* mips-tdep.c (show_mips_abi): Change calling conventions to match
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
6 Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include "symtab.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "exceptions.h"
32 #include "breakpoint.h"
33 #include "gdb_wait.h"
34 #include "gdbcore.h"
35 #include "gdbcmd.h"
36 #include "cli/cli-script.h"
37 #include "target.h"
38 #include "gdbthread.h"
39 #include "annotate.h"
40 #include "symfile.h"
41 #include "top.h"
42 #include <signal.h>
43 #include "inf-loop.h"
44 #include "regcache.h"
45 #include "value.h"
46 #include "observer.h"
47 #include "language.h"
48 #include "gdb_assert.h"
49
50 /* Prototypes for local functions */
51
52 static void signals_info (char *, int);
53
54 static void handle_command (char *, int);
55
56 static void sig_print_info (enum target_signal);
57
58 static void sig_print_header (void);
59
60 static void resume_cleanups (void *);
61
62 static int hook_stop_stub (void *);
63
64 static int restore_selected_frame (void *);
65
66 static void build_infrun (void);
67
68 static int follow_fork (void);
69
70 static void set_schedlock_func (char *args, int from_tty,
71 struct cmd_list_element *c);
72
73 struct execution_control_state;
74
75 static int currently_stepping (struct execution_control_state *ecs);
76
77 static void xdb_handle_command (char *args, int from_tty);
78
79 static int prepare_to_proceed (void);
80
81 void _initialize_infrun (void);
82
83 int inferior_ignoring_startup_exec_events = 0;
84 int inferior_ignoring_leading_exec_events = 0;
85
86 /* When set, stop the 'step' command if we enter a function which has
87 no line number information. The normal behavior is that we step
88 over such function. */
89 int step_stop_if_no_debug = 0;
90 static void
91 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
92 struct cmd_list_element *c, const char *value)
93 {
94 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
95 }
96
97 /* In asynchronous mode, but simulating synchronous execution. */
98
99 int sync_execution = 0;
100
101 /* wait_for_inferior and normal_stop use this to notify the user
102 when the inferior stopped in a different thread than it had been
103 running in. */
104
105 static ptid_t previous_inferior_ptid;
106
107 /* This is true for configurations that may follow through execl() and
108 similar functions. At present this is only true for HP-UX native. */
109
110 #ifndef MAY_FOLLOW_EXEC
111 #define MAY_FOLLOW_EXEC (0)
112 #endif
113
114 static int may_follow_exec = MAY_FOLLOW_EXEC;
115
116 static int debug_infrun = 0;
117 static void
118 show_debug_infrun (struct ui_file *file, int from_tty,
119 struct cmd_list_element *c, const char *value)
120 {
121 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
122 }
123
124 /* If the program uses ELF-style shared libraries, then calls to
125 functions in shared libraries go through stubs, which live in a
126 table called the PLT (Procedure Linkage Table). The first time the
127 function is called, the stub sends control to the dynamic linker,
128 which looks up the function's real address, patches the stub so
129 that future calls will go directly to the function, and then passes
130 control to the function.
131
132 If we are stepping at the source level, we don't want to see any of
133 this --- we just want to skip over the stub and the dynamic linker.
134 The simple approach is to single-step until control leaves the
135 dynamic linker.
136
137 However, on some systems (e.g., Red Hat's 5.2 distribution) the
138 dynamic linker calls functions in the shared C library, so you
139 can't tell from the PC alone whether the dynamic linker is still
140 running. In this case, we use a step-resume breakpoint to get us
141 past the dynamic linker, as if we were using "next" to step over a
142 function call.
143
144 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
145 linker code or not. Normally, this means we single-step. However,
146 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
147 address where we can place a step-resume breakpoint to get past the
148 linker's symbol resolution function.
149
150 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
151 pretty portable way, by comparing the PC against the address ranges
152 of the dynamic linker's sections.
153
154 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
155 it depends on internal details of the dynamic linker. It's usually
156 not too hard to figure out where to put a breakpoint, but it
157 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
158 sanity checking. If it can't figure things out, returning zero and
159 getting the (possibly confusing) stepping behavior is better than
160 signalling an error, which will obscure the change in the
161 inferior's state. */
162
163 #ifndef IN_SOLIB_DYNSYM_RESOLVE_CODE
164 #define IN_SOLIB_DYNSYM_RESOLVE_CODE(pc) 0
165 #endif
166
167 /* This function returns TRUE if pc is the address of an instruction
168 that lies within the dynamic linker (such as the event hook, or the
169 dld itself).
170
171 This function must be used only when a dynamic linker event has
172 been caught, and the inferior is being stepped out of the hook, or
173 undefined results are guaranteed. */
174
175 #ifndef SOLIB_IN_DYNAMIC_LINKER
176 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
177 #endif
178
179 /* We can't step off a permanent breakpoint in the ordinary way, because we
180 can't remove it. Instead, we have to advance the PC to the next
181 instruction. This macro should expand to a pointer to a function that
182 does that, or zero if we have no such function. If we don't have a
183 definition for it, we have to report an error. */
184 #ifndef SKIP_PERMANENT_BREAKPOINT
185 #define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
186 static void
187 default_skip_permanent_breakpoint (void)
188 {
189 error (_("\
190 The program is stopped at a permanent breakpoint, but GDB does not know\n\
191 how to step past a permanent breakpoint on this architecture. Try using\n\
192 a command like `return' or `jump' to continue execution."));
193 }
194 #endif
195
196
197 /* Convert the #defines into values. This is temporary until wfi control
198 flow is completely sorted out. */
199
200 #ifndef HAVE_STEPPABLE_WATCHPOINT
201 #define HAVE_STEPPABLE_WATCHPOINT 0
202 #else
203 #undef HAVE_STEPPABLE_WATCHPOINT
204 #define HAVE_STEPPABLE_WATCHPOINT 1
205 #endif
206
207 #ifndef CANNOT_STEP_HW_WATCHPOINTS
208 #define CANNOT_STEP_HW_WATCHPOINTS 0
209 #else
210 #undef CANNOT_STEP_HW_WATCHPOINTS
211 #define CANNOT_STEP_HW_WATCHPOINTS 1
212 #endif
213
214 /* Tables of how to react to signals; the user sets them. */
215
216 static unsigned char *signal_stop;
217 static unsigned char *signal_print;
218 static unsigned char *signal_program;
219
220 #define SET_SIGS(nsigs,sigs,flags) \
221 do { \
222 int signum = (nsigs); \
223 while (signum-- > 0) \
224 if ((sigs)[signum]) \
225 (flags)[signum] = 1; \
226 } while (0)
227
228 #define UNSET_SIGS(nsigs,sigs,flags) \
229 do { \
230 int signum = (nsigs); \
231 while (signum-- > 0) \
232 if ((sigs)[signum]) \
233 (flags)[signum] = 0; \
234 } while (0)
235
236 /* Value to pass to target_resume() to cause all threads to resume */
237
238 #define RESUME_ALL (pid_to_ptid (-1))
239
240 /* Command list pointer for the "stop" placeholder. */
241
242 static struct cmd_list_element *stop_command;
243
244 /* Nonzero if breakpoints are now inserted in the inferior. */
245
246 static int breakpoints_inserted;
247
248 /* Function inferior was in as of last step command. */
249
250 static struct symbol *step_start_function;
251
252 /* Nonzero if we are expecting a trace trap and should proceed from it. */
253
254 static int trap_expected;
255
256 #ifdef SOLIB_ADD
257 /* Nonzero if we want to give control to the user when we're notified
258 of shared library events by the dynamic linker. */
259 static int stop_on_solib_events;
260 static void
261 show_stop_on_solib_events (struct ui_file *file, int from_tty,
262 struct cmd_list_element *c, const char *value)
263 {
264 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
265 value);
266 }
267 #endif
268
269 /* Nonzero means expecting a trace trap
270 and should stop the inferior and return silently when it happens. */
271
272 int stop_after_trap;
273
274 /* Nonzero means expecting a trap and caller will handle it themselves.
275 It is used after attach, due to attaching to a process;
276 when running in the shell before the child program has been exec'd;
277 and when running some kinds of remote stuff (FIXME?). */
278
279 enum stop_kind stop_soon;
280
281 /* Nonzero if proceed is being used for a "finish" command or a similar
282 situation when stop_registers should be saved. */
283
284 int proceed_to_finish;
285
286 /* Save register contents here when about to pop a stack dummy frame,
287 if-and-only-if proceed_to_finish is set.
288 Thus this contains the return value from the called function (assuming
289 values are returned in a register). */
290
291 struct regcache *stop_registers;
292
293 /* Nonzero if program stopped due to error trying to insert breakpoints. */
294
295 static int breakpoints_failed;
296
297 /* Nonzero after stop if current stack frame should be printed. */
298
299 static int stop_print_frame;
300
301 static struct breakpoint *step_resume_breakpoint = NULL;
302
303 /* This is a cached copy of the pid/waitstatus of the last event
304 returned by target_wait()/deprecated_target_wait_hook(). This
305 information is returned by get_last_target_status(). */
306 static ptid_t target_last_wait_ptid;
307 static struct target_waitstatus target_last_waitstatus;
308
309 /* This is used to remember when a fork, vfork or exec event
310 was caught by a catchpoint, and thus the event is to be
311 followed at the next resume of the inferior, and not
312 immediately. */
313 static struct
314 {
315 enum target_waitkind kind;
316 struct
317 {
318 int parent_pid;
319 int child_pid;
320 }
321 fork_event;
322 char *execd_pathname;
323 }
324 pending_follow;
325
326 static const char follow_fork_mode_child[] = "child";
327 static const char follow_fork_mode_parent[] = "parent";
328
329 static const char *follow_fork_mode_kind_names[] = {
330 follow_fork_mode_child,
331 follow_fork_mode_parent,
332 NULL
333 };
334
335 static const char *follow_fork_mode_string = follow_fork_mode_parent;
336 static void
337 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
338 struct cmd_list_element *c, const char *value)
339 {
340 fprintf_filtered (file, _("\
341 Debugger response to a program call of fork or vfork is \"%s\".\n"),
342 value);
343 }
344 \f
345
346 static int
347 follow_fork (void)
348 {
349 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
350
351 return target_follow_fork (follow_child);
352 }
353
354 void
355 follow_inferior_reset_breakpoints (void)
356 {
357 /* Was there a step_resume breakpoint? (There was if the user
358 did a "next" at the fork() call.) If so, explicitly reset its
359 thread number.
360
361 step_resumes are a form of bp that are made to be per-thread.
362 Since we created the step_resume bp when the parent process
363 was being debugged, and now are switching to the child process,
364 from the breakpoint package's viewpoint, that's a switch of
365 "threads". We must update the bp's notion of which thread
366 it is for, or it'll be ignored when it triggers. */
367
368 if (step_resume_breakpoint)
369 breakpoint_re_set_thread (step_resume_breakpoint);
370
371 /* Reinsert all breakpoints in the child. The user may have set
372 breakpoints after catching the fork, in which case those
373 were never set in the child, but only in the parent. This makes
374 sure the inserted breakpoints match the breakpoint list. */
375
376 breakpoint_re_set ();
377 insert_breakpoints ();
378 }
379
380 /* EXECD_PATHNAME is assumed to be non-NULL. */
381
382 static void
383 follow_exec (int pid, char *execd_pathname)
384 {
385 int saved_pid = pid;
386 struct target_ops *tgt;
387
388 if (!may_follow_exec)
389 return;
390
391 /* This is an exec event that we actually wish to pay attention to.
392 Refresh our symbol table to the newly exec'd program, remove any
393 momentary bp's, etc.
394
395 If there are breakpoints, they aren't really inserted now,
396 since the exec() transformed our inferior into a fresh set
397 of instructions.
398
399 We want to preserve symbolic breakpoints on the list, since
400 we have hopes that they can be reset after the new a.out's
401 symbol table is read.
402
403 However, any "raw" breakpoints must be removed from the list
404 (e.g., the solib bp's), since their address is probably invalid
405 now.
406
407 And, we DON'T want to call delete_breakpoints() here, since
408 that may write the bp's "shadow contents" (the instruction
409 value that was overwritten witha TRAP instruction). Since
410 we now have a new a.out, those shadow contents aren't valid. */
411 update_breakpoints_after_exec ();
412
413 /* If there was one, it's gone now. We cannot truly step-to-next
414 statement through an exec(). */
415 step_resume_breakpoint = NULL;
416 step_range_start = 0;
417 step_range_end = 0;
418
419 /* What is this a.out's name? */
420 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
421
422 /* We've followed the inferior through an exec. Therefore, the
423 inferior has essentially been killed & reborn. */
424
425 /* First collect the run target in effect. */
426 tgt = find_run_target ();
427 /* If we can't find one, things are in a very strange state... */
428 if (tgt == NULL)
429 error (_("Could find run target to save before following exec"));
430
431 gdb_flush (gdb_stdout);
432 target_mourn_inferior ();
433 inferior_ptid = pid_to_ptid (saved_pid);
434 /* Because mourn_inferior resets inferior_ptid. */
435 push_target (tgt);
436
437 /* That a.out is now the one to use. */
438 exec_file_attach (execd_pathname, 0);
439
440 /* And also is where symbols can be found. */
441 symbol_file_add_main (execd_pathname, 0);
442
443 /* Reset the shared library package. This ensures that we get
444 a shlib event when the child reaches "_start", at which point
445 the dld will have had a chance to initialize the child. */
446 #if defined(SOLIB_RESTART)
447 SOLIB_RESTART ();
448 #endif
449 #ifdef SOLIB_CREATE_INFERIOR_HOOK
450 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
451 #endif
452
453 /* Reinsert all breakpoints. (Those which were symbolic have
454 been reset to the proper address in the new a.out, thanks
455 to symbol_file_command...) */
456 insert_breakpoints ();
457
458 /* The next resume of this inferior should bring it to the shlib
459 startup breakpoints. (If the user had also set bp's on
460 "main" from the old (parent) process, then they'll auto-
461 matically get reset there in the new process.) */
462 }
463
464 /* Non-zero if we just simulating a single-step. This is needed
465 because we cannot remove the breakpoints in the inferior process
466 until after the `wait' in `wait_for_inferior'. */
467 static int singlestep_breakpoints_inserted_p = 0;
468
469 /* The thread we inserted single-step breakpoints for. */
470 static ptid_t singlestep_ptid;
471
472 /* If another thread hit the singlestep breakpoint, we save the original
473 thread here so that we can resume single-stepping it later. */
474 static ptid_t saved_singlestep_ptid;
475 static int stepping_past_singlestep_breakpoint;
476 \f
477
478 /* Things to clean up if we QUIT out of resume (). */
479 static void
480 resume_cleanups (void *ignore)
481 {
482 normal_stop ();
483 }
484
485 static const char schedlock_off[] = "off";
486 static const char schedlock_on[] = "on";
487 static const char schedlock_step[] = "step";
488 static const char *scheduler_enums[] = {
489 schedlock_off,
490 schedlock_on,
491 schedlock_step,
492 NULL
493 };
494 static const char *scheduler_mode = schedlock_off;
495 static void
496 show_scheduler_mode (struct ui_file *file, int from_tty,
497 struct cmd_list_element *c, const char *value)
498 {
499 fprintf_filtered (file, _("\
500 Mode for locking scheduler during execution is \"%s\".\n"),
501 value);
502 }
503
504 static void
505 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
506 {
507 if (!target_can_lock_scheduler)
508 {
509 scheduler_mode = schedlock_off;
510 error (_("Target '%s' cannot support this command."), target_shortname);
511 }
512 }
513
514
515 /* Resume the inferior, but allow a QUIT. This is useful if the user
516 wants to interrupt some lengthy single-stepping operation
517 (for child processes, the SIGINT goes to the inferior, and so
518 we get a SIGINT random_signal, but for remote debugging and perhaps
519 other targets, that's not true).
