step_ptid, old_ptid))
907 deferred_step_ptid = new_ptid;
908
909 for (it = displaced_step_request_queue; it; it = it->next)
910 if (ptid_equal (it->ptid, old_ptid))
911 it->ptid = new_ptid;
912 }
913
914 \f
915 /* Resuming. */
916
917 /* Things to clean up if we QUIT out of resume (). */
918 static void
919 resume_cleanups (void *ignore)
920 {
921 normal_stop ();
922 }
923
924 static const char schedlock_off[] = "off";
925 static const char schedlock_on[] = "on";
926 static const char schedlock_step[] = "step";
927 static const char *scheduler_enums[] = {
928 schedlock_off,
929 schedlock_on,
930 schedlock_step,
931 NULL
932 };
933 static const char *scheduler_mode = schedlock_off;
934 static void
935 show_scheduler_mode (struct ui_file *file, int from_tty,
936 struct cmd_list_element *c, const char *value)
937 {
938 fprintf_filtered (file, _("\
939 Mode for locking scheduler during execution is \"%s\".\n"),
940 value);
941 }
942
943 static void
944 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
945 {
946 if (!target_can_lock_scheduler)
947 {
948 scheduler_mode = schedlock_off;
949 error (_("Target '%s' cannot support this command."), target_shortname);
950 }
951 }
952
953
954 /* Resume the inferior, but allow a QUIT. This is useful if the user
955 wants to interrupt some lengthy single-stepping operation
956 (for child processes, the SIGINT goes to the inferior, and so
957 we get a SIGINT random_signal, but for remote debugging and perhaps
958 other targets, that's not true).
959
960 STEP nonzero if we should step (zero to continue instead).
961 SIG is the signal to give the inferior (zero for none). */
962 void
963 resume (int step, enum target_signal sig)
964 {
965 int should_resume = 1;
966 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
967
968 /* Note that these must be reset if we follow a fork below. */
969 struct regcache *regcache = get_current_regcache ();
970 struct gdbarch *gdbarch = get_regcache_arch (regcache);
971 struct thread_info *tp = inferior_thread ();
972 CORE_ADDR pc = regcache_read_pc (regcache);
973
974 QUIT;
975
976 if (debug_infrun)
977 fprintf_unfiltered (gdb_stdlog,
978 "infrun: resume (step=%d, signal=%d), "
979 "trap_expected=%d\n",
980 step, sig, tp->trap_expected);
981
982 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
983 over an instruction that causes a page fault without triggering
984 a hardware watchpoint. The kernel properly notices that it shouldn't
985 stop, because the hardware watchpoint is not triggered, but it forgets
986 the step request and continues the program normally.
987 Work around the problem by removing hardware watchpoints if a step is
988 requested, GDB will check for a hardware watchpoint trigger after the
989 step anyway. */
990 if (CANNOT_STEP_HW_WATCHPOINTS && step)
991 remove_hw_watchpoints ();
992
993
994 /* Normally, by the time we reach `resume', the breakpoints are either
995 removed or inserted, as appropriate. The exception is if we're sitting
996 at a permanent breakpoint; we need to step over it, but permanent
997 breakpoints can't be removed. So we have to test for it here. */
998 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
999 {
1000 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1001 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1002 else
1003 error (_("\
1004 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1005 how to step past a permanent breakpoint on this architecture. Try using\n\
1006 a command like `return' or `jump' to continue execution."));
1007 }
1008
1009 /* If enabled, step over breakpoints by executing a copy of the
1010 instruction at a different address.
1011
1012 We can't use displaced stepping when we have a signal to deliver;
1013 the comments for displaced_step_prepare explain why. The
1014 comments in the handle_inferior event for dealing with 'random
1015 signals' explain what we do instead. */
1016 if (use_displaced_stepping (gdbarch)
1017 && tp->trap_expected
1018 && sig == TARGET_SIGNAL_0)
1019 {
1020 if (!displaced_step_prepare (inferior_ptid))
1021 {
1022 /* Got placed in displaced stepping queue. Will be resumed
1023 later when all the currently queued displaced stepping
1024 requests finish. The thread is not executing at this point,
1025 and the call to set_executing will be made later. But we
1026 need to call set_running here, since from frontend point of view,
1027 the thread is running. */
1028 set_running (inferior_ptid, 1);
1029 discard_cleanups (old_cleanups);
1030 return;
1031 }
1032 }
1033
1034 if (step && gdbarch_software_single_step_p (gdbarch))
1035 {
1036 /* Do it the hard way, w/temp breakpoints */
1037 if (gdbarch_software_single_step (gdbarch, get_current_frame ()))
1038 {
1039 /* ...and don't ask hardware to do it. */
1040 step = 0;
1041 /* and do not pull these breakpoints until after a `wait' in
1042 `wait_for_inferior' */
1043 singlestep_breakpoints_inserted_p = 1;
1044 singlestep_ptid = inferior_ptid;
1045 singlestep_pc = pc;
1046 }
1047 }
1048
1049 /* If there were any forks/vforks/execs that were caught and are
1050 now to be followed, then do so. */
1051 switch (pending_follow.kind)
1052 {
1053 case TARGET_WAITKIND_FORKED:
1054 case TARGET_WAITKIND_VFORKED:
1055 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
1056 if (follow_fork ())
1057 should_resume = 0;
1058
1059 /* Following a child fork will change our notion of current
1060 thread. */
1061 tp = inferior_thread ();
1062 regcache = get_current_regcache ();
1063 gdbarch = get_regcache_arch (regcache);
1064 pc = regcache_read_pc (regcache);
1065 break;
1066
1067 case TARGET_WAITKIND_EXECD:
1068 /* follow_exec is called as soon as the exec event is seen. */
1069 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
1070 break;
1071
1072 default:
1073 break;
1074 }
1075
1076 /* Install inferior's terminal modes. */
1077 target_terminal_inferior ();
1078
1079 if (should_resume)
1080 {
1081 ptid_t resume_ptid;
1082
1083 resume_ptid = RESUME_ALL; /* Default */
1084
1085 /* If STEP is set, it's a request to use hardware stepping
1086 facilities. But in that case, we should never
1087 use singlestep breakpoint. */
1088 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1089
1090 if (singlestep_breakpoints_inserted_p
1091 && stepping_past_singlestep_breakpoint)
1092 {
1093 /* The situation here is as follows. In thread T1 we wanted to
1094 single-step. Lacking hardware single-stepping we've
1095 set breakpoint at the PC of the next instruction -- call it
1096 P. After resuming, we've hit that breakpoint in thread T2.
1097 Now we've removed original breakpoint, inserted breakpoint
1098 at P+1, and try to step to advance T2 past breakpoint.
1099 We need to step only T2, as if T1 is allowed to freely run,
1100 it can run past P, and if other threads are allowed to run,
1101 they can hit breakpoint at P+1, and nested hits of single-step
1102 breakpoints is not something we'd want -- that's complicated
1103 to support, and has no value. */
1104 resume_ptid = inferior_ptid;
1105 }
1106
1107 if ((step || singlestep_breakpoints_inserted_p)
1108 && tp->trap_expected)
1109 {
1110 /* We're allowing a thread to run past a breakpoint it has
1111 hit, by single-stepping the thread with the breakpoint
1112 removed. In which case, we need to single-step only this
1113 thread, and keep others stopped, as they can miss this
1114 breakpoint if allowed to run.
1115
1116 The current code actually removes all breakpoints when
1117 doing this, not just the one being stepped over, so if we
1118 let other threads run, we can actually miss any
1119 breakpoint, not just the one at PC. */
1120 resume_ptid = inferior_ptid;
1121 }
1122
1123 if (non_stop)
1124 {
1125 /* With non-stop mode on, threads are always handled
1126 individually. */
1127 resume_ptid = inferior_ptid;
1128 }
1129 else if ((scheduler_mode == schedlock_on)
1130 || (scheduler_mode == schedlock_step
1131 && (step || singlestep_breakpoints_inserted_p)))
1132 {
1133 /* User-settable 'scheduler' mode requires solo thread resume. */
1134 resume_ptid = inferior_ptid;
1135 }
1136
1137 if (gdbarch_cannot_step_breakpoint (gdbarch))
1138 {
1139 /* Most targets can step a breakpoint instruction, thus
1140 executing it normally. But if this one cannot, just
1141 continue and we will hit it anyway. */
1142 if (step && breakpoint_inserted_here_p (pc))
1143 step = 0;
1144 }
1145
1146 if (debug_displaced
1147 && use_displaced_stepping (gdbarch)
1148 && tp->trap_expected)
1149 {
1150 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1151 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1152 gdb_byte buf[4];
1153
1154 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
1155 paddr_nz (actual_pc));
1156 read_memory (actual_pc, buf, sizeof (buf));
1157 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1158 }
1159
1160 /* Avoid confusing the next resume, if the next stop/resume
1161 happens to apply to another thread. */
1162 tp->stop_signal = TARGET_SIGNAL_0;
1163
1164 target_resume (resume_ptid, step, sig);
1165 }
1166
1167 discard_cleanups (old_cleanups);
1168 }
1169 \f
1170 /* Proceeding. */
1171
1172 /* Clear out all variables saying what to do when inferior is continued.
1173 First do this, then set the ones you want, then call `proceed'. */
1174
1175 static void
1176 clear_proceed_status_thread (struct thread_info *tp)
1177 {
1178 if (debug_infrun)
1179 fprintf_unfiltered (gdb_stdlog,
1180 "infrun: clear_proceed_status_thread (%s)\n",
1181 target_pid_to_str (tp->ptid));
1182
1183 tp->trap_expected = 0;
1184 tp->step_range_start = 0;
1185 tp->step_range_end = 0;
1186 tp->step_frame_id = null_frame_id;
1187 tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
1188 tp->stop_requested = 0;
1189
1190 tp->stop_step = 0;
1191
1192 tp->proceed_to_finish = 0;
1193
1194 /* Discard any remaining commands or status from previous stop. */
1195 bpstat_clear (&tp->stop_bpstat);
1196 }
1197
1198 static int
1199 clear_proceed_status_callback (struct thread_info *tp, void *data)
1200 {
1201 if (is_exited (tp->ptid))
1202 return 0;
1203
1204 clear_proceed_status_thread (tp);
1205 return 0;
1206 }
1207
1208 void
1209 clear_proceed_status (void)
1210 {
1211 if (!ptid_equal (inferior_ptid, null_ptid))
1212 {
1213 struct inferior *inferior;
1214
1215 if (non_stop)
1216 {
1217 /* If in non-stop mode, only delete the per-thread status
1218 of the current thread. */
1219 clear_proceed_status_thread (inferior_thread ());
1220 }
1221 else
1222 {
1223 /* In all-stop mode, delete the per-thread status of
1224 *all* threads. */
1225 iterate_over_threads (clear_proceed_status_callback, NULL);
1226 }
1227
1228 inferior = current_inferior ();
1229 inferior->stop_soon = NO_STOP_QUIETLY;
1230 }
1231
1232 stop_after_trap = 0;
1233 breakpoint_proceeded = 1; /* We're about to proceed... */
1234
1235 if (stop_registers)
1236 {
1237 regcache_xfree (stop_registers);
1238 stop_registers = NULL;
1239 }
1240 }
1241
1242 /* This should be suitable for any targets that support threads. */
1243
1244 static int
1245 prepare_to_proceed (int step)
1246 {
1247 ptid_t wait_ptid;
1248 struct target_waitstatus wait_status;
1249
1250 /* Get the last target status returned by target_wait(). */
1251 get_last_target_status (&wait_ptid, &wait_status);
1252
1253 /* Make sure we were stopped at a breakpoint. */
1254 if (wait_status.kind != TARGET_WAITKIND_STOPPED
1255 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
1256 {
1257 return 0;
1258 }
1259
1260 /* Switched over from WAIT_PID. */
1261 if (!ptid_equal (wait_ptid, minus_one_ptid)
1262 && !ptid_equal (inferior_ptid, wait_ptid))
1263 {
1264 struct regcache *regcache = get_thread_regcache (wait_ptid);
1265
1266 if (breakpoint_here_p (regcache_read_pc (regcache)))
1267 {
1268 /* If stepping, remember current thread to switch back to. */
1269 if (step)
1270 deferred_step_ptid = inferior_ptid;
1271
1272 /* Switch back to WAIT_PID thread. */
1273 switch_to_thread (wait_ptid);
1274
1275 /* We return 1 to indicate that there is a breakpoint here,
1276 so we need to step over it before continuing to avoid
1277 hitting it straight away. */
1278 return 1;
1279 }
1280 }
1281
1282 return 0;
1283 }
1284
1285 /* Basic routine for continuing the program in various fashions.
1286
1287 ADDR is the address to resume at, or -1 for resume where stopped.
1288 SIGGNAL is the signal to give it, or 0 for none,
1289 or -1 for act according to how it stopped.
1290 STEP is nonzero if should trap after one instruction.
1291 -1 means return after that and print nothing.
1292 You should probably set various step_... variables
1293 before calling here, if you are stepping.
1294
1295 You should call clear_proceed_status before calling proceed. */
1296
1297 void
1298 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
1299 {
1300 struct regcache *regcache = get_current_regcache ();
1301 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1302 struct thread_info *tp;
1303 CORE_ADDR pc = regcache_read_pc (regcache);
1304 int oneproc = 0;
1305
1306 if (step > 0)
1307 step_start_function = find_pc_function (pc);
1308 if (step < 0)
1309 stop_after_trap = 1;
1310
1311 if (addr == (CORE_ADDR) -1)
1312 {
1313 if (pc == stop_pc && breakpoint_here_p (pc)
1314 && execution_direction != EXEC_REVERSE)
1315 /* There is a breakpoint at the address we will resume at,
1316 step one instruction before inserting breakpoints so that
1317 we do not stop right away (and report a second hit at this
1318 breakpoint).
1319
1320 Note, we don't do this in reverse, because we won't
1321 actually be executing the breakpoint insn anyway.
1322 We'll be (un-)executing the previous instruction. */
1323
1324 oneproc = 1;
1325 else if (gdbarch_single_step_through_delay_p (gdbarch)
1326 && gdbarch_single_step_through_delay (gdbarch,
1327 get_current_frame ()))
1328 /* We stepped onto an instruction that needs to be stepped
1329 again before re-inserting the breakpoint, do so. */
1330 oneproc = 1;
1331 }
1332 else
1333 {
1334 regcache_write_pc (regcache, addr);
1335 }
1336
1337 if (debug_infrun)
1338 fprintf_unfiltered (gdb_stdlog,
1339 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
1340 paddr_nz (addr), siggnal, step);
1341
1342 if (non_stop)
1343 /* In non-stop, each thread is handled individually. The context
1344 must already be set to the right thread here. */
1345 ;
1346 else
1347 {
1348 /* In a multi-threaded task we may select another thread and
1349 then continue or step.
1350
1351 But if the old thread was stopped at a breakpoint, it will
1352 immediately cause another breakpoint stop without any
1353 execution (i.e. it will report a breakpoint hit incorrectly).
1354 So we must step over it first.
1355
1356 prepare_to_proceed checks the current thread against the
1357 thread that reported the most recent event. If a step-over
1358 is required it returns TRUE and sets the current thread to
1359 the old thread. */
1360 if (prepare_to_proceed (step))
1361 oneproc = 1;
1362 }
1363
1364 /* prepare_to_proceed may change the current thread. */
1365 tp = inferior_thread ();
1366
1367 if (oneproc)
1368 {
1369 tp->trap_expected = 1;
1370 /* If displaced stepping is enabled, we can step over the
1371 breakpoint without hitting it, so leave all breakpoints
1372 inserted. Otherwise we need to disable all breakpoints, step
1373 one instruction, and then re-add them when that step is
1374 finished. */
1375 if (!use_displaced_stepping (gdbarch))
1376 remove_breakpoints ();
1377 }
1378
1379 /* We can insert breakpoints if we're not trying to step over one,
1380 or if we are stepping over one but we're using displaced stepping
1381 to do so. */
1382 if (! tp->trap_expected || use_displaced_stepping (gdbarch))
1383 insert_breakpoints ();
1384
1385 if (!non_stop)
1386 {
1387 /* Pass the last stop signal to the thread we're resuming,
1388 irrespective of whether the current thread is the thread that
1389 got the last event or not. This was historically GDB's
1390 behaviour before keeping a stop_signal per thread. */
1391
1392 struct thread_info *last_thread;
1393 ptid_t last_ptid;
1394 struct target_waitstatus last_status;
1395
1396 get_last_target_status (&last_ptid, &last_status);
1397 if (!ptid_equal (inferior_ptid, last_ptid)
1398 && !ptid_equal (last_ptid, null_ptid)
1399 && !ptid_equal (last_ptid, minus_one_ptid))
1400 {
1401 last_thread = find_thread_pid (last_ptid);
1402 if (last_thread)
1403 {
1404 tp->stop_signal = last_thread->stop_signal;
1405 last_thread->stop_signal = TARGET_SIGNAL_0;
1406 }
1407 }
1408 }
1409
1410 if (siggnal != TARGET_SIGNAL_DEFAULT)
1411 tp->stop_signal = siggnal;
1412 /* If this signal should not be seen by program,
1413 give it zero. Used for debugging signals. */
1414 else if (!signal_program[tp->stop_signal])
1415 tp->stop_signal = TARGET_SIGNAL_0;
1416
1417 annotate_starting ();
1418
1419 /* Make sure that output from GDB appears before output from the
1420 inferior. */
1421 gdb_flush (gdb_stdout);
1422
1423 /* Refresh prev_pc value just prior to resuming. This used to be
1424 done in stop_stepping, however, setting prev_pc there did not handle
1425 scenarios such as inferior function calls or returning from
1426 a function via the return command. In those cases, the prev_pc
1427 value was not set properly for subsequent commands. The prev_pc value
1428 is used to initialize the starting line number in the ecs. With an
1429 invalid value, the gdb next command ends up stopping at the position
1430 represented by the next line table entry past our start position.
1431 On platforms that generate one line table entry per line, this
1432 is not a problem. However, on the ia64, the compiler generates
1433 extraneous line table entries that do not increase the line number.
1434 When we issue the gdb next command on the ia64 after an inferior call
1435 or a return command, we often end up a few instructions forward, still
1436 within the original line we started.
