1 /* Target-struct-independent code to start (run) and stop an inferior
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008, 2009, 2010 Free Software Foundation, Inc.
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "gdb_string.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
34 #include "cli/cli-script.h"
36 #include "gdbthread.h"
48 #include "gdb_assert.h"
49 #include "mi/mi-common.h"
50 #include "event-top.h"
52 #include "inline-frame.h"
54 #include "tracepoint.h"
56 /* Prototypes for local functions */
58 static void signals_info (char *, int);
60 static void handle_command (char *, int);
62 static void sig_print_info (enum target_signal
);
64 static void sig_print_header (void);
66 static void resume_cleanups (void *);
68 static int hook_stop_stub (void *);
70 static int restore_selected_frame (void *);
72 static int follow_fork (void);
74 static void set_schedlock_func (char *args
, int from_tty
,
75 struct cmd_list_element
*c
);
77 static int currently_stepping (struct thread_info
*tp
);
79 static int currently_stepping_or_nexting_callback (struct thread_info
*tp
,
82 static void xdb_handle_command (char *args
, int from_tty
);
84 static int prepare_to_proceed (int);
86 void _initialize_infrun (void);
88 void nullify_last_target_wait_ptid (void);
90 /* When set, stop the 'step' command if we enter a function which has
91 no line number information. The normal behavior is that we step
92 over such function. */
93 int step_stop_if_no_debug
= 0;
95 show_step_stop_if_no_debug (struct ui_file
*file
, int from_tty
,
96 struct cmd_list_element
*c
, const char *value
)
98 fprintf_filtered (file
, _("Mode of the step operation is %s.\n"), value
);
101 /* In asynchronous mode, but simulating synchronous execution. */
103 int sync_execution
= 0;
105 /* wait_for_inferior and normal_stop use this to notify the user
106 when the inferior stopped in a different thread than it had been
109 static ptid_t previous_inferior_ptid
;
111 /* Default behavior is to detach newly forked processes (legacy). */
114 int debug_displaced
= 0;
116 show_debug_displaced (struct ui_file
*file
, int from_tty
,
117 struct cmd_list_element
*c
, const char *value
)
119 fprintf_filtered (file
, _("Displace stepping debugging is %s.\n"), value
);
122 int debug_infrun
= 0;
124 show_debug_infrun (struct ui_file
*file
, int from_tty
,
125 struct cmd_list_element
*c
, const char *value
)
127 fprintf_filtered (file
, _("Inferior debugging is %s.\n"), value
);
130 /* If the program uses ELF-style shared libraries, then calls to
131 functions in shared libraries go through stubs, which live in a
132 table called the PLT (Procedure Linkage Table). The first time the
133 function is called, the stub sends control to the dynamic linker,
134 which looks up the function's real address, patches the stub so
135 that future calls will go directly to the function, and then passes
136 control to the function.
138 If we are stepping at the source level, we don't want to see any of
139 this --- we just want to skip over the stub and the dynamic linker.
140 The simple approach is to single-step until control leaves the
143 However, on some systems (e.g., Red Hat's 5.2 distribution) the
144 dynamic linker calls functions in the shared C library, so you
145 can't tell from the PC alone whether the dynamic linker is still
146 running. In this case, we use a step-resume breakpoint to get us
147 past the dynamic linker, as if we were using "next" to step over a
150 in_solib_dynsym_resolve_code() says whether we're in the dynamic
151 linker code or not. Normally, this means we single-step. However,
152 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
153 address where we can place a step-resume breakpoint to get past the
154 linker's symbol resolution function.
156 in_solib_dynsym_resolve_code() can generally be implemented in a
157 pretty portable way, by comparing the PC against the address ranges
158 of the dynamic linker's sections.
160 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
161 it depends on internal details of the dynamic linker. It's usually
162 not too hard to figure out where to put a breakpoint, but it
163 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
164 sanity checking. If it can't figure things out, returning zero and
165 getting the (possibly confusing) stepping behavior is better than
166 signalling an error, which will obscure the change in the
169 /* This function returns TRUE if pc is the address of an instruction
170 that lies within the dynamic linker (such as the event hook, or the
173 This function must be used only when a dynamic linker event has
174 been caught, and the inferior is being stepped out of the hook, or
175 undefined results are guaranteed. */
177 #ifndef SOLIB_IN_DYNAMIC_LINKER
178 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
181 /* "Observer mode" is somewhat like a more extreme version of
182 non-stop, in which all GDB operations that might affect the
183 target's execution have been disabled. */
185 static int non_stop_1
= 0;
187 int observer_mode
= 0;
188 static int observer_mode_1
= 0;
191 set_observer_mode (char *args
, int from_tty
,
192 struct cmd_list_element
*c
)
194 extern int pagination_enabled
;
196 if (target_has_execution
)
198 observer_mode_1
= observer_mode
;
199 error (_("Cannot change this setting while the inferior is running."));
202 observer_mode
= observer_mode_1
;
204 may_write_registers
= !observer_mode
;
205 may_write_memory
= !observer_mode
;
206 may_insert_breakpoints
= !observer_mode
;
207 may_insert_tracepoints
= !observer_mode
;
208 /* We can insert fast tracepoints in or out of observer mode,
209 but enable them if we're going into this mode. */
211 may_insert_fast_tracepoints
= 1;
212 may_stop
= !observer_mode
;
213 update_target_permissions ();
215 /* Going *into* observer mode we must force non-stop, then
216 going out we leave it that way. */
219 target_async_permitted
= 1;
220 pagination_enabled
= 0;
221 non_stop
= non_stop_1
= 1;
225 printf_filtered (_("Observer mode is now %s.\n"),
226 (observer_mode
? "on" : "off"));
230 show_observer_mode (struct ui_file
*file
, int from_tty
,
231 struct cmd_list_element
*c
, const char *value
)
233 fprintf_filtered (file
, _("Observer mode is %s.\n"), value
);
236 /* This updates the value of observer mode based on changes in
237 permissions. Note that we are deliberately ignoring the values of
238 may-write-registers and may-write-memory, since the user may have
239 reason to enable these during a session, for instance to turn on a
240 debugging-related global. */
243 update_observer_mode (void)
247 newval
= (!may_insert_breakpoints
248 && !may_insert_tracepoints
249 && may_insert_fast_tracepoints
253 /* Let the user know if things change. */
254 if (newval
!= observer_mode
)
255 printf_filtered (_("Observer mode is now %s.\n"),
256 (newval
? "on" : "off"));
258 observer_mode
= observer_mode_1
= newval
;
261 /* Tables of how to react to signals; the user sets them. */
263 static unsigned char *signal_stop
;
264 static unsigned char *signal_print
;
265 static unsigned char *signal_program
;
267 #define SET_SIGS(nsigs,sigs,flags) \
269 int signum = (nsigs); \
270 while (signum-- > 0) \
271 if ((sigs)[signum]) \
272 (flags)[signum] = 1; \
275 #define UNSET_SIGS(nsigs,sigs,flags) \
277 int signum = (nsigs); \
278 while (signum-- > 0) \
279 if ((sigs)[signum]) \
280 (flags)[signum] = 0; \
283 /* Value to pass to target_resume() to cause all threads to resume */
285 #define RESUME_ALL minus_one_ptid
287 /* Command list pointer for the "stop" placeholder. */
289 static struct cmd_list_element
*stop_command
;
291 /* Function inferior was in as of last step command. */
293 static struct symbol
*step_start_function
;
295 /* Nonzero if we want to give control to the user when we're notified
296 of shared library events by the dynamic linker. */
297 int stop_on_solib_events
;
299 show_stop_on_solib_events (struct ui_file
*file
, int from_tty
,
300 struct cmd_list_element
*c
, const char *value
)
302 fprintf_filtered (file
, _("Stopping for shared library events is %s.\n"),
306 /* Nonzero means expecting a trace trap
307 and should stop the inferior and return silently when it happens. */
311 /* Save register contents here when executing a "finish" command or are
312 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
313 Thus this contains the return value from the called function (assuming
314 values are returned in a register). */
316 struct regcache
*stop_registers
;
318 /* Nonzero after stop if current stack frame should be printed. */
320 static int stop_print_frame
;
322 /* This is a cached copy of the pid/waitstatus of the last event
323 returned by target_wait()/deprecated_target_wait_hook(). This
324 information is returned by get_last_target_status(). */
325 static ptid_t target_last_wait_ptid
;
326 static struct target_waitstatus target_last_waitstatus
;
328 static void context_switch (ptid_t ptid
);
330 void init_thread_stepping_state (struct thread_info
*tss
);
332 void init_infwait_state (void);
334 static const char follow_fork_mode_child
[] = "child";
335 static const char follow_fork_mode_parent
[] = "parent";
337 static const char *follow_fork_mode_kind_names
[] = {
338 follow_fork_mode_child
,
339 follow_fork_mode_parent
,
343 static const char *follow_fork_mode_string
= follow_fork_mode_parent
;
345 show_follow_fork_mode_string (struct ui_file
*file
, int from_tty
,
346 struct cmd_list_element
*c
, const char *value
)
348 fprintf_filtered (file
, _("\
349 Debugger response to a program call of fork or vfork is \"%s\".\n"),
354 /* Tell the target to follow the fork we're stopped at. Returns true
355 if the inferior should be resumed; false, if the target for some
356 reason decided it's best not to resume. */
361 int follow_child
= (follow_fork_mode_string
== follow_fork_mode_child
);
362 int should_resume
= 1;
363 struct thread_info
*tp
;
365 /* Copy user stepping state to the new inferior thread. FIXME: the
366 followed fork child thread should have a copy of most of the
367 parent thread structure's run control related fields, not just these.
368 Initialized to avoid "may be used uninitialized" warnings from gcc. */
369 struct breakpoint
*step_resume_breakpoint
= NULL
;
370 CORE_ADDR step_range_start
= 0;
371 CORE_ADDR step_range_end
= 0;
372 struct frame_id step_frame_id
= { 0 };
377 struct target_waitstatus wait_status
;
379 /* Get the last target status returned by target_wait(). */
380 get_last_target_status (&wait_ptid
, &wait_status
);
382 /* If not stopped at a fork event, then there's nothing else to
384 if (wait_status
.kind
!= TARGET_WAITKIND_FORKED
385 && wait_status
.kind
!= TARGET_WAITKIND_VFORKED
)
388 /* Check if we switched over from WAIT_PTID, since the event was
390 if (!ptid_equal (wait_ptid
, minus_one_ptid
)
391 && !ptid_equal (inferior_ptid
, wait_ptid
))
393 /* We did. Switch back to WAIT_PTID thread, to tell the
394 target to follow it (in either direction). We'll
395 afterwards refuse to resume, and inform the user what
397 switch_to_thread (wait_ptid
);
402 tp
= inferior_thread ();
404 /* If there were any forks/vforks that were caught and are now to be
405 followed, then do so now. */
406 switch (tp
->pending_follow
.kind
)
408 case TARGET_WAITKIND_FORKED
:
409 case TARGET_WAITKIND_VFORKED
:
411 ptid_t parent
, child
;
413 /* If the user did a next/step, etc, over a fork call,
414 preserve the stepping state in the fork child. */
415 if (follow_child
&& should_resume
)
417 step_resume_breakpoint
418 = clone_momentary_breakpoint (tp
->step_resume_breakpoint
);
419 step_range_start
= tp
->step_range_start
;
420 step_range_end
= tp
->step_range_end
;
421 step_frame_id
= tp
->step_frame_id
;
423 /* For now, delete the parent's sr breakpoint, otherwise,
424 parent/child sr breakpoints are considered duplicates,
425 and the child version will not be installed. Remove
426 this when the breakpoints module becomes aware of
427 inferiors and address spaces. */
428 delete_step_resume_breakpoint (tp
);
429 tp
->step_range_start
= 0;
430 tp
->step_range_end
= 0;
431 tp
->step_frame_id
= null_frame_id
;
434 parent
= inferior_ptid
;
435 child
= tp
->pending_follow
.value
.related_pid
;
437 /* Tell the target to do whatever is necessary to follow
438 either parent or child. */
439 if (target_follow_fork (follow_child
))
441 /* Target refused to follow, or there's some other reason
442 we shouldn't resume. */
447 /* This pending follow fork event is now handled, one way
448 or another. The previous selected thread may be gone
449 from the lists by now, but if it is still around, need
450 to clear the pending follow request. */
451 tp
= find_thread_ptid (parent
);
453 tp
->pending_follow
.kind
= TARGET_WAITKIND_SPURIOUS
;
455 /* This makes sure we don't try to apply the "Switched
456 over from WAIT_PID" logic above. */
457 nullify_last_target_wait_ptid ();
459 /* If we followed the child, switch to it... */
462 switch_to_thread (child
);
464 /* ... and preserve the stepping state, in case the
465 user was stepping over the fork call. */
468 tp
= inferior_thread ();
469 tp
->step_resume_breakpoint
= step_resume_breakpoint
;
470 tp
->step_range_start
= step_range_start
;
471 tp
->step_range_end
= step_range_end
;
472 tp
->step_frame_id
= step_frame_id
;
476 /* If we get here, it was because we're trying to
477 resume from a fork catchpoint, but, the user
478 has switched threads away from the thread that
479 forked. In that case, the resume command
480 issued is most likely not applicable to the
481 child, so just warn, and refuse to resume. */
483 Not resuming: switched threads before following fork child.\n"));
486 /* Reset breakpoints in the child as appropriate. */
487 follow_inferior_reset_breakpoints ();
490 switch_to_thread (parent
);
494 case TARGET_WAITKIND_SPURIOUS
:
495 /* Nothing to follow. */
498 internal_error (__FILE__
, __LINE__
,
499 "Unexpected pending_follow.kind %d\n",
500 tp
->pending_follow
.kind
);
504 return should_resume
;
508 follow_inferior_reset_breakpoints (void)
510 struct thread_info
*tp
= inferior_thread ();
512 /* Was there a step_resume breakpoint? (There was if the user
513 did a "next" at the fork() call.) If so, explicitly reset its
516 step_resumes are a form of bp that are made to be per-thread.
517 Since we created the step_resume bp when the parent process
518 was being debugged, and now are switching to the child process,
519 from the breakpoint package's viewpoint, that's a switch of
520 "threads". We must update the bp's notion of which thread
521 it is for, or it'll be ignored when it triggers. */
523 if (tp
->step_resume_breakpoint
)
524 breakpoint_re_set_thread (tp
->step_resume_breakpoint
);
526 /* Reinsert all breakpoints in the child. The user may have set
527 breakpoints after catching the fork, in which case those
528 were never set in the child, but only in the parent. This makes
529 sure the inserted breakpoints match the breakpoint list. */
531 breakpoint_re_set ();
532 insert_breakpoints ();
535 /* The child has exited or execed: resume threads of the parent the
536 user wanted to be executing. */
539 proceed_after_vfork_done (struct thread_info
*thread
,
542 int pid
= * (int *) arg
;
544 if (ptid_get_pid (thread
->ptid
) == pid
545 && is_running (thread
->ptid
)
546 && !is_executing (thread
->ptid
)
547 && !thread
->stop_requested
548 && thread
->stop_signal
== TARGET_SIGNAL_0
)
551 fprintf_unfiltered (gdb_stdlog
,
552 "infrun: resuming vfork parent thread %s\n",
553 target_pid_to_str (thread
->ptid
));
555 switch_to_thread (thread
->ptid
);
556 clear_proceed_status ();
557 proceed ((CORE_ADDR
) -1, TARGET_SIGNAL_DEFAULT
, 0);
563 /* Called whenever we notice an exec or exit event, to handle
564 detaching or resuming a vfork parent. */
567 handle_vfork_child_exec_or_exit (int exec
)
569 struct inferior
*inf
= current_inferior ();
571 if (inf
->vfork_parent
)
573 int resume_parent
= -1;
575 /* This exec or exit marks the end of the shared memory region
576 between the parent and the child. If the user wanted to
577 detach from the parent, now is the time. */
579 if (inf
->vfork_parent
->pending_detach
)
581 struct thread_info
*tp
;
582 struct cleanup
*old_chain
;
583 struct program_space
*pspace
;
584 struct address_space
*aspace
;
586 /* follow-fork child, detach-on-fork on */
588 old_chain
= make_cleanup_restore_current_thread ();
590 /* We're letting loose of the parent. */
591 tp
= any_live_thread_of_process (inf
->vfork_parent
->pid
);
592 switch_to_thread (tp
->ptid
);
594 /* We're about to detach from the parent, which implicitly
595 removes breakpoints from its address space. There's a
596 catch here: we want to reuse the spaces for the child,
597 but, parent/child are still sharing the pspace at this
598 point, although the exec in reality makes the kernel give
599 the child a fresh set of new pages. The problem here is
600 that the breakpoints module being unaware of this, would
601 likely chose the child process to write to the parent
602 address space. Swapping the child temporarily away from
603 the spaces has the desired effect. Yes, this is "sort
606 pspace
= inf
->pspace
;
607 aspace
= inf
->aspace
;
611 if (debug_infrun
|| info_verbose
)
613 target_terminal_ours ();
616 fprintf_filtered (gdb_stdlog
,
617 "Detaching vfork parent process %d after child exec.\n",
618 inf
->vfork_parent
->pid
);
620 fprintf_filtered (gdb_stdlog
,
621 "Detaching vfork parent process %d after child exit.\n",
622 inf
->vfork_parent
->pid
);
625 target_detach (NULL
, 0);
628 inf
->pspace
= pspace
;
629 inf
->aspace
= aspace
;
631 do_cleanups (old_chain
);
635 /* We're staying attached to the parent, so, really give the
636 child a new address space. */
637 inf
->pspace
= add_program_space (maybe_new_address_space ());
638 inf
->aspace
= inf
->pspace
->aspace
;
640 set_current_program_space (inf
->pspace
);
642 resume_parent
= inf
->vfork_parent
->pid
;
644 /* Break the bonds. */
645 inf
->vfork_parent
->vfork_child
= NULL
;
649 struct cleanup
*old_chain
;
650 struct program_space
*pspace
;
652 /* If this is a vfork child exiting, then the pspace and
653 aspaces were shared with the parent. Since we're
654 reporting the process exit, we'll be mourning all that is
655 found in the address space, and switching to null_ptid,
656 preparing to start a new inferior. But, since we don't
657 want to clobber the parent's address/program spaces, we
658 go ahead and create a new one for this exiting
661 /* Switch to null_ptid, so that clone_program_space doesn't want
662 to read the selected frame of a dead process. */
663 old_chain
= save_inferior_ptid ();
664 inferior_ptid
= null_ptid
;
666 /* This inferior is dead, so avoid giving the breakpoints
667 module the option to write through to it (cloning a
668 program space resets breakpoints). */
671 pspace
= add_program_space (maybe_new_address_space ());
672 set_current_program_space (pspace
);
674 clone_program_space (pspace
, inf
->vfork_parent
->pspace
);
675 inf
->pspace
= pspace
;
676 inf
->aspace
= pspace
->aspace
;
678 /* Put back inferior_ptid. We'll continue mourning this
680 do_cleanups (old_chain
);
682 resume_parent
= inf
->vfork_parent
->pid
;
683 /* Break the bonds. */
684 inf
->vfork_parent
->vfork_child
= NULL
;
687 inf
->vfork_parent
= NULL
;
689 gdb_assert (current_program_space
== inf
->pspace
);
691 if (non_stop
&& resume_parent
!= -1)
693 /* If the user wanted the parent to be running, let it go
695 struct cleanup
*old_chain
= make_cleanup_restore_current_thread ();
698 fprintf_unfiltered (gdb_stdlog
, "infrun: resuming vfork parent process %d\n",
701 iterate_over_threads (proceed_after_vfork_done
, &resume_parent
);
703 do_cleanups (old_chain
);
708 /* Enum strings for "set|show displaced-stepping". */
710 static const char follow_exec_mode_new
[] = "new";
711 static const char follow_exec_mode_same
[] = "same";
712 static const char *follow_exec_mode_names
[] =
714 follow_exec_mode_new
,
715 follow_exec_mode_same
,
719 static const char *follow_exec_mode_string
= follow_exec_mode_same
;
721 show_follow_exec_mode_string (struct ui_file
*file
, int from_tty
,
722 struct cmd_list_element
*c
, const char *value
)
724 fprintf_filtered (file
, _("Follow exec mode is \"%s\".\n"), value
);
727 /* EXECD_PATHNAME is assumed to be non-NULL. */
730 follow_exec (ptid_t pid
, char *execd_pathname
)
732 struct thread_info
*th
= inferior_thread ();
733 struct inferior
*inf
= current_inferior ();
735 /* This is an exec event that we actually wish to pay attention to.
736 Refresh our symbol table to the newly exec'd program, remove any
739 If there are breakpoints, they aren't really inserted now,
740 since the exec() transformed our inferior into a fresh set
743 We want to preserve symbolic breakpoints on the list, since
744 we have hopes that they can be reset after the new a.out's
745 symbol table is read.
747 However, any "raw" breakpoints must be removed from the list
748 (e.g., the solib bp's), since their address is probably invalid
751 And, we DON'T want to call delete_breakpoints() here, since
752 that may write the bp's "shadow contents" (the instruction
753 value that was overwritten witha TRAP instruction). Since
754 we now have a new a.out, those shadow contents aren't valid. */
756 mark_breakpoints_out ();
758 update_breakpoints_after_exec ();
760 /* If there was one, it's gone now. We cannot truly step-to-next
761 statement through an exec(). */
762 th
->step_resume_breakpoint
= NULL
;
763 th
->step_range_start
= 0;
764 th
->step_range_end
= 0;
766 /* The target reports the exec event to the main thread, even if
767 some other thread does the exec, and even if the main thread was
768 already stopped --- if debugging in non-stop mode, it's possible
769 the user had the main thread held stopped in the previous image
770 --- release it now. This is the same behavior as step-over-exec
771 with scheduler-locking on in all-stop mode. */
772 th
->stop_requested
= 0;
774 /* What is this a.out's name? */
775 printf_unfiltered (_("%s is executing new program: %s\n"),
776 target_pid_to_str (inferior_ptid
),
779 /* We've followed the inferior through an exec. Therefore, the
780 inferior has essentially been killed & reborn. */
782 gdb_flush (gdb_stdout
);
784 breakpoint_init_inferior (inf_execd
);
786 if (gdb_sysroot
&& *gdb_sysroot
)
788 char *name
= alloca (strlen (gdb_sysroot
)
789 + strlen (execd_pathname
)
792 strcpy (name
, gdb_sysroot
);
793 strcat (name
, execd_pathname
);
794 execd_pathname
= name
;
797 /* Reset the shared library package. This ensures that we get a
798 shlib event when the child reaches "_start", at which point the
799 dld will have had a chance to initialize the child. */
800 /* Also, loading a symbol file below may trigger symbol lookups, and
801 we don't want those to be satisfied by the libraries of the
802 previous incarnation of this process. */
803 no_shared_libraries (NULL
, 0);
805 if (follow_exec_mode_string
== follow_exec_mode_new
)
807 struct program_space
*pspace
;
809 /* The user wants to keep the old inferior and program spaces
810 around. Create a new fresh one, and switch to it. */
812 inf
= add_inferior (current_inferior ()->pid
);
813 pspace
= add_program_space (maybe_new_address_space ());
814 inf
->pspace
= pspace
;
815 inf
->aspace
= pspace
->aspace
;
817 exit_inferior_num_silent (current_inferior ()->num
);
819 set_current_inferior (inf
);
820 set_current_program_space (pspace
);
823 gdb_assert (current_program_space
== inf
->pspace
);
825 /* That a.out is now the one to use. */
826 exec_file_attach (execd_pathname
, 0);
828 /* Load the main file's symbols. */
829 symbol_file_add_main (execd_pathname
, 0);
831 #ifdef SOLIB_CREATE_INFERIOR_HOOK
832 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid
));
834 solib_create_inferior_hook (0);
837 jit_inferior_created_hook ();
839 /* Reinsert all breakpoints. (Those which were symbolic have
840 been reset to the proper address in the new a.out, thanks
841 to symbol_file_command...) */
842 insert_breakpoints ();
844 /* The next resume of this inferior should bring it to the shlib
845 startup breakpoints. (If the user had also set bp's on
846 "main" from the old (parent) process, then they'll auto-
847 matically get reset there in the new process.) */
850 /* Non-zero if we just simulating a single-step. This is needed
851 because we cannot remove the breakpoints in the inferior process
852 until after the `wait' in `wait_for_inferior'. */
853 static int singlestep_breakpoints_inserted_p
= 0;
855 /* The thread we inserted single-step breakpoints for. */
856 static ptid_t singlestep_ptid
;
858 /* PC when we started this single-step. */
859 static CORE_ADDR singlestep_pc
;
861 /* If another thread hit the singlestep breakpoint, we save the original
862 thread here so that we can resume single-stepping it later. */
863 static ptid_t saved_singlestep_ptid
;
864 static int stepping_past_singlestep_breakpoint
;
866 /* If not equal to null_ptid, this means that after stepping over breakpoint
867 is finished, we need to switch to deferred_step_ptid, and step it.
869 The use case is when one thread has hit a breakpoint, and then the user
870 has switched to another thread and issued 'step'. We need to step over
871 breakpoint in the thread which hit the breakpoint, but then continue
872 stepping the thread user has selected. */
873 static ptid_t deferred_step_ptid
;
875 /* Displaced stepping. */
877 /* In non-stop debugging mode, we must take special care to manage
878 breakpoints properly; in particular, the traditional strategy for
879 stepping a thread past a breakpoint it has hit is unsuitable.
880 'Displaced stepping' is a tactic for stepping one thread past a
881 breakpoint it has hit while ensuring that other threads running
882 concurrently will hit the breakpoint as they should.
884 The traditional way to step a thread T off a breakpoint in a
885 multi-threaded program in all-stop mode is as follows:
887 a0) Initially, all threads are stopped, and breakpoints are not
889 a1) We single-step T, leaving breakpoints uninserted.
890 a2) We insert breakpoints, and resume all threads.
892 In non-stop debugging, however, this strategy is unsuitable: we
893 don't want to have to stop all threads in the system in order to
894 continue or step T past a breakpoint. Instead, we use displaced
897 n0) Initially, T is stopped, other threads are running, and
898 breakpoints are inserted.
899 n1) We copy the instruction "under" the breakpoint to a separate
900 location, outside the main code stream, making any adjustments
901 to the instruction, register, and memory state as directed by
903 n2) We single-step T over the instruction at its new location.
904 n3) We adjust the resulting register and memory state as directed
905 by T's architecture. This includes resetting T's PC to point
906 back into the main instruction stream.
909 This approach depends on the following gdbarch methods:
911 - gdbarch_max_insn_length and gdbarch_displaced_step_location
912 indicate where to copy the instruction, and how much space must
913 be reserved there. We use these in step n1.
915 - gdbarch_displaced_step_copy_insn copies a instruction to a new
916 address, and makes any necessary adjustments to the instruction,
917 register contents, and memory. We use this in step n1.
919 - gdbarch_displaced_step_fixup adjusts registers and memory after
920 we have successfuly single-stepped the instruction, to yield the
921 same effect the instruction would have had if we had executed it
922 at its original address. We use this in step n3.
924 - gdbarch_displaced_step_free_closure provides cleanup.
926 The gdbarch_displaced_step_copy_insn and
927 gdbarch_displaced_step_fixup functions must be written so that
928 copying an instruction with gdbarch_displaced_step_copy_insn,
929 single-stepping across the copied instruction, and then applying
930 gdbarch_displaced_insn_fixup should have the same effects on the
931 thread's memory and registers as stepping the instruction in place
932 would have. Exactly which responsibilities fall to the copy and
933 which fall to the fixup is up to the author of those functions.
935 See the comments in gdbarch.sh for details.
937 Note that displaced stepping and software single-step cannot
938 currently be used in combination, although with some care I think
939 they could be made to. Software single-step works by placing
940 breakpoints on all possible subsequent instructions; if the
941 displaced instruction is a PC-relative jump, those breakpoints
942 could fall in very strange places --- on pages that aren't
943 executable, or at addresses that are not proper instruction
944 boundaries. (We do generally let other threads run while we wait
945 to hit the software single-step breakpoint, and they might
946 encounter such a corrupted instruction.) One way to work around
947 this would be to have gdbarch_displaced_step_copy_insn fully
948 simulate the effect of PC-relative instructions (and return NULL)
949 on architectures that use software single-stepping.