520
521 STEP nonzero if we should step (zero to continue instead).
522 SIG is the signal to give the inferior (zero for none). */
523 void
524 resume (int step, enum target_signal sig)
525 {
526 int should_resume = 1;
527 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
528 QUIT;
529
530 if (debug_infrun)
531 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
532 step, sig);
533
534 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
535
536
537 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
538 over an instruction that causes a page fault without triggering
539 a hardware watchpoint. The kernel properly notices that it shouldn't
540 stop, because the hardware watchpoint is not triggered, but it forgets
541 the step request and continues the program normally.
542 Work around the problem by removing hardware watchpoints if a step is
543 requested, GDB will check for a hardware watchpoint trigger after the
544 step anyway. */
545 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
546 remove_hw_watchpoints ();
547
548
549 /* Normally, by the time we reach `resume', the breakpoints are either
550 removed or inserted, as appropriate. The exception is if we're sitting
551 at a permanent breakpoint; we need to step over it, but permanent
552 breakpoints can't be removed. So we have to test for it here. */
553 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
554 SKIP_PERMANENT_BREAKPOINT ();
555
556 if (SOFTWARE_SINGLE_STEP_P () && step)
557 {
558 /* Do it the hard way, w/temp breakpoints */
559 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
560 /* ...and don't ask hardware to do it. */
561 step = 0;
562 /* and do not pull these breakpoints until after a `wait' in
563 `wait_for_inferior' */
564 singlestep_breakpoints_inserted_p = 1;
565 singlestep_ptid = inferior_ptid;
566 }
567
568 /* If there were any forks/vforks/execs that were caught and are
569 now to be followed, then do so. */
570 switch (pending_follow.kind)
571 {
572 case TARGET_WAITKIND_FORKED:
573 case TARGET_WAITKIND_VFORKED:
574 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
575 if (follow_fork ())
576 should_resume = 0;
577 break;
578
579 case TARGET_WAITKIND_EXECD:
580 /* follow_exec is called as soon as the exec event is seen. */
581 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
582 break;
583
584 default:
585 break;
586 }
587
588 /* Install inferior's terminal modes. */
589 target_terminal_inferior ();
590
591 if (should_resume)
592 {
593 ptid_t resume_ptid;
594
595 resume_ptid = RESUME_ALL; /* Default */
596
597 if ((step || singlestep_breakpoints_inserted_p)
598 && (stepping_past_singlestep_breakpoint
599 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
600 {
601 /* Stepping past a breakpoint without inserting breakpoints.
602 Make sure only the current thread gets to step, so that
603 other threads don't sneak past breakpoints while they are
604 not inserted. */
605
606 resume_ptid = inferior_ptid;
607 }
608
609 if ((scheduler_mode == schedlock_on)
610 || (scheduler_mode == schedlock_step
611 && (step || singlestep_breakpoints_inserted_p)))
612 {
613 /* User-settable 'scheduler' mode requires solo thread resume. */
614 resume_ptid = inferior_ptid;
615 }
616
617 if (CANNOT_STEP_BREAKPOINT)
618 {
619 /* Most targets can step a breakpoint instruction, thus
620 executing it normally. But if this one cannot, just
621 continue and we will hit it anyway. */
622 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
623 step = 0;
624 }
625 target_resume (resume_ptid, step, sig);
626 }
627
628 discard_cleanups (old_cleanups);
629 }
630 \f
631
632 /* Clear out all variables saying what to do when inferior is continued.
633 First do this, then set the ones you want, then call `proceed'. */
634
635 void
636 clear_proceed_status (void)
637 {
638 trap_expected = 0;
639 step_range_start = 0;
640 step_range_end = 0;
641 step_frame_id = null_frame_id;
642 step_over_calls = STEP_OVER_UNDEBUGGABLE;
643 stop_after_trap = 0;
644 stop_soon = NO_STOP_QUIETLY;
645 proceed_to_finish = 0;
646 breakpoint_proceeded = 1; /* We're about to proceed... */
647
648 /* Discard any remaining commands or status from previous stop. */
649 bpstat_clear (&stop_bpstat);
650 }
651
652 /* This should be suitable for any targets that support threads. */
653
654 static int
655 prepare_to_proceed (void)
656 {
657 ptid_t wait_ptid;
658 struct target_waitstatus wait_status;
659
660 /* Get the last target status returned by target_wait(). */
661 get_last_target_status (&wait_ptid, &wait_status);
662
663 /* Make sure we were stopped either at a breakpoint, or because
664 of a Ctrl-C. */
665 if (wait_status.kind != TARGET_WAITKIND_STOPPED
666 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
667 && wait_status.value.sig != TARGET_SIGNAL_INT))
668 {
669 return 0;
670 }
671
672 if (!ptid_equal (wait_ptid, minus_one_ptid)
673 && !ptid_equal (inferior_ptid, wait_ptid))
674 {
675 /* Switched over from WAIT_PID. */
676 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
677
678 if (wait_pc != read_pc ())
679 {
680 /* Switch back to WAIT_PID thread. */
681 inferior_ptid = wait_ptid;
682
683 /* FIXME: This stuff came from switch_to_thread() in
684 thread.c (which should probably be a public function). */
685 flush_cached_frames ();
686 registers_changed ();
687 stop_pc = wait_pc;
688 select_frame (get_current_frame ());
689 }
690
691 /* We return 1 to indicate that there is a breakpoint here,
692 so we need to step over it before continuing to avoid
693 hitting it straight away. */
694 if (breakpoint_here_p (wait_pc))
695 return 1;
696 }
697
698 return 0;
699
700 }
701
702 /* Record the pc of the program the last time it stopped. This is
703 just used internally by wait_for_inferior, but need to be preserved
704 over calls to it and cleared when the inferior is started. */
705 static CORE_ADDR prev_pc;
706
707 /* Basic routine for continuing the program in various fashions.
708
709 ADDR is the address to resume at, or -1 for resume where stopped.
710 SIGGNAL is the signal to give it, or 0 for none,
711 or -1 for act according to how it stopped.
712 STEP is nonzero if should trap after one instruction.
713 -1 means return after that and print nothing.
714 You should probably set various step_... variables
715 before calling here, if you are stepping.
716
717 You should call clear_proceed_status before calling proceed. */
718
719 void
720 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
721 {
722 int oneproc = 0;
723
724 if (step > 0)
725 step_start_function = find_pc_function (read_pc ());
726 if (step < 0)
727 stop_after_trap = 1;
728
729 if (addr == (CORE_ADDR) -1)
730 {
731 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
732 /* There is a breakpoint at the address we will resume at,
733 step one instruction before inserting breakpoints so that
734 we do not stop right away (and report a second hit at this
735 breakpoint). */
736 oneproc = 1;
737 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
738 && gdbarch_single_step_through_delay (current_gdbarch,
739 get_current_frame ()))
740 /* We stepped onto an instruction that needs to be stepped
741 again before re-inserting the breakpoint, do so. */
742 oneproc = 1;
743 }
744 else
745 {
746 write_pc (addr);
747 }
748
749 if (debug_infrun)
750 fprintf_unfiltered (gdb_stdlog,
751 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
752 paddr_nz (addr), siggnal, step);
753
754 /* In a multi-threaded task we may select another thread
755 and then continue or step.
756
757 But if the old thread was stopped at a breakpoint, it
758 will immediately cause another breakpoint stop without
759 any execution (i.e. it will report a breakpoint hit
760 incorrectly). So we must step over it first.
761
762 prepare_to_proceed checks the current thread against the thread
763 that reported the most recent event. If a step-over is required
764 it returns TRUE and sets the current thread to the old thread. */
765 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
766 oneproc = 1;
767
768 if (oneproc)
769 /* We will get a trace trap after one instruction.
770 Continue it automatically and insert breakpoints then. */
771 trap_expected = 1;
772 else
773 {
774 insert_breakpoints ();
775 /* If we get here there was no call to error() in
776 insert breakpoints -- so they were inserted. */
777 breakpoints_inserted = 1;
778 }
779
780 if (siggnal != TARGET_SIGNAL_DEFAULT)
781 stop_signal = siggnal;
782 /* If this signal should not be seen by program,
783 give it zero. Used for debugging signals. */
784 else if (!signal_program[stop_signal])
785 stop_signal = TARGET_SIGNAL_0;
786
787 annotate_starting ();
788
789 /* Make sure that output from GDB appears before output from the
790 inferior. */
791 gdb_flush (gdb_stdout);
792
793 /* Refresh prev_pc value just prior to resuming. This used to be
794 done in stop_stepping, however, setting prev_pc there did not handle
795 scenarios such as inferior function calls or returning from
796 a function via the return command. In those cases, the prev_pc
797 value was not set properly for subsequent commands. The prev_pc value
798 is used to initialize the starting line number in the ecs. With an
799 invalid value, the gdb next command ends up stopping at the position
800 represented by the next line table entry past our start position.
801 On platforms that generate one line table entry per line, this
802 is not a problem. However, on the ia64, the compiler generates
803 extraneous line table entries that do not increase the line number.
804 When we issue the gdb next command on the ia64 after an inferior call
805 or a return command, we often end up a few instructions forward, still
806 within the original line we started.
807
808 An attempt was made to have init_execution_control_state () refresh
809 the prev_pc value before calculating the line number. This approach
810 did not work because on platforms that use ptrace, the pc register
811 cannot be read unless the inferior is stopped. At that point, we
812 are not guaranteed the inferior is stopped and so the read_pc ()
813 call can fail. Setting the prev_pc value here ensures the value is
814 updated correctly when the inferior is stopped. */
815 prev_pc = read_pc ();
816
817 /* Resume inferior. */
818 resume (oneproc || step || bpstat_should_step (), stop_signal);
819
820 /* Wait for it to stop (if not standalone)
821 and in any case decode why it stopped, and act accordingly. */
822 /* Do this only if we are not using the event loop, or if the target
823 does not support asynchronous execution. */
824 if (!target_can_async_p ())
825 {
826 wait_for_inferior ();
827 normal_stop ();
828 }
829 }
830 \f
831
832 /* Start remote-debugging of a machine over a serial link. */
833
834 void
835 start_remote (void)
836 {
837 init_thread_list ();
838 init_wait_for_inferior ();
839 stop_soon = STOP_QUIETLY;
840 trap_expected = 0;
841
842 /* Always go on waiting for the target, regardless of the mode. */
843 /* FIXME: cagney/1999-09-23: At present it isn't possible to
844 indicate to wait_for_inferior that a target should timeout if
845 nothing is returned (instead of just blocking). Because of this,
846 targets expecting an immediate response need to, internally, set
847 things up so that the target_wait() is forced to eventually
848 timeout. */
849 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
850 differentiate to its caller what the state of the target is after
851 the initial open has been performed. Here we're assuming that
852 the target has stopped. It should be possible to eventually have
853 target_open() return to the caller an indication that the target
854 is currently running and GDB state should be set to the same as
855 for an async run. */
856 wait_for_inferior ();
857 normal_stop ();
858 }
859
860 /* Initialize static vars when a new inferior begins. */
861
862 void
863 init_wait_for_inferior (void)
864 {
865 /* These are meaningless until the first time through wait_for_inferior. */
866 prev_pc = 0;
867
868 breakpoints_inserted = 0;
869 breakpoint_init_inferior (inf_starting);
870
871 /* Don't confuse first call to proceed(). */
872 stop_signal = TARGET_SIGNAL_0;
873
874 /* The first resume is not following a fork/vfork/exec. */
875 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
876
877 clear_proceed_status ();
878
879 stepping_past_singlestep_breakpoint = 0;
880 }
881 \f
882 /* This enum encodes possible reasons for doing a target_wait, so that
883 wfi can call target_wait in one place. (Ultimately the call will be
884 moved out of the infinite loop entirely.) */
885
886 enum infwait_states
887 {
888 infwait_normal_state,
889 infwait_thread_hop_state,
890 infwait_nonstep_watch_state
891 };
892
893 /* Why did the inferior stop? Used to print the appropriate messages
894 to the interface from within handle_inferior_event(). */
895 enum inferior_stop_reason
896 {
897 /* We don't know why. */
898 STOP_UNKNOWN,
899 /* Step, next, nexti, stepi finished. */
900 END_STEPPING_RANGE,
901 /* Found breakpoint. */
902 BREAKPOINT_HIT,
903 /* Inferior terminated by signal. */
904 SIGNAL_EXITED,
905 /* Inferior exited. */
906 EXITED,
907 /* Inferior received signal, and user asked to be notified. */
908 SIGNAL_RECEIVED
909 };
910
911 /* This structure contains what used to be local variables in
912 wait_for_inferior. Probably many of them can return to being
913 locals in handle_inferior_event. */
914
915 struct execution_control_state
916 {
917 struct target_waitstatus ws;
918 struct target_waitstatus *wp;
919 int another_trap;
920 int random_signal;
921 CORE_ADDR stop_func_start;
922 CORE_ADDR stop_func_end;
923 char *stop_func_name;
924 struct symtab_and_line sal;
925 int current_line;
926 struct symtab *current_symtab;
927 int handling_longjmp; /* FIXME */
928 ptid_t ptid;
929 ptid_t saved_inferior_ptid;
930 int step_after_step_resume_breakpoint;
931 int stepping_through_solib_after_catch;
932 bpstat stepping_through_solib_catchpoints;
933 int new_thread_event;
934 struct target_waitstatus tmpstatus;
935 enum infwait_states infwait_state;
936 ptid_t waiton_ptid;
937 int wait_some_more;
938 };
939
940 void init_execution_control_state (struct execution_control_state *ecs);
941
942 void handle_inferior_event (struct execution_control_state *ecs);
943
944 static void step_into_function (struct execution_control_state *ecs);
945 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
946 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
947 struct frame_id sr_id);
948 static void stop_stepping (struct execution_control_state *ecs);
949 static void prepare_to_wait (struct execution_control_state *ecs);
950 static void keep_going (struct execution_control_state *ecs);
951 static void print_stop_reason (enum inferior_stop_reason stop_reason,
952 int stop_info);
953
954 /* Wait for control to return from inferior to debugger.
955 If inferior gets a signal, we may decide to start it up again
956 instead of returning. That is why there is a loop in this function.
957 When this function actually returns it means the inferior
958 should be left stopped and GDB should read more commands. */
959
960 void
961 wait_for_inferior (void)
962 {
963 struct cleanup *old_cleanups;
964 struct execution_control_state ecss;
965 struct execution_control_state *ecs;
966
967 if (debug_infrun)
968 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
969
970 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
971 &step_resume_breakpoint);
972
973 /* wfi still stays in a loop, so it's OK just to take the address of
974 a local to get the ecs pointer. */
975 ecs = &ecss;
976
977 /* Fill in with reasonable starting values. */
978 init_execution_control_state (ecs);
979
980 /* We'll update this if & when we switch to a new thread. */
981 previous_inferior_ptid = inferior_ptid;
982
983 overlay_cache_invalid = 1;
984
985 /* We have to invalidate the registers BEFORE calling target_wait
986 because they can be loaded from the target while in target_wait.
987 This makes remote debugging a bit more efficient for those
988 targets that provide critical registers as part of their normal
989 status mechanism. */
990
991 registers_changed ();
992
993 while (1)
994 {
995 if (deprecated_target_wait_hook)
996 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
997 else
998 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
999
1000 /* Now figure out what to do with the result of the result. */
1001 handle_inferior_event (ecs);
1002
1003 if (!ecs->wait_some_more)
1004 break;
1005 }
1006 do_cleanups (old_cleanups);
1007 }
1008
1009 /* Asynchronous version of wait_for_inferior. It is called by the
1010 event loop whenever a change of state is detected on the file
1011 descriptor corresponding to the target. It can be called more than
1012 once to complete a single execution command. In such cases we need
1013 to keep the state in a global variable ASYNC_ECSS. If it is the
1014 last time that this function is called for a single execution
1015 command, then report to the user that the inferior has stopped, and
1016 do the necessary cleanups. */
1017
1018 struct execution_control_state async_ecss;
1019 struct execution_control_state *async_ecs;
1020
1021 void
1022 fetch_inferior_event (void *client_data)
1023 {
1024 static struct cleanup *old_cleanups;
1025
1026 async_ecs = &async_ecss;
1027
1028 if (!async_ecs->wait_some_more)
1029 {
1030 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1031 &step_resume_breakpoint);
1032
1033 /* Fill in with reasonable starting values. */
1034 init_execution_control_state (async_ecs);
1035
1036 /* We'll update this if & when we switch to a new thread. */
1037 previous_inferior_ptid = inferior_ptid;
1038
1039 overlay_cache_invalid = 1;
1040
1041 /* We have to invalidate the registers BEFORE calling target_wait
1042 because they can be loaded from the target while in target_wait.