1437
1438 An attempt was made to have init_execution_control_state () refresh
1439 the prev_pc value before calculating the line number. This approach
1440 did not work because on platforms that use ptrace, the pc register
1441 cannot be read unless the inferior is stopped. At that point, we
1442 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
1443 call can fail. Setting the prev_pc value here ensures the value is
1444 updated correctly when the inferior is stopped. */
1445 tp->prev_pc = regcache_read_pc (get_current_regcache ());
1446
1447 /* Fill in with reasonable starting values. */
1448 init_thread_stepping_state (tp);
1449
1450 /* Reset to normal state. */
1451 init_infwait_state ();
1452
1453 /* Resume inferior. */
1454 resume (oneproc || step || bpstat_should_step (), tp->stop_signal);
1455
1456 /* Wait for it to stop (if not standalone)
1457 and in any case decode why it stopped, and act accordingly. */
1458 /* Do this only if we are not using the event loop, or if the target
1459 does not support asynchronous execution. */
1460 if (!target_can_async_p ())
1461 {
1462 wait_for_inferior (0);
1463 normal_stop ();
1464 }
1465 }
1466 \f
1467
1468 /* Start remote-debugging of a machine over a serial link. */
1469
1470 void
1471 start_remote (int from_tty)
1472 {
1473 struct inferior *inferior;
1474 init_wait_for_inferior ();
1475
1476 inferior = current_inferior ();
1477 inferior->stop_soon = STOP_QUIETLY_REMOTE;
1478
1479 /* Always go on waiting for the target, regardless of the mode. */
1480 /* FIXME: cagney/1999-09-23: At present it isn't possible to
1481 indicate to wait_for_inferior that a target should timeout if
1482 nothing is returned (instead of just blocking). Because of this,
1483 targets expecting an immediate response need to, internally, set
1484 things up so that the target_wait() is forced to eventually
1485 timeout. */
1486 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1487 differentiate to its caller what the state of the target is after
1488 the initial open has been performed. Here we're assuming that
1489 the target has stopped. It should be possible to eventually have
1490 target_open() return to the caller an indication that the target
1491 is currently running and GDB state should be set to the same as
1492 for an async run. */
1493 wait_for_inferior (0);
1494
1495 /* Now that the inferior has stopped, do any bookkeeping like
1496 loading shared libraries. We want to do this before normal_stop,
1497 so that the displayed frame is up to date. */
1498 post_create_inferior (&current_target, from_tty);
1499
1500 normal_stop ();
1501 }
1502
1503 /* Initialize static vars when a new inferior begins. */
1504
1505 void
1506 init_wait_for_inferior (void)
1507 {
1508 /* These are meaningless until the first time through wait_for_inferior. */
1509
1510 breakpoint_init_inferior (inf_starting);
1511
1512 /* The first resume is not following a fork/vfork/exec. */
1513 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
1514
1515 clear_proceed_status ();
1516
1517 stepping_past_singlestep_breakpoint = 0;
1518 deferred_step_ptid = null_ptid;
1519
1520 target_last_wait_ptid = minus_one_ptid;
1521
1522 previous_inferior_ptid = null_ptid;
1523 init_infwait_state ();
1524
1525 displaced_step_clear ();
1526 }
1527
1528 \f
1529 /* This enum encodes possible reasons for doing a target_wait, so that
1530 wfi can call target_wait in one place. (Ultimately the call will be
1531 moved out of the infinite loop entirely.) */
1532
1533 enum infwait_states
1534 {
1535 infwait_normal_state,
1536 infwait_thread_hop_state,
1537 infwait_step_watch_state,
1538 infwait_nonstep_watch_state
1539 };
1540
1541 /* Why did the inferior stop? Used to print the appropriate messages
1542 to the interface from within handle_inferior_event(). */
1543 enum inferior_stop_reason
1544 {
1545 /* Step, next, nexti, stepi finished. */
1546 END_STEPPING_RANGE,
1547 /* Inferior terminated by signal. */
1548 SIGNAL_EXITED,
1549 /* Inferior exited. */
1550 EXITED,
1551 /* Inferior received signal, and user asked to be notified. */
1552 SIGNAL_RECEIVED,
1553 /* Reverse execution -- target ran out of history info. */
1554 NO_HISTORY
1555 };
1556
1557 /* The PTID we'll do a target_wait on.*/
1558 ptid_t waiton_ptid;
1559
1560 /* Current inferior wait state. */
1561 enum infwait_states infwait_state;
1562
1563 /* Data to be passed around while handling an event. This data is
1564 discarded between events. */
1565 struct execution_control_state
1566 {
1567 ptid_t ptid;
1568 /* The thread that got the event, if this was a thread event; NULL
1569 otherwise. */
1570 struct thread_info *event_thread;
1571
1572 struct target_waitstatus ws;
1573 int random_signal;
1574 CORE_ADDR stop_func_start;
1575 CORE_ADDR stop_func_end;
1576 char *stop_func_name;
1577 int new_thread_event;
1578 int wait_some_more;
1579 };
1580
1581 void init_execution_control_state (struct execution_control_state *ecs);
1582
1583 void handle_inferior_event (struct execution_control_state *ecs);
1584
1585 static void handle_step_into_function (struct execution_control_state *ecs);
1586 static void handle_step_into_function_backward (struct execution_control_state *ecs);
1587 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
1588 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
1589 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
1590 struct frame_id sr_id);
1591 static void insert_longjmp_resume_breakpoint (CORE_ADDR);
1592
1593 static void stop_stepping (struct execution_control_state *ecs);
1594 static void prepare_to_wait (struct execution_control_state *ecs);
1595 static void keep_going (struct execution_control_state *ecs);
1596 static void print_stop_reason (enum inferior_stop_reason stop_reason,
1597 int stop_info);
1598
1599 /* Callback for iterate over threads. If the thread is stopped, but
1600 the user/frontend doesn't know about that yet, go through
1601 normal_stop, as if the thread had just stopped now. ARG points at
1602 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
1603 ptid_is_pid(PTID) is true, applies to all threads of the process
1604 pointed at by PTID. Otherwise, apply only to the thread pointed by
1605 PTID. */
1606
1607 static int
1608 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
1609 {
1610 ptid_t ptid = * (ptid_t *) arg;
1611
1612 if ((ptid_equal (info->ptid, ptid)
1613 || ptid_equal (minus_one_ptid, ptid)
1614 || (ptid_is_pid (ptid)
1615 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
1616 && is_running (info->ptid)
1617 && !is_executing (info->ptid))
1618 {
1619 struct cleanup *old_chain;
1620 struct execution_control_state ecss;
1621 struct execution_control_state *ecs = &ecss;
1622
1623 memset (ecs, 0, sizeof (*ecs));
1624
1625 old_chain = make_cleanup_restore_current_thread ();
1626
1627 switch_to_thread (info->ptid);
1628
1629 /* Go through handle_inferior_event/normal_stop, so we always
1630 have consistent output as if the stop event had been
1631 reported. */
1632 ecs->ptid = info->ptid;
1633 ecs->event_thread = find_thread_pid (info->ptid);
1634 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1635 ecs->ws.value.sig = TARGET_SIGNAL_0;
1636
1637 handle_inferior_event (ecs);
1638
1639 if (!ecs->wait_some_more)
1640 {
1641 struct thread_info *tp;
1642
1643 normal_stop ();
1644
1645 /* Finish off the continuations. The continations
1646 themselves are responsible for realising the thread
1647 didn't finish what it was supposed to do. */
1648 tp = inferior_thread ();
1649 do_all_intermediate_continuations_thread (tp);
1650 do_all_continuations_thread (tp);
1651 }
1652
1653 do_cleanups (old_chain);
1654 }
1655
1656 return 0;
1657 }
1658
1659 /* This function is attached as a "thread_stop_requested" observer.
1660 Cleanup local state that assumed the PTID was to be resumed, and
1661 report the stop to the frontend. */
1662
1663 void
1664 infrun_thread_stop_requested (ptid_t ptid)
1665 {
1666 struct displaced_step_request *it, *next, *prev = NULL;
1667
1668 /* PTID was requested to stop. Remove it from the displaced
1669 stepping queue, so we don't try to resume it automatically. */
1670 for (it = displaced_step_request_queue; it; it = next)
1671 {
1672 next = it->next;
1673
1674 if (ptid_equal (it->ptid, ptid)
1675 || ptid_equal (minus_one_ptid, ptid)
1676 || (ptid_is_pid (ptid)
1677 && ptid_get_pid (ptid) == ptid_get_pid (it->ptid)))
1678 {
1679 if (displaced_step_request_queue == it)
1680 displaced_step_request_queue = it->next;
1681 else
1682 prev->next = it->next;
1683
1684 xfree (it);
1685 }
1686 else
1687 prev = it;
1688 }
1689
1690 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
1691 }
1692
1693 /* Callback for iterate_over_threads. */
1694
1695 static int
1696 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
1697 {
1698 if (is_exited (info->ptid))
1699 return 0;
1700
1701 delete_step_resume_breakpoint (info);
1702 return 0;
1703 }
1704
1705 /* In all-stop, delete the step resume breakpoint of any thread that
1706 had one. In non-stop, delete the step resume breakpoint of the
1707 thread that just stopped. */
1708
1709 static void
1710 delete_step_thread_step_resume_breakpoint (void)
1711 {
1712 if (!target_has_execution
1713 || ptid_equal (inferior_ptid, null_ptid))
1714 /* If the inferior has exited, we have already deleted the step
1715 resume breakpoints out of GDB's lists. */
1716 return;
1717
1718 if (non_stop)
1719 {
1720 /* If in non-stop mode, only delete the step-resume or
1721 longjmp-resume breakpoint of the thread that just stopped
1722 stepping. */
1723 struct thread_info *tp = inferior_thread ();
1724 delete_step_resume_breakpoint (tp);
1725 }
1726 else
1727 /* In all-stop mode, delete all step-resume and longjmp-resume
1728 breakpoints of any thread that had them. */
1729 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
1730 }
1731
1732 /* A cleanup wrapper. */
1733
1734 static void
1735 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
1736 {
1737 delete_step_thread_step_resume_breakpoint ();
1738 }
1739
1740 /* Wait for control to return from inferior to debugger.
1741
1742 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1743 as if they were SIGTRAP signals. This can be useful during
1744 the startup sequence on some targets such as HP/UX, where
1745 we receive an EXEC event instead of the expected SIGTRAP.
1746
1747 If inferior gets a signal, we may decide to start it up again
1748 instead of returning. That is why there is a loop in this function.
1749 When this function actually returns it means the inferior
1750 should be left stopped and GDB should read more commands. */
1751
1752 void
1753 wait_for_inferior (int treat_exec_as_sigtrap)
1754 {
1755 struct cleanup *old_cleanups;
1756 struct execution_control_state ecss;
1757 struct execution_control_state *ecs;
1758
1759 if (debug_infrun)
1760 fprintf_unfiltered
1761 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1762 treat_exec_as_sigtrap);
1763
1764 old_cleanups =
1765 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
1766
1767 ecs = &ecss;
1768 memset (ecs, 0, sizeof (*ecs));
1769
1770 overlay_cache_invalid = 1;
1771
1772 /* We'll update this if & when we switch to a new thread. */
1773 previous_inferior_ptid = inferior_ptid;
1774
1775 /* We have to invalidate the registers BEFORE calling target_wait
1776 because they can be loaded from the target while in target_wait.
1777 This makes remote debugging a bit more efficient for those
1778 targets that provide critical registers as part of their normal
1779 status mechanism. */
1780
1781 registers_changed ();
1782
1783 while (1)
1784 {
1785 struct cleanup *old_chain;
1786
1787 if (deprecated_target_wait_hook)
1788 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
1789 else
1790 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
1791
1792 if (debug_infrun)
1793 {
1794 char *status_string = target_waitstatus_to_string (&ecs->ws);
1795 fprintf_unfiltered (gdb_stdlog,
1796 "infrun: target_wait (%d, status) = %d, %s\n",
1797 PIDGET (waiton_ptid), PIDGET (ecs->ptid),
1798 status_string);
1799 xfree (status_string);
1800 }
1801
1802 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1803 {
1804 xfree (ecs->ws.value.execd_pathname);
1805 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1806 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1807 }
1808
1809 /* If an error happens while handling the event, propagate GDB's
1810 knowledge of the executing state to the frontend/user running
1811 state. */
1812 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
1813
1814 /* Now figure out what to do with the result of the result. */
1815 handle_inferior_event (ecs);
1816
1817 /* No error, don't finish the state yet. */
1818 discard_cleanups (old_chain);
1819
1820 if (!ecs->wait_some_more)
1821 break;
1822 }
1823
1824 do_cleanups (old_cleanups);
1825 }
1826
1827 /* Asynchronous version of wait_for_inferior. It is called by the
1828 event loop whenever a change of state is detected on the file
1829 descriptor corresponding to the target. It can be called more than
1830 once to complete a single execution command. In such cases we need
1831 to keep the state in a global variable ECSS. If it is the last time
1832 that this function is called for a single execution command, then
1833 report to the user that the inferior has stopped, and do the
1834 necessary cleanups. */
1835
1836 void
1837 fetch_inferior_event (void *client_data)
1838 {
1839 struct execution_control_state ecss;
1840 struct execution_control_state *ecs = &ecss;
1841 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
1842 struct cleanup *ts_old_chain;
1843 int was_sync = sync_execution;
1844
1845 memset (ecs, 0, sizeof (*ecs));
1846
1847 overlay_cache_invalid = 1;
1848
1849 /* We can only rely on wait_for_more being correct before handling
1850 the event in all-stop, but previous_inferior_ptid isn't used in
1851 non-stop. */
1852 if (!ecs->wait_some_more)
1853 /* We'll update this if & when we switch to a new thread. */
1854 previous_inferior_ptid = inferior_ptid;
1855
1856 if (non_stop)
1857 /* In non-stop mode, the user/frontend should not notice a thread
1858 switch due to internal events. Make sure we reverse to the
1859 user selected thread and frame after handling the event and
1860 running any breakpoint commands. */
1861 make_cleanup_restore_current_thread ();
1862
1863 /* We have to invalidate the registers BEFORE calling target_wait
1864 because they can be loaded from the target while in target_wait.
1865 This makes remote debugging a bit more efficient for those
1866 targets that provide critical registers as part of their normal
1867 status mechanism. */
1868
1869 registers_changed ();
1870
1871 if (deprecated_target_wait_hook)
1872 ecs->ptid =
1873 deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
1874 else
1875 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
1876
1877 if (debug_infrun)
1878 {
1879 char *status_string = target_waitstatus_to_string (&ecs->ws);
1880 fprintf_unfiltered (gdb_stdlog,
1881 "infrun: target_wait (%d, status) = %d, %s\n",
1882 PIDGET (waiton_ptid), PIDGET (ecs->ptid),
1883 status_string);
1884 xfree (status_string);
1885 }
1886
1887 if (non_stop
1888 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
1889 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1890 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
1891 /* In non-stop mode, each thread is handled individually. Switch
1892 early, so the global state is set correctly for this
1893 thread. */
1894 context_switch (ecs->ptid);
1895
1896 /* If an error happens while handling the event, propagate GDB's
1897 knowledge of the executing state to the frontend/user running
1898 state. */
1899 if (!non_stop)
1900 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
1901 else
1902 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
1903
1904 /* Now figure out what to do with the result of the result. */
1905 handle_inferior_event (ecs);
1906
1907 if (!ecs->wait_some_more)
1908 {
1909 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
1910
1911 delete_step_thread_step_resume_breakpoint ();
1912
1913 /* We may not find an inferior if this was a process exit. */
1914 if (inf == NULL || inf->stop_soon == NO_STOP_QUIETLY)
1915 normal_stop ();
1916
1917 if (target_has_execution
1918 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1919 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
1920 && ecs->event_thread->step_multi
1921 && ecs->event_thread->stop_step)
1922 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1923 else
1924 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1925 }
1926
1927 /* No error, don't finish the thread states yet. */
1928 discard_cleanups (ts_old_chain);
1929
1930 /* Revert thread and frame. */
1931 do_cleanups (old_chain);
1932
1933 /* If the inferior was in sync execution mode, and now isn't,
1934 restore the prompt. */
1935 if (was_sync && !sync_execution)
1936 display_gdb_prompt (0);
1937 }
1938
1939 /* Prepare an execution control state for looping through a
1940 wait_for_inferior-type loop. */
1941
1942 void
1943 init_execution_control_state (struct execution_control_state *ecs)
1944 {
1945 ecs->random_signal = 0;
1946 }
1947
1948 /* Clear context switchable stepping state. */
1949
1950 void
1951 init_thread_stepping_state (struct thread_info *tss)
1952 {
1953 struct symtab_and_line sal;
1954
1955 tss->stepping_over_breakpoint = 0;
1956 tss->step_after_step_resume_breakpoint = 0;
1957 tss->stepping_through_solib_after_catch = 0;
1958 tss->stepping_through_solib_catchpoints = NULL;
1959
1960 sal = find_pc_line (tss->prev_pc, 0);
1961 tss->current_line = sal.line;
1962 tss->current_symtab = sal.symtab;
1963 }
1964
1965 /* Return the cached copy of the last pid/waitstatus returned by
1966 target_wait()/deprecated_target_wait_hook(). The data is actually
1967 cached by handle_inferior_event(), which gets called immediately
1968 after target_wait()/deprecated_target_wait_hook(). */
1969
1970 void
1971 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1972 {
1973 *ptidp = target_last_wait_ptid;
1974 *status = target_last_waitstatus;
1975 }
1976
1977 void
1978 nullify_last_target_wait_ptid (void)
1979 {
1980 target_last_wait_ptid = minus_one_ptid;
1981 }
1982
1983 /* Switch thread contexts. */
1984
1985 static void
1986 context_switch (ptid_t ptid)
1987 {
1988 if (debug_infrun)
1989 {
1990 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1991 target_pid_to_str (inferior_ptid));
1992 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1993 target_pid_to_str (ptid));
1994 }
1995
1996 switch_to_thread (ptid);
1997 }
1998
1999 static void
2000 adjust_pc_after_break (struct execution_control_state *ecs)
2001 {
2002 struct regcache *regcache;
2003 struct gdbarch *gdbarch;
2004 CORE_ADDR breakpoint_pc;
2005
2006 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2007 we aren't, just return.
2008
2009 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2010 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2011 implemented by software breakpoints should be handled through the normal
2012 breakpoint layer.
2013
2014 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2015 different signals (SIGILL or SIGEMT for instance), but it is less
2016 clear where the PC is pointing afterwards. It may not match
2017 gdbarch_decr_pc_after_break. I don't know any specific target that
2018 generates these signals at breakpoints (the code has been in GDB since at
2019 least 1992) so I can not guess how to handle them here.
2020
2021 In earlier versions of GDB, a target with
2022 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2023 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2024 target with both of these set in GDB history, and it seems unlikely to be
2025 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2026
2027 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2028 return;
2029
2030 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2031 return;
2032
2033 /* In reverse execution, when a breakpoint is hit, the instruction
2034 under it has already been de-executed. The reported PC always
2035 points at the breakpoint address, so adjusting it further would
2036 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2037 architecture:
2038
2039 B1 0x08000000 : INSN1
2040 B2 0x08000001 : INSN2
2041 0x08000002 : INSN3
2042 PC -> 0x08000003 : INSN4
2043
2044 Say you're stopped at 0x08000003 as above. Reverse continuing
2045 from that point should hit B2 as below. Reading the PC when the
2046 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2047 been de-executed already.
2048
2049 B1 0x08000000 : INSN1
2050 B2 PC -> 0x08000001 : INSN2
2051 0x08000002 : INSN3
2052 0x08000003 : INSN4
2053
2054 We can't apply the same logic as for forward execution, because
2055 we would wrongly adjust the PC to 0x08000000, since there's a
2056 breakpoint at PC - 1. We'd then report a hit on B1, although
2057 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2058 behaviour. */
2059 if (execution_direction == EXEC_REVERSE)
2060 return;
2061
2062 /* If this target does not decrement the PC after breakpoints, then
2063 we have nothing to do. */
2064 regcache = get_thread_regcache (ecs->ptid);
2065 gdbarch = get_regcache_arch (regcache);
2066 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2067 return;
2068
2069 /* Find the location where (if we've hit a breakpoint) the
2070 breakpoint would be. */
2071 breakpoint_pc = regcache_read_pc (regcache)
2072 - gdbarch_decr_pc_after_break (gdbarch);
2073
2074 /* Check whether there actually is a software breakpoint inserted at
2075 that location.
