daily update
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
6 Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include "symtab.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "exceptions.h"
32 #include "breakpoint.h"
33 #include "gdb_wait.h"
34 #include "gdbcore.h"
35 #include "gdbcmd.h"
36 #include "cli/cli-script.h"
37 #include "target.h"
38 #include "gdbthread.h"
39 #include "annotate.h"
40 #include "symfile.h"
41 #include "top.h"
42 #include <signal.h>
43 #include "inf-loop.h"
44 #include "regcache.h"
45 #include "value.h"
46 #include "observer.h"
47 #include "language.h"
48 #include "solib.h"
49
50 #include "gdb_assert.h"
51 #include "mi/mi-common.h"
52
53 /* Prototypes for local functions */
54
55 static void signals_info (char *, int);
56
57 static void handle_command (char *, int);
58
59 static void sig_print_info (enum target_signal);
60
61 static void sig_print_header (void);
62
63 static void resume_cleanups (void *);
64
65 static int hook_stop_stub (void *);
66
67 static int restore_selected_frame (void *);
68
69 static void build_infrun (void);
70
71 static int follow_fork (void);
72
73 static void set_schedlock_func (char *args, int from_tty,
74 struct cmd_list_element *c);
75
76 struct execution_control_state;
77
78 static int currently_stepping (struct execution_control_state *ecs);
79
80 static void xdb_handle_command (char *args, int from_tty);
81
82 static int prepare_to_proceed (void);
83
84 void _initialize_infrun (void);
85
86 int inferior_ignoring_startup_exec_events = 0;
87 int inferior_ignoring_leading_exec_events = 0;
88
89 /* When set, stop the 'step' command if we enter a function which has
90 no line number information. The normal behavior is that we step
91 over such function. */
92 int step_stop_if_no_debug = 0;
93 static void
94 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
95 struct cmd_list_element *c, const char *value)
96 {
97 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
98 }
99
100 /* In asynchronous mode, but simulating synchronous execution. */
101
102 int sync_execution = 0;
103
104 /* wait_for_inferior and normal_stop use this to notify the user
105 when the inferior stopped in a different thread than it had been
106 running in. */
107
108 static ptid_t previous_inferior_ptid;
109
110 /* This is true for configurations that may follow through execl() and
111 similar functions. At present this is only true for HP-UX native. */
112
113 #ifndef MAY_FOLLOW_EXEC
114 #define MAY_FOLLOW_EXEC (0)
115 #endif
116
117 static int may_follow_exec = MAY_FOLLOW_EXEC;
118
119 static int debug_infrun = 0;
120 static void
121 show_debug_infrun (struct ui_file *file, int from_tty,
122 struct cmd_list_element *c, const char *value)
123 {
124 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
125 }
126
127 /* If the program uses ELF-style shared libraries, then calls to
128 functions in shared libraries go through stubs, which live in a
129 table called the PLT (Procedure Linkage Table). The first time the
130 function is called, the stub sends control to the dynamic linker,
131 which looks up the function's real address, patches the stub so
132 that future calls will go directly to the function, and then passes
133 control to the function.
134
135 If we are stepping at the source level, we don't want to see any of
136 this --- we just want to skip over the stub and the dynamic linker.
137 The simple approach is to single-step until control leaves the
138 dynamic linker.
139
140 However, on some systems (e.g., Red Hat's 5.2 distribution) the
141 dynamic linker calls functions in the shared C library, so you
142 can't tell from the PC alone whether the dynamic linker is still
143 running. In this case, we use a step-resume breakpoint to get us
144 past the dynamic linker, as if we were using "next" to step over a
145 function call.
146
147 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
148 linker code or not. Normally, this means we single-step. However,
149 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
150 address where we can place a step-resume breakpoint to get past the
151 linker's symbol resolution function.
152
153 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
154 pretty portable way, by comparing the PC against the address ranges
155 of the dynamic linker's sections.
156
157 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
158 it depends on internal details of the dynamic linker. It's usually
159 not too hard to figure out where to put a breakpoint, but it
160 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
161 sanity checking. If it can't figure things out, returning zero and
162 getting the (possibly confusing) stepping behavior is better than
163 signalling an error, which will obscure the change in the
164 inferior's state. */
165
166 /* This function returns TRUE if pc is the address of an instruction
167 that lies within the dynamic linker (such as the event hook, or the
168 dld itself).
169
170 This function must be used only when a dynamic linker event has
171 been caught, and the inferior is being stepped out of the hook, or
172 undefined results are guaranteed. */
173
174 #ifndef SOLIB_IN_DYNAMIC_LINKER
175 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
176 #endif
177
178 /* We can't step off a permanent breakpoint in the ordinary way, because we
179 can't remove it. Instead, we have to advance the PC to the next
180 instruction. This macro should expand to a pointer to a function that
181 does that, or zero if we have no such function. If we don't have a
182 definition for it, we have to report an error. */
183 #ifndef SKIP_PERMANENT_BREAKPOINT
184 #define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
185 static void
186 default_skip_permanent_breakpoint (void)
187 {
188 error (_("\
189 The program is stopped at a permanent breakpoint, but GDB does not know\n\
190 how to step past a permanent breakpoint on this architecture. Try using\n\
191 a command like `return' or `jump' to continue execution."));
192 }
193 #endif
194
195
196 /* Convert the #defines into values. This is temporary until wfi control
197 flow is completely sorted out. */
198
199 #ifndef HAVE_STEPPABLE_WATCHPOINT
200 #define HAVE_STEPPABLE_WATCHPOINT 0
201 #else
202 #undef HAVE_STEPPABLE_WATCHPOINT
203 #define HAVE_STEPPABLE_WATCHPOINT 1
204 #endif
205
206 #ifndef CANNOT_STEP_HW_WATCHPOINTS
207 #define CANNOT_STEP_HW_WATCHPOINTS 0
208 #else
209 #undef CANNOT_STEP_HW_WATCHPOINTS
210 #define CANNOT_STEP_HW_WATCHPOINTS 1
211 #endif
212
213 /* Tables of how to react to signals; the user sets them. */
214
215 static unsigned char *signal_stop;
216 static unsigned char *signal_print;
217 static unsigned char *signal_program;
218
219 #define SET_SIGS(nsigs,sigs,flags) \
220 do { \
221 int signum = (nsigs); \
222 while (signum-- > 0) \
223 if ((sigs)[signum]) \
224 (flags)[signum] = 1; \
225 } while (0)
226
227 #define UNSET_SIGS(nsigs,sigs,flags) \
228 do { \
229 int signum = (nsigs); \
230 while (signum-- > 0) \
231 if ((sigs)[signum]) \
232 (flags)[signum] = 0; \
233 } while (0)
234
235 /* Value to pass to target_resume() to cause all threads to resume */
236
237 #define RESUME_ALL (pid_to_ptid (-1))
238
239 /* Command list pointer for the "stop" placeholder. */
240
241 static struct cmd_list_element *stop_command;
242
243 /* Nonzero if breakpoints are now inserted in the inferior. */
244
245 static int breakpoints_inserted;
246
247 /* Function inferior was in as of last step command. */
248
249 static struct symbol *step_start_function;
250
251 /* Nonzero if we are expecting a trace trap and should proceed from it. */
252
253 static int trap_expected;
254
255 /* Nonzero if we want to give control to the user when we're notified
256 of shared library events by the dynamic linker. */
257 static int stop_on_solib_events;
258 static void
259 show_stop_on_solib_events (struct ui_file *file, int from_tty,
260 struct cmd_list_element *c, const char *value)
261 {
262 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
263 value);
264 }
265
266 /* Nonzero means expecting a trace trap
267 and should stop the inferior and return silently when it happens. */
268
269 int stop_after_trap;
270
271 /* Nonzero means expecting a trap and caller will handle it themselves.
272 It is used after attach, due to attaching to a process;
273 when running in the shell before the child program has been exec'd;
274 and when running some kinds of remote stuff (FIXME?). */
275
276 enum stop_kind stop_soon;
277
278 /* Nonzero if proceed is being used for a "finish" command or a similar
279 situation when stop_registers should be saved. */
280
281 int proceed_to_finish;
282
283 /* Save register contents here when about to pop a stack dummy frame,
284 if-and-only-if proceed_to_finish is set.
285 Thus this contains the return value from the called function (assuming
286 values are returned in a register). */
287
288 struct regcache *stop_registers;
289
290 /* Nonzero if program stopped due to error trying to insert breakpoints. */
291
292 static int breakpoints_failed;
293
294 /* Nonzero after stop if current stack frame should be printed. */
295
296 static int stop_print_frame;
297
298 static struct breakpoint *step_resume_breakpoint = NULL;
299
300 /* This is a cached copy of the pid/waitstatus of the last event
301 returned by target_wait()/deprecated_target_wait_hook(). This
302 information is returned by get_last_target_status(). */
303 static ptid_t target_last_wait_ptid;
304 static struct target_waitstatus target_last_waitstatus;
305
306 /* This is used to remember when a fork, vfork or exec event
307 was caught by a catchpoint, and thus the event is to be
308 followed at the next resume of the inferior, and not
309 immediately. */
310 static struct
311 {
312 enum target_waitkind kind;
313 struct
314 {
315 int parent_pid;
316 int child_pid;
317 }
318 fork_event;
319 char *execd_pathname;
320 }
321 pending_follow;
322
323 static const char follow_fork_mode_child[] = "child";
324 static const char follow_fork_mode_parent[] = "parent";
325
326 static const char *follow_fork_mode_kind_names[] = {
327 follow_fork_mode_child,
328 follow_fork_mode_parent,
329 NULL
330 };
331
332 static const char *follow_fork_mode_string = follow_fork_mode_parent;
333 static void
334 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
335 struct cmd_list_element *c, const char *value)
336 {
337 fprintf_filtered (file, _("\
338 Debugger response to a program call of fork or vfork is \"%s\".\n"),
339 value);
340 }
341 \f
342
343 static int
344 follow_fork (void)
345 {
346 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
347
348 return target_follow_fork (follow_child);
349 }
350
351 void
352 follow_inferior_reset_breakpoints (void)
353 {
354 /* Was there a step_resume breakpoint? (There was if the user
355 did a "next" at the fork() call.) If so, explicitly reset its
356 thread number.
357
358 step_resumes are a form of bp that are made to be per-thread.
359 Since we created the step_resume bp when the parent process
360 was being debugged, and now are switching to the child process,
361 from the breakpoint package's viewpoint, that's a switch of
362 "threads". We must update the bp's notion of which thread
363 it is for, or it'll be ignored when it triggers. */
364
365 if (step_resume_breakpoint)
366 breakpoint_re_set_thread (step_resume_breakpoint);
367
368 /* Reinsert all breakpoints in the child. The user may have set
369 breakpoints after catching the fork, in which case those
370 were never set in the child, but only in the parent. This makes
371 sure the inserted breakpoints match the breakpoint list. */
372
373 breakpoint_re_set ();
374 insert_breakpoints ();
375 }
376
377 /* EXECD_PATHNAME is assumed to be non-NULL. */
378
379 static void
380 follow_exec (int pid, char *execd_pathname)
381 {
382 int saved_pid = pid;
383 struct target_ops *tgt;
384
385 if (!may_follow_exec)
386 return;
387
388 /* This is an exec event that we actually wish to pay attention to.
389 Refresh our symbol table to the newly exec'd program, remove any
390 momentary bp's, etc.
391
392 If there are breakpoints, they aren't really inserted now,
393 since the exec() transformed our inferior into a fresh set
394 of instructions.
395
396 We want to preserve symbolic breakpoints on the list, since
397 we have hopes that they can be reset after the new a.out's
398 symbol table is read.
399
400 However, any "raw" breakpoints must be removed from the list
401 (e.g., the solib bp's), since their address is probably invalid
402 now.
403
404 And, we DON'T want to call delete_breakpoints() here, since
405 that may write the bp's "shadow contents" (the instruction
406 value that was overwritten witha TRAP instruction). Since
407 we now have a new a.out, those shadow contents aren't valid. */
408 update_breakpoints_after_exec ();
409
410 /* If there was one, it's gone now. We cannot truly step-to-next
411 statement through an exec(). */
412 step_resume_breakpoint = NULL;
413 step_range_start = 0;
414 step_range_end = 0;
415
416 /* What is this a.out's name? */
417 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
418
419 /* We've followed the inferior through an exec. Therefore, the
420 inferior has essentially been killed & reborn. */
421
422 /* First collect the run target in effect. */
423 tgt = find_run_target ();
424 /* If we can't find one, things are in a very strange state... */
425 if (tgt == NULL)
426 error (_("Could find run target to save before following exec"));
427
428 gdb_flush (gdb_stdout);
429 target_mourn_inferior ();
430 inferior_ptid = pid_to_ptid (saved_pid);
431 /* Because mourn_inferior resets inferior_ptid. */
432 push_target (tgt);
433
434 /* That a.out is now the one to use. */
435 exec_file_attach (execd_pathname, 0);
436
437 /* And also is where symbols can be found. */
438 symbol_file_add_main (execd_pathname, 0);
439
440 /* Reset the shared library package. This ensures that we get
441 a shlib event when the child reaches "_start", at which point
442 the dld will have had a chance to initialize the child. */
443 #if defined(SOLIB_RESTART)
444 SOLIB_RESTART ();
445 #endif
446 #ifdef SOLIB_CREATE_INFERIOR_HOOK
447 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
448 #else
449 solib_create_inferior_hook ();
450 #endif
451
452 /* Reinsert all breakpoints. (Those which were symbolic have
453 been reset to the proper address in the new a.out, thanks
454 to symbol_file_command...) */
455 insert_breakpoints ();
456
457 /* The next resume of this inferior should bring it to the shlib
458 startup breakpoints. (If the user had also set bp's on
459 "main" from the old (parent) process, then they'll auto-
460 matically get reset there in the new process.) */
461 }
462
463 /* Non-zero if we just simulating a single-step. This is needed
464 because we cannot remove the breakpoints in the inferior process
465 until after the `wait' in `wait_for_inferior'. */
466 static int singlestep_breakpoints_inserted_p = 0;
467
468 /* The thread we inserted single-step breakpoints for. */
469 static ptid_t singlestep_ptid;
470
471 /* If another thread hit the singlestep breakpoint, we save the original
472 thread here so that we can resume single-stepping it later. */
473 static ptid_t saved_singlestep_ptid;
474 static int stepping_past_singlestep_breakpoint;
475 \f
476
477 /* Things to clean up if we QUIT out of resume (). */
478 static void
479 resume_cleanups (void *ignore)
480 {
481 normal_stop ();
482 }
483
484 static const char schedlock_off[] = "off";
485 static const char schedlock_on[] = "on";
486 static const char schedlock_step[] = "step";
487 static const char *scheduler_enums[] = {
488 schedlock_off,
489 schedlock_on,
490 schedlock_step,
491 NULL
492 };
493 static const char *scheduler_mode = schedlock_off;
494 static void
495 show_scheduler_mode (struct ui_file *file, int from_tty,
496 struct cmd_list_element *c, const char *value)
497 {
498 fprintf_filtered (file, _("\
499 Mode for locking scheduler during execution is \"%s\".\n"),
500 value);
501 }
502
503 static void
504 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
505 {
506 if (!target_can_lock_scheduler)
507 {
508 scheduler_mode = schedlock_off;
509 error (_("Target '%s' cannot support this command."), target_shortname);
510 }
511 }
512
513
514 /* Resume the inferior, but allow a QUIT. This is useful if the user
515 wants to interrupt some lengthy single-stepping operation
516 (for child processes, the SIGINT goes to the inferior, and so
517 we get a SIGINT random_signal, but for remote debugging and perhaps
518 other targets, that's not true).
519
520 STEP nonzero if we should step (zero to continue instead).
521 SIG is the signal to give the inferior (zero for none). */
522 void
523 resume (int step, enum target_signal sig)
524 {
525 int should_resume = 1;
526 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
527 QUIT;
528
529 if (debug_infrun)
530 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
531 step, sig);
532
533 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
534
535
536 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
537 over an instruction that causes a page fault without triggering
538 a hardware watchpoint. The kernel properly notices that it shouldn't
539 stop, because the hardware watchpoint is not triggered, but it forgets
540 the step request and continues the program normally.