951 In non-stop mode, we can have independent and simultaneous step
952 requests, so more than one thread may need to simultaneously step
953 over a breakpoint. The current implementation assumes there is
954 only one scratch space per process. In this case, we have to
955 serialize access to the scratch space. If thread A wants to step
956 over a breakpoint, but we are currently waiting for some other
957 thread to complete a displaced step, we leave thread A stopped and
958 place it in the displaced_step_request_queue. Whenever a displaced
959 step finishes, we pick the next thread in the queue and start a new
960 displaced step operation on it. See displaced_step_prepare and
961 displaced_step_fixup for details. */
963 struct displaced_step_request
966 struct displaced_step_request
*next
;
969 /* Per-inferior displaced stepping state. */
970 struct displaced_step_inferior_state
972 /* Pointer to next in linked list. */
973 struct displaced_step_inferior_state
*next
;
975 /* The process this displaced step state refers to. */
978 /* A queue of pending displaced stepping requests. One entry per
979 thread that needs to do a displaced step. */
980 struct displaced_step_request
*step_request_queue
;
982 /* If this is not null_ptid, this is the thread carrying out a
983 displaced single-step in process PID. This thread's state will
984 require fixing up once it has completed its step. */
987 /* The architecture the thread had when we stepped it. */
988 struct gdbarch
*step_gdbarch
;
990 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
991 for post-step cleanup. */
992 struct displaced_step_closure
*step_closure
;
994 /* The address of the original instruction, and the copy we
996 CORE_ADDR step_original
, step_copy
;
998 /* Saved contents of copy area. */
999 gdb_byte
*step_saved_copy
;
1002 /* The list of states of processes involved in displaced stepping
1004 static struct displaced_step_inferior_state
*displaced_step_inferior_states
;
1006 /* Get the displaced stepping state of process PID. */
1008 static struct displaced_step_inferior_state
*
1009 get_displaced_stepping_state (int pid
)
1011 struct displaced_step_inferior_state
*state
;
1013 for (state
= displaced_step_inferior_states
;
1015 state
= state
->next
)
1016 if (state
->pid
== pid
)
1022 /* Add a new displaced stepping state for process PID to the displaced
1023 stepping state list, or return a pointer to an already existing
1024 entry, if it already exists. Never returns NULL. */
1026 static struct displaced_step_inferior_state
*
1027 add_displaced_stepping_state (int pid
)
1029 struct displaced_step_inferior_state
*state
;
1031 for (state
= displaced_step_inferior_states
;
1033 state
= state
->next
)
1034 if (state
->pid
== pid
)
1037 state
= xcalloc (1, sizeof (*state
));
1039 state
->next
= displaced_step_inferior_states
;
1040 displaced_step_inferior_states
= state
;
1045 /* Remove the displaced stepping state of process PID. */
1048 remove_displaced_stepping_state (int pid
)
1050 struct displaced_step_inferior_state
*it
, **prev_next_p
;
1052 gdb_assert (pid
!= 0);
1054 it
= displaced_step_inferior_states
;
1055 prev_next_p
= &displaced_step_inferior_states
;
1060 *prev_next_p
= it
->next
;
1065 prev_next_p
= &it
->next
;
1071 infrun_inferior_exit (struct inferior
*inf
)
1073 remove_displaced_stepping_state (inf
->pid
);
1076 /* Enum strings for "set|show displaced-stepping". */
1078 static const char can_use_displaced_stepping_auto
[] = "auto";
1079 static const char can_use_displaced_stepping_on
[] = "on";
1080 static const char can_use_displaced_stepping_off
[] = "off";
1081 static const char *can_use_displaced_stepping_enum
[] =
1083 can_use_displaced_stepping_auto
,
1084 can_use_displaced_stepping_on
,
1085 can_use_displaced_stepping_off
,
1089 /* If ON, and the architecture supports it, GDB will use displaced
1090 stepping to step over breakpoints. If OFF, or if the architecture
1091 doesn't support it, GDB will instead use the traditional
1092 hold-and-step approach. If AUTO (which is the default), GDB will
1093 decide which technique to use to step over breakpoints depending on
1094 which of all-stop or non-stop mode is active --- displaced stepping
1095 in non-stop mode; hold-and-step in all-stop mode. */
1097 static const char *can_use_displaced_stepping
=
1098 can_use_displaced_stepping_auto
;
1101 show_can_use_displaced_stepping (struct ui_file
*file
, int from_tty
,
1102 struct cmd_list_element
*c
,
1105 if (can_use_displaced_stepping
== can_use_displaced_stepping_auto
)
1106 fprintf_filtered (file
, _("\
1107 Debugger's willingness to use displaced stepping to step over \
1108 breakpoints is %s (currently %s).\n"),
1109 value
, non_stop
? "on" : "off");
1111 fprintf_filtered (file
, _("\
1112 Debugger's willingness to use displaced stepping to step over \
1113 breakpoints is %s.\n"), value
);
1116 /* Return non-zero if displaced stepping can/should be used to step
1117 over breakpoints. */
1120 use_displaced_stepping (struct gdbarch
*gdbarch
)
1122 return (((can_use_displaced_stepping
== can_use_displaced_stepping_auto
1124 || can_use_displaced_stepping
== can_use_displaced_stepping_on
)
1125 && gdbarch_displaced_step_copy_insn_p (gdbarch
)
1126 && !RECORD_IS_USED
);
1129 /* Clean out any stray displaced stepping state. */
1131 displaced_step_clear (struct displaced_step_inferior_state
*displaced
)
1133 /* Indicate that there is no cleanup pending. */
1134 displaced
->step_ptid
= null_ptid
;
1136 if (displaced
->step_closure
)
1138 gdbarch_displaced_step_free_closure (displaced
->step_gdbarch
,
1139 displaced
->step_closure
);
1140 displaced
->step_closure
= NULL
;
1145 displaced_step_clear_cleanup (void *arg
)
1147 struct displaced_step_inferior_state
*state
= arg
;
1149 displaced_step_clear (state
);
1152 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1154 displaced_step_dump_bytes (struct ui_file
*file
,
1155 const gdb_byte
*buf
,
1160 for (i
= 0; i
< len
; i
++)
1161 fprintf_unfiltered (file
, "%02x ", buf
[i
]);
1162 fputs_unfiltered ("\n", file
);
1165 /* Prepare to single-step, using displaced stepping.
1167 Note that we cannot use displaced stepping when we have a signal to
1168 deliver. If we have a signal to deliver and an instruction to step
1169 over, then after the step, there will be no indication from the
1170 target whether the thread entered a signal handler or ignored the
1171 signal and stepped over the instruction successfully --- both cases
1172 result in a simple SIGTRAP. In the first case we mustn't do a
1173 fixup, and in the second case we must --- but we can't tell which.
1174 Comments in the code for 'random signals' in handle_inferior_event
1175 explain how we handle this case instead.
1177 Returns 1 if preparing was successful -- this thread is going to be
1178 stepped now; or 0 if displaced stepping this thread got queued. */
1180 displaced_step_prepare (ptid_t ptid
)
1182 struct cleanup
*old_cleanups
, *ignore_cleanups
;
1183 struct regcache
*regcache
= get_thread_regcache (ptid
);
1184 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
1185 CORE_ADDR original
, copy
;
1187 struct displaced_step_closure
*closure
;
1188 struct displaced_step_inferior_state
*displaced
;
1190 /* We should never reach this function if the architecture does not
1191 support displaced stepping. */
1192 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch
));
1194 /* We have to displaced step one thread at a time, as we only have
1195 access to a single scratch space per inferior. */
1197 displaced
= add_displaced_stepping_state (ptid_get_pid (ptid
));
1199 if (!ptid_equal (displaced
->step_ptid
, null_ptid
))
1201 /* Already waiting for a displaced step to finish. Defer this
1202 request and place in queue. */
1203 struct displaced_step_request
*req
, *new_req
;
1205 if (debug_displaced
)
1206 fprintf_unfiltered (gdb_stdlog
,
1207 "displaced: defering step of %s\n",
1208 target_pid_to_str (ptid
));
1210 new_req
= xmalloc (sizeof (*new_req
));
1211 new_req
->ptid
= ptid
;
1212 new_req
->next
= NULL
;
1214 if (displaced
->step_request_queue
)
1216 for (req
= displaced
->step_request_queue
;
1220 req
->next
= new_req
;
1223 displaced
->step_request_queue
= new_req
;
1229 if (debug_displaced
)
1230 fprintf_unfiltered (gdb_stdlog
,
1231 "displaced: stepping %s now\n",
1232 target_pid_to_str (ptid
));
1235 displaced_step_clear (displaced
);
1237 old_cleanups
= save_inferior_ptid ();
1238 inferior_ptid
= ptid
;
1240 original
= regcache_read_pc (regcache
);
1242 copy
= gdbarch_displaced_step_location (gdbarch
);
1243 len
= gdbarch_max_insn_length (gdbarch
);
1245 /* Save the original contents of the copy area. */
1246 displaced
->step_saved_copy
= xmalloc (len
);
1247 ignore_cleanups
= make_cleanup (free_current_contents
,
1248 &displaced
->step_saved_copy
);
1249 read_memory (copy
, displaced
->step_saved_copy
, len
);
1250 if (debug_displaced
)
1252 fprintf_unfiltered (gdb_stdlog
, "displaced: saved %s: ",
1253 paddress (gdbarch
, copy
));
1254 displaced_step_dump_bytes (gdb_stdlog
,
1255 displaced
->step_saved_copy
,
1259 closure
= gdbarch_displaced_step_copy_insn (gdbarch
,
1260 original
, copy
, regcache
);
1262 /* We don't support the fully-simulated case at present. */
1263 gdb_assert (closure
);
1265 /* Save the information we need to fix things up if the step
1267 displaced
->step_ptid
= ptid
;
1268 displaced
->step_gdbarch
= gdbarch
;
1269 displaced
->step_closure
= closure
;
1270 displaced
->step_original
= original
;
1271 displaced
->step_copy
= copy
;
1273 make_cleanup (displaced_step_clear_cleanup
, displaced
);
1275 /* Resume execution at the copy. */
1276 regcache_write_pc (regcache
, copy
);
1278 discard_cleanups (ignore_cleanups
);
1280 do_cleanups (old_cleanups
);
1282 if (debug_displaced
)
1283 fprintf_unfiltered (gdb_stdlog
, "displaced: displaced pc to %s\n",
1284 paddress (gdbarch
, copy
));
1290 write_memory_ptid (ptid_t ptid
, CORE_ADDR memaddr
, const gdb_byte
*myaddr
, int len
)
1292 struct cleanup
*ptid_cleanup
= save_inferior_ptid ();
1294 inferior_ptid
= ptid
;
1295 write_memory (memaddr
, myaddr
, len
);
1296 do_cleanups (ptid_cleanup
);
1300 displaced_step_fixup (ptid_t event_ptid
, enum target_signal signal
)
1302 struct cleanup
*old_cleanups
;
1303 struct displaced_step_inferior_state
*displaced
1304 = get_displaced_stepping_state (ptid_get_pid (event_ptid
));
1306 /* Was any thread of this process doing a displaced step? */
1307 if (displaced
== NULL
)
1310 /* Was this event for the pid we displaced? */
1311 if (ptid_equal (displaced
->step_ptid
, null_ptid
)
1312 || ! ptid_equal (displaced
->step_ptid
, event_ptid
))
1315 old_cleanups
= make_cleanup (displaced_step_clear_cleanup
, displaced
);
1317 /* Restore the contents of the copy area. */
1319 ULONGEST len
= gdbarch_max_insn_length (displaced
->step_gdbarch
);
1321 write_memory_ptid (displaced
->step_ptid
, displaced
->step_copy
,
1322 displaced
->step_saved_copy
, len
);
1323 if (debug_displaced
)
1324 fprintf_unfiltered (gdb_stdlog
, "displaced: restored %s\n",
1325 paddress (displaced
->step_gdbarch
,
1326 displaced
->step_copy
));
1329 /* Did the instruction complete successfully? */
1330 if (signal
== TARGET_SIGNAL_TRAP
)
1332 /* Fix up the resulting state. */
1333 gdbarch_displaced_step_fixup (displaced
->step_gdbarch
,
1334 displaced
->step_closure
,
1335 displaced
->step_original
,
1336 displaced
->step_copy
,
1337 get_thread_regcache (displaced
->step_ptid
));
1341 /* Since the instruction didn't complete, all we can do is
1343 struct regcache
*regcache
= get_thread_regcache (event_ptid
);
1344 CORE_ADDR pc
= regcache_read_pc (regcache
);
1346 pc
= displaced
->step_original
+ (pc
- displaced
->step_copy
);
1347 regcache_write_pc (regcache
, pc
);
1350 do_cleanups (old_cleanups
);
1352 displaced
->step_ptid
= null_ptid
;
1354 /* Are there any pending displaced stepping requests? If so, run
1355 one now. Leave the state object around, since we're likely to
1356 need it again soon. */
1357 while (displaced
->step_request_queue
)
1359 struct displaced_step_request
*head
;
1361 struct regcache
*regcache
;
1362 struct gdbarch
*gdbarch
;
1363 CORE_ADDR actual_pc
;
1364 struct address_space
*aspace
;
1366 head
= displaced
->step_request_queue
;
1368 displaced
->step_request_queue
= head
->next
;
1371 context_switch (ptid
);
1373 regcache
= get_thread_regcache (ptid
);
1374 actual_pc
= regcache_read_pc (regcache
);
1375 aspace
= get_regcache_aspace (regcache
);
1377 if (breakpoint_here_p (aspace
, actual_pc
))
1379 if (debug_displaced
)
1380 fprintf_unfiltered (gdb_stdlog
,
1381 "displaced: stepping queued %s now\n",
1382 target_pid_to_str (ptid
));
1384 displaced_step_prepare (ptid
);
1386 gdbarch
= get_regcache_arch (regcache
);
1388 if (debug_displaced
)
1390 CORE_ADDR actual_pc
= regcache_read_pc (regcache
);
1393 fprintf_unfiltered (gdb_stdlog
, "displaced: run %s: ",
1394 paddress (gdbarch
, actual_pc
));
1395 read_memory (actual_pc
, buf
, sizeof (buf
));
1396 displaced_step_dump_bytes (gdb_stdlog
, buf
, sizeof (buf
));
1399 if (gdbarch_displaced_step_hw_singlestep (gdbarch
,
1400 displaced
->step_closure
))
1401 target_resume (ptid
, 1, TARGET_SIGNAL_0
);
1403 target_resume (ptid
, 0, TARGET_SIGNAL_0
);
1405 /* Done, we're stepping a thread. */
1411 struct thread_info
*tp
= inferior_thread ();
1413 /* The breakpoint we were sitting under has since been
1415 tp
->trap_expected
= 0;
1417 /* Go back to what we were trying to do. */
1418 step
= currently_stepping (tp
);
1420 if (debug_displaced
)
1421 fprintf_unfiltered (gdb_stdlog
, "breakpoint is gone %s: step(%d)\n",
1422 target_pid_to_str (tp
->ptid
), step
);
1424 target_resume (ptid
, step
, TARGET_SIGNAL_0
);
1425 tp
->stop_signal
= TARGET_SIGNAL_0
;
1427 /* This request was discarded. See if there's any other
1428 thread waiting for its turn. */
1433 /* Update global variables holding ptids to hold NEW_PTID if they were
1434 holding OLD_PTID. */
1436 infrun_thread_ptid_changed (ptid_t old_ptid
, ptid_t new_ptid
)
1438 struct displaced_step_request
*it
;
1439 struct displaced_step_inferior_state
*displaced
;
1441 if (ptid_equal (inferior_ptid
, old_ptid
))
1442 inferior_ptid
= new_ptid
;
1444 if (ptid_equal (singlestep_ptid
, old_ptid
))
1445 singlestep_ptid
= new_ptid
;
1447 if (ptid_equal (deferred_step_ptid
, old_ptid
))
1448 deferred_step_ptid
= new_ptid
;
1450 for (displaced
= displaced_step_inferior_states
;
1452 displaced
= displaced
->next
)
1454 if (ptid_equal (displaced
->step_ptid
, old_ptid
))
1455 displaced
->step_ptid
= new_ptid
;
1457 for (it
= displaced
->step_request_queue
; it
; it
= it
->next
)
1458 if (ptid_equal (it
->ptid
, old_ptid
))
1459 it
->ptid
= new_ptid
;
1466 /* Things to clean up if we QUIT out of resume (). */
1468 resume_cleanups (void *ignore
)
1473 static const char schedlock_off
[] = "off";
1474 static const char schedlock_on
[] = "on";
1475 static const char schedlock_step
[] = "step";
1476 static const char *scheduler_enums
[] = {
1482 static const char *scheduler_mode
= schedlock_off
;
1484 show_scheduler_mode (struct ui_file
*file
, int from_tty
,
1485 struct cmd_list_element
*c
, const char *value
)
1487 fprintf_filtered (file
, _("\
1488 Mode for locking scheduler during execution is \"%s\".\n"),
1493 set_schedlock_func (char *args
, int from_tty
, struct cmd_list_element
*c
)
1495 if (!target_can_lock_scheduler
)
1497 scheduler_mode
= schedlock_off
;
1498 error (_("Target '%s' cannot support this command."), target_shortname
);
1502 /* True if execution commands resume all threads of all processes by
1503 default; otherwise, resume only threads of the current inferior
1505 int sched_multi
= 0;
1507 /* Try to setup for software single stepping over the specified location.
1508 Return 1 if target_resume() should use hardware single step.
1510 GDBARCH the current gdbarch.
1511 PC the location to step over. */
1514 maybe_software_singlestep (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
1518 if (gdbarch_software_single_step_p (gdbarch
)
1519 && gdbarch_software_single_step (gdbarch
, get_current_frame ()))
1522 /* Do not pull these breakpoints until after a `wait' in
1523 `wait_for_inferior' */
1524 singlestep_breakpoints_inserted_p
= 1;
1525 singlestep_ptid
= inferior_ptid
;
1531 /* Resume the inferior, but allow a QUIT. This is useful if the user
1532 wants to interrupt some lengthy single-stepping operation
1533 (for child processes, the SIGINT goes to the inferior, and so
1534 we get a SIGINT random_signal, but for remote debugging and perhaps
1535 other targets, that's not true).
1537 STEP nonzero if we should step (zero to continue instead).
1538 SIG is the signal to give the inferior (zero for none). */
1540 resume (int step
, enum target_signal sig
)
1542 int should_resume
= 1;
1543 struct cleanup
*old_cleanups
= make_cleanup (resume_cleanups
, 0);
1544 struct regcache
*regcache
= get_current_regcache ();
1545 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
1546 struct thread_info
*tp
= inferior_thread ();
1547 CORE_ADDR pc
= regcache_read_pc (regcache
);
1548 struct address_space
*aspace
= get_regcache_aspace (regcache
);
1553 fprintf_unfiltered (gdb_stdlog
,
1554 "infrun: resume (step=%d, signal=%d), "
1555 "trap_expected=%d\n",
1556 step
, sig
, tp
->trap_expected
);
1558 /* Normally, by the time we reach `resume', the breakpoints are either
1559 removed or inserted, as appropriate. The exception is if we're sitting
1560 at a permanent breakpoint; we need to step over it, but permanent
1561 breakpoints can't be removed. So we have to test for it here. */
1562 if (breakpoint_here_p (aspace
, pc
) == permanent_breakpoint_here
)
1564 if (gdbarch_skip_permanent_breakpoint_p (gdbarch
))
1565 gdbarch_skip_permanent_breakpoint (gdbarch
, regcache
);
1568 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1569 how to step past a permanent breakpoint on this architecture. Try using\n\
1570 a command like `return' or `jump' to continue execution."));
1573 /* If enabled, step over breakpoints by executing a copy of the
1574 instruction at a different address.
1576 We can't use displaced stepping when we have a signal to deliver;
1577 the comments for displaced_step_prepare explain why. The
1578 comments in the handle_inferior event for dealing with 'random
1579 signals' explain what we do instead. */
1580 if (use_displaced_stepping (gdbarch
)
1581 && (tp
->trap_expected
1582 || (step
&& gdbarch_software_single_step_p (gdbarch
)))
1583 && sig
== TARGET_SIGNAL_0
)
1585 struct displaced_step_inferior_state
*displaced
;
1587 if (!displaced_step_prepare (inferior_ptid
))
1589 /* Got placed in displaced stepping queue. Will be resumed
1590 later when all the currently queued displaced stepping
1591 requests finish. The thread is not executing at this point,
1592 and the call to set_executing will be made later. But we
1593 need to call set_running here, since from frontend point of view,
1594 the thread is running. */
1595 set_running (inferior_ptid
, 1);
1596 discard_cleanups (old_cleanups
);
1600 displaced
= get_displaced_stepping_state (ptid_get_pid (inferior_ptid
));
1601 step
= gdbarch_displaced_step_hw_singlestep (gdbarch
,
1602 displaced
->step_closure
);
1605 /* Do we need to do it the hard way, w/temp breakpoints? */
1607 step
= maybe_software_singlestep (gdbarch
, pc
);
1613 /* If STEP is set, it's a request to use hardware stepping
1614 facilities. But in that case, we should never
1615 use singlestep breakpoint. */
1616 gdb_assert (!(singlestep_breakpoints_inserted_p
&& step
));
1618 /* Decide the set of threads to ask the target to resume. Start
1619 by assuming everything will be resumed, than narrow the set
1620 by applying increasingly restricting conditions. */
1622 /* By default, resume all threads of all processes. */
1623 resume_ptid
= RESUME_ALL
;
1625 /* Maybe resume only all threads of the current process. */
1626 if (!sched_multi
&& target_supports_multi_process ())
1628 resume_ptid
= pid_to_ptid (ptid_get_pid (inferior_ptid
));
1631 /* Maybe resume a single thread after all. */
1632 if (singlestep_breakpoints_inserted_p
1633 && stepping_past_singlestep_breakpoint
)
1635 /* The situation here is as follows. In thread T1 we wanted to
1636 single-step. Lacking hardware single-stepping we've
1637 set breakpoint at the PC of the next instruction -- call it
1638 P. After resuming, we've hit that breakpoint in thread T2.
1639 Now we've removed original breakpoint, inserted breakpoint
1640 at P+1, and try to step to advance T2 past breakpoint.
1641 We need to step only T2, as if T1 is allowed to freely run,
1642 it can run past P, and if other threads are allowed to run,
1643 they can hit breakpoint at P+1, and nested hits of single-step
1644 breakpoints is not something we'd want -- that's complicated
1645 to support, and has no value. */
1646 resume_ptid
= inferior_ptid
;
1648 else if ((step
|| singlestep_breakpoints_inserted_p
)
1649 && tp
->trap_expected
)
1651 /* We're allowing a thread to run past a breakpoint it has
1652 hit, by single-stepping the thread with the breakpoint
1653 removed. In which case, we need to single-step only this
1654 thread, and keep others stopped, as they can miss this
1655 breakpoint if allowed to run.
1657 The current code actually removes all breakpoints when
1658 doing this, not just the one being stepped over, so if we
1659 let other threads run, we can actually miss any
1660 breakpoint, not just the one at PC. */
1661 resume_ptid
= inferior_ptid
;
1665 /* With non-stop mode on, threads are always handled
1667 resume_ptid
= inferior_ptid
;
1669 else if ((scheduler_mode
== schedlock_on
)
1670 || (scheduler_mode
== schedlock_step
1671 && (step
|| singlestep_breakpoints_inserted_p
)))
1673 /* User-settable 'scheduler' mode requires solo thread resume. */
1674 resume_ptid
= inferior_ptid
;
1677 if (gdbarch_cannot_step_breakpoint (gdbarch
))
1679 /* Most targets can step a breakpoint instruction, thus
1680 executing it normally. But if this one cannot, just
1681 continue and we will hit it anyway. */
1682 if (step
&& breakpoint_inserted_here_p (aspace
, pc
))
1687 && use_displaced_stepping (gdbarch
)
1688 && tp
->trap_expected
)
1690 struct regcache
*resume_regcache
= get_thread_regcache (resume_ptid
);
1691 struct gdbarch
*resume_gdbarch
= get_regcache_arch (resume_regcache
);
1692 CORE_ADDR actual_pc
= regcache_read_pc (resume_regcache
);
1695 fprintf_unfiltered (gdb_stdlog
, "displaced: run %s: ",
1696 paddress (resume_gdbarch
, actual_pc
));
1697 read_memory (actual_pc
, buf
, sizeof (buf
));
1698 displaced_step_dump_bytes (gdb_stdlog
, buf
, sizeof (buf
));
1701 /* Install inferior's terminal modes. */
1702 target_terminal_inferior ();
1704 /* Avoid confusing the next resume, if the next stop/resume
1705 happens to apply to another thread. */
1706 tp
->stop_signal
= TARGET_SIGNAL_0
;
1708 target_resume (resume_ptid
, step
, sig
);
1711 discard_cleanups (old_cleanups
);
1716 /* Clear out all variables saying what to do when inferior is continued.
1717 First do this, then set the ones you want, then call `proceed'. */
1720 clear_proceed_status_thread (struct thread_info
*tp
)
1723 fprintf_unfiltered (gdb_stdlog
,
1724 "infrun: clear_proceed_status_thread (%s)\n",
1725 target_pid_to_str (tp
->ptid
));
1727 tp
->trap_expected
= 0;
1728 tp
->step_range_start
= 0;
1729 tp
->step_range_end
= 0;
1730 tp
->step_frame_id
= null_frame_id
;
1731 tp
->step_stack_frame_id
= null_frame_id
;
1732 tp
->step_over_calls
= STEP_OVER_UNDEBUGGABLE
;
1733 tp
->stop_requested
= 0;
1737 tp
->proceed_to_finish
= 0;
1739 /* Discard any remaining commands or status from previous stop. */
1740 bpstat_clear (&tp
->stop_bpstat
);
1744 clear_proceed_status_callback (struct thread_info
*tp
, void *data
)
1746 if (is_exited (tp
->ptid
))
1749 clear_proceed_status_thread (tp
);
1754 clear_proceed_status (void)
1758 /* In all-stop mode, delete the per-thread status of all
1759 threads, even if inferior_ptid is null_ptid, there may be
1760 threads on the list. E.g., we may be launching a new
1761 process, while selecting the executable. */
1762 iterate_over_threads (clear_proceed_status_callback
, NULL
);
1765 if (!ptid_equal (inferior_ptid
, null_ptid
))
1767 struct inferior
*inferior
;
1771 /* If in non-stop mode, only delete the per-thread status of
1772 the current thread. */
1773 clear_proceed_status_thread (inferior_thread ());
1776 inferior
= current_inferior ();
1777 inferior
->stop_soon
= NO_STOP_QUIETLY
;
1780 stop_after_trap
= 0;
1782 observer_notify_about_to_proceed ();
1786 regcache_xfree (stop_registers
);
1787 stop_registers
= NULL
;
1791 /* Check the current thread against the thread that reported the most recent
1792 event. If a step-over is required return TRUE and set the current thread
1793 to the old thread. Otherwise return FALSE.