2076
2077 If in non-stop mode, a race condition is possible where we've
2078 removed a breakpoint, but stop events for that breakpoint were
2079 already queued and arrive later. To suppress those spurious
2080 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2081 and retire them after a number of stop events are reported. */
2082 if (software_breakpoint_inserted_here_p (breakpoint_pc)
2083 || (non_stop && moribund_breakpoint_here_p (breakpoint_pc)))
2084 {
2085 /* When using hardware single-step, a SIGTRAP is reported for both
2086 a completed single-step and a software breakpoint. Need to
2087 differentiate between the two, as the latter needs adjusting
2088 but the former does not.
2089
2090 The SIGTRAP can be due to a completed hardware single-step only if
2091 - we didn't insert software single-step breakpoints
2092 - the thread to be examined is still the current thread
2093 - this thread is currently being stepped
2094
2095 If any of these events did not occur, we must have stopped due
2096 to hitting a software breakpoint, and have to back up to the
2097 breakpoint address.
2098
2099 As a special case, we could have hardware single-stepped a
2100 software breakpoint. In this case (prev_pc == breakpoint_pc),
2101 we also need to back up to the breakpoint address. */
2102
2103 if (singlestep_breakpoints_inserted_p
2104 || !ptid_equal (ecs->ptid, inferior_ptid)
2105 || !currently_stepping (ecs->event_thread)
2106 || ecs->event_thread->prev_pc == breakpoint_pc)
2107 regcache_write_pc (regcache, breakpoint_pc);
2108 }
2109 }
2110
2111 void
2112 init_infwait_state (void)
2113 {
2114 waiton_ptid = pid_to_ptid (-1);
2115 infwait_state = infwait_normal_state;
2116 }
2117
2118 void
2119 error_is_running (void)
2120 {
2121 error (_("\
2122 Cannot execute this command while the selected thread is running."));
2123 }
2124
2125 void
2126 ensure_not_running (void)
2127 {
2128 if (is_running (inferior_ptid))
2129 error_is_running ();
2130 }
2131
2132 /* Given an execution control state that has been freshly filled in
2133 by an event from the inferior, figure out what it means and take
2134 appropriate action. */
2135
2136 void
2137 handle_inferior_event (struct execution_control_state *ecs)
2138 {
2139 int sw_single_step_trap_p = 0;
2140 int stopped_by_watchpoint;
2141 int stepped_after_stopped_by_watchpoint = 0;
2142 struct symtab_and_line stop_pc_sal;
2143 enum stop_kind stop_soon;
2144
2145 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2146 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2147 && ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2148 {
2149 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2150 gdb_assert (inf);
2151 stop_soon = inf->stop_soon;
2152 }
2153 else
2154 stop_soon = NO_STOP_QUIETLY;
2155
2156 /* Cache the last pid/waitstatus. */
2157 target_last_wait_ptid = ecs->ptid;
2158 target_last_waitstatus = ecs->ws;
2159
2160 /* Always clear state belonging to the previous time we stopped. */
2161 stop_stack_dummy = 0;
2162
2163 /* If it's a new process, add it to the thread database */
2164
2165 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
2166 && !ptid_equal (ecs->ptid, minus_one_ptid)
2167 && !in_thread_list (ecs->ptid));
2168
2169 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2170 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
2171 add_thread (ecs->ptid);
2172
2173 ecs->event_thread = find_thread_pid (ecs->ptid);
2174
2175 /* Dependent on valid ECS->EVENT_THREAD. */
2176 adjust_pc_after_break (ecs);
2177
2178 /* Dependent on the current PC value modified by adjust_pc_after_break. */
2179 reinit_frame_cache ();
2180
2181 if (ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2182 {
2183 breakpoint_retire_moribund ();
2184
2185 /* Mark the non-executing threads accordingly. In all-stop, all
2186 threads of all processes are stopped when we get any event
2187 reported. In non-stop mode, only the event thread stops. If
2188 we're handling a process exit in non-stop mode, there's
2189 nothing to do, as threads of the dead process are gone, and
2190 threads of any other process were left running. */
2191 if (!non_stop)
2192 set_executing (minus_one_ptid, 0);
2193 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2194 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
2195 set_executing (inferior_ptid, 0);
2196 }
2197
2198 switch (infwait_state)
2199 {
2200 case infwait_thread_hop_state:
2201 if (debug_infrun)
2202 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
2203 /* Cancel the waiton_ptid. */
2204 waiton_ptid = pid_to_ptid (-1);
2205 break;
2206
2207 case infwait_normal_state:
2208 if (debug_infrun)
2209 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
2210 break;
2211
2212 case infwait_step_watch_state:
2213 if (debug_infrun)
2214 fprintf_unfiltered (gdb_stdlog,
2215 "infrun: infwait_step_watch_state\n");
2216
2217 stepped_after_stopped_by_watchpoint = 1;
2218 break;
2219
2220 case infwait_nonstep_watch_state:
2221 if (debug_infrun)
2222 fprintf_unfiltered (gdb_stdlog,
2223 "infrun: infwait_nonstep_watch_state\n");
2224 insert_breakpoints ();
2225
2226 /* FIXME-maybe: is this cleaner than setting a flag? Does it
2227 handle things like signals arriving and other things happening
2228 in combination correctly? */
2229 stepped_after_stopped_by_watchpoint = 1;
2230 break;
2231
2232 default:
2233 internal_error (__FILE__, __LINE__, _("bad switch"));
2234 }
2235 infwait_state = infwait_normal_state;
2236
2237 switch (ecs->ws.kind)
2238 {
2239 case TARGET_WAITKIND_LOADED:
2240 if (debug_infrun)
2241 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
2242 /* Ignore gracefully during startup of the inferior, as it might
2243 be the shell which has just loaded some objects, otherwise
2244 add the symbols for the newly loaded objects. Also ignore at
2245 the beginning of an attach or remote session; we will query
2246 the full list of libraries once the connection is
2247 established. */
2248 if (stop_soon == NO_STOP_QUIETLY)
2249 {
2250 /* Check for any newly added shared libraries if we're
2251 supposed to be adding them automatically. Switch
2252 terminal for any messages produced by
2253 breakpoint_re_set. */
2254 target_terminal_ours_for_output ();
2255 /* NOTE: cagney/2003-11-25: Make certain that the target
2256 stack's section table is kept up-to-date. Architectures,
2257 (e.g., PPC64), use the section table to perform
2258 operations such as address => section name and hence
2259 require the table to contain all sections (including
2260 those found in shared libraries). */
2261 /* NOTE: cagney/2003-11-25: Pass current_target and not
2262 exec_ops to SOLIB_ADD. This is because current GDB is
2263 only tooled to propagate section_table changes out from
2264 the "current_target" (see target_resize_to_sections), and
2265 not up from the exec stratum. This, of course, isn't
2266 right. "infrun.c" should only interact with the
2267 exec/process stratum, instead relying on the target stack
2268 to propagate relevant changes (stop, section table
2269 changed, ...) up to other layers. */
2270 #ifdef SOLIB_ADD
2271 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2272 #else
2273 solib_add (NULL, 0, &current_target, auto_solib_add);
2274 #endif
2275 target_terminal_inferior ();
2276
2277 /* If requested, stop when the dynamic linker notifies
2278 gdb of events. This allows the user to get control
2279 and place breakpoints in initializer routines for
2280 dynamically loaded objects (among other things). */
2281 if (stop_on_solib_events)
2282 {
2283 stop_stepping (ecs);
2284 return;
2285 }
2286
2287 /* NOTE drow/2007-05-11: This might be a good place to check
2288 for "catch load". */
2289 }
2290
2291 /* If we are skipping through a shell, or through shared library
2292 loading that we aren't interested in, resume the program. If
2293 we're running the program normally, also resume. But stop if
2294 we're attaching or setting up a remote connection. */
2295 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
2296 {
2297 /* Loading of shared libraries might have changed breakpoint
2298 addresses. Make sure new breakpoints are inserted. */
2299 if (stop_soon == NO_STOP_QUIETLY
2300 && !breakpoints_always_inserted_mode ())
2301 insert_breakpoints ();
2302 resume (0, TARGET_SIGNAL_0);
2303 prepare_to_wait (ecs);
2304 return;
2305 }
2306
2307 break;
2308
2309 case TARGET_WAITKIND_SPURIOUS:
2310 if (debug_infrun)
2311 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
2312 resume (0, TARGET_SIGNAL_0);
2313 prepare_to_wait (ecs);
2314 return;
2315
2316 case TARGET_WAITKIND_EXITED:
2317 if (debug_infrun)
2318 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
2319 inferior_ptid = ecs->ptid;
2320 target_terminal_ours (); /* Must do this before mourn anyway */
2321 print_stop_reason (EXITED, ecs->ws.value.integer);
2322
2323 /* Record the exit code in the convenience variable $_exitcode, so
2324 that the user can inspect this again later. */
2325 set_internalvar (lookup_internalvar ("_exitcode"),
2326 value_from_longest (builtin_type_int32,
2327 (LONGEST) ecs->ws.value.integer));
2328 gdb_flush (gdb_stdout);
2329 target_mourn_inferior ();
2330 singlestep_breakpoints_inserted_p = 0;
2331 stop_print_frame = 0;
2332 stop_stepping (ecs);
2333 return;
2334
2335 case TARGET_WAITKIND_SIGNALLED:
2336 if (debug_infrun)
2337 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
2338 inferior_ptid = ecs->ptid;
2339 stop_print_frame = 0;
2340 target_terminal_ours (); /* Must do this before mourn anyway */
2341
2342 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2343 reach here unless the inferior is dead. However, for years
2344 target_kill() was called here, which hints that fatal signals aren't
2345 really fatal on some systems. If that's true, then some changes
2346 may be needed. */
2347 target_mourn_inferior ();
2348
2349 print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig);
2350 singlestep_breakpoints_inserted_p = 0;
2351 stop_stepping (ecs);
2352 return;
2353
2354 /* The following are the only cases in which we keep going;
2355 the above cases end in a continue or goto. */
2356 case TARGET_WAITKIND_FORKED:
2357 case TARGET_WAITKIND_VFORKED:
2358 if (debug_infrun)
2359 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
2360 pending_follow.kind = ecs->ws.kind;
2361
2362 pending_follow.fork_event.parent_pid = ecs->ptid;
2363 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
2364
2365 if (!ptid_equal (ecs->ptid, inferior_ptid))
2366 {
2367 context_switch (ecs->ptid);
2368 reinit_frame_cache ();
2369 }
2370
2371 stop_pc = read_pc ();
2372
2373 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2374
2375 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2376
2377 /* If no catchpoint triggered for this, then keep going. */
2378 if (ecs->random_signal)
2379 {
2380 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2381 keep_going (ecs);
2382 return;
2383 }
2384 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2385 goto process_event_stop_test;
2386
2387 case TARGET_WAITKIND_EXECD:
2388 if (debug_infrun)
2389 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
2390 pending_follow.execd_pathname =
2391 savestring (ecs->ws.value.execd_pathname,
2392 strlen (ecs->ws.value.execd_pathname));
2393
2394 if (!ptid_equal (ecs->ptid, inferior_ptid))
2395 {
2396 context_switch (ecs->ptid);
2397 reinit_frame_cache ();
2398 }
2399
2400 stop_pc = read_pc ();
2401
2402 /* This causes the eventpoints and symbol table to be reset.
2403 Must do this now, before trying to determine whether to
2404 stop. */
2405 follow_exec (inferior_ptid, pending_follow.execd_pathname);
2406 xfree (pending_follow.execd_pathname);
2407
2408 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2409 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2410
2411 /* If no catchpoint triggered for this, then keep going. */
2412 if (ecs->random_signal)
2413 {
2414 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2415 keep_going (ecs);
2416 return;
2417 }
2418 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2419 goto process_event_stop_test;
2420
2421 /* Be careful not to try to gather much state about a thread
2422 that's in a syscall. It's frequently a losing proposition. */
2423 case TARGET_WAITKIND_SYSCALL_ENTRY:
2424 if (debug_infrun)
2425 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
2426 resume (0, TARGET_SIGNAL_0);
2427 prepare_to_wait (ecs);
2428 return;
2429
2430 /* Before examining the threads further, step this thread to
2431 get it entirely out of the syscall. (We get notice of the
2432 event when the thread is just on the verge of exiting a
2433 syscall. Stepping one instruction seems to get it back
2434 into user code.) */
2435 case TARGET_WAITKIND_SYSCALL_RETURN:
2436 if (debug_infrun)
2437 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
2438 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
2439 prepare_to_wait (ecs);
2440 return;
2441
2442 case TARGET_WAITKIND_STOPPED:
2443 if (debug_infrun)
2444 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2445 ecs->event_thread->stop_signal = ecs->ws.value.sig;
2446 break;
2447
2448 case TARGET_WAITKIND_NO_HISTORY:
2449 /* Reverse execution: target ran out of history info. */
2450 stop_pc = read_pc ();
2451 print_stop_reason (NO_HISTORY, 0);
2452 stop_stepping (ecs);
2453 return;
2454
2455 /* We had an event in the inferior, but we are not interested
2456 in handling it at this level. The lower layers have already
2457 done what needs to be done, if anything.
2458
2459 One of the possible circumstances for this is when the
2460 inferior produces output for the console. The inferior has
2461 not stopped, and we are ignoring the event. Another possible
2462 circumstance is any event which the lower level knows will be
2463 reported multiple times without an intervening resume. */
2464 case TARGET_WAITKIND_IGNORE:
2465 if (debug_infrun)
2466 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
2467 prepare_to_wait (ecs);
2468 return;
2469 }
2470
2471 if (ecs->new_thread_event)
2472 {
2473 if (non_stop)
2474 /* Non-stop assumes that the target handles adding new threads
2475 to the thread list. */
2476 internal_error (__FILE__, __LINE__, "\
2477 targets should add new threads to the thread list themselves in non-stop mode.");
2478
2479 /* We may want to consider not doing a resume here in order to
2480 give the user a chance to play with the new thread. It might
2481 be good to make that a user-settable option. */
2482
2483 /* At this point, all threads are stopped (happens automatically
2484 in either the OS or the native code). Therefore we need to
2485 continue all threads in order to make progress. */
2486
2487 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2488 prepare_to_wait (ecs);
2489 return;
2490 }
2491
2492 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
2493 {
2494 /* Do we need to clean up the state of a thread that has
2495 completed a displaced single-step? (Doing so usually affects
2496 the PC, so do it here, before we set stop_pc.) */
2497 displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal);
2498
2499 /* If we either finished a single-step or hit a breakpoint, but
2500 the user wanted this thread to be stopped, pretend we got a
2501 SIG0 (generic unsignaled stop). */
2502
2503 if (ecs->event_thread->stop_requested
2504 && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2505 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2506 }
2507
2508 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2509
2510 if (debug_infrun)
2511 {
2512 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n",
2513 paddr_nz (stop_pc));
2514 if (STOPPED_BY_WATCHPOINT (&ecs->ws))
2515 {
2516 CORE_ADDR addr;
2517 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2518
2519 if (target_stopped_data_address (&current_target, &addr))
2520 fprintf_unfiltered (gdb_stdlog,
2521 "infrun: stopped data address = 0x%s\n",
2522 paddr_nz (addr));
2523 else
2524 fprintf_unfiltered (gdb_stdlog,
2525 "infrun: (no data address available)\n");
2526 }
2527 }
2528
2529 if (stepping_past_singlestep_breakpoint)
2530 {
2531 gdb_assert (singlestep_breakpoints_inserted_p);
2532 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2533 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2534
2535 stepping_past_singlestep_breakpoint = 0;
2536
2537 /* We've either finished single-stepping past the single-step
2538 breakpoint, or stopped for some other reason. It would be nice if
2539 we could tell, but we can't reliably. */
2540 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2541 {
2542 if (debug_infrun)
2543 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
2544 /* Pull the single step breakpoints out of the target. */
2545 remove_single_step_breakpoints ();
2546 singlestep_breakpoints_inserted_p = 0;
2547
2548 ecs->random_signal = 0;
2549
2550 context_switch (saved_singlestep_ptid);
2551 if (deprecated_context_hook)
2552 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2553
2554 resume (1, TARGET_SIGNAL_0);
2555 prepare_to_wait (ecs);
2556 return;
2557 }
2558 }
2559
2560 if (!ptid_equal (deferred_step_ptid, null_ptid))
2561 {
2562 /* In non-stop mode, there's never a deferred_step_ptid set. */
2563 gdb_assert (!non_stop);
2564
2565 /* If we stopped for some other reason than single-stepping, ignore
2566 the fact that we were supposed to switch back. */
2567 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2568 {
2569 if (debug_infrun)
2570 fprintf_unfiltered (gdb_stdlog,
2571 "infrun: handling deferred step\n");
2572
2573 /* Pull the single step breakpoints out of the target. */
2574 if (singlestep_breakpoints_inserted_p)
2575 {
2576 remove_single_step_breakpoints ();
2577 singlestep_breakpoints_inserted_p = 0;
2578 }
2579
2580 /* Note: We do not call context_switch at this point, as the
2581 context is already set up for stepping the original thread. */
2582 switch_to_thread (deferred_step_ptid);
2583 deferred_step_ptid = null_ptid;
2584 /* Suppress spurious "Switching to ..." message. */
2585 previous_inferior_ptid = inferior_ptid;
2586
2587 resume (1, TARGET_SIGNAL_0);
2588 prepare_to_wait (ecs);
2589 return;
2590 }
2591
2592 deferred_step_ptid = null_ptid;
2593 }
2594
2595 /* See if a thread hit a thread-specific breakpoint that was meant for
2596 another thread. If so, then step that thread past the breakpoint,
2597 and continue it. */
2598
2599 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2600 {
2601 int thread_hop_needed = 0;
2602
2603 /* Check if a regular breakpoint has been hit before checking
2604 for a potential single step breakpoint. Otherwise, GDB will
2605 not see this breakpoint hit when stepping onto breakpoints. */
2606 if (regular_breakpoint_inserted_here_p (stop_pc))
2607 {
2608 ecs->random_signal = 0;
2609 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
2610 thread_hop_needed = 1;
2611 }
2612 else if (singlestep_breakpoints_inserted_p)
2613 {
2614 /* We have not context switched yet, so this should be true
2615 no matter which thread hit the singlestep breakpoint. */
2616 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2617 if (debug_infrun)
2618 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2619 "trap for %s\n",
2620 target_pid_to_str (ecs->ptid));
2621
2622 ecs->random_signal = 0;
2623 /* The call to in_thread_list is necessary because PTIDs sometimes
2624 change when we go from single-threaded to multi-threaded. If
2625 the singlestep_ptid is still in the list, assume that it is
2626 really different from ecs->ptid. */
2627 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2628 && in_thread_list (singlestep_ptid))
2629 {
2630 /* If the PC of the thread we were trying to single-step
2631 has changed, discard this event (which we were going
2632 to ignore anyway), and pretend we saw that thread
2633 trap. This prevents us continuously moving the
2634 single-step breakpoint forward, one instruction at a
2635 time. If the PC has changed, then the thread we were
2636 trying to single-step has trapped or been signalled,
2637 but the event has not been reported to GDB yet.