541 Work around the problem by removing hardware watchpoints if a step is
542 requested, GDB will check for a hardware watchpoint trigger after the
543 step anyway. */
544 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
545 remove_hw_watchpoints ();
546
547
548 /* Normally, by the time we reach `resume', the breakpoints are either
549 removed or inserted, as appropriate. The exception is if we're sitting
550 at a permanent breakpoint; we need to step over it, but permanent
551 breakpoints can't be removed. So we have to test for it here. */
552 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
553 SKIP_PERMANENT_BREAKPOINT ();
554
555 if (SOFTWARE_SINGLE_STEP_P () && step)
556 {
557 /* Do it the hard way, w/temp breakpoints */
558 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
559 /* ...and don't ask hardware to do it. */
560 step = 0;
561 /* and do not pull these breakpoints until after a `wait' in
562 `wait_for_inferior' */
563 singlestep_breakpoints_inserted_p = 1;
564 singlestep_ptid = inferior_ptid;
565 }
566
567 /* If there were any forks/vforks/execs that were caught and are
568 now to be followed, then do so. */
569 switch (pending_follow.kind)
570 {
571 case TARGET_WAITKIND_FORKED:
572 case TARGET_WAITKIND_VFORKED:
573 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
574 if (follow_fork ())
575 should_resume = 0;
576 break;
577
578 case TARGET_WAITKIND_EXECD:
579 /* follow_exec is called as soon as the exec event is seen. */
580 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
581 break;
582
583 default:
584 break;
585 }
586
587 /* Install inferior's terminal modes. */
588 target_terminal_inferior ();
589
590 if (should_resume)
591 {
592 ptid_t resume_ptid;
593
594 resume_ptid = RESUME_ALL; /* Default */
595
596 if ((step || singlestep_breakpoints_inserted_p)
597 && (stepping_past_singlestep_breakpoint
598 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
599 {
600 /* Stepping past a breakpoint without inserting breakpoints.
601 Make sure only the current thread gets to step, so that
602 other threads don't sneak past breakpoints while they are
603 not inserted. */
604
605 resume_ptid = inferior_ptid;
606 }
607
608 if ((scheduler_mode == schedlock_on)
609 || (scheduler_mode == schedlock_step
610 && (step || singlestep_breakpoints_inserted_p)))
611 {
612 /* User-settable 'scheduler' mode requires solo thread resume. */
613 resume_ptid = inferior_ptid;
614 }
615
616 if (CANNOT_STEP_BREAKPOINT)
617 {
618 /* Most targets can step a breakpoint instruction, thus
619 executing it normally. But if this one cannot, just
620 continue and we will hit it anyway. */
621 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
622 step = 0;
623 }
624 target_resume (resume_ptid, step, sig);
625 }
626
627 discard_cleanups (old_cleanups);
628 }
629 \f
630
631 /* Clear out all variables saying what to do when inferior is continued.
632 First do this, then set the ones you want, then call `proceed'. */
633
634 void
635 clear_proceed_status (void)
636 {
637 trap_expected = 0;
638 step_range_start = 0;
639 step_range_end = 0;
640 step_frame_id = null_frame_id;
641 step_over_calls = STEP_OVER_UNDEBUGGABLE;
642 stop_after_trap = 0;
643 stop_soon = NO_STOP_QUIETLY;
644 proceed_to_finish = 0;
645 breakpoint_proceeded = 1; /* We're about to proceed... */
646
647 /* Discard any remaining commands or status from previous stop. */
648 bpstat_clear (&stop_bpstat);
649 }
650
651 /* This should be suitable for any targets that support threads. */
652
653 static int
654 prepare_to_proceed (void)
655 {
656 ptid_t wait_ptid;
657 struct target_waitstatus wait_status;
658
659 /* Get the last target status returned by target_wait(). */
660 get_last_target_status (&wait_ptid, &wait_status);
661
662 /* Make sure we were stopped either at a breakpoint, or because
663 of a Ctrl-C. */
664 if (wait_status.kind != TARGET_WAITKIND_STOPPED
665 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
666 && wait_status.value.sig != TARGET_SIGNAL_INT))
667 {
668 return 0;
669 }
670
671 if (!ptid_equal (wait_ptid, minus_one_ptid)
672 && !ptid_equal (inferior_ptid, wait_ptid))
673 {
674 /* Switched over from WAIT_PID. */
675 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
676
677 if (wait_pc != read_pc ())
678 {
679 /* Switch back to WAIT_PID thread. */
680 inferior_ptid = wait_ptid;
681
682 /* FIXME: This stuff came from switch_to_thread() in
683 thread.c (which should probably be a public function). */
684 flush_cached_frames ();
685 registers_changed ();
686 stop_pc = wait_pc;
687 select_frame (get_current_frame ());
688 }
689
690 /* We return 1 to indicate that there is a breakpoint here,
691 so we need to step over it before continuing to avoid
692 hitting it straight away. */
693 if (breakpoint_here_p (wait_pc))
694 return 1;
695 }
696
697 return 0;
698
699 }
700
701 /* Record the pc of the program the last time it stopped. This is
702 just used internally by wait_for_inferior, but need to be preserved
703 over calls to it and cleared when the inferior is started. */
704 static CORE_ADDR prev_pc;
705
706 /* Basic routine for continuing the program in various fashions.
707
708 ADDR is the address to resume at, or -1 for resume where stopped.
709 SIGGNAL is the signal to give it, or 0 for none,
710 or -1 for act according to how it stopped.
711 STEP is nonzero if should trap after one instruction.
712 -1 means return after that and print nothing.
713 You should probably set various step_... variables
714 before calling here, if you are stepping.
715
716 You should call clear_proceed_status before calling proceed. */
717
718 void
719 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
720 {
721 int oneproc = 0;
722
723 if (step > 0)
724 step_start_function = find_pc_function (read_pc ());
725 if (step < 0)
726 stop_after_trap = 1;
727
728 if (addr == (CORE_ADDR) -1)
729 {
730 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
731 /* There is a breakpoint at the address we will resume at,
732 step one instruction before inserting breakpoints so that
733 we do not stop right away (and report a second hit at this
734 breakpoint). */
735 oneproc = 1;
736 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
737 && gdbarch_single_step_through_delay (current_gdbarch,
738 get_current_frame ()))
739 /* We stepped onto an instruction that needs to be stepped
740 again before re-inserting the breakpoint, do so. */
741 oneproc = 1;
742 }
743 else
744 {
745 write_pc (addr);
746 }
747
748 if (debug_infrun)
749 fprintf_unfiltered (gdb_stdlog,
750 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
751 paddr_nz (addr), siggnal, step);
752
753 /* In a multi-threaded task we may select another thread
754 and then continue or step.
755
756 But if the old thread was stopped at a breakpoint, it
757 will immediately cause another breakpoint stop without
758 any execution (i.e. it will report a breakpoint hit
759 incorrectly). So we must step over it first.
760
761 prepare_to_proceed checks the current thread against the thread
762 that reported the most recent event. If a step-over is required
763 it returns TRUE and sets the current thread to the old thread. */
764 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
765 oneproc = 1;
766
767 if (oneproc)
768 /* We will get a trace trap after one instruction.
769 Continue it automatically and insert breakpoints then. */
770 trap_expected = 1;
771 else
772 {
773 insert_breakpoints ();
774 /* If we get here there was no call to error() in
775 insert breakpoints -- so they were inserted. */
776 breakpoints_inserted = 1;
777 }
778
779 if (siggnal != TARGET_SIGNAL_DEFAULT)
780 stop_signal = siggnal;
781 /* If this signal should not be seen by program,
782 give it zero. Used for debugging signals. */
783 else if (!signal_program[stop_signal])
784 stop_signal = TARGET_SIGNAL_0;
785
786 annotate_starting ();
787
788 /* Make sure that output from GDB appears before output from the
789 inferior. */
790 gdb_flush (gdb_stdout);
791
792 /* Refresh prev_pc value just prior to resuming. This used to be
793 done in stop_stepping, however, setting prev_pc there did not handle
794 scenarios such as inferior function calls or returning from
795 a function via the return command. In those cases, the prev_pc
796 value was not set properly for subsequent commands. The prev_pc value
797 is used to initialize the starting line number in the ecs. With an
798 invalid value, the gdb next command ends up stopping at the position
799 represented by the next line table entry past our start position.
800 On platforms that generate one line table entry per line, this
801 is not a problem. However, on the ia64, the compiler generates
802 extraneous line table entries that do not increase the line number.
803 When we issue the gdb next command on the ia64 after an inferior call
804 or a return command, we often end up a few instructions forward, still
805 within the original line we started.
806
807 An attempt was made to have init_execution_control_state () refresh
808 the prev_pc value before calculating the line number. This approach
809 did not work because on platforms that use ptrace, the pc register
810 cannot be read unless the inferior is stopped. At that point, we
811 are not guaranteed the inferior is stopped and so the read_pc ()
812 call can fail. Setting the prev_pc value here ensures the value is
813 updated correctly when the inferior is stopped. */
814 prev_pc = read_pc ();
815
816 /* Resume inferior. */
817 resume (oneproc || step || bpstat_should_step (), stop_signal);
818
819 /* Wait for it to stop (if not standalone)
820 and in any case decode why it stopped, and act accordingly. */
821 /* Do this only if we are not using the event loop, or if the target
822 does not support asynchronous execution. */
823 if (!target_can_async_p ())
824 {
825 wait_for_inferior ();
826 normal_stop ();
827 }
828 }
829 \f
830
831 /* Start remote-debugging of a machine over a serial link. */
832
833 void
834 start_remote (void)
835 {
836 init_thread_list ();
837 init_wait_for_inferior ();
838 stop_soon = STOP_QUIETLY;
839 trap_expected = 0;
840
841 /* Always go on waiting for the target, regardless of the mode. */
842 /* FIXME: cagney/1999-09-23: At present it isn't possible to
843 indicate to wait_for_inferior that a target should timeout if
844 nothing is returned (instead of just blocking). Because of this,
845 targets expecting an immediate response need to, internally, set
846 things up so that the target_wait() is forced to eventually
847 timeout. */
848 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
849 differentiate to its caller what the state of the target is after
850 the initial open has been performed. Here we're assuming that
851 the target has stopped. It should be possible to eventually have
852 target_open() return to the caller an indication that the target
853 is currently running and GDB state should be set to the same as
854 for an async run. */
855 wait_for_inferior ();
856 normal_stop ();
857 }
858
859 /* Initialize static vars when a new inferior begins. */
860
861 void
862 init_wait_for_inferior (void)
863 {
864 /* These are meaningless until the first time through wait_for_inferior. */
865 prev_pc = 0;
866
867 breakpoints_inserted = 0;
868 breakpoint_init_inferior (inf_starting);
869
870 /* Don't confuse first call to proceed(). */
871 stop_signal = TARGET_SIGNAL_0;
872
873 /* The first resume is not following a fork/vfork/exec. */
874 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
875
876 clear_proceed_status ();
877
878 stepping_past_singlestep_breakpoint = 0;
879 }
880 \f
881 /* This enum encodes possible reasons for doing a target_wait, so that
882 wfi can call target_wait in one place. (Ultimately the call will be
883 moved out of the infinite loop entirely.) */
884
885 enum infwait_states
886 {
887 infwait_normal_state,
888 infwait_thread_hop_state,
889 infwait_nonstep_watch_state
890 };
891
892 /* Why did the inferior stop? Used to print the appropriate messages
893 to the interface from within handle_inferior_event(). */
894 enum inferior_stop_reason
895 {
896 /* We don't know why. */
897 STOP_UNKNOWN,
898 /* Step, next, nexti, stepi finished. */
899 END_STEPPING_RANGE,
900 /* Found breakpoint. */
901 BREAKPOINT_HIT,
902 /* Inferior terminated by signal. */
903 SIGNAL_EXITED,
904 /* Inferior exited. */
905 EXITED,
906 /* Inferior received signal, and user asked to be notified. */
907 SIGNAL_RECEIVED
908 };
909
910 /* This structure contains what used to be local variables in
911 wait_for_inferior. Probably many of them can return to being
912 locals in handle_inferior_event. */
913
914 struct execution_control_state
915 {
916 struct target_waitstatus ws;
917 struct target_waitstatus *wp;
918 int another_trap;
919 int random_signal;
920 CORE_ADDR stop_func_start;
921 CORE_ADDR stop_func_end;
922 char *stop_func_name;
923 struct symtab_and_line sal;
924 int current_line;
925 struct symtab *current_symtab;
926 int handling_longjmp; /* FIXME */
927 ptid_t ptid;
928 ptid_t saved_inferior_ptid;
929 int step_after_step_resume_breakpoint;
930 int stepping_through_solib_after_catch;
931 bpstat stepping_through_solib_catchpoints;
932 int new_thread_event;
933 struct target_waitstatus tmpstatus;
934 enum infwait_states infwait_state;
935 ptid_t waiton_ptid;
936 int wait_some_more;
937 };
938
939 void init_execution_control_state (struct execution_control_state *ecs);
940
941 void handle_inferior_event (struct execution_control_state *ecs);
942
943 static void step_into_function (struct execution_control_state *ecs);
944 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
945 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
946 struct frame_id sr_id);
947 static void stop_stepping (struct execution_control_state *ecs);
948 static void prepare_to_wait (struct execution_control_state *ecs);
949 static void keep_going (struct execution_control_state *ecs);
950 static void print_stop_reason (enum inferior_stop_reason stop_reason,
951 int stop_info);
952
953 /* Wait for control to return from inferior to debugger.
954 If inferior gets a signal, we may decide to start it up again
955 instead of returning. That is why there is a loop in this function.
956 When this function actually returns it means the inferior
957 should be left stopped and GDB should read more commands. */
958
959 void
960 wait_for_inferior (void)
961 {
962 struct cleanup *old_cleanups;
963 struct execution_control_state ecss;
964 struct execution_control_state *ecs;
965
966 if (debug_infrun)
967 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
968
969 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
970 &step_resume_breakpoint);
971
972 /* wfi still stays in a loop, so it's OK just to take the address of
973 a local to get the ecs pointer. */
974 ecs = &ecss;
975
976 /* Fill in with reasonable starting values. */
977 init_execution_control_state (ecs);
978
979 /* We'll update this if & when we switch to a new thread. */
980 previous_inferior_ptid = inferior_ptid;
981
982 overlay_cache_invalid = 1;
983
984 /* We have to invalidate the registers BEFORE calling target_wait
985 because they can be loaded from the target while in target_wait.
986 This makes remote debugging a bit more efficient for those
987 targets that provide critical registers as part of their normal
988 status mechanism. */
989
990 registers_changed ();
991
992 while (1)
993 {
994 if (deprecated_target_wait_hook)
995 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
996 else
997 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
998
999 /* Now figure out what to do with the result of the result. */
1000 handle_inferior_event (ecs);
1001
1002 if (!ecs->wait_some_more)
1003 break;
1004 }
1005 do_cleanups (old_cleanups);
1006 }
1007
1008 /* Asynchronous version of wait_for_inferior. It is called by the
1009 event loop whenever a change of state is detected on the file
1010 descriptor corresponding to the target. It can be called more than
1011 once to complete a single execution command. In such cases we need
1012 to keep the state in a global variable ASYNC_ECSS. If it is the
1013 last time that this function is called for a single execution
1014 command, then report to the user that the inferior has stopped, and
1015 do the necessary cleanups. */
1016
1017 struct execution_control_state async_ecss;
1018 struct execution_control_state *async_ecs;
1019
1020 void
1021 fetch_inferior_event (void *client_data)
1022 {
1023 static struct cleanup *old_cleanups;
1024
1025 async_ecs = &async_ecss;
1026
1027 if (!async_ecs->wait_some_more)
1028 {
1029 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1030 &step_resume_breakpoint);
1031
1032 /* Fill in with reasonable starting values. */
1033 init_execution_control_state (async_ecs);
1034
1035 /* We'll update this if & when we switch to a new thread. */
1036 previous_inferior_ptid = inferior_ptid;
1037
1038 overlay_cache_invalid = 1;
1039
1040 /* We have to invalidate the registers BEFORE calling target_wait
1041 because they can be loaded from the target while in target_wait.