1043 This makes remote debugging a bit more efficient for those
1044 targets that provide critical registers as part of their normal
1045 status mechanism. */
1046
1047 registers_changed ();
1048 }
1049
1050 if (deprecated_target_wait_hook)
1051 async_ecs->ptid =
1052 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1053 else
1054 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1055
1056 /* Now figure out what to do with the result of the result. */
1057 handle_inferior_event (async_ecs);
1058
1059 if (!async_ecs->wait_some_more)
1060 {
1061 /* Do only the cleanups that have been added by this
1062 function. Let the continuations for the commands do the rest,
1063 if there are any. */
1064 do_exec_cleanups (old_cleanups);
1065 normal_stop ();
1066 if (step_multi && stop_step)
1067 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1068 else
1069 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1070 }
1071 }
1072
1073 /* Prepare an execution control state for looping through a
1074 wait_for_inferior-type loop. */
1075
1076 void
1077 init_execution_control_state (struct execution_control_state *ecs)
1078 {
1079 /* ecs->another_trap? */
1080 ecs->random_signal = 0;
1081 ecs->step_after_step_resume_breakpoint = 0;
1082 ecs->handling_longjmp = 0; /* FIXME */
1083 ecs->stepping_through_solib_after_catch = 0;
1084 ecs->stepping_through_solib_catchpoints = NULL;
1085 ecs->sal = find_pc_line (prev_pc, 0);
1086 ecs->current_line = ecs->sal.line;
1087 ecs->current_symtab = ecs->sal.symtab;
1088 ecs->infwait_state = infwait_normal_state;
1089 ecs->waiton_ptid = pid_to_ptid (-1);
1090 ecs->wp = &(ecs->ws);
1091 }
1092
1093 /* Return the cached copy of the last pid/waitstatus returned by
1094 target_wait()/deprecated_target_wait_hook(). The data is actually
1095 cached by handle_inferior_event(), which gets called immediately
1096 after target_wait()/deprecated_target_wait_hook(). */
1097
1098 void
1099 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1100 {
1101 *ptidp = target_last_wait_ptid;
1102 *status = target_last_waitstatus;
1103 }
1104
1105 /* Switch thread contexts, maintaining "infrun state". */
1106
1107 static void
1108 context_switch (struct execution_control_state *ecs)
1109 {
1110 /* Caution: it may happen that the new thread (or the old one!)
1111 is not in the thread list. In this case we must not attempt
1112 to "switch context", or we run the risk that our context may
1113 be lost. This may happen as a result of the target module
1114 mishandling thread creation. */
1115
1116 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1117 { /* Perform infrun state context switch: */
1118 /* Save infrun state for the old thread. */
1119 save_infrun_state (inferior_ptid, prev_pc,
1120 trap_expected, step_resume_breakpoint,
1121 step_range_start,
1122 step_range_end, &step_frame_id,
1123 ecs->handling_longjmp, ecs->another_trap,
1124 ecs->stepping_through_solib_after_catch,
1125 ecs->stepping_through_solib_catchpoints,
1126 ecs->current_line, ecs->current_symtab);
1127
1128 /* Load infrun state for the new thread. */
1129 load_infrun_state (ecs->ptid, &prev_pc,
1130 &trap_expected, &step_resume_breakpoint,
1131 &step_range_start,
1132 &step_range_end, &step_frame_id,
1133 &ecs->handling_longjmp, &ecs->another_trap,
1134 &ecs->stepping_through_solib_after_catch,
1135 &ecs->stepping_through_solib_catchpoints,
1136 &ecs->current_line, &ecs->current_symtab);
1137 }
1138 inferior_ptid = ecs->ptid;
1139 }
1140
1141 static void
1142 adjust_pc_after_break (struct execution_control_state *ecs)
1143 {
1144 CORE_ADDR breakpoint_pc;
1145
1146 /* If this target does not decrement the PC after breakpoints, then
1147 we have nothing to do. */
1148 if (DECR_PC_AFTER_BREAK == 0)
1149 return;
1150
1151 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1152 we aren't, just return.
1153
1154 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1155 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1156 by software breakpoints should be handled through the normal breakpoint
1157 layer.
1158
1159 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1160 different signals (SIGILL or SIGEMT for instance), but it is less
1161 clear where the PC is pointing afterwards. It may not match
1162 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1163 these signals at breakpoints (the code has been in GDB since at least
1164 1992) so I can not guess how to handle them here.
1165
1166 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1167 would have the PC after hitting a watchpoint affected by
1168 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1169 in GDB history, and it seems unlikely to be correct, so
1170 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1171
1172 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1173 return;
1174
1175 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1176 return;
1177
1178 /* Find the location where (if we've hit a breakpoint) the
1179 breakpoint would be. */
1180 breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1181
1182 if (SOFTWARE_SINGLE_STEP_P ())
1183 {
1184 /* When using software single-step, a SIGTRAP can only indicate
1185 an inserted breakpoint. This actually makes things
1186 easier. */
1187 if (singlestep_breakpoints_inserted_p)
1188 /* When software single stepping, the instruction at [prev_pc]
1189 is never a breakpoint, but the instruction following
1190 [prev_pc] (in program execution order) always is. Assume
1191 that following instruction was reached and hence a software
1192 breakpoint was hit. */
1193 write_pc_pid (breakpoint_pc, ecs->ptid);
1194 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1195 /* The inferior was free running (i.e., no single-step
1196 breakpoints inserted) and it hit a software breakpoint. */
1197 write_pc_pid (breakpoint_pc, ecs->ptid);
1198 }
1199 else
1200 {
1201 /* When using hardware single-step, a SIGTRAP is reported for
1202 both a completed single-step and a software breakpoint. Need
1203 to differentiate between the two as the latter needs
1204 adjusting but the former does not. */
1205 if (currently_stepping (ecs))
1206 {
1207 if (prev_pc == breakpoint_pc
1208 && software_breakpoint_inserted_here_p (breakpoint_pc))
1209 /* Hardware single-stepped a software breakpoint (as
1210 occures when the inferior is resumed with PC pointing
1211 at not-yet-hit software breakpoint). Since the
1212 breakpoint really is executed, the inferior needs to be
1213 backed up to the breakpoint address. */
1214 write_pc_pid (breakpoint_pc, ecs->ptid);
1215 }
1216 else
1217 {
1218 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1219 /* The inferior was free running (i.e., no hardware
1220 single-step and no possibility of a false SIGTRAP) and
1221 hit a software breakpoint. */
1222 write_pc_pid (breakpoint_pc, ecs->ptid);
1223 }
1224 }
1225 }
1226
1227 /* Given an execution control state that has been freshly filled in
1228 by an event from the inferior, figure out what it means and take
1229 appropriate action. */
1230
1231 int stepped_after_stopped_by_watchpoint;
1232
1233 void
1234 handle_inferior_event (struct execution_control_state *ecs)
1235 {
1236 /* NOTE: cagney/2003-03-28: If you're looking at this code and
1237 thinking that the variable stepped_after_stopped_by_watchpoint
1238 isn't used, then you're wrong! The macro STOPPED_BY_WATCHPOINT,
1239 defined in the file "config/pa/nm-hppah.h", accesses the variable
1240 indirectly. Mutter something rude about the HP merge. */
1241 int sw_single_step_trap_p = 0;
1242 int stopped_by_watchpoint = -1; /* Mark as unknown. */
1243
1244 /* Cache the last pid/waitstatus. */
1245 target_last_wait_ptid = ecs->ptid;
1246 target_last_waitstatus = *ecs->wp;
1247
1248 adjust_pc_after_break (ecs);
1249
1250 switch (ecs->infwait_state)
1251 {
1252 case infwait_thread_hop_state:
1253 if (debug_infrun)
1254 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1255 /* Cancel the waiton_ptid. */
1256 ecs->waiton_ptid = pid_to_ptid (-1);
1257 break;
1258
1259 case infwait_normal_state:
1260 if (debug_infrun)
1261 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1262 stepped_after_stopped_by_watchpoint = 0;
1263 break;
1264
1265 case infwait_nonstep_watch_state:
1266 if (debug_infrun)
1267 fprintf_unfiltered (gdb_stdlog,
1268 "infrun: infwait_nonstep_watch_state\n");
1269 insert_breakpoints ();
1270
1271 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1272 handle things like signals arriving and other things happening
1273 in combination correctly? */
1274 stepped_after_stopped_by_watchpoint = 1;
1275 break;
1276
1277 default:
1278 internal_error (__FILE__, __LINE__, _("bad switch"));
1279 }
1280 ecs->infwait_state = infwait_normal_state;
1281
1282 flush_cached_frames ();
1283
1284 /* If it's a new process, add it to the thread database */
1285
1286 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1287 && !ptid_equal (ecs->ptid, minus_one_ptid)
1288 && !in_thread_list (ecs->ptid));
1289
1290 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1291 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1292 {
1293 add_thread (ecs->ptid);
1294
1295 ui_out_text (uiout, "[New ");
1296 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1297 ui_out_text (uiout, "]\n");
1298 }
1299
1300 switch (ecs->ws.kind)
1301 {
1302 case TARGET_WAITKIND_LOADED:
1303 if (debug_infrun)
1304 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1305 /* Ignore gracefully during startup of the inferior, as it
1306 might be the shell which has just loaded some objects,
1307 otherwise add the symbols for the newly loaded objects. */
1308 #ifdef SOLIB_ADD
1309 if (stop_soon == NO_STOP_QUIETLY)
1310 {
1311 /* Remove breakpoints, SOLIB_ADD might adjust
1312 breakpoint addresses via breakpoint_re_set. */
1313 if (breakpoints_inserted)
1314 remove_breakpoints ();
1315
1316 /* Check for any newly added shared libraries if we're
1317 supposed to be adding them automatically. Switch
1318 terminal for any messages produced by
1319 breakpoint_re_set. */
1320 target_terminal_ours_for_output ();
1321 /* NOTE: cagney/2003-11-25: Make certain that the target
1322 stack's section table is kept up-to-date. Architectures,
1323 (e.g., PPC64), use the section table to perform
1324 operations such as address => section name and hence
1325 require the table to contain all sections (including
1326 those found in shared libraries). */
1327 /* NOTE: cagney/2003-11-25: Pass current_target and not
1328 exec_ops to SOLIB_ADD. This is because current GDB is
1329 only tooled to propagate section_table changes out from
1330 the "current_target" (see target_resize_to_sections), and
1331 not up from the exec stratum. This, of course, isn't
1332 right. "infrun.c" should only interact with the
1333 exec/process stratum, instead relying on the target stack
1334 to propagate relevant changes (stop, section table
1335 changed, ...) up to other layers. */
1336 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1337 target_terminal_inferior ();
1338
1339 /* Reinsert breakpoints and continue. */
1340 if (breakpoints_inserted)
1341 insert_breakpoints ();
1342 }
1343 #endif
1344 resume (0, TARGET_SIGNAL_0);
1345 prepare_to_wait (ecs);
1346 return;
1347
1348 case TARGET_WAITKIND_SPURIOUS:
1349 if (debug_infrun)
1350 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1351 resume (0, TARGET_SIGNAL_0);
1352 prepare_to_wait (ecs);
1353 return;
1354
1355 case TARGET_WAITKIND_EXITED:
1356 if (debug_infrun)
1357 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1358 target_terminal_ours (); /* Must do this before mourn anyway */
1359 print_stop_reason (EXITED, ecs->ws.value.integer);
1360
1361 /* Record the exit code in the convenience variable $_exitcode, so
1362 that the user can inspect this again later. */
1363 set_internalvar (lookup_internalvar ("_exitcode"),
1364 value_from_longest (builtin_type_int,
1365 (LONGEST) ecs->ws.value.integer));
1366 gdb_flush (gdb_stdout);
1367 target_mourn_inferior ();
1368 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1369 stop_print_frame = 0;
1370 stop_stepping (ecs);
1371 return;
1372
1373 case TARGET_WAITKIND_SIGNALLED:
1374 if (debug_infrun)
1375 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1376 stop_print_frame = 0;
1377 stop_signal = ecs->ws.value.sig;
1378 target_terminal_ours (); /* Must do this before mourn anyway */
1379
1380 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1381 reach here unless the inferior is dead. However, for years
1382 target_kill() was called here, which hints that fatal signals aren't
1383 really fatal on some systems. If that's true, then some changes
1384 may be needed. */
1385 target_mourn_inferior ();
1386
1387 print_stop_reason (SIGNAL_EXITED, stop_signal);
1388 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1389 stop_stepping (ecs);
1390 return;
1391
1392 /* The following are the only cases in which we keep going;
1393 the above cases end in a continue or goto. */
1394 case TARGET_WAITKIND_FORKED:
1395 case TARGET_WAITKIND_VFORKED:
1396 if (debug_infrun)
1397 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1398 stop_signal = TARGET_SIGNAL_TRAP;
1399 pending_follow.kind = ecs->ws.kind;
1400
1401 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1402 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1403
1404 stop_pc = read_pc ();
1405
1406 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1407
1408 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1409
1410 /* If no catchpoint triggered for this, then keep going. */
1411 if (ecs->random_signal)
1412 {
1413 stop_signal = TARGET_SIGNAL_0;
1414 keep_going (ecs);
1415 return;
1416 }
1417 goto process_event_stop_test;
1418
1419 case TARGET_WAITKIND_EXECD:
1420 if (debug_infrun)
1421 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECED\n");
1422 stop_signal = TARGET_SIGNAL_TRAP;
1423
1424 /* NOTE drow/2002-12-05: This code should be pushed down into the
1425 target_wait function. Until then following vfork on HP/UX 10.20
1426 is probably broken by this. Of course, it's broken anyway. */
1427 /* Is this a target which reports multiple exec events per actual
1428 call to exec()? (HP-UX using ptrace does, for example.) If so,
1429 ignore all but the last one. Just resume the exec'r, and wait
1430 for the next exec event. */
1431 if (inferior_ignoring_leading_exec_events)
1432 {
1433 inferior_ignoring_leading_exec_events--;
1434 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1435 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1436 parent_pid);
1437 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1438 prepare_to_wait (ecs);
1439 return;
1440 }
1441 inferior_ignoring_leading_exec_events =
1442 target_reported_exec_events_per_exec_call () - 1;
1443
1444 pending_follow.execd_pathname =
1445 savestring (ecs->ws.value.execd_pathname,
1446 strlen (ecs->ws.value.execd_pathname));
1447
1448 /* This causes the eventpoints and symbol table to be reset. Must
1449 do this now, before trying to determine whether to stop. */
1450 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1451 xfree (pending_follow.execd_pathname);
1452
1453 stop_pc = read_pc_pid (ecs->ptid);
1454 ecs->saved_inferior_ptid = inferior_ptid;
1455 inferior_ptid = ecs->ptid;
1456
1457 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1458
1459 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1460 inferior_ptid = ecs->saved_inferior_ptid;
1461
1462 /* If no catchpoint triggered for this, then keep going. */
1463 if (ecs->random_signal)
1464 {
1465 stop_signal = TARGET_SIGNAL_0;
1466 keep_going (ecs);
1467 return;
1468 }
1469 goto process_event_stop_test;
1470
1471 /* Be careful not to try to gather much state about a thread
1472 that's in a syscall. It's frequently a losing proposition. */
1473 case TARGET_WAITKIND_SYSCALL_ENTRY:
1474 if (debug_infrun)
1475 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1476 resume (0, TARGET_SIGNAL_0);
1477 prepare_to_wait (ecs);
1478 return;
1479
1480 /* Before examining the threads further, step this thread to
1481 get it entirely out of the syscall. (We get notice of the
1482 event when the thread is just on the verge of exiting a
1483 syscall. Stepping one instruction seems to get it back
1484 into user code.) */
1485 case TARGET_WAITKIND_SYSCALL_RETURN:
1486 if (debug_infrun)
1487 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1488 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1489 prepare_to_wait (ecs);
1490 return;
1491
1492 case TARGET_WAITKIND_STOPPED:
1493 if (debug_infrun)
1494 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1495 stop_signal = ecs->ws.value.sig;
1496 break;
1497
1498 /* We had an event in the inferior, but we are not interested
1499 in handling it at this level. The lower layers have already
1500 done what needs to be done, if anything.