1795 This should be suitable for any targets that support threads. */
1798 prepare_to_proceed (int step
)
1801 struct target_waitstatus wait_status
;
1802 int schedlock_enabled
;
1804 /* With non-stop mode on, threads are always handled individually. */
1805 gdb_assert (! non_stop
);
1807 /* Get the last target status returned by target_wait(). */
1808 get_last_target_status (&wait_ptid
, &wait_status
);
1810 /* Make sure we were stopped at a breakpoint. */
1811 if (wait_status
.kind
!= TARGET_WAITKIND_STOPPED
1812 || (wait_status
.value
.sig
!= TARGET_SIGNAL_TRAP
1813 && wait_status
.value
.sig
!= TARGET_SIGNAL_ILL
1814 && wait_status
.value
.sig
!= TARGET_SIGNAL_SEGV
1815 && wait_status
.value
.sig
!= TARGET_SIGNAL_EMT
))
1820 schedlock_enabled
= (scheduler_mode
== schedlock_on
1821 || (scheduler_mode
== schedlock_step
1824 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
1825 if (schedlock_enabled
)
1828 /* Don't switch over if we're about to resume some other process
1829 other than WAIT_PTID's, and schedule-multiple is off. */
1831 && ptid_get_pid (wait_ptid
) != ptid_get_pid (inferior_ptid
))
1834 /* Switched over from WAIT_PID. */
1835 if (!ptid_equal (wait_ptid
, minus_one_ptid
)
1836 && !ptid_equal (inferior_ptid
, wait_ptid
))
1838 struct regcache
*regcache
= get_thread_regcache (wait_ptid
);
1840 if (breakpoint_here_p (get_regcache_aspace (regcache
),
1841 regcache_read_pc (regcache
)))
1843 /* If stepping, remember current thread to switch back to. */
1845 deferred_step_ptid
= inferior_ptid
;
1847 /* Switch back to WAIT_PID thread. */
1848 switch_to_thread (wait_ptid
);
1850 /* We return 1 to indicate that there is a breakpoint here,
1851 so we need to step over it before continuing to avoid
1852 hitting it straight away. */
1860 /* Basic routine for continuing the program in various fashions.
1862 ADDR is the address to resume at, or -1 for resume where stopped.
1863 SIGGNAL is the signal to give it, or 0 for none,
1864 or -1 for act according to how it stopped.
1865 STEP is nonzero if should trap after one instruction.
1866 -1 means return after that and print nothing.
1867 You should probably set various step_... variables
1868 before calling here, if you are stepping.
1870 You should call clear_proceed_status before calling proceed. */
1873 proceed (CORE_ADDR addr
, enum target_signal siggnal
, int step
)
1875 struct regcache
*regcache
;
1876 struct gdbarch
*gdbarch
;
1877 struct thread_info
*tp
;
1879 struct address_space
*aspace
;
1882 /* If we're stopped at a fork/vfork, follow the branch set by the
1883 "set follow-fork-mode" command; otherwise, we'll just proceed
1884 resuming the current thread. */
1885 if (!follow_fork ())
1887 /* The target for some reason decided not to resume. */
1892 regcache
= get_current_regcache ();
1893 gdbarch
= get_regcache_arch (regcache
);
1894 aspace
= get_regcache_aspace (regcache
);
1895 pc
= regcache_read_pc (regcache
);
1898 step_start_function
= find_pc_function (pc
);
1900 stop_after_trap
= 1;
1902 if (addr
== (CORE_ADDR
) -1)
1904 if (pc
== stop_pc
&& breakpoint_here_p (aspace
, pc
)
1905 && execution_direction
!= EXEC_REVERSE
)
1906 /* There is a breakpoint at the address we will resume at,
1907 step one instruction before inserting breakpoints so that
1908 we do not stop right away (and report a second hit at this
1911 Note, we don't do this in reverse, because we won't
1912 actually be executing the breakpoint insn anyway.
1913 We'll be (un-)executing the previous instruction. */
1916 else if (gdbarch_single_step_through_delay_p (gdbarch
)
1917 && gdbarch_single_step_through_delay (gdbarch
,
1918 get_current_frame ()))
1919 /* We stepped onto an instruction that needs to be stepped
1920 again before re-inserting the breakpoint, do so. */
1925 regcache_write_pc (regcache
, addr
);
1929 fprintf_unfiltered (gdb_stdlog
,
1930 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
1931 paddress (gdbarch
, addr
), siggnal
, step
);
1933 /* We're handling a live event, so make sure we're doing live
1934 debugging. If we're looking at traceframes while the target is
1935 running, we're going to need to get back to that mode after
1936 handling the event. */
1939 make_cleanup_restore_current_traceframe ();
1940 set_traceframe_number (-1);
1944 /* In non-stop, each thread is handled individually. The context
1945 must already be set to the right thread here. */
1949 /* In a multi-threaded task we may select another thread and
1950 then continue or step.
1952 But if the old thread was stopped at a breakpoint, it will
1953 immediately cause another breakpoint stop without any
1954 execution (i.e. it will report a breakpoint hit incorrectly).
1955 So we must step over it first.
1957 prepare_to_proceed checks the current thread against the
1958 thread that reported the most recent event. If a step-over
1959 is required it returns TRUE and sets the current thread to
1961 if (prepare_to_proceed (step
))
1965 /* prepare_to_proceed may change the current thread. */
1966 tp
= inferior_thread ();
1970 tp
->trap_expected
= 1;
1971 /* If displaced stepping is enabled, we can step over the
1972 breakpoint without hitting it, so leave all breakpoints
1973 inserted. Otherwise we need to disable all breakpoints, step
1974 one instruction, and then re-add them when that step is
1976 if (!use_displaced_stepping (gdbarch
))
1977 remove_breakpoints ();
1980 /* We can insert breakpoints if we're not trying to step over one,
1981 or if we are stepping over one but we're using displaced stepping
1983 if (! tp
->trap_expected
|| use_displaced_stepping (gdbarch
))
1984 insert_breakpoints ();
1988 /* Pass the last stop signal to the thread we're resuming,
1989 irrespective of whether the current thread is the thread that
1990 got the last event or not. This was historically GDB's
1991 behaviour before keeping a stop_signal per thread. */
1993 struct thread_info
*last_thread
;
1995 struct target_waitstatus last_status
;
1997 get_last_target_status (&last_ptid
, &last_status
);
1998 if (!ptid_equal (inferior_ptid
, last_ptid
)
1999 && !ptid_equal (last_ptid
, null_ptid
)
2000 && !ptid_equal (last_ptid
, minus_one_ptid
))
2002 last_thread
= find_thread_ptid (last_ptid
);
2005 tp
->stop_signal
= last_thread
->stop_signal
;
2006 last_thread
->stop_signal
= TARGET_SIGNAL_0
;
2011 if (siggnal
!= TARGET_SIGNAL_DEFAULT
)
2012 tp
->stop_signal
= siggnal
;
2013 /* If this signal should not be seen by program,
2014 give it zero. Used for debugging signals. */
2015 else if (!signal_program
[tp
->stop_signal
])
2016 tp
->stop_signal
= TARGET_SIGNAL_0
;
2018 annotate_starting ();
2020 /* Make sure that output from GDB appears before output from the
2022 gdb_flush (gdb_stdout
);
2024 /* Refresh prev_pc value just prior to resuming. This used to be
2025 done in stop_stepping, however, setting prev_pc there did not handle
2026 scenarios such as inferior function calls or returning from
2027 a function via the return command. In those cases, the prev_pc
2028 value was not set properly for subsequent commands. The prev_pc value
2029 is used to initialize the starting line number in the ecs. With an
2030 invalid value, the gdb next command ends up stopping at the position
2031 represented by the next line table entry past our start position.
2032 On platforms that generate one line table entry per line, this
2033 is not a problem. However, on the ia64, the compiler generates
2034 extraneous line table entries that do not increase the line number.
2035 When we issue the gdb next command on the ia64 after an inferior call
2036 or a return command, we often end up a few instructions forward, still
2037 within the original line we started.
2039 An attempt was made to refresh the prev_pc at the same time the
2040 execution_control_state is initialized (for instance, just before
2041 waiting for an inferior event). But this approach did not work
2042 because of platforms that use ptrace, where the pc register cannot
2043 be read unless the inferior is stopped. At that point, we are not
2044 guaranteed the inferior is stopped and so the regcache_read_pc() call
2045 can fail. Setting the prev_pc value here ensures the value is updated
2046 correctly when the inferior is stopped. */
2047 tp
->prev_pc
= regcache_read_pc (get_current_regcache ());
2049 /* Fill in with reasonable starting values. */
2050 init_thread_stepping_state (tp
);
2052 /* Reset to normal state. */
2053 init_infwait_state ();
2055 /* Resume inferior. */
2056 resume (oneproc
|| step
|| bpstat_should_step (), tp
->stop_signal
);
2058 /* Wait for it to stop (if not standalone)
2059 and in any case decode why it stopped, and act accordingly. */
2060 /* Do this only if we are not using the event loop, or if the target
2061 does not support asynchronous execution. */
2062 if (!target_can_async_p ())
2064 wait_for_inferior (0);
2070 /* Start remote-debugging of a machine over a serial link. */
2073 start_remote (int from_tty
)
2075 struct inferior
*inferior
;
2077 init_wait_for_inferior ();
2078 inferior
= current_inferior ();
2079 inferior
->stop_soon
= STOP_QUIETLY_REMOTE
;
2081 /* Always go on waiting for the target, regardless of the mode. */
2082 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2083 indicate to wait_for_inferior that a target should timeout if
2084 nothing is returned (instead of just blocking). Because of this,
2085 targets expecting an immediate response need to, internally, set
2086 things up so that the target_wait() is forced to eventually
2088 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2089 differentiate to its caller what the state of the target is after
2090 the initial open has been performed. Here we're assuming that
2091 the target has stopped. It should be possible to eventually have
2092 target_open() return to the caller an indication that the target
2093 is currently running and GDB state should be set to the same as
2094 for an async run. */
2095 wait_for_inferior (0);
2097 /* Now that the inferior has stopped, do any bookkeeping like
2098 loading shared libraries. We want to do this before normal_stop,
2099 so that the displayed frame is up to date. */
2100 post_create_inferior (¤t_target
, from_tty
);
2105 /* Initialize static vars when a new inferior begins. */
2108 init_wait_for_inferior (void)
2110 /* These are meaningless until the first time through wait_for_inferior. */
2112 breakpoint_init_inferior (inf_starting
);
2114 clear_proceed_status ();
2116 stepping_past_singlestep_breakpoint
= 0;
2117 deferred_step_ptid
= null_ptid
;
2119 target_last_wait_ptid
= minus_one_ptid
;
2121 previous_inferior_ptid
= null_ptid
;
2122 init_infwait_state ();
2124 /* Discard any skipped inlined frames. */
2125 clear_inline_frame_state (minus_one_ptid
);
2129 /* This enum encodes possible reasons for doing a target_wait, so that
2130 wfi can call target_wait in one place. (Ultimately the call will be
2131 moved out of the infinite loop entirely.) */
2135 infwait_normal_state
,
2136 infwait_thread_hop_state
,
2137 infwait_step_watch_state
,
2138 infwait_nonstep_watch_state
2141 /* Why did the inferior stop? Used to print the appropriate messages
2142 to the interface from within handle_inferior_event(). */
2143 enum inferior_stop_reason
2145 /* Step, next, nexti, stepi finished. */
2147 /* Inferior terminated by signal. */
2149 /* Inferior exited. */
2151 /* Inferior received signal, and user asked to be notified. */
2153 /* Reverse execution -- target ran out of history info. */
2157 /* The PTID we'll do a target_wait on.*/
2160 /* Current inferior wait state. */
2161 enum infwait_states infwait_state
;
2163 /* Data to be passed around while handling an event. This data is
2164 discarded between events. */
2165 struct execution_control_state
2168 /* The thread that got the event, if this was a thread event; NULL
2170 struct thread_info
*event_thread
;
2172 struct target_waitstatus ws
;
2174 CORE_ADDR stop_func_start
;
2175 CORE_ADDR stop_func_end
;
2176 char *stop_func_name
;
2177 int new_thread_event
;
2181 static void handle_inferior_event (struct execution_control_state
*ecs
);
2183 static void handle_step_into_function (struct gdbarch
*gdbarch
,
2184 struct execution_control_state
*ecs
);
2185 static void handle_step_into_function_backward (struct gdbarch
*gdbarch
,
2186 struct execution_control_state
*ecs
);
2187 static void insert_step_resume_breakpoint_at_frame (struct frame_info
*step_frame
);
2188 static void insert_step_resume_breakpoint_at_caller (struct frame_info
*);
2189 static void insert_step_resume_breakpoint_at_sal (struct gdbarch
*gdbarch
,
2190 struct symtab_and_line sr_sal
,
2191 struct frame_id sr_id
);
2192 static void insert_longjmp_resume_breakpoint (struct gdbarch
*, CORE_ADDR
);
2194 static void stop_stepping (struct execution_control_state
*ecs
);
2195 static void prepare_to_wait (struct execution_control_state
*ecs
);
2196 static void keep_going (struct execution_control_state
*ecs
);
2197 static void print_stop_reason (enum inferior_stop_reason stop_reason
,
2200 /* Callback for iterate over threads. If the thread is stopped, but
2201 the user/frontend doesn't know about that yet, go through
2202 normal_stop, as if the thread had just stopped now. ARG points at
2203 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2204 ptid_is_pid(PTID) is true, applies to all threads of the process
2205 pointed at by PTID. Otherwise, apply only to the thread pointed by
2209 infrun_thread_stop_requested_callback (struct thread_info
*info
, void *arg
)
2211 ptid_t ptid
= * (ptid_t
*) arg
;
2213 if ((ptid_equal (info
->ptid
, ptid
)
2214 || ptid_equal (minus_one_ptid
, ptid
)
2215 || (ptid_is_pid (ptid
)
2216 && ptid_get_pid (ptid
) == ptid_get_pid (info
->ptid
)))
2217 && is_running (info
->ptid
)
2218 && !is_executing (info
->ptid
))
2220 struct cleanup
*old_chain
;
2221 struct execution_control_state ecss
;
2222 struct execution_control_state
*ecs
= &ecss
;
2224 memset (ecs
, 0, sizeof (*ecs
));
2226 old_chain
= make_cleanup_restore_current_thread ();
2228 switch_to_thread (info
->ptid
);
2230 /* Go through handle_inferior_event/normal_stop, so we always
2231 have consistent output as if the stop event had been
2233 ecs
->ptid
= info
->ptid
;
2234 ecs
->event_thread
= find_thread_ptid (info
->ptid
);
2235 ecs
->ws
.kind
= TARGET_WAITKIND_STOPPED
;
2236 ecs
->ws
.value
.sig
= TARGET_SIGNAL_0
;
2238 handle_inferior_event (ecs
);
2240 if (!ecs
->wait_some_more
)
2242 struct thread_info
*tp
;
2246 /* Finish off the continuations. The continations
2247 themselves are responsible for realising the thread
2248 didn't finish what it was supposed to do. */
2249 tp
= inferior_thread ();
2250 do_all_intermediate_continuations_thread (tp
);
2251 do_all_continuations_thread (tp
);
2254 do_cleanups (old_chain
);
2260 /* This function is attached as a "thread_stop_requested" observer.
2261 Cleanup local state that assumed the PTID was to be resumed, and
2262 report the stop to the frontend. */
2265 infrun_thread_stop_requested (ptid_t ptid
)
2267 struct displaced_step_inferior_state
*displaced
;
2269 /* PTID was requested to stop. Remove it from the displaced
2270 stepping queue, so we don't try to resume it automatically. */
2272 for (displaced
= displaced_step_inferior_states
;
2274 displaced
= displaced
->next
)
2276 struct displaced_step_request
*it
, **prev_next_p
;
2278 it
= displaced
->step_request_queue
;
2279 prev_next_p
= &displaced
->step_request_queue
;
2282 if (ptid_match (it
->ptid
, ptid
))
2284 *prev_next_p
= it
->next
;
2290 prev_next_p
= &it
->next
;
2297 iterate_over_threads (infrun_thread_stop_requested_callback
, &ptid
);
2301 infrun_thread_thread_exit (struct thread_info
*tp
, int silent
)
2303 if (ptid_equal (target_last_wait_ptid
, tp
->ptid
))
2304 nullify_last_target_wait_ptid ();
2307 /* Callback for iterate_over_threads. */
2310 delete_step_resume_breakpoint_callback (struct thread_info
*info
, void *data
)
2312 if (is_exited (info
->ptid
))
2315 delete_step_resume_breakpoint (info
);
2319 /* In all-stop, delete the step resume breakpoint of any thread that
2320 had one. In non-stop, delete the step resume breakpoint of the
2321 thread that just stopped. */
2324 delete_step_thread_step_resume_breakpoint (void)
2326 if (!target_has_execution
2327 || ptid_equal (inferior_ptid
, null_ptid
))
2328 /* If the inferior has exited, we have already deleted the step
2329 resume breakpoints out of GDB's lists. */
2334 /* If in non-stop mode, only delete the step-resume or
2335 longjmp-resume breakpoint of the thread that just stopped
2337 struct thread_info
*tp
= inferior_thread ();
2339 delete_step_resume_breakpoint (tp
);
2342 /* In all-stop mode, delete all step-resume and longjmp-resume
2343 breakpoints of any thread that had them. */
2344 iterate_over_threads (delete_step_resume_breakpoint_callback
, NULL
);
2347 /* A cleanup wrapper. */
2350 delete_step_thread_step_resume_breakpoint_cleanup (void *arg
)
2352 delete_step_thread_step_resume_breakpoint ();
2355 /* Pretty print the results of target_wait, for debugging purposes. */
2358 print_target_wait_results (ptid_t waiton_ptid
, ptid_t result_ptid
,
2359 const struct target_waitstatus
*ws
)
2361 char *status_string
= target_waitstatus_to_string (ws
);
2362 struct ui_file
*tmp_stream
= mem_fileopen ();
2365 /* The text is split over several lines because it was getting too long.
2366 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2367 output as a unit; we want only one timestamp printed if debug_timestamp
2370 fprintf_unfiltered (tmp_stream
,
2371 "infrun: target_wait (%d", PIDGET (waiton_ptid
));
2372 if (PIDGET (waiton_ptid
) != -1)
2373 fprintf_unfiltered (tmp_stream
,
2374 " [%s]", target_pid_to_str (waiton_ptid
));
2375 fprintf_unfiltered (tmp_stream
, ", status) =\n");
2376 fprintf_unfiltered (tmp_stream
,
2377 "infrun: %d [%s],\n",
2378 PIDGET (result_ptid
), target_pid_to_str (result_ptid
));
2379 fprintf_unfiltered (tmp_stream
,
2383 text
= ui_file_xstrdup (tmp_stream
, NULL
);
2385 /* This uses %s in part to handle %'s in the text, but also to avoid
2386 a gcc error: the format attribute requires a string literal. */
2387 fprintf_unfiltered (gdb_stdlog
, "%s", text
);
2389 xfree (status_string
);
2391 ui_file_delete (tmp_stream
);
2394 /* Prepare and stabilize the inferior for detaching it. E.g.,
2395 detaching while a thread is displaced stepping is a recipe for
2396 crashing it, as nothing would readjust the PC out of the scratch
2400 prepare_for_detach (void)
2402 struct inferior
*inf
= current_inferior ();
2403 ptid_t pid_ptid
= pid_to_ptid (inf
->pid
);
2404 struct cleanup
*old_chain_1
;
2405 struct displaced_step_inferior_state
*displaced
;
2407 displaced
= get_displaced_stepping_state (inf
->pid
);
2409 /* Is any thread of this process displaced stepping? If not,
2410 there's nothing else to do. */
2411 if (displaced
== NULL
|| ptid_equal (displaced
->step_ptid
, null_ptid
))
2415 fprintf_unfiltered (gdb_stdlog
,
2416 "displaced-stepping in-process while detaching");
2418 old_chain_1
= make_cleanup_restore_integer (&inf
->detaching
);
2421 while (!ptid_equal (displaced
->step_ptid
, null_ptid
))
2423 struct cleanup
*old_chain_2
;
2424 struct execution_control_state ecss
;
2425 struct execution_control_state
*ecs
;
2428 memset (ecs
, 0, sizeof (*ecs
));
2430 overlay_cache_invalid
= 1;
2432 /* We have to invalidate the registers BEFORE calling
2433 target_wait because they can be loaded from the target while
2434 in target_wait. This makes remote debugging a bit more
2435 efficient for those targets that provide critical registers
2436 as part of their normal status mechanism. */
2438 registers_changed ();
2440 if (deprecated_target_wait_hook
)
2441 ecs
->ptid
= deprecated_target_wait_hook (pid_ptid
, &ecs
->ws
, 0);
2443 ecs
->ptid
= target_wait (pid_ptid
, &ecs
->ws
, 0);
2446 print_target_wait_results (pid_ptid
, ecs
->ptid
, &ecs
->ws
);
2448 /* If an error happens while handling the event, propagate GDB's
2449 knowledge of the executing state to the frontend/user running
2451 old_chain_2
= make_cleanup (finish_thread_state_cleanup
, &minus_one_ptid
);
2453 /* In non-stop mode, each thread is handled individually.
2454 Switch early, so the global state is set correctly for this
2457 && ecs
->ws
.kind
!= TARGET_WAITKIND_EXITED
2458 && ecs
->ws
.kind
!= TARGET_WAITKIND_SIGNALLED
)
2459 context_switch (ecs
->ptid
);
2461 /* Now figure out what to do with the result of the result. */
2462 handle_inferior_event (ecs
);
2464 /* No error, don't finish the state yet. */
2465 discard_cleanups (old_chain_2
);
2467 /* Breakpoints and watchpoints are not installed on the target
2468 at this point, and signals are passed directly to the
2469 inferior, so this must mean the process is gone. */
2470 if (!ecs
->wait_some_more
)
2472 discard_cleanups (old_chain_1
);
2473 error (_("Program exited while detaching"));
2477 discard_cleanups (old_chain_1
);
2480 /* Wait for control to return from inferior to debugger.
2482 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
2483 as if they were SIGTRAP signals. This can be useful during
2484 the startup sequence on some targets such as HP/UX, where
2485 we receive an EXEC event instead of the expected SIGTRAP.
2487 If inferior gets a signal, we may decide to start it up again
2488 instead of returning. That is why there is a loop in this function.
2489 When this function actually returns it means the inferior
2490 should be left stopped and GDB should read more commands. */
2493 wait_for_inferior (int treat_exec_as_sigtrap
)
2495 struct cleanup
*old_cleanups
;
2496 struct execution_control_state ecss
;
2497 struct execution_control_state
*ecs
;
2501 (gdb_stdlog
, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
2502 treat_exec_as_sigtrap
);
2505 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup
, NULL
);
2508 memset (ecs
, 0, sizeof (*ecs
));
2510 /* We'll update this if & when we switch to a new thread. */
2511 previous_inferior_ptid
= inferior_ptid
;
2515 struct cleanup
*old_chain
;
2517 /* We have to invalidate the registers BEFORE calling target_wait
2518 because they can be loaded from the target while in target_wait.
2519 This makes remote debugging a bit more efficient for those
2520 targets that provide critical registers as part of their normal
2521 status mechanism. */
2523 overlay_cache_invalid
= 1;
2524 registers_changed ();
2526 if (deprecated_target_wait_hook
)
2527 ecs
->ptid
= deprecated_target_wait_hook (waiton_ptid
, &ecs
->ws
, 0);
2529 ecs
->ptid
= target_wait (waiton_ptid
, &ecs
->ws
, 0);
2532 print_target_wait_results (waiton_ptid
, ecs
->ptid
, &ecs
->ws
);
2534 if (treat_exec_as_sigtrap
&& ecs
->ws
.kind
== TARGET_WAITKIND_EXECD
)
2536 xfree (ecs
->ws
.value
.execd_pathname
);
2537 ecs
->ws
.kind
= TARGET_WAITKIND_STOPPED
;
2538 ecs
->ws
.value
.sig
= TARGET_SIGNAL_TRAP
;
2541 /* If an error happens while handling the event, propagate GDB's
2542 knowledge of the executing state to the frontend/user running
2544 old_chain
= make_cleanup (finish_thread_state_cleanup
, &minus_one_ptid
);
2546 if (ecs
->ws
.kind
== TARGET_WAITKIND_SYSCALL_ENTRY
2547 || ecs
->ws
.kind
== TARGET_WAITKIND_SYSCALL_RETURN
)
2548 ecs
->ws
.value
.syscall_number
= UNKNOWN_SYSCALL
;
2550 /* Now figure out what to do with the result of the result. */
2551 handle_inferior_event (ecs
);
2553 /* No error, don't finish the state yet. */
2554 discard_cleanups (old_chain
);
2556 if (!ecs
->wait_some_more
)
2560 do_cleanups (old_cleanups
);
2563 /* Asynchronous version of wait_for_inferior. It is called by the
2564 event loop whenever a change of state is detected on the file
2565 descriptor corresponding to the target. It can be called more than
2566 once to complete a single execution command. In such cases we need
2567 to keep the state in a global variable ECSS. If it is the last time
2568 that this function is called for a single execution command, then
2569 report to the user that the inferior has stopped, and do the
2570 necessary cleanups. */
2573 fetch_inferior_event (void *client_data
)
2575 struct execution_control_state ecss
;
2576 struct execution_control_state
*ecs
= &ecss
;
2577 struct cleanup
*old_chain
= make_cleanup (null_cleanup
, NULL
);
2578 struct cleanup
*ts_old_chain
;
2579 int was_sync
= sync_execution
;
2581 memset (ecs
, 0, sizeof (*ecs
));
2583 /* We'll update this if & when we switch to a new thread. */
2584 previous_inferior_ptid
= inferior_ptid
;
2587 /* In non-stop mode, the user/frontend should not notice a thread
2588 switch due to internal events. Make sure we reverse to the
2589 user selected thread and frame after handling the event and
2590 running any breakpoint commands. */
2591 make_cleanup_restore_current_thread ();
2593 /* We have to invalidate the registers BEFORE calling target_wait
2594 because they can be loaded from the target while in target_wait.
2595 This makes remote debugging a bit more efficient for those
2596 targets that provide critical registers as part of their normal
2597 status mechanism. */
2599 overlay_cache_invalid
= 1;
2600 registers_changed ();
2602 if (deprecated_target_wait_hook
)
2604 deprecated_target_wait_hook (waiton_ptid
, &ecs
->ws
, TARGET_WNOHANG
);
2606 ecs
->ptid
= target_wait (waiton_ptid
, &ecs
->ws
, TARGET_WNOHANG
);
2609 print_target_wait_results (waiton_ptid
, ecs
->ptid
, &ecs
->ws
);
2612 && ecs
->ws
.kind
!= TARGET_WAITKIND_IGNORE
2613 && ecs
->ws
.kind
!= TARGET_WAITKIND_EXITED
2614 && ecs
->ws
.kind
!= TARGET_WAITKIND_SIGNALLED
)
2615 /* In non-stop mode, each thread is handled individually. Switch
2616 early, so the global state is set correctly for this
2618 context_switch (ecs
->ptid
);
2620 /* If an error happens while handling the event, propagate GDB's
2621 knowledge of the executing state to the frontend/user running
2624 ts_old_chain
= make_cleanup (finish_thread_state_cleanup
, &minus_one_ptid
);
2626 ts_old_chain
= make_cleanup (finish_thread_state_cleanup
, &ecs
->ptid
);
2628 /* Now figure out what to do with the result of the result. */
2629 handle_inferior_event (ecs
);
2631 if (!ecs
->wait_some_more
)
2633 struct inferior
*inf
= find_inferior_pid (ptid_get_pid (ecs
->ptid
));
2635 delete_step_thread_step_resume_breakpoint ();
2637 /* We may not find an inferior if this was a process exit. */
2638 if (inf
== NULL
|| inf
->stop_soon
== NO_STOP_QUIETLY
)
2641 if (target_has_execution
2642 && ecs
->ws
.kind
!= TARGET_WAITKIND_EXITED
2643 && ecs
->ws
.kind
!= TARGET_WAITKIND_SIGNALLED
2644 && ecs
->event_thread
->step_multi
2645 && ecs
->event_thread
->stop_step
)
2646 inferior_event_handler (INF_EXEC_CONTINUE
, NULL
);
2648 inferior_event_handler (INF_EXEC_COMPLETE
, NULL
);
2651 /* No error, don't finish the thread states yet. */
2652 discard_cleanups (ts_old_chain
);
2654 /* Revert thread and frame. */
2655 do_cleanups (old_chain
);
2657 /* If the inferior was in sync execution mode, and now isn't,
2658 restore the prompt. */
2659 if (was_sync
&& !sync_execution
)
2660 display_gdb_prompt (0);
2663 /* Record the frame and location we're currently stepping through. */
2665 set_step_info (struct frame_info
*frame
, struct symtab_and_line sal
)
2667 struct thread_info
*tp
= inferior_thread ();
2669 tp
->step_frame_id
= get_frame_id (frame
);
2670 tp
->step_stack_frame_id
= get_stack_frame_id (frame
);
2672 tp
->current_symtab
= sal
.symtab
;
2673 tp
->current_line
= sal
.line
;
2676 /* Clear context switchable stepping state. */
2679 init_thread_stepping_state (struct thread_info
*tss
)
2681 tss
->stepping_over_breakpoint
= 0;
2682 tss
->step_after_step_resume_breakpoint
= 0;
2683 tss
->stepping_through_solib_after_catch
= 0;
2684 tss
->stepping_through_solib_catchpoints
= NULL
;
2687 /* Return the cached copy of the last pid/waitstatus returned by
2688 target_wait()/deprecated_target_wait_hook(). The data is actually
2689 cached by handle_inferior_event(), which gets called immediately
2690 after target_wait()/deprecated_target_wait_hook(). */
2693 get_last_target_status (ptid_t
*ptidp
, struct target_waitstatus
*status
)
2695 *ptidp
= target_last_wait_ptid
;
2696 *status
= target_last_waitstatus
;
2700 nullify_last_target_wait_ptid (void)
2702 target_last_wait_ptid
= minus_one_ptid
;
2705 /* Switch thread contexts. */
2708 context_switch (ptid_t ptid
)
2712 fprintf_unfiltered (gdb_stdlog
, "infrun: Switching context from %s ",
2713 target_pid_to_str (inferior_ptid
));
2714 fprintf_unfiltered (gdb_stdlog
, "to %s\n",
2715 target_pid_to_str (ptid
));
2718 switch_to_thread (ptid
);
2722 adjust_pc_after_break (struct execution_control_state
*ecs
)
2724 struct regcache
*regcache
;
2725 struct gdbarch
*gdbarch
;
2726 struct address_space
*aspace
;
2727 CORE_ADDR breakpoint_pc
;
2729 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2730 we aren't, just return.