1042 This makes remote debugging a bit more efficient for those
1043 targets that provide critical registers as part of their normal
1044 status mechanism. */
1045
1046 registers_changed ();
1047 }
1048
1049 if (deprecated_target_wait_hook)
1050 async_ecs->ptid =
1051 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1052 else
1053 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1054
1055 /* Now figure out what to do with the result of the result. */
1056 handle_inferior_event (async_ecs);
1057
1058 if (!async_ecs->wait_some_more)
1059 {
1060 /* Do only the cleanups that have been added by this
1061 function. Let the continuations for the commands do the rest,
1062 if there are any. */
1063 do_exec_cleanups (old_cleanups);
1064 normal_stop ();
1065 if (step_multi && stop_step)
1066 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1067 else
1068 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1069 }
1070 }
1071
1072 /* Prepare an execution control state for looping through a
1073 wait_for_inferior-type loop. */
1074
1075 void
1076 init_execution_control_state (struct execution_control_state *ecs)
1077 {
1078 ecs->another_trap = 0;
1079 ecs->random_signal = 0;
1080 ecs->step_after_step_resume_breakpoint = 0;
1081 ecs->handling_longjmp = 0; /* FIXME */
1082 ecs->stepping_through_solib_after_catch = 0;
1083 ecs->stepping_through_solib_catchpoints = NULL;
1084 ecs->sal = find_pc_line (prev_pc, 0);
1085 ecs->current_line = ecs->sal.line;
1086 ecs->current_symtab = ecs->sal.symtab;
1087 ecs->infwait_state = infwait_normal_state;
1088 ecs->waiton_ptid = pid_to_ptid (-1);
1089 ecs->wp = &(ecs->ws);
1090 }
1091
1092 /* Return the cached copy of the last pid/waitstatus returned by
1093 target_wait()/deprecated_target_wait_hook(). The data is actually
1094 cached by handle_inferior_event(), which gets called immediately
1095 after target_wait()/deprecated_target_wait_hook(). */
1096
1097 void
1098 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1099 {
1100 *ptidp = target_last_wait_ptid;
1101 *status = target_last_waitstatus;
1102 }
1103
1104 /* Switch thread contexts, maintaining "infrun state". */
1105
1106 static void
1107 context_switch (struct execution_control_state *ecs)
1108 {
1109 /* Caution: it may happen that the new thread (or the old one!)
1110 is not in the thread list. In this case we must not attempt
1111 to "switch context", or we run the risk that our context may
1112 be lost. This may happen as a result of the target module
1113 mishandling thread creation. */
1114
1115 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1116 { /* Perform infrun state context switch: */
1117 /* Save infrun state for the old thread. */
1118 save_infrun_state (inferior_ptid, prev_pc,
1119 trap_expected, step_resume_breakpoint,
1120 step_range_start,
1121 step_range_end, &step_frame_id,
1122 ecs->handling_longjmp, ecs->another_trap,
1123 ecs->stepping_through_solib_after_catch,
1124 ecs->stepping_through_solib_catchpoints,
1125 ecs->current_line, ecs->current_symtab);
1126
1127 /* Load infrun state for the new thread. */
1128 load_infrun_state (ecs->ptid, &prev_pc,
1129 &trap_expected, &step_resume_breakpoint,
1130 &step_range_start,
1131 &step_range_end, &step_frame_id,
1132 &ecs->handling_longjmp, &ecs->another_trap,
1133 &ecs->stepping_through_solib_after_catch,
1134 &ecs->stepping_through_solib_catchpoints,
1135 &ecs->current_line, &ecs->current_symtab);
1136 }
1137 inferior_ptid = ecs->ptid;
1138 }
1139
1140 static void
1141 adjust_pc_after_break (struct execution_control_state *ecs)
1142 {
1143 CORE_ADDR breakpoint_pc;
1144
1145 /* If this target does not decrement the PC after breakpoints, then
1146 we have nothing to do. */
1147 if (DECR_PC_AFTER_BREAK == 0)
1148 return;
1149
1150 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1151 we aren't, just return.
1152
1153 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1154 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1155 by software breakpoints should be handled through the normal breakpoint
1156 layer.
1157
1158 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1159 different signals (SIGILL or SIGEMT for instance), but it is less
1160 clear where the PC is pointing afterwards. It may not match
1161 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1162 these signals at breakpoints (the code has been in GDB since at least
1163 1992) so I can not guess how to handle them here.
1164
1165 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1166 would have the PC after hitting a watchpoint affected by
1167 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1168 in GDB history, and it seems unlikely to be correct, so
1169 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1170
1171 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1172 return;
1173
1174 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1175 return;
1176
1177 /* Find the location where (if we've hit a breakpoint) the
1178 breakpoint would be. */
1179 breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1180
1181 if (SOFTWARE_SINGLE_STEP_P ())
1182 {
1183 /* When using software single-step, a SIGTRAP can only indicate
1184 an inserted breakpoint. This actually makes things
1185 easier. */
1186 if (singlestep_breakpoints_inserted_p)
1187 /* When software single stepping, the instruction at [prev_pc]
1188 is never a breakpoint, but the instruction following
1189 [prev_pc] (in program execution order) always is. Assume
1190 that following instruction was reached and hence a software
1191 breakpoint was hit. */
1192 write_pc_pid (breakpoint_pc, ecs->ptid);
1193 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1194 /* The inferior was free running (i.e., no single-step
1195 breakpoints inserted) and it hit a software breakpoint. */
1196 write_pc_pid (breakpoint_pc, ecs->ptid);
1197 }
1198 else
1199 {
1200 /* When using hardware single-step, a SIGTRAP is reported for
1201 both a completed single-step and a software breakpoint. Need
1202 to differentiate between the two as the latter needs
1203 adjusting but the former does not.
1204
1205 When the thread to be examined does not match the current thread
1206 context we can't use currently_stepping, so assume no
1207 single-stepping in this case. */
1208 if (ptid_equal (ecs->ptid, inferior_ptid) && currently_stepping (ecs))
1209 {
1210 if (prev_pc == breakpoint_pc
1211 && software_breakpoint_inserted_here_p (breakpoint_pc))
1212 /* Hardware single-stepped a software breakpoint (as
1213 occures when the inferior is resumed with PC pointing
1214 at not-yet-hit software breakpoint). Since the
1215 breakpoint really is executed, the inferior needs to be
1216 backed up to the breakpoint address. */
1217 write_pc_pid (breakpoint_pc, ecs->ptid);
1218 }
1219 else
1220 {
1221 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1222 /* The inferior was free running (i.e., no hardware
1223 single-step and no possibility of a false SIGTRAP) and
1224 hit a software breakpoint. */
1225 write_pc_pid (breakpoint_pc, ecs->ptid);
1226 }
1227 }
1228 }
1229
1230 /* Given an execution control state that has been freshly filled in
1231 by an event from the inferior, figure out what it means and take
1232 appropriate action. */
1233
1234 int stepped_after_stopped_by_watchpoint;
1235
1236 void
1237 handle_inferior_event (struct execution_control_state *ecs)
1238 {
1239 /* NOTE: bje/2005-05-02: If you're looking at this code and thinking
1240 that the variable stepped_after_stopped_by_watchpoint isn't used,
1241 then you're wrong! See remote.c:remote_stopped_data_address. */
1242
1243 int sw_single_step_trap_p = 0;
1244 int stopped_by_watchpoint = -1; /* Mark as unknown. */
1245
1246 /* Cache the last pid/waitstatus. */
1247 target_last_wait_ptid = ecs->ptid;
1248 target_last_waitstatus = *ecs->wp;
1249
1250 adjust_pc_after_break (ecs);
1251
1252 switch (ecs->infwait_state)
1253 {
1254 case infwait_thread_hop_state:
1255 if (debug_infrun)
1256 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1257 /* Cancel the waiton_ptid. */
1258 ecs->waiton_ptid = pid_to_ptid (-1);
1259 break;
1260
1261 case infwait_normal_state:
1262 if (debug_infrun)
1263 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1264 stepped_after_stopped_by_watchpoint = 0;
1265 break;
1266
1267 case infwait_nonstep_watch_state:
1268 if (debug_infrun)
1269 fprintf_unfiltered (gdb_stdlog,
1270 "infrun: infwait_nonstep_watch_state\n");
1271 insert_breakpoints ();
1272
1273 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1274 handle things like signals arriving and other things happening
1275 in combination correctly? */
1276 stepped_after_stopped_by_watchpoint = 1;
1277 break;
1278
1279 default:
1280 internal_error (__FILE__, __LINE__, _("bad switch"));
1281 }
1282 ecs->infwait_state = infwait_normal_state;
1283
1284 flush_cached_frames ();
1285
1286 /* If it's a new process, add it to the thread database */
1287
1288 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1289 && !ptid_equal (ecs->ptid, minus_one_ptid)
1290 && !in_thread_list (ecs->ptid));
1291
1292 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1293 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1294 {
1295 add_thread (ecs->ptid);
1296
1297 ui_out_text (uiout, "[New ");
1298 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1299 ui_out_text (uiout, "]\n");
1300 }
1301
1302 switch (ecs->ws.kind)
1303 {
1304 case TARGET_WAITKIND_LOADED:
1305 if (debug_infrun)
1306 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1307 /* Ignore gracefully during startup of the inferior, as it
1308 might be the shell which has just loaded some objects,
1309 otherwise add the symbols for the newly loaded objects. */
1310 #ifdef SOLIB_ADD
1311 if (stop_soon == NO_STOP_QUIETLY)
1312 {
1313 /* Remove breakpoints, SOLIB_ADD might adjust
1314 breakpoint addresses via breakpoint_re_set. */
1315 if (breakpoints_inserted)
1316 remove_breakpoints ();
1317
1318 /* Check for any newly added shared libraries if we're
1319 supposed to be adding them automatically. Switch
1320 terminal for any messages produced by
1321 breakpoint_re_set. */
1322 target_terminal_ours_for_output ();
1323 /* NOTE: cagney/2003-11-25: Make certain that the target
1324 stack's section table is kept up-to-date. Architectures,
1325 (e.g., PPC64), use the section table to perform
1326 operations such as address => section name and hence
1327 require the table to contain all sections (including
1328 those found in shared libraries). */
1329 /* NOTE: cagney/2003-11-25: Pass current_target and not
1330 exec_ops to SOLIB_ADD. This is because current GDB is
1331 only tooled to propagate section_table changes out from
1332 the "current_target" (see target_resize_to_sections), and
1333 not up from the exec stratum. This, of course, isn't
1334 right. "infrun.c" should only interact with the
1335 exec/process stratum, instead relying on the target stack
1336 to propagate relevant changes (stop, section table
1337 changed, ...) up to other layers. */
1338 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1339 target_terminal_inferior ();
1340
1341 /* Reinsert breakpoints and continue. */
1342 if (breakpoints_inserted)
1343 insert_breakpoints ();
1344 }
1345 #endif
1346 resume (0, TARGET_SIGNAL_0);
1347 prepare_to_wait (ecs);
1348 return;
1349
1350 case TARGET_WAITKIND_SPURIOUS:
1351 if (debug_infrun)
1352 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1353 resume (0, TARGET_SIGNAL_0);
1354 prepare_to_wait (ecs);
1355 return;
1356
1357 case TARGET_WAITKIND_EXITED:
1358 if (debug_infrun)
1359 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1360 target_terminal_ours (); /* Must do this before mourn anyway */
1361 print_stop_reason (EXITED, ecs->ws.value.integer);
1362
1363 /* Record the exit code in the convenience variable $_exitcode, so
1364 that the user can inspect this again later. */
1365 set_internalvar (lookup_internalvar ("_exitcode"),
1366 value_from_longest (builtin_type_int,
1367 (LONGEST) ecs->ws.value.integer));
1368 gdb_flush (gdb_stdout);
1369 target_mourn_inferior ();
1370 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1371 stop_print_frame = 0;
1372 stop_stepping (ecs);
1373 return;
1374
1375 case TARGET_WAITKIND_SIGNALLED:
1376 if (debug_infrun)
1377 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1378 stop_print_frame = 0;
1379 stop_signal = ecs->ws.value.sig;
1380 target_terminal_ours (); /* Must do this before mourn anyway */
1381
1382 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1383 reach here unless the inferior is dead. However, for years
1384 target_kill() was called here, which hints that fatal signals aren't
1385 really fatal on some systems. If that's true, then some changes
1386 may be needed. */
1387 target_mourn_inferior ();
1388
1389 print_stop_reason (SIGNAL_EXITED, stop_signal);
1390 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1391 stop_stepping (ecs);
1392 return;
1393
1394 /* The following are the only cases in which we keep going;
1395 the above cases end in a continue or goto. */
1396 case TARGET_WAITKIND_FORKED:
1397 case TARGET_WAITKIND_VFORKED:
1398 if (debug_infrun)
1399 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1400 stop_signal = TARGET_SIGNAL_TRAP;
1401 pending_follow.kind = ecs->ws.kind;
1402
1403 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1404 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1405
1406 stop_pc = read_pc ();
1407
1408 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1409
1410 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1411
1412 /* If no catchpoint triggered for this, then keep going. */
1413 if (ecs->random_signal)
1414 {
1415 stop_signal = TARGET_SIGNAL_0;
1416 keep_going (ecs);
1417 return;
1418 }
1419 goto process_event_stop_test;
1420
1421 case TARGET_WAITKIND_EXECD:
1422 if (debug_infrun)
1423 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECED\n");
1424 stop_signal = TARGET_SIGNAL_TRAP;
1425
1426 /* NOTE drow/2002-12-05: This code should be pushed down into the
1427 target_wait function. Until then following vfork on HP/UX 10.20
1428 is probably broken by this. Of course, it's broken anyway. */
1429 /* Is this a target which reports multiple exec events per actual
1430 call to exec()? (HP-UX using ptrace does, for example.) If so,
1431 ignore all but the last one. Just resume the exec'r, and wait
1432 for the next exec event. */
1433 if (inferior_ignoring_leading_exec_events)
1434 {
1435 inferior_ignoring_leading_exec_events--;
1436 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1437 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1438 parent_pid);
1439 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1440 prepare_to_wait (ecs);
1441 return;
1442 }
1443 inferior_ignoring_leading_exec_events =
1444 target_reported_exec_events_per_exec_call () - 1;
1445
1446 pending_follow.execd_pathname =
1447 savestring (ecs->ws.value.execd_pathname,
1448 strlen (ecs->ws.value.execd_pathname));
1449
1450 /* This causes the eventpoints and symbol table to be reset. Must
1451 do this now, before trying to determine whether to stop. */
1452 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1453 xfree (pending_follow.execd_pathname);
1454
1455 stop_pc = read_pc_pid (ecs->ptid);
1456 ecs->saved_inferior_ptid = inferior_ptid;
1457 inferior_ptid = ecs->ptid;
1458
1459 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1460
1461 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1462 inferior_ptid = ecs->saved_inferior_ptid;
1463
1464 /* If no catchpoint triggered for this, then keep going. */
1465 if (ecs->random_signal)
1466 {
1467 stop_signal = TARGET_SIGNAL_0;
1468 keep_going (ecs);
1469 return;
1470 }
1471 goto process_event_stop_test;
1472
1473 /* Be careful not to try to gather much state about a thread
1474 that's in a syscall. It's frequently a losing proposition. */
1475 case TARGET_WAITKIND_SYSCALL_ENTRY:
1476 if (debug_infrun)
1477 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1478 resume (0, TARGET_SIGNAL_0);
1479 prepare_to_wait (ecs);
1480 return;
1481
1482 /* Before examining the threads further, step this thread to
1483 get it entirely out of the syscall. (We get notice of the
1484 event when the thread is just on the verge of exiting a
1485 syscall. Stepping one instruction seems to get it back
1486 into user code.) */
1487 case TARGET_WAITKIND_SYSCALL_RETURN:
1488 if (debug_infrun)
1489 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1490 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1491 prepare_to_wait (ecs);
1492 return;
1493
1494 case TARGET_WAITKIND_STOPPED:
1495 if (debug_infrun)
1496 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1497 stop_signal = ecs->ws.value.sig;
1498 break;
1499
1500 /* We had an event in the inferior, but we are not interested
1501 in handling it at this level. The lower layers have already
1502 done what needs to be done, if anything.