1501
1502 One of the possible circumstances for this is when the
1503 inferior produces output for the console. The inferior has
1504 not stopped, and we are ignoring the event. Another possible
1505 circumstance is any event which the lower level knows will be
1506 reported multiple times without an intervening resume. */
1507 case TARGET_WAITKIND_IGNORE:
1508 if (debug_infrun)
1509 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1510 prepare_to_wait (ecs);
1511 return;
1512 }
1513
1514 /* We may want to consider not doing a resume here in order to give
1515 the user a chance to play with the new thread. It might be good
1516 to make that a user-settable option. */
1517
1518 /* At this point, all threads are stopped (happens automatically in
1519 either the OS or the native code). Therefore we need to continue
1520 all threads in order to make progress. */
1521 if (ecs->new_thread_event)
1522 {
1523 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1524 prepare_to_wait (ecs);
1525 return;
1526 }
1527
1528 stop_pc = read_pc_pid (ecs->ptid);
1529
1530 if (debug_infrun)
1531 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1532
1533 if (stepping_past_singlestep_breakpoint)
1534 {
1535 gdb_assert (SOFTWARE_SINGLE_STEP_P ()
1536 && singlestep_breakpoints_inserted_p);
1537 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1538 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1539
1540 stepping_past_singlestep_breakpoint = 0;
1541
1542 /* We've either finished single-stepping past the single-step
1543 breakpoint, or stopped for some other reason. It would be nice if
1544 we could tell, but we can't reliably. */
1545 if (stop_signal == TARGET_SIGNAL_TRAP)
1546 {
1547 if (debug_infrun)
1548 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
1549 /* Pull the single step breakpoints out of the target. */
1550 SOFTWARE_SINGLE_STEP (0, 0);
1551 singlestep_breakpoints_inserted_p = 0;
1552
1553 ecs->random_signal = 0;
1554
1555 ecs->ptid = saved_singlestep_ptid;
1556 context_switch (ecs);
1557 if (deprecated_context_hook)
1558 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1559
1560 resume (1, TARGET_SIGNAL_0);
1561 prepare_to_wait (ecs);
1562 return;
1563 }
1564 }
1565
1566 stepping_past_singlestep_breakpoint = 0;
1567
1568 /* See if a thread hit a thread-specific breakpoint that was meant for
1569 another thread. If so, then step that thread past the breakpoint,
1570 and continue it. */
1571
1572 if (stop_signal == TARGET_SIGNAL_TRAP)
1573 {
1574 int thread_hop_needed = 0;
1575
1576 /* Check if a regular breakpoint has been hit before checking
1577 for a potential single step breakpoint. Otherwise, GDB will
1578 not see this breakpoint hit when stepping onto breakpoints. */
1579 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
1580 {
1581 ecs->random_signal = 0;
1582 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1583 thread_hop_needed = 1;
1584 }
1585 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1586 {
1587 ecs->random_signal = 0;
1588 /* The call to in_thread_list is necessary because PTIDs sometimes
1589 change when we go from single-threaded to multi-threaded. If
1590 the singlestep_ptid is still in the list, assume that it is
1591 really different from ecs->ptid. */
1592 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1593 && in_thread_list (singlestep_ptid))
1594 {
1595 thread_hop_needed = 1;
1596 stepping_past_singlestep_breakpoint = 1;
1597 saved_singlestep_ptid = singlestep_ptid;
1598 }
1599 }
1600
1601 if (thread_hop_needed)
1602 {
1603 int remove_status;
1604
1605 if (debug_infrun)
1606 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
1607
1608 /* Saw a breakpoint, but it was hit by the wrong thread.
1609 Just continue. */
1610
1611 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1612 {
1613 /* Pull the single step breakpoints out of the target. */
1614 SOFTWARE_SINGLE_STEP (0, 0);
1615 singlestep_breakpoints_inserted_p = 0;
1616 }
1617
1618 remove_status = remove_breakpoints ();
1619 /* Did we fail to remove breakpoints? If so, try
1620 to set the PC past the bp. (There's at least
1621 one situation in which we can fail to remove
1622 the bp's: On HP-UX's that use ttrace, we can't
1623 change the address space of a vforking child
1624 process until the child exits (well, okay, not
1625 then either :-) or execs. */
1626 if (remove_status != 0)
1627 {
1628 /* FIXME! This is obviously non-portable! */
1629 write_pc_pid (stop_pc + 4, ecs->ptid);
1630 /* We need to restart all the threads now,
1631 * unles we're running in scheduler-locked mode.
1632 * Use currently_stepping to determine whether to
1633 * step or continue.
1634 */
1635 /* FIXME MVS: is there any reason not to call resume()? */
1636 if (scheduler_mode == schedlock_on)
1637 target_resume (ecs->ptid,
1638 currently_stepping (ecs), TARGET_SIGNAL_0);
1639 else
1640 target_resume (RESUME_ALL,
1641 currently_stepping (ecs), TARGET_SIGNAL_0);
1642 prepare_to_wait (ecs);
1643 return;
1644 }
1645 else
1646 { /* Single step */
1647 breakpoints_inserted = 0;
1648 if (!ptid_equal (inferior_ptid, ecs->ptid))
1649 context_switch (ecs);
1650 ecs->waiton_ptid = ecs->ptid;
1651 ecs->wp = &(ecs->ws);
1652 ecs->another_trap = 1;
1653
1654 ecs->infwait_state = infwait_thread_hop_state;
1655 keep_going (ecs);
1656 registers_changed ();
1657 return;
1658 }
1659 }
1660 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1661 {
1662 sw_single_step_trap_p = 1;
1663 ecs->random_signal = 0;
1664 }
1665 }
1666 else
1667 ecs->random_signal = 1;
1668
1669 /* See if something interesting happened to the non-current thread. If
1670 so, then switch to that thread. */
1671 if (!ptid_equal (ecs->ptid, inferior_ptid))
1672 {
1673 if (debug_infrun)
1674 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
1675
1676 context_switch (ecs);
1677
1678 if (deprecated_context_hook)
1679 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1680
1681 flush_cached_frames ();
1682 }
1683
1684 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1685 {
1686 /* Pull the single step breakpoints out of the target. */
1687 SOFTWARE_SINGLE_STEP (0, 0);
1688 singlestep_breakpoints_inserted_p = 0;
1689 }
1690
1691 /* It may not be necessary to disable the watchpoint to stop over
1692 it. For example, the PA can (with some kernel cooperation)
1693 single step over a watchpoint without disabling the watchpoint. */
1694 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1695 {
1696 if (debug_infrun)
1697 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1698 resume (1, 0);
1699 prepare_to_wait (ecs);
1700 return;
1701 }
1702
1703 /* It is far more common to need to disable a watchpoint to step
1704 the inferior over it. FIXME. What else might a debug
1705 register or page protection watchpoint scheme need here? */
1706 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1707 {
1708 /* At this point, we are stopped at an instruction which has
1709 attempted to write to a piece of memory under control of
1710 a watchpoint. The instruction hasn't actually executed
1711 yet. If we were to evaluate the watchpoint expression
1712 now, we would get the old value, and therefore no change
1713 would seem to have occurred.
1714
1715 In order to make watchpoints work `right', we really need
1716 to complete the memory write, and then evaluate the
1717 watchpoint expression. The following code does that by
1718 removing the watchpoint (actually, all watchpoints and
1719 breakpoints), single-stepping the target, re-inserting
1720 watchpoints, and then falling through to let normal
1721 single-step processing handle proceed. Since this
1722 includes evaluating watchpoints, things will come to a
1723 stop in the correct manner. */
1724
1725 if (debug_infrun)
1726 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1727 remove_breakpoints ();
1728 registers_changed ();
1729 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1730
1731 ecs->waiton_ptid = ecs->ptid;
1732 ecs->wp = &(ecs->ws);
1733 ecs->infwait_state = infwait_nonstep_watch_state;
1734 prepare_to_wait (ecs);
1735 return;
1736 }
1737
1738 /* It may be possible to simply continue after a watchpoint. */
1739 if (HAVE_CONTINUABLE_WATCHPOINT)
1740 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
1741
1742 ecs->stop_func_start = 0;
1743 ecs->stop_func_end = 0;
1744 ecs->stop_func_name = 0;
1745 /* Don't care about return value; stop_func_start and stop_func_name
1746 will both be 0 if it doesn't work. */
1747 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1748 &ecs->stop_func_start, &ecs->stop_func_end);
1749 ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET;
1750 ecs->another_trap = 0;
1751 bpstat_clear (&stop_bpstat);
1752 stop_step = 0;
1753 stop_stack_dummy = 0;
1754 stop_print_frame = 1;
1755 ecs->random_signal = 0;
1756 stopped_by_random_signal = 0;
1757 breakpoints_failed = 0;
1758
1759 if (stop_signal == TARGET_SIGNAL_TRAP
1760 && trap_expected
1761 && gdbarch_single_step_through_delay_p (current_gdbarch)
1762 && currently_stepping (ecs))
1763 {
1764 /* We're trying to step of a breakpoint. Turns out that we're
1765 also on an instruction that needs to be stepped multiple
1766 times before it's been fully executing. E.g., architectures
1767 with a delay slot. It needs to be stepped twice, once for
1768 the instruction and once for the delay slot. */
1769 int step_through_delay
1770 = gdbarch_single_step_through_delay (current_gdbarch,
1771 get_current_frame ());
1772 if (debug_infrun && step_through_delay)
1773 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
1774 if (step_range_end == 0 && step_through_delay)
1775 {
1776 /* The user issued a continue when stopped at a breakpoint.
1777 Set up for another trap and get out of here. */
1778 ecs->another_trap = 1;
1779 keep_going (ecs);
1780 return;
1781 }
1782 else if (step_through_delay)
1783 {
1784 /* The user issued a step when stopped at a breakpoint.
1785 Maybe we should stop, maybe we should not - the delay
1786 slot *might* correspond to a line of source. In any
1787 case, don't decide that here, just set ecs->another_trap,
1788 making sure we single-step again before breakpoints are
1789 re-inserted. */
1790 ecs->another_trap = 1;
1791 }
1792 }
1793
1794 /* Look at the cause of the stop, and decide what to do.
1795 The alternatives are:
1796 1) break; to really stop and return to the debugger,
1797 2) drop through to start up again
1798 (set ecs->another_trap to 1 to single step once)
1799 3) set ecs->random_signal to 1, and the decision between 1 and 2
1800 will be made according to the signal handling tables. */
1801
1802 /* First, distinguish signals caused by the debugger from signals
1803 that have to do with the program's own actions. Note that
1804 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1805 on the operating system version. Here we detect when a SIGILL or
1806 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1807 something similar for SIGSEGV, since a SIGSEGV will be generated
1808 when we're trying to execute a breakpoint instruction on a
1809 non-executable stack. This happens for call dummy breakpoints
1810 for architectures like SPARC that place call dummies on the
1811 stack. */
1812
1813 if (stop_signal == TARGET_SIGNAL_TRAP
1814 || (breakpoints_inserted
1815 && (stop_signal == TARGET_SIGNAL_ILL
1816 || stop_signal == TARGET_SIGNAL_SEGV
1817 || stop_signal == TARGET_SIGNAL_EMT))
1818 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1819 {
1820 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1821 {
1822 if (debug_infrun)
1823 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
1824 stop_print_frame = 0;
1825 stop_stepping (ecs);
1826 return;
1827 }
1828
1829 /* This is originated from start_remote(), start_inferior() and
1830 shared libraries hook functions. */
1831 if (stop_soon == STOP_QUIETLY)
1832 {
1833 if (debug_infrun)
1834 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
1835 stop_stepping (ecs);
1836 return;
1837 }
1838
1839 /* This originates from attach_command(). We need to overwrite
1840 the stop_signal here, because some kernels don't ignore a
1841 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1842 See more comments in inferior.h. */
1843 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1844 {
1845 stop_stepping (ecs);
1846 if (stop_signal == TARGET_SIGNAL_STOP)
1847 stop_signal = TARGET_SIGNAL_0;
1848 return;
1849 }
1850
1851 /* Don't even think about breakpoints if just proceeded over a
1852 breakpoint. */
1853 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
1854 {
1855 if (debug_infrun)
1856 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
1857 bpstat_clear (&stop_bpstat);
1858 }
1859 else
1860 {
1861 /* See if there is a breakpoint at the current PC. */
1862 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
1863 stopped_by_watchpoint);
1864
1865 /* Following in case break condition called a
1866 function. */
1867 stop_print_frame = 1;
1868 }
1869
1870 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1871 at one stage in the past included checks for an inferior
1872 function call's call dummy's return breakpoint. The original
1873 comment, that went with the test, read:
1874
1875 ``End of a stack dummy. Some systems (e.g. Sony news) give
1876 another signal besides SIGTRAP, so check here as well as
1877 above.''
1878
1879 If someone ever tries to get get call dummys on a
1880 non-executable stack to work (where the target would stop
1881 with something like a SIGSEGV), then those tests might need
1882 to be re-instated. Given, however, that the tests were only
1883 enabled when momentary breakpoints were not being used, I
1884 suspect that it won't be the case.
1885
1886 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1887 be necessary for call dummies on a non-executable stack on
1888 SPARC. */
1889
1890 if (stop_signal == TARGET_SIGNAL_TRAP)
1891 ecs->random_signal
1892 = !(bpstat_explains_signal (stop_bpstat)
1893 || trap_expected
1894 || (step_range_end && step_resume_breakpoint == NULL));
1895 else
1896 {
1897 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1898 if (!ecs->random_signal)
1899 stop_signal = TARGET_SIGNAL_TRAP;
1900 }
1901 }
1902
1903 /* When we reach this point, we've pretty much decided
1904 that the reason for stopping must've been a random
1905 (unexpected) signal. */
1906
1907 else
1908 ecs->random_signal = 1;
1909
1910 process_event_stop_test:
1911 /* For the program's own signals, act according to
1912 the signal handling tables. */
1913
1914 if (ecs->random_signal)
1915 {
1916 /* Signal not for debugging purposes. */
1917 int printed = 0;
1918
1919 if (debug_infrun)
1920 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
1921
1922 stopped_by_random_signal = 1;
1923
1924 if (signal_print[stop_signal])
1925 {
1926 printed = 1;
1927 target_terminal_ours_for_output ();
1928 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1929 }
1930 if (signal_stop[stop_signal])
1931 {
1932 stop_stepping (ecs);
1933 return;
1934 }
1935 /* If not going to stop, give terminal back
1936 if we took it away. */
1937 else if (printed)
1938 target_terminal_inferior ();
1939
1940 /* Clear the signal if it should not be passed. */
1941 if (signal_program[stop_signal] == 0)
1942 stop_signal = TARGET_SIGNAL_0;
1943
1944 if (prev_pc == read_pc ()
1945 && !breakpoints_inserted
1946 && breakpoint_here_p (read_pc ())
1947 && step_resume_breakpoint == NULL)
1948 {
1949 /* We were just starting a new sequence, attempting to
1950 single-step off of a breakpoint and expecting a SIGTRAP.