2638
2639 There might be some cases where this loses signal
2640 information, if a signal has arrived at exactly the
2641 same time that the PC changed, but this is the best
2642 we can do with the information available. Perhaps we
2643 should arrange to report all events for all threads
2644 when they stop, or to re-poll the remote looking for
2645 this particular thread (i.e. temporarily enable
2646 schedlock). */
2647
2648 CORE_ADDR new_singlestep_pc
2649 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2650
2651 if (new_singlestep_pc != singlestep_pc)
2652 {
2653 enum target_signal stop_signal;
2654
2655 if (debug_infrun)
2656 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2657 " but expected thread advanced also\n");
2658
2659 /* The current context still belongs to
2660 singlestep_ptid. Don't swap here, since that's
2661 the context we want to use. Just fudge our
2662 state and continue. */
2663 stop_signal = ecs->event_thread->stop_signal;
2664 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2665 ecs->ptid = singlestep_ptid;
2666 ecs->event_thread = find_thread_pid (ecs->ptid);
2667 ecs->event_thread->stop_signal = stop_signal;
2668 stop_pc = new_singlestep_pc;
2669 }
2670 else
2671 {
2672 if (debug_infrun)
2673 fprintf_unfiltered (gdb_stdlog,
2674 "infrun: unexpected thread\n");
2675
2676 thread_hop_needed = 1;
2677 stepping_past_singlestep_breakpoint = 1;
2678 saved_singlestep_ptid = singlestep_ptid;
2679 }
2680 }
2681 }
2682
2683 if (thread_hop_needed)
2684 {
2685 int remove_status = 0;
2686
2687 if (debug_infrun)
2688 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
2689
2690 /* Saw a breakpoint, but it was hit by the wrong thread.
2691 Just continue. */
2692
2693 if (singlestep_breakpoints_inserted_p)
2694 {
2695 /* Pull the single step breakpoints out of the target. */
2696 remove_single_step_breakpoints ();
2697 singlestep_breakpoints_inserted_p = 0;
2698 }
2699
2700 /* If the arch can displace step, don't remove the
2701 breakpoints. */
2702 if (!use_displaced_stepping (current_gdbarch))
2703 remove_status = remove_breakpoints ();
2704
2705 /* Did we fail to remove breakpoints? If so, try
2706 to set the PC past the bp. (There's at least
2707 one situation in which we can fail to remove
2708 the bp's: On HP-UX's that use ttrace, we can't
2709 change the address space of a vforking child
2710 process until the child exits (well, okay, not
2711 then either :-) or execs. */
2712 if (remove_status != 0)
2713 error (_("Cannot step over breakpoint hit in wrong thread"));
2714 else
2715 { /* Single step */
2716 if (!ptid_equal (inferior_ptid, ecs->ptid))
2717 context_switch (ecs->ptid);
2718
2719 if (!non_stop)
2720 {
2721 /* Only need to require the next event from this
2722 thread in all-stop mode. */
2723 waiton_ptid = ecs->ptid;
2724 infwait_state = infwait_thread_hop_state;
2725 }
2726
2727 ecs->event_thread->stepping_over_breakpoint = 1;
2728 keep_going (ecs);
2729 registers_changed ();
2730 return;
2731 }
2732 }
2733 else if (singlestep_breakpoints_inserted_p)
2734 {
2735 sw_single_step_trap_p = 1;
2736 ecs->random_signal = 0;
2737 }
2738 }
2739 else
2740 ecs->random_signal = 1;
2741
2742 /* See if something interesting happened to the non-current thread. If
2743 so, then switch to that thread. */
2744 if (!ptid_equal (ecs->ptid, inferior_ptid))
2745 {
2746 if (debug_infrun)
2747 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
2748
2749 context_switch (ecs->ptid);
2750
2751 if (deprecated_context_hook)
2752 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2753 }
2754
2755 if (singlestep_breakpoints_inserted_p)
2756 {
2757 /* Pull the single step breakpoints out of the target. */
2758 remove_single_step_breakpoints ();
2759 singlestep_breakpoints_inserted_p = 0;
2760 }
2761
2762 if (stepped_after_stopped_by_watchpoint)
2763 stopped_by_watchpoint = 0;
2764 else
2765 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
2766
2767 /* If necessary, step over this watchpoint. We'll be back to display
2768 it in a moment. */
2769 if (stopped_by_watchpoint
2770 && (HAVE_STEPPABLE_WATCHPOINT
2771 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
2772 {
2773 /* At this point, we are stopped at an instruction which has
2774 attempted to write to a piece of memory under control of
2775 a watchpoint. The instruction hasn't actually executed
2776 yet. If we were to evaluate the watchpoint expression
2777 now, we would get the old value, and therefore no change
2778 would seem to have occurred.
2779
2780 In order to make watchpoints work `right', we really need
2781 to complete the memory write, and then evaluate the
2782 watchpoint expression. We do this by single-stepping the
2783 target.
2784
2785 It may not be necessary to disable the watchpoint to stop over
2786 it. For example, the PA can (with some kernel cooperation)
2787 single step over a watchpoint without disabling the watchpoint.
2788
2789 It is far more common to need to disable a watchpoint to step
2790 the inferior over it. If we have non-steppable watchpoints,
2791 we must disable the current watchpoint; it's simplest to
2792 disable all watchpoints and breakpoints. */
2793
2794 if (!HAVE_STEPPABLE_WATCHPOINT)
2795 remove_breakpoints ();
2796 registers_changed ();
2797 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
2798 waiton_ptid = ecs->ptid;
2799 if (HAVE_STEPPABLE_WATCHPOINT)
2800 infwait_state = infwait_step_watch_state;
2801 else
2802 infwait_state = infwait_nonstep_watch_state;
2803 prepare_to_wait (ecs);
2804 return;
2805 }
2806
2807 ecs->stop_func_start = 0;
2808 ecs->stop_func_end = 0;
2809 ecs->stop_func_name = 0;
2810 /* Don't care about return value; stop_func_start and stop_func_name
2811 will both be 0 if it doesn't work. */
2812 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2813 &ecs->stop_func_start, &ecs->stop_func_end);
2814 ecs->stop_func_start
2815 += gdbarch_deprecated_function_start_offset (current_gdbarch);
2816 ecs->event_thread->stepping_over_breakpoint = 0;
2817 bpstat_clear (&ecs->event_thread->stop_bpstat);
2818 ecs->event_thread->stop_step = 0;
2819 stop_print_frame = 1;
2820 ecs->random_signal = 0;
2821 stopped_by_random_signal = 0;
2822
2823 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
2824 && ecs->event_thread->trap_expected
2825 && gdbarch_single_step_through_delay_p (current_gdbarch)
2826 && currently_stepping (ecs->event_thread))
2827 {
2828 /* We're trying to step off a breakpoint. Turns out that we're
2829 also on an instruction that needs to be stepped multiple
2830 times before it's been fully executing. E.g., architectures
2831 with a delay slot. It needs to be stepped twice, once for
2832 the instruction and once for the delay slot. */
2833 int step_through_delay
2834 = gdbarch_single_step_through_delay (current_gdbarch,
2835 get_current_frame ());
2836 if (debug_infrun && step_through_delay)
2837 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
2838 if (ecs->event_thread->step_range_end == 0 && step_through_delay)
2839 {
2840 /* The user issued a continue when stopped at a breakpoint.
2841 Set up for another trap and get out of here. */
2842 ecs->event_thread->stepping_over_breakpoint = 1;
2843 keep_going (ecs);
2844 return;
2845 }
2846 else if (step_through_delay)
2847 {
2848 /* The user issued a step when stopped at a breakpoint.
2849 Maybe we should stop, maybe we should not - the delay
2850 slot *might* correspond to a line of source. In any
2851 case, don't decide that here, just set
2852 ecs->stepping_over_breakpoint, making sure we
2853 single-step again before breakpoints are re-inserted. */
2854 ecs->event_thread->stepping_over_breakpoint = 1;
2855 }
2856 }
2857
2858 /* Look at the cause of the stop, and decide what to do.
2859 The alternatives are:
2860 1) stop_stepping and return; to really stop and return to the debugger,
2861 2) keep_going and return to start up again
2862 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
2863 3) set ecs->random_signal to 1, and the decision between 1 and 2
2864 will be made according to the signal handling tables. */
2865
2866 /* First, distinguish signals caused by the debugger from signals
2867 that have to do with the program's own actions. Note that
2868 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
2869 on the operating system version. Here we detect when a SIGILL or
2870 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
2871 something similar for SIGSEGV, since a SIGSEGV will be generated
2872 when we're trying to execute a breakpoint instruction on a
2873 non-executable stack. This happens for call dummy breakpoints
2874 for architectures like SPARC that place call dummies on the
2875 stack.
2876
2877 If we're doing a displaced step past a breakpoint, then the
2878 breakpoint is always inserted at the original instruction;
2879 non-standard signals can't be explained by the breakpoint. */
2880 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
2881 || (! ecs->event_thread->trap_expected
2882 && breakpoint_inserted_here_p (stop_pc)
2883 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_ILL
2884 || ecs->event_thread->stop_signal == TARGET_SIGNAL_SEGV
2885 || ecs->event_thread->stop_signal == TARGET_SIGNAL_EMT))
2886 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
2887 || stop_soon == STOP_QUIETLY_REMOTE)
2888 {
2889 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
2890 {
2891 if (debug_infrun)
2892 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
2893 stop_print_frame = 0;
2894 stop_stepping (ecs);
2895 return;
2896 }
2897
2898 /* This is originated from start_remote(), start_inferior() and
2899 shared libraries hook functions. */
2900 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
2901 {
2902 if (debug_infrun)
2903 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
2904 stop_stepping (ecs);
2905 return;
2906 }
2907
2908 /* This originates from attach_command(). We need to overwrite
2909 the stop_signal here, because some kernels don't ignore a
2910 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
2911 See more comments in inferior.h. On the other hand, if we
2912 get a non-SIGSTOP, report it to the user - assume the backend
2913 will handle the SIGSTOP if it should show up later.
2914
2915 Also consider that the attach is complete when we see a
2916 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
2917 target extended-remote report it instead of a SIGSTOP
2918 (e.g. gdbserver). We already rely on SIGTRAP being our
2919 signal, so this is no exception.
2920
2921 Also consider that the attach is complete when we see a
2922 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
2923 the target to stop all threads of the inferior, in case the
2924 low level attach operation doesn't stop them implicitly. If
2925 they weren't stopped implicitly, then the stub will report a
2926 TARGET_SIGNAL_0, meaning: stopped for no particular reason
2927 other than GDB's request. */
2928 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2929 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP
2930 || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
2931 || ecs->event_thread->stop_signal == TARGET_SIGNAL_0))
2932 {
2933 stop_stepping (ecs);
2934 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2935 return;
2936 }
2937
2938 /* See if there is a breakpoint at the current PC. */
2939 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2940
2941 /* Following in case break condition called a
2942 function. */
2943 stop_print_frame = 1;
2944
2945 /* NOTE: cagney/2003-03-29: These two checks for a random signal
2946 at one stage in the past included checks for an inferior
2947 function call's call dummy's return breakpoint. The original
2948 comment, that went with the test, read:
2949
2950 ``End of a stack dummy. Some systems (e.g. Sony news) give
2951 another signal besides SIGTRAP, so check here as well as
2952 above.''
2953
2954 If someone ever tries to get call dummys on a
2955 non-executable stack to work (where the target would stop
2956 with something like a SIGSEGV), then those tests might need
2957 to be re-instated. Given, however, that the tests were only
2958 enabled when momentary breakpoints were not being used, I
2959 suspect that it won't be the case.
2960
2961 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2962 be necessary for call dummies on a non-executable stack on
2963 SPARC. */
2964
2965 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2966 ecs->random_signal
2967 = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
2968 || ecs->event_thread->trap_expected
2969 || (ecs->event_thread->step_range_end
2970 && ecs->event_thread->step_resume_breakpoint == NULL));
2971 else
2972 {
2973 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2974 if (!ecs->random_signal)
2975 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2976 }
2977 }
2978
2979 /* When we reach this point, we've pretty much decided
2980 that the reason for stopping must've been a random
2981 (unexpected) signal. */
2982
2983 else
2984 ecs->random_signal = 1;
2985
2986 process_event_stop_test:
2987 /* For the program's own signals, act according to
2988 the signal handling tables. */
2989
2990 if (ecs->random_signal)
2991 {
2992 /* Signal not for debugging purposes. */
2993 int printed = 0;
2994
2995 if (debug_infrun)
2996 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
2997 ecs->event_thread->stop_signal);
2998
2999 stopped_by_random_signal = 1;
3000
3001 if (signal_print[ecs->event_thread->stop_signal])
3002 {
3003 printed = 1;
3004 target_terminal_ours_for_output ();
3005 print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal);
3006 }
3007 /* Always stop on signals if we're either just gaining control
3008 of the program, or the user explicitly requested this thread
3009 to remain stopped. */
3010 if (stop_soon != NO_STOP_QUIETLY
3011 || ecs->event_thread->stop_requested
3012 || signal_stop_state (ecs->event_thread->stop_signal))
3013 {
3014 stop_stepping (ecs);
3015 return;
3016 }
3017 /* If not going to stop, give terminal back
3018 if we took it away. */
3019 else if (printed)
3020 target_terminal_inferior ();
3021
3022 /* Clear the signal if it should not be passed. */
3023 if (signal_program[ecs->event_thread->stop_signal] == 0)
3024 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3025
3026 if (ecs->event_thread->prev_pc == read_pc ()
3027 && ecs->event_thread->trap_expected
3028 && ecs->event_thread->step_resume_breakpoint == NULL)
3029 {
3030 /* We were just starting a new sequence, attempting to
3031 single-step off of a breakpoint and expecting a SIGTRAP.
3032 Instead this signal arrives. This signal will take us out
3033 of the stepping range so GDB needs to remember to, when
3034 the signal handler returns, resume stepping off that
3035 breakpoint. */
3036 /* To simplify things, "continue" is forced to use the same
3037 code paths as single-step - set a breakpoint at the
3038 signal return address and then, once hit, step off that
3039 breakpoint. */
3040 if (debug_infrun)
3041 fprintf_unfiltered (gdb_stdlog,
3042 "infrun: signal arrived while stepping over "
3043 "breakpoint\n");
3044
3045 insert_step_resume_breakpoint_at_frame (get_current_frame ());
3046 ecs->event_thread->step_after_step_resume_breakpoint = 1;
3047 keep_going (ecs);
3048 return;
3049 }
3050
3051 if (ecs->event_thread->step_range_end != 0
3052 && ecs->event_thread->stop_signal != TARGET_SIGNAL_0
3053 && (ecs->event_thread->step_range_start <= stop_pc
3054 && stop_pc < ecs->event_thread->step_range_end)
3055 && frame_id_eq (get_frame_id (get_current_frame ()),
3056 ecs->event_thread->step_frame_id)
3057 && ecs->event_thread->step_resume_breakpoint == NULL)
3058 {
3059 /* The inferior is about to take a signal that will take it
3060 out of the single step range. Set a breakpoint at the
3061 current PC (which is presumably where the signal handler
3062 will eventually return) and then allow the inferior to
3063 run free.
3064
3065 Note that this is only needed for a signal delivered
3066 while in the single-step range. Nested signals aren't a
3067 problem as they eventually all return. */
3068 if (debug_infrun)
3069 fprintf_unfiltered (gdb_stdlog,
3070 "infrun: signal may take us out of "
3071 "single-step range\n");
3072
3073 insert_step_resume_breakpoint_at_frame (get_current_frame ());
3074 keep_going (ecs);
3075 return;
3076 }
3077
3078 /* Note: step_resume_breakpoint may be non-NULL. This occures
3079 when either there's a nested signal, or when there's a
3080 pending signal enabled just as the signal handler returns
3081 (leaving the inferior at the step-resume-breakpoint without
3082 actually executing it). Either way continue until the
3083 breakpoint is really hit. */
3084 keep_going (ecs);
3085 return;
3086 }
3087
3088 /* Handle cases caused by hitting a breakpoint. */
3089 {
3090 CORE_ADDR jmp_buf_pc;
3091 struct bpstat_what what;
3092
3093 what = bpstat_what (ecs->event_thread->stop_bpstat);
3094
3095 if (what.call_dummy)
3096 {
3097 stop_stack_dummy = 1;
3098 }
3099
3100 switch (what.main_action)
3101 {
3102 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
3103 /* If we hit the breakpoint at longjmp while stepping, we
3104 install a momentary breakpoint at the target of the
3105 jmp_buf. */
3106
3107 if (debug_infrun)
3108 fprintf_unfiltered (gdb_stdlog,
3109 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
3110
3111 ecs->event_thread->stepping_over_breakpoint = 1;
3112
3113 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
3114 || !gdbarch_get_longjmp_target (current_gdbarch,
3115 get_current_frame (), &jmp_buf_pc))
3116 {
3117 if (debug_infrun)
3118 fprintf_unfiltered (gdb_stdlog, "\
3119 infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
3120 keep_going (ecs);
3121 return;
3122 }
3123
3124 /* We're going to replace the current step-resume breakpoint
3125 with a longjmp-resume breakpoint. */
3126 delete_step_resume_breakpoint (ecs->event_thread);
3127
3128 /* Insert a breakpoint at resume address. */
3129 insert_longjmp_resume_breakpoint (jmp_buf_pc);
3130
3131 keep_going (ecs);
3132 return;
3133
3134 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
3135 if (debug_infrun)
3136 fprintf_unfiltered (gdb_stdlog,
3137 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
3138
3139 gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
3140 delete_step_resume_breakpoint (ecs->event_thread);
3141
3142 ecs->event_thread->stop_step = 1;
3143 print_stop_reason (END_STEPPING_RANGE, 0);
3144 stop_stepping (ecs);
3145 return;
3146
3147 case BPSTAT_WHAT_SINGLE:
3148 if (debug_infrun)
3149 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
3150 ecs->event_thread->stepping_over_breakpoint = 1;
3151 /* Still need to check other stuff, at least the case
3152 where we are stepping and step out of the right range. */
3153 break;
3154
3155 case BPSTAT_WHAT_STOP_NOISY:
3156 if (debug_infrun)
3157 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
3158 stop_print_frame = 1;
3159
3160 /* We are about to nuke the step_resume_breakpointt via the
3161 cleanup chain, so no need to worry about it here. */
3162
3163 stop_stepping (ecs);
3164 return;
3165
3166 case BPSTAT_WHAT_STOP_SILENT:
3167 if (debug_infrun)
3168 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
3169 stop_print_frame = 0;
3170
3171 /* We are about to nuke the step_resume_breakpoin via the
3172 cleanup chain, so no need to worry about it here. */
3173
3174 stop_stepping (ecs);
3175 return;
3176
3177 case BPSTAT_WHAT_STEP_RESUME:
3178 if (debug_infrun)
3179 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
3180
3181 delete_step_resume_breakpoint (ecs->event_thread);
3182 if (ecs->event_thread->step_after_step_resume_breakpoint)
3183 {
3184 /* Back when the step-resume breakpoint was inserted, we
3185 were trying to single-step off a breakpoint. Go back
3186 to doing that. */
3187 ecs->event_thread->step_after_step_resume_breakpoint = 0;
3188 ecs->event_thread->stepping_over_breakpoint = 1;
3189 keep_going (ecs);
3190 return;
3191 }
3192 if (stop_pc == ecs->stop_func_start
3193 && execution_direction == EXEC_REVERSE)
3194 {
3195 /* We are stepping over a function call in reverse, and
3196 just hit the step-resume breakpoint at the start
3197 address of the function. Go back to single-stepping,
3198 which should take us back to the function call. */
3199 ecs->event_thread->stepping_over_breakpoint = 1;
3200 keep_going (ecs);
3201 return;
3202 }
3203 break;
3204
3205 case BPSTAT_WHAT_CHECK_SHLIBS:
3206 {
3207 if (debug_infrun)
3208 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
3209
3210 /* Check for any newly added shared libraries if we're
3211 supposed to be adding them automatically. Switch
3212 terminal for any messages produced by
3213 breakpoint_re_set. */
3214 target_terminal_ours_for_output ();
3215 /* NOTE: cagney/2003-11-25: Make certain that the target
3216 stack's section table is kept up-to-date. Architectures,
3217 (e.g., PPC64), use the section table to perform
3218 operations such as address => section name and hence
3219 require the table to contain all sections (including
3220 those found in shared libraries). */
3221 /* NOTE: cagney/2003-11-25: Pass current_target and not
3222 exec_ops to SOLIB_ADD. This is because current GDB is
3223 only tooled to propagate section_table changes out from
3224 the "current_target" (see target_resize_to_sections), and
3225 not up from the exec stratum. This, of course, isn't
3226 right. "infrun.c" should only interact with the
3227 exec/process stratum, instead relying on the target stack
3228 to propagate relevant changes (stop, section table
3229 changed, ...) up to other layers. */
3230 #ifdef SOLIB_ADD
3231 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
3232 #else
3233 solib_add (NULL, 0, &current_target, auto_solib_add);
3234 #endif
3235 target_terminal_inferior ();
3236
3237 /* If requested, stop when the dynamic linker notifies
3238 gdb of events. This allows the user to get control
3239 and place breakpoints in initializer routines for
3240 dynamically loaded objects (among other things). */
3241 if (stop_on_solib_events || stop_stack_dummy)
3242 {
3243 stop_stepping (ecs);
3244 return;
3245 }
3246 else
3247 {
3248 /* We want to step over this breakpoint, then keep going. */
3249 ecs->event_thread->stepping_over_breakpoint = 1;
3250 break;
3251 }
3252 }
3253 break;
3254
3255 case BPSTAT_WHAT_LAST:
3256 /* Not a real code, but listed here to shut up gcc -Wall. */
3257
3258 case BPSTAT_WHAT_KEEP_CHECKING:
3259 break;
3260 }
3261 }
3262
3263 /* We come here if we hit a breakpoint but should not
3264 stop for it. Possibly we also were stepping
3265 and should stop for that. So fall through and
3266 test for stepping. But, if not stepping,
3267 do not stop. */
3268
3269 /* In all-stop mode, if we're currently stepping but have stopped in
3270 some other thread, we need to switch back to the stepped thread. */
3271 if (!non_stop)
3272 {
3273 struct thread_info *tp;
3274 tp = iterate_over_threads (currently_stepping_callback,
3275 ecs->event_thread);
3276 if (tp)
3277 {
3278 /* However, if the current thread is blocked on some internal
3279 breakpoint, and we simply need to step over that breakpoint
3280 to get it going again, do that first. */
3281 if ((ecs->event_thread->trap_expected
3282 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
3283 || ecs->event_thread->stepping_over_breakpoint)
3284 {
3285 keep_going (ecs);
3286 return;
3287 }
3288
3289 /* Otherwise, we no longer expect a trap in the current thread.