1503
1504 One of the possible circumstances for this is when the
1505 inferior produces output for the console. The inferior has
1506 not stopped, and we are ignoring the event. Another possible
1507 circumstance is any event which the lower level knows will be
1508 reported multiple times without an intervening resume. */
1509 case TARGET_WAITKIND_IGNORE:
1510 if (debug_infrun)
1511 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1512 prepare_to_wait (ecs);
1513 return;
1514 }
1515
1516 /* We may want to consider not doing a resume here in order to give
1517 the user a chance to play with the new thread. It might be good
1518 to make that a user-settable option. */
1519
1520 /* At this point, all threads are stopped (happens automatically in
1521 either the OS or the native code). Therefore we need to continue
1522 all threads in order to make progress. */
1523 if (ecs->new_thread_event)
1524 {
1525 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1526 prepare_to_wait (ecs);
1527 return;
1528 }
1529
1530 stop_pc = read_pc_pid (ecs->ptid);
1531
1532 if (debug_infrun)
1533 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1534
1535 if (stepping_past_singlestep_breakpoint)
1536 {
1537 gdb_assert (SOFTWARE_SINGLE_STEP_P ()
1538 && singlestep_breakpoints_inserted_p);
1539 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1540 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1541
1542 stepping_past_singlestep_breakpoint = 0;
1543
1544 /* We've either finished single-stepping past the single-step
1545 breakpoint, or stopped for some other reason. It would be nice if
1546 we could tell, but we can't reliably. */
1547 if (stop_signal == TARGET_SIGNAL_TRAP)
1548 {
1549 if (debug_infrun)
1550 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
1551 /* Pull the single step breakpoints out of the target. */
1552 SOFTWARE_SINGLE_STEP (0, 0);
1553 singlestep_breakpoints_inserted_p = 0;
1554
1555 ecs->random_signal = 0;
1556
1557 ecs->ptid = saved_singlestep_ptid;
1558 context_switch (ecs);
1559 if (deprecated_context_hook)
1560 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1561
1562 resume (1, TARGET_SIGNAL_0);
1563 prepare_to_wait (ecs);
1564 return;
1565 }
1566 }
1567
1568 stepping_past_singlestep_breakpoint = 0;
1569
1570 /* See if a thread hit a thread-specific breakpoint that was meant for
1571 another thread. If so, then step that thread past the breakpoint,
1572 and continue it. */
1573
1574 if (stop_signal == TARGET_SIGNAL_TRAP)
1575 {
1576 int thread_hop_needed = 0;
1577
1578 /* Check if a regular breakpoint has been hit before checking
1579 for a potential single step breakpoint. Otherwise, GDB will
1580 not see this breakpoint hit when stepping onto breakpoints. */
1581 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
1582 {
1583 ecs->random_signal = 0;
1584 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1585 thread_hop_needed = 1;
1586 }
1587 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1588 {
1589 ecs->random_signal = 0;
1590 /* The call to in_thread_list is necessary because PTIDs sometimes
1591 change when we go from single-threaded to multi-threaded. If
1592 the singlestep_ptid is still in the list, assume that it is
1593 really different from ecs->ptid. */
1594 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1595 && in_thread_list (singlestep_ptid))
1596 {
1597 thread_hop_needed = 1;
1598 stepping_past_singlestep_breakpoint = 1;
1599 saved_singlestep_ptid = singlestep_ptid;
1600 }
1601 }
1602
1603 if (thread_hop_needed)
1604 {
1605 int remove_status;
1606
1607 if (debug_infrun)
1608 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
1609
1610 /* Saw a breakpoint, but it was hit by the wrong thread.
1611 Just continue. */
1612
1613 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1614 {
1615 /* Pull the single step breakpoints out of the target. */
1616 SOFTWARE_SINGLE_STEP (0, 0);
1617 singlestep_breakpoints_inserted_p = 0;
1618 }
1619
1620 remove_status = remove_breakpoints ();
1621 /* Did we fail to remove breakpoints? If so, try
1622 to set the PC past the bp. (There's at least
1623 one situation in which we can fail to remove
1624 the bp's: On HP-UX's that use ttrace, we can't
1625 change the address space of a vforking child
1626 process until the child exits (well, okay, not
1627 then either :-) or execs. */
1628 if (remove_status != 0)
1629 {
1630 /* FIXME! This is obviously non-portable! */
1631 write_pc_pid (stop_pc + 4, ecs->ptid);
1632 /* We need to restart all the threads now,
1633 * unles we're running in scheduler-locked mode.
1634 * Use currently_stepping to determine whether to
1635 * step or continue.
1636 */
1637 /* FIXME MVS: is there any reason not to call resume()? */
1638 if (scheduler_mode == schedlock_on)
1639 target_resume (ecs->ptid,
1640 currently_stepping (ecs), TARGET_SIGNAL_0);
1641 else
1642 target_resume (RESUME_ALL,
1643 currently_stepping (ecs), TARGET_SIGNAL_0);
1644 prepare_to_wait (ecs);
1645 return;
1646 }
1647 else
1648 { /* Single step */
1649 breakpoints_inserted = 0;
1650 if (!ptid_equal (inferior_ptid, ecs->ptid))
1651 context_switch (ecs);
1652 ecs->waiton_ptid = ecs->ptid;
1653 ecs->wp = &(ecs->ws);
1654 ecs->another_trap = 1;
1655
1656 ecs->infwait_state = infwait_thread_hop_state;
1657 keep_going (ecs);
1658 registers_changed ();
1659 return;
1660 }
1661 }
1662 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1663 {
1664 sw_single_step_trap_p = 1;
1665 ecs->random_signal = 0;
1666 }
1667 }
1668 else
1669 ecs->random_signal = 1;
1670
1671 /* See if something interesting happened to the non-current thread. If
1672 so, then switch to that thread. */
1673 if (!ptid_equal (ecs->ptid, inferior_ptid))
1674 {
1675 if (debug_infrun)
1676 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
1677
1678 context_switch (ecs);
1679
1680 if (deprecated_context_hook)
1681 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1682
1683 flush_cached_frames ();
1684 }
1685
1686 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1687 {
1688 /* Pull the single step breakpoints out of the target. */
1689 SOFTWARE_SINGLE_STEP (0, 0);
1690 singlestep_breakpoints_inserted_p = 0;
1691 }
1692
1693 /* It may not be necessary to disable the watchpoint to stop over
1694 it. For example, the PA can (with some kernel cooperation)
1695 single step over a watchpoint without disabling the watchpoint. */
1696 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1697 {
1698 if (debug_infrun)
1699 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1700 resume (1, 0);
1701 prepare_to_wait (ecs);
1702 return;
1703 }
1704
1705 /* It is far more common to need to disable a watchpoint to step
1706 the inferior over it. FIXME. What else might a debug
1707 register or page protection watchpoint scheme need here? */
1708 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1709 {
1710 /* At this point, we are stopped at an instruction which has
1711 attempted to write to a piece of memory under control of
1712 a watchpoint. The instruction hasn't actually executed
1713 yet. If we were to evaluate the watchpoint expression
1714 now, we would get the old value, and therefore no change
1715 would seem to have occurred.
1716
1717 In order to make watchpoints work `right', we really need
1718 to complete the memory write, and then evaluate the
1719 watchpoint expression. The following code does that by
1720 removing the watchpoint (actually, all watchpoints and
1721 breakpoints), single-stepping the target, re-inserting
1722 watchpoints, and then falling through to let normal
1723 single-step processing handle proceed. Since this
1724 includes evaluating watchpoints, things will come to a
1725 stop in the correct manner. */
1726
1727 if (debug_infrun)
1728 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1729 remove_breakpoints ();
1730 registers_changed ();
1731 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1732
1733 ecs->waiton_ptid = ecs->ptid;
1734 ecs->wp = &(ecs->ws);
1735 ecs->infwait_state = infwait_nonstep_watch_state;
1736 prepare_to_wait (ecs);
1737 return;
1738 }
1739
1740 /* It may be possible to simply continue after a watchpoint. */
1741 if (HAVE_CONTINUABLE_WATCHPOINT)
1742 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
1743
1744 ecs->stop_func_start = 0;
1745 ecs->stop_func_end = 0;
1746 ecs->stop_func_name = 0;
1747 /* Don't care about return value; stop_func_start and stop_func_name
1748 will both be 0 if it doesn't work. */
1749 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1750 &ecs->stop_func_start, &ecs->stop_func_end);
1751 ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET;
1752 ecs->another_trap = 0;
1753 bpstat_clear (&stop_bpstat);
1754 stop_step = 0;
1755 stop_stack_dummy = 0;
1756 stop_print_frame = 1;
1757 ecs->random_signal = 0;
1758 stopped_by_random_signal = 0;
1759 breakpoints_failed = 0;
1760
1761 if (stop_signal == TARGET_SIGNAL_TRAP
1762 && trap_expected
1763 && gdbarch_single_step_through_delay_p (current_gdbarch)
1764 && currently_stepping (ecs))
1765 {
1766 /* We're trying to step of a breakpoint. Turns out that we're
1767 also on an instruction that needs to be stepped multiple
1768 times before it's been fully executing. E.g., architectures
1769 with a delay slot. It needs to be stepped twice, once for
1770 the instruction and once for the delay slot. */
1771 int step_through_delay
1772 = gdbarch_single_step_through_delay (current_gdbarch,
1773 get_current_frame ());
1774 if (debug_infrun && step_through_delay)
1775 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
1776 if (step_range_end == 0 && step_through_delay)
1777 {
1778 /* The user issued a continue when stopped at a breakpoint.
1779 Set up for another trap and get out of here. */
1780 ecs->another_trap = 1;
1781 keep_going (ecs);
1782 return;
1783 }
1784 else if (step_through_delay)
1785 {
1786 /* The user issued a step when stopped at a breakpoint.
1787 Maybe we should stop, maybe we should not - the delay
1788 slot *might* correspond to a line of source. In any
1789 case, don't decide that here, just set ecs->another_trap,
1790 making sure we single-step again before breakpoints are
1791 re-inserted. */
1792 ecs->another_trap = 1;
1793 }
1794 }
1795
1796 /* Look at the cause of the stop, and decide what to do.
1797 The alternatives are:
1798 1) break; to really stop and return to the debugger,
1799 2) drop through to start up again
1800 (set ecs->another_trap to 1 to single step once)
1801 3) set ecs->random_signal to 1, and the decision between 1 and 2
1802 will be made according to the signal handling tables. */
1803
1804 /* First, distinguish signals caused by the debugger from signals
1805 that have to do with the program's own actions. Note that
1806 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1807 on the operating system version. Here we detect when a SIGILL or
1808 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1809 something similar for SIGSEGV, since a SIGSEGV will be generated
1810 when we're trying to execute a breakpoint instruction on a
1811 non-executable stack. This happens for call dummy breakpoints
1812 for architectures like SPARC that place call dummies on the
1813 stack. */
1814
1815 if (stop_signal == TARGET_SIGNAL_TRAP
1816 || (breakpoints_inserted
1817 && (stop_signal == TARGET_SIGNAL_ILL
1818 || stop_signal == TARGET_SIGNAL_SEGV
1819 || stop_signal == TARGET_SIGNAL_EMT))
1820 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1821 {
1822 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1823 {
1824 if (debug_infrun)
1825 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
1826 stop_print_frame = 0;
1827 stop_stepping (ecs);
1828 return;
1829 }
1830
1831 /* This is originated from start_remote(), start_inferior() and
1832 shared libraries hook functions. */
1833 if (stop_soon == STOP_QUIETLY)
1834 {
1835 if (debug_infrun)
1836 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
1837 stop_stepping (ecs);
1838 return;
1839 }
1840
1841 /* This originates from attach_command(). We need to overwrite
1842 the stop_signal here, because some kernels don't ignore a
1843 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1844 See more comments in inferior.h. */
1845 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1846 {
1847 stop_stepping (ecs);
1848 if (stop_signal == TARGET_SIGNAL_STOP)
1849 stop_signal = TARGET_SIGNAL_0;
1850 return;
1851 }
1852
1853 /* Don't even think about breakpoints if just proceeded over a
1854 breakpoint. */
1855 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
1856 {
1857 if (debug_infrun)
1858 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
1859 bpstat_clear (&stop_bpstat);
1860 }
1861 else
1862 {
1863 /* See if there is a breakpoint at the current PC. */
1864 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
1865 stopped_by_watchpoint);
1866
1867 /* Following in case break condition called a
1868 function. */
1869 stop_print_frame = 1;
1870 }
1871
1872 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1873 at one stage in the past included checks for an inferior
1874 function call's call dummy's return breakpoint. The original
1875 comment, that went with the test, read:
1876
1877 ``End of a stack dummy. Some systems (e.g. Sony news) give
1878 another signal besides SIGTRAP, so check here as well as
1879 above.''
1880
1881 If someone ever tries to get get call dummys on a
1882 non-executable stack to work (where the target would stop
1883 with something like a SIGSEGV), then those tests might need
1884 to be re-instated. Given, however, that the tests were only
1885 enabled when momentary breakpoints were not being used, I
1886 suspect that it won't be the case.
1887
1888 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1889 be necessary for call dummies on a non-executable stack on
1890 SPARC. */
1891
1892 if (stop_signal == TARGET_SIGNAL_TRAP)
1893 ecs->random_signal
1894 = !(bpstat_explains_signal (stop_bpstat)
1895 || trap_expected
1896 || (step_range_end && step_resume_breakpoint == NULL));
1897 else
1898 {
1899 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1900 if (!ecs->random_signal)
1901 stop_signal = TARGET_SIGNAL_TRAP;
1902 }
1903 }
1904
1905 /* When we reach this point, we've pretty much decided
1906 that the reason for stopping must've been a random
1907 (unexpected) signal. */
1908
1909 else
1910 ecs->random_signal = 1;
1911
1912 process_event_stop_test:
1913 /* For the program's own signals, act according to
1914 the signal handling tables. */
1915
1916 if (ecs->random_signal)
1917 {
1918 /* Signal not for debugging purposes. */
1919 int printed = 0;
1920
1921 if (debug_infrun)
1922 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
1923
1924 stopped_by_random_signal = 1;
1925
1926 if (signal_print[stop_signal])
1927 {
1928 printed = 1;
1929 target_terminal_ours_for_output ();
1930 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1931 }
1932 if (signal_stop[stop_signal])
1933 {
1934 stop_stepping (ecs);
1935 return;
1936 }
1937 /* If not going to stop, give terminal back
1938 if we took it away. */
1939 else if (printed)
1940 target_terminal_inferior ();
1941
1942 /* Clear the signal if it should not be passed. */
1943 if (signal_program[stop_signal] == 0)
1944 stop_signal = TARGET_SIGNAL_0;
1945
1946 if (prev_pc == read_pc ()
1947 && !breakpoints_inserted
1948 && breakpoint_here_p (read_pc ())
1949 && step_resume_breakpoint == NULL)
1950 {
1951 /* We were just starting a new sequence, attempting to
1952 single-step off of a breakpoint and expecting a SIGTRAP.
1953 Intead this signal arrives. This signal will take us out
1954 of the stepping range so GDB needs to remember to, when
1955 the signal handler returns, resume stepping off that
1956 breakpoint. */
1957 /* To simplify things, "continue" is forced to use the same
1958 code paths as single-step - set a breakpoint at the
1959 signal return address and then, once hit, step off that
1960 breakpoint. */
1961 insert_step_resume_breakpoint_at_frame (get_current_frame ());
1962 ecs->step_after_step_resume_breakpoint = 1;
1963 keep_going (ecs);
1964 return;
1965 }
1966
1967 if (step_range_end != 0
1968 && stop_signal != TARGET_SIGNAL_0
1969 && stop_pc >= step_range_start && stop_pc < step_range_end
1970 && frame_id_eq (get_frame_id (get_current_frame ()),
1971 step_frame_id)
1972 && step_resume_breakpoint == NULL)
1973 {
1974 /* The inferior is about to take a signal that will take it
1975 out of the single step range. Set a breakpoint at the
1976 current PC (which is presumably where the signal handler
1977 will eventually return) and then allow the inferior to
1978 run free.