1951 Intead this signal arrives. This signal will take us out
1952 of the stepping range so GDB needs to remember to, when
1953 the signal handler returns, resume stepping off that
1954 breakpoint. */
1955 /* To simplify things, "continue" is forced to use the same
1956 code paths as single-step - set a breakpoint at the
1957 signal return address and then, once hit, step off that
1958 breakpoint. */
1959 insert_step_resume_breakpoint_at_frame (get_current_frame ());
1960 ecs->step_after_step_resume_breakpoint = 1;
1961 keep_going (ecs);
1962 return;
1963 }
1964
1965 if (step_range_end != 0
1966 && stop_signal != TARGET_SIGNAL_0
1967 && stop_pc >= step_range_start && stop_pc < step_range_end
1968 && frame_id_eq (get_frame_id (get_current_frame ()),
1969 step_frame_id)
1970 && step_resume_breakpoint == NULL)
1971 {
1972 /* The inferior is about to take a signal that will take it
1973 out of the single step range. Set a breakpoint at the
1974 current PC (which is presumably where the signal handler
1975 will eventually return) and then allow the inferior to
1976 run free.
1977
1978 Note that this is only needed for a signal delivered
1979 while in the single-step range. Nested signals aren't a
1980 problem as they eventually all return. */
1981 insert_step_resume_breakpoint_at_frame (get_current_frame ());
1982 keep_going (ecs);
1983 return;
1984 }
1985
1986 /* Note: step_resume_breakpoint may be non-NULL. This occures
1987 when either there's a nested signal, or when there's a
1988 pending signal enabled just as the signal handler returns
1989 (leaving the inferior at the step-resume-breakpoint without
1990 actually executing it). Either way continue until the
1991 breakpoint is really hit. */
1992 keep_going (ecs);
1993 return;
1994 }
1995
1996 /* Handle cases caused by hitting a breakpoint. */
1997 {
1998 CORE_ADDR jmp_buf_pc;
1999 struct bpstat_what what;
2000
2001 what = bpstat_what (stop_bpstat);
2002
2003 if (what.call_dummy)
2004 {
2005 stop_stack_dummy = 1;
2006 }
2007
2008 switch (what.main_action)
2009 {
2010 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2011 /* If we hit the breakpoint at longjmp, disable it for the
2012 duration of this command. Then, install a temporary
2013 breakpoint at the target of the jmp_buf. */
2014 if (debug_infrun)
2015 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_SET_LONGJMP_RESUME\n");
2016 disable_longjmp_breakpoint ();
2017 remove_breakpoints ();
2018 breakpoints_inserted = 0;
2019 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
2020 {
2021 keep_going (ecs);
2022 return;
2023 }
2024
2025 /* Need to blow away step-resume breakpoint, as it
2026 interferes with us */
2027 if (step_resume_breakpoint != NULL)
2028 {
2029 delete_step_resume_breakpoint (&step_resume_breakpoint);
2030 }
2031
2032 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2033 ecs->handling_longjmp = 1; /* FIXME */
2034 keep_going (ecs);
2035 return;
2036
2037 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2038 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2039 if (debug_infrun)
2040 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_CLEAR_LONGJMP_RESUME\n");
2041 remove_breakpoints ();
2042 breakpoints_inserted = 0;
2043 disable_longjmp_breakpoint ();
2044 ecs->handling_longjmp = 0; /* FIXME */
2045 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2046 break;
2047 /* else fallthrough */
2048
2049 case BPSTAT_WHAT_SINGLE:
2050 if (debug_infrun)
2051 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_SINGLE\n");
2052 if (breakpoints_inserted)
2053 {
2054 remove_breakpoints ();
2055 }
2056 breakpoints_inserted = 0;
2057 ecs->another_trap = 1;
2058 /* Still need to check other stuff, at least the case
2059 where we are stepping and step out of the right range. */
2060 break;
2061
2062 case BPSTAT_WHAT_STOP_NOISY:
2063 if (debug_infrun)
2064 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_STOP_NOISY\n");
2065 stop_print_frame = 1;
2066
2067 /* We are about to nuke the step_resume_breakpointt via the
2068 cleanup chain, so no need to worry about it here. */
2069
2070 stop_stepping (ecs);
2071 return;
2072
2073 case BPSTAT_WHAT_STOP_SILENT:
2074 if (debug_infrun)
2075 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_STOP_SILENT\n");
2076 stop_print_frame = 0;
2077
2078 /* We are about to nuke the step_resume_breakpoin via the
2079 cleanup chain, so no need to worry about it here. */
2080
2081 stop_stepping (ecs);
2082 return;
2083
2084 case BPSTAT_WHAT_STEP_RESUME:
2085 /* This proably demands a more elegant solution, but, yeah
2086 right...
2087
2088 This function's use of the simple variable
2089 step_resume_breakpoint doesn't seem to accomodate
2090 simultaneously active step-resume bp's, although the
2091 breakpoint list certainly can.
2092
2093 If we reach here and step_resume_breakpoint is already
2094 NULL, then apparently we have multiple active
2095 step-resume bp's. We'll just delete the breakpoint we
2096 stopped at, and carry on.
2097
2098 Correction: what the code currently does is delete a
2099 step-resume bp, but it makes no effort to ensure that
2100 the one deleted is the one currently stopped at. MVS */
2101
2102 if (debug_infrun)
2103 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_STEP_RESUME\n");
2104
2105 if (step_resume_breakpoint == NULL)
2106 {
2107 step_resume_breakpoint =
2108 bpstat_find_step_resume_breakpoint (stop_bpstat);
2109 }
2110 delete_step_resume_breakpoint (&step_resume_breakpoint);
2111 if (ecs->step_after_step_resume_breakpoint)
2112 {
2113 /* Back when the step-resume breakpoint was inserted, we
2114 were trying to single-step off a breakpoint. Go back
2115 to doing that. */
2116 ecs->step_after_step_resume_breakpoint = 0;
2117 remove_breakpoints ();
2118 breakpoints_inserted = 0;
2119 ecs->another_trap = 1;
2120 keep_going (ecs);
2121 return;
2122 }
2123 break;
2124
2125 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2126 if (debug_infrun)
2127 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_THROUGH_SIGTRAMP\n");
2128 /* If were waiting for a trap, hitting the step_resume_break
2129 doesn't count as getting it. */
2130 if (trap_expected)
2131 ecs->another_trap = 1;
2132 break;
2133
2134 case BPSTAT_WHAT_CHECK_SHLIBS:
2135 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2136 #ifdef SOLIB_ADD
2137 {
2138 if (debug_infrun)
2139 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_CHECK_SHLIBS\n");
2140 /* Remove breakpoints, we eventually want to step over the
2141 shlib event breakpoint, and SOLIB_ADD might adjust
2142 breakpoint addresses via breakpoint_re_set. */
2143 if (breakpoints_inserted)
2144 remove_breakpoints ();
2145 breakpoints_inserted = 0;
2146
2147 /* Check for any newly added shared libraries if we're
2148 supposed to be adding them automatically. Switch
2149 terminal for any messages produced by
2150 breakpoint_re_set. */
2151 target_terminal_ours_for_output ();
2152 /* NOTE: cagney/2003-11-25: Make certain that the target
2153 stack's section table is kept up-to-date. Architectures,
2154 (e.g., PPC64), use the section table to perform
2155 operations such as address => section name and hence
2156 require the table to contain all sections (including
2157 those found in shared libraries). */
2158 /* NOTE: cagney/2003-11-25: Pass current_target and not
2159 exec_ops to SOLIB_ADD. This is because current GDB is
2160 only tooled to propagate section_table changes out from
2161 the "current_target" (see target_resize_to_sections), and
2162 not up from the exec stratum. This, of course, isn't
2163 right. "infrun.c" should only interact with the
2164 exec/process stratum, instead relying on the target stack
2165 to propagate relevant changes (stop, section table
2166 changed, ...) up to other layers. */
2167 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2168 target_terminal_inferior ();
2169
2170 /* Try to reenable shared library breakpoints, additional
2171 code segments in shared libraries might be mapped in now. */
2172 re_enable_breakpoints_in_shlibs ();
2173
2174 /* If requested, stop when the dynamic linker notifies
2175 gdb of events. This allows the user to get control
2176 and place breakpoints in initializer routines for
2177 dynamically loaded objects (among other things). */
2178 if (stop_on_solib_events || stop_stack_dummy)
2179 {
2180 stop_stepping (ecs);
2181 return;
2182 }
2183
2184 /* If we stopped due to an explicit catchpoint, then the
2185 (see above) call to SOLIB_ADD pulled in any symbols
2186 from a newly-loaded library, if appropriate.
2187
2188 We do want the inferior to stop, but not where it is
2189 now, which is in the dynamic linker callback. Rather,
2190 we would like it stop in the user's program, just after
2191 the call that caused this catchpoint to trigger. That
2192 gives the user a more useful vantage from which to
2193 examine their program's state. */
2194 else if (what.main_action
2195 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2196 {
2197 /* ??rehrauer: If I could figure out how to get the
2198 right return PC from here, we could just set a temp
2199 breakpoint and resume. I'm not sure we can without
2200 cracking open the dld's shared libraries and sniffing
2201 their unwind tables and text/data ranges, and that's
2202 not a terribly portable notion.
2203
2204 Until that time, we must step the inferior out of the
2205 dld callback, and also out of the dld itself (and any
2206 code or stubs in libdld.sl, such as "shl_load" and
2207 friends) until we reach non-dld code. At that point,
2208 we can stop stepping. */
2209 bpstat_get_triggered_catchpoints (stop_bpstat,
2210 &ecs->
2211 stepping_through_solib_catchpoints);
2212 ecs->stepping_through_solib_after_catch = 1;
2213
2214 /* Be sure to lift all breakpoints, so the inferior does
2215 actually step past this point... */
2216 ecs->another_trap = 1;
2217 break;
2218 }
2219 else
2220 {
2221 /* We want to step over this breakpoint, then keep going. */
2222 ecs->another_trap = 1;
2223 break;
2224 }
2225 }
2226 #endif
2227 break;
2228
2229 case BPSTAT_WHAT_LAST:
2230 /* Not a real code, but listed here to shut up gcc -Wall. */
2231
2232 case BPSTAT_WHAT_KEEP_CHECKING:
2233 break;
2234 }
2235 }
2236
2237 /* We come here if we hit a breakpoint but should not
2238 stop for it. Possibly we also were stepping
2239 and should stop for that. So fall through and
2240 test for stepping. But, if not stepping,
2241 do not stop. */
2242
2243 /* Are we stepping to get the inferior out of the dynamic linker's
2244 hook (and possibly the dld itself) after catching a shlib
2245 event? */
2246 if (ecs->stepping_through_solib_after_catch)
2247 {
2248 #if defined(SOLIB_ADD)
2249 /* Have we reached our destination? If not, keep going. */
2250 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2251 {
2252 if (debug_infrun)
2253 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2254 ecs->another_trap = 1;
2255 keep_going (ecs);
2256 return;
2257 }
2258 #endif
2259 if (debug_infrun)
2260 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2261 /* Else, stop and report the catchpoint(s) whose triggering
2262 caused us to begin stepping. */
2263 ecs->stepping_through_solib_after_catch = 0;
2264 bpstat_clear (&stop_bpstat);
2265 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2266 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2267 stop_print_frame = 1;
2268 stop_stepping (ecs);
2269 return;
2270 }
2271
2272 if (step_resume_breakpoint)
2273 {
2274 if (debug_infrun)
2275 fprintf_unfiltered (gdb_stdlog, "infrun: step-resume breakpoint\n");
2276
2277 /* Having a step-resume breakpoint overrides anything
2278 else having to do with stepping commands until
2279 that breakpoint is reached. */
2280 keep_going (ecs);
2281 return;
2282 }
2283
2284 if (step_range_end == 0)
2285 {
2286 if (debug_infrun)
2287 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2288 /* Likewise if we aren't even stepping. */
2289 keep_going (ecs);
2290 return;
2291 }
2292
2293 /* If stepping through a line, keep going if still within it.
2294
2295 Note that step_range_end is the address of the first instruction
2296 beyond the step range, and NOT the address of the last instruction
2297 within it! */
2298 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2299 {
2300 if (debug_infrun)
2301 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2302 paddr_nz (step_range_start),
2303 paddr_nz (step_range_end));
2304 keep_going (ecs);
2305 return;
2306 }
2307
2308 /* We stepped out of the stepping range. */
2309
2310 /* If we are stepping at the source level and entered the runtime
2311 loader dynamic symbol resolution code, we keep on single stepping
2312 until we exit the run time loader code and reach the callee's
2313 address. */
2314 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2315 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc))
2316 {
2317 CORE_ADDR pc_after_resolver =
2318 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2319
2320 if (debug_infrun)
2321 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2322
2323 if (pc_after_resolver)
2324 {
2325 /* Set up a step-resume breakpoint at the address
2326 indicated by SKIP_SOLIB_RESOLVER. */
2327 struct symtab_and_line sr_sal;
2328 init_sal (&sr_sal);
2329 sr_sal.pc = pc_after_resolver;
2330
2331 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2332 }
2333
2334 keep_going (ecs);
2335 return;
2336 }
2337
2338 if (step_range_end != 1
2339 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2340 || step_over_calls == STEP_OVER_ALL)
2341 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2342 {
2343 if (debug_infrun)
2344 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2345 /* The inferior, while doing a "step" or "next", has ended up in
2346 a signal trampoline (either by a signal being delivered or by
2347 the signal handler returning). Just single-step until the
2348 inferior leaves the trampoline (either by calling the handler
2349 or returning). */
2350 keep_going (ecs);
2351 return;
2352 }
2353
2354 if (frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2355 {
2356 /* It's a subroutine call. */
2357 CORE_ADDR real_stop_pc;
2358
2359 if (debug_infrun)
2360 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2361
2362 if ((step_over_calls == STEP_OVER_NONE)
2363 || ((step_range_end == 1)
2364 && in_prologue (prev_pc, ecs->stop_func_start)))
2365 {
2366 /* I presume that step_over_calls is only 0 when we're
2367 supposed to be stepping at the assembly language level
2368 ("stepi"). Just stop. */
2369 /* Also, maybe we just did a "nexti" inside a prolog, so we
2370 thought it was a subroutine call but it was not. Stop as
2371 well. FENN */
2372 stop_step = 1;
2373 print_stop_reason (END_STEPPING_RANGE, 0);
2374 stop_stepping (ecs);
2375 return;
2376 }
2377
2378 if (step_over_calls == STEP_OVER_ALL)
2379 {
2380 /* We're doing a "next", set a breakpoint at callee's return
2381 address (the address at which the caller will
2382 resume). */
2383 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
2384 keep_going (ecs);
2385 return;
2386 }
2387
2388 /* If we are in a function call trampoline (a stub between the
2389 calling routine and the real function), locate the real
2390 function. That's what tells us (a) whether we want to step
2391 into it at all, and (b) what prologue we want to run to the
2392 end of, if we do step into it. */
2393 real_stop_pc = skip_language_trampoline (stop_pc);
2394 if (real_stop_pc == 0)
2395 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2396 if (real_stop_pc != 0)
2397 ecs->stop_func_start = real_stop_pc;
2398
2399 if (IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start))
2400 {
2401 struct symtab_and_line sr_sal;
2402 init_sal (&sr_sal);
2403 sr_sal.pc = ecs->stop_func_start;
2404
2405 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2406 keep_going (ecs);
2407 return;
2408 }
2409
2410 /* If we have line number information for the function we are
2411 thinking of stepping into, step into it.