3290 Clear the trap_expected flag before switching back -- this is
3291 what keep_going would do as well, if we called it. */
3292 ecs->event_thread->trap_expected = 0;
3293
3294 if (debug_infrun)
3295 fprintf_unfiltered (gdb_stdlog,
3296 "infrun: switching back to stepped thread\n");
3297
3298 ecs->event_thread = tp;
3299 ecs->ptid = tp->ptid;
3300 context_switch (ecs->ptid);
3301 keep_going (ecs);
3302 return;
3303 }
3304 }
3305
3306 /* Are we stepping to get the inferior out of the dynamic linker's
3307 hook (and possibly the dld itself) after catching a shlib
3308 event? */
3309 if (ecs->event_thread->stepping_through_solib_after_catch)
3310 {
3311 #if defined(SOLIB_ADD)
3312 /* Have we reached our destination? If not, keep going. */
3313 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
3314 {
3315 if (debug_infrun)
3316 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
3317 ecs->event_thread->stepping_over_breakpoint = 1;
3318 keep_going (ecs);
3319 return;
3320 }
3321 #endif
3322 if (debug_infrun)
3323 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
3324 /* Else, stop and report the catchpoint(s) whose triggering
3325 caused us to begin stepping. */
3326 ecs->event_thread->stepping_through_solib_after_catch = 0;
3327 bpstat_clear (&ecs->event_thread->stop_bpstat);
3328 ecs->event_thread->stop_bpstat
3329 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
3330 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
3331 stop_print_frame = 1;
3332 stop_stepping (ecs);
3333 return;
3334 }
3335
3336 if (ecs->event_thread->step_resume_breakpoint)
3337 {
3338 if (debug_infrun)
3339 fprintf_unfiltered (gdb_stdlog,
3340 "infrun: step-resume breakpoint is inserted\n");
3341
3342 /* Having a step-resume breakpoint overrides anything
3343 else having to do with stepping commands until
3344 that breakpoint is reached. */
3345 keep_going (ecs);
3346 return;
3347 }
3348
3349 if (ecs->event_thread->step_range_end == 0)
3350 {
3351 if (debug_infrun)
3352 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
3353 /* Likewise if we aren't even stepping. */
3354 keep_going (ecs);
3355 return;
3356 }
3357
3358 /* If stepping through a line, keep going if still within it.
3359
3360 Note that step_range_end is the address of the first instruction
3361 beyond the step range, and NOT the address of the last instruction
3362 within it! */
3363 if (stop_pc >= ecs->event_thread->step_range_start
3364 && stop_pc < ecs->event_thread->step_range_end)
3365 {
3366 if (debug_infrun)
3367 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
3368 paddr_nz (ecs->event_thread->step_range_start),
3369 paddr_nz (ecs->event_thread->step_range_end));
3370
3371 /* When stepping backward, stop at beginning of line range
3372 (unless it's the function entry point, in which case
3373 keep going back to the call point). */
3374 if (stop_pc == ecs->event_thread->step_range_start
3375 && stop_pc != ecs->stop_func_start
3376 && execution_direction == EXEC_REVERSE)
3377 {
3378 ecs->event_thread->stop_step = 1;
3379 print_stop_reason (END_STEPPING_RANGE, 0);
3380 stop_stepping (ecs);
3381 }
3382 else
3383 keep_going (ecs);
3384
3385 return;
3386 }
3387
3388 /* We stepped out of the stepping range. */
3389
3390 /* If we are stepping at the source level and entered the runtime
3391 loader dynamic symbol resolution code, we keep on single stepping
3392 until we exit the run time loader code and reach the callee's
3393 address. */
3394 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3395 && in_solib_dynsym_resolve_code (stop_pc))
3396 {
3397 CORE_ADDR pc_after_resolver =
3398 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
3399
3400 if (debug_infrun)
3401 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
3402
3403 if (pc_after_resolver)
3404 {
3405 /* Set up a step-resume breakpoint at the address
3406 indicated by SKIP_SOLIB_RESOLVER. */
3407 struct symtab_and_line sr_sal;
3408 init_sal (&sr_sal);
3409 sr_sal.pc = pc_after_resolver;
3410
3411 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3412 }
3413
3414 keep_going (ecs);
3415 return;
3416 }
3417
3418 if (ecs->event_thread->step_range_end != 1
3419 && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3420 || ecs->event_thread->step_over_calls == STEP_OVER_ALL)
3421 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
3422 {
3423 if (debug_infrun)
3424 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
3425 /* The inferior, while doing a "step" or "next", has ended up in
3426 a signal trampoline (either by a signal being delivered or by
3427 the signal handler returning). Just single-step until the
3428 inferior leaves the trampoline (either by calling the handler
3429 or returning). */
3430 keep_going (ecs);
3431 return;
3432 }
3433
3434 /* Check for subroutine calls. The check for the current frame
3435 equalling the step ID is not necessary - the check of the
3436 previous frame's ID is sufficient - but it is a common case and
3437 cheaper than checking the previous frame's ID.
3438
3439 NOTE: frame_id_eq will never report two invalid frame IDs as
3440 being equal, so to get into this block, both the current and
3441 previous frame must have valid frame IDs. */
3442 if (!frame_id_eq (get_frame_id (get_current_frame ()),
3443 ecs->event_thread->step_frame_id)
3444 && (frame_id_eq (frame_unwind_id (get_current_frame ()),
3445 ecs->event_thread->step_frame_id)
3446 || execution_direction == EXEC_REVERSE))
3447 {
3448 CORE_ADDR real_stop_pc;
3449
3450 if (debug_infrun)
3451 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
3452
3453 if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
3454 || ((ecs->event_thread->step_range_end == 1)
3455 && in_prologue (ecs->event_thread->prev_pc,
3456 ecs->stop_func_start)))
3457 {
3458 /* I presume that step_over_calls is only 0 when we're
3459 supposed to be stepping at the assembly language level
3460 ("stepi"). Just stop. */
3461 /* Also, maybe we just did a "nexti" inside a prolog, so we
3462 thought it was a subroutine call but it was not. Stop as
3463 well. FENN */
3464 ecs->event_thread->stop_step = 1;
3465 print_stop_reason (END_STEPPING_RANGE, 0);
3466 stop_stepping (ecs);
3467 return;
3468 }
3469
3470 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
3471 {
3472 /* We're doing a "next".
3473
3474 Normal (forward) execution: set a breakpoint at the
3475 callee's return address (the address at which the caller
3476 will resume).
3477
3478 Reverse (backward) execution. set the step-resume
3479 breakpoint at the start of the function that we just
3480 stepped into (backwards), and continue to there. When we
3481 get there, we'll need to single-step back to the caller. */
3482
3483 if (execution_direction == EXEC_REVERSE)
3484 {
3485 struct symtab_and_line sr_sal;
3486
3487 if (ecs->stop_func_start == 0
3488 && in_solib_dynsym_resolve_code (stop_pc))
3489 {
3490 /* Stepped into runtime loader dynamic symbol
3491 resolution code. Since we're in reverse,
3492 we have already backed up through the runtime
3493 loader and the dynamic function. This is just
3494 the trampoline (jump table).
3495
3496 Just keep stepping, we'll soon be home.
3497 */
3498 keep_going (ecs);
3499 return;
3500 }
3501 /* Normal (staticly linked) function call return. */
3502 init_sal (&sr_sal);
3503 sr_sal.pc = ecs->stop_func_start;
3504 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3505 }
3506 else
3507 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3508
3509 keep_going (ecs);
3510 return;
3511 }
3512
3513 /* If we are in a function call trampoline (a stub between the
3514 calling routine and the real function), locate the real
3515 function. That's what tells us (a) whether we want to step
3516 into it at all, and (b) what prologue we want to run to the
3517 end of, if we do step into it. */
3518 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
3519 if (real_stop_pc == 0)
3520 real_stop_pc = gdbarch_skip_trampoline_code
3521 (current_gdbarch, get_current_frame (), stop_pc);
3522 if (real_stop_pc != 0)
3523 ecs->stop_func_start = real_stop_pc;
3524
3525 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
3526 {
3527 struct symtab_and_line sr_sal;
3528 init_sal (&sr_sal);
3529 sr_sal.pc = ecs->stop_func_start;
3530
3531 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3532 keep_going (ecs);
3533 return;
3534 }
3535
3536 /* If we have line number information for the function we are
3537 thinking of stepping into, step into it.
3538
3539 If there are several symtabs at that PC (e.g. with include
3540 files), just want to know whether *any* of them have line
3541 numbers. find_pc_line handles this. */
3542 {
3543 struct symtab_and_line tmp_sal;
3544
3545 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
3546 if (tmp_sal.line != 0)
3547 {
3548 if (execution_direction == EXEC_REVERSE)
3549 handle_step_into_function_backward (ecs);
3550 else
3551 handle_step_into_function (ecs);
3552 return;
3553 }
3554 }
3555
3556 /* If we have no line number and the step-stop-if-no-debug is
3557 set, we stop the step so that the user has a chance to switch
3558 in assembly mode. */
3559 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3560 && step_stop_if_no_debug)
3561 {
3562 ecs->event_thread->stop_step = 1;
3563 print_stop_reason (END_STEPPING_RANGE, 0);
3564 stop_stepping (ecs);
3565 return;
3566 }
3567
3568 if (execution_direction == EXEC_REVERSE)
3569 {
3570 /* Set a breakpoint at callee's start address.
3571 From there we can step once and be back in the caller. */
3572 struct symtab_and_line sr_sal;
3573 init_sal (&sr_sal);
3574 sr_sal.pc = ecs->stop_func_start;
3575 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3576 }
3577 else
3578 /* Set a breakpoint at callee's return address (the address
3579 at which the caller will resume). */
3580 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3581
3582 keep_going (ecs);
3583 return;
3584 }
3585
3586 /* If we're in the return path from a shared library trampoline,
3587 we want to proceed through the trampoline when stepping. */
3588 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
3589 stop_pc, ecs->stop_func_name))
3590 {
3591 /* Determine where this trampoline returns. */
3592 CORE_ADDR real_stop_pc;
3593 real_stop_pc = gdbarch_skip_trampoline_code
3594 (current_gdbarch, get_current_frame (), stop_pc);
3595
3596 if (debug_infrun)
3597 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
3598
3599 /* Only proceed through if we know where it's going. */
3600 if (real_stop_pc)
3601 {
3602 /* And put the step-breakpoint there and go until there. */
3603 struct symtab_and_line sr_sal;
3604
3605 init_sal (&sr_sal); /* initialize to zeroes */
3606 sr_sal.pc = real_stop_pc;
3607 sr_sal.section = find_pc_overlay (sr_sal.pc);
3608
3609 /* Do not specify what the fp should be when we stop since
3610 on some machines the prologue is where the new fp value
3611 is established. */
3612 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3613
3614 /* Restart without fiddling with the step ranges or
3615 other state. */
3616 keep_going (ecs);
3617 return;
3618 }
3619 }
3620
3621 stop_pc_sal = find_pc_line (stop_pc, 0);
3622
3623 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3624 the trampoline processing logic, however, there are some trampolines
3625 that have no names, so we should do trampoline handling first. */
3626 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3627 && ecs->stop_func_name == NULL
3628 && stop_pc_sal.line == 0)
3629 {
3630 if (debug_infrun)
3631 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
3632
3633 /* The inferior just stepped into, or returned to, an
3634 undebuggable function (where there is no debugging information
3635 and no line number corresponding to the address where the
3636 inferior stopped). Since we want to skip this kind of code,
3637 we keep going until the inferior returns from this
3638 function - unless the user has asked us not to (via
3639 set step-mode) or we no longer know how to get back
3640 to the call site. */
3641 if (step_stop_if_no_debug
3642 || !frame_id_p (frame_unwind_id (get_current_frame ())))
3643 {
3644 /* If we have no line number and the step-stop-if-no-debug
3645 is set, we stop the step so that the user has a chance to
3646 switch in assembly mode. */
3647 ecs->event_thread->stop_step = 1;
3648 print_stop_reason (END_STEPPING_RANGE, 0);
3649 stop_stepping (ecs);
3650 return;
3651 }
3652 else
3653 {
3654 /* Set a breakpoint at callee's return address (the address
3655 at which the caller will resume). */
3656 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3657 keep_going (ecs);
3658 return;
3659 }
3660 }
3661
3662 if (ecs->event_thread->step_range_end == 1)
3663 {
3664 /* It is stepi or nexti. We always want to stop stepping after
3665 one instruction. */
3666 if (debug_infrun)
3667 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
3668 ecs->event_thread->stop_step = 1;
3669 print_stop_reason (END_STEPPING_RANGE, 0);
3670 stop_stepping (ecs);
3671 return;
3672 }
3673
3674 if (stop_pc_sal.line == 0)
3675 {
3676 /* We have no line number information. That means to stop
3677 stepping (does this always happen right after one instruction,
3678 when we do "s" in a function with no line numbers,
3679 or can this happen as a result of a return or longjmp?). */
3680 if (debug_infrun)
3681 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
3682 ecs->event_thread->stop_step = 1;
3683 print_stop_reason (END_STEPPING_RANGE, 0);
3684 stop_stepping (ecs);
3685 return;
3686 }
3687
3688 if ((stop_pc == stop_pc_sal.pc)
3689 && (ecs->event_thread->current_line != stop_pc_sal.line
3690 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
3691 {
3692 /* We are at the start of a different line. So stop. Note that
3693 we don't stop if we step into the middle of a different line.
3694 That is said to make things like for (;;) statements work
3695 better. */
3696 if (debug_infrun)
3697 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
3698 ecs->event_thread->stop_step = 1;
3699 print_stop_reason (END_STEPPING_RANGE, 0);
3700 stop_stepping (ecs);
3701 return;
3702 }
3703
3704 /* We aren't done stepping.
3705
3706 Optimize by setting the stepping range to the line.
3707 (We might not be in the original line, but if we entered a
3708 new line in mid-statement, we continue stepping. This makes
3709 things like for(;;) statements work better.) */
3710
3711 ecs->event_thread->step_range_start = stop_pc_sal.pc;
3712 ecs->event_thread->step_range_end = stop_pc_sal.end;
3713 ecs->event_thread->step_frame_id = get_frame_id (get_current_frame ());
3714 ecs->event_thread->current_line = stop_pc_sal.line;
3715 ecs->event_thread->current_symtab = stop_pc_sal.symtab;
3716
3717 if (debug_infrun)
3718 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
3719 keep_going (ecs);
3720 }
3721
3722 /* Are we in the middle of stepping? */
3723
3724 static int
3725 currently_stepping_thread (struct thread_info *tp)
3726 {
3727 return (tp->step_range_end && tp->step_resume_breakpoint == NULL)
3728 || tp->trap_expected
3729 || tp->stepping_through_solib_after_catch;
3730 }
3731
3732 static int
3733 currently_stepping_callback (struct thread_info *tp, void *data)
3734 {
3735 /* Return true if any thread *but* the one passed in "data" is
3736 in the middle of stepping. */
3737 return tp != data && currently_stepping_thread (tp);
3738 }
3739
3740 static int
3741 currently_stepping (struct thread_info *tp)
3742 {
3743 return currently_stepping_thread (tp) || bpstat_should_step ();
3744 }
3745
3746 /* Inferior has stepped into a subroutine call with source code that
3747 we should not step over. Do step to the first line of code in
3748 it. */
3749
3750 static void
3751 handle_step_into_function (struct execution_control_state *ecs)
3752 {
3753 struct symtab *s;
3754 struct symtab_and_line stop_func_sal, sr_sal;
3755
3756 s = find_pc_symtab (stop_pc);
3757 if (s && s->language != language_asm)
3758 ecs->stop_func_start = gdbarch_skip_prologue (current_gdbarch,
3759 ecs->stop_func_start);
3760
3761 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
3762 /* Use the step_resume_break to step until the end of the prologue,
3763 even if that involves jumps (as it seems to on the vax under
3764 4.2). */
3765 /* If the prologue ends in the middle of a source line, continue to
3766 the end of that source line (if it is still within the function).
3767 Otherwise, just go to end of prologue. */
3768 if (stop_func_sal.end
3769 && stop_func_sal.pc != ecs->stop_func_start
3770 && stop_func_sal.end < ecs->stop_func_end)
3771 ecs->stop_func_start = stop_func_sal.end;
3772
3773 /* Architectures which require breakpoint adjustment might not be able
3774 to place a breakpoint at the computed address. If so, the test
3775 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
3776 ecs->stop_func_start to an address at which a breakpoint may be
3777 legitimately placed.