2732 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2733 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2734 implemented by software breakpoints should be handled through the normal
2737 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2738 different signals (SIGILL or SIGEMT for instance), but it is less
2739 clear where the PC is pointing afterwards. It may not match
2740 gdbarch_decr_pc_after_break. I don't know any specific target that
2741 generates these signals at breakpoints (the code has been in GDB since at
2742 least 1992) so I can not guess how to handle them here.
2744 In earlier versions of GDB, a target with
2745 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2746 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2747 target with both of these set in GDB history, and it seems unlikely to be
2748 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2750 if (ecs
->ws
.kind
!= TARGET_WAITKIND_STOPPED
)
2753 if (ecs
->ws
.value
.sig
!= TARGET_SIGNAL_TRAP
)
2756 /* In reverse execution, when a breakpoint is hit, the instruction
2757 under it has already been de-executed. The reported PC always
2758 points at the breakpoint address, so adjusting it further would
2759 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2762 B1 0x08000000 : INSN1
2763 B2 0x08000001 : INSN2
2765 PC -> 0x08000003 : INSN4
2767 Say you're stopped at 0x08000003 as above. Reverse continuing
2768 from that point should hit B2 as below. Reading the PC when the
2769 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2770 been de-executed already.
2772 B1 0x08000000 : INSN1
2773 B2 PC -> 0x08000001 : INSN2
2777 We can't apply the same logic as for forward execution, because
2778 we would wrongly adjust the PC to 0x08000000, since there's a
2779 breakpoint at PC - 1. We'd then report a hit on B1, although
2780 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2782 if (execution_direction
== EXEC_REVERSE
)
2785 /* If this target does not decrement the PC after breakpoints, then
2786 we have nothing to do. */
2787 regcache
= get_thread_regcache (ecs
->ptid
);
2788 gdbarch
= get_regcache_arch (regcache
);
2789 if (gdbarch_decr_pc_after_break (gdbarch
) == 0)
2792 aspace
= get_regcache_aspace (regcache
);
2794 /* Find the location where (if we've hit a breakpoint) the
2795 breakpoint would be. */
2796 breakpoint_pc
= regcache_read_pc (regcache
)
2797 - gdbarch_decr_pc_after_break (gdbarch
);
2799 /* Check whether there actually is a software breakpoint inserted at
2802 If in non-stop mode, a race condition is possible where we've
2803 removed a breakpoint, but stop events for that breakpoint were
2804 already queued and arrive later. To suppress those spurious
2805 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2806 and retire them after a number of stop events are reported. */
2807 if (software_breakpoint_inserted_here_p (aspace
, breakpoint_pc
)
2808 || (non_stop
&& moribund_breakpoint_here_p (aspace
, breakpoint_pc
)))
2810 struct cleanup
*old_cleanups
= NULL
;
2813 old_cleanups
= record_gdb_operation_disable_set ();
2815 /* When using hardware single-step, a SIGTRAP is reported for both
2816 a completed single-step and a software breakpoint. Need to
2817 differentiate between the two, as the latter needs adjusting
2818 but the former does not.
2820 The SIGTRAP can be due to a completed hardware single-step only if
2821 - we didn't insert software single-step breakpoints
2822 - the thread to be examined is still the current thread
2823 - this thread is currently being stepped
2825 If any of these events did not occur, we must have stopped due
2826 to hitting a software breakpoint, and have to back up to the
2829 As a special case, we could have hardware single-stepped a
2830 software breakpoint. In this case (prev_pc == breakpoint_pc),
2831 we also need to back up to the breakpoint address. */
2833 if (singlestep_breakpoints_inserted_p
2834 || !ptid_equal (ecs
->ptid
, inferior_ptid
)
2835 || !currently_stepping (ecs
->event_thread
)
2836 || ecs
->event_thread
->prev_pc
== breakpoint_pc
)
2837 regcache_write_pc (regcache
, breakpoint_pc
);
2840 do_cleanups (old_cleanups
);
2845 init_infwait_state (void)
2847 waiton_ptid
= pid_to_ptid (-1);
2848 infwait_state
= infwait_normal_state
;
2852 error_is_running (void)
2855 Cannot execute this command while the selected thread is running."));
2859 ensure_not_running (void)
2861 if (is_running (inferior_ptid
))
2862 error_is_running ();
2866 stepped_in_from (struct frame_info
*frame
, struct frame_id step_frame_id
)
2868 for (frame
= get_prev_frame (frame
);
2870 frame
= get_prev_frame (frame
))
2872 if (frame_id_eq (get_frame_id (frame
), step_frame_id
))
2874 if (get_frame_type (frame
) != INLINE_FRAME
)
2881 /* Auxiliary function that handles syscall entry/return events.
2882 It returns 1 if the inferior should keep going (and GDB
2883 should ignore the event), or 0 if the event deserves to be
2887 handle_syscall_event (struct execution_control_state
*ecs
)
2889 struct regcache
*regcache
;
2890 struct gdbarch
*gdbarch
;
2893 if (!ptid_equal (ecs
->ptid
, inferior_ptid
))
2894 context_switch (ecs
->ptid
);
2896 regcache
= get_thread_regcache (ecs
->ptid
);
2897 gdbarch
= get_regcache_arch (regcache
);
2898 syscall_number
= gdbarch_get_syscall_number (gdbarch
, ecs
->ptid
);
2899 stop_pc
= regcache_read_pc (regcache
);
2901 target_last_waitstatus
.value
.syscall_number
= syscall_number
;
2903 if (catch_syscall_enabled () > 0
2904 && catching_syscall_number (syscall_number
) > 0)
2907 fprintf_unfiltered (gdb_stdlog
, "infrun: syscall number = '%d'\n",
2910 ecs
->event_thread
->stop_bpstat
2911 = bpstat_stop_status (get_regcache_aspace (regcache
),
2912 stop_pc
, ecs
->ptid
);
2913 ecs
->random_signal
= !bpstat_explains_signal (ecs
->event_thread
->stop_bpstat
);
2915 if (!ecs
->random_signal
)
2917 /* Catchpoint hit. */
2918 ecs
->event_thread
->stop_signal
= TARGET_SIGNAL_TRAP
;
2923 /* If no catchpoint triggered for this, then keep going. */
2924 ecs
->event_thread
->stop_signal
= TARGET_SIGNAL_0
;
2929 /* Given an execution control state that has been freshly filled in
2930 by an event from the inferior, figure out what it means and take
2931 appropriate action. */
2934 handle_inferior_event (struct execution_control_state
*ecs
)
2936 struct frame_info
*frame
;
2937 struct gdbarch
*gdbarch
;
2938 int sw_single_step_trap_p
= 0;
2939 int stopped_by_watchpoint
;
2940 int stepped_after_stopped_by_watchpoint
= 0;
2941 struct symtab_and_line stop_pc_sal
;
2942 enum stop_kind stop_soon
;
2944 if (ecs
->ws
.kind
== TARGET_WAITKIND_IGNORE
)
2946 /* We had an event in the inferior, but we are not interested in
2947 handling it at this level. The lower layers have already
2948 done what needs to be done, if anything.
2950 One of the possible circumstances for this is when the
2951 inferior produces output for the console. The inferior has
2952 not stopped, and we are ignoring the event. Another possible
2953 circumstance is any event which the lower level knows will be
2954 reported multiple times without an intervening resume. */
2956 fprintf_unfiltered (gdb_stdlog
, "infrun: TARGET_WAITKIND_IGNORE\n");
2957 prepare_to_wait (ecs
);
2961 if (ecs
->ws
.kind
!= TARGET_WAITKIND_EXITED
2962 && ecs
->ws
.kind
!= TARGET_WAITKIND_SIGNALLED
)
2964 struct inferior
*inf
= find_inferior_pid (ptid_get_pid (ecs
->ptid
));
2967 stop_soon
= inf
->stop_soon
;
2970 stop_soon
= NO_STOP_QUIETLY
;
2972 /* Cache the last pid/waitstatus. */
2973 target_last_wait_ptid
= ecs
->ptid
;
2974 target_last_waitstatus
= ecs
->ws
;
2976 /* Always clear state belonging to the previous time we stopped. */
2977 stop_stack_dummy
= STOP_NONE
;
2979 /* If it's a new process, add it to the thread database */
2981 ecs
->new_thread_event
= (!ptid_equal (ecs
->ptid
, inferior_ptid
)
2982 && !ptid_equal (ecs
->ptid
, minus_one_ptid
)
2983 && !in_thread_list (ecs
->ptid
));
2985 if (ecs
->ws
.kind
!= TARGET_WAITKIND_EXITED
2986 && ecs
->ws
.kind
!= TARGET_WAITKIND_SIGNALLED
&& ecs
->new_thread_event
)
2987 add_thread (ecs
->ptid
);
2989 ecs
->event_thread
= find_thread_ptid (ecs
->ptid
);
2991 /* Dependent on valid ECS->EVENT_THREAD. */
2992 adjust_pc_after_break (ecs
);
2994 /* Dependent on the current PC value modified by adjust_pc_after_break. */
2995 reinit_frame_cache ();
2997 breakpoint_retire_moribund ();
2999 /* First, distinguish signals caused by the debugger from signals
3000 that have to do with the program's own actions. Note that
3001 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3002 on the operating system version. Here we detect when a SIGILL or
3003 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3004 something similar for SIGSEGV, since a SIGSEGV will be generated
3005 when we're trying to execute a breakpoint instruction on a
3006 non-executable stack. This happens for call dummy breakpoints
3007 for architectures like SPARC that place call dummies on the
3009 if (ecs
->ws
.kind
== TARGET_WAITKIND_STOPPED
3010 && (ecs
->ws
.value
.sig
== TARGET_SIGNAL_ILL
3011 || ecs
->ws
.value
.sig
== TARGET_SIGNAL_SEGV
3012 || ecs
->ws
.value
.sig
== TARGET_SIGNAL_EMT
))
3014 struct regcache
*regcache
= get_thread_regcache (ecs
->ptid
);
3016 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache
),
3017 regcache_read_pc (regcache
)))
3020 fprintf_unfiltered (gdb_stdlog
,
3021 "infrun: Treating signal as SIGTRAP\n");
3022 ecs
->ws
.value
.sig
= TARGET_SIGNAL_TRAP
;
3026 /* Mark the non-executing threads accordingly. In all-stop, all
3027 threads of all processes are stopped when we get any event
3028 reported. In non-stop mode, only the event thread stops. If
3029 we're handling a process exit in non-stop mode, there's nothing
3030 to do, as threads of the dead process are gone, and threads of
3031 any other process were left running. */
3033 set_executing (minus_one_ptid
, 0);
3034 else if (ecs
->ws
.kind
!= TARGET_WAITKIND_SIGNALLED
3035 && ecs
->ws
.kind
!= TARGET_WAITKIND_EXITED
)
3036 set_executing (inferior_ptid
, 0);
3038 switch (infwait_state
)
3040 case infwait_thread_hop_state
:
3042 fprintf_unfiltered (gdb_stdlog
, "infrun: infwait_thread_hop_state\n");
3045 case infwait_normal_state
:
3047 fprintf_unfiltered (gdb_stdlog
, "infrun: infwait_normal_state\n");
3050 case infwait_step_watch_state
:
3052 fprintf_unfiltered (gdb_stdlog
,
3053 "infrun: infwait_step_watch_state\n");
3055 stepped_after_stopped_by_watchpoint
= 1;
3058 case infwait_nonstep_watch_state
:
3060 fprintf_unfiltered (gdb_stdlog
,
3061 "infrun: infwait_nonstep_watch_state\n");
3062 insert_breakpoints ();
3064 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3065 handle things like signals arriving and other things happening
3066 in combination correctly? */
3067 stepped_after_stopped_by_watchpoint
= 1;
3071 internal_error (__FILE__
, __LINE__
, _("bad switch"));
3074 infwait_state
= infwait_normal_state
;
3075 waiton_ptid
= pid_to_ptid (-1);
3077 switch (ecs
->ws
.kind
)
3079 case TARGET_WAITKIND_LOADED
:
3081 fprintf_unfiltered (gdb_stdlog
, "infrun: TARGET_WAITKIND_LOADED\n");
3082 /* Ignore gracefully during startup of the inferior, as it might
3083 be the shell which has just loaded some objects, otherwise
3084 add the symbols for the newly loaded objects. Also ignore at
3085 the beginning of an attach or remote session; we will query
3086 the full list of libraries once the connection is
3088 if (stop_soon
== NO_STOP_QUIETLY
)
3090 /* Check for any newly added shared libraries if we're
3091 supposed to be adding them automatically. Switch
3092 terminal for any messages produced by
3093 breakpoint_re_set. */
3094 target_terminal_ours_for_output ();
3095 /* NOTE: cagney/2003-11-25: Make certain that the target
3096 stack's section table is kept up-to-date. Architectures,
3097 (e.g., PPC64), use the section table to perform
3098 operations such as address => section name and hence
3099 require the table to contain all sections (including
3100 those found in shared libraries). */
3102 SOLIB_ADD (NULL
, 0, ¤t_target
, auto_solib_add
);
3104 solib_add (NULL
, 0, ¤t_target
, auto_solib_add
);
3106 target_terminal_inferior ();
3108 /* If requested, stop when the dynamic linker notifies
3109 gdb of events. This allows the user to get control
3110 and place breakpoints in initializer routines for
3111 dynamically loaded objects (among other things). */
3112 if (stop_on_solib_events
)
3114 /* Make sure we print "Stopped due to solib-event" in
3116 stop_print_frame
= 1;
3118 stop_stepping (ecs
);
3122 /* NOTE drow/2007-05-11: This might be a good place to check
3123 for "catch load". */
3126 /* If we are skipping through a shell, or through shared library
3127 loading that we aren't interested in, resume the program. If
3128 we're running the program normally, also resume. But stop if
3129 we're attaching or setting up a remote connection. */
3130 if (stop_soon
== STOP_QUIETLY
|| stop_soon
== NO_STOP_QUIETLY
)
3132 /* Loading of shared libraries might have changed breakpoint
3133 addresses. Make sure new breakpoints are inserted. */
3134 if (stop_soon
== NO_STOP_QUIETLY
3135 && !breakpoints_always_inserted_mode ())
3136 insert_breakpoints ();
3137 resume (0, TARGET_SIGNAL_0
);
3138 prepare_to_wait (ecs
);
3144 case TARGET_WAITKIND_SPURIOUS
:
3146 fprintf_unfiltered (gdb_stdlog
, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3147 resume (0, TARGET_SIGNAL_0
);
3148 prepare_to_wait (ecs
);
3151 case TARGET_WAITKIND_EXITED
:
3153 fprintf_unfiltered (gdb_stdlog
, "infrun: TARGET_WAITKIND_EXITED\n");
3154 inferior_ptid
= ecs
->ptid
;
3155 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs
->ptid
)));
3156 set_current_program_space (current_inferior ()->pspace
);
3157 handle_vfork_child_exec_or_exit (0);
3158 target_terminal_ours (); /* Must do this before mourn anyway */
3159 print_stop_reason (EXITED
, ecs
->ws
.value
.integer
);
3161 /* Record the exit code in the convenience variable $_exitcode, so
3162 that the user can inspect this again later. */
3163 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3164 (LONGEST
) ecs
->ws
.value
.integer
);
3165 gdb_flush (gdb_stdout
);
3166 target_mourn_inferior ();
3167 singlestep_breakpoints_inserted_p
= 0;
3168 cancel_single_step_breakpoints ();
3169 stop_print_frame
= 0;
3170 stop_stepping (ecs
);
3173 case TARGET_WAITKIND_SIGNALLED
:
3175 fprintf_unfiltered (gdb_stdlog
, "infrun: TARGET_WAITKIND_SIGNALLED\n");
3176 inferior_ptid
= ecs
->ptid
;
3177 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs
->ptid
)));
3178 set_current_program_space (current_inferior ()->pspace
);
3179 handle_vfork_child_exec_or_exit (0);
3180 stop_print_frame
= 0;
3181 target_terminal_ours (); /* Must do this before mourn anyway */
3183 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3184 reach here unless the inferior is dead. However, for years
3185 target_kill() was called here, which hints that fatal signals aren't
3186 really fatal on some systems. If that's true, then some changes
3188 target_mourn_inferior ();
3190 print_stop_reason (SIGNAL_EXITED
, ecs
->ws
.value
.sig
);
3191 singlestep_breakpoints_inserted_p
= 0;
3192 cancel_single_step_breakpoints ();
3193 stop_stepping (ecs
);
3196 /* The following are the only cases in which we keep going;
3197 the above cases end in a continue or goto. */
3198 case TARGET_WAITKIND_FORKED
:
3199 case TARGET_WAITKIND_VFORKED
:
3201 fprintf_unfiltered (gdb_stdlog
, "infrun: TARGET_WAITKIND_FORKED\n");
3203 if (!ptid_equal (ecs
->ptid
, inferior_ptid
))
3205 context_switch (ecs
->ptid
);
3206 reinit_frame_cache ();
3209 /* Immediately detach breakpoints from the child before there's
3210 any chance of letting the user delete breakpoints from the
3211 breakpoint lists. If we don't do this early, it's easy to
3212 leave left over traps in the child, vis: "break foo; catch
3213 fork; c; <fork>; del; c; <child calls foo>". We only follow
3214 the fork on the last `continue', and by that time the
3215 breakpoint at "foo" is long gone from the breakpoint table.
3216 If we vforked, then we don't need to unpatch here, since both
3217 parent and child are sharing the same memory pages; we'll
3218 need to unpatch at follow/detach time instead to be certain
3219 that new breakpoints added between catchpoint hit time and
3220 vfork follow are detached. */
3221 if (ecs
->ws
.kind
!= TARGET_WAITKIND_VFORKED
)
3223 int child_pid
= ptid_get_pid (ecs
->ws
.value
.related_pid
);
3225 /* This won't actually modify the breakpoint list, but will
3226 physically remove the breakpoints from the child. */
3227 detach_breakpoints (child_pid
);
3230 if (singlestep_breakpoints_inserted_p
)
3232 /* Pull the single step breakpoints out of the target. */
3233 remove_single_step_breakpoints ();
3234 singlestep_breakpoints_inserted_p
= 0;
3237 /* In case the event is caught by a catchpoint, remember that
3238 the event is to be followed at the next resume of the thread,
3239 and not immediately. */
3240 ecs
->event_thread
->pending_follow
= ecs
->ws
;
3242 stop_pc
= regcache_read_pc (get_thread_regcache (ecs
->ptid
));
3244 ecs
->event_thread
->stop_bpstat
3245 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3246 stop_pc
, ecs
->ptid
);
3248 /* Note that we're interested in knowing the bpstat actually
3249 causes a stop, not just if it may explain the signal.
3250 Software watchpoints, for example, always appear in the
3252 ecs
->random_signal
= !bpstat_causes_stop (ecs
->event_thread
->stop_bpstat
);
3254 /* If no catchpoint triggered for this, then keep going. */
3255 if (ecs
->random_signal
)
3260 int follow_child
= (follow_fork_mode_string
== follow_fork_mode_child
);
3262 ecs
->event_thread
->stop_signal
= TARGET_SIGNAL_0
;
3264 should_resume
= follow_fork ();
3267 child
= ecs
->ws
.value
.related_pid
;
3269 /* In non-stop mode, also resume the other branch. */
3270 if (non_stop
&& !detach_fork
)
3273 switch_to_thread (parent
);
3275 switch_to_thread (child
);
3277 ecs
->event_thread
= inferior_thread ();
3278 ecs
->ptid
= inferior_ptid
;
3283 switch_to_thread (child
);
3285 switch_to_thread (parent
);
3287 ecs
->event_thread
= inferior_thread ();
3288 ecs
->ptid
= inferior_ptid
;
3293 stop_stepping (ecs
);
3296 ecs
->event_thread
->stop_signal
= TARGET_SIGNAL_TRAP
;
3297 goto process_event_stop_test
;
3299 case TARGET_WAITKIND_VFORK_DONE
:
3300 /* Done with the shared memory region. Re-insert breakpoints in
3301 the parent, and keep going. */
3304 fprintf_unfiltered (gdb_stdlog
, "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3306 if (!ptid_equal (ecs
->ptid
, inferior_ptid
))
3307 context_switch (ecs
->ptid
);
3309 current_inferior ()->waiting_for_vfork_done
= 0;
3310 current_inferior ()->pspace
->breakpoints_not_allowed
= 0;
3311 /* This also takes care of reinserting breakpoints in the
3312 previously locked inferior. */
3316 case TARGET_WAITKIND_EXECD
:
3318 fprintf_unfiltered (gdb_stdlog
, "infrun: TARGET_WAITKIND_EXECD\n");
3320 if (!ptid_equal (ecs
->ptid
, inferior_ptid
))
3322 context_switch (ecs
->ptid
);
3323 reinit_frame_cache ();
3326 singlestep_breakpoints_inserted_p
= 0;
3327 cancel_single_step_breakpoints ();
3329 stop_pc
= regcache_read_pc (get_thread_regcache (ecs
->ptid
));
3331 /* Do whatever is necessary to the parent branch of the vfork. */
3332 handle_vfork_child_exec_or_exit (1);
3334 /* This causes the eventpoints and symbol table to be reset.
3335 Must do this now, before trying to determine whether to
3337 follow_exec (inferior_ptid
, ecs
->ws
.value
.execd_pathname
);
3339 ecs
->event_thread
->stop_bpstat
3340 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3341 stop_pc
, ecs
->ptid
);
3342 ecs
->random_signal
= !bpstat_explains_signal (ecs
->event_thread
->stop_bpstat
);
3344 /* Note that this may be referenced from inside
3345 bpstat_stop_status above, through inferior_has_execd. */
3346 xfree (ecs
->ws
.value
.execd_pathname
);
3347 ecs
->ws
.value
.execd_pathname
= NULL
;
3349 /* If no catchpoint triggered for this, then keep going. */
3350 if (ecs
->random_signal
)
3352 ecs
->event_thread
->stop_signal
= TARGET_SIGNAL_0
;
3356 ecs
->event_thread
->stop_signal
= TARGET_SIGNAL_TRAP
;
3357 goto process_event_stop_test
;
3359 /* Be careful not to try to gather much state about a thread
3360 that's in a syscall. It's frequently a losing proposition. */
3361 case TARGET_WAITKIND_SYSCALL_ENTRY
:
3363 fprintf_unfiltered (gdb_stdlog
, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3364 /* Getting the current syscall number */
3365 if (handle_syscall_event (ecs
) != 0)
3367 goto process_event_stop_test
;
3369 /* Before examining the threads further, step this thread to
3370 get it entirely out of the syscall. (We get notice of the
3371 event when the thread is just on the verge of exiting a
3372 syscall. Stepping one instruction seems to get it back
3374 case TARGET_WAITKIND_SYSCALL_RETURN
:
3376 fprintf_unfiltered (gdb_stdlog
, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3377 if (handle_syscall_event (ecs
) != 0)
3379 goto process_event_stop_test
;
3381 case TARGET_WAITKIND_STOPPED
:
3383 fprintf_unfiltered (gdb_stdlog
, "infrun: TARGET_WAITKIND_STOPPED\n");
3384 ecs
->event_thread
->stop_signal
= ecs
->ws
.value
.sig
;
3387 case TARGET_WAITKIND_NO_HISTORY
:
3388 /* Reverse execution: target ran out of history info. */
3389 stop_pc
= regcache_read_pc (get_thread_regcache (ecs
->ptid
));
3390 print_stop_reason (NO_HISTORY
, 0);
3391 stop_stepping (ecs
);
3395 if (ecs
->new_thread_event
)
3398 /* Non-stop assumes that the target handles adding new threads
3399 to the thread list. */
3400 internal_error (__FILE__
, __LINE__
, "\
3401 targets should add new threads to the thread list themselves in non-stop mode.");
3403 /* We may want to consider not doing a resume here in order to
3404 give the user a chance to play with the new thread. It might
3405 be good to make that a user-settable option. */
3407 /* At this point, all threads are stopped (happens automatically
3408 in either the OS or the native code). Therefore we need to
3409 continue all threads in order to make progress. */
3411 if (!ptid_equal (ecs
->ptid
, inferior_ptid
))
3412 context_switch (ecs
->ptid
);
3413 target_resume (RESUME_ALL
, 0, TARGET_SIGNAL_0
);
3414 prepare_to_wait (ecs
);
3418 if (ecs
->ws
.kind
== TARGET_WAITKIND_STOPPED
)
3420 /* Do we need to clean up the state of a thread that has
3421 completed a displaced single-step? (Doing so usually affects
3422 the PC, so do it here, before we set stop_pc.) */
3423 displaced_step_fixup (ecs
->ptid
, ecs
->event_thread
->stop_signal
);
3425 /* If we either finished a single-step or hit a breakpoint, but
3426 the user wanted this thread to be stopped, pretend we got a
3427 SIG0 (generic unsignaled stop). */
3429 if (ecs
->event_thread
->stop_requested
3430 && ecs
->event_thread
->stop_signal
== TARGET_SIGNAL_TRAP
)
3431 ecs
->event_thread
->stop_signal
= TARGET_SIGNAL_0
;
3434 stop_pc
= regcache_read_pc (get_thread_regcache (ecs
->ptid
));
3438 struct regcache
*regcache
= get_thread_regcache (ecs
->ptid
);
3439 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
3440 struct cleanup
*old_chain
= save_inferior_ptid ();
3442 inferior_ptid
= ecs
->ptid
;
3444 fprintf_unfiltered (gdb_stdlog
, "infrun: stop_pc = %s\n",
3445 paddress (gdbarch
, stop_pc
));
3446 if (target_stopped_by_watchpoint ())
3450 fprintf_unfiltered (gdb_stdlog
, "infrun: stopped by watchpoint\n");
3452 if (target_stopped_data_address (¤t_target
, &addr
))
3453 fprintf_unfiltered (gdb_stdlog
,
3454 "infrun: stopped data address = %s\n",
3455 paddress (gdbarch
, addr
));
3457 fprintf_unfiltered (gdb_stdlog
,
3458 "infrun: (no data address available)\n");
3461 do_cleanups (old_chain
);
3464 if (stepping_past_singlestep_breakpoint
)
3466 gdb_assert (singlestep_breakpoints_inserted_p
);
3467 gdb_assert (ptid_equal (singlestep_ptid
, ecs
->ptid
));
3468 gdb_assert (!ptid_equal (singlestep_ptid
, saved_singlestep_ptid
));
3470 stepping_past_singlestep_breakpoint
= 0;
3472 /* We've either finished single-stepping past the single-step
3473 breakpoint, or stopped for some other reason. It would be nice if
3474 we could tell, but we can't reliably. */
3475 if (ecs
->event_thread
->stop_signal
== TARGET_SIGNAL_TRAP
)
3478 fprintf_unfiltered (gdb_stdlog
, "infrun: stepping_past_singlestep_breakpoint\n");
3479 /* Pull the single step breakpoints out of the target. */
3480 remove_single_step_breakpoints ();
3481 singlestep_breakpoints_inserted_p
= 0;
3483 ecs
->random_signal
= 0;
3484 ecs
->event_thread
->trap_expected
= 0;
3486 context_switch (saved_singlestep_ptid
);
3487 if (deprecated_context_hook
)
3488 deprecated_context_hook (pid_to_thread_id (ecs
->ptid
));
3490 resume (1, TARGET_SIGNAL_0
);
3491 prepare_to_wait (ecs
);
3496 if (!ptid_equal (deferred_step_ptid
, null_ptid
))
3498 /* In non-stop mode, there's never a deferred_step_ptid set. */
3499 gdb_assert (!non_stop
);
3501 /* If we stopped for some other reason than single-stepping, ignore
3502 the fact that we were supposed to switch back. */
3503 if (ecs
->event_thread
->stop_signal
== TARGET_SIGNAL_TRAP
)
3506 fprintf_unfiltered (gdb_stdlog
,
3507 "infrun: handling deferred step\n");
3509 /* Pull the single step breakpoints out of the target. */
3510 if (singlestep_breakpoints_inserted_p
)
3512 remove_single_step_breakpoints ();
3513 singlestep_breakpoints_inserted_p
= 0;
3516 /* Note: We do not call context_switch at this point, as the
3517 context is already set up for stepping the original thread. */
3518 switch_to_thread (deferred_step_ptid
);
3519 deferred_step_ptid
= null_ptid
;
3520 /* Suppress spurious "Switching to ..." message. */
3521 previous_inferior_ptid
= inferior_ptid
;
3523 resume (1, TARGET_SIGNAL_0
);
3524 prepare_to_wait (ecs
);
3528 deferred_step_ptid
= null_ptid
;
3531 /* See if a thread hit a thread-specific breakpoint that was meant for
3532 another thread. If so, then step that thread past the breakpoint,
3535 if (ecs
->event_thread
->stop_signal
== TARGET_SIGNAL_TRAP
)
3537 int thread_hop_needed
= 0;
3538 struct address_space
*aspace
=
3539 get_regcache_aspace (get_thread_regcache (ecs
->ptid
));
3541 /* Check if a regular breakpoint has been hit before checking
3542 for a potential single step breakpoint. Otherwise, GDB will
3543 not see this breakpoint hit when stepping onto breakpoints. */
3544 if (regular_breakpoint_inserted_here_p (aspace
, stop_pc
))
3546 ecs
->random_signal
= 0;
3547 if (!breakpoint_thread_match (aspace
, stop_pc
, ecs
->ptid
))
3548 thread_hop_needed
= 1;
3550 else if (singlestep_breakpoints_inserted_p
)
3552 /* We have not context switched yet, so this should be true
3553 no matter which thread hit the singlestep breakpoint. */
3554 gdb_assert (ptid_equal (inferior_ptid
, singlestep_ptid
));
3556 fprintf_unfiltered (gdb_stdlog
, "infrun: software single step "
3558 target_pid_to_str (ecs
->ptid
));
3560 ecs
->random_signal
= 0;
3561 /* The call to in_thread_list is necessary because PTIDs sometimes
3562 change when we go from single-threaded to multi-threaded. If
3563 the singlestep_ptid is still in the list, assume that it is
3564 really different from ecs->ptid. */
3565 if (!ptid_equal (singlestep_ptid
, ecs
->ptid
)
3566 && in_thread_list (singlestep_ptid
))
3568 /* If the PC of the thread we were trying to single-step
3569 has changed, discard this event (which we were going
3570 to ignore anyway), and pretend we saw that thread
3571 trap. This prevents us continuously moving the
3572 single-step breakpoint forward, one instruction at a
3573 time. If the PC has changed, then the thread we were
3574 trying to single-step has trapped or been signalled,
3575 but the event has not been reported to GDB yet.