2412
2413 If there are several symtabs at that PC (e.g. with include
2414 files), just want to know whether *any* of them have line
2415 numbers. find_pc_line handles this. */
2416 {
2417 struct symtab_and_line tmp_sal;
2418
2419 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2420 if (tmp_sal.line != 0)
2421 {
2422 step_into_function (ecs);
2423 return;
2424 }
2425 }
2426
2427 /* If we have no line number and the step-stop-if-no-debug is
2428 set, we stop the step so that the user has a chance to switch
2429 in assembly mode. */
2430 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2431 {
2432 stop_step = 1;
2433 print_stop_reason (END_STEPPING_RANGE, 0);
2434 stop_stepping (ecs);
2435 return;
2436 }
2437
2438 /* Set a breakpoint at callee's return address (the address at
2439 which the caller will resume). */
2440 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
2441 keep_going (ecs);
2442 return;
2443 }
2444
2445 /* If we're in the return path from a shared library trampoline,
2446 we want to proceed through the trampoline when stepping. */
2447 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2448 {
2449 /* Determine where this trampoline returns. */
2450 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2451
2452 if (debug_infrun)
2453 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
2454
2455 /* Only proceed through if we know where it's going. */
2456 if (real_stop_pc)
2457 {
2458 /* And put the step-breakpoint there and go until there. */
2459 struct symtab_and_line sr_sal;
2460
2461 init_sal (&sr_sal); /* initialize to zeroes */
2462 sr_sal.pc = real_stop_pc;
2463 sr_sal.section = find_pc_overlay (sr_sal.pc);
2464
2465 /* Do not specify what the fp should be when we stop since
2466 on some machines the prologue is where the new fp value
2467 is established. */
2468 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2469
2470 /* Restart without fiddling with the step ranges or
2471 other state. */
2472 keep_going (ecs);
2473 return;
2474 }
2475 }
2476
2477 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2478 the trampoline processing logic, however, there are some trampolines
2479 that have no names, so we should do trampoline handling first. */
2480 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2481 && ecs->stop_func_name == NULL)
2482 {
2483 if (debug_infrun)
2484 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
2485
2486 /* The inferior just stepped into, or returned to, an
2487 undebuggable function (where there is no symbol, not even a
2488 minimal symbol, corresponding to the address where the
2489 inferior stopped). Since we want to skip this kind of code,
2490 we keep going until the inferior returns from this
2491 function. */
2492 if (step_stop_if_no_debug)
2493 {
2494 /* If we have no line number and the step-stop-if-no-debug
2495 is set, we stop the step so that the user has a chance to
2496 switch in assembly mode. */
2497 stop_step = 1;
2498 print_stop_reason (END_STEPPING_RANGE, 0);
2499 stop_stepping (ecs);
2500 return;
2501 }
2502 else
2503 {
2504 /* Set a breakpoint at callee's return address (the address
2505 at which the caller will resume). */
2506 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
2507 keep_going (ecs);
2508 return;
2509 }
2510 }
2511
2512 if (step_range_end == 1)
2513 {
2514 /* It is stepi or nexti. We always want to stop stepping after
2515 one instruction. */
2516 if (debug_infrun)
2517 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
2518 stop_step = 1;
2519 print_stop_reason (END_STEPPING_RANGE, 0);
2520 stop_stepping (ecs);
2521 return;
2522 }
2523
2524 ecs->sal = find_pc_line (stop_pc, 0);
2525
2526 if (ecs->sal.line == 0)
2527 {
2528 /* We have no line number information. That means to stop
2529 stepping (does this always happen right after one instruction,
2530 when we do "s" in a function with no line numbers,
2531 or can this happen as a result of a return or longjmp?). */
2532 if (debug_infrun)
2533 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
2534 stop_step = 1;
2535 print_stop_reason (END_STEPPING_RANGE, 0);
2536 stop_stepping (ecs);
2537 return;
2538 }
2539
2540 if ((stop_pc == ecs->sal.pc)
2541 && (ecs->current_line != ecs->sal.line
2542 || ecs->current_symtab != ecs->sal.symtab))
2543 {
2544 /* We are at the start of a different line. So stop. Note that
2545 we don't stop if we step into the middle of a different line.
2546 That is said to make things like for (;;) statements work
2547 better. */
2548 if (debug_infrun)
2549 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
2550 stop_step = 1;
2551 print_stop_reason (END_STEPPING_RANGE, 0);
2552 stop_stepping (ecs);
2553 return;
2554 }
2555
2556 /* We aren't done stepping.
2557
2558 Optimize by setting the stepping range to the line.
2559 (We might not be in the original line, but if we entered a
2560 new line in mid-statement, we continue stepping. This makes
2561 things like for(;;) statements work better.) */
2562
2563 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2564 {
2565 /* If this is the last line of the function, don't keep stepping
2566 (it would probably step us out of the function).
2567 This is particularly necessary for a one-line function,
2568 in which after skipping the prologue we better stop even though
2569 we will be in mid-line. */
2570 if (debug_infrun)
2571 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
2572 stop_step = 1;
2573 print_stop_reason (END_STEPPING_RANGE, 0);
2574 stop_stepping (ecs);
2575 return;
2576 }
2577 step_range_start = ecs->sal.pc;
2578 step_range_end = ecs->sal.end;
2579 step_frame_id = get_frame_id (get_current_frame ());
2580 ecs->current_line = ecs->sal.line;
2581 ecs->current_symtab = ecs->sal.symtab;
2582
2583 /* In the case where we just stepped out of a function into the
2584 middle of a line of the caller, continue stepping, but
2585 step_frame_id must be modified to current frame */
2586 #if 0
2587 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2588 generous. It will trigger on things like a step into a frameless
2589 stackless leaf function. I think the logic should instead look
2590 at the unwound frame ID has that should give a more robust
2591 indication of what happened. */
2592 if (step - ID == current - ID)
2593 still stepping in same function;
2594 else if (step - ID == unwind (current - ID))
2595 stepped into a function;
2596 else
2597 stepped out of a function;
2598 /* Of course this assumes that the frame ID unwind code is robust
2599 and we're willing to introduce frame unwind logic into this
2600 function. Fortunately, those days are nearly upon us. */
2601 #endif
2602 {
2603 struct frame_id current_frame = get_frame_id (get_current_frame ());
2604 if (!(frame_id_inner (current_frame, step_frame_id)))
2605 step_frame_id = current_frame;
2606 }
2607
2608 if (debug_infrun)
2609 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
2610 keep_going (ecs);
2611 }
2612
2613 /* Are we in the middle of stepping? */
2614
2615 static int
2616 currently_stepping (struct execution_control_state *ecs)
2617 {
2618 return ((!ecs->handling_longjmp
2619 && ((step_range_end && step_resume_breakpoint == NULL)
2620 || trap_expected))
2621 || ecs->stepping_through_solib_after_catch
2622 || bpstat_should_step ());
2623 }
2624
2625 /* Subroutine call with source code we should not step over. Do step
2626 to the first line of code in it. */
2627
2628 static void
2629 step_into_function (struct execution_control_state *ecs)
2630 {
2631 struct symtab *s;
2632 struct symtab_and_line sr_sal;
2633
2634 s = find_pc_symtab (stop_pc);
2635 if (s && s->language != language_asm)
2636 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2637
2638 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2639 /* Use the step_resume_break to step until the end of the prologue,
2640 even if that involves jumps (as it seems to on the vax under
2641 4.2). */
2642 /* If the prologue ends in the middle of a source line, continue to
2643 the end of that source line (if it is still within the function).
2644 Otherwise, just go to end of prologue. */
2645 if (ecs->sal.end
2646 && ecs->sal.pc != ecs->stop_func_start
2647 && ecs->sal.end < ecs->stop_func_end)
2648 ecs->stop_func_start = ecs->sal.end;
2649
2650 /* Architectures which require breakpoint adjustment might not be able
2651 to place a breakpoint at the computed address. If so, the test
2652 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2653 ecs->stop_func_start to an address at which a breakpoint may be
2654 legitimately placed.
2655
2656 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2657 made, GDB will enter an infinite loop when stepping through
2658 optimized code consisting of VLIW instructions which contain
2659 subinstructions corresponding to different source lines. On
2660 FR-V, it's not permitted to place a breakpoint on any but the
2661 first subinstruction of a VLIW instruction. When a breakpoint is
2662 set, GDB will adjust the breakpoint address to the beginning of
2663 the VLIW instruction. Thus, we need to make the corresponding
2664 adjustment here when computing the stop address. */
2665
2666 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2667 {
2668 ecs->stop_func_start
2669 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2670 ecs->stop_func_start);
2671 }
2672
2673 if (ecs->stop_func_start == stop_pc)
2674 {
2675 /* We are already there: stop now. */
2676 stop_step = 1;
2677 print_stop_reason (END_STEPPING_RANGE, 0);
2678 stop_stepping (ecs);
2679 return;
2680 }
2681 else
2682 {
2683 /* Put the step-breakpoint there and go until there. */
2684 init_sal (&sr_sal); /* initialize to zeroes */
2685 sr_sal.pc = ecs->stop_func_start;
2686 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2687
2688 /* Do not specify what the fp should be when we stop since on
2689 some machines the prologue is where the new fp value is
2690 established. */
2691 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2692
2693 /* And make sure stepping stops right away then. */
2694 step_range_end = step_range_start;
2695 }
2696 keep_going (ecs);
2697 }
2698
2699 /* Insert a "step resume breakpoint" at SR_SAL with frame ID SR_ID.
2700 This is used to both functions and to skip over code. */
2701
2702 static void
2703 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2704 struct frame_id sr_id)
2705 {
2706 /* There should never be more than one step-resume breakpoint per
2707 thread, so we should never be setting a new
2708 step_resume_breakpoint when one is already active. */
2709 gdb_assert (step_resume_breakpoint == NULL);
2710 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2711 bp_step_resume);
2712 if (breakpoints_inserted)
2713 insert_breakpoints ();
2714 }
2715
2716 /* Insert a "step resume breakpoint" at RETURN_FRAME.pc. This is used
2717 to skip a function (next, skip-no-debug) or signal. It's assumed
2718 that the function/signal handler being skipped eventually returns
2719 to the breakpoint inserted at RETURN_FRAME.pc.
2720
2721 For the skip-function case, the function may have been reached by
2722 either single stepping a call / return / signal-return instruction,
2723 or by hitting a breakpoint. In all cases, the RETURN_FRAME belongs
2724 to the skip-function's caller.
2725
2726 For the signals case, this is called with the interrupted
2727 function's frame. The signal handler, when it returns, will resume
2728 the interrupted function at RETURN_FRAME.pc. */
2729
2730 static void
2731 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2732 {
2733 struct symtab_and_line sr_sal;
2734
2735 init_sal (&sr_sal); /* initialize to zeros */
2736
2737 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (return_frame));
2738 sr_sal.section = find_pc_overlay (sr_sal.pc);
2739
2740 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2741 }
2742
2743 static void
2744 stop_stepping (struct execution_control_state *ecs)
2745 {
2746 if (debug_infrun)
2747 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
2748
2749 /* Let callers know we don't want to wait for the inferior anymore. */
2750 ecs->wait_some_more = 0;
2751 }
2752
2753 /* This function handles various cases where we need to continue
2754 waiting for the inferior. */
2755 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2756
2757 static void
2758 keep_going (struct execution_control_state *ecs)
2759 {
2760 /* Save the pc before execution, to compare with pc after stop. */
2761 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2762
2763 /* If we did not do break;, it means we should keep running the
2764 inferior and not return to debugger. */
2765
2766 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2767 {
2768 /* We took a signal (which we are supposed to pass through to
2769 the inferior, else we'd have done a break above) and we
2770 haven't yet gotten our trap. Simply continue. */
2771 resume (currently_stepping (ecs), stop_signal);
2772 }
2773 else
2774 {
2775 /* Either the trap was not expected, but we are continuing
2776 anyway (the user asked that this signal be passed to the
2777 child)
2778 -- or --
2779 The signal was SIGTRAP, e.g. it was our signal, but we
2780 decided we should resume from it.
2781
2782 We're going to run this baby now! */
2783
2784 if (!breakpoints_inserted && !ecs->another_trap)
2785 {
2786 breakpoints_failed = insert_breakpoints ();
2787 if (breakpoints_failed)
2788 {
2789 stop_stepping (ecs);
2790 return;
2791 }
2792 breakpoints_inserted = 1;
2793 }
2794
2795 trap_expected = ecs->another_trap;
2796
2797 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2798 specifies that such a signal should be delivered to the
2799 target program).
2800
2801 Typically, this would occure when a user is debugging a
2802 target monitor on a simulator: the target monitor sets a
2803 breakpoint; the simulator encounters this break-point and
2804 halts the simulation handing control to GDB; GDB, noteing
2805 that the break-point isn't valid, returns control back to the
2806 simulator; the simulator then delivers the hardware
2807 equivalent of a SIGNAL_TRAP to the program being debugged. */
2808
2809 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2810 stop_signal = TARGET_SIGNAL_0;
2811
2812
2813 resume (currently_stepping (ecs), stop_signal);
2814 }
2815
2816 prepare_to_wait (ecs);
2817 }
2818
2819 /* This function normally comes after a resume, before
2820 handle_inferior_event exits. It takes care of any last bits of
2821 housekeeping, and sets the all-important wait_some_more flag. */
2822
2823 static void
2824 prepare_to_wait (struct execution_control_state *ecs)
2825 {
2826 if (debug_infrun)
2827 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
2828 if (ecs->infwait_state == infwait_normal_state)
2829 {
2830 overlay_cache_invalid = 1;
2831
2832 /* We have to invalidate the registers BEFORE calling
2833 target_wait because they can be loaded from the target while
2834 in target_wait. This makes remote debugging a bit more
2835 efficient for those targets that provide critical registers
2836 as part of their normal status mechanism. */
2837
2838 registers_changed ();
2839 ecs->waiton_ptid = pid_to_ptid (-1);
2840 ecs->wp = &(ecs->ws);
2841 }
2842 /* This is the old end of the while loop. Let everybody know we
2843 want to wait for the inferior some more and get called again
2844 soon. */
2845 ecs->wait_some_more = 1;
2846 }
2847
2848 /* Print why the inferior has stopped. We always print something when
2849 the inferior exits, or receives a signal. The rest of the cases are
2850 dealt with later on in normal_stop() and print_it_typical(). Ideally
2851 there should be a call to this function from handle_inferior_event()
2852 each time stop_stepping() is called.*/
2853 static void
2854 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2855 {
2856 switch (stop_reason)
2857 {
2858 case STOP_UNKNOWN:
2859 /* We don't deal with these cases from handle_inferior_event()
2860 yet. */
2861 break;
2862 case END_STEPPING_RANGE:
2863 /* We are done with a step/next/si/ni command. */
2864 /* For now print nothing. */
2865 /* Print a message only if not in the middle of doing a "step n"
2866 operation for n > 1 */
2867 if (!step_multi || !stop_step)
2868 if (ui_out_is_mi_like_p (uiout))
2869 ui_out_field_string (uiout, "reason", "end-stepping-range");
2870 break;
2871 case BREAKPOINT_HIT:
2872 /* We found a breakpoint. */
2873 /* For now print nothing. */
2874 break;
2875 case SIGNAL_EXITED:
2876 /* The inferior was terminated by a signal. */
2877 annotate_signalled ();
2878 if (ui_out_is_mi_like_p (uiout))
2879 ui_out_field_string (uiout, "reason", "exited-signalled");
2880 ui_out_text (uiout, "\nProgram terminated with signal ");
2881 annotate_signal_name ();
2882 ui_out_field_string (uiout, "signal-name",
2883 target_signal_to_name (stop_info));
2884 annotate_signal_name_end ();
2885 ui_out_text (uiout, ", ");
2886 annotate_signal_string ();
2887 ui_out_field_string (uiout, "signal-meaning",
2888 target_signal_to_string (stop_info));
2889 annotate_signal_string_end ();
2890 ui_out_text (uiout, ".\n");
2891 ui_out_text (uiout, "The program no longer exists.\n");
2892 break;
2893 case EXITED:
2894 /* The inferior program is finished. */
2895 annotate_exited (stop_info);
2896 if (stop_info)
2897 {
2898 if (ui_out_is_mi_like_p (uiout))
2899 ui_out_field_string (uiout, "reason", "exited");
2900 ui_out_text (uiout, "\nProgram exited with code ");
2901 ui_out_field_fmt (uiout, "exit-code", "0%o",
2902 (unsigned int) stop_info);
2903 ui_out_text (uiout, ".\n");
2904 }
2905 else
2906 {
2907 if (ui_out_is_mi_like_p (uiout))
2908 ui_out_field_string (uiout, "reason", "exited-normally");
2909 ui_out_text (uiout, "\nProgram exited normally.\n");
2910 }
2911 break;
2912 case SIGNAL_RECEIVED:
2913 /* Signal received. The signal table tells us to print about
2914 it. */
2915 annotate_signal ();
2916 ui_out_text (uiout, "\nProgram received signal ");
2917 annotate_signal_name ();
2918 if (ui_out_is_mi_like_p (uiout))
2919 ui_out_field_string (uiout, "reason", "signal-received");
2920 ui_out_field_string (uiout, "signal-name",
2921 target_signal_to_name (stop_info));
2922 annotate_signal_name_end ();
2923 ui_out_text (uiout, ", ");
2924 annotate_signal_string ();
2925 ui_out_field_string (uiout, "signal-meaning",
2926 target_signal_to_string (stop_info));
2927 annotate_signal_string_end ();
2928 ui_out_text (uiout, ".\n");
2929 break;
2930 default:
2931 internal_error (__FILE__, __LINE__,
2932 _("print_stop_reason: unrecognized enum value"));
2933 break;
2934 }
2935 }
2936 \f
2937
2938 /* Here to return control to GDB when the inferior stops for real.