3778
3779 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
3780 made, GDB will enter an infinite loop when stepping through
3781 optimized code consisting of VLIW instructions which contain
3782 subinstructions corresponding to different source lines. On
3783 FR-V, it's not permitted to place a breakpoint on any but the
3784 first subinstruction of a VLIW instruction. When a breakpoint is
3785 set, GDB will adjust the breakpoint address to the beginning of
3786 the VLIW instruction. Thus, we need to make the corresponding
3787 adjustment here when computing the stop address. */
3788
3789 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
3790 {
3791 ecs->stop_func_start
3792 = gdbarch_adjust_breakpoint_address (current_gdbarch,
3793 ecs->stop_func_start);
3794 }
3795
3796 if (ecs->stop_func_start == stop_pc)
3797 {
3798 /* We are already there: stop now. */
3799 ecs->event_thread->stop_step = 1;
3800 print_stop_reason (END_STEPPING_RANGE, 0);
3801 stop_stepping (ecs);
3802 return;
3803 }
3804 else
3805 {
3806 /* Put the step-breakpoint there and go until there. */
3807 init_sal (&sr_sal); /* initialize to zeroes */
3808 sr_sal.pc = ecs->stop_func_start;
3809 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
3810
3811 /* Do not specify what the fp should be when we stop since on
3812 some machines the prologue is where the new fp value is
3813 established. */
3814 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3815
3816 /* And make sure stepping stops right away then. */
3817 ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
3818 }
3819 keep_going (ecs);
3820 }
3821
3822 /* Inferior has stepped backward into a subroutine call with source
3823 code that we should not step over. Do step to the beginning of the
3824 last line of code in it. */
3825
3826 static void
3827 handle_step_into_function_backward (struct execution_control_state *ecs)
3828 {
3829 struct symtab *s;
3830 struct symtab_and_line stop_func_sal, sr_sal;
3831
3832 s = find_pc_symtab (stop_pc);
3833 if (s && s->language != language_asm)
3834 ecs->stop_func_start = gdbarch_skip_prologue (current_gdbarch,
3835 ecs->stop_func_start);
3836
3837 stop_func_sal = find_pc_line (stop_pc, 0);
3838
3839 /* OK, we're just going to keep stepping here. */
3840 if (stop_func_sal.pc == stop_pc)
3841 {
3842 /* We're there already. Just stop stepping now. */
3843 ecs->event_thread->stop_step = 1;
3844 print_stop_reason (END_STEPPING_RANGE, 0);
3845 stop_stepping (ecs);
3846 }
3847 else
3848 {
3849 /* Else just reset the step range and keep going.
3850 No step-resume breakpoint, they don't work for
3851 epilogues, which can have multiple entry paths. */
3852 ecs->event_thread->step_range_start = stop_func_sal.pc;
3853 ecs->event_thread->step_range_end = stop_func_sal.end;
3854 keep_going (ecs);
3855 }
3856 return;
3857 }
3858
3859 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
3860 This is used to both functions and to skip over code. */
3861
3862 static void
3863 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
3864 struct frame_id sr_id)
3865 {
3866 /* There should never be more than one step-resume or longjmp-resume
3867 breakpoint per thread, so we should never be setting a new
3868 step_resume_breakpoint when one is already active. */
3869 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
3870
3871 if (debug_infrun)
3872 fprintf_unfiltered (gdb_stdlog,
3873 "infrun: inserting step-resume breakpoint at 0x%s\n",
3874 paddr_nz (sr_sal.pc));
3875
3876 inferior_thread ()->step_resume_breakpoint
3877 = set_momentary_breakpoint (sr_sal, sr_id, bp_step_resume);
3878 }
3879
3880 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
3881 to skip a potential signal handler.
3882
3883 This is called with the interrupted function's frame. The signal
3884 handler, when it returns, will resume the interrupted function at
3885 RETURN_FRAME.pc. */
3886
3887 static void
3888 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
3889 {
3890 struct symtab_and_line sr_sal;
3891
3892 gdb_assert (return_frame != NULL);
3893 init_sal (&sr_sal); /* initialize to zeros */
3894
3895 sr_sal.pc = gdbarch_addr_bits_remove
3896 (current_gdbarch, get_frame_pc (return_frame));
3897 sr_sal.section = find_pc_overlay (sr_sal.pc);
3898
3899 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
3900 }
3901
3902 /* Similar to insert_step_resume_breakpoint_at_frame, except
3903 but a breakpoint at the previous frame's PC. This is used to
3904 skip a function after stepping into it (for "next" or if the called
3905 function has no debugging information).
3906
3907 The current function has almost always been reached by single
3908 stepping a call or return instruction. NEXT_FRAME belongs to the
3909 current function, and the breakpoint will be set at the caller's
3910 resume address.
3911
3912 This is a separate function rather than reusing
3913 insert_step_resume_breakpoint_at_frame in order to avoid
3914 get_prev_frame, which may stop prematurely (see the implementation
3915 of frame_unwind_id for an example). */
3916
3917 static void
3918 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
3919 {
3920 struct symtab_and_line sr_sal;
3921
3922 /* We shouldn't have gotten here if we don't know where the call site
3923 is. */
3924 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
3925
3926 init_sal (&sr_sal); /* initialize to zeros */
3927
3928 sr_sal.pc = gdbarch_addr_bits_remove
3929 (current_gdbarch, frame_pc_unwind (next_frame));
3930 sr_sal.section = find_pc_overlay (sr_sal.pc);
3931
3932 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
3933 }
3934
3935 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
3936 new breakpoint at the target of a jmp_buf. The handling of
3937 longjmp-resume uses the same mechanisms used for handling
3938 "step-resume" breakpoints. */
3939
3940 static void
3941 insert_longjmp_resume_breakpoint (CORE_ADDR pc)
3942 {
3943 /* There should never be more than one step-resume or longjmp-resume
3944 breakpoint per thread, so we should never be setting a new
3945 longjmp_resume_breakpoint when one is already active. */
3946 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
3947
3948 if (debug_infrun)
3949 fprintf_unfiltered (gdb_stdlog,
3950 "infrun: inserting longjmp-resume breakpoint at 0x%s\n",
3951 paddr_nz (pc));
3952
3953 inferior_thread ()->step_resume_breakpoint =
3954 set_momentary_breakpoint_at_pc (pc, bp_longjmp_resume);
3955 }
3956
3957 static void
3958 stop_stepping (struct execution_control_state *ecs)
3959 {
3960 if (debug_infrun)
3961 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
3962
3963 /* Let callers know we don't want to wait for the inferior anymore. */
3964 ecs->wait_some_more = 0;
3965 }
3966
3967 /* This function handles various cases where we need to continue
3968 waiting for the inferior. */
3969 /* (Used to be the keep_going: label in the old wait_for_inferior) */
3970
3971 static void
3972 keep_going (struct execution_control_state *ecs)
3973 {
3974 /* Save the pc before execution, to compare with pc after stop. */
3975 ecs->event_thread->prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
3976
3977 /* If we did not do break;, it means we should keep running the
3978 inferior and not return to debugger. */
3979
3980 if (ecs->event_thread->trap_expected
3981 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
3982 {
3983 /* We took a signal (which we are supposed to pass through to
3984 the inferior, else we'd not get here) and we haven't yet
3985 gotten our trap. Simply continue. */
3986 resume (currently_stepping (ecs->event_thread),
3987 ecs->event_thread->stop_signal);
3988 }
3989 else
3990 {
3991 /* Either the trap was not expected, but we are continuing
3992 anyway (the user asked that this signal be passed to the
3993 child)
3994 -- or --
3995 The signal was SIGTRAP, e.g. it was our signal, but we
3996 decided we should resume from it.
3997
3998 We're going to run this baby now!
3999
4000 Note that insert_breakpoints won't try to re-insert
4001 already inserted breakpoints. Therefore, we don't
4002 care if breakpoints were already inserted, or not. */
4003
4004 if (ecs->event_thread->stepping_over_breakpoint)
4005 {
4006 if (! use_displaced_stepping (current_gdbarch))
4007 /* Since we can't do a displaced step, we have to remove
4008 the breakpoint while we step it. To keep things
4009 simple, we remove them all. */
4010 remove_breakpoints ();
4011 }
4012 else
4013 {
4014 struct gdb_exception e;
4015 /* Stop stepping when inserting breakpoints
4016 has failed. */
4017 TRY_CATCH (e, RETURN_MASK_ERROR)
4018 {
4019 insert_breakpoints ();
4020 }
4021 if (e.reason < 0)
4022 {
4023 stop_stepping (ecs);
4024 return;
4025 }
4026 }
4027
4028 ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
4029
4030 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
4031 specifies that such a signal should be delivered to the
4032 target program).
4033
4034 Typically, this would occure when a user is debugging a
4035 target monitor on a simulator: the target monitor sets a
4036 breakpoint; the simulator encounters this break-point and
4037 halts the simulation handing control to GDB; GDB, noteing
4038 that the break-point isn't valid, returns control back to the
4039 simulator; the simulator then delivers the hardware
4040 equivalent of a SIGNAL_TRAP to the program being debugged. */
4041
4042 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4043 && !signal_program[ecs->event_thread->stop_signal])
4044 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
4045
4046 resume (currently_stepping (ecs->event_thread),
4047 ecs->event_thread->stop_signal);
4048 }
4049
4050 prepare_to_wait (ecs);
4051 }
4052
4053 /* This function normally comes after a resume, before
4054 handle_inferior_event exits. It takes care of any last bits of
4055 housekeeping, and sets the all-important wait_some_more flag. */
4056
4057 static void
4058 prepare_to_wait (struct execution_control_state *ecs)
4059 {
4060 if (debug_infrun)
4061 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
4062 if (infwait_state == infwait_normal_state)
4063 {
4064 overlay_cache_invalid = 1;
4065
4066 /* We have to invalidate the registers BEFORE calling
4067 target_wait because they can be loaded from the target while
4068 in target_wait. This makes remote debugging a bit more
4069 efficient for those targets that provide critical registers
4070 as part of their normal status mechanism. */
4071
4072 registers_changed ();
4073 waiton_ptid = pid_to_ptid (-1);
4074 }
4075 /* This is the old end of the while loop. Let everybody know we
4076 want to wait for the inferior some more and get called again
4077 soon. */
4078 ecs->wait_some_more = 1;
4079 }
4080
4081 /* Print why the inferior has stopped. We always print something when
4082 the inferior exits, or receives a signal. The rest of the cases are
4083 dealt with later on in normal_stop() and print_it_typical(). Ideally
4084 there should be a call to this function from handle_inferior_event()
4085 each time stop_stepping() is called.*/
4086 static void
4087 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
4088 {
4089 switch (stop_reason)
4090 {
4091 case END_STEPPING_RANGE:
4092 /* We are done with a step/next/si/ni command. */
4093 /* For now print nothing. */
4094 /* Print a message only if not in the middle of doing a "step n"
4095 operation for n > 1 */
4096 if (!inferior_thread ()->step_multi
4097 || !inferior_thread ()->stop_step)
4098 if (ui_out_is_mi_like_p (uiout))
4099 ui_out_field_string
4100 (uiout, "reason",
4101 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
4102 break;
4103 case SIGNAL_EXITED:
4104 /* The inferior was terminated by a signal. */
4105 annotate_signalled ();
4106 if (ui_out_is_mi_like_p (uiout))
4107 ui_out_field_string
4108 (uiout, "reason",
4109 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
4110 ui_out_text (uiout, "\nProgram terminated with signal ");
4111 annotate_signal_name ();
4112 ui_out_field_string (uiout, "signal-name",
4113 target_signal_to_name (stop_info));
4114 annotate_signal_name_end ();
4115 ui_out_text (uiout, ", ");
4116 annotate_signal_string ();
4117 ui_out_field_string (uiout, "signal-meaning",
4118 target_signal_to_string (stop_info));
4119 annotate_signal_string_end ();
4120 ui_out_text (uiout, ".\n");
4121 ui_out_text (uiout, "The program no longer exists.\n");
4122 break;
4123 case EXITED:
4124 /* The inferior program is finished. */
4125 annotate_exited (stop_info);
4126 if (stop_info)
4127 {
4128 if (ui_out_is_mi_like_p (uiout))
4129 ui_out_field_string (uiout, "reason",
4130 async_reason_lookup (EXEC_ASYNC_EXITED));
4131 ui_out_text (uiout, "\nProgram exited with code ");
4132 ui_out_field_fmt (uiout, "exit-code", "0%o",
4133 (unsigned int) stop_info);
4134 ui_out_text (uiout, ".\n");
4135 }
4136 else
4137 {
4138 if (ui_out_is_mi_like_p (uiout))
4139 ui_out_field_string
4140 (uiout, "reason",
4141 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
4142 ui_out_text (uiout, "\nProgram exited normally.\n");
4143 }
4144 /* Support the --return-child-result option. */
4145 return_child_result_value = stop_info;
4146 break;
4147 case SIGNAL_RECEIVED:
4148 /* Signal received. The signal table tells us to print about
4149 it. */
4150 annotate_signal ();
4151
4152 if (stop_info == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
4153 {
4154 struct thread_info *t = inferior_thread ();
4155
4156 ui_out_text (uiout, "\n[");
4157 ui_out_field_string (uiout, "thread-name",
4158 target_pid_to_str (t->ptid));
4159 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
4160 ui_out_text (uiout, " stopped");
4161 }
4162 else
4163 {
4164 ui_out_text (uiout, "\nProgram received signal ");
4165 annotate_signal_name ();
4166 if (ui_out_is_mi_like_p (uiout))
4167 ui_out_field_string
4168 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
4169 ui_out_field_string (uiout, "signal-name",
4170 target_signal_to_name (stop_info));
4171 annotate_signal_name_end ();
4172 ui_out_text (uiout, ", ");
4173 annotate_signal_string ();
4174 ui_out_field_string (uiout, "signal-meaning",
4175 target_signal_to_string (stop_info));
4176 annotate_signal_string_end ();
4177 }
4178 ui_out_text (uiout, ".\n");
4179 break;
4180 case NO_HISTORY:
4181 /* Reverse execution: target ran out of history info. */
4182 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
4183 break;
4184 default:
4185 internal_error (__FILE__, __LINE__,
4186 _("print_stop_reason: unrecognized enum value"));
4187 break;
4188 }
4189 }
4190 \f
4191
4192 /* Here to return control to GDB when the inferior stops for real.
4193 Print appropriate messages, remove breakpoints, give terminal our modes.
4194
4195 STOP_PRINT_FRAME nonzero means print the executing frame
4196 (pc, function, args, file, line number and line text).
4197 BREAKPOINTS_FAILED nonzero means stop was due to error
4198 attempting to insert breakpoints. */
4199
4200 void
4201 normal_stop (void)
4202 {
4203 struct target_waitstatus last;
4204 ptid_t last_ptid;
4205 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
4206
4207 get_last_target_status (&last_ptid, &last);
4208
4209 /* If an exception is thrown from this point on, make sure to
4210 propagate GDB's knowledge of the executing state to the
4211 frontend/user running state. A QUIT is an easy exception to see
4212 here, so do this before any filtered output. */
4213 if (target_has_execution)
4214 {
4215 if (!non_stop)
4216 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
4217 else if (last.kind != TARGET_WAITKIND_SIGNALLED
4218 && last.kind != TARGET_WAITKIND_EXITED)
4219 old_chain = make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
4220 }
4221
4222 /* In non-stop mode, we don't want GDB to switch threads behind the
4223 user's back, to avoid races where the user is typing a command to
4224 apply to thread x, but GDB switches to thread y before the user
4225 finishes entering the command. */
4226
4227 /* As with the notification of thread events, we want to delay
4228 notifying the user that we've switched thread context until
4229 the inferior actually stops.
4230
4231 There's no point in saying anything if the inferior has exited.
4232 Note that SIGNALLED here means "exited with a signal", not
4233 "received a signal". */
4234 if (!non_stop
4235 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
4236 && target_has_execution
4237 && last.kind != TARGET_WAITKIND_SIGNALLED
4238 && last.kind != TARGET_WAITKIND_EXITED)
4239 {
4240 target_terminal_ours_for_output ();
4241 printf_filtered (_("[Switching to %s]\n"),
4242 target_pid_to_str (inferior_ptid));
4243 annotate_thread_changed ();
4244 previous_inferior_ptid = inferior_ptid;
4245 }
4246
4247 if (!breakpoints_always_inserted_mode () && target_has_execution)
4248 {
4249 if (remove_breakpoints ())
4250 {
4251 target_terminal_ours_for_output ();
4252 printf_filtered (_("\
4253 Cannot remove breakpoints because program is no longer writable.\n\
4254 Further execution is probably impossible.\n"));
4255 }
4256 }
4257
4258 /* If an auto-display called a function and that got a signal,
4259 delete that auto-display to avoid an infinite recursion. */
4260
4261 if (stopped_by_random_signal)
4262 disable_current_display ();
4263
4264 /* Don't print a message if in the middle of doing a "step n"
4265 operation for n > 1 */
4266 if (target_has_execution
4267 && last.kind != TARGET_WAITKIND_SIGNALLED
4268 && last.kind != TARGET_WAITKIND_EXITED
4269 && inferior_thread ()->step_multi
4270 && inferior_thread ()->stop_step)
4271 goto done;
4272
4273 target_terminal_ours ();
4274
4275 /* Set the current source location. This will also happen if we
4276 display the frame below, but the current SAL will be incorrect
4277 during a user hook-stop function. */
4278 if (target_has_stack && !stop_stack_dummy)
4279 set_current_sal_from_frame (get_current_frame (), 1);
4280
4281 /* Let the user/frontend see the threads as stopped. */
4282 do_cleanups (old_chain);
4283
4284 /* Look up the hook_stop and run it (CLI internally handles problem
4285 of stop_command's pre-hook not existing). */
4286 if (stop_command)
4287 catch_errors (hook_stop_stub, stop_command,
4288 "Error while running hook_stop:\n", RETURN_MASK_ALL);
4289
4290 if (!target_has_stack)
4291 goto done;
4292
4293 if (last.kind == TARGET_WAITKIND_SIGNALLED
4294 || last.kind == TARGET_WAITKIND_EXITED)
4295 goto done;
4296
4297 /* Select innermost stack frame - i.e., current frame is frame 0,
4298 and current location is based on that.
4299 Don't do this on return from a stack dummy routine,
4300 or if the program has exited. */
4301
4302 if (!stop_stack_dummy)
4303 {
4304 select_frame (get_current_frame ());
4305
4306 /* Print current location without a level number, if
4307 we have changed functions or hit a breakpoint.