1979
1980 Note that this is only needed for a signal delivered
1981 while in the single-step range. Nested signals aren't a
1982 problem as they eventually all return. */
1983 insert_step_resume_breakpoint_at_frame (get_current_frame ());
1984 keep_going (ecs);
1985 return;
1986 }
1987
1988 /* Note: step_resume_breakpoint may be non-NULL. This occures
1989 when either there's a nested signal, or when there's a
1990 pending signal enabled just as the signal handler returns
1991 (leaving the inferior at the step-resume-breakpoint without
1992 actually executing it). Either way continue until the
1993 breakpoint is really hit. */
1994 keep_going (ecs);
1995 return;
1996 }
1997
1998 /* Handle cases caused by hitting a breakpoint. */
1999 {
2000 CORE_ADDR jmp_buf_pc;
2001 struct bpstat_what what;
2002
2003 what = bpstat_what (stop_bpstat);
2004
2005 if (what.call_dummy)
2006 {
2007 stop_stack_dummy = 1;
2008 }
2009
2010 switch (what.main_action)
2011 {
2012 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2013 /* If we hit the breakpoint at longjmp, disable it for the
2014 duration of this command. Then, install a temporary
2015 breakpoint at the target of the jmp_buf. */
2016 if (debug_infrun)
2017 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_SET_LONGJMP_RESUME\n");
2018 disable_longjmp_breakpoint ();
2019 remove_breakpoints ();
2020 breakpoints_inserted = 0;
2021 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
2022 {
2023 keep_going (ecs);
2024 return;
2025 }
2026
2027 /* Need to blow away step-resume breakpoint, as it
2028 interferes with us */
2029 if (step_resume_breakpoint != NULL)
2030 {
2031 delete_step_resume_breakpoint (&step_resume_breakpoint);
2032 }
2033
2034 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2035 ecs->handling_longjmp = 1; /* FIXME */
2036 keep_going (ecs);
2037 return;
2038
2039 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2040 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2041 if (debug_infrun)
2042 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_CLEAR_LONGJMP_RESUME\n");
2043 remove_breakpoints ();
2044 breakpoints_inserted = 0;
2045 disable_longjmp_breakpoint ();
2046 ecs->handling_longjmp = 0; /* FIXME */
2047 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2048 break;
2049 /* else fallthrough */
2050
2051 case BPSTAT_WHAT_SINGLE:
2052 if (debug_infrun)
2053 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_SINGLE\n");
2054 if (breakpoints_inserted)
2055 {
2056 remove_breakpoints ();
2057 }
2058 breakpoints_inserted = 0;
2059 ecs->another_trap = 1;
2060 /* Still need to check other stuff, at least the case
2061 where we are stepping and step out of the right range. */
2062 break;
2063
2064 case BPSTAT_WHAT_STOP_NOISY:
2065 if (debug_infrun)
2066 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_STOP_NOISY\n");
2067 stop_print_frame = 1;
2068
2069 /* We are about to nuke the step_resume_breakpointt via the
2070 cleanup chain, so no need to worry about it here. */
2071
2072 stop_stepping (ecs);
2073 return;
2074
2075 case BPSTAT_WHAT_STOP_SILENT:
2076 if (debug_infrun)
2077 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_STOP_SILENT\n");
2078 stop_print_frame = 0;
2079
2080 /* We are about to nuke the step_resume_breakpoin via the
2081 cleanup chain, so no need to worry about it here. */
2082
2083 stop_stepping (ecs);
2084 return;
2085
2086 case BPSTAT_WHAT_STEP_RESUME:
2087 /* This proably demands a more elegant solution, but, yeah
2088 right...
2089
2090 This function's use of the simple variable
2091 step_resume_breakpoint doesn't seem to accomodate
2092 simultaneously active step-resume bp's, although the
2093 breakpoint list certainly can.
2094
2095 If we reach here and step_resume_breakpoint is already
2096 NULL, then apparently we have multiple active
2097 step-resume bp's. We'll just delete the breakpoint we
2098 stopped at, and carry on.
2099
2100 Correction: what the code currently does is delete a
2101 step-resume bp, but it makes no effort to ensure that
2102 the one deleted is the one currently stopped at. MVS */
2103
2104 if (debug_infrun)
2105 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_STEP_RESUME\n");
2106
2107 if (step_resume_breakpoint == NULL)
2108 {
2109 step_resume_breakpoint =
2110 bpstat_find_step_resume_breakpoint (stop_bpstat);
2111 }
2112 delete_step_resume_breakpoint (&step_resume_breakpoint);
2113 if (ecs->step_after_step_resume_breakpoint)
2114 {
2115 /* Back when the step-resume breakpoint was inserted, we
2116 were trying to single-step off a breakpoint. Go back
2117 to doing that. */
2118 ecs->step_after_step_resume_breakpoint = 0;
2119 remove_breakpoints ();
2120 breakpoints_inserted = 0;
2121 ecs->another_trap = 1;
2122 keep_going (ecs);
2123 return;
2124 }
2125 break;
2126
2127 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2128 if (debug_infrun)
2129 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_THROUGH_SIGTRAMP\n");
2130 /* If were waiting for a trap, hitting the step_resume_break
2131 doesn't count as getting it. */
2132 if (trap_expected)
2133 ecs->another_trap = 1;
2134 break;
2135
2136 case BPSTAT_WHAT_CHECK_SHLIBS:
2137 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2138 {
2139 if (debug_infrun)
2140 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_CHECK_SHLIBS\n");
2141 /* Remove breakpoints, we eventually want to step over the
2142 shlib event breakpoint, and SOLIB_ADD might adjust
2143 breakpoint addresses via breakpoint_re_set. */
2144 if (breakpoints_inserted)
2145 remove_breakpoints ();
2146 breakpoints_inserted = 0;
2147
2148 /* Check for any newly added shared libraries if we're
2149 supposed to be adding them automatically. Switch
2150 terminal for any messages produced by
2151 breakpoint_re_set. */
2152 target_terminal_ours_for_output ();
2153 /* NOTE: cagney/2003-11-25: Make certain that the target
2154 stack's section table is kept up-to-date. Architectures,
2155 (e.g., PPC64), use the section table to perform
2156 operations such as address => section name and hence
2157 require the table to contain all sections (including
2158 those found in shared libraries). */
2159 /* NOTE: cagney/2003-11-25: Pass current_target and not
2160 exec_ops to SOLIB_ADD. This is because current GDB is
2161 only tooled to propagate section_table changes out from
2162 the "current_target" (see target_resize_to_sections), and
2163 not up from the exec stratum. This, of course, isn't
2164 right. "infrun.c" should only interact with the
2165 exec/process stratum, instead relying on the target stack
2166 to propagate relevant changes (stop, section table
2167 changed, ...) up to other layers. */
2168 #ifdef SOLIB_ADD
2169 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2170 #else
2171 solib_add (NULL, 0, &current_target, auto_solib_add);
2172 #endif
2173 target_terminal_inferior ();
2174
2175 /* Try to reenable shared library breakpoints, additional
2176 code segments in shared libraries might be mapped in now. */
2177 re_enable_breakpoints_in_shlibs ();
2178
2179 /* If requested, stop when the dynamic linker notifies
2180 gdb of events. This allows the user to get control
2181 and place breakpoints in initializer routines for
2182 dynamically loaded objects (among other things). */
2183 if (stop_on_solib_events || stop_stack_dummy)
2184 {
2185 stop_stepping (ecs);
2186 return;
2187 }
2188
2189 /* If we stopped due to an explicit catchpoint, then the
2190 (see above) call to SOLIB_ADD pulled in any symbols
2191 from a newly-loaded library, if appropriate.
2192
2193 We do want the inferior to stop, but not where it is
2194 now, which is in the dynamic linker callback. Rather,
2195 we would like it stop in the user's program, just after
2196 the call that caused this catchpoint to trigger. That
2197 gives the user a more useful vantage from which to
2198 examine their program's state. */
2199 else if (what.main_action
2200 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2201 {
2202 /* ??rehrauer: If I could figure out how to get the
2203 right return PC from here, we could just set a temp
2204 breakpoint and resume. I'm not sure we can without
2205 cracking open the dld's shared libraries and sniffing
2206 their unwind tables and text/data ranges, and that's
2207 not a terribly portable notion.
2208
2209 Until that time, we must step the inferior out of the
2210 dld callback, and also out of the dld itself (and any
2211 code or stubs in libdld.sl, such as "shl_load" and
2212 friends) until we reach non-dld code. At that point,
2213 we can stop stepping. */
2214 bpstat_get_triggered_catchpoints (stop_bpstat,
2215 &ecs->
2216 stepping_through_solib_catchpoints);
2217 ecs->stepping_through_solib_after_catch = 1;
2218
2219 /* Be sure to lift all breakpoints, so the inferior does
2220 actually step past this point... */
2221 ecs->another_trap = 1;
2222 break;
2223 }
2224 else
2225 {
2226 /* We want to step over this breakpoint, then keep going. */
2227 ecs->another_trap = 1;
2228 break;
2229 }
2230 }
2231 break;
2232
2233 case BPSTAT_WHAT_LAST:
2234 /* Not a real code, but listed here to shut up gcc -Wall. */
2235
2236 case BPSTAT_WHAT_KEEP_CHECKING:
2237 break;
2238 }
2239 }
2240
2241 /* We come here if we hit a breakpoint but should not
2242 stop for it. Possibly we also were stepping
2243 and should stop for that. So fall through and
2244 test for stepping. But, if not stepping,
2245 do not stop. */
2246
2247 /* Are we stepping to get the inferior out of the dynamic linker's
2248 hook (and possibly the dld itself) after catching a shlib
2249 event? */
2250 if (ecs->stepping_through_solib_after_catch)
2251 {
2252 #if defined(SOLIB_ADD)
2253 /* Have we reached our destination? If not, keep going. */
2254 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2255 {
2256 if (debug_infrun)
2257 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2258 ecs->another_trap = 1;
2259 keep_going (ecs);
2260 return;
2261 }
2262 #endif
2263 if (debug_infrun)
2264 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2265 /* Else, stop and report the catchpoint(s) whose triggering
2266 caused us to begin stepping. */
2267 ecs->stepping_through_solib_after_catch = 0;
2268 bpstat_clear (&stop_bpstat);
2269 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2270 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2271 stop_print_frame = 1;
2272 stop_stepping (ecs);
2273 return;
2274 }
2275
2276 if (step_resume_breakpoint)
2277 {
2278 if (debug_infrun)
2279 fprintf_unfiltered (gdb_stdlog, "infrun: step-resume breakpoint\n");
2280
2281 /* Having a step-resume breakpoint overrides anything
2282 else having to do with stepping commands until
2283 that breakpoint is reached. */
2284 keep_going (ecs);
2285 return;
2286 }
2287
2288 if (step_range_end == 0)
2289 {
2290 if (debug_infrun)
2291 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2292 /* Likewise if we aren't even stepping. */
2293 keep_going (ecs);
2294 return;
2295 }
2296
2297 /* If stepping through a line, keep going if still within it.
2298
2299 Note that step_range_end is the address of the first instruction
2300 beyond the step range, and NOT the address of the last instruction
2301 within it! */
2302 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2303 {
2304 if (debug_infrun)
2305 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2306 paddr_nz (step_range_start),
2307 paddr_nz (step_range_end));
2308 keep_going (ecs);
2309 return;
2310 }
2311
2312 /* We stepped out of the stepping range. */
2313
2314 /* If we are stepping at the source level and entered the runtime
2315 loader dynamic symbol resolution code, we keep on single stepping
2316 until we exit the run time loader code and reach the callee's
2317 address. */
2318 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2319 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2320 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2321 #else
2322 && in_solib_dynsym_resolve_code (stop_pc)
2323 #endif
2324 )
2325 {
2326 CORE_ADDR pc_after_resolver =
2327 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2328
2329 if (debug_infrun)
2330 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2331
2332 if (pc_after_resolver)
2333 {
2334 /* Set up a step-resume breakpoint at the address
2335 indicated by SKIP_SOLIB_RESOLVER. */
2336 struct symtab_and_line sr_sal;
2337 init_sal (&sr_sal);
2338 sr_sal.pc = pc_after_resolver;
2339
2340 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2341 }
2342
2343 keep_going (ecs);
2344 return;
2345 }
2346
2347 if (step_range_end != 1
2348 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2349 || step_over_calls == STEP_OVER_ALL)
2350 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2351 {
2352 if (debug_infrun)
2353 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2354 /* The inferior, while doing a "step" or "next", has ended up in
2355 a signal trampoline (either by a signal being delivered or by
2356 the signal handler returning). Just single-step until the
2357 inferior leaves the trampoline (either by calling the handler
2358 or returning). */
2359 keep_going (ecs);
2360 return;
2361 }
2362
2363 if (frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2364 {
2365 /* It's a subroutine call. */
2366 CORE_ADDR real_stop_pc;
2367
2368 if (debug_infrun)
2369 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2370
2371 if ((step_over_calls == STEP_OVER_NONE)
2372 || ((step_range_end == 1)
2373 && in_prologue (prev_pc, ecs->stop_func_start)))
2374 {
2375 /* I presume that step_over_calls is only 0 when we're
2376 supposed to be stepping at the assembly language level
2377 ("stepi"). Just stop. */
2378 /* Also, maybe we just did a "nexti" inside a prolog, so we
2379 thought it was a subroutine call but it was not. Stop as
2380 well. FENN */
2381 stop_step = 1;
2382 print_stop_reason (END_STEPPING_RANGE, 0);
2383 stop_stepping (ecs);
2384 return;
2385 }
2386
2387 if (step_over_calls == STEP_OVER_ALL)
2388 {
2389 /* We're doing a "next", set a breakpoint at callee's return
2390 address (the address at which the caller will
2391 resume). */
2392 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
2393 keep_going (ecs);
2394 return;
2395 }
2396
2397 /* If we are in a function call trampoline (a stub between the
2398 calling routine and the real function), locate the real
2399 function. That's what tells us (a) whether we want to step
2400 into it at all, and (b) what prologue we want to run to the
2401 end of, if we do step into it. */
2402 real_stop_pc = skip_language_trampoline (stop_pc);
2403 if (real_stop_pc == 0)
2404 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2405 if (real_stop_pc != 0)
2406 ecs->stop_func_start = real_stop_pc;
2407
2408 if (
2409 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2410 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2411 #else
2412 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2413 #endif
2414 )
2415 {
2416 struct symtab_and_line sr_sal;
2417 init_sal (&sr_sal);
2418 sr_sal.pc = ecs->stop_func_start;
2419
2420 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2421 keep_going (ecs);
2422 return;
2423 }
2424
2425 /* If we have line number information for the function we are
2426 thinking of stepping into, step into it.
2427
2428 If there are several symtabs at that PC (e.g. with include
2429 files), just want to know whether *any* of them have line
2430 numbers. find_pc_line handles this. */
2431 {
2432 struct symtab_and_line tmp_sal;
2433
2434 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2435 if (tmp_sal.line != 0)
2436 {
2437 step_into_function (ecs);
2438 return;
2439 }
2440 }
2441
2442 /* If we have no line number and the step-stop-if-no-debug is
2443 set, we stop the step so that the user has a chance to switch
2444 in assembly mode. */
2445 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2446 {
2447 stop_step = 1;
2448 print_stop_reason (END_STEPPING_RANGE, 0);
2449 stop_stepping (ecs);
2450 return;
2451 }
2452
2453 /* Set a breakpoint at callee's return address (the address at
2454 which the caller will resume). */
2455 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
2456 keep_going (ecs);
2457 return;
2458 }
2459
2460 /* If we're in the return path from a shared library trampoline,
2461 we want to proceed through the trampoline when stepping. */
2462 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2463 {
2464 /* Determine where this trampoline returns. */
2465 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2466
2467 if (debug_infrun)
2468 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
2469
2470 /* Only proceed through if we know where it's going. */
2471 if (real_stop_pc)
2472 {
2473 /* And put the step-breakpoint there and go until there. */
2474 struct symtab_and_line sr_sal;
2475
2476 init_sal (&sr_sal); /* initialize to zeroes */
2477 sr_sal.pc = real_stop_pc;
2478 sr_sal.section = find_pc_overlay (sr_sal.pc);
2479
2480 /* Do not specify what the fp should be when we stop since
2481 on some machines the prologue is where the new fp value
2482 is established. */
2483 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2484
2485 /* Restart without fiddling with the step ranges or
2486 other state. */
2487 keep_going (ecs);
2488 return;
2489 }
2490 }
2491
2492 ecs->sal = find_pc_line (stop_pc, 0);
2493
2494 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2495 the trampoline processing logic, however, there are some trampolines
2496 that have no names, so we should do trampoline handling first. */
2497 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2498 && ecs->stop_func_name == NULL
2499 && ecs->sal.line == 0)
2500 {
2501 if (debug_infrun)
2502 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
2503
2504 /* The inferior just stepped into, or returned to, an
2505 undebuggable function (where there is no debugging information
2506 and no line number corresponding to the address where the
2507 inferior stopped). Since we want to skip this kind of code,
2508 we keep going until the inferior returns from this
2509 function. */
2510 if (step_stop_if_no_debug)
2511 {
2512 /* If we have no line number and the step-stop-if-no-debug
2513 is set, we stop the step so that the user has a chance to
2514 switch in assembly mode. */
2515 stop_step = 1;
2516 print_stop_reason (END_STEPPING_RANGE, 0);
2517 stop_stepping (ecs);
2518 return;
2519 }
2520 else
2521 {
2522 /* Set a breakpoint at callee's return address (the address
2523 at which the caller will resume). */
2524 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
2525 keep_going (ecs);
2526 return;
2527 }
2528 }
2529
2530 if (step_range_end == 1)
2531 {
2532 /* It is stepi or nexti. We always want to stop stepping after
2533 one instruction. */
2534 if (debug_infrun)
2535 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
2536 stop_step = 1;
2537 print_stop_reason (END_STEPPING_RANGE, 0);
2538 stop_stepping (ecs);
2539 return;
2540 }
2541
2542 if (ecs->sal.line == 0)
2543 {
2544 /* We have no line number information. That means to stop
2545 stepping (does this always happen right after one instruction,
2546 when we do "s" in a function with no line numbers,
2547 or can this happen as a result of a return or longjmp?). */
2548 if (debug_infrun)
2549 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
2550 stop_step = 1;
2551 print_stop_reason (END_STEPPING_RANGE, 0);
2552 stop_stepping (ecs);
2553 return;
2554 }
2555
2556 if ((stop_pc == ecs->sal.pc)
2557 && (ecs->current_line != ecs->sal.line
2558 || ecs->current_symtab != ecs->sal.symtab))
2559 {
2560 /* We are at the start of a different line. So stop. Note that
2561 we don't stop if we step into the middle of a different line.