2939 Print appropriate messages, remove breakpoints, give terminal our modes.
2940
2941 STOP_PRINT_FRAME nonzero means print the executing frame
2942 (pc, function, args, file, line number and line text).
2943 BREAKPOINTS_FAILED nonzero means stop was due to error
2944 attempting to insert breakpoints. */
2945
2946 void
2947 normal_stop (void)
2948 {
2949 struct target_waitstatus last;
2950 ptid_t last_ptid;
2951
2952 get_last_target_status (&last_ptid, &last);
2953
2954 /* As with the notification of thread events, we want to delay
2955 notifying the user that we've switched thread context until
2956 the inferior actually stops.
2957
2958 There's no point in saying anything if the inferior has exited.
2959 Note that SIGNALLED here means "exited with a signal", not
2960 "received a signal". */
2961 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
2962 && target_has_execution
2963 && last.kind != TARGET_WAITKIND_SIGNALLED
2964 && last.kind != TARGET_WAITKIND_EXITED)
2965 {
2966 target_terminal_ours_for_output ();
2967 printf_filtered (_("[Switching to %s]\n"),
2968 target_pid_or_tid_to_str (inferior_ptid));
2969 previous_inferior_ptid = inferior_ptid;
2970 }
2971
2972 /* NOTE drow/2004-01-17: Is this still necessary? */
2973 /* Make sure that the current_frame's pc is correct. This
2974 is a correction for setting up the frame info before doing
2975 DECR_PC_AFTER_BREAK */
2976 if (target_has_execution)
2977 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
2978 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
2979 frame code to check for this and sort out any resultant mess.
2980 DECR_PC_AFTER_BREAK needs to just go away. */
2981 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
2982
2983 if (target_has_execution && breakpoints_inserted)
2984 {
2985 if (remove_breakpoints ())
2986 {
2987 target_terminal_ours_for_output ();
2988 printf_filtered (_("\
2989 Cannot remove breakpoints because program is no longer writable.\n\
2990 It might be running in another process.\n\
2991 Further execution is probably impossible.\n"));
2992 }
2993 }
2994 breakpoints_inserted = 0;
2995
2996 /* Delete the breakpoint we stopped at, if it wants to be deleted.
2997 Delete any breakpoint that is to be deleted at the next stop. */
2998
2999 breakpoint_auto_delete (stop_bpstat);
3000
3001 /* If an auto-display called a function and that got a signal,
3002 delete that auto-display to avoid an infinite recursion. */
3003
3004 if (stopped_by_random_signal)
3005 disable_current_display ();
3006
3007 /* Don't print a message if in the middle of doing a "step n"
3008 operation for n > 1 */
3009 if (step_multi && stop_step)
3010 goto done;
3011
3012 target_terminal_ours ();
3013
3014 /* Look up the hook_stop and run it (CLI internally handles problem
3015 of stop_command's pre-hook not existing). */
3016 if (stop_command)
3017 catch_errors (hook_stop_stub, stop_command,
3018 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3019
3020 if (!target_has_stack)
3021 {
3022
3023 goto done;
3024 }
3025
3026 /* Select innermost stack frame - i.e., current frame is frame 0,
3027 and current location is based on that.
3028 Don't do this on return from a stack dummy routine,
3029 or if the program has exited. */
3030
3031 if (!stop_stack_dummy)
3032 {
3033 select_frame (get_current_frame ());
3034
3035 /* Print current location without a level number, if
3036 we have changed functions or hit a breakpoint.
3037 Print source line if we have one.
3038 bpstat_print() contains the logic deciding in detail
3039 what to print, based on the event(s) that just occurred. */
3040
3041 if (stop_print_frame && deprecated_selected_frame)
3042 {
3043 int bpstat_ret;
3044 int source_flag;
3045 int do_frame_printing = 1;
3046
3047 bpstat_ret = bpstat_print (stop_bpstat);
3048 switch (bpstat_ret)
3049 {
3050 case PRINT_UNKNOWN:
3051 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3052 (or should) carry around the function and does (or
3053 should) use that when doing a frame comparison. */
3054 if (stop_step
3055 && frame_id_eq (step_frame_id,
3056 get_frame_id (get_current_frame ()))
3057 && step_start_function == find_pc_function (stop_pc))
3058 source_flag = SRC_LINE; /* finished step, just print source line */
3059 else
3060 source_flag = SRC_AND_LOC; /* print location and source line */
3061 break;
3062 case PRINT_SRC_AND_LOC:
3063 source_flag = SRC_AND_LOC; /* print location and source line */
3064 break;
3065 case PRINT_SRC_ONLY:
3066 source_flag = SRC_LINE;
3067 break;
3068 case PRINT_NOTHING:
3069 source_flag = SRC_LINE; /* something bogus */
3070 do_frame_printing = 0;
3071 break;
3072 default:
3073 internal_error (__FILE__, __LINE__, _("Unknown value."));
3074 }
3075 /* For mi, have the same behavior every time we stop:
3076 print everything but the source line. */
3077 if (ui_out_is_mi_like_p (uiout))
3078 source_flag = LOC_AND_ADDRESS;
3079
3080 if (ui_out_is_mi_like_p (uiout))
3081 ui_out_field_int (uiout, "thread-id",
3082 pid_to_thread_id (inferior_ptid));
3083 /* The behavior of this routine with respect to the source
3084 flag is:
3085 SRC_LINE: Print only source line
3086 LOCATION: Print only location
3087 SRC_AND_LOC: Print location and source line */
3088 if (do_frame_printing)
3089 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3090
3091 /* Display the auto-display expressions. */
3092 do_displays ();
3093 }
3094 }
3095
3096 /* Save the function value return registers, if we care.
3097 We might be about to restore their previous contents. */
3098 if (proceed_to_finish)
3099 /* NB: The copy goes through to the target picking up the value of
3100 all the registers. */
3101 regcache_cpy (stop_registers, current_regcache);
3102
3103 if (stop_stack_dummy)
3104 {
3105 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3106 ends with a setting of the current frame, so we can use that
3107 next. */
3108 frame_pop (get_current_frame ());
3109 /* Set stop_pc to what it was before we called the function.
3110 Can't rely on restore_inferior_status because that only gets
3111 called if we don't stop in the called function. */
3112 stop_pc = read_pc ();
3113 select_frame (get_current_frame ());
3114 }
3115
3116 done:
3117 annotate_stopped ();
3118 observer_notify_normal_stop (stop_bpstat);
3119 }
3120
3121 static int
3122 hook_stop_stub (void *cmd)
3123 {
3124 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3125 return (0);
3126 }
3127 \f
3128 int
3129 signal_stop_state (int signo)
3130 {
3131 return signal_stop[signo];
3132 }
3133
3134 int
3135 signal_print_state (int signo)
3136 {
3137 return signal_print[signo];
3138 }
3139
3140 int
3141 signal_pass_state (int signo)
3142 {
3143 return signal_program[signo];
3144 }
3145
3146 int
3147 signal_stop_update (int signo, int state)
3148 {
3149 int ret = signal_stop[signo];
3150 signal_stop[signo] = state;
3151 return ret;
3152 }
3153
3154 int
3155 signal_print_update (int signo, int state)
3156 {
3157 int ret = signal_print[signo];
3158 signal_print[signo] = state;
3159 return ret;
3160 }
3161
3162 int
3163 signal_pass_update (int signo, int state)
3164 {
3165 int ret = signal_program[signo];
3166 signal_program[signo] = state;
3167 return ret;
3168 }
3169
3170 static void
3171 sig_print_header (void)
3172 {
3173 printf_filtered (_("\
3174 Signal Stop\tPrint\tPass to program\tDescription\n"));
3175 }
3176
3177 static void
3178 sig_print_info (enum target_signal oursig)
3179 {
3180 char *name = target_signal_to_name (oursig);
3181 int name_padding = 13 - strlen (name);
3182
3183 if (name_padding <= 0)
3184 name_padding = 0;
3185
3186 printf_filtered ("%s", name);
3187 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3188 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3189 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3190 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3191 printf_filtered ("%s\n", target_signal_to_string (oursig));
3192 }
3193
3194 /* Specify how various signals in the inferior should be handled. */
3195
3196 static void
3197 handle_command (char *args, int from_tty)
3198 {
3199 char **argv;
3200 int digits, wordlen;
3201 int sigfirst, signum, siglast;
3202 enum target_signal oursig;
3203 int allsigs;
3204 int nsigs;
3205 unsigned char *sigs;
3206 struct cleanup *old_chain;
3207
3208 if (args == NULL)
3209 {
3210 error_no_arg (_("signal to handle"));
3211 }
3212
3213 /* Allocate and zero an array of flags for which signals to handle. */
3214
3215 nsigs = (int) TARGET_SIGNAL_LAST;
3216 sigs = (unsigned char *) alloca (nsigs);
3217 memset (sigs, 0, nsigs);
3218
3219 /* Break the command line up into args. */
3220
3221 argv = buildargv (args);
3222 if (argv == NULL)
3223 {
3224 nomem (0);
3225 }
3226 old_chain = make_cleanup_freeargv (argv);
3227
3228 /* Walk through the args, looking for signal oursigs, signal names, and
3229 actions. Signal numbers and signal names may be interspersed with
3230 actions, with the actions being performed for all signals cumulatively
3231 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3232
3233 while (*argv != NULL)
3234 {
3235 wordlen = strlen (*argv);
3236 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3237 {;
3238 }
3239 allsigs = 0;
3240 sigfirst = siglast = -1;
3241
3242 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3243 {
3244 /* Apply action to all signals except those used by the
3245 debugger. Silently skip those. */
3246 allsigs = 1;
3247 sigfirst = 0;
3248 siglast = nsigs - 1;
3249 }
3250 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3251 {
3252 SET_SIGS (nsigs, sigs, signal_stop);
3253 SET_SIGS (nsigs, sigs, signal_print);
3254 }
3255 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3256 {
3257 UNSET_SIGS (nsigs, sigs, signal_program);
3258 }
3259 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3260 {
3261 SET_SIGS (nsigs, sigs, signal_print);
3262 }
3263 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3264 {
3265 SET_SIGS (nsigs, sigs, signal_program);
3266 }
3267 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3268 {
3269 UNSET_SIGS (nsigs, sigs, signal_stop);
3270 }
3271 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3272 {
3273 SET_SIGS (nsigs, sigs, signal_program);
3274 }
3275 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3276 {
3277 UNSET_SIGS (nsigs, sigs, signal_print);
3278 UNSET_SIGS (nsigs, sigs, signal_stop);
3279 }
3280 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3281 {
3282 UNSET_SIGS (nsigs, sigs, signal_program);
3283 }
3284 else if (digits > 0)
3285 {
3286 /* It is numeric. The numeric signal refers to our own
3287 internal signal numbering from target.h, not to host/target
3288 signal number. This is a feature; users really should be
3289 using symbolic names anyway, and the common ones like
3290 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3291
3292 sigfirst = siglast = (int)
3293 target_signal_from_command (atoi (*argv));
3294 if ((*argv)[digits] == '-')
3295 {
3296 siglast = (int)
3297 target_signal_from_command (atoi ((*argv) + digits + 1));
3298 }
3299 if (sigfirst > siglast)
3300 {
3301 /* Bet he didn't figure we'd think of this case... */
3302 signum = sigfirst;
3303 sigfirst = siglast;
3304 siglast = signum;
3305 }
3306 }
3307 else
3308 {
3309 oursig = target_signal_from_name (*argv);
3310 if (oursig != TARGET_SIGNAL_UNKNOWN)
3311 {
3312 sigfirst = siglast = (int) oursig;
3313 }
3314 else
3315 {
3316 /* Not a number and not a recognized flag word => complain. */
3317 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3318 }
3319 }
3320
3321 /* If any signal numbers or symbol names were found, set flags for
3322 which signals to apply actions to. */
3323
3324 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3325 {
3326 switch ((enum target_signal) signum)
3327 {
3328 case TARGET_SIGNAL_TRAP:
3329 case TARGET_SIGNAL_INT:
3330 if (!allsigs && !sigs[signum])
3331 {
3332 if (query ("%s is used by the debugger.\n\
3333 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3334 {
3335 sigs[signum] = 1;
3336 }
3337 else
3338 {
3339 printf_unfiltered (_("Not confirmed, unchanged.\n"));
3340 gdb_flush (gdb_stdout);
3341 }
3342 }
3343 break;
3344 case TARGET_SIGNAL_0:
3345 case TARGET_SIGNAL_DEFAULT:
3346 case TARGET_SIGNAL_UNKNOWN:
3347 /* Make sure that "all" doesn't print these. */
3348 break;
3349 default:
3350 sigs[signum] = 1;
3351 break;
3352 }
3353 }
3354
3355 argv++;
3356 }
3357
3358 target_notice_signals (inferior_ptid);
3359
3360 if (from_tty)
3361 {
3362 /* Show the results. */
3363 sig_print_header ();
3364 for (signum = 0; signum < nsigs; signum++)
3365 {
3366 if (sigs[signum])
3367 {
3368 sig_print_info (signum);
3369 }
3370 }
3371 }
3372
3373 do_cleanups (old_chain);
3374 }
3375
3376 static void
3377 xdb_handle_command (char *args, int from_tty)
3378 {
3379 char **argv;
3380 struct cleanup *old_chain;
3381
3382 /* Break the command line up into args. */
3383
3384 argv = buildargv (args);
3385 if (argv == NULL)
3386 {
3387 nomem (0);
3388 }
3389 old_chain = make_cleanup_freeargv (argv);
3390 if (argv[1] != (char *) NULL)
3391 {
3392 char *argBuf;
3393 int bufLen;
3394
3395 bufLen = strlen (argv[0]) + 20;
3396 argBuf = (char *) xmalloc (bufLen);
3397 if (argBuf)
3398 {
3399 int validFlag = 1;
3400 enum target_signal oursig;
3401
3402 oursig = target_signal_from_name (argv[0]);
3403 memset (argBuf, 0, bufLen);
3404 if (strcmp (argv[1], "Q") == 0)
3405 sprintf (argBuf, "%s %s", argv[0], "noprint");
3406 else
3407 {
3408 if (strcmp (argv[1], "s") == 0)
3409 {
3410 if (!signal_stop[oursig])
3411 sprintf (argBuf, "%s %s", argv[0], "stop");
3412 else
3413 sprintf (argBuf, "%s %s", argv[0], "nostop");
3414 }
3415 else if (strcmp (argv[1], "i") == 0)
3416 {
3417 if (!signal_program[oursig])
3418 sprintf (argBuf, "%s %s", argv[0], "pass");
3419 else
3420 sprintf (argBuf, "%s %s", argv[0], "nopass");
3421 }
3422 else if (strcmp (argv[1], "r") == 0)
3423 {
3424 if (!signal_print[oursig])
3425 sprintf (argBuf, "%s %s", argv[0], "print");
3426 else
3427 sprintf (argBuf, "%s %s", argv[0], "noprint");
3428 }
3429 else
3430 validFlag = 0;
3431 }
3432 if (validFlag)
3433 handle_command (argBuf, from_tty);
3434 else
3435 printf_filtered (_("Invalid signal handling flag.\n"));
3436 if (argBuf)
3437 xfree (argBuf);
3438 }
3439 }
3440 do_cleanups (old_chain);
3441 }
3442
3443 /* Print current contents of the tables set by the handle command.