4308 Print source line if we have one.
4309 bpstat_print() contains the logic deciding in detail
4310 what to print, based on the event(s) that just occurred. */
4311
4312 /* If --batch-silent is enabled then there's no need to print the current
4313 source location, and to try risks causing an error message about
4314 missing source files. */
4315 if (stop_print_frame && !batch_silent)
4316 {
4317 int bpstat_ret;
4318 int source_flag;
4319 int do_frame_printing = 1;
4320 struct thread_info *tp = inferior_thread ();
4321
4322 bpstat_ret = bpstat_print (tp->stop_bpstat);
4323 switch (bpstat_ret)
4324 {
4325 case PRINT_UNKNOWN:
4326 /* If we had hit a shared library event breakpoint,
4327 bpstat_print would print out this message. If we hit
4328 an OS-level shared library event, do the same
4329 thing. */
4330 if (last.kind == TARGET_WAITKIND_LOADED)
4331 {
4332 printf_filtered (_("Stopped due to shared library event\n"));
4333 source_flag = SRC_LINE; /* something bogus */
4334 do_frame_printing = 0;
4335 break;
4336 }
4337
4338 /* FIXME: cagney/2002-12-01: Given that a frame ID does
4339 (or should) carry around the function and does (or
4340 should) use that when doing a frame comparison. */
4341 if (tp->stop_step
4342 && frame_id_eq (tp->step_frame_id,
4343 get_frame_id (get_current_frame ()))
4344 && step_start_function == find_pc_function (stop_pc))
4345 source_flag = SRC_LINE; /* finished step, just print source line */
4346 else
4347 source_flag = SRC_AND_LOC; /* print location and source line */
4348 break;
4349 case PRINT_SRC_AND_LOC:
4350 source_flag = SRC_AND_LOC; /* print location and source line */
4351 break;
4352 case PRINT_SRC_ONLY:
4353 source_flag = SRC_LINE;
4354 break;
4355 case PRINT_NOTHING:
4356 source_flag = SRC_LINE; /* something bogus */
4357 do_frame_printing = 0;
4358 break;
4359 default:
4360 internal_error (__FILE__, __LINE__, _("Unknown value."));
4361 }
4362
4363 if (ui_out_is_mi_like_p (uiout))
4364 {
4365
4366 ui_out_field_int (uiout, "thread-id",
4367 pid_to_thread_id (inferior_ptid));
4368 if (non_stop)
4369 {
4370 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end
4371 (uiout, "stopped-threads");
4372 ui_out_field_int (uiout, NULL,
4373 pid_to_thread_id (inferior_ptid));
4374 do_cleanups (back_to);
4375 }
4376 else
4377 ui_out_field_string (uiout, "stopped-threads", "all");
4378 }
4379 /* The behavior of this routine with respect to the source
4380 flag is:
4381 SRC_LINE: Print only source line
4382 LOCATION: Print only location
4383 SRC_AND_LOC: Print location and source line */
4384 if (do_frame_printing)
4385 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
4386
4387 /* Display the auto-display expressions. */
4388 do_displays ();
4389 }
4390 }
4391
4392 /* Save the function value return registers, if we care.
4393 We might be about to restore their previous contents. */
4394 if (inferior_thread ()->proceed_to_finish)
4395 {
4396 /* This should not be necessary. */
4397 if (stop_registers)
4398 regcache_xfree (stop_registers);
4399
4400 /* NB: The copy goes through to the target picking up the value of
4401 all the registers. */
4402 stop_registers = regcache_dup (get_current_regcache ());
4403 }
4404
4405 if (stop_stack_dummy)
4406 {
4407 /* Pop the empty frame that contains the stack dummy.
4408 This also restores inferior state prior to the call
4409 (struct inferior_thread_state). */
4410 struct frame_info *frame = get_current_frame ();
4411 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
4412 frame_pop (frame);
4413 /* frame_pop() calls reinit_frame_cache as the last thing it does
4414 which means there's currently no selected frame. We don't need
4415 to re-establish a selected frame if the dummy call returns normally,
4416 that will be done by restore_inferior_status. However, we do have
4417 to handle the case where the dummy call is returning after being
4418 stopped (e.g. the dummy call previously hit a breakpoint). We
4419 can't know which case we have so just always re-establish a
4420 selected frame here. */
4421 select_frame (get_current_frame ());
4422 }
4423
4424 done:
4425 annotate_stopped ();
4426 if (!suppress_stop_observer
4427 && !(target_has_execution
4428 && last.kind != TARGET_WAITKIND_SIGNALLED
4429 && last.kind != TARGET_WAITKIND_EXITED
4430 && inferior_thread ()->step_multi))
4431 {
4432 if (!ptid_equal (inferior_ptid, null_ptid))
4433 observer_notify_normal_stop (inferior_thread ()->stop_bpstat);
4434 else
4435 observer_notify_normal_stop (NULL);
4436 }
4437
4438 if (target_has_execution)
4439 {
4440 if (last.kind != TARGET_WAITKIND_SIGNALLED
4441 && last.kind != TARGET_WAITKIND_EXITED)
4442 /* Delete the breakpoint we stopped at, if it wants to be deleted.
4443 Delete any breakpoint that is to be deleted at the next stop. */
4444 breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
4445 }
4446 }
4447
4448 static int
4449 hook_stop_stub (void *cmd)
4450 {
4451 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
4452 return (0);
4453 }
4454 \f
4455 int
4456 signal_stop_state (int signo)
4457 {
4458 return signal_stop[signo];
4459 }
4460
4461 int
4462 signal_print_state (int signo)
4463 {
4464 return signal_print[signo];
4465 }
4466
4467 int
4468 signal_pass_state (int signo)
4469 {
4470 return signal_program[signo];
4471 }
4472
4473 int
4474 signal_stop_update (int signo, int state)
4475 {
4476 int ret = signal_stop[signo];
4477 signal_stop[signo] = state;
4478 return ret;
4479 }
4480
4481 int
4482 signal_print_update (int signo, int state)
4483 {
4484 int ret = signal_print[signo];
4485 signal_print[signo] = state;
4486 return ret;
4487 }
4488
4489 int
4490 signal_pass_update (int signo, int state)
4491 {
4492 int ret = signal_program[signo];
4493 signal_program[signo] = state;
4494 return ret;
4495 }
4496
4497 static void
4498 sig_print_header (void)
4499 {
4500 printf_filtered (_("\
4501 Signal Stop\tPrint\tPass to program\tDescription\n"));
4502 }
4503
4504 static void
4505 sig_print_info (enum target_signal oursig)
4506 {
4507 const char *name = target_signal_to_name (oursig);
4508 int name_padding = 13 - strlen (name);
4509
4510 if (name_padding <= 0)
4511 name_padding = 0;
4512
4513 printf_filtered ("%s", name);
4514 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
4515 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
4516 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
4517 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
4518 printf_filtered ("%s\n", target_signal_to_string (oursig));
4519 }
4520
4521 /* Specify how various signals in the inferior should be handled. */
4522
4523 static void
4524 handle_command (char *args, int from_tty)
4525 {
4526 char **argv;
4527 int digits, wordlen;
4528 int sigfirst, signum, siglast;
4529 enum target_signal oursig;
4530 int allsigs;
4531 int nsigs;
4532 unsigned char *sigs;
4533 struct cleanup *old_chain;
4534
4535 if (args == NULL)
4536 {
4537 error_no_arg (_("signal to handle"));
4538 }
4539
4540 /* Allocate and zero an array of flags for which signals to handle. */
4541
4542 nsigs = (int) TARGET_SIGNAL_LAST;
4543 sigs = (unsigned char *) alloca (nsigs);
4544 memset (sigs, 0, nsigs);
4545
4546 /* Break the command line up into args. */
4547
4548 argv = gdb_buildargv (args);
4549 old_chain = make_cleanup_freeargv (argv);
4550
4551 /* Walk through the args, looking for signal oursigs, signal names, and
4552 actions. Signal numbers and signal names may be interspersed with
4553 actions, with the actions being performed for all signals cumulatively
4554 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
4555
4556 while (*argv != NULL)
4557 {
4558 wordlen = strlen (*argv);
4559 for (digits = 0; isdigit ((*argv)[digits]); digits++)
4560 {;
4561 }
4562 allsigs = 0;
4563 sigfirst = siglast = -1;
4564
4565 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
4566 {
4567 /* Apply action to all signals except those used by the
4568 debugger. Silently skip those. */
4569 allsigs = 1;
4570 sigfirst = 0;
4571 siglast = nsigs - 1;
4572 }
4573 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
4574 {
4575 SET_SIGS (nsigs, sigs, signal_stop);
4576 SET_SIGS (nsigs, sigs, signal_print);
4577 }
4578 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
4579 {
4580 UNSET_SIGS (nsigs, sigs, signal_program);
4581 }
4582 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
4583 {
4584 SET_SIGS (nsigs, sigs, signal_print);
4585 }
4586 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
4587 {
4588 SET_SIGS (nsigs, sigs, signal_program);
4589 }
4590 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
4591 {
4592 UNSET_SIGS (nsigs, sigs, signal_stop);
4593 }
4594 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
4595 {
4596 SET_SIGS (nsigs, sigs, signal_program);
4597 }
4598 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
4599 {
4600 UNSET_SIGS (nsigs, sigs, signal_print);
4601 UNSET_SIGS (nsigs, sigs, signal_stop);
4602 }
4603 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
4604 {
4605 UNSET_SIGS (nsigs, sigs, signal_program);
4606 }
4607 else if (digits > 0)
4608 {
4609 /* It is numeric. The numeric signal refers to our own
4610 internal signal numbering from target.h, not to host/target
4611 signal number. This is a feature; users really should be
4612 using symbolic names anyway, and the common ones like
4613 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
4614
4615 sigfirst = siglast = (int)
4616 target_signal_from_command (atoi (*argv));
4617 if ((*argv)[digits] == '-')
4618 {
4619 siglast = (int)
4620 target_signal_from_command (atoi ((*argv) + digits + 1));
4621 }
4622 if (sigfirst > siglast)
4623 {
4624 /* Bet he didn't figure we'd think of this case... */
4625 signum = sigfirst;
4626 sigfirst = siglast;
4627 siglast = signum;
4628 }
4629 }
4630 else
4631 {
4632 oursig = target_signal_from_name (*argv);
4633 if (oursig != TARGET_SIGNAL_UNKNOWN)
4634 {
4635 sigfirst = siglast = (int) oursig;
4636 }
4637 else
4638 {
4639 /* Not a number and not a recognized flag word => complain. */
4640 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
4641 }
4642 }
4643
4644 /* If any signal numbers or symbol names were found, set flags for
4645 which signals to apply actions to. */
4646
4647 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
4648 {
4649 switch ((enum target_signal) signum)
4650 {
4651 case TARGET_SIGNAL_TRAP:
4652 case TARGET_SIGNAL_INT:
4653 if (!allsigs && !sigs[signum])
4654 {
4655 if (query ("%s is used by the debugger.\n\
4656 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
4657 {
4658 sigs[signum] = 1;
4659 }
4660 else
4661 {
4662 printf_unfiltered (_("Not confirmed, unchanged.\n"));
4663 gdb_flush (gdb_stdout);
4664 }
4665 }
4666 break;
4667 case TARGET_SIGNAL_0:
4668 case TARGET_SIGNAL_DEFAULT:
4669 case TARGET_SIGNAL_UNKNOWN:
4670 /* Make sure that "all" doesn't print these. */
4671 break;
4672 default:
4673 sigs[signum] = 1;
4674 break;
4675 }
4676 }
4677
4678 argv++;
4679 }
4680
4681 for (signum = 0; signum < nsigs; signum++)
4682 if (sigs[signum])
4683 {
4684 target_notice_signals (inferior_ptid);
4685
4686 if (from_tty)
4687 {
4688 /* Show the results. */
4689 sig_print_header ();
4690 for (; signum < nsigs; signum++)
4691 if (sigs[signum])
4692 sig_print_info (signum);
4693 }
4694
4695 break;
4696 }
4697
4698 do_cleanups (old_chain);
4699 }
4700
4701 static void
4702 xdb_handle_command (char *args, int from_tty)
4703 {
4704 char **argv;
4705 struct cleanup *old_chain;
4706
4707 if (args == NULL)
4708 error_no_arg (_("xdb command"));
4709
4710 /* Break the command line up into args. */
4711
4712 argv = gdb_buildargv (args);
4713 old_chain = make_cleanup_freeargv (argv);
4714 if (argv[1] != (char *) NULL)
4715 {
4716 char *argBuf;
4717 int bufLen;
4718
4719 bufLen = strlen (argv[0]) + 20;
4720 argBuf = (char *) xmalloc (bufLen);
4721 if (argBuf)
4722 {
4723 int validFlag = 1;
4724 enum target_signal oursig;
4725
4726 oursig = target_signal_from_name (argv[0]);
4727 memset (argBuf, 0, bufLen);
4728 if (strcmp (argv[1], "Q") == 0)
4729 sprintf (argBuf, "%s %s", argv[0], "noprint");
4730 else
4731 {
4732 if (strcmp (argv[1], "s") == 0)
4733 {
4734 if (!signal_stop[oursig])
4735 sprintf (argBuf, "%s %s", argv[0], "stop");
4736 else
4737 sprintf (argBuf, "%s %s", argv[0], "nostop");
4738 }
4739 else if (strcmp (argv[1], "i") == 0)
4740 {
4741 if (!signal_program[oursig])
4742 sprintf (argBuf, "%s %s", argv[0], "pass");
4743 else
4744 sprintf (argBuf, "%s %s", argv[0], "nopass");
4745 }
4746 else if (strcmp (argv[1], "r") == 0)
4747 {
4748 if (!signal_print[oursig])
4749 sprintf (argBuf, "%s %s", argv[0], "print");
4750 else
4751 sprintf (argBuf, "%s %s", argv[0], "noprint");
4752 }
4753 else
4754 validFlag = 0;
4755 }
4756 if (validFlag)
4757 handle_command (argBuf, from_tty);
4758 else
4759 printf_filtered (_("Invalid signal handling flag.\n"));
4760 if (argBuf)
4761 xfree (argBuf);
4762 }
4763 }
4764 do_cleanups (old_chain);
4765 }
4766
4767 /* Print current contents of the tables set by the handle command.
4768 It is possible we should just be printing signals actually used
4769 by the current target (but for things to work right when switching
4770 targets, all signals should be in the signal tables). */
4771
4772 static void
4773 signals_info (char *signum_exp, int from_tty)
4774 {
4775 enum target_signal oursig;
4776 sig_print_header ();
4777
4778 if (signum_exp)
4779 {
4780 /* First see if this is a symbol name. */
4781 oursig = target_signal_from_name (signum_exp);
4782 if (oursig == TARGET_SIGNAL_UNKNOWN)
4783 {
4784 /* No, try numeric. */
4785 oursig =
4786 target_signal_from_command (parse_and_eval_long (signum_exp));
4787 }
4788 sig_print_info (oursig);
4789 return;
4790 }
4791
4792 printf_filtered ("\n");
4793 /* These ugly casts brought to you by the native VAX compiler. */
4794 for (oursig = TARGET_SIGNAL_FIRST;
4795 (int) oursig < (int) TARGET_SIGNAL_LAST;
4796 oursig = (enum target_signal) ((int) oursig + 1))
4797 {
4798 QUIT;
4799
4800 if (oursig != TARGET_SIGNAL_UNKNOWN
4801 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
4802 sig_print_info (oursig);
4803 }
4804
4805 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
4806 }
4807 \f
4808 /* Inferior thread state.
4809 These are details related to the inferior itself, and don't include
4810 things like what frame the user had selected or what gdb was doing
4811 with the target at the time.
4812 For inferior function calls these are things we want to restore
4813 regardless of whether the function call successfully completes
4814 or the dummy frame has to be manually popped. */
4815
4816 struct inferior_thread_state
4817 {
4818 enum target_signal stop_signal;
4819 CORE_ADDR stop_pc;
4820 struct regcache *registers;
4821 };
4822
4823 struct inferior_thread_state *
4824 save_inferior_thread_state (void)
4825 {
4826 struct inferior_thread_state *inf_state = XMALLOC (struct inferior_thread_state);
4827 struct thread_info *tp = inferior_thread ();
4828
4829 inf_state->stop_signal = tp->stop_signal;
4830 inf_state->stop_pc = stop_pc;
4831
4832 inf_state->registers = regcache_dup (get_current_regcache ());
4833
4834 return inf_state;
4835 }
4836
4837 /* Restore inferior session state to INF_STATE. */
4838
4839 void
4840 restore_inferior_thread_state (struct inferior_thread_state *inf_state)
4841 {
4842 struct thread_info *tp = inferior_thread ();
4843
4844 tp->stop_signal = inf_state->stop_signal;
4845 stop_pc = inf_state->stop_pc;
4846
4847 /* The inferior can be gone if the user types "print exit(0)"
4848 (and perhaps other times). */
4849 if (target_has_execution)
4850 /* NB: The register write goes through to the target. */
4851 regcache_cpy (get_current_regcache (), inf_state->registers);
4852 regcache_xfree (inf_state->registers);
4853 xfree (inf_state);
4854 }
4855
4856 static void
4857 do_restore_inferior_thread_state_cleanup (void *state)
4858 {
4859 restore_inferior_thread_state (state);
4860 }
4861
4862 struct cleanup *
4863 make_cleanup_restore_inferior_thread_state (struct inferior_thread_state *inf_state)
4864 {
4865 return make_cleanup (do_restore_inferior_thread_state_cleanup, inf_state);
4866 }
4867
4868 void
4869 discard_inferior_thread_state (struct inferior_thread_state *inf_state)
4870 {
4871 regcache_xfree (inf_state->registers);
4872 xfree (inf_state);
4873 }
4874
4875 struct regcache *
4876 get_inferior_thread_state_regcache (struct inferior_thread_state *inf_state)
4877 {
4878 return inf_state->registers;
4879 }
4880
4881 /* Session related state for inferior function calls.
4882 These are the additional bits of state that need to be restored
4883 when an inferior function call successfully completes. */
4884
4885 struct inferior_status
4886 {
4887 bpstat stop_bpstat;
4888 int stop_step;
4889 int stop_stack_dummy;
4890 int stopped_by_random_signal;
4891 int stepping_over_breakpoint;
4892 CORE_ADDR step_range_start;
4893 CORE_ADDR step_range_end;
4894 struct frame_id step_frame_id;
4895 enum step_over_calls_kind step_over_calls;
4896 CORE_ADDR step_resume_break_address;
4897 int stop_after_trap;
4898 int stop_soon;
4899
4900 /* ID if the selected frame when the inferior function call was made. */
4901 struct frame_id selected_frame_id;
4902
4903 int breakpoint_proceeded;
4904 int proceed_to_finish;
4905 };
4906
4907 /* Save all of the information associated with the inferior<==>gdb
4908 connection. */
4909
4910 struct inferior_status *
4911 save_inferior_status (void)
4912 {
4913 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
4914 struct thread_info *tp = inferior_thread ();
4915 struct inferior *inf = current_inferior ();
4916
4917 inf_status->stop_step = tp->stop_step;
4918 inf_status->stop_stack_dummy = stop_stack_dummy;
4919 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4920 inf_status->stepping_over_breakpoint = tp->trap_expected;
4921 inf_status->step_range_start = tp->step_range_start;
4922 inf_status->step_range_end = tp->step_range_end;
4923 inf_status->step_frame_id = tp->step_frame_id;
4924 inf_status->step_over_calls = tp->step_over_calls;
4925 inf_status->stop_after_trap = stop_after_trap;
4926 inf_status->stop_soon = inf->stop_soon;
4927 /* Save original bpstat chain here; replace it with copy of chain.