3577 There might be some cases where this loses signal
3578 information, if a signal has arrived at exactly the
3579 same time that the PC changed, but this is the best
3580 we can do with the information available. Perhaps we
3581 should arrange to report all events for all threads
3582 when they stop, or to re-poll the remote looking for
3583 this particular thread (i.e. temporarily enable
3586 CORE_ADDR new_singlestep_pc
3587 = regcache_read_pc (get_thread_regcache (singlestep_ptid
));
3589 if (new_singlestep_pc
!= singlestep_pc
)
3591 enum target_signal stop_signal
;
3594 fprintf_unfiltered (gdb_stdlog
, "infrun: unexpected thread,"
3595 " but expected thread advanced also\n");
3597 /* The current context still belongs to
3598 singlestep_ptid. Don't swap here, since that's
3599 the context we want to use. Just fudge our
3600 state and continue. */
3601 stop_signal
= ecs
->event_thread
->stop_signal
;
3602 ecs
->event_thread
->stop_signal
= TARGET_SIGNAL_0
;
3603 ecs
->ptid
= singlestep_ptid
;
3604 ecs
->event_thread
= find_thread_ptid (ecs
->ptid
);
3605 ecs
->event_thread
->stop_signal
= stop_signal
;
3606 stop_pc
= new_singlestep_pc
;
3611 fprintf_unfiltered (gdb_stdlog
,
3612 "infrun: unexpected thread\n");
3614 thread_hop_needed
= 1;
3615 stepping_past_singlestep_breakpoint
= 1;
3616 saved_singlestep_ptid
= singlestep_ptid
;
3621 if (thread_hop_needed
)
3623 struct regcache
*thread_regcache
;
3624 int remove_status
= 0;
3627 fprintf_unfiltered (gdb_stdlog
, "infrun: thread_hop_needed\n");
3629 /* Switch context before touching inferior memory, the
3630 previous thread may have exited. */
3631 if (!ptid_equal (inferior_ptid
, ecs
->ptid
))
3632 context_switch (ecs
->ptid
);
3634 /* Saw a breakpoint, but it was hit by the wrong thread.
3637 if (singlestep_breakpoints_inserted_p
)
3639 /* Pull the single step breakpoints out of the target. */
3640 remove_single_step_breakpoints ();
3641 singlestep_breakpoints_inserted_p
= 0;
3644 /* If the arch can displace step, don't remove the
3646 thread_regcache
= get_thread_regcache (ecs
->ptid
);
3647 if (!use_displaced_stepping (get_regcache_arch (thread_regcache
)))
3648 remove_status
= remove_breakpoints ();
3650 /* Did we fail to remove breakpoints? If so, try
3651 to set the PC past the bp. (There's at least
3652 one situation in which we can fail to remove
3653 the bp's: On HP-UX's that use ttrace, we can't
3654 change the address space of a vforking child
3655 process until the child exits (well, okay, not
3656 then either :-) or execs. */
3657 if (remove_status
!= 0)
3658 error (_("Cannot step over breakpoint hit in wrong thread"));
3663 /* Only need to require the next event from this
3664 thread in all-stop mode. */
3665 waiton_ptid
= ecs
->ptid
;
3666 infwait_state
= infwait_thread_hop_state
;
3669 ecs
->event_thread
->stepping_over_breakpoint
= 1;
3674 else if (singlestep_breakpoints_inserted_p
)
3676 sw_single_step_trap_p
= 1;
3677 ecs
->random_signal
= 0;
3681 ecs
->random_signal
= 1;
3683 /* See if something interesting happened to the non-current thread. If
3684 so, then switch to that thread. */
3685 if (!ptid_equal (ecs
->ptid
, inferior_ptid
))
3688 fprintf_unfiltered (gdb_stdlog
, "infrun: context switch\n");
3690 context_switch (ecs
->ptid
);
3692 if (deprecated_context_hook
)
3693 deprecated_context_hook (pid_to_thread_id (ecs
->ptid
));
3696 /* At this point, get hold of the now-current thread's frame. */
3697 frame
= get_current_frame ();
3698 gdbarch
= get_frame_arch (frame
);
3700 if (singlestep_breakpoints_inserted_p
)
3702 /* Pull the single step breakpoints out of the target. */
3703 remove_single_step_breakpoints ();
3704 singlestep_breakpoints_inserted_p
= 0;
3707 if (stepped_after_stopped_by_watchpoint
)
3708 stopped_by_watchpoint
= 0;
3710 stopped_by_watchpoint
= watchpoints_triggered (&ecs
->ws
);
3712 /* If necessary, step over this watchpoint. We'll be back to display
3714 if (stopped_by_watchpoint
3715 && (target_have_steppable_watchpoint
3716 || gdbarch_have_nonsteppable_watchpoint (gdbarch
)))
3718 /* At this point, we are stopped at an instruction which has
3719 attempted to write to a piece of memory under control of
3720 a watchpoint. The instruction hasn't actually executed
3721 yet. If we were to evaluate the watchpoint expression
3722 now, we would get the old value, and therefore no change
3723 would seem to have occurred.
3725 In order to make watchpoints work `right', we really need
3726 to complete the memory write, and then evaluate the
3727 watchpoint expression. We do this by single-stepping the
3730 It may not be necessary to disable the watchpoint to stop over
3731 it. For example, the PA can (with some kernel cooperation)
3732 single step over a watchpoint without disabling the watchpoint.
3734 It is far more common to need to disable a watchpoint to step
3735 the inferior over it. If we have non-steppable watchpoints,
3736 we must disable the current watchpoint; it's simplest to
3737 disable all watchpoints and breakpoints. */
3740 if (!target_have_steppable_watchpoint
)
3741 remove_breakpoints ();
3743 hw_step
= maybe_software_singlestep (gdbarch
, stop_pc
);
3744 target_resume (ecs
->ptid
, hw_step
, TARGET_SIGNAL_0
);
3745 waiton_ptid
= ecs
->ptid
;
3746 if (target_have_steppable_watchpoint
)
3747 infwait_state
= infwait_step_watch_state
;
3749 infwait_state
= infwait_nonstep_watch_state
;
3750 prepare_to_wait (ecs
);
3754 ecs
->stop_func_start
= 0;
3755 ecs
->stop_func_end
= 0;
3756 ecs
->stop_func_name
= 0;
3757 /* Don't care about return value; stop_func_start and stop_func_name
3758 will both be 0 if it doesn't work. */
3759 find_pc_partial_function (stop_pc
, &ecs
->stop_func_name
,
3760 &ecs
->stop_func_start
, &ecs
->stop_func_end
);
3761 ecs
->stop_func_start
3762 += gdbarch_deprecated_function_start_offset (gdbarch
);
3763 ecs
->event_thread
->stepping_over_breakpoint
= 0;
3764 bpstat_clear (&ecs
->event_thread
->stop_bpstat
);
3765 ecs
->event_thread
->stop_step
= 0;
3766 stop_print_frame
= 1;
3767 ecs
->random_signal
= 0;
3768 stopped_by_random_signal
= 0;
3770 /* Hide inlined functions starting here, unless we just performed stepi or
3771 nexti. After stepi and nexti, always show the innermost frame (not any
3772 inline function call sites). */
3773 if (ecs
->event_thread
->step_range_end
!= 1)
3774 skip_inline_frames (ecs
->ptid
);
3776 if (ecs
->event_thread
->stop_signal
== TARGET_SIGNAL_TRAP
3777 && ecs
->event_thread
->trap_expected
3778 && gdbarch_single_step_through_delay_p (gdbarch
)
3779 && currently_stepping (ecs
->event_thread
))
3781 /* We're trying to step off a breakpoint. Turns out that we're
3782 also on an instruction that needs to be stepped multiple
3783 times before it's been fully executing. E.g., architectures
3784 with a delay slot. It needs to be stepped twice, once for
3785 the instruction and once for the delay slot. */
3786 int step_through_delay
3787 = gdbarch_single_step_through_delay (gdbarch
, frame
);
3789 if (debug_infrun
&& step_through_delay
)
3790 fprintf_unfiltered (gdb_stdlog
, "infrun: step through delay\n");
3791 if (ecs
->event_thread
->step_range_end
== 0 && step_through_delay
)
3793 /* The user issued a continue when stopped at a breakpoint.
3794 Set up for another trap and get out of here. */
3795 ecs
->event_thread
->stepping_over_breakpoint
= 1;
3799 else if (step_through_delay
)
3801 /* The user issued a step when stopped at a breakpoint.
3802 Maybe we should stop, maybe we should not - the delay
3803 slot *might* correspond to a line of source. In any
3804 case, don't decide that here, just set
3805 ecs->stepping_over_breakpoint, making sure we
3806 single-step again before breakpoints are re-inserted. */
3807 ecs
->event_thread
->stepping_over_breakpoint
= 1;
3811 /* Look at the cause of the stop, and decide what to do.
3812 The alternatives are:
3813 1) stop_stepping and return; to really stop and return to the debugger,
3814 2) keep_going and return to start up again
3815 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
3816 3) set ecs->random_signal to 1, and the decision between 1 and 2
3817 will be made according to the signal handling tables. */
3819 if (ecs
->event_thread
->stop_signal
== TARGET_SIGNAL_TRAP
3820 || stop_soon
== STOP_QUIETLY
|| stop_soon
== STOP_QUIETLY_NO_SIGSTOP
3821 || stop_soon
== STOP_QUIETLY_REMOTE
)
3823 if (ecs
->event_thread
->stop_signal
== TARGET_SIGNAL_TRAP
&& stop_after_trap
)
3826 fprintf_unfiltered (gdb_stdlog
, "infrun: stopped\n");
3827 stop_print_frame
= 0;
3828 stop_stepping (ecs
);
3832 /* This is originated from start_remote(), start_inferior() and
3833 shared libraries hook functions. */
3834 if (stop_soon
== STOP_QUIETLY
|| stop_soon
== STOP_QUIETLY_REMOTE
)
3837 fprintf_unfiltered (gdb_stdlog
, "infrun: quietly stopped\n");
3838 stop_stepping (ecs
);
3842 /* This originates from attach_command(). We need to overwrite
3843 the stop_signal here, because some kernels don't ignore a
3844 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
3845 See more comments in inferior.h. On the other hand, if we
3846 get a non-SIGSTOP, report it to the user - assume the backend
3847 will handle the SIGSTOP if it should show up later.
3849 Also consider that the attach is complete when we see a
3850 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
3851 target extended-remote report it instead of a SIGSTOP
3852 (e.g. gdbserver). We already rely on SIGTRAP being our
3853 signal, so this is no exception.
3855 Also consider that the attach is complete when we see a
3856 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
3857 the target to stop all threads of the inferior, in case the
3858 low level attach operation doesn't stop them implicitly. If
3859 they weren't stopped implicitly, then the stub will report a
3860 TARGET_SIGNAL_0, meaning: stopped for no particular reason
3861 other than GDB's request. */
3862 if (stop_soon
== STOP_QUIETLY_NO_SIGSTOP
3863 && (ecs
->event_thread
->stop_signal
== TARGET_SIGNAL_STOP
3864 || ecs
->event_thread
->stop_signal
== TARGET_SIGNAL_TRAP
3865 || ecs
->event_thread
->stop_signal
== TARGET_SIGNAL_0
))
3867 stop_stepping (ecs
);
3868 ecs
->event_thread
->stop_signal
= TARGET_SIGNAL_0
;
3872 /* See if there is a breakpoint at the current PC. */
3873 ecs
->event_thread
->stop_bpstat
3874 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3875 stop_pc
, ecs
->ptid
);
3877 /* Following in case break condition called a
3879 stop_print_frame
= 1;
3881 /* This is where we handle "moribund" watchpoints. Unlike
3882 software breakpoints traps, hardware watchpoint traps are
3883 always distinguishable from random traps. If no high-level
3884 watchpoint is associated with the reported stop data address
3885 anymore, then the bpstat does not explain the signal ---
3886 simply make sure to ignore it if `stopped_by_watchpoint' is
3890 && ecs
->event_thread
->stop_signal
== TARGET_SIGNAL_TRAP
3891 && !bpstat_explains_signal (ecs
->event_thread
->stop_bpstat
)
3892 && stopped_by_watchpoint
)
3893 fprintf_unfiltered (gdb_stdlog
, "\
3894 infrun: no user watchpoint explains watchpoint SIGTRAP, ignoring\n");
3896 /* NOTE: cagney/2003-03-29: These two checks for a random signal
3897 at one stage in the past included checks for an inferior
3898 function call's call dummy's return breakpoint. The original
3899 comment, that went with the test, read:
3901 ``End of a stack dummy. Some systems (e.g. Sony news) give
3902 another signal besides SIGTRAP, so check here as well as
3905 If someone ever tries to get call dummys on a
3906 non-executable stack to work (where the target would stop
3907 with something like a SIGSEGV), then those tests might need
3908 to be re-instated. Given, however, that the tests were only
3909 enabled when momentary breakpoints were not being used, I
3910 suspect that it won't be the case.
3912 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
3913 be necessary for call dummies on a non-executable stack on
3916 if (ecs
->event_thread
->stop_signal
== TARGET_SIGNAL_TRAP
)
3918 = !(bpstat_explains_signal (ecs
->event_thread
->stop_bpstat
)
3919 || stopped_by_watchpoint
3920 || ecs
->event_thread
->trap_expected
3921 || (ecs
->event_thread
->step_range_end
3922 && ecs
->event_thread
->step_resume_breakpoint
== NULL
));
3925 ecs
->random_signal
= !bpstat_explains_signal (ecs
->event_thread
->stop_bpstat
);
3926 if (!ecs
->random_signal
)
3927 ecs
->event_thread
->stop_signal
= TARGET_SIGNAL_TRAP
;
3931 /* When we reach this point, we've pretty much decided
3932 that the reason for stopping must've been a random
3933 (unexpected) signal. */
3936 ecs
->random_signal
= 1;
3938 process_event_stop_test
:
3940 /* Re-fetch current thread's frame in case we did a
3941 "goto process_event_stop_test" above. */
3942 frame
= get_current_frame ();
3943 gdbarch
= get_frame_arch (frame
);
3945 /* For the program's own signals, act according to
3946 the signal handling tables. */
3948 if (ecs
->random_signal
)
3950 /* Signal not for debugging purposes. */
3952 struct inferior
*inf
= find_inferior_pid (ptid_get_pid (ecs
->ptid
));
3955 fprintf_unfiltered (gdb_stdlog
, "infrun: random signal %d\n",
3956 ecs
->event_thread
->stop_signal
);
3958 stopped_by_random_signal
= 1;
3960 if (signal_print
[ecs
->event_thread
->stop_signal
])
3963 target_terminal_ours_for_output ();
3964 print_stop_reason (SIGNAL_RECEIVED
, ecs
->event_thread
->stop_signal
);
3966 /* Always stop on signals if we're either just gaining control
3967 of the program, or the user explicitly requested this thread
3968 to remain stopped. */
3969 if (stop_soon
!= NO_STOP_QUIETLY
3970 || ecs
->event_thread
->stop_requested
3972 && signal_stop_state (ecs
->event_thread
->stop_signal
)))
3974 stop_stepping (ecs
);
3977 /* If not going to stop, give terminal back
3978 if we took it away. */
3980 target_terminal_inferior ();
3982 /* Clear the signal if it should not be passed. */
3983 if (signal_program
[ecs
->event_thread
->stop_signal
] == 0)
3984 ecs
->event_thread
->stop_signal
= TARGET_SIGNAL_0
;
3986 if (ecs
->event_thread
->prev_pc
== stop_pc
3987 && ecs
->event_thread
->trap_expected
3988 && ecs
->event_thread
->step_resume_breakpoint
== NULL
)
3990 /* We were just starting a new sequence, attempting to
3991 single-step off of a breakpoint and expecting a SIGTRAP.
3992 Instead this signal arrives. This signal will take us out
3993 of the stepping range so GDB needs to remember to, when
3994 the signal handler returns, resume stepping off that
3996 /* To simplify things, "continue" is forced to use the same
3997 code paths as single-step - set a breakpoint at the
3998 signal return address and then, once hit, step off that
4001 fprintf_unfiltered (gdb_stdlog
,
4002 "infrun: signal arrived while stepping over "
4005 insert_step_resume_breakpoint_at_frame (frame
);
4006 ecs
->event_thread
->step_after_step_resume_breakpoint
= 1;
4011 if (ecs
->event_thread
->step_range_end
!= 0
4012 && ecs
->event_thread
->stop_signal
!= TARGET_SIGNAL_0
4013 && (ecs
->event_thread
->step_range_start
<= stop_pc
4014 && stop_pc
< ecs
->event_thread
->step_range_end
)
4015 && frame_id_eq (get_stack_frame_id (frame
),
4016 ecs
->event_thread
->step_stack_frame_id
)
4017 && ecs
->event_thread
->step_resume_breakpoint
== NULL
)
4019 /* The inferior is about to take a signal that will take it
4020 out of the single step range. Set a breakpoint at the
4021 current PC (which is presumably where the signal handler
4022 will eventually return) and then allow the inferior to
4025 Note that this is only needed for a signal delivered
4026 while in the single-step range. Nested signals aren't a
4027 problem as they eventually all return. */
4029 fprintf_unfiltered (gdb_stdlog
,
4030 "infrun: signal may take us out of "
4031 "single-step range\n");
4033 insert_step_resume_breakpoint_at_frame (frame
);
4038 /* Note: step_resume_breakpoint may be non-NULL. This occures
4039 when either there's a nested signal, or when there's a
4040 pending signal enabled just as the signal handler returns
4041 (leaving the inferior at the step-resume-breakpoint without
4042 actually executing it). Either way continue until the
4043 breakpoint is really hit. */
4048 /* Handle cases caused by hitting a breakpoint. */
4050 CORE_ADDR jmp_buf_pc
;
4051 struct bpstat_what what
;
4053 what
= bpstat_what (ecs
->event_thread
->stop_bpstat
);
4055 if (what
.call_dummy
)
4057 stop_stack_dummy
= what
.call_dummy
;
4060 /* If we hit an internal event that triggers symbol changes, the
4061 current frame will be invalidated within bpstat_what (e.g., if
4062 we hit an internal solib event). Re-fetch it. */
4063 frame
= get_current_frame ();
4064 gdbarch
= get_frame_arch (frame
);
4066 switch (what
.main_action
)
4068 case BPSTAT_WHAT_SET_LONGJMP_RESUME
:
4069 /* If we hit the breakpoint at longjmp while stepping, we
4070 install a momentary breakpoint at the target of the
4074 fprintf_unfiltered (gdb_stdlog
,
4075 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4077 ecs
->event_thread
->stepping_over_breakpoint
= 1;
4079 if (!gdbarch_get_longjmp_target_p (gdbarch
)
4080 || !gdbarch_get_longjmp_target (gdbarch
, frame
, &jmp_buf_pc
))
4083 fprintf_unfiltered (gdb_stdlog
, "\
4084 infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
4089 /* We're going to replace the current step-resume breakpoint
4090 with a longjmp-resume breakpoint. */
4091 delete_step_resume_breakpoint (ecs
->event_thread
);
4093 /* Insert a breakpoint at resume address. */
4094 insert_longjmp_resume_breakpoint (gdbarch
, jmp_buf_pc
);
4099 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME
:
4101 fprintf_unfiltered (gdb_stdlog
,
4102 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4104 gdb_assert (ecs
->event_thread
->step_resume_breakpoint
!= NULL
);
4105 delete_step_resume_breakpoint (ecs
->event_thread
);
4107 ecs
->event_thread
->stop_step
= 1;
4108 print_stop_reason (END_STEPPING_RANGE
, 0);
4109 stop_stepping (ecs
);
4112 case BPSTAT_WHAT_SINGLE
:
4114 fprintf_unfiltered (gdb_stdlog
, "infrun: BPSTAT_WHAT_SINGLE\n");
4115 ecs
->event_thread
->stepping_over_breakpoint
= 1;
4116 /* Still need to check other stuff, at least the case
4117 where we are stepping and step out of the right range. */
4120 case BPSTAT_WHAT_STOP_NOISY
:
4122 fprintf_unfiltered (gdb_stdlog
, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4123 stop_print_frame
= 1;
4125 /* We are about to nuke the step_resume_breakpointt via the
4126 cleanup chain, so no need to worry about it here. */
4128 stop_stepping (ecs
);
4131 case BPSTAT_WHAT_STOP_SILENT
:
4133 fprintf_unfiltered (gdb_stdlog
, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4134 stop_print_frame
= 0;
4136 /* We are about to nuke the step_resume_breakpoin via the
4137 cleanup chain, so no need to worry about it here. */
4139 stop_stepping (ecs
);
4142 case BPSTAT_WHAT_STEP_RESUME
:
4144 fprintf_unfiltered (gdb_stdlog
, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4146 delete_step_resume_breakpoint (ecs
->event_thread
);
4147 if (ecs
->event_thread
->step_after_step_resume_breakpoint
)
4149 /* Back when the step-resume breakpoint was inserted, we
4150 were trying to single-step off a breakpoint. Go back
4152 ecs
->event_thread
->step_after_step_resume_breakpoint
= 0;
4153 ecs
->event_thread
->stepping_over_breakpoint
= 1;
4157 if (stop_pc
== ecs
->stop_func_start
4158 && execution_direction
== EXEC_REVERSE
)
4160 /* We are stepping over a function call in reverse, and
4161 just hit the step-resume breakpoint at the start
4162 address of the function. Go back to single-stepping,
4163 which should take us back to the function call. */
4164 ecs
->event_thread
->stepping_over_breakpoint
= 1;
4170 case BPSTAT_WHAT_KEEP_CHECKING
:
4175 /* We come here if we hit a breakpoint but should not
4176 stop for it. Possibly we also were stepping
4177 and should stop for that. So fall through and
4178 test for stepping. But, if not stepping,
4181 /* In all-stop mode, if we're currently stepping but have stopped in
4182 some other thread, we need to switch back to the stepped thread. */
4185 struct thread_info
*tp
;
4187 tp
= iterate_over_threads (currently_stepping_or_nexting_callback
,
4191 /* However, if the current thread is blocked on some internal
4192 breakpoint, and we simply need to step over that breakpoint
4193 to get it going again, do that first. */
4194 if ((ecs
->event_thread
->trap_expected
4195 && ecs
->event_thread
->stop_signal
!= TARGET_SIGNAL_TRAP
)
4196 || ecs
->event_thread
->stepping_over_breakpoint
)
4202 /* If the stepping thread exited, then don't try to switch
4203 back and resume it, which could fail in several different
4204 ways depending on the target. Instead, just keep going.
4206 We can find a stepping dead thread in the thread list in
4209 - The target supports thread exit events, and when the
4210 target tries to delete the thread from the thread list,
4211 inferior_ptid pointed at the exiting thread. In such
4212 case, calling delete_thread does not really remove the
4213 thread from the list; instead, the thread is left listed,
4214 with 'exited' state.
4216 - The target's debug interface does not support thread
4217 exit events, and so we have no idea whatsoever if the
4218 previously stepping thread is still alive. For that
4219 reason, we need to synchronously query the target
4221 if (is_exited (tp
->ptid
)
4222 || !target_thread_alive (tp
->ptid
))
4225 fprintf_unfiltered (gdb_stdlog
, "\
4226 infrun: not switching back to stepped thread, it has vanished\n");
4228 delete_thread (tp
->ptid
);
4233 /* Otherwise, we no longer expect a trap in the current thread.