2562 That is said to make things like for (;;) statements work
2563 better. */
2564 if (debug_infrun)
2565 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
2566 stop_step = 1;
2567 print_stop_reason (END_STEPPING_RANGE, 0);
2568 stop_stepping (ecs);
2569 return;
2570 }
2571
2572 /* We aren't done stepping.
2573
2574 Optimize by setting the stepping range to the line.
2575 (We might not be in the original line, but if we entered a
2576 new line in mid-statement, we continue stepping. This makes
2577 things like for(;;) statements work better.) */
2578
2579 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2580 {
2581 /* If this is the last line of the function, don't keep stepping
2582 (it would probably step us out of the function).
2583 This is particularly necessary for a one-line function,
2584 in which after skipping the prologue we better stop even though
2585 we will be in mid-line. */
2586 if (debug_infrun)
2587 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
2588 stop_step = 1;
2589 print_stop_reason (END_STEPPING_RANGE, 0);
2590 stop_stepping (ecs);
2591 return;
2592 }
2593 step_range_start = ecs->sal.pc;
2594 step_range_end = ecs->sal.end;
2595 step_frame_id = get_frame_id (get_current_frame ());
2596 ecs->current_line = ecs->sal.line;
2597 ecs->current_symtab = ecs->sal.symtab;
2598
2599 /* In the case where we just stepped out of a function into the
2600 middle of a line of the caller, continue stepping, but
2601 step_frame_id must be modified to current frame */
2602 #if 0
2603 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2604 generous. It will trigger on things like a step into a frameless
2605 stackless leaf function. I think the logic should instead look
2606 at the unwound frame ID has that should give a more robust
2607 indication of what happened. */
2608 if (step - ID == current - ID)
2609 still stepping in same function;
2610 else if (step - ID == unwind (current - ID))
2611 stepped into a function;
2612 else
2613 stepped out of a function;
2614 /* Of course this assumes that the frame ID unwind code is robust
2615 and we're willing to introduce frame unwind logic into this
2616 function. Fortunately, those days are nearly upon us. */
2617 #endif
2618 {
2619 struct frame_id current_frame = get_frame_id (get_current_frame ());
2620 if (!(frame_id_inner (current_frame, step_frame_id)))
2621 step_frame_id = current_frame;
2622 }
2623
2624 if (debug_infrun)
2625 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
2626 keep_going (ecs);
2627 }
2628
2629 /* Are we in the middle of stepping? */
2630
2631 static int
2632 currently_stepping (struct execution_control_state *ecs)
2633 {
2634 return ((!ecs->handling_longjmp
2635 && ((step_range_end && step_resume_breakpoint == NULL)
2636 || trap_expected))
2637 || ecs->stepping_through_solib_after_catch
2638 || bpstat_should_step ());
2639 }
2640
2641 /* Subroutine call with source code we should not step over. Do step
2642 to the first line of code in it. */
2643
2644 static void
2645 step_into_function (struct execution_control_state *ecs)
2646 {
2647 struct symtab *s;
2648 struct symtab_and_line sr_sal;
2649
2650 s = find_pc_symtab (stop_pc);
2651 if (s && s->language != language_asm)
2652 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2653
2654 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2655 /* Use the step_resume_break to step until the end of the prologue,
2656 even if that involves jumps (as it seems to on the vax under
2657 4.2). */
2658 /* If the prologue ends in the middle of a source line, continue to
2659 the end of that source line (if it is still within the function).
2660 Otherwise, just go to end of prologue. */
2661 if (ecs->sal.end
2662 && ecs->sal.pc != ecs->stop_func_start
2663 && ecs->sal.end < ecs->stop_func_end)
2664 ecs->stop_func_start = ecs->sal.end;
2665
2666 /* Architectures which require breakpoint adjustment might not be able
2667 to place a breakpoint at the computed address. If so, the test
2668 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2669 ecs->stop_func_start to an address at which a breakpoint may be
2670 legitimately placed.
2671
2672 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2673 made, GDB will enter an infinite loop when stepping through
2674 optimized code consisting of VLIW instructions which contain
2675 subinstructions corresponding to different source lines. On
2676 FR-V, it's not permitted to place a breakpoint on any but the
2677 first subinstruction of a VLIW instruction. When a breakpoint is
2678 set, GDB will adjust the breakpoint address to the beginning of
2679 the VLIW instruction. Thus, we need to make the corresponding
2680 adjustment here when computing the stop address. */
2681
2682 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2683 {
2684 ecs->stop_func_start
2685 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2686 ecs->stop_func_start);
2687 }
2688
2689 if (ecs->stop_func_start == stop_pc)
2690 {
2691 /* We are already there: stop now. */
2692 stop_step = 1;
2693 print_stop_reason (END_STEPPING_RANGE, 0);
2694 stop_stepping (ecs);
2695 return;
2696 }
2697 else
2698 {
2699 /* Put the step-breakpoint there and go until there. */
2700 init_sal (&sr_sal); /* initialize to zeroes */
2701 sr_sal.pc = ecs->stop_func_start;
2702 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2703
2704 /* Do not specify what the fp should be when we stop since on
2705 some machines the prologue is where the new fp value is
2706 established. */
2707 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2708
2709 /* And make sure stepping stops right away then. */
2710 step_range_end = step_range_start;
2711 }
2712 keep_going (ecs);
2713 }
2714
2715 /* Insert a "step resume breakpoint" at SR_SAL with frame ID SR_ID.
2716 This is used to both functions and to skip over code. */
2717
2718 static void
2719 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2720 struct frame_id sr_id)
2721 {
2722 /* There should never be more than one step-resume breakpoint per
2723 thread, so we should never be setting a new
2724 step_resume_breakpoint when one is already active. */
2725 gdb_assert (step_resume_breakpoint == NULL);
2726 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2727 bp_step_resume);
2728 if (breakpoints_inserted)
2729 insert_breakpoints ();
2730 }
2731
2732 /* Insert a "step resume breakpoint" at RETURN_FRAME.pc. This is used
2733 to skip a function (next, skip-no-debug) or signal. It's assumed
2734 that the function/signal handler being skipped eventually returns
2735 to the breakpoint inserted at RETURN_FRAME.pc.
2736
2737 For the skip-function case, the function may have been reached by
2738 either single stepping a call / return / signal-return instruction,
2739 or by hitting a breakpoint. In all cases, the RETURN_FRAME belongs
2740 to the skip-function's caller.
2741
2742 For the signals case, this is called with the interrupted
2743 function's frame. The signal handler, when it returns, will resume
2744 the interrupted function at RETURN_FRAME.pc. */
2745
2746 static void
2747 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2748 {
2749 struct symtab_and_line sr_sal;
2750
2751 init_sal (&sr_sal); /* initialize to zeros */
2752
2753 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (return_frame));
2754 sr_sal.section = find_pc_overlay (sr_sal.pc);
2755
2756 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2757 }
2758
2759 static void
2760 stop_stepping (struct execution_control_state *ecs)
2761 {
2762 if (debug_infrun)
2763 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
2764
2765 /* Let callers know we don't want to wait for the inferior anymore. */
2766 ecs->wait_some_more = 0;
2767 }
2768
2769 /* This function handles various cases where we need to continue
2770 waiting for the inferior. */
2771 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2772
2773 static void
2774 keep_going (struct execution_control_state *ecs)
2775 {
2776 /* Save the pc before execution, to compare with pc after stop. */
2777 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2778
2779 /* If we did not do break;, it means we should keep running the
2780 inferior and not return to debugger. */
2781
2782 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2783 {
2784 /* We took a signal (which we are supposed to pass through to
2785 the inferior, else we'd have done a break above) and we
2786 haven't yet gotten our trap. Simply continue. */
2787 resume (currently_stepping (ecs), stop_signal);
2788 }
2789 else
2790 {
2791 /* Either the trap was not expected, but we are continuing
2792 anyway (the user asked that this signal be passed to the
2793 child)
2794 -- or --
2795 The signal was SIGTRAP, e.g. it was our signal, but we
2796 decided we should resume from it.
2797
2798 We're going to run this baby now! */
2799
2800 if (!breakpoints_inserted && !ecs->another_trap)
2801 {
2802 breakpoints_failed = insert_breakpoints ();
2803 if (breakpoints_failed)
2804 {
2805 stop_stepping (ecs);
2806 return;
2807 }
2808 breakpoints_inserted = 1;
2809 }
2810
2811 trap_expected = ecs->another_trap;
2812
2813 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2814 specifies that such a signal should be delivered to the
2815 target program).
2816
2817 Typically, this would occure when a user is debugging a
2818 target monitor on a simulator: the target monitor sets a
2819 breakpoint; the simulator encounters this break-point and
2820 halts the simulation handing control to GDB; GDB, noteing
2821 that the break-point isn't valid, returns control back to the
2822 simulator; the simulator then delivers the hardware
2823 equivalent of a SIGNAL_TRAP to the program being debugged. */
2824
2825 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2826 stop_signal = TARGET_SIGNAL_0;
2827
2828
2829 resume (currently_stepping (ecs), stop_signal);
2830 }
2831
2832 prepare_to_wait (ecs);
2833 }
2834
2835 /* This function normally comes after a resume, before
2836 handle_inferior_event exits. It takes care of any last bits of
2837 housekeeping, and sets the all-important wait_some_more flag. */
2838
2839 static void
2840 prepare_to_wait (struct execution_control_state *ecs)
2841 {
2842 if (debug_infrun)
2843 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
2844 if (ecs->infwait_state == infwait_normal_state)
2845 {
2846 overlay_cache_invalid = 1;
2847
2848 /* We have to invalidate the registers BEFORE calling
2849 target_wait because they can be loaded from the target while
2850 in target_wait. This makes remote debugging a bit more
2851 efficient for those targets that provide critical registers
2852 as part of their normal status mechanism. */
2853
2854 registers_changed ();
2855 ecs->waiton_ptid = pid_to_ptid (-1);
2856 ecs->wp = &(ecs->ws);
2857 }
2858 /* This is the old end of the while loop. Let everybody know we
2859 want to wait for the inferior some more and get called again
2860 soon. */
2861 ecs->wait_some_more = 1;
2862 }
2863
2864 /* Print why the inferior has stopped. We always print something when
2865 the inferior exits, or receives a signal. The rest of the cases are
2866 dealt with later on in normal_stop() and print_it_typical(). Ideally
2867 there should be a call to this function from handle_inferior_event()
2868 each time stop_stepping() is called.*/
2869 static void
2870 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2871 {
2872 switch (stop_reason)
2873 {
2874 case STOP_UNKNOWN:
2875 /* We don't deal with these cases from handle_inferior_event()
2876 yet. */
2877 break;
2878 case END_STEPPING_RANGE:
2879 /* We are done with a step/next/si/ni command. */
2880 /* For now print nothing. */
2881 /* Print a message only if not in the middle of doing a "step n"
2882 operation for n > 1 */
2883 if (!step_multi || !stop_step)
2884 if (ui_out_is_mi_like_p (uiout))
2885 ui_out_field_string
2886 (uiout, "reason",
2887 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
2888 break;
2889 case BREAKPOINT_HIT:
2890 /* We found a breakpoint. */
2891 /* For now print nothing. */
2892 break;
2893 case SIGNAL_EXITED:
2894 /* The inferior was terminated by a signal. */
2895 annotate_signalled ();
2896 if (ui_out_is_mi_like_p (uiout))
2897 ui_out_field_string
2898 (uiout, "reason",
2899 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
2900 ui_out_text (uiout, "\nProgram terminated with signal ");
2901 annotate_signal_name ();
2902 ui_out_field_string (uiout, "signal-name",
2903 target_signal_to_name (stop_info));
2904 annotate_signal_name_end ();
2905 ui_out_text (uiout, ", ");
2906 annotate_signal_string ();
2907 ui_out_field_string (uiout, "signal-meaning",
2908 target_signal_to_string (stop_info));
2909 annotate_signal_string_end ();
2910 ui_out_text (uiout, ".\n");
2911 ui_out_text (uiout, "The program no longer exists.\n");
2912 break;
2913 case EXITED:
2914 /* The inferior program is finished. */
2915 annotate_exited (stop_info);
2916 if (stop_info)
2917 {
2918 if (ui_out_is_mi_like_p (uiout))
2919 ui_out_field_string (uiout, "reason",
2920 async_reason_lookup (EXEC_ASYNC_EXITED));
2921 ui_out_text (uiout, "\nProgram exited with code ");
2922 ui_out_field_fmt (uiout, "exit-code", "0%o",
2923 (unsigned int) stop_info);
2924 ui_out_text (uiout, ".\n");
2925 }
2926 else
2927 {
2928 if (ui_out_is_mi_like_p (uiout))
2929 ui_out_field_string
2930 (uiout, "reason",
2931 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
2932 ui_out_text (uiout, "\nProgram exited normally.\n");
2933 }
2934 break;
2935 case SIGNAL_RECEIVED:
2936 /* Signal received. The signal table tells us to print about
2937 it. */
2938 annotate_signal ();
2939 ui_out_text (uiout, "\nProgram received signal ");
2940 annotate_signal_name ();
2941 if (ui_out_is_mi_like_p (uiout))
2942 ui_out_field_string
2943 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
2944 ui_out_field_string (uiout, "signal-name",
2945 target_signal_to_name (stop_info));
2946 annotate_signal_name_end ();
2947 ui_out_text (uiout, ", ");
2948 annotate_signal_string ();
2949 ui_out_field_string (uiout, "signal-meaning",
2950 target_signal_to_string (stop_info));
2951 annotate_signal_string_end ();
2952 ui_out_text (uiout, ".\n");
2953 break;
2954 default:
2955 internal_error (__FILE__, __LINE__,
2956 _("print_stop_reason: unrecognized enum value"));
2957 break;
2958 }
2959 }
2960 \f
2961
2962 /* Here to return control to GDB when the inferior stops for real.
2963 Print appropriate messages, remove breakpoints, give terminal our modes.
2964
2965 STOP_PRINT_FRAME nonzero means print the executing frame
2966 (pc, function, args, file, line number and line text).
2967 BREAKPOINTS_FAILED nonzero means stop was due to error
2968 attempting to insert breakpoints. */
2969
2970 void
2971 normal_stop (void)
2972 {
2973 struct target_waitstatus last;
2974 ptid_t last_ptid;
2975
2976 get_last_target_status (&last_ptid, &last);
2977
2978 /* As with the notification of thread events, we want to delay
2979 notifying the user that we've switched thread context until
2980 the inferior actually stops.
2981
2982 There's no point in saying anything if the inferior has exited.
2983 Note that SIGNALLED here means "exited with a signal", not
2984 "received a signal". */
2985 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
2986 && target_has_execution
2987 && last.kind != TARGET_WAITKIND_SIGNALLED
2988 && last.kind != TARGET_WAITKIND_EXITED)
2989 {
2990 target_terminal_ours_for_output ();
2991 printf_filtered (_("[Switching to %s]\n"),
2992 target_pid_or_tid_to_str (inferior_ptid));
2993 previous_inferior_ptid = inferior_ptid;
2994 }
2995
2996 /* NOTE drow/2004-01-17: Is this still necessary? */
2997 /* Make sure that the current_frame's pc is correct. This
2998 is a correction for setting up the frame info before doing
2999 DECR_PC_AFTER_BREAK */
3000 if (target_has_execution)
3001 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3002 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
3003 frame code to check for this and sort out any resultant mess.