4928 If caller's caller is walking the chain, they'll be happier if we
4929 hand them back the original chain when restore_inferior_status is
4930 called. */
4931 inf_status->stop_bpstat = tp->stop_bpstat;
4932 tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
4933 inf_status->breakpoint_proceeded = breakpoint_proceeded;
4934 inf_status->proceed_to_finish = tp->proceed_to_finish;
4935
4936 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
4937
4938 return inf_status;
4939 }
4940
4941 static int
4942 restore_selected_frame (void *args)
4943 {
4944 struct frame_id *fid = (struct frame_id *) args;
4945 struct frame_info *frame;
4946
4947 frame = frame_find_by_id (*fid);
4948
4949 /* If inf_status->selected_frame_id is NULL, there was no previously
4950 selected frame. */
4951 if (frame == NULL)
4952 {
4953 warning (_("Unable to restore previously selected frame."));
4954 return 0;
4955 }
4956
4957 select_frame (frame);
4958
4959 return (1);
4960 }
4961
4962 /* Restore inferior session state to INF_STATUS. */
4963
4964 void
4965 restore_inferior_status (struct inferior_status *inf_status)
4966 {
4967 struct thread_info *tp = inferior_thread ();
4968 struct inferior *inf = current_inferior ();
4969
4970 tp->stop_step = inf_status->stop_step;
4971 stop_stack_dummy = inf_status->stop_stack_dummy;
4972 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4973 tp->trap_expected = inf_status->stepping_over_breakpoint;
4974 tp->step_range_start = inf_status->step_range_start;
4975 tp->step_range_end = inf_status->step_range_end;
4976 tp->step_frame_id = inf_status->step_frame_id;
4977 tp->step_over_calls = inf_status->step_over_calls;
4978 stop_after_trap = inf_status->stop_after_trap;
4979 inf->stop_soon = inf_status->stop_soon;
4980 bpstat_clear (&tp->stop_bpstat);
4981 tp->stop_bpstat = inf_status->stop_bpstat;
4982 inf_status->stop_bpstat = NULL;
4983 breakpoint_proceeded = inf_status->breakpoint_proceeded;
4984 tp->proceed_to_finish = inf_status->proceed_to_finish;
4985
4986 if (target_has_stack)
4987 {
4988 /* The point of catch_errors is that if the stack is clobbered,
4989 walking the stack might encounter a garbage pointer and
4990 error() trying to dereference it. */
4991 if (catch_errors
4992 (restore_selected_frame, &inf_status->selected_frame_id,
4993 "Unable to restore previously selected frame:\n",
4994 RETURN_MASK_ERROR) == 0)
4995 /* Error in restoring the selected frame. Select the innermost
4996 frame. */
4997 select_frame (get_current_frame ());
4998 }
4999
5000 xfree (inf_status);
5001 }
5002
5003 static void
5004 do_restore_inferior_status_cleanup (void *sts)
5005 {
5006 restore_inferior_status (sts);
5007 }
5008
5009 struct cleanup *
5010 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
5011 {
5012 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
5013 }
5014
5015 void
5016 discard_inferior_status (struct inferior_status *inf_status)
5017 {
5018 /* See save_inferior_status for info on stop_bpstat. */
5019 bpstat_clear (&inf_status->stop_bpstat);
5020 xfree (inf_status);
5021 }
5022 \f
5023 int
5024 inferior_has_forked (ptid_t pid, ptid_t *child_pid)
5025 {
5026 struct target_waitstatus last;
5027 ptid_t last_ptid;
5028
5029 get_last_target_status (&last_ptid, &last);
5030
5031 if (last.kind != TARGET_WAITKIND_FORKED)
5032 return 0;
5033
5034 if (!ptid_equal (last_ptid, pid))
5035 return 0;
5036
5037 *child_pid = last.value.related_pid;
5038 return 1;
5039 }
5040
5041 int
5042 inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
5043 {
5044 struct target_waitstatus last;
5045 ptid_t last_ptid;
5046
5047 get_last_target_status (&last_ptid, &last);
5048
5049 if (last.kind != TARGET_WAITKIND_VFORKED)
5050 return 0;
5051
5052 if (!ptid_equal (last_ptid, pid))
5053 return 0;
5054
5055 *child_pid = last.value.related_pid;
5056 return 1;
5057 }
5058
5059 int
5060 inferior_has_execd (ptid_t pid, char **execd_pathname)
5061 {
5062 struct target_waitstatus last;
5063 ptid_t last_ptid;
5064
5065 get_last_target_status (&last_ptid, &last);
5066
5067 if (last.kind != TARGET_WAITKIND_EXECD)
5068 return 0;
5069
5070 if (!ptid_equal (last_ptid, pid))
5071 return 0;
5072
5073 *execd_pathname = xstrdup (last.value.execd_pathname);
5074 return 1;
5075 }
5076
5077 /* Oft used ptids */
5078 ptid_t null_ptid;
5079 ptid_t minus_one_ptid;
5080
5081 /* Create a ptid given the necessary PID, LWP, and TID components. */
5082
5083 ptid_t
5084 ptid_build (int pid, long lwp, long tid)
5085 {
5086 ptid_t ptid;
5087
5088 ptid.pid = pid;
5089 ptid.lwp = lwp;
5090 ptid.tid = tid;
5091 return ptid;
5092 }
5093
5094 /* Create a ptid from just a pid. */
5095
5096 ptid_t
5097 pid_to_ptid (int pid)
5098 {
5099 return ptid_build (pid, 0, 0);
5100 }
5101
5102 /* Fetch the pid (process id) component from a ptid. */
5103
5104 int
5105 ptid_get_pid (ptid_t ptid)
5106 {
5107 return ptid.pid;
5108 }
5109
5110 /* Fetch the lwp (lightweight process) component from a ptid. */
5111
5112 long
5113 ptid_get_lwp (ptid_t ptid)
5114 {
5115 return ptid.lwp;
5116 }
5117
5118 /* Fetch the tid (thread id) component from a ptid. */
5119
5120 long
5121 ptid_get_tid (ptid_t ptid)
5122 {
5123 return ptid.tid;
5124 }
5125
5126 /* ptid_equal() is used to test equality of two ptids. */
5127
5128 int
5129 ptid_equal (ptid_t ptid1, ptid_t ptid2)
5130 {
5131 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
5132 && ptid1.tid == ptid2.tid);
5133 }
5134
5135 /* Returns true if PTID represents a process. */
5136
5137 int
5138 ptid_is_pid (ptid_t ptid)
5139 {
5140 if (ptid_equal (minus_one_ptid, ptid))
5141 return 0;
5142 if (ptid_equal (null_ptid, ptid))
5143 return 0;
5144
5145 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
5146 }
5147
5148 /* restore_inferior_ptid() will be used by the cleanup machinery
5149 to restore the inferior_ptid value saved in a call to
5150 save_inferior_ptid(). */
5151
5152 static void
5153 restore_inferior_ptid (void *arg)
5154 {
5155 ptid_t *saved_ptid_ptr = arg;
5156 inferior_ptid = *saved_ptid_ptr;
5157 xfree (arg);
5158 }
5159
5160 /* Save the value of inferior_ptid so that it may be restored by a
5161 later call to do_cleanups(). Returns the struct cleanup pointer
5162 needed for later doing the cleanup. */
5163
5164 struct cleanup *
5165 save_inferior_ptid (void)
5166 {
5167 ptid_t *saved_ptid_ptr;
5168
5169 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
5170 *saved_ptid_ptr = inferior_ptid;
5171 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
5172 }
5173 \f
5174
5175 /* User interface for reverse debugging:
5176 Set exec-direction / show exec-direction commands
5177 (returns error unless target implements to_set_exec_direction method). */
5178
5179 enum exec_direction_kind execution_direction = EXEC_FORWARD;
5180 static const char exec_forward[] = "forward";
5181 static const char exec_reverse[] = "reverse";
5182 static const char *exec_direction = exec_forward;
5183 static const char *exec_direction_names[] = {
5184 exec_forward,
5185 exec_reverse,
5186 NULL
5187 };
5188
5189 static void
5190 set_exec_direction_func (char *args, int from_tty,
5191 struct cmd_list_element *cmd)
5192 {
5193 if (target_can_execute_reverse)
5194 {
5195 if (!strcmp (exec_direction, exec_forward))
5196 execution_direction = EXEC_FORWARD;
5197 else if (!strcmp (exec_direction, exec_reverse))
5198 execution_direction = EXEC_REVERSE;
5199 }
5200 }
5201
5202 static void
5203 show_exec_direction_func (struct ui_file *out, int from_tty,
5204 struct cmd_list_element *cmd, const char *value)
5205 {
5206 switch (execution_direction) {
5207 case EXEC_FORWARD:
5208 fprintf_filtered (out, _("Forward.\n"));
5209 break;
5210 case EXEC_REVERSE:
5211 fprintf_filtered (out, _("Reverse.\n"));
5212 break;
5213 case EXEC_ERROR:
5214 default:
5215 fprintf_filtered (out,
5216 _("Forward (target `%s' does not support exec-direction).\n"),
5217 target_shortname);
5218 break;
5219 }
5220 }
5221
5222 /* User interface for non-stop mode. */
5223
5224 int non_stop = 0;
5225 static int non_stop_1 = 0;
5226
5227 static void
5228 set_non_stop (char *args, int from_tty,
5229 struct cmd_list_element *c)
5230 {
5231 if (target_has_execution)
5232 {
5233 non_stop_1 = non_stop;
5234 error (_("Cannot change this setting while the inferior is running."));
5235 }
5236
5237 non_stop = non_stop_1;
5238 }
5239
5240 static void
5241 show_non_stop (struct ui_file *file, int from_tty,
5242 struct cmd_list_element *c, const char *value)
5243 {
5244 fprintf_filtered (file,
5245 _("Controlling the inferior in non-stop mode is %s.\n"),
5246 value);
5247 }
5248
5249
5250 void
5251 _initialize_infrun (void)
5252 {
5253 int i;
5254 int numsigs;
5255 struct cmd_list_element *c;
5256
5257 add_info ("signals", signals_info, _("\
5258 What debugger does when program gets various signals.\n\
5259 Specify a signal as argument to print info on that signal only."));
5260 add_info_alias ("handle", "signals", 0);
5261
5262 add_com ("handle", class_run, handle_command, _("\
5263 Specify how to handle a signal.\n\
5264 Args are signals and actions to apply to those signals.\n\
5265 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5266 from 1-15 are allowed for compatibility with old versions of GDB.\n\
5267 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5268 The special arg \"all\" is recognized to mean all signals except those\n\
5269 used by the debugger, typically SIGTRAP and SIGINT.\n\
5270 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
5271 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
5272 Stop means reenter debugger if this signal happens (implies print).\n\
5273 Print means print a message if this signal happens.\n\
5274 Pass means let program see this signal; otherwise program doesn't know.\n\
5275 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
5276 Pass and Stop may be combined."));
5277 if (xdb_commands)
5278 {
5279 add_com ("lz", class_info, signals_info, _("\
5280 What debugger does when program gets various signals.\n\
5281 Specify a signal as argument to print info on that signal only."));
5282 add_com ("z", class_run, xdb_handle_command, _("\
5283 Specify how to handle a signal.\n\
5284 Args are signals and actions to apply to those signals.\n\
5285 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5286 from 1-15 are allowed for compatibility with old versions of GDB.\n\
5287 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5288 The special arg \"all\" is recognized to mean all signals except those\n\
5289 used by the debugger, typically SIGTRAP and SIGINT.\n\
5290 Recognized actions include \"s\" (toggles between stop and nostop), \n\
5291 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
5292 nopass), \"Q\" (noprint)\n\
5293 Stop means reenter debugger if this signal happens (implies print).\n\
5294 Print means print a message if this signal happens.\n\
5295 Pass means let program see this signal; otherwise program doesn't know.\n\
5296 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
5297 Pass and Stop may be combined."));
5298 }
5299
5300 if (!dbx_commands)
5301 stop_command = add_cmd ("stop", class_obscure,
5302 not_just_help_class_command, _("\
5303 There is no `stop' command, but you can set a hook on `stop'.\n\
5304 This allows you to set a list of commands to be run each time execution\n\
5305 of the program stops."), &cmdlist);
5306
5307 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
5308 Set inferior debugging."), _("\
5309 Show inferior debugging."), _("\
5310 When non-zero, inferior specific debugging is enabled."),
5311 NULL,
5312 show_debug_infrun,
5313 &setdebuglist, &showdebuglist);
5314
5315 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
5316 Set displaced stepping debugging."), _("\
5317 Show displaced stepping debugging."), _("\
5318 When non-zero, displaced stepping specific debugging is enabled."),
5319 NULL,
5320 show_debug_displaced,
5321 &setdebuglist, &showdebuglist);
5322
5323 add_setshow_boolean_cmd ("non-stop", no_class,
5324 &non_stop_1, _("\
5325 Set whether gdb controls the inferior in non-stop mode."), _("\
5326 Show whether gdb controls the inferior in non-stop mode."), _("\
5327 When debugging a multi-threaded program and this setting is\n\
5328 off (the default, also called all-stop mode), when one thread stops\n\
5329 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
5330 all other threads in the program while you interact with the thread of\n\
5331 interest. When you continue or step a thread, you can allow the other\n\
5332 threads to run, or have them remain stopped, but while you inspect any\n\
5333 thread's state, all threads stop.\n\
5334 \n\
5335 In non-stop mode, when one thread stops, other threads can continue\n\
5336 to run freely. You'll be able to step each thread independently,\n\
5337 leave it stopped or free to run as needed."),
5338 set_non_stop,
5339 show_non_stop,
5340 &setlist,
5341 &showlist);
5342
5343 numsigs = (int) TARGET_SIGNAL_LAST;
5344 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
5345 signal_print = (unsigned char *)
5346 xmalloc (sizeof (signal_print[0]) * numsigs);
5347 signal_program = (unsigned char *)
5348 xmalloc (sizeof (signal_program[0]) * numsigs);
5349 for (i = 0; i < numsigs; i++)
5350 {
5351 signal_stop[i] = 1;
5352 signal_print[i] = 1;
5353 signal_program[i] = 1;
5354 }
5355
5356 /* Signals caused by debugger's own actions
5357 should not be given to the program afterwards. */
5358 signal_program[TARGET_SIGNAL_TRAP] = 0;
5359 signal_program[TARGET_SIGNAL_INT] = 0;
5360
5361 /* Signals that are not errors should not normally enter the debugger. */
5362 signal_stop[TARGET_SIGNAL_ALRM] = 0;
5363 signal_print[TARGET_SIGNAL_ALRM] = 0;
5364 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
5365 signal_print[TARGET_SIGNAL_VTALRM] = 0;
5366 signal_stop[TARGET_SIGNAL_PROF] = 0;
5367 signal_print[TARGET_SIGNAL_PROF] = 0;
5368 signal_stop[TARGET_SIGNAL_CHLD] = 0;
5369 signal_print[TARGET_SIGNAL_CHLD] = 0;
5370 signal_stop[TARGET_SIGNAL_IO] = 0;
5371 signal_print[TARGET_SIGNAL_IO] = 0;
5372 signal_stop[TARGET_SIGNAL_POLL] = 0;
5373 signal_print[TARGET_SIGNAL_POLL] = 0;
5374 signal_stop[TARGET_SIGNAL_URG] = 0;
5375 signal_print[TARGET_SIGNAL_URG] = 0;
5376 signal_stop[TARGET_SIGNAL_WINCH] = 0;
5377 signal_print[TARGET_SIGNAL_WINCH] = 0;
5378
5379 /* These signals are used internally by user-level thread
5380 implementations. (See signal(5) on Solaris.) Like the above
5381 signals, a healthy program receives and handles them as part of
5382 its normal operation. */
5383 signal_stop[TARGET_SIGNAL_LWP] = 0;
5384 signal_print[TARGET_SIGNAL_LWP] = 0;
5385 signal_stop[TARGET_SIGNAL_WAITING] = 0;
5386 signal_print[TARGET_SIGNAL_WAITING] = 0;
5387 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
5388 signal_print[TARGET_SIGNAL_CANCEL] = 0;
5389
5390 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
5391 &stop_on_solib_events, _("\
5392 Set stopping for shared library events."), _("\
5393 Show stopping for shared library events."), _("\
5394 If nonzero, gdb will give control to the user when the dynamic linker\n\
5395 notifies gdb of shared library events. The most common event of interest\n\
5396 to the user would be loading/unloading of a new library."),
5397 NULL,
5398 show_stop_on_solib_events,
5399 &setlist, &showlist);
5400
5401 add_setshow_enum_cmd ("follow-fork-mode", class_run,
5402 follow_fork_mode_kind_names,
5403 &follow_fork_mode_string, _("\
5404 Set debugger response to a program call of fork or vfork."), _("\
5405 Show debugger response to a program call of fork or vfork."), _("\
5406 A fork or vfork creates a new process. follow-fork-mode can be:\n\
5407 parent - the original process is debugged after a fork\n\
5408 child - the new process is debugged after a fork\n\
5409 The unfollowed process will continue to run.\n\
5410 By default, the debugger will follow the parent process."),
5411 NULL,
5412 show_follow_fork_mode_string,
5413 &setlist, &showlist);
5414
5415 add_setshow_enum_cmd ("scheduler-locking", class_run,
5416 scheduler_enums, &scheduler_mode, _("\
5417 Set mode for locking scheduler during execution."), _("\
5418 Show mode for locking scheduler during execution."), _("\
5419 off == no locking (threads may preempt at any time)\n\
5420 on == full locking (no thread except the current thread may run)\n\
5421 step == scheduler locked during every single-step operation.\n\
5422 In this mode, no other thread may run during a step command.\n\
5423 Other threads may run while stepping over a function call ('next')."),
5424 set_schedlock_func, /* traps on target vector */
5425 show_scheduler_mode,
5426 &setlist, &showlist);
5427
5428 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
5429 Set mode of the step operation."), _("\
5430 Show mode of the step operation."), _("\
5431 When set, doing a step over a function without debug line information\n\
5432 will stop at the first instruction of that function. Otherwise, the\n\
5433 function is skipped and the step command stops at a different source line."),
5434 NULL,
5435 show_step_stop_if_no_debug,
5436 &setlist, &showlist);
5437
5438 add_setshow_enum_cmd ("displaced-stepping", class_run,
5439 can_use_displaced_stepping_enum,
5440 &can_use_displaced_stepping, _("\
5441 Set debugger's willingness to use displaced stepping."), _("\
5442 Show debugger's willingness to use displaced stepping."), _("\
5443 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
5444 supported by the target architecture. If off, gdb will not use displaced\n\
5445 stepping to step over breakpoints, even if such is supported by the target\n\
5446 architecture. If auto (which is the default), gdb will use displaced stepping\n\
5447 if the target architecture supports it and non-stop mode is active, but will not\n\
5448 use it in all-stop mode (see help set non-stop)."),
5449 NULL,
5450 show_can_use_displaced_stepping,
5451 &setlist, &showlist);
5452
5453 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
5454 &exec_direction, _("Set direction of execution.\n\
5455 Options are 'forward' or 'reverse'."),
5456 _("Show direction of execution (forward/reverse)."),
5457 _("Tells gdb whether to execute forward or backward."),
5458 set_exec_direction_func, show_exec_direction_func,
5459 &setlist, &showlist);
5460
5461 /* ptid initializations */
5462 null_ptid = ptid_build (0, 0, 0);
5463 minus_one_ptid = ptid_build (-1, 0, 0);
5464 inferior_ptid = null_ptid;
5465 target_last_wait_ptid = minus_one_ptid;
5466 displaced_step_ptid = null_ptid;
5467
5468 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
5469 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
5470 }
This page took 0.148826 seconds and 4 git commands to generate.