4234 Clear the trap_expected flag before switching back -- this is
4235 what keep_going would do as well, if we called it. */
4236 ecs
->event_thread
->trap_expected
= 0;
4239 fprintf_unfiltered (gdb_stdlog
,
4240 "infrun: switching back to stepped thread\n");
4242 ecs
->event_thread
= tp
;
4243 ecs
->ptid
= tp
->ptid
;
4244 context_switch (ecs
->ptid
);
4250 /* Are we stepping to get the inferior out of the dynamic linker's
4251 hook (and possibly the dld itself) after catching a shlib
4253 if (ecs
->event_thread
->stepping_through_solib_after_catch
)
4255 #if defined(SOLIB_ADD)
4256 /* Have we reached our destination? If not, keep going. */
4257 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs
->ptid
), stop_pc
))
4260 fprintf_unfiltered (gdb_stdlog
, "infrun: stepping in dynamic linker\n");
4261 ecs
->event_thread
->stepping_over_breakpoint
= 1;
4267 fprintf_unfiltered (gdb_stdlog
, "infrun: step past dynamic linker\n");
4268 /* Else, stop and report the catchpoint(s) whose triggering
4269 caused us to begin stepping. */
4270 ecs
->event_thread
->stepping_through_solib_after_catch
= 0;
4271 bpstat_clear (&ecs
->event_thread
->stop_bpstat
);
4272 ecs
->event_thread
->stop_bpstat
4273 = bpstat_copy (ecs
->event_thread
->stepping_through_solib_catchpoints
);
4274 bpstat_clear (&ecs
->event_thread
->stepping_through_solib_catchpoints
);
4275 stop_print_frame
= 1;
4276 stop_stepping (ecs
);
4280 if (ecs
->event_thread
->step_resume_breakpoint
)
4283 fprintf_unfiltered (gdb_stdlog
,
4284 "infrun: step-resume breakpoint is inserted\n");
4286 /* Having a step-resume breakpoint overrides anything
4287 else having to do with stepping commands until
4288 that breakpoint is reached. */
4293 if (ecs
->event_thread
->step_range_end
== 0)
4296 fprintf_unfiltered (gdb_stdlog
, "infrun: no stepping, continue\n");
4297 /* Likewise if we aren't even stepping. */
4302 /* Re-fetch current thread's frame in case the code above caused
4303 the frame cache to be re-initialized, making our FRAME variable
4304 a dangling pointer. */
4305 frame
= get_current_frame ();
4306 gdbarch
= get_frame_arch (frame
);
4308 /* If stepping through a line, keep going if still within it.
4310 Note that step_range_end is the address of the first instruction
4311 beyond the step range, and NOT the address of the last instruction
4314 Note also that during reverse execution, we may be stepping
4315 through a function epilogue and therefore must detect when
4316 the current-frame changes in the middle of a line. */
4318 if (stop_pc
>= ecs
->event_thread
->step_range_start
4319 && stop_pc
< ecs
->event_thread
->step_range_end
4320 && (execution_direction
!= EXEC_REVERSE
4321 || frame_id_eq (get_frame_id (frame
),
4322 ecs
->event_thread
->step_frame_id
)))
4326 (gdb_stdlog
, "infrun: stepping inside range [%s-%s]\n",
4327 paddress (gdbarch
, ecs
->event_thread
->step_range_start
),
4328 paddress (gdbarch
, ecs
->event_thread
->step_range_end
));
4330 /* When stepping backward, stop at beginning of line range
4331 (unless it's the function entry point, in which case
4332 keep going back to the call point). */
4333 if (stop_pc
== ecs
->event_thread
->step_range_start
4334 && stop_pc
!= ecs
->stop_func_start
4335 && execution_direction
== EXEC_REVERSE
)
4337 ecs
->event_thread
->stop_step
= 1;
4338 print_stop_reason (END_STEPPING_RANGE
, 0);
4339 stop_stepping (ecs
);
4347 /* We stepped out of the stepping range. */
4349 /* If we are stepping at the source level and entered the runtime
4350 loader dynamic symbol resolution code...
4352 EXEC_FORWARD: we keep on single stepping until we exit the run
4353 time loader code and reach the callee's address.
4355 EXEC_REVERSE: we've already executed the callee (backward), and
4356 the runtime loader code is handled just like any other
4357 undebuggable function call. Now we need only keep stepping
4358 backward through the trampoline code, and that's handled further
4359 down, so there is nothing for us to do here. */
4361 if (execution_direction
!= EXEC_REVERSE
4362 && ecs
->event_thread
->step_over_calls
== STEP_OVER_UNDEBUGGABLE
4363 && in_solib_dynsym_resolve_code (stop_pc
))
4365 CORE_ADDR pc_after_resolver
=
4366 gdbarch_skip_solib_resolver (gdbarch
, stop_pc
);
4369 fprintf_unfiltered (gdb_stdlog
, "infrun: stepped into dynsym resolve code\n");
4371 if (pc_after_resolver
)
4373 /* Set up a step-resume breakpoint at the address
4374 indicated by SKIP_SOLIB_RESOLVER. */
4375 struct symtab_and_line sr_sal
;
4378 sr_sal
.pc
= pc_after_resolver
;
4379 sr_sal
.pspace
= get_frame_program_space (frame
);
4381 insert_step_resume_breakpoint_at_sal (gdbarch
,
4382 sr_sal
, null_frame_id
);
4389 if (ecs
->event_thread
->step_range_end
!= 1
4390 && (ecs
->event_thread
->step_over_calls
== STEP_OVER_UNDEBUGGABLE
4391 || ecs
->event_thread
->step_over_calls
== STEP_OVER_ALL
)
4392 && get_frame_type (frame
) == SIGTRAMP_FRAME
)
4395 fprintf_unfiltered (gdb_stdlog
, "infrun: stepped into signal trampoline\n");
4396 /* The inferior, while doing a "step" or "next", has ended up in
4397 a signal trampoline (either by a signal being delivered or by
4398 the signal handler returning). Just single-step until the
4399 inferior leaves the trampoline (either by calling the handler
4405 /* Check for subroutine calls. The check for the current frame
4406 equalling the step ID is not necessary - the check of the
4407 previous frame's ID is sufficient - but it is a common case and
4408 cheaper than checking the previous frame's ID.
4410 NOTE: frame_id_eq will never report two invalid frame IDs as
4411 being equal, so to get into this block, both the current and
4412 previous frame must have valid frame IDs. */
4413 /* The outer_frame_id check is a heuristic to detect stepping
4414 through startup code. If we step over an instruction which
4415 sets the stack pointer from an invalid value to a valid value,
4416 we may detect that as a subroutine call from the mythical
4417 "outermost" function. This could be fixed by marking
4418 outermost frames as !stack_p,code_p,special_p. Then the
4419 initial outermost frame, before sp was valid, would
4420 have code_addr == &_start. See the comment in frame_id_eq
4422 if (!frame_id_eq (get_stack_frame_id (frame
),
4423 ecs
->event_thread
->step_stack_frame_id
)
4424 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4425 ecs
->event_thread
->step_stack_frame_id
)
4426 && (!frame_id_eq (ecs
->event_thread
->step_stack_frame_id
,
4428 || step_start_function
!= find_pc_function (stop_pc
))))
4430 CORE_ADDR real_stop_pc
;
4433 fprintf_unfiltered (gdb_stdlog
, "infrun: stepped into subroutine\n");
4435 if ((ecs
->event_thread
->step_over_calls
== STEP_OVER_NONE
)
4436 || ((ecs
->event_thread
->step_range_end
== 1)
4437 && in_prologue (gdbarch
, ecs
->event_thread
->prev_pc
,
4438 ecs
->stop_func_start
)))
4440 /* I presume that step_over_calls is only 0 when we're
4441 supposed to be stepping at the assembly language level
4442 ("stepi"). Just stop. */
4443 /* Also, maybe we just did a "nexti" inside a prolog, so we
4444 thought it was a subroutine call but it was not. Stop as
4446 /* And this works the same backward as frontward. MVS */
4447 ecs
->event_thread
->stop_step
= 1;
4448 print_stop_reason (END_STEPPING_RANGE
, 0);
4449 stop_stepping (ecs
);
4453 /* Reverse stepping through solib trampolines. */
4455 if (execution_direction
== EXEC_REVERSE
4456 && ecs
->event_thread
->step_over_calls
!= STEP_OVER_NONE
4457 && (gdbarch_skip_trampoline_code (gdbarch
, frame
, stop_pc
)
4458 || (ecs
->stop_func_start
== 0
4459 && in_solib_dynsym_resolve_code (stop_pc
))))
4461 /* Any solib trampoline code can be handled in reverse
4462 by simply continuing to single-step. We have already
4463 executed the solib function (backwards), and a few
4464 steps will take us back through the trampoline to the
4470 if (ecs
->event_thread
->step_over_calls
== STEP_OVER_ALL
)
4472 /* We're doing a "next".
4474 Normal (forward) execution: set a breakpoint at the
4475 callee's return address (the address at which the caller
4478 Reverse (backward) execution. set the step-resume
4479 breakpoint at the start of the function that we just
4480 stepped into (backwards), and continue to there. When we
4481 get there, we'll need to single-step back to the caller. */
4483 if (execution_direction
== EXEC_REVERSE
)
4485 struct symtab_and_line sr_sal
;
4487 /* Normal function call return (static or dynamic). */
4489 sr_sal
.pc
= ecs
->stop_func_start
;
4490 sr_sal
.pspace
= get_frame_program_space (frame
);
4491 insert_step_resume_breakpoint_at_sal (gdbarch
,
4492 sr_sal
, null_frame_id
);
4495 insert_step_resume_breakpoint_at_caller (frame
);
4501 /* If we are in a function call trampoline (a stub between the
4502 calling routine and the real function), locate the real
4503 function. That's what tells us (a) whether we want to step
4504 into it at all, and (b) what prologue we want to run to the
4505 end of, if we do step into it. */
4506 real_stop_pc
= skip_language_trampoline (frame
, stop_pc
);
4507 if (real_stop_pc
== 0)
4508 real_stop_pc
= gdbarch_skip_trampoline_code (gdbarch
, frame
, stop_pc
);
4509 if (real_stop_pc
!= 0)
4510 ecs
->stop_func_start
= real_stop_pc
;
4512 if (real_stop_pc
!= 0 && in_solib_dynsym_resolve_code (real_stop_pc
))
4514 struct symtab_and_line sr_sal
;
4517 sr_sal
.pc
= ecs
->stop_func_start
;
4518 sr_sal
.pspace
= get_frame_program_space (frame
);
4520 insert_step_resume_breakpoint_at_sal (gdbarch
,
4521 sr_sal
, null_frame_id
);
4526 /* If we have line number information for the function we are
4527 thinking of stepping into, step into it.
4529 If there are several symtabs at that PC (e.g. with include
4530 files), just want to know whether *any* of them have line
4531 numbers. find_pc_line handles this. */
4533 struct symtab_and_line tmp_sal
;
4535 tmp_sal
= find_pc_line (ecs
->stop_func_start
, 0);
4536 tmp_sal
.pspace
= get_frame_program_space (frame
);
4537 if (tmp_sal
.line
!= 0)
4539 if (execution_direction
== EXEC_REVERSE
)
4540 handle_step_into_function_backward (gdbarch
, ecs
);
4542 handle_step_into_function (gdbarch
, ecs
);
4547 /* If we have no line number and the step-stop-if-no-debug is
4548 set, we stop the step so that the user has a chance to switch
4549 in assembly mode. */
4550 if (ecs
->event_thread
->step_over_calls
== STEP_OVER_UNDEBUGGABLE
4551 && step_stop_if_no_debug
)
4553 ecs
->event_thread
->stop_step
= 1;
4554 print_stop_reason (END_STEPPING_RANGE
, 0);
4555 stop_stepping (ecs
);
4559 if (execution_direction
== EXEC_REVERSE
)
4561 /* Set a breakpoint at callee's start address.
4562 From there we can step once and be back in the caller. */
4563 struct symtab_and_line sr_sal
;
4566 sr_sal
.pc
= ecs
->stop_func_start
;
4567 sr_sal
.pspace
= get_frame_program_space (frame
);
4568 insert_step_resume_breakpoint_at_sal (gdbarch
,
4569 sr_sal
, null_frame_id
);
4572 /* Set a breakpoint at callee's return address (the address
4573 at which the caller will resume). */
4574 insert_step_resume_breakpoint_at_caller (frame
);
4580 /* Reverse stepping through solib trampolines. */
4582 if (execution_direction
== EXEC_REVERSE
4583 && ecs
->event_thread
->step_over_calls
!= STEP_OVER_NONE
)
4585 if (gdbarch_skip_trampoline_code (gdbarch
, frame
, stop_pc
)
4586 || (ecs
->stop_func_start
== 0
4587 && in_solib_dynsym_resolve_code (stop_pc
)))
4589 /* Any solib trampoline code can be handled in reverse
4590 by simply continuing to single-step. We have already
4591 executed the solib function (backwards), and a few
4592 steps will take us back through the trampoline to the
4597 else if (in_solib_dynsym_resolve_code (stop_pc
))
4599 /* Stepped backward into the solib dynsym resolver.
4600 Set a breakpoint at its start and continue, then
4601 one more step will take us out. */
4602 struct symtab_and_line sr_sal
;
4605 sr_sal
.pc
= ecs
->stop_func_start
;
4606 sr_sal
.pspace
= get_frame_program_space (frame
);
4607 insert_step_resume_breakpoint_at_sal (gdbarch
,
4608 sr_sal
, null_frame_id
);
4614 /* If we're in the return path from a shared library trampoline,
4615 we want to proceed through the trampoline when stepping. */
4616 if (gdbarch_in_solib_return_trampoline (gdbarch
,
4617 stop_pc
, ecs
->stop_func_name
))
4619 /* Determine where this trampoline returns. */
4620 CORE_ADDR real_stop_pc
;
4622 real_stop_pc
= gdbarch_skip_trampoline_code (gdbarch
, frame
, stop_pc
);
4625 fprintf_unfiltered (gdb_stdlog
, "infrun: stepped into solib return tramp\n");
4627 /* Only proceed through if we know where it's going. */
4630 /* And put the step-breakpoint there and go until there. */
4631 struct symtab_and_line sr_sal
;
4633 init_sal (&sr_sal
); /* initialize to zeroes */
4634 sr_sal
.pc
= real_stop_pc
;
4635 sr_sal
.section
= find_pc_overlay (sr_sal
.pc
);
4636 sr_sal
.pspace
= get_frame_program_space (frame
);
4638 /* Do not specify what the fp should be when we stop since
4639 on some machines the prologue is where the new fp value
4641 insert_step_resume_breakpoint_at_sal (gdbarch
,
4642 sr_sal
, null_frame_id
);
4644 /* Restart without fiddling with the step ranges or
4651 stop_pc_sal
= find_pc_line (stop_pc
, 0);
4653 /* NOTE: tausq/2004-05-24: This if block used to be done before all
4654 the trampoline processing logic, however, there are some trampolines
4655 that have no names, so we should do trampoline handling first. */
4656 if (ecs
->event_thread
->step_over_calls
== STEP_OVER_UNDEBUGGABLE
4657 && ecs
->stop_func_name
== NULL
4658 && stop_pc_sal
.line
== 0)
4661 fprintf_unfiltered (gdb_stdlog
, "infrun: stepped into undebuggable function\n");
4663 /* The inferior just stepped into, or returned to, an
4664 undebuggable function (where there is no debugging information
4665 and no line number corresponding to the address where the
4666 inferior stopped). Since we want to skip this kind of code,
4667 we keep going until the inferior returns from this
4668 function - unless the user has asked us not to (via
4669 set step-mode) or we no longer know how to get back
4670 to the call site. */
4671 if (step_stop_if_no_debug
4672 || !frame_id_p (frame_unwind_caller_id (frame
)))
4674 /* If we have no line number and the step-stop-if-no-debug
4675 is set, we stop the step so that the user has a chance to
4676 switch in assembly mode. */
4677 ecs
->event_thread
->stop_step
= 1;
4678 print_stop_reason (END_STEPPING_RANGE
, 0);
4679 stop_stepping (ecs
);
4684 /* Set a breakpoint at callee's return address (the address
4685 at which the caller will resume). */
4686 insert_step_resume_breakpoint_at_caller (frame
);
4692 if (ecs
->event_thread
->step_range_end
== 1)
4694 /* It is stepi or nexti. We always want to stop stepping after
4697 fprintf_unfiltered (gdb_stdlog
, "infrun: stepi/nexti\n");
4698 ecs
->event_thread
->stop_step
= 1;
4699 print_stop_reason (END_STEPPING_RANGE
, 0);
4700 stop_stepping (ecs
);
4704 if (stop_pc_sal
.line
== 0)
4706 /* We have no line number information. That means to stop
4707 stepping (does this always happen right after one instruction,
4708 when we do "s" in a function with no line numbers,
4709 or can this happen as a result of a return or longjmp?). */
4711 fprintf_unfiltered (gdb_stdlog
, "infrun: no line number info\n");
4712 ecs
->event_thread
->stop_step
= 1;
4713 print_stop_reason (END_STEPPING_RANGE
, 0);
4714 stop_stepping (ecs
);
4718 /* Look for "calls" to inlined functions, part one. If the inline
4719 frame machinery detected some skipped call sites, we have entered
4720 a new inline function. */
4722 if (frame_id_eq (get_frame_id (get_current_frame ()),
4723 ecs
->event_thread
->step_frame_id
)
4724 && inline_skipped_frames (ecs
->ptid
))
4726 struct symtab_and_line call_sal
;
4729 fprintf_unfiltered (gdb_stdlog
,
4730 "infrun: stepped into inlined function\n");
4732 find_frame_sal (get_current_frame (), &call_sal
);
4734 if (ecs
->event_thread
->step_over_calls
!= STEP_OVER_ALL
)
4736 /* For "step", we're going to stop. But if the call site
4737 for this inlined function is on the same source line as
4738 we were previously stepping, go down into the function
4739 first. Otherwise stop at the call site. */
4741 if (call_sal
.line
== ecs
->event_thread
->current_line
4742 && call_sal
.symtab
== ecs
->event_thread
->current_symtab
)
4743 step_into_inline_frame (ecs
->ptid
);
4745 ecs
->event_thread
->stop_step
= 1;
4746 print_stop_reason (END_STEPPING_RANGE
, 0);
4747 stop_stepping (ecs
);
4752 /* For "next", we should stop at the call site if it is on a
4753 different source line. Otherwise continue through the
4754 inlined function. */
4755 if (call_sal
.line
== ecs
->event_thread
->current_line
4756 && call_sal
.symtab
== ecs
->event_thread
->current_symtab
)
4760 ecs
->event_thread
->stop_step
= 1;
4761 print_stop_reason (END_STEPPING_RANGE
, 0);
4762 stop_stepping (ecs
);
4768 /* Look for "calls" to inlined functions, part two. If we are still
4769 in the same real function we were stepping through, but we have
4770 to go further up to find the exact frame ID, we are stepping
4771 through a more inlined call beyond its call site. */
4773 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
4774 && !frame_id_eq (get_frame_id (get_current_frame ()),
4775 ecs
->event_thread
->step_frame_id
)
4776 && stepped_in_from (get_current_frame (),
4777 ecs
->event_thread
->step_frame_id
))
4780 fprintf_unfiltered (gdb_stdlog
,
4781 "infrun: stepping through inlined function\n");
4783 if (ecs
->event_thread
->step_over_calls
== STEP_OVER_ALL
)
4787 ecs
->event_thread
->stop_step
= 1;
4788 print_stop_reason (END_STEPPING_RANGE
, 0);
4789 stop_stepping (ecs
);
4794 if ((stop_pc
== stop_pc_sal
.pc
)
4795 && (ecs
->event_thread
->current_line
!= stop_pc_sal
.line
4796 || ecs
->event_thread
->current_symtab
!= stop_pc_sal
.symtab
))
4798 /* We are at the start of a different line. So stop. Note that
4799 we don't stop if we step into the middle of a different line.
4800 That is said to make things like for (;;) statements work
4803 fprintf_unfiltered (gdb_stdlog
, "infrun: stepped to a different line\n");
4804 ecs
->event_thread
->stop_step
= 1;
4805 print_stop_reason (END_STEPPING_RANGE
, 0);
4806 stop_stepping (ecs
);
4810 /* We aren't done stepping.
4812 Optimize by setting the stepping range to the line.
4813 (We might not be in the original line, but if we entered a
4814 new line in mid-statement, we continue stepping. This makes
4815 things like for(;;) statements work better.) */
4817 ecs
->event_thread
->step_range_start
= stop_pc_sal
.pc
;
4818 ecs
->event_thread
->step_range_end
= stop_pc_sal
.end
;
4819 set_step_info (frame
, stop_pc_sal
);
4822 fprintf_unfiltered (gdb_stdlog
, "infrun: keep going\n");
4826 /* Is thread TP in the middle of single-stepping? */
4829 currently_stepping (struct thread_info
*tp
)
4831 return ((tp
->step_range_end
&& tp
->step_resume_breakpoint
== NULL
)
4832 || tp
->trap_expected
4833 || tp
->stepping_through_solib_after_catch
4834 || bpstat_should_step ());
4837 /* Returns true if any thread *but* the one passed in "data" is in the
4838 middle of stepping or of handling a "next". */
4841 currently_stepping_or_nexting_callback (struct thread_info
*tp
, void *data
)
4846 return (tp
->step_range_end
4847 || tp
->trap_expected
4848 || tp
->stepping_through_solib_after_catch
);
4851 /* Inferior has stepped into a subroutine call with source code that
4852 we should not step over. Do step to the first line of code in
4856 handle_step_into_function (struct gdbarch
*gdbarch
,
4857 struct execution_control_state
*ecs
)
4860 struct symtab_and_line stop_func_sal
, sr_sal
;
4862 s
= find_pc_symtab (stop_pc
);
4863 if (s
&& s
->language
!= language_asm
)
4864 ecs
->stop_func_start
= gdbarch_skip_prologue (gdbarch
,
4865 ecs
->stop_func_start
);
4867 stop_func_sal
= find_pc_line (ecs
->stop_func_start
, 0);
4868 /* Use the step_resume_break to step until the end of the prologue,
4869 even if that involves jumps (as it seems to on the vax under
4871 /* If the prologue ends in the middle of a source line, continue to
4872 the end of that source line (if it is still within the function).
4873 Otherwise, just go to end of prologue. */
4874 if (stop_func_sal
.end
4875 && stop_func_sal
.pc
!= ecs
->stop_func_start
4876 && stop_func_sal
.end
< ecs
->stop_func_end
)
4877 ecs
->stop_func_start
= stop_func_sal
.end
;
4879 /* Architectures which require breakpoint adjustment might not be able
4880 to place a breakpoint at the computed address. If so, the test
4881 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
4882 ecs->stop_func_start to an address at which a breakpoint may be
4883 legitimately placed.
4885 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
4886 made, GDB will enter an infinite loop when stepping through
4887 optimized code consisting of VLIW instructions which contain
4888 subinstructions corresponding to different source lines. On
4889 FR-V, it's not permitted to place a breakpoint on any but the
4890 first subinstruction of a VLIW instruction. When a breakpoint is
4891 set, GDB will adjust the breakpoint address to the beginning of
4892 the VLIW instruction. Thus, we need to make the corresponding
4893 adjustment here when computing the stop address. */
4895 if (gdbarch_adjust_breakpoint_address_p (gdbarch
))
4897 ecs
->stop_func_start
4898 = gdbarch_adjust_breakpoint_address (gdbarch
,
4899 ecs
->stop_func_start
);
4902 if (ecs
->stop_func_start
== stop_pc
)
4904 /* We are already there: stop now. */
4905 ecs
->event_thread
->stop_step
= 1;
4906 print_stop_reason (END_STEPPING_RANGE
, 0);
4907 stop_stepping (ecs
);
4912 /* Put the step-breakpoint there and go until there. */
4913 init_sal (&sr_sal
); /* initialize to zeroes */
4914 sr_sal
.pc
= ecs
->stop_func_start
;
4915 sr_sal
.section
= find_pc_overlay (ecs
->stop_func_start
);
4916 sr_sal
.pspace
= get_frame_program_space (get_current_frame ());
4918 /* Do not specify what the fp should be when we stop since on
4919 some machines the prologue is where the new fp value is
4921 insert_step_resume_breakpoint_at_sal (gdbarch
, sr_sal
, null_frame_id
);
4923 /* And make sure stepping stops right away then. */
4924 ecs
->event_thread
->step_range_end
= ecs
->event_thread
->step_range_start
;
4929 /* Inferior has stepped backward into a subroutine call with source
4930 code that we should not step over. Do step to the beginning of the
4931 last line of code in it. */
4934 handle_step_into_function_backward (struct gdbarch
*gdbarch
,
4935 struct execution_control_state
*ecs
)
4938 struct symtab_and_line stop_func_sal
;
4940 s
= find_pc_symtab (stop_pc
);
4941 if (s
&& s
->language
!= language_asm
)
4942 ecs
->stop_func_start
= gdbarch_skip_prologue (gdbarch
,
4943 ecs
->stop_func_start
);
4945 stop_func_sal
= find_pc_line (stop_pc
, 0);
4947 /* OK, we're just going to keep stepping here. */
4948 if (stop_func_sal
.pc
== stop_pc
)
4950 /* We're there already. Just stop stepping now. */
4951 ecs
->event_thread
->stop_step
= 1;
4952 print_stop_reason (END_STEPPING_RANGE
, 0);
4953 stop_stepping (ecs
);
4957 /* Else just reset the step range and keep going.
4958 No step-resume breakpoint, they don't work for
4959 epilogues, which can have multiple entry paths. */
4960 ecs
->event_thread
->step_range_start
= stop_func_sal
.pc
;
4961 ecs
->event_thread
->step_range_end
= stop_func_sal
.end
;
4967 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
4968 This is used to both functions and to skip over code. */
4971 insert_step_resume_breakpoint_at_sal (struct gdbarch
*gdbarch
,
4972 struct symtab_and_line sr_sal
,
4973 struct frame_id sr_id
)
4975 /* There should never be more than one step-resume or longjmp-resume
4976 breakpoint per thread, so we should never be setting a new
4977 step_resume_breakpoint when one is already active. */
4978 gdb_assert (inferior_thread ()->step_resume_breakpoint
== NULL
);
4981 fprintf_unfiltered (gdb_stdlog
,
4982 "infrun: inserting step-resume breakpoint at %s\n",
4983 paddress (gdbarch
, sr_sal
.pc
));
4985 inferior_thread ()->step_resume_breakpoint
4986 = set_momentary_breakpoint (gdbarch
, sr_sal
, sr_id
, bp_step_resume
);
4989 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
4990 to skip a potential signal handler.
4992 This is called with the interrupted function's frame. The signal
4993 handler, when it returns, will resume the interrupted function at
4997 insert_step_resume_breakpoint_at_frame (struct frame_info
*return_frame
)
4999 struct symtab_and_line sr_sal
;
5000 struct gdbarch
*gdbarch
;
5002 gdb_assert (return_frame
!= NULL
);
5003 init_sal (&sr_sal
); /* initialize to zeros */
5005 gdbarch
= get_frame_arch (return_frame
);
5006 sr_sal
.pc
= gdbarch_addr_bits_remove (gdbarch
, get_frame_pc (return_frame
));
5007 sr_sal
.section
= find_pc_overlay (sr_sal
.pc
);
5008 sr_sal
.pspace
= get_frame_program_space (return_frame
);
5010 insert_step_resume_breakpoint_at_sal (gdbarch
, sr_sal
,
5011 get_stack_frame_id (return_frame
));
5014 /* Similar to insert_step_resume_breakpoint_at_frame, except
5015 but a breakpoint at the previous frame's PC. This is used to
5016 skip a function after stepping into it (for "next" or if the called
5017 function has no debugging information).