3004 DECR_PC_AFTER_BREAK needs to just go away. */
3005 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3006
3007 if (target_has_execution && breakpoints_inserted)
3008 {
3009 if (remove_breakpoints ())
3010 {
3011 target_terminal_ours_for_output ();
3012 printf_filtered (_("\
3013 Cannot remove breakpoints because program is no longer writable.\n\
3014 It might be running in another process.\n\
3015 Further execution is probably impossible.\n"));
3016 }
3017 }
3018 breakpoints_inserted = 0;
3019
3020 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3021 Delete any breakpoint that is to be deleted at the next stop. */
3022
3023 breakpoint_auto_delete (stop_bpstat);
3024
3025 /* If an auto-display called a function and that got a signal,
3026 delete that auto-display to avoid an infinite recursion. */
3027
3028 if (stopped_by_random_signal)
3029 disable_current_display ();
3030
3031 /* Don't print a message if in the middle of doing a "step n"
3032 operation for n > 1 */
3033 if (step_multi && stop_step)
3034 goto done;
3035
3036 target_terminal_ours ();
3037
3038 /* Look up the hook_stop and run it (CLI internally handles problem
3039 of stop_command's pre-hook not existing). */
3040 if (stop_command)
3041 catch_errors (hook_stop_stub, stop_command,
3042 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3043
3044 if (!target_has_stack)
3045 {
3046
3047 goto done;
3048 }
3049
3050 /* Select innermost stack frame - i.e., current frame is frame 0,
3051 and current location is based on that.
3052 Don't do this on return from a stack dummy routine,
3053 or if the program has exited. */
3054
3055 if (!stop_stack_dummy)
3056 {
3057 select_frame (get_current_frame ());
3058
3059 /* Print current location without a level number, if
3060 we have changed functions or hit a breakpoint.
3061 Print source line if we have one.
3062 bpstat_print() contains the logic deciding in detail
3063 what to print, based on the event(s) that just occurred. */
3064
3065 if (stop_print_frame && deprecated_selected_frame)
3066 {
3067 int bpstat_ret;
3068 int source_flag;
3069 int do_frame_printing = 1;
3070
3071 bpstat_ret = bpstat_print (stop_bpstat);
3072 switch (bpstat_ret)
3073 {
3074 case PRINT_UNKNOWN:
3075 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3076 (or should) carry around the function and does (or
3077 should) use that when doing a frame comparison. */
3078 if (stop_step
3079 && frame_id_eq (step_frame_id,
3080 get_frame_id (get_current_frame ()))
3081 && step_start_function == find_pc_function (stop_pc))
3082 source_flag = SRC_LINE; /* finished step, just print source line */
3083 else
3084 source_flag = SRC_AND_LOC; /* print location and source line */
3085 break;
3086 case PRINT_SRC_AND_LOC:
3087 source_flag = SRC_AND_LOC; /* print location and source line */
3088 break;
3089 case PRINT_SRC_ONLY:
3090 source_flag = SRC_LINE;
3091 break;
3092 case PRINT_NOTHING:
3093 source_flag = SRC_LINE; /* something bogus */
3094 do_frame_printing = 0;
3095 break;
3096 default:
3097 internal_error (__FILE__, __LINE__, _("Unknown value."));
3098 }
3099 /* For mi, have the same behavior every time we stop:
3100 print everything but the source line. */
3101 if (ui_out_is_mi_like_p (uiout))
3102 source_flag = LOC_AND_ADDRESS;
3103
3104 if (ui_out_is_mi_like_p (uiout))
3105 ui_out_field_int (uiout, "thread-id",
3106 pid_to_thread_id (inferior_ptid));
3107 /* The behavior of this routine with respect to the source
3108 flag is:
3109 SRC_LINE: Print only source line
3110 LOCATION: Print only location
3111 SRC_AND_LOC: Print location and source line */
3112 if (do_frame_printing)
3113 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3114
3115 /* Display the auto-display expressions. */
3116 do_displays ();
3117 }
3118 }
3119
3120 /* Save the function value return registers, if we care.
3121 We might be about to restore their previous contents. */
3122 if (proceed_to_finish)
3123 /* NB: The copy goes through to the target picking up the value of
3124 all the registers. */
3125 regcache_cpy (stop_registers, current_regcache);
3126
3127 if (stop_stack_dummy)
3128 {
3129 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3130 ends with a setting of the current frame, so we can use that
3131 next. */
3132 frame_pop (get_current_frame ());
3133 /* Set stop_pc to what it was before we called the function.
3134 Can't rely on restore_inferior_status because that only gets
3135 called if we don't stop in the called function. */
3136 stop_pc = read_pc ();
3137 select_frame (get_current_frame ());
3138 }
3139
3140 done:
3141 annotate_stopped ();
3142 observer_notify_normal_stop (stop_bpstat);
3143 }
3144
3145 static int
3146 hook_stop_stub (void *cmd)
3147 {
3148 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3149 return (0);
3150 }
3151 \f
3152 int
3153 signal_stop_state (int signo)
3154 {
3155 return signal_stop[signo];
3156 }
3157
3158 int
3159 signal_print_state (int signo)
3160 {
3161 return signal_print[signo];
3162 }
3163
3164 int
3165 signal_pass_state (int signo)
3166 {
3167 return signal_program[signo];
3168 }
3169
3170 int
3171 signal_stop_update (int signo, int state)
3172 {
3173 int ret = signal_stop[signo];
3174 signal_stop[signo] = state;
3175 return ret;
3176 }
3177
3178 int
3179 signal_print_update (int signo, int state)
3180 {
3181 int ret = signal_print[signo];
3182 signal_print[signo] = state;
3183 return ret;
3184 }
3185
3186 int
3187 signal_pass_update (int signo, int state)
3188 {
3189 int ret = signal_program[signo];
3190 signal_program[signo] = state;
3191 return ret;
3192 }
3193
3194 static void
3195 sig_print_header (void)
3196 {
3197 printf_filtered (_("\
3198 Signal Stop\tPrint\tPass to program\tDescription\n"));
3199 }
3200
3201 static void
3202 sig_print_info (enum target_signal oursig)
3203 {
3204 char *name = target_signal_to_name (oursig);
3205 int name_padding = 13 - strlen (name);
3206
3207 if (name_padding <= 0)
3208 name_padding = 0;
3209
3210 printf_filtered ("%s", name);
3211 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3212 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3213 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3214 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3215 printf_filtered ("%s\n", target_signal_to_string (oursig));
3216 }
3217
3218 /* Specify how various signals in the inferior should be handled. */
3219
3220 static void
3221 handle_command (char *args, int from_tty)
3222 {
3223 char **argv;
3224 int digits, wordlen;
3225 int sigfirst, signum, siglast;
3226 enum target_signal oursig;
3227 int allsigs;
3228 int nsigs;
3229 unsigned char *sigs;
3230 struct cleanup *old_chain;
3231
3232 if (args == NULL)
3233 {
3234 error_no_arg (_("signal to handle"));
3235 }
3236
3237 /* Allocate and zero an array of flags for which signals to handle. */
3238
3239 nsigs = (int) TARGET_SIGNAL_LAST;
3240 sigs = (unsigned char *) alloca (nsigs);
3241 memset (sigs, 0, nsigs);
3242
3243 /* Break the command line up into args. */
3244
3245 argv = buildargv (args);
3246 if (argv == NULL)
3247 {
3248 nomem (0);
3249 }
3250 old_chain = make_cleanup_freeargv (argv);
3251
3252 /* Walk through the args, looking for signal oursigs, signal names, and
3253 actions. Signal numbers and signal names may be interspersed with
3254 actions, with the actions being performed for all signals cumulatively
3255 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3256
3257 while (*argv != NULL)
3258 {
3259 wordlen = strlen (*argv);
3260 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3261 {;
3262 }
3263 allsigs = 0;
3264 sigfirst = siglast = -1;
3265
3266 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3267 {
3268 /* Apply action to all signals except those used by the
3269 debugger. Silently skip those. */
3270 allsigs = 1;
3271 sigfirst = 0;
3272 siglast = nsigs - 1;
3273 }
3274 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3275 {
3276 SET_SIGS (nsigs, sigs, signal_stop);
3277 SET_SIGS (nsigs, sigs, signal_print);
3278 }
3279 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3280 {
3281 UNSET_SIGS (nsigs, sigs, signal_program);
3282 }
3283 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3284 {
3285 SET_SIGS (nsigs, sigs, signal_print);
3286 }
3287 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3288 {
3289 SET_SIGS (nsigs, sigs, signal_program);
3290 }
3291 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3292 {
3293 UNSET_SIGS (nsigs, sigs, signal_stop);
3294 }
3295 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3296 {
3297 SET_SIGS (nsigs, sigs, signal_program);
3298 }
3299 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3300 {
3301 UNSET_SIGS (nsigs, sigs, signal_print);
3302 UNSET_SIGS (nsigs, sigs, signal_stop);
3303 }
3304 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3305 {
3306 UNSET_SIGS (nsigs, sigs, signal_program);
3307 }
3308 else if (digits > 0)
3309 {
3310 /* It is numeric. The numeric signal refers to our own
3311 internal signal numbering from target.h, not to host/target
3312 signal number. This is a feature; users really should be
3313 using symbolic names anyway, and the common ones like
3314 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3315
3316 sigfirst = siglast = (int)
3317 target_signal_from_command (atoi (*argv));
3318 if ((*argv)[digits] == '-')
3319 {
3320 siglast = (int)
3321 target_signal_from_command (atoi ((*argv) + digits + 1));
3322 }
3323 if (sigfirst > siglast)
3324 {
3325 /* Bet he didn't figure we'd think of this case... */
3326 signum = sigfirst;
3327 sigfirst = siglast;
3328 siglast = signum;
3329 }
3330 }
3331 else
3332 {
3333 oursig = target_signal_from_name (*argv);
3334 if (oursig != TARGET_SIGNAL_UNKNOWN)
3335 {
3336 sigfirst = siglast = (int) oursig;
3337 }
3338 else
3339 {
3340 /* Not a number and not a recognized flag word => complain. */
3341 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3342 }
3343 }
3344
3345 /* If any signal numbers or symbol names were found, set flags for
3346 which signals to apply actions to. */
3347
3348 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3349 {
3350 switch ((enum target_signal) signum)
3351 {
3352 case TARGET_SIGNAL_TRAP:
3353 case TARGET_SIGNAL_INT:
3354 if (!allsigs && !sigs[signum])
3355 {
3356 if (query ("%s is used by the debugger.\n\
3357 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3358 {
3359 sigs[signum] = 1;
3360 }
3361 else
3362 {
3363 printf_unfiltered (_("Not confirmed, unchanged.\n"));
3364 gdb_flush (gdb_stdout);
3365 }
3366 }
3367 break;
3368 case TARGET_SIGNAL_0:
3369 case TARGET_SIGNAL_DEFAULT:
3370 case TARGET_SIGNAL_UNKNOWN:
3371 /* Make sure that "all" doesn't print these. */
3372 break;
3373 default:
3374 sigs[signum] = 1;
3375 break;
3376 }
3377 }
3378
3379 argv++;
3380 }
3381
3382 target_notice_signals (inferior_ptid);
3383
3384 if (from_tty)
3385 {
3386 /* Show the results. */
3387 sig_print_header ();
3388 for (signum = 0; signum < nsigs; signum++)
3389 {
3390 if (sigs[signum])
3391 {
3392 sig_print_info (signum);
3393 }
3394 }
3395 }
3396
3397 do_cleanups (old_chain);
3398 }
3399
3400 static void
3401 xdb_handle_command (char *args, int from_tty)
3402 {
3403 char **argv;
3404 struct cleanup *old_chain;
3405
3406 /* Break the command line up into args. */
3407
3408 argv = buildargv (args);
3409 if (argv == NULL)
3410 {
3411 nomem (0);
3412 }
3413 old_chain = make_cleanup_freeargv (argv);
3414 if (argv[1] != (char *) NULL)
3415 {
3416 char *argBuf;
3417 int bufLen;
3418
3419 bufLen = strlen (argv[0]) + 20;
3420 argBuf = (char *) xmalloc (bufLen);
3421 if (argBuf)
3422 {
3423 int validFlag = 1;
3424 enum target_signal oursig;
3425
3426 oursig = target_signal_from_name (argv[0]);
3427 memset (argBuf, 0, bufLen);
3428 if (strcmp (argv[1], "Q") == 0)
3429 sprintf (argBuf, "%s %s", argv[0], "noprint");
3430 else
3431 {
3432 if (strcmp (argv[1], "s") == 0)
3433 {
3434 if (!signal_stop[oursig])
3435 sprintf (argBuf, "%s %s", argv[0], "stop");
3436 else
3437 sprintf (argBuf, "%s %s", argv[0], "nostop");
3438 }
3439 else if (strcmp (argv[1], "i") == 0)
3440 {
3441 if (!signal_program[oursig])
3442 sprintf (argBuf, "%s %s", argv[0], "pass");
3443 else
3444 sprintf (argBuf, "%s %s", argv[0], "nopass");
3445 }
3446 else if (strcmp (argv[1], "r") == 0)
3447 {
3448 if (!signal_print[oursig])
3449 sprintf (argBuf, "%s %s", argv[0], "print");
3450 else
3451 sprintf (argBuf, "%s %s", argv[0], "noprint");
3452 }
3453 else
3454 validFlag = 0;
3455 }
3456 if (validFlag)
3457 handle_command (argBuf, from_tty);
3458 else
3459 printf_filtered (_("Invalid signal handling flag.\n"));
3460 if (argBuf)
3461 xfree (argBuf);
3462 }
3463 }
3464 do_cleanups (old_chain);
3465 }
3466
3467 /* Print current contents of the tables set by the handle command.
3468 It is possible we should just be printing signals actually used
3469 by the current target (but for things to work right when switching
3470 targets, all signals should be in the signal tables). */
3471
3472 static void
3473 signals_info (char *signum_exp, int from_tty)
3474 {
3475 enum target_signal oursig;
3476 sig_print_header ();
3477
3478 if (signum_exp)
3479 {
3480 /* First see if this is a symbol name. */
3481 oursig = target_signal_from_name (signum_exp);
3482 if (oursig == TARGET_SIGNAL_UNKNOWN)
3483 {
3484 /* No, try numeric. */
3485 oursig =
3486 target_signal_from_command (parse_and_eval_long (signum_exp));
3487 }
3488 sig_print_info (oursig);
3489 return;
3490 }
3491
3492 printf_filtered ("\n");
3493 /* These ugly casts brought to you by the native VAX compiler. */
3494 for (oursig = TARGET_SIGNAL_FIRST;
3495 (int) oursig < (int) TARGET_SIGNAL_LAST;
3496 oursig = (enum target_signal) ((int) oursig + 1))
3497 {
3498 QUIT;
3499
3500 if (oursig != TARGET_SIGNAL_UNKNOWN
3501 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3502 sig_print_info (oursig);
3503 }
3504
3505 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
3506 }
3507 \f
3508 struct inferior_status
3509 {
3510 enum target_signal stop_signal;
3511 CORE_ADDR stop_pc;
3512 bpstat stop_bpstat;
3513 int stop_step;
3514 int stop_stack_dummy;
3515 int stopped_by_random_signal;
3516 int trap_expected;
3517 CORE_ADDR step_range_start;
3518 CORE_ADDR step_range_end;
3519 struct frame_id step_frame_id;
3520 enum step_over_calls_kind step_over_calls;
3521 CORE_ADDR step_resume_break_address;
3522 int stop_after_trap;
3523 int stop_soon;
3524 struct regcache *stop_registers;
3525
3526 /* These are here because if call_function_by_hand has written some
3527 registers and then decides to call error(), we better not have changed
3528 any registers. */
3529 struct regcache *registers;
3530
3531 /* A frame unique identifier. */
3532 struct frame_id selected_frame_id;
3533
3534 int breakpoint_proceeded;
3535 int restore_stack_info;
3536 int proceed_to_finish;
3537 };
3538
3539 void
3540 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3541 LONGEST val)
3542 {
3543 int size = register_size (current_gdbarch, regno);
3544 void *buf = alloca (size);
3545 store_signed_integer (buf, size, val);
3546 regcache_raw_write (inf_status->registers, regno, buf);
3547 }
3548
3549 /* Save all of the information associated with the inferior<==>gdb
3550 connection. INF_STATUS is a pointer to a "struct inferior_status"
3551 (defined in inferior.h). */
3552
3553 struct inferior_status *
3554 save_inferior_status (int restore_stack_info)
3555 {
3556 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3557
3558 inf_status->stop_signal = stop_signal;
3559 inf_status->stop_pc = stop_pc;
3560 inf_status->stop_step = stop_step;
3561 inf_status->stop_stack_dummy = stop_stack_dummy;
3562 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3563 inf_status->trap_expected = trap_expected;
3564 inf_status->step_range_start = step_range_start;
3565 inf_status->step_range_end = step_range_end;
3566 inf_status->step_frame_id = step_frame_id;
3567 inf_status->step_over_calls = step_over_calls;
3568 inf_status->stop_after_trap = stop_after_trap;
3569 inf_status->stop_soon = stop_soon;
3570 /* Save original bpstat chain here; replace it with copy of chain.