5019 The current function has almost always been reached by single
5020 stepping a call or return instruction. NEXT_FRAME belongs to the
5021 current function, and the breakpoint will be set at the caller's
5024 This is a separate function rather than reusing
5025 insert_step_resume_breakpoint_at_frame in order to avoid
5026 get_prev_frame, which may stop prematurely (see the implementation
5027 of frame_unwind_caller_id for an example). */
5030 insert_step_resume_breakpoint_at_caller (struct frame_info
*next_frame
)
5032 struct symtab_and_line sr_sal
;
5033 struct gdbarch
*gdbarch
;
5035 /* We shouldn't have gotten here if we don't know where the call site
5037 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame
)));
5039 init_sal (&sr_sal
); /* initialize to zeros */
5041 gdbarch
= frame_unwind_caller_arch (next_frame
);
5042 sr_sal
.pc
= gdbarch_addr_bits_remove (gdbarch
,
5043 frame_unwind_caller_pc (next_frame
));
5044 sr_sal
.section
= find_pc_overlay (sr_sal
.pc
);
5045 sr_sal
.pspace
= frame_unwind_program_space (next_frame
);
5047 insert_step_resume_breakpoint_at_sal (gdbarch
, sr_sal
,
5048 frame_unwind_caller_id (next_frame
));
5051 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5052 new breakpoint at the target of a jmp_buf. The handling of
5053 longjmp-resume uses the same mechanisms used for handling
5054 "step-resume" breakpoints. */
5057 insert_longjmp_resume_breakpoint (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
5059 /* There should never be more than one step-resume or longjmp-resume
5060 breakpoint per thread, so we should never be setting a new
5061 longjmp_resume_breakpoint when one is already active. */
5062 gdb_assert (inferior_thread ()->step_resume_breakpoint
== NULL
);
5065 fprintf_unfiltered (gdb_stdlog
,
5066 "infrun: inserting longjmp-resume breakpoint at %s\n",
5067 paddress (gdbarch
, pc
));
5069 inferior_thread ()->step_resume_breakpoint
=
5070 set_momentary_breakpoint_at_pc (gdbarch
, pc
, bp_longjmp_resume
);
5074 stop_stepping (struct execution_control_state
*ecs
)
5077 fprintf_unfiltered (gdb_stdlog
, "infrun: stop_stepping\n");
5079 /* Let callers know we don't want to wait for the inferior anymore. */
5080 ecs
->wait_some_more
= 0;
5083 /* This function handles various cases where we need to continue
5084 waiting for the inferior. */
5085 /* (Used to be the keep_going: label in the old wait_for_inferior) */
5088 keep_going (struct execution_control_state
*ecs
)
5090 /* Make sure normal_stop is called if we get a QUIT handled before
5092 struct cleanup
*old_cleanups
= make_cleanup (resume_cleanups
, 0);
5094 /* Save the pc before execution, to compare with pc after stop. */
5095 ecs
->event_thread
->prev_pc
5096 = regcache_read_pc (get_thread_regcache (ecs
->ptid
));
5098 /* If we did not do break;, it means we should keep running the
5099 inferior and not return to debugger. */
5101 if (ecs
->event_thread
->trap_expected
5102 && ecs
->event_thread
->stop_signal
!= TARGET_SIGNAL_TRAP
)
5104 /* We took a signal (which we are supposed to pass through to
5105 the inferior, else we'd not get here) and we haven't yet
5106 gotten our trap. Simply continue. */
5108 discard_cleanups (old_cleanups
);
5109 resume (currently_stepping (ecs
->event_thread
),
5110 ecs
->event_thread
->stop_signal
);
5114 /* Either the trap was not expected, but we are continuing
5115 anyway (the user asked that this signal be passed to the
5118 The signal was SIGTRAP, e.g. it was our signal, but we
5119 decided we should resume from it.
5121 We're going to run this baby now!
5123 Note that insert_breakpoints won't try to re-insert
5124 already inserted breakpoints. Therefore, we don't
5125 care if breakpoints were already inserted, or not. */
5127 if (ecs
->event_thread
->stepping_over_breakpoint
)
5129 struct regcache
*thread_regcache
= get_thread_regcache (ecs
->ptid
);
5131 if (!use_displaced_stepping (get_regcache_arch (thread_regcache
)))
5132 /* Since we can't do a displaced step, we have to remove
5133 the breakpoint while we step it. To keep things
5134 simple, we remove them all. */
5135 remove_breakpoints ();
5139 struct gdb_exception e
;
5141 /* Stop stepping when inserting breakpoints
5143 TRY_CATCH (e
, RETURN_MASK_ERROR
)
5145 insert_breakpoints ();
5149 exception_print (gdb_stderr
, e
);
5150 stop_stepping (ecs
);
5155 ecs
->event_thread
->trap_expected
= ecs
->event_thread
->stepping_over_breakpoint
;
5157 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
5158 specifies that such a signal should be delivered to the
5161 Typically, this would occure when a user is debugging a
5162 target monitor on a simulator: the target monitor sets a
5163 breakpoint; the simulator encounters this break-point and
5164 halts the simulation handing control to GDB; GDB, noteing
5165 that the break-point isn't valid, returns control back to the
5166 simulator; the simulator then delivers the hardware
5167 equivalent of a SIGNAL_TRAP to the program being debugged. */
5169 if (ecs
->event_thread
->stop_signal
== TARGET_SIGNAL_TRAP
5170 && !signal_program
[ecs
->event_thread
->stop_signal
])
5171 ecs
->event_thread
->stop_signal
= TARGET_SIGNAL_0
;
5173 discard_cleanups (old_cleanups
);
5174 resume (currently_stepping (ecs
->event_thread
),
5175 ecs
->event_thread
->stop_signal
);
5178 prepare_to_wait (ecs
);
5181 /* This function normally comes after a resume, before
5182 handle_inferior_event exits. It takes care of any last bits of
5183 housekeeping, and sets the all-important wait_some_more flag. */
5186 prepare_to_wait (struct execution_control_state
*ecs
)
5189 fprintf_unfiltered (gdb_stdlog
, "infrun: prepare_to_wait\n");
5191 /* This is the old end of the while loop. Let everybody know we
5192 want to wait for the inferior some more and get called again
5194 ecs
->wait_some_more
= 1;
5197 /* Print why the inferior has stopped. We always print something when
5198 the inferior exits, or receives a signal. The rest of the cases are
5199 dealt with later on in normal_stop() and print_it_typical(). Ideally
5200 there should be a call to this function from handle_inferior_event()
5201 each time stop_stepping() is called.*/
5203 print_stop_reason (enum inferior_stop_reason stop_reason
, int stop_info
)
5205 switch (stop_reason
)
5207 case END_STEPPING_RANGE
:
5208 /* We are done with a step/next/si/ni command. */
5209 /* For now print nothing. */
5210 /* Print a message only if not in the middle of doing a "step n"
5211 operation for n > 1 */
5212 if (!inferior_thread ()->step_multi
5213 || !inferior_thread ()->stop_step
)
5214 if (ui_out_is_mi_like_p (uiout
))
5217 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE
));
5220 /* The inferior was terminated by a signal. */
5221 annotate_signalled ();
5222 if (ui_out_is_mi_like_p (uiout
))
5225 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED
));
5226 ui_out_text (uiout
, "\nProgram terminated with signal ");
5227 annotate_signal_name ();
5228 ui_out_field_string (uiout
, "signal-name",
5229 target_signal_to_name (stop_info
));
5230 annotate_signal_name_end ();
5231 ui_out_text (uiout
, ", ");
5232 annotate_signal_string ();
5233 ui_out_field_string (uiout
, "signal-meaning",
5234 target_signal_to_string (stop_info
));
5235 annotate_signal_string_end ();
5236 ui_out_text (uiout
, ".\n");
5237 ui_out_text (uiout
, "The program no longer exists.\n");
5240 /* The inferior program is finished. */
5241 annotate_exited (stop_info
);
5244 if (ui_out_is_mi_like_p (uiout
))
5245 ui_out_field_string (uiout
, "reason",
5246 async_reason_lookup (EXEC_ASYNC_EXITED
));
5247 ui_out_text (uiout
, "\nProgram exited with code ");
5248 ui_out_field_fmt (uiout
, "exit-code", "0%o",
5249 (unsigned int) stop_info
);
5250 ui_out_text (uiout
, ".\n");
5254 if (ui_out_is_mi_like_p (uiout
))
5257 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY
));
5258 ui_out_text (uiout
, "\nProgram exited normally.\n");
5260 /* Support the --return-child-result option. */
5261 return_child_result_value
= stop_info
;
5263 case SIGNAL_RECEIVED
:
5264 /* Signal received. The signal table tells us to print about
5268 if (stop_info
== TARGET_SIGNAL_0
&& !ui_out_is_mi_like_p (uiout
))
5270 struct thread_info
*t
= inferior_thread ();
5272 ui_out_text (uiout
, "\n[");
5273 ui_out_field_string (uiout
, "thread-name",
5274 target_pid_to_str (t
->ptid
));
5275 ui_out_field_fmt (uiout
, "thread-id", "] #%d", t
->num
);
5276 ui_out_text (uiout
, " stopped");
5280 ui_out_text (uiout
, "\nProgram received signal ");
5281 annotate_signal_name ();
5282 if (ui_out_is_mi_like_p (uiout
))
5284 (uiout
, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED
));
5285 ui_out_field_string (uiout
, "signal-name",
5286 target_signal_to_name (stop_info
));
5287 annotate_signal_name_end ();
5288 ui_out_text (uiout
, ", ");
5289 annotate_signal_string ();
5290 ui_out_field_string (uiout
, "signal-meaning",
5291 target_signal_to_string (stop_info
));
5292 annotate_signal_string_end ();
5294 ui_out_text (uiout
, ".\n");
5297 /* Reverse execution: target ran out of history info. */
5298 ui_out_text (uiout
, "\nNo more reverse-execution history.\n");
5301 internal_error (__FILE__
, __LINE__
,
5302 _("print_stop_reason: unrecognized enum value"));
5308 /* Here to return control to GDB when the inferior stops for real.
5309 Print appropriate messages, remove breakpoints, give terminal our modes.
5311 STOP_PRINT_FRAME nonzero means print the executing frame
5312 (pc, function, args, file, line number and line text).
5313 BREAKPOINTS_FAILED nonzero means stop was due to error
5314 attempting to insert breakpoints. */
5319 struct target_waitstatus last
;
5321 struct cleanup
*old_chain
= make_cleanup (null_cleanup
, NULL
);
5323 get_last_target_status (&last_ptid
, &last
);
5325 /* If an exception is thrown from this point on, make sure to
5326 propagate GDB's knowledge of the executing state to the
5327 frontend/user running state. A QUIT is an easy exception to see
5328 here, so do this before any filtered output. */
5330 make_cleanup (finish_thread_state_cleanup
, &minus_one_ptid
);
5331 else if (last
.kind
!= TARGET_WAITKIND_SIGNALLED
5332 && last
.kind
!= TARGET_WAITKIND_EXITED
)
5333 make_cleanup (finish_thread_state_cleanup
, &inferior_ptid
);
5335 /* In non-stop mode, we don't want GDB to switch threads behind the
5336 user's back, to avoid races where the user is typing a command to
5337 apply to thread x, but GDB switches to thread y before the user
5338 finishes entering the command. */
5340 /* As with the notification of thread events, we want to delay
5341 notifying the user that we've switched thread context until
5342 the inferior actually stops.
5344 There's no point in saying anything if the inferior has exited.
5345 Note that SIGNALLED here means "exited with a signal", not
5346 "received a signal". */
5348 && !ptid_equal (previous_inferior_ptid
, inferior_ptid
)
5349 && target_has_execution
5350 && last
.kind
!= TARGET_WAITKIND_SIGNALLED
5351 && last
.kind
!= TARGET_WAITKIND_EXITED
)
5353 target_terminal_ours_for_output ();
5354 printf_filtered (_("[Switching to %s]\n"),
5355 target_pid_to_str (inferior_ptid
));
5356 annotate_thread_changed ();
5357 previous_inferior_ptid
= inferior_ptid
;
5360 if (!breakpoints_always_inserted_mode () && target_has_execution
)
5362 if (remove_breakpoints ())
5364 target_terminal_ours_for_output ();
5365 printf_filtered (_("\
5366 Cannot remove breakpoints because program is no longer writable.\n\
5367 Further execution is probably impossible.\n"));
5371 /* If an auto-display called a function and that got a signal,
5372 delete that auto-display to avoid an infinite recursion. */
5374 if (stopped_by_random_signal
)
5375 disable_current_display ();
5377 /* Don't print a message if in the middle of doing a "step n"
5378 operation for n > 1 */
5379 if (target_has_execution
5380 && last
.kind
!= TARGET_WAITKIND_SIGNALLED
5381 && last
.kind
!= TARGET_WAITKIND_EXITED
5382 && inferior_thread ()->step_multi
5383 && inferior_thread ()->stop_step
)
5386 target_terminal_ours ();
5388 /* Set the current source location. This will also happen if we
5389 display the frame below, but the current SAL will be incorrect
5390 during a user hook-stop function. */
5391 if (has_stack_frames () && !stop_stack_dummy
)
5392 set_current_sal_from_frame (get_current_frame (), 1);
5394 /* Let the user/frontend see the threads as stopped. */
5395 do_cleanups (old_chain
);
5397 /* Look up the hook_stop and run it (CLI internally handles problem
5398 of stop_command's pre-hook not existing). */
5400 catch_errors (hook_stop_stub
, stop_command
,
5401 "Error while running hook_stop:\n", RETURN_MASK_ALL
);
5403 if (!has_stack_frames ())
5406 if (last
.kind
== TARGET_WAITKIND_SIGNALLED
5407 || last
.kind
== TARGET_WAITKIND_EXITED
)
5410 /* Select innermost stack frame - i.e., current frame is frame 0,
5411 and current location is based on that.
5412 Don't do this on return from a stack dummy routine,
5413 or if the program has exited. */
5415 if (!stop_stack_dummy
)
5417 select_frame (get_current_frame ());
5419 /* Print current location without a level number, if
5420 we have changed functions or hit a breakpoint.
5421 Print source line if we have one.
5422 bpstat_print() contains the logic deciding in detail
5423 what to print, based on the event(s) that just occurred. */
5425 /* If --batch-silent is enabled then there's no need to print the current
5426 source location, and to try risks causing an error message about
5427 missing source files. */
5428 if (stop_print_frame
&& !batch_silent
)
5432 int do_frame_printing
= 1;
5433 struct thread_info
*tp
= inferior_thread ();
5435 bpstat_ret
= bpstat_print (tp
->stop_bpstat
);
5439 /* If we had hit a shared library event breakpoint,
5440 bpstat_print would print out this message. If we hit
5441 an OS-level shared library event, do the same
5443 if (last
.kind
== TARGET_WAITKIND_LOADED
)
5445 printf_filtered (_("Stopped due to shared library event\n"));
5446 source_flag
= SRC_LINE
; /* something bogus */
5447 do_frame_printing
= 0;
5451 /* FIXME: cagney/2002-12-01: Given that a frame ID does
5452 (or should) carry around the function and does (or
5453 should) use that when doing a frame comparison. */
5455 && frame_id_eq (tp
->step_frame_id
,
5456 get_frame_id (get_current_frame ()))
5457 && step_start_function
== find_pc_function (stop_pc
))
5458 source_flag
= SRC_LINE
; /* finished step, just print source line */
5460 source_flag
= SRC_AND_LOC
; /* print location and source line */
5462 case PRINT_SRC_AND_LOC
:
5463 source_flag
= SRC_AND_LOC
; /* print location and source line */
5465 case PRINT_SRC_ONLY
:
5466 source_flag
= SRC_LINE
;
5469 source_flag
= SRC_LINE
; /* something bogus */
5470 do_frame_printing
= 0;
5473 internal_error (__FILE__
, __LINE__
, _("Unknown value."));
5476 /* The behavior of this routine with respect to the source
5478 SRC_LINE: Print only source line
5479 LOCATION: Print only location
5480 SRC_AND_LOC: Print location and source line */
5481 if (do_frame_printing
)
5482 print_stack_frame (get_selected_frame (NULL
), 0, source_flag
);
5484 /* Display the auto-display expressions. */
5489 /* Save the function value return registers, if we care.
5490 We might be about to restore their previous contents. */
5491 if (inferior_thread ()->proceed_to_finish
)
5493 /* This should not be necessary. */
5495 regcache_xfree (stop_registers
);
5497 /* NB: The copy goes through to the target picking up the value of
5498 all the registers. */
5499 stop_registers
= regcache_dup (get_current_regcache ());
5502 if (stop_stack_dummy
== STOP_STACK_DUMMY
)
5504 /* Pop the empty frame that contains the stack dummy.
5505 This also restores inferior state prior to the call
5506 (struct inferior_thread_state). */
5507 struct frame_info
*frame
= get_current_frame ();
5509 gdb_assert (get_frame_type (frame
) == DUMMY_FRAME
);
5511 /* frame_pop() calls reinit_frame_cache as the last thing it does
5512 which means there's currently no selected frame. We don't need
5513 to re-establish a selected frame if the dummy call returns normally,
5514 that will be done by restore_inferior_status. However, we do have
5515 to handle the case where the dummy call is returning after being
5516 stopped (e.g. the dummy call previously hit a breakpoint). We
5517 can't know which case we have so just always re-establish a
5518 selected frame here. */
5519 select_frame (get_current_frame ());
5523 annotate_stopped ();
5525 /* Suppress the stop observer if we're in the middle of:
5527 - a step n (n > 1), as there still more steps to be done.
5529 - a "finish" command, as the observer will be called in
5530 finish_command_continuation, so it can include the inferior
5531 function's return value.
5533 - calling an inferior function, as we pretend we inferior didn't
5534 run at all. The return value of the call is handled by the
5535 expression evaluator, through call_function_by_hand. */
5537 if (!target_has_execution
5538 || last
.kind
== TARGET_WAITKIND_SIGNALLED
5539 || last
.kind
== TARGET_WAITKIND_EXITED
5540 || (!inferior_thread ()->step_multi
5541 && !(inferior_thread ()->stop_bpstat
5542 && inferior_thread ()->proceed_to_finish
)
5543 && !inferior_thread ()->in_infcall
))
5545 if (!ptid_equal (inferior_ptid
, null_ptid
))
5546 observer_notify_normal_stop (inferior_thread ()->stop_bpstat
,
5549 observer_notify_normal_stop (NULL
, stop_print_frame
);
5552 if (target_has_execution
)
5554 if (last
.kind
!= TARGET_WAITKIND_SIGNALLED
5555 && last
.kind
!= TARGET_WAITKIND_EXITED
)
5556 /* Delete the breakpoint we stopped at, if it wants to be deleted.
5557 Delete any breakpoint that is to be deleted at the next stop. */
5558 breakpoint_auto_delete (inferior_thread ()->stop_bpstat
);
5561 /* Try to get rid of automatically added inferiors that are no
5562 longer needed. Keeping those around slows down things linearly.
5563 Note that this never removes the current inferior. */
5568 hook_stop_stub (void *cmd
)
5570 execute_cmd_pre_hook ((struct cmd_list_element
*) cmd
);
5575 signal_stop_state (int signo
)
5577 return signal_stop
[signo
];
5581 signal_print_state (int signo
)
5583 return signal_print
[signo
];
5587 signal_pass_state (int signo
)
5589 return signal_program
[signo
];
5593 signal_stop_update (int signo
, int state
)
5595 int ret
= signal_stop
[signo
];
5597 signal_stop
[signo
] = state
;
5602 signal_print_update (int signo
, int state
)
5604 int ret
= signal_print
[signo
];
5606 signal_print
[signo
] = state
;
5611 signal_pass_update (int signo
, int state
)
5613 int ret
= signal_program
[signo
];
5615 signal_program
[signo
] = state
;
5620 sig_print_header (void)
5622 printf_filtered (_("\
5623 Signal Stop\tPrint\tPass to program\tDescription\n"));
5627 sig_print_info (enum target_signal oursig
)
5629 const char *name
= target_signal_to_name (oursig
);
5630 int name_padding
= 13 - strlen (name
);
5632 if (name_padding
<= 0)
5635 printf_filtered ("%s", name
);
5636 printf_filtered ("%*.*s ", name_padding
, name_padding
, " ");
5637 printf_filtered ("%s\t", signal_stop
[oursig
] ? "Yes" : "No");
5638 printf_filtered ("%s\t", signal_print
[oursig
] ? "Yes" : "No");
5639 printf_filtered ("%s\t\t", signal_program
[oursig
] ? "Yes" : "No");
5640 printf_filtered ("%s\n", target_signal_to_string (oursig
));
5643 /* Specify how various signals in the inferior should be handled. */
5646 handle_command (char *args
, int from_tty
)
5649 int digits
, wordlen
;
5650 int sigfirst
, signum
, siglast
;
5651 enum target_signal oursig
;
5654 unsigned char *sigs
;
5655 struct cleanup
*old_chain
;
5659 error_no_arg (_("signal to handle"));
5662 /* Allocate and zero an array of flags for which signals to handle. */
5664 nsigs
= (int) TARGET_SIGNAL_LAST
;
5665 sigs
= (unsigned char *) alloca (nsigs
);
5666 memset (sigs
, 0, nsigs
);
5668 /* Break the command line up into args. */
5670 argv
= gdb_buildargv (args
);
5671 old_chain
= make_cleanup_freeargv (argv
);
5673 /* Walk through the args, looking for signal oursigs, signal names, and
5674 actions. Signal numbers and signal names may be interspersed with
5675 actions, with the actions being performed for all signals cumulatively
5676 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
5678 while (*argv
!= NULL
)
5680 wordlen
= strlen (*argv
);
5681 for (digits
= 0; isdigit ((*argv
)[digits
]); digits
++)
5685 sigfirst
= siglast
= -1;
5687 if (wordlen
>= 1 && !strncmp (*argv
, "all", wordlen
))
5689 /* Apply action to all signals except those used by the
5690 debugger. Silently skip those. */
5693 siglast
= nsigs
- 1;
5695 else if (wordlen
>= 1 && !strncmp (*argv
, "stop", wordlen
))
5697 SET_SIGS (nsigs
, sigs
, signal_stop
);
5698 SET_SIGS (nsigs
, sigs
, signal_print
);
5700 else if (wordlen
>= 1 && !strncmp (*argv
, "ignore", wordlen
))
5702 UNSET_SIGS (nsigs
, sigs
, signal_program
);
5704 else if (wordlen
>= 2 && !strncmp (*argv
, "print", wordlen
))
5706 SET_SIGS (nsigs
, sigs
, signal_print
);
5708 else if (wordlen
>= 2 && !strncmp (*argv
, "pass", wordlen
))
5710 SET_SIGS (nsigs
, sigs
, signal_program
);
5712 else if (wordlen
>= 3 && !strncmp (*argv
, "nostop", wordlen
))
5714 UNSET_SIGS (nsigs
, sigs
, signal_stop
);
5716 else if (wordlen
>= 3 && !strncmp (*argv
, "noignore", wordlen
))
5718 SET_SIGS (nsigs
, sigs
, signal_program
);
5720 else if (wordlen
>= 4 && !strncmp (*argv
, "noprint", wordlen
))
5722 UNSET_SIGS (nsigs
, sigs
, signal_print
);
5723 UNSET_SIGS (nsigs
, sigs
, signal_stop
);
5725 else if (wordlen
>= 4 && !strncmp (*argv
, "nopass", wordlen
))
5727 UNSET_SIGS (nsigs
, sigs
, signal_program
);
5729 else if (digits
> 0)
5731 /* It is numeric. The numeric signal refers to our own
5732 internal signal numbering from target.h, not to host/target
5733 signal number. This is a feature; users really should be
5734 using symbolic names anyway, and the common ones like
5735 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
5737 sigfirst
= siglast
= (int)
5738 target_signal_from_command (atoi (*argv
));
5739 if ((*argv
)[digits
] == '-')
5742 target_signal_from_command (atoi ((*argv
) + digits
+ 1));
5744 if (sigfirst
> siglast
)
5746 /* Bet he didn't figure we'd think of this case... */
5754 oursig
= target_signal_from_name (*argv
);
5755 if (oursig
!= TARGET_SIGNAL_UNKNOWN
)
5757 sigfirst
= siglast
= (int) oursig
;
5761 /* Not a number and not a recognized flag word => complain. */
5762 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv
);
5766 /* If any signal numbers or symbol names were found, set flags for
5767 which signals to apply actions to. */
5769 for (signum
= sigfirst
; signum
>= 0 && signum
<= siglast
; signum
++)
5771 switch ((enum target_signal
) signum
)
5773 case TARGET_SIGNAL_TRAP
:
5774 case TARGET_SIGNAL_INT
:
5775 if (!allsigs
&& !sigs
[signum
])
5777 if (query (_("%s is used by the debugger.\n\
5778 Are you sure you want to change it? "), target_signal_to_name ((enum target_signal
) signum
)))
5784 printf_unfiltered (_("Not confirmed, unchanged.\n"));
5785 gdb_flush (gdb_stdout
);
5789 case TARGET_SIGNAL_0
:
5790 case TARGET_SIGNAL_DEFAULT
:
5791 case TARGET_SIGNAL_UNKNOWN
:
5792 /* Make sure that "all" doesn't print these. */
5803 for (signum
= 0; signum
< nsigs
; signum
++)
5806 target_notice_signals (inferior_ptid
);
5810 /* Show the results. */
5811 sig_print_header ();
5812 for (; signum
< nsigs
; signum
++)
5814 sig_print_info (signum
);
5820 do_cleanups (old_chain
);
5824 xdb_handle_command (char *args
, int from_tty
)
5827 struct cleanup
*old_chain
;
5830 error_no_arg (_("xdb command"));
5832 /* Break the command line up into args. */
5834 argv
= gdb_buildargv (args
);
5835 old_chain
= make_cleanup_freeargv (argv
);
5836 if (argv
[1] != (char *) NULL
)
5841 bufLen
= strlen (argv
[0]) + 20;
5842 argBuf
= (char *) xmalloc (bufLen
);
5846 enum target_signal oursig
;
5848 oursig
= target_signal_from_name (argv
[0]);
5849 memset (argBuf
, 0, bufLen
);
5850 if (strcmp (argv
[1], "Q") == 0)
5851 sprintf (argBuf
, "%s %s", argv
[0], "noprint");
5854 if (strcmp (argv
[1], "s") == 0)
5856 if (!signal_stop
[oursig
])
5857 sprintf (argBuf
, "%s %s", argv
[0], "stop");
5859 sprintf (argBuf
, "%s %s", argv
[0], "nostop");
5861 else if (strcmp (argv
[1], "i") == 0)
5863 if (!signal_program
[oursig
])
5864 sprintf (argBuf
, "%s %s", argv
[0], "pass");
5866 sprintf (argBuf
, "%s %s", argv
[0], "nopass");
5868 else if (strcmp (argv
[1], "r") == 0)
5870 if (!signal_print
[oursig
])
5871 sprintf (argBuf
, "%s %s", argv
[0], "print");
5873 sprintf (argBuf
, "%s %s", argv
[0], "noprint");
5879 handle_command (argBuf
, from_tty
);
5881 printf_filtered (_("Invalid signal handling flag.\n"));
5886 do_cleanups (old_chain
);
5889 /* Print current contents of the tables set by the handle command.
5890 It is possible we should just be printing signals actually used
5891 by the current target (but for things to work right when switching
5892 targets, all signals should be in the signal tables). */
5895 signals_info (char *signum_exp
, int from_tty
)
5897 enum target_signal oursig
;
5899 sig_print_header ();
5903 /* First see if this is a symbol name. */
5904 oursig
= target_signal_from_name (signum_exp
);
5905 if (oursig
== TARGET_SIGNAL_UNKNOWN
)
5907 /* No, try numeric. */
5909 target_signal_from_command (parse_and_eval_long (signum_exp
));
5911 sig_print_info (oursig
);
5915 printf_filtered ("\n");
5916 /* These ugly casts brought to you by the native VAX compiler. */
5917 for (oursig
= TARGET_SIGNAL_FIRST
;
5918 (int) oursig
< (int) TARGET_SIGNAL_LAST
;
5919 oursig
= (enum target_signal
) ((int) oursig
+ 1))
5923 if (oursig
!= TARGET_SIGNAL_UNKNOWN
5924 && oursig
!= TARGET_SIGNAL_DEFAULT
&& oursig
!= TARGET_SIGNAL_0
)
5925 sig_print_info (oursig
);
5928 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
5931 /* The $_siginfo convenience variable is a bit special. We don't know
5932 for sure the type of the value until we actually have a chance to
5933 fetch the data. The type can change depending on gdbarch, so it it
5934 also dependent on which thread you have selected.