3571 If caller's caller is walking the chain, they'll be happier if we
3572 hand them back the original chain when restore_inferior_status is
3573 called. */
3574 inf_status->stop_bpstat = stop_bpstat;
3575 stop_bpstat = bpstat_copy (stop_bpstat);
3576 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3577 inf_status->restore_stack_info = restore_stack_info;
3578 inf_status->proceed_to_finish = proceed_to_finish;
3579
3580 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
3581
3582 inf_status->registers = regcache_dup (current_regcache);
3583
3584 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
3585 return inf_status;
3586 }
3587
3588 static int
3589 restore_selected_frame (void *args)
3590 {
3591 struct frame_id *fid = (struct frame_id *) args;
3592 struct frame_info *frame;
3593
3594 frame = frame_find_by_id (*fid);
3595
3596 /* If inf_status->selected_frame_id is NULL, there was no previously
3597 selected frame. */
3598 if (frame == NULL)
3599 {
3600 warning (_("Unable to restore previously selected frame."));
3601 return 0;
3602 }
3603
3604 select_frame (frame);
3605
3606 return (1);
3607 }
3608
3609 void
3610 restore_inferior_status (struct inferior_status *inf_status)
3611 {
3612 stop_signal = inf_status->stop_signal;
3613 stop_pc = inf_status->stop_pc;
3614 stop_step = inf_status->stop_step;
3615 stop_stack_dummy = inf_status->stop_stack_dummy;
3616 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3617 trap_expected = inf_status->trap_expected;
3618 step_range_start = inf_status->step_range_start;
3619 step_range_end = inf_status->step_range_end;
3620 step_frame_id = inf_status->step_frame_id;
3621 step_over_calls = inf_status->step_over_calls;
3622 stop_after_trap = inf_status->stop_after_trap;
3623 stop_soon = inf_status->stop_soon;
3624 bpstat_clear (&stop_bpstat);
3625 stop_bpstat = inf_status->stop_bpstat;
3626 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3627 proceed_to_finish = inf_status->proceed_to_finish;
3628
3629 /* FIXME: Is the restore of stop_registers always needed. */
3630 regcache_xfree (stop_registers);
3631 stop_registers = inf_status->stop_registers;
3632
3633 /* The inferior can be gone if the user types "print exit(0)"
3634 (and perhaps other times). */
3635 if (target_has_execution)
3636 /* NB: The register write goes through to the target. */
3637 regcache_cpy (current_regcache, inf_status->registers);
3638 regcache_xfree (inf_status->registers);
3639
3640 /* FIXME: If we are being called after stopping in a function which
3641 is called from gdb, we should not be trying to restore the
3642 selected frame; it just prints a spurious error message (The
3643 message is useful, however, in detecting bugs in gdb (like if gdb
3644 clobbers the stack)). In fact, should we be restoring the
3645 inferior status at all in that case? . */
3646
3647 if (target_has_stack && inf_status->restore_stack_info)
3648 {
3649 /* The point of catch_errors is that if the stack is clobbered,
3650 walking the stack might encounter a garbage pointer and
3651 error() trying to dereference it. */
3652 if (catch_errors
3653 (restore_selected_frame, &inf_status->selected_frame_id,
3654 "Unable to restore previously selected frame:\n",
3655 RETURN_MASK_ERROR) == 0)
3656 /* Error in restoring the selected frame. Select the innermost
3657 frame. */
3658 select_frame (get_current_frame ());
3659
3660 }
3661
3662 xfree (inf_status);
3663 }
3664
3665 static void
3666 do_restore_inferior_status_cleanup (void *sts)
3667 {
3668 restore_inferior_status (sts);
3669 }
3670
3671 struct cleanup *
3672 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3673 {
3674 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3675 }
3676
3677 void
3678 discard_inferior_status (struct inferior_status *inf_status)
3679 {
3680 /* See save_inferior_status for info on stop_bpstat. */
3681 bpstat_clear (&inf_status->stop_bpstat);
3682 regcache_xfree (inf_status->registers);
3683 regcache_xfree (inf_status->stop_registers);
3684 xfree (inf_status);
3685 }
3686
3687 int
3688 inferior_has_forked (int pid, int *child_pid)
3689 {
3690 struct target_waitstatus last;
3691 ptid_t last_ptid;
3692
3693 get_last_target_status (&last_ptid, &last);
3694
3695 if (last.kind != TARGET_WAITKIND_FORKED)
3696 return 0;
3697
3698 if (ptid_get_pid (last_ptid) != pid)
3699 return 0;
3700
3701 *child_pid = last.value.related_pid;
3702 return 1;
3703 }
3704
3705 int
3706 inferior_has_vforked (int pid, int *child_pid)
3707 {
3708 struct target_waitstatus last;
3709 ptid_t last_ptid;
3710
3711 get_last_target_status (&last_ptid, &last);
3712
3713 if (last.kind != TARGET_WAITKIND_VFORKED)
3714 return 0;
3715
3716 if (ptid_get_pid (last_ptid) != pid)
3717 return 0;
3718
3719 *child_pid = last.value.related_pid;
3720 return 1;
3721 }
3722
3723 int
3724 inferior_has_execd (int pid, char **execd_pathname)
3725 {
3726 struct target_waitstatus last;
3727 ptid_t last_ptid;
3728
3729 get_last_target_status (&last_ptid, &last);
3730
3731 if (last.kind != TARGET_WAITKIND_EXECD)
3732 return 0;
3733
3734 if (ptid_get_pid (last_ptid) != pid)
3735 return 0;
3736
3737 *execd_pathname = xstrdup (last.value.execd_pathname);
3738 return 1;
3739 }
3740
3741 /* Oft used ptids */
3742 ptid_t null_ptid;
3743 ptid_t minus_one_ptid;
3744
3745 /* Create a ptid given the necessary PID, LWP, and TID components. */
3746
3747 ptid_t
3748 ptid_build (int pid, long lwp, long tid)
3749 {
3750 ptid_t ptid;
3751
3752 ptid.pid = pid;
3753 ptid.lwp = lwp;
3754 ptid.tid = tid;
3755 return ptid;
3756 }
3757
3758 /* Create a ptid from just a pid. */
3759
3760 ptid_t
3761 pid_to_ptid (int pid)
3762 {
3763 return ptid_build (pid, 0, 0);
3764 }
3765
3766 /* Fetch the pid (process id) component from a ptid. */
3767
3768 int
3769 ptid_get_pid (ptid_t ptid)
3770 {
3771 return ptid.pid;
3772 }
3773
3774 /* Fetch the lwp (lightweight process) component from a ptid. */
3775
3776 long
3777 ptid_get_lwp (ptid_t ptid)
3778 {
3779 return ptid.lwp;
3780 }
3781
3782 /* Fetch the tid (thread id) component from a ptid. */
3783
3784 long
3785 ptid_get_tid (ptid_t ptid)
3786 {
3787 return ptid.tid;
3788 }
3789
3790 /* ptid_equal() is used to test equality of two ptids. */
3791
3792 int
3793 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3794 {
3795 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3796 && ptid1.tid == ptid2.tid);
3797 }
3798
3799 /* restore_inferior_ptid() will be used by the cleanup machinery
3800 to restore the inferior_ptid value saved in a call to
3801 save_inferior_ptid(). */
3802
3803 static void
3804 restore_inferior_ptid (void *arg)
3805 {
3806 ptid_t *saved_ptid_ptr = arg;
3807 inferior_ptid = *saved_ptid_ptr;
3808 xfree (arg);
3809 }
3810
3811 /* Save the value of inferior_ptid so that it may be restored by a
3812 later call to do_cleanups(). Returns the struct cleanup pointer
3813 needed for later doing the cleanup. */
3814
3815 struct cleanup *
3816 save_inferior_ptid (void)
3817 {
3818 ptid_t *saved_ptid_ptr;
3819
3820 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3821 *saved_ptid_ptr = inferior_ptid;
3822 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3823 }
3824 \f
3825
3826 static void
3827 build_infrun (void)
3828 {
3829 stop_registers = regcache_xmalloc (current_gdbarch);
3830 }
3831
3832 void
3833 _initialize_infrun (void)
3834 {
3835 int i;
3836 int numsigs;
3837 struct cmd_list_element *c;
3838
3839 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3840 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
3841
3842 add_info ("signals", signals_info, _("\
3843 What debugger does when program gets various signals.\n\
3844 Specify a signal as argument to print info on that signal only."));
3845 add_info_alias ("handle", "signals", 0);
3846
3847 add_com ("handle", class_run, handle_command, _("\
3848 Specify how to handle a signal.\n\
3849 Args are signals and actions to apply to those signals.\n\
3850 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3851 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3852 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3853 The special arg \"all\" is recognized to mean all signals except those\n\
3854 used by the debugger, typically SIGTRAP and SIGINT.\n\
3855 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3856 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3857 Stop means reenter debugger if this signal happens (implies print).\n\
3858 Print means print a message if this signal happens.\n\
3859 Pass means let program see this signal; otherwise program doesn't know.\n\
3860 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3861 Pass and Stop may be combined."));
3862 if (xdb_commands)
3863 {
3864 add_com ("lz", class_info, signals_info, _("\
3865 What debugger does when program gets various signals.\n\
3866 Specify a signal as argument to print info on that signal only."));
3867 add_com ("z", class_run, xdb_handle_command, _("\
3868 Specify how to handle a signal.\n\
3869 Args are signals and actions to apply to those signals.\n\
3870 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3871 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3872 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3873 The special arg \"all\" is recognized to mean all signals except those\n\
3874 used by the debugger, typically SIGTRAP and SIGINT.\n\
3875 Recognized actions include \"s\" (toggles between stop and nostop), \n\
3876 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3877 nopass), \"Q\" (noprint)\n\
3878 Stop means reenter debugger if this signal happens (implies print).\n\
3879 Print means print a message if this signal happens.\n\
3880 Pass means let program see this signal; otherwise program doesn't know.\n\
3881 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3882 Pass and Stop may be combined."));
3883 }
3884
3885 if (!dbx_commands)
3886 stop_command = add_cmd ("stop", class_obscure,
3887 not_just_help_class_command, _("\
3888 There is no `stop' command, but you can set a hook on `stop'.\n\
3889 This allows you to set a list of commands to be run each time execution\n\
3890 of the program stops."), &cmdlist);
3891
3892 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
3893 Set inferior debugging."), _("\
3894 Show inferior debugging."), _("\
3895 When non-zero, inferior specific debugging is enabled."),
3896 NULL,
3897 show_debug_infrun,
3898 &setdebuglist, &showdebuglist);
3899
3900 numsigs = (int) TARGET_SIGNAL_LAST;
3901 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
3902 signal_print = (unsigned char *)
3903 xmalloc (sizeof (signal_print[0]) * numsigs);
3904 signal_program = (unsigned char *)
3905 xmalloc (sizeof (signal_program[0]) * numsigs);
3906 for (i = 0; i < numsigs; i++)
3907 {
3908 signal_stop[i] = 1;
3909 signal_print[i] = 1;
3910 signal_program[i] = 1;
3911 }
3912
3913 /* Signals caused by debugger's own actions
3914 should not be given to the program afterwards. */
3915 signal_program[TARGET_SIGNAL_TRAP] = 0;
3916 signal_program[TARGET_SIGNAL_INT] = 0;
3917
3918 /* Signals that are not errors should not normally enter the debugger. */
3919 signal_stop[TARGET_SIGNAL_ALRM] = 0;
3920 signal_print[TARGET_SIGNAL_ALRM] = 0;
3921 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
3922 signal_print[TARGET_SIGNAL_VTALRM] = 0;
3923 signal_stop[TARGET_SIGNAL_PROF] = 0;
3924 signal_print[TARGET_SIGNAL_PROF] = 0;
3925 signal_stop[TARGET_SIGNAL_CHLD] = 0;
3926 signal_print[TARGET_SIGNAL_CHLD] = 0;
3927 signal_stop[TARGET_SIGNAL_IO] = 0;
3928 signal_print[TARGET_SIGNAL_IO] = 0;
3929 signal_stop[TARGET_SIGNAL_POLL] = 0;
3930 signal_print[TARGET_SIGNAL_POLL] = 0;
3931 signal_stop[TARGET_SIGNAL_URG] = 0;
3932 signal_print[TARGET_SIGNAL_URG] = 0;
3933 signal_stop[TARGET_SIGNAL_WINCH] = 0;
3934 signal_print[TARGET_SIGNAL_WINCH] = 0;
3935
3936 /* These signals are used internally by user-level thread
3937 implementations. (See signal(5) on Solaris.) Like the above
3938 signals, a healthy program receives and handles them as part of
3939 its normal operation. */
3940 signal_stop[TARGET_SIGNAL_LWP] = 0;
3941 signal_print[TARGET_SIGNAL_LWP] = 0;
3942 signal_stop[TARGET_SIGNAL_WAITING] = 0;
3943 signal_print[TARGET_SIGNAL_WAITING] = 0;
3944 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
3945 signal_print[TARGET_SIGNAL_CANCEL] = 0;
3946
3947 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
3948 &stop_on_solib_events, _("\
3949 Set stopping for shared library events."), _("\
3950 Show stopping for shared library events."), _("\
3951 If nonzero, gdb will give control to the user when the dynamic linker\n\
3952 notifies gdb of shared library events. The most common event of interest\n\
3953 to the user would be loading/unloading of a new library."),
3954 NULL,
3955 show_stop_on_solib_events,
3956 &setlist, &showlist);
3957
3958 add_setshow_enum_cmd ("follow-fork-mode", class_run,
3959 follow_fork_mode_kind_names,
3960 &follow_fork_mode_string, _("\
3961 Set debugger response to a program call of fork or vfork."), _("\
3962 Show debugger response to a program call of fork or vfork."), _("\
3963 A fork or vfork creates a new process. follow-fork-mode can be:\n\
3964 parent - the original process is debugged after a fork\n\
3965 child - the new process is debugged after a fork\n\
3966 The unfollowed process will continue to run.\n\
3967 By default, the debugger will follow the parent process."),
3968 NULL,
3969 show_follow_fork_mode_string,
3970 &setlist, &showlist);
3971
3972 add_setshow_enum_cmd ("scheduler-locking", class_run,
3973 scheduler_enums, &scheduler_mode, _("\
3974 Set mode for locking scheduler during execution."), _("\
3975 Show mode for locking scheduler during execution."), _("\
3976 off == no locking (threads may preempt at any time)\n\
3977 on == full locking (no thread except the current thread may run)\n\
3978 step == scheduler locked during every single-step operation.\n\
3979 In this mode, no other thread may run during a step command.\n\
3980 Other threads may run while stepping over a function call ('next')."),
3981 set_schedlock_func, /* traps on target vector */
3982 show_scheduler_mode,
3983 &setlist, &showlist);
3984
3985 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
3986 Set mode of the step operation."), _("\
3987 Show mode of the step operation."), _("\
3988 When set, doing a step over a function without debug line information\n\
3989 will stop at the first instruction of that function. Otherwise, the\n\
3990 function is skipped and the step command stops at a different source line."),
3991 NULL,
3992 show_step_stop_if_no_debug,
3993 &setlist, &showlist);
3994
3995 /* ptid initializations */
3996 null_ptid = ptid_build (0, 0, 0);
3997 minus_one_ptid = ptid_build (-1, 0, 0);
3998 inferior_ptid = null_ptid;
3999 target_last_wait_ptid = minus_one_ptid;
4000 }
This page took 0.120387 seconds and 4 git commands to generate.