5936 1. making $_siginfo be an internalvar that creates a new value on
5939 2. making the value of $_siginfo be an lval_computed value. */
5941 /* This function implements the lval_computed support for reading a
5945 siginfo_value_read (struct value
*v
)
5947 LONGEST transferred
;
5950 target_read (¤t_target
, TARGET_OBJECT_SIGNAL_INFO
,
5952 value_contents_all_raw (v
),
5954 TYPE_LENGTH (value_type (v
)));
5956 if (transferred
!= TYPE_LENGTH (value_type (v
)))
5957 error (_("Unable to read siginfo"));
5960 /* This function implements the lval_computed support for writing a
5964 siginfo_value_write (struct value
*v
, struct value
*fromval
)
5966 LONGEST transferred
;
5968 transferred
= target_write (¤t_target
,
5969 TARGET_OBJECT_SIGNAL_INFO
,
5971 value_contents_all_raw (fromval
),
5973 TYPE_LENGTH (value_type (fromval
)));
5975 if (transferred
!= TYPE_LENGTH (value_type (fromval
)))
5976 error (_("Unable to write siginfo"));
5979 static struct lval_funcs siginfo_value_funcs
=
5985 /* Return a new value with the correct type for the siginfo object of
5986 the current thread using architecture GDBARCH. Return a void value
5987 if there's no object available. */
5989 static struct value
*
5990 siginfo_make_value (struct gdbarch
*gdbarch
, struct internalvar
*var
)
5992 if (target_has_stack
5993 && !ptid_equal (inferior_ptid
, null_ptid
)
5994 && gdbarch_get_siginfo_type_p (gdbarch
))
5996 struct type
*type
= gdbarch_get_siginfo_type (gdbarch
);
5998 return allocate_computed_value (type
, &siginfo_value_funcs
, NULL
);
6001 return allocate_value (builtin_type (gdbarch
)->builtin_void
);
6005 /* Inferior thread state.
6006 These are details related to the inferior itself, and don't include
6007 things like what frame the user had selected or what gdb was doing
6008 with the target at the time.
6009 For inferior function calls these are things we want to restore
6010 regardless of whether the function call successfully completes
6011 or the dummy frame has to be manually popped. */
6013 struct inferior_thread_state
6015 enum target_signal stop_signal
;
6017 struct regcache
*registers
;
6020 struct inferior_thread_state
*
6021 save_inferior_thread_state (void)
6023 struct inferior_thread_state
*inf_state
= XMALLOC (struct inferior_thread_state
);
6024 struct thread_info
*tp
= inferior_thread ();
6026 inf_state
->stop_signal
= tp
->stop_signal
;
6027 inf_state
->stop_pc
= stop_pc
;
6029 inf_state
->registers
= regcache_dup (get_current_regcache ());
6034 /* Restore inferior session state to INF_STATE. */
6037 restore_inferior_thread_state (struct inferior_thread_state
*inf_state
)
6039 struct thread_info
*tp
= inferior_thread ();
6041 tp
->stop_signal
= inf_state
->stop_signal
;
6042 stop_pc
= inf_state
->stop_pc
;
6044 /* The inferior can be gone if the user types "print exit(0)"
6045 (and perhaps other times). */
6046 if (target_has_execution
)
6047 /* NB: The register write goes through to the target. */
6048 regcache_cpy (get_current_regcache (), inf_state
->registers
);
6049 regcache_xfree (inf_state
->registers
);
6054 do_restore_inferior_thread_state_cleanup (void *state
)
6056 restore_inferior_thread_state (state
);
6060 make_cleanup_restore_inferior_thread_state (struct inferior_thread_state
*inf_state
)
6062 return make_cleanup (do_restore_inferior_thread_state_cleanup
, inf_state
);
6066 discard_inferior_thread_state (struct inferior_thread_state
*inf_state
)
6068 regcache_xfree (inf_state
->registers
);
6073 get_inferior_thread_state_regcache (struct inferior_thread_state
*inf_state
)
6075 return inf_state
->registers
;
6078 /* Session related state for inferior function calls.
6079 These are the additional bits of state that need to be restored
6080 when an inferior function call successfully completes. */
6082 struct inferior_status
6086 enum stop_stack_kind stop_stack_dummy
;
6087 int stopped_by_random_signal
;
6088 int stepping_over_breakpoint
;
6089 CORE_ADDR step_range_start
;
6090 CORE_ADDR step_range_end
;
6091 struct frame_id step_frame_id
;
6092 struct frame_id step_stack_frame_id
;
6093 enum step_over_calls_kind step_over_calls
;
6094 CORE_ADDR step_resume_break_address
;
6095 int stop_after_trap
;
6098 /* ID if the selected frame when the inferior function call was made. */
6099 struct frame_id selected_frame_id
;
6101 int proceed_to_finish
;
6105 /* Save all of the information associated with the inferior<==>gdb
6108 struct inferior_status
*
6109 save_inferior_status (void)
6111 struct inferior_status
*inf_status
= XMALLOC (struct inferior_status
);
6112 struct thread_info
*tp
= inferior_thread ();
6113 struct inferior
*inf
= current_inferior ();
6115 inf_status
->stop_step
= tp
->stop_step
;
6116 inf_status
->stop_stack_dummy
= stop_stack_dummy
;
6117 inf_status
->stopped_by_random_signal
= stopped_by_random_signal
;
6118 inf_status
->stepping_over_breakpoint
= tp
->trap_expected
;
6119 inf_status
->step_range_start
= tp
->step_range_start
;
6120 inf_status
->step_range_end
= tp
->step_range_end
;
6121 inf_status
->step_frame_id
= tp
->step_frame_id
;
6122 inf_status
->step_stack_frame_id
= tp
->step_stack_frame_id
;
6123 inf_status
->step_over_calls
= tp
->step_over_calls
;
6124 inf_status
->stop_after_trap
= stop_after_trap
;
6125 inf_status
->stop_soon
= inf
->stop_soon
;
6126 /* Save original bpstat chain here; replace it with copy of chain.
6127 If caller's caller is walking the chain, they'll be happier if we
6128 hand them back the original chain when restore_inferior_status is
6130 inf_status
->stop_bpstat
= tp
->stop_bpstat
;
6131 tp
->stop_bpstat
= bpstat_copy (tp
->stop_bpstat
);
6132 inf_status
->proceed_to_finish
= tp
->proceed_to_finish
;
6133 inf_status
->in_infcall
= tp
->in_infcall
;
6135 inf_status
->selected_frame_id
= get_frame_id (get_selected_frame (NULL
));
6141 restore_selected_frame (void *args
)
6143 struct frame_id
*fid
= (struct frame_id
*) args
;
6144 struct frame_info
*frame
;
6146 frame
= frame_find_by_id (*fid
);
6148 /* If inf_status->selected_frame_id is NULL, there was no previously
6152 warning (_("Unable to restore previously selected frame."));
6156 select_frame (frame
);
6161 /* Restore inferior session state to INF_STATUS. */
6164 restore_inferior_status (struct inferior_status
*inf_status
)
6166 struct thread_info
*tp
= inferior_thread ();
6167 struct inferior
*inf
= current_inferior ();
6169 tp
->stop_step
= inf_status
->stop_step
;
6170 stop_stack_dummy
= inf_status
->stop_stack_dummy
;
6171 stopped_by_random_signal
= inf_status
->stopped_by_random_signal
;
6172 tp
->trap_expected
= inf_status
->stepping_over_breakpoint
;
6173 tp
->step_range_start
= inf_status
->step_range_start
;
6174 tp
->step_range_end
= inf_status
->step_range_end
;
6175 tp
->step_frame_id
= inf_status
->step_frame_id
;
6176 tp
->step_stack_frame_id
= inf_status
->step_stack_frame_id
;
6177 tp
->step_over_calls
= inf_status
->step_over_calls
;
6178 stop_after_trap
= inf_status
->stop_after_trap
;
6179 inf
->stop_soon
= inf_status
->stop_soon
;
6180 bpstat_clear (&tp
->stop_bpstat
);
6181 tp
->stop_bpstat
= inf_status
->stop_bpstat
;
6182 inf_status
->stop_bpstat
= NULL
;
6183 tp
->proceed_to_finish
= inf_status
->proceed_to_finish
;
6184 tp
->in_infcall
= inf_status
->in_infcall
;
6186 if (target_has_stack
)
6188 /* The point of catch_errors is that if the stack is clobbered,
6189 walking the stack might encounter a garbage pointer and
6190 error() trying to dereference it. */
6192 (restore_selected_frame
, &inf_status
->selected_frame_id
,
6193 "Unable to restore previously selected frame:\n",
6194 RETURN_MASK_ERROR
) == 0)
6195 /* Error in restoring the selected frame. Select the innermost
6197 select_frame (get_current_frame ());
6204 do_restore_inferior_status_cleanup (void *sts
)
6206 restore_inferior_status (sts
);
6210 make_cleanup_restore_inferior_status (struct inferior_status
*inf_status
)
6212 return make_cleanup (do_restore_inferior_status_cleanup
, inf_status
);
6216 discard_inferior_status (struct inferior_status
*inf_status
)
6218 /* See save_inferior_status for info on stop_bpstat. */
6219 bpstat_clear (&inf_status
->stop_bpstat
);
6224 inferior_has_forked (ptid_t pid
, ptid_t
*child_pid
)
6226 struct target_waitstatus last
;
6229 get_last_target_status (&last_ptid
, &last
);
6231 if (last
.kind
!= TARGET_WAITKIND_FORKED
)
6234 if (!ptid_equal (last_ptid
, pid
))
6237 *child_pid
= last
.value
.related_pid
;
6242 inferior_has_vforked (ptid_t pid
, ptid_t
*child_pid
)
6244 struct target_waitstatus last
;
6247 get_last_target_status (&last_ptid
, &last
);
6249 if (last
.kind
!= TARGET_WAITKIND_VFORKED
)
6252 if (!ptid_equal (last_ptid
, pid
))
6255 *child_pid
= last
.value
.related_pid
;
6260 inferior_has_execd (ptid_t pid
, char **execd_pathname
)
6262 struct target_waitstatus last
;
6265 get_last_target_status (&last_ptid
, &last
);
6267 if (last
.kind
!= TARGET_WAITKIND_EXECD
)
6270 if (!ptid_equal (last_ptid
, pid
))
6273 *execd_pathname
= xstrdup (last
.value
.execd_pathname
);
6278 inferior_has_called_syscall (ptid_t pid
, int *syscall_number
)
6280 struct target_waitstatus last
;
6283 get_last_target_status (&last_ptid
, &last
);
6285 if (last
.kind
!= TARGET_WAITKIND_SYSCALL_ENTRY
&&
6286 last
.kind
!= TARGET_WAITKIND_SYSCALL_RETURN
)
6289 if (!ptid_equal (last_ptid
, pid
))
6292 *syscall_number
= last
.value
.syscall_number
;
6296 /* Oft used ptids */
6298 ptid_t minus_one_ptid
;
6300 /* Create a ptid given the necessary PID, LWP, and TID components. */
6303 ptid_build (int pid
, long lwp
, long tid
)
6313 /* Create a ptid from just a pid. */
6316 pid_to_ptid (int pid
)
6318 return ptid_build (pid
, 0, 0);
6321 /* Fetch the pid (process id) component from a ptid. */
6324 ptid_get_pid (ptid_t ptid
)
6329 /* Fetch the lwp (lightweight process) component from a ptid. */
6332 ptid_get_lwp (ptid_t ptid
)
6337 /* Fetch the tid (thread id) component from a ptid. */
6340 ptid_get_tid (ptid_t ptid
)
6345 /* ptid_equal() is used to test equality of two ptids. */
6348 ptid_equal (ptid_t ptid1
, ptid_t ptid2
)
6350 return (ptid1
.pid
== ptid2
.pid
&& ptid1
.lwp
== ptid2
.lwp
6351 && ptid1
.tid
== ptid2
.tid
);
6354 /* Returns true if PTID represents a process. */
6357 ptid_is_pid (ptid_t ptid
)
6359 if (ptid_equal (minus_one_ptid
, ptid
))
6361 if (ptid_equal (null_ptid
, ptid
))
6364 return (ptid_get_lwp (ptid
) == 0 && ptid_get_tid (ptid
) == 0);
6368 ptid_match (ptid_t ptid
, ptid_t filter
)
6370 /* Since both parameters have the same type, prevent easy mistakes
6372 gdb_assert (!ptid_equal (ptid
, minus_one_ptid
)
6373 && !ptid_equal (ptid
, null_ptid
));
6375 if (ptid_equal (filter
, minus_one_ptid
))
6377 if (ptid_is_pid (filter
)
6378 && ptid_get_pid (ptid
) == ptid_get_pid (filter
))
6380 else if (ptid_equal (ptid
, filter
))
6386 /* restore_inferior_ptid() will be used by the cleanup machinery
6387 to restore the inferior_ptid value saved in a call to
6388 save_inferior_ptid(). */
6391 restore_inferior_ptid (void *arg
)
6393 ptid_t
*saved_ptid_ptr
= arg
;
6395 inferior_ptid
= *saved_ptid_ptr
;
6399 /* Save the value of inferior_ptid so that it may be restored by a
6400 later call to do_cleanups(). Returns the struct cleanup pointer
6401 needed for later doing the cleanup. */
6404 save_inferior_ptid (void)
6406 ptid_t
*saved_ptid_ptr
;
6408 saved_ptid_ptr
= xmalloc (sizeof (ptid_t
));
6409 *saved_ptid_ptr
= inferior_ptid
;
6410 return make_cleanup (restore_inferior_ptid
, saved_ptid_ptr
);
6414 /* User interface for reverse debugging:
6415 Set exec-direction / show exec-direction commands
6416 (returns error unless target implements to_set_exec_direction method). */
6418 enum exec_direction_kind execution_direction
= EXEC_FORWARD
;
6419 static const char exec_forward
[] = "forward";
6420 static const char exec_reverse
[] = "reverse";
6421 static const char *exec_direction
= exec_forward
;
6422 static const char *exec_direction_names
[] = {
6429 set_exec_direction_func (char *args
, int from_tty
,
6430 struct cmd_list_element
*cmd
)
6432 if (target_can_execute_reverse
)
6434 if (!strcmp (exec_direction
, exec_forward
))
6435 execution_direction
= EXEC_FORWARD
;
6436 else if (!strcmp (exec_direction
, exec_reverse
))
6437 execution_direction
= EXEC_REVERSE
;
6442 show_exec_direction_func (struct ui_file
*out
, int from_tty
,
6443 struct cmd_list_element
*cmd
, const char *value
)
6445 switch (execution_direction
) {
6447 fprintf_filtered (out
, _("Forward.\n"));
6450 fprintf_filtered (out
, _("Reverse.\n"));
6454 fprintf_filtered (out
,
6455 _("Forward (target `%s' does not support exec-direction).\n"),
6461 /* User interface for non-stop mode. */
6466 set_non_stop (char *args
, int from_tty
,
6467 struct cmd_list_element
*c
)
6469 if (target_has_execution
)
6471 non_stop_1
= non_stop
;
6472 error (_("Cannot change this setting while the inferior is running."));
6475 non_stop
= non_stop_1
;
6479 show_non_stop (struct ui_file
*file
, int from_tty
,
6480 struct cmd_list_element
*c
, const char *value
)
6482 fprintf_filtered (file
,
6483 _("Controlling the inferior in non-stop mode is %s.\n"),
6488 show_schedule_multiple (struct ui_file
*file
, int from_tty
,
6489 struct cmd_list_element
*c
, const char *value
)
6491 fprintf_filtered (file
, _("\
6492 Resuming the execution of threads of all processes is %s.\n"), value
);
6496 _initialize_infrun (void)
6501 add_info ("signals", signals_info
, _("\
6502 What debugger does when program gets various signals.\n\
6503 Specify a signal as argument to print info on that signal only."));
6504 add_info_alias ("handle", "signals", 0);
6506 add_com ("handle", class_run
, handle_command
, _("\
6507 Specify how to handle a signal.\n\
6508 Args are signals and actions to apply to those signals.\n\
6509 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6510 from 1-15 are allowed for compatibility with old versions of GDB.\n\
6511 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6512 The special arg \"all\" is recognized to mean all signals except those\n\
6513 used by the debugger, typically SIGTRAP and SIGINT.\n\
6514 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
6515 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
6516 Stop means reenter debugger if this signal happens (implies print).\n\
6517 Print means print a message if this signal happens.\n\
6518 Pass means let program see this signal; otherwise program doesn't know.\n\
6519 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
6520 Pass and Stop may be combined."));
6523 add_com ("lz", class_info
, signals_info
, _("\
6524 What debugger does when program gets various signals.\n\
6525 Specify a signal as argument to print info on that signal only."));
6526 add_com ("z", class_run
, xdb_handle_command
, _("\
6527 Specify how to handle a signal.\n\
6528 Args are signals and actions to apply to those signals.\n\
6529 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6530 from 1-15 are allowed for compatibility with old versions of GDB.\n\
6531 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6532 The special arg \"all\" is recognized to mean all signals except those\n\
6533 used by the debugger, typically SIGTRAP and SIGINT.\n\
6534 Recognized actions include \"s\" (toggles between stop and nostop),\n\
6535 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
6536 nopass), \"Q\" (noprint)\n\
6537 Stop means reenter debugger if this signal happens (implies print).\n\
6538 Print means print a message if this signal happens.\n\
6539 Pass means let program see this signal; otherwise program doesn't know.\n\
6540 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
6541 Pass and Stop may be combined."));
6545 stop_command
= add_cmd ("stop", class_obscure
,
6546 not_just_help_class_command
, _("\
6547 There is no `stop' command, but you can set a hook on `stop'.\n\
6548 This allows you to set a list of commands to be run each time execution\n\
6549 of the program stops."), &cmdlist
);
6551 add_setshow_zinteger_cmd ("infrun", class_maintenance
, &debug_infrun
, _("\
6552 Set inferior debugging."), _("\
6553 Show inferior debugging."), _("\
6554 When non-zero, inferior specific debugging is enabled."),
6557 &setdebuglist
, &showdebuglist
);
6559 add_setshow_boolean_cmd ("displaced", class_maintenance
, &debug_displaced
, _("\
6560 Set displaced stepping debugging."), _("\
6561 Show displaced stepping debugging."), _("\
6562 When non-zero, displaced stepping specific debugging is enabled."),
6564 show_debug_displaced
,
6565 &setdebuglist
, &showdebuglist
);
6567 add_setshow_boolean_cmd ("non-stop", no_class
,
6569 Set whether gdb controls the inferior in non-stop mode."), _("\
6570 Show whether gdb controls the inferior in non-stop mode."), _("\
6571 When debugging a multi-threaded program and this setting is\n\
6572 off (the default, also called all-stop mode), when one thread stops\n\
6573 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
6574 all other threads in the program while you interact with the thread of\n\
6575 interest. When you continue or step a thread, you can allow the other\n\
6576 threads to run, or have them remain stopped, but while you inspect any\n\
6577 thread's state, all threads stop.\n\
6579 In non-stop mode, when one thread stops, other threads can continue\n\
6580 to run freely. You'll be able to step each thread independently,\n\
6581 leave it stopped or free to run as needed."),
6587 numsigs
= (int) TARGET_SIGNAL_LAST
;
6588 signal_stop
= (unsigned char *) xmalloc (sizeof (signal_stop
[0]) * numsigs
);
6589 signal_print
= (unsigned char *)
6590 xmalloc (sizeof (signal_print
[0]) * numsigs
);
6591 signal_program
= (unsigned char *)
6592 xmalloc (sizeof (signal_program
[0]) * numsigs
);
6593 for (i
= 0; i
< numsigs
; i
++)
6596 signal_print
[i
] = 1;
6597 signal_program
[i
] = 1;
6600 /* Signals caused by debugger's own actions
6601 should not be given to the program afterwards. */
6602 signal_program
[TARGET_SIGNAL_TRAP
] = 0;
6603 signal_program
[TARGET_SIGNAL_INT
] = 0;
6605 /* Signals that are not errors should not normally enter the debugger. */
6606 signal_stop
[TARGET_SIGNAL_ALRM
] = 0;
6607 signal_print
[TARGET_SIGNAL_ALRM
] = 0;
6608 signal_stop
[TARGET_SIGNAL_VTALRM
] = 0;
6609 signal_print
[TARGET_SIGNAL_VTALRM
] = 0;
6610 signal_stop
[TARGET_SIGNAL_PROF
] = 0;
6611 signal_print
[TARGET_SIGNAL_PROF
] = 0;
6612 signal_stop
[TARGET_SIGNAL_CHLD
] = 0;
6613 signal_print
[TARGET_SIGNAL_CHLD
] = 0;
6614 signal_stop
[TARGET_SIGNAL_IO
] = 0;
6615 signal_print
[TARGET_SIGNAL_IO
] = 0;
6616 signal_stop
[TARGET_SIGNAL_POLL
] = 0;
6617 signal_print
[TARGET_SIGNAL_POLL
] = 0;
6618 signal_stop
[TARGET_SIGNAL_URG
] = 0;
6619 signal_print
[TARGET_SIGNAL_URG
] = 0;
6620 signal_stop
[TARGET_SIGNAL_WINCH
] = 0;
6621 signal_print
[TARGET_SIGNAL_WINCH
] = 0;
6623 /* These signals are used internally by user-level thread
6624 implementations. (See signal(5) on Solaris.) Like the above
6625 signals, a healthy program receives and handles them as part of
6626 its normal operation. */
6627 signal_stop
[TARGET_SIGNAL_LWP
] = 0;
6628 signal_print
[TARGET_SIGNAL_LWP
] = 0;
6629 signal_stop
[TARGET_SIGNAL_WAITING
] = 0;
6630 signal_print
[TARGET_SIGNAL_WAITING
] = 0;
6631 signal_stop
[TARGET_SIGNAL_CANCEL
] = 0;
6632 signal_print
[TARGET_SIGNAL_CANCEL
] = 0;
6634 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support
,
6635 &stop_on_solib_events
, _("\
6636 Set stopping for shared library events."), _("\
6637 Show stopping for shared library events."), _("\
6638 If nonzero, gdb will give control to the user when the dynamic linker\n\
6639 notifies gdb of shared library events. The most common event of interest\n\
6640 to the user would be loading/unloading of a new library."),
6642 show_stop_on_solib_events
,
6643 &setlist
, &showlist
);
6645 add_setshow_enum_cmd ("follow-fork-mode", class_run
,
6646 follow_fork_mode_kind_names
,
6647 &follow_fork_mode_string
, _("\
6648 Set debugger response to a program call of fork or vfork."), _("\
6649 Show debugger response to a program call of fork or vfork."), _("\
6650 A fork or vfork creates a new process. follow-fork-mode can be:\n\
6651 parent - the original process is debugged after a fork\n\
6652 child - the new process is debugged after a fork\n\
6653 The unfollowed process will continue to run.\n\
6654 By default, the debugger will follow the parent process."),
6656 show_follow_fork_mode_string
,
6657 &setlist
, &showlist
);
6659 add_setshow_enum_cmd ("follow-exec-mode", class_run
,
6660 follow_exec_mode_names
,
6661 &follow_exec_mode_string
, _("\
6662 Set debugger response to a program call of exec."), _("\
6663 Show debugger response to a program call of exec."), _("\
6664 An exec call replaces the program image of a process.\n\
6666 follow-exec-mode can be:\n\
6668 new - the debugger creates a new inferior and rebinds the process\n\
6669 to this new inferior. The program the process was running before\n\
6670 the exec call can be restarted afterwards by restarting the original\n\
6673 same - the debugger keeps the process bound to the same inferior.\n\
6674 The new executable image replaces the previous executable loaded in\n\
6675 the inferior. Restarting the inferior after the exec call restarts\n\
6676 the executable the process was running after the exec call.\n\
6678 By default, the debugger will use the same inferior."),
6680 show_follow_exec_mode_string
,
6681 &setlist
, &showlist
);
6683 add_setshow_enum_cmd ("scheduler-locking", class_run
,
6684 scheduler_enums
, &scheduler_mode
, _("\
6685 Set mode for locking scheduler during execution."), _("\
6686 Show mode for locking scheduler during execution."), _("\
6687 off == no locking (threads may preempt at any time)\n\
6688 on == full locking (no thread except the current thread may run)\n\
6689 step == scheduler locked during every single-step operation.\n\
6690 In this mode, no other thread may run during a step command.\n\
6691 Other threads may run while stepping over a function call ('next')."),
6692 set_schedlock_func
, /* traps on target vector */
6693 show_scheduler_mode
,
6694 &setlist
, &showlist
);
6696 add_setshow_boolean_cmd ("schedule-multiple", class_run
, &sched_multi
, _("\
6697 Set mode for resuming threads of all processes."), _("\
6698 Show mode for resuming threads of all processes."), _("\
6699 When on, execution commands (such as 'continue' or 'next') resume all\n\
6700 threads of all processes. When off (which is the default), execution\n\
6701 commands only resume the threads of the current process. The set of\n\
6702 threads that are resumed is further refined by the scheduler-locking\n\
6703 mode (see help set scheduler-locking)."),
6705 show_schedule_multiple
,
6706 &setlist
, &showlist
);
6708 add_setshow_boolean_cmd ("step-mode", class_run
, &step_stop_if_no_debug
, _("\
6709 Set mode of the step operation."), _("\
6710 Show mode of the step operation."), _("\
6711 When set, doing a step over a function without debug line information\n\
6712 will stop at the first instruction of that function. Otherwise, the\n\
6713 function is skipped and the step command stops at a different source line."),
6715 show_step_stop_if_no_debug
,
6716 &setlist
, &showlist
);
6718 add_setshow_enum_cmd ("displaced-stepping", class_run
,
6719 can_use_displaced_stepping_enum
,
6720 &can_use_displaced_stepping
, _("\
6721 Set debugger's willingness to use displaced stepping."), _("\
6722 Show debugger's willingness to use displaced stepping."), _("\
6723 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
6724 supported by the target architecture. If off, gdb will not use displaced\n\
6725 stepping to step over breakpoints, even if such is supported by the target\n\
6726 architecture. If auto (which is the default), gdb will use displaced stepping\n\
6727 if the target architecture supports it and non-stop mode is active, but will not\n\
6728 use it in all-stop mode (see help set non-stop)."),
6730 show_can_use_displaced_stepping
,
6731 &setlist
, &showlist
);
6733 add_setshow_enum_cmd ("exec-direction", class_run
, exec_direction_names
,
6734 &exec_direction
, _("Set direction of execution.\n\
6735 Options are 'forward' or 'reverse'."),
6736 _("Show direction of execution (forward/reverse)."),
6737 _("Tells gdb whether to execute forward or backward."),
6738 set_exec_direction_func
, show_exec_direction_func
,
6739 &setlist
, &showlist
);
6741 /* Set/show detach-on-fork: user-settable mode. */
6743 add_setshow_boolean_cmd ("detach-on-fork", class_run
, &detach_fork
, _("\
6744 Set whether gdb will detach the child of a fork."), _("\
6745 Show whether gdb will detach the child of a fork."), _("\
6746 Tells gdb whether to detach the child of a fork."),
6747 NULL
, NULL
, &setlist
, &showlist
);
6749 /* ptid initializations */
6750 null_ptid
= ptid_build (0, 0, 0);
6751 minus_one_ptid
= ptid_build (-1, 0, 0);
6752 inferior_ptid
= null_ptid
;
6753 target_last_wait_ptid
= minus_one_ptid
;
6755 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed
);
6756 observer_attach_thread_stop_requested (infrun_thread_stop_requested
);
6757 observer_attach_thread_exit (infrun_thread_thread_exit
);
6758 observer_attach_inferior_exit (infrun_inferior_exit
);
6760 /* Explicitly create without lookup, since that tries to create a
6761 value with a void typed value, and when we get here, gdbarch
6762 isn't initialized yet. At this point, we're quite sure there
6763 isn't another convenience variable of the same name. */
6764 create_internalvar_type_lazy ("_siginfo", siginfo_make_value
);
6766 add_setshow_boolean_cmd ("observer", no_class
,
6767 &observer_mode_1
, _("\
6768 Set whether gdb controls the inferior in observer mode."), _("\
6769 Show whether gdb controls the inferior in observer mode."), _("\
6770 In observer mode, GDB can get data from the inferior, but not\n\
6771 affect its execution. Registers and memory may not be changed,\n\
6772 breakpoints may not be set, and the program cannot be interrupted\n\