3444 It is possible we should just be printing signals actually used
3445 by the current target (but for things to work right when switching
3446 targets, all signals should be in the signal tables). */
3447
3448 static void
3449 signals_info (char *signum_exp, int from_tty)
3450 {
3451 enum target_signal oursig;
3452 sig_print_header ();
3453
3454 if (signum_exp)
3455 {
3456 /* First see if this is a symbol name. */
3457 oursig = target_signal_from_name (signum_exp);
3458 if (oursig == TARGET_SIGNAL_UNKNOWN)
3459 {
3460 /* No, try numeric. */
3461 oursig =
3462 target_signal_from_command (parse_and_eval_long (signum_exp));
3463 }
3464 sig_print_info (oursig);
3465 return;
3466 }
3467
3468 printf_filtered ("\n");
3469 /* These ugly casts brought to you by the native VAX compiler. */
3470 for (oursig = TARGET_SIGNAL_FIRST;
3471 (int) oursig < (int) TARGET_SIGNAL_LAST;
3472 oursig = (enum target_signal) ((int) oursig + 1))
3473 {
3474 QUIT;
3475
3476 if (oursig != TARGET_SIGNAL_UNKNOWN
3477 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3478 sig_print_info (oursig);
3479 }
3480
3481 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
3482 }
3483 \f
3484 struct inferior_status
3485 {
3486 enum target_signal stop_signal;
3487 CORE_ADDR stop_pc;
3488 bpstat stop_bpstat;
3489 int stop_step;
3490 int stop_stack_dummy;
3491 int stopped_by_random_signal;
3492 int trap_expected;
3493 CORE_ADDR step_range_start;
3494 CORE_ADDR step_range_end;
3495 struct frame_id step_frame_id;
3496 enum step_over_calls_kind step_over_calls;
3497 CORE_ADDR step_resume_break_address;
3498 int stop_after_trap;
3499 int stop_soon;
3500 struct regcache *stop_registers;
3501
3502 /* These are here because if call_function_by_hand has written some
3503 registers and then decides to call error(), we better not have changed
3504 any registers. */
3505 struct regcache *registers;
3506
3507 /* A frame unique identifier. */
3508 struct frame_id selected_frame_id;
3509
3510 int breakpoint_proceeded;
3511 int restore_stack_info;
3512 int proceed_to_finish;
3513 };
3514
3515 void
3516 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3517 LONGEST val)
3518 {
3519 int size = register_size (current_gdbarch, regno);
3520 void *buf = alloca (size);
3521 store_signed_integer (buf, size, val);
3522 regcache_raw_write (inf_status->registers, regno, buf);
3523 }
3524
3525 /* Save all of the information associated with the inferior<==>gdb
3526 connection. INF_STATUS is a pointer to a "struct inferior_status"
3527 (defined in inferior.h). */
3528
3529 struct inferior_status *
3530 save_inferior_status (int restore_stack_info)
3531 {
3532 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3533
3534 inf_status->stop_signal = stop_signal;
3535 inf_status->stop_pc = stop_pc;
3536 inf_status->stop_step = stop_step;
3537 inf_status->stop_stack_dummy = stop_stack_dummy;
3538 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3539 inf_status->trap_expected = trap_expected;
3540 inf_status->step_range_start = step_range_start;
3541 inf_status->step_range_end = step_range_end;
3542 inf_status->step_frame_id = step_frame_id;
3543 inf_status->step_over_calls = step_over_calls;
3544 inf_status->stop_after_trap = stop_after_trap;
3545 inf_status->stop_soon = stop_soon;
3546 /* Save original bpstat chain here; replace it with copy of chain.
3547 If caller's caller is walking the chain, they'll be happier if we
3548 hand them back the original chain when restore_inferior_status is
3549 called. */
3550 inf_status->stop_bpstat = stop_bpstat;
3551 stop_bpstat = bpstat_copy (stop_bpstat);
3552 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3553 inf_status->restore_stack_info = restore_stack_info;
3554 inf_status->proceed_to_finish = proceed_to_finish;
3555
3556 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
3557
3558 inf_status->registers = regcache_dup (current_regcache);
3559
3560 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
3561 return inf_status;
3562 }
3563
3564 static int
3565 restore_selected_frame (void *args)
3566 {
3567 struct frame_id *fid = (struct frame_id *) args;
3568 struct frame_info *frame;
3569
3570 frame = frame_find_by_id (*fid);
3571
3572 /* If inf_status->selected_frame_id is NULL, there was no previously
3573 selected frame. */
3574 if (frame == NULL)
3575 {
3576 warning (_("Unable to restore previously selected frame."));
3577 return 0;
3578 }
3579
3580 select_frame (frame);
3581
3582 return (1);
3583 }
3584
3585 void
3586 restore_inferior_status (struct inferior_status *inf_status)
3587 {
3588 stop_signal = inf_status->stop_signal;
3589 stop_pc = inf_status->stop_pc;
3590 stop_step = inf_status->stop_step;
3591 stop_stack_dummy = inf_status->stop_stack_dummy;
3592 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3593 trap_expected = inf_status->trap_expected;
3594 step_range_start = inf_status->step_range_start;
3595 step_range_end = inf_status->step_range_end;
3596 step_frame_id = inf_status->step_frame_id;
3597 step_over_calls = inf_status->step_over_calls;
3598 stop_after_trap = inf_status->stop_after_trap;
3599 stop_soon = inf_status->stop_soon;
3600 bpstat_clear (&stop_bpstat);
3601 stop_bpstat = inf_status->stop_bpstat;
3602 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3603 proceed_to_finish = inf_status->proceed_to_finish;
3604
3605 /* FIXME: Is the restore of stop_registers always needed. */
3606 regcache_xfree (stop_registers);
3607 stop_registers = inf_status->stop_registers;
3608
3609 /* The inferior can be gone if the user types "print exit(0)"
3610 (and perhaps other times). */
3611 if (target_has_execution)
3612 /* NB: The register write goes through to the target. */
3613 regcache_cpy (current_regcache, inf_status->registers);
3614 regcache_xfree (inf_status->registers);
3615
3616 /* FIXME: If we are being called after stopping in a function which
3617 is called from gdb, we should not be trying to restore the
3618 selected frame; it just prints a spurious error message (The
3619 message is useful, however, in detecting bugs in gdb (like if gdb
3620 clobbers the stack)). In fact, should we be restoring the
3621 inferior status at all in that case? . */
3622
3623 if (target_has_stack && inf_status->restore_stack_info)
3624 {
3625 /* The point of catch_errors is that if the stack is clobbered,
3626 walking the stack might encounter a garbage pointer and
3627 error() trying to dereference it. */
3628 if (catch_errors
3629 (restore_selected_frame, &inf_status->selected_frame_id,
3630 "Unable to restore previously selected frame:\n",
3631 RETURN_MASK_ERROR) == 0)
3632 /* Error in restoring the selected frame. Select the innermost
3633 frame. */
3634 select_frame (get_current_frame ());
3635
3636 }
3637
3638 xfree (inf_status);
3639 }
3640
3641 static void
3642 do_restore_inferior_status_cleanup (void *sts)
3643 {
3644 restore_inferior_status (sts);
3645 }
3646
3647 struct cleanup *
3648 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3649 {
3650 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3651 }
3652
3653 void
3654 discard_inferior_status (struct inferior_status *inf_status)
3655 {
3656 /* See save_inferior_status for info on stop_bpstat. */
3657 bpstat_clear (&inf_status->stop_bpstat);
3658 regcache_xfree (inf_status->registers);
3659 regcache_xfree (inf_status->stop_registers);
3660 xfree (inf_status);
3661 }
3662
3663 int
3664 inferior_has_forked (int pid, int *child_pid)
3665 {
3666 struct target_waitstatus last;
3667 ptid_t last_ptid;
3668
3669 get_last_target_status (&last_ptid, &last);
3670
3671 if (last.kind != TARGET_WAITKIND_FORKED)
3672 return 0;
3673
3674 if (ptid_get_pid (last_ptid) != pid)
3675 return 0;
3676
3677 *child_pid = last.value.related_pid;
3678 return 1;
3679 }
3680
3681 int
3682 inferior_has_vforked (int pid, int *child_pid)
3683 {
3684 struct target_waitstatus last;
3685 ptid_t last_ptid;
3686
3687 get_last_target_status (&last_ptid, &last);
3688
3689 if (last.kind != TARGET_WAITKIND_VFORKED)
3690 return 0;
3691
3692 if (ptid_get_pid (last_ptid) != pid)
3693 return 0;
3694
3695 *child_pid = last.value.related_pid;
3696 return 1;
3697 }
3698
3699 int
3700 inferior_has_execd (int pid, char **execd_pathname)
3701 {
3702 struct target_waitstatus last;
3703 ptid_t last_ptid;
3704
3705 get_last_target_status (&last_ptid, &last);
3706
3707 if (last.kind != TARGET_WAITKIND_EXECD)
3708 return 0;
3709
3710 if (ptid_get_pid (last_ptid) != pid)
3711 return 0;
3712
3713 *execd_pathname = xstrdup (last.value.execd_pathname);
3714 return 1;
3715 }
3716
3717 /* Oft used ptids */
3718 ptid_t null_ptid;
3719 ptid_t minus_one_ptid;
3720
3721 /* Create a ptid given the necessary PID, LWP, and TID components. */
3722
3723 ptid_t
3724 ptid_build (int pid, long lwp, long tid)
3725 {
3726 ptid_t ptid;
3727
3728 ptid.pid = pid;
3729 ptid.lwp = lwp;
3730 ptid.tid = tid;
3731 return ptid;
3732 }
3733
3734 /* Create a ptid from just a pid. */
3735
3736 ptid_t
3737 pid_to_ptid (int pid)
3738 {
3739 return ptid_build (pid, 0, 0);
3740 }
3741
3742 /* Fetch the pid (process id) component from a ptid. */
3743
3744 int
3745 ptid_get_pid (ptid_t ptid)
3746 {
3747 return ptid.pid;
3748 }
3749
3750 /* Fetch the lwp (lightweight process) component from a ptid. */
3751
3752 long
3753 ptid_get_lwp (ptid_t ptid)
3754 {
3755 return ptid.lwp;
3756 }
3757
3758 /* Fetch the tid (thread id) component from a ptid. */
3759
3760 long
3761 ptid_get_tid (ptid_t ptid)
3762 {
3763 return ptid.tid;
3764 }
3765
3766 /* ptid_equal() is used to test equality of two ptids. */
3767
3768 int
3769 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3770 {
3771 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3772 && ptid1.tid == ptid2.tid);
3773 }
3774
3775 /* restore_inferior_ptid() will be used by the cleanup machinery
3776 to restore the inferior_ptid value saved in a call to
3777 save_inferior_ptid(). */
3778
3779 static void
3780 restore_inferior_ptid (void *arg)
3781 {
3782 ptid_t *saved_ptid_ptr = arg;
3783 inferior_ptid = *saved_ptid_ptr;
3784 xfree (arg);
3785 }
3786
3787 /* Save the value of inferior_ptid so that it may be restored by a
3788 later call to do_cleanups(). Returns the struct cleanup pointer
3789 needed for later doing the cleanup. */
3790
3791 struct cleanup *
3792 save_inferior_ptid (void)
3793 {
3794 ptid_t *saved_ptid_ptr;
3795
3796 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3797 *saved_ptid_ptr = inferior_ptid;
3798 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3799 }
3800 \f
3801
3802 static void
3803 build_infrun (void)
3804 {
3805 stop_registers = regcache_xmalloc (current_gdbarch);
3806 }
3807
3808 void
3809 _initialize_infrun (void)
3810 {
3811 int i;
3812 int numsigs;
3813 struct cmd_list_element *c;
3814
3815 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3816 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
3817
3818 add_info ("signals", signals_info, _("\
3819 What debugger does when program gets various signals.\n\
3820 Specify a signal as argument to print info on that signal only."));
3821 add_info_alias ("handle", "signals", 0);
3822
3823 add_com ("handle", class_run, handle_command, _("\
3824 Specify how to handle a signal.\n\
3825 Args are signals and actions to apply to those signals.\n\
3826 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3827 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3828 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3829 The special arg \"all\" is recognized to mean all signals except those\n\
3830 used by the debugger, typically SIGTRAP and SIGINT.\n\
3831 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3832 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3833 Stop means reenter debugger if this signal happens (implies print).\n\
3834 Print means print a message if this signal happens.\n\
3835 Pass means let program see this signal; otherwise program doesn't know.\n\
3836 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3837 Pass and Stop may be combined."));
3838 if (xdb_commands)
3839 {
3840 add_com ("lz", class_info, signals_info, _("\
3841 What debugger does when program gets various signals.\n\
3842 Specify a signal as argument to print info on that signal only."));
3843 add_com ("z", class_run, xdb_handle_command, _("\
3844 Specify how to handle a signal.\n\
3845 Args are signals and actions to apply to those signals.\n\
3846 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3847 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3848 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3849 The special arg \"all\" is recognized to mean all signals except those\n\
3850 used by the debugger, typically SIGTRAP and SIGINT.\n\
3851 Recognized actions include \"s\" (toggles between stop and nostop), \n\
3852 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3853 nopass), \"Q\" (noprint)\n\
3854 Stop means reenter debugger if this signal happens (implies print).\n\
3855 Print means print a message if this signal happens.\n\
3856 Pass means let program see this signal; otherwise program doesn't know.\n\
3857 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3858 Pass and Stop may be combined."));
3859 }
3860
3861 if (!dbx_commands)
3862 stop_command = add_cmd ("stop", class_obscure,
3863 not_just_help_class_command, _("\
3864 There is no `stop' command, but you can set a hook on `stop'.\n\
3865 This allows you to set a list of commands to be run each time execution\n\
3866 of the program stops."), &cmdlist);
3867
3868 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
3869 Set inferior debugging."), _("\
3870 Show inferior debugging."), _("\
3871 When non-zero, inferior specific debugging is enabled."),
3872 NULL,
3873 show_debug_infrun,
3874 &setdebuglist, &showdebuglist);
3875
3876 numsigs = (int) TARGET_SIGNAL_LAST;
3877 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
3878 signal_print = (unsigned char *)
3879 xmalloc (sizeof (signal_print[0]) * numsigs);
3880 signal_program = (unsigned char *)
3881 xmalloc (sizeof (signal_program[0]) * numsigs);
3882 for (i = 0; i < numsigs; i++)
3883 {
3884 signal_stop[i] = 1;
3885 signal_print[i] = 1;
3886 signal_program[i] = 1;
3887 }
3888
3889 /* Signals caused by debugger's own actions
3890 should not be given to the program afterwards. */
3891 signal_program[TARGET_SIGNAL_TRAP] = 0;
3892 signal_program[TARGET_SIGNAL_INT] = 0;
3893
3894 /* Signals that are not errors should not normally enter the debugger. */
3895 signal_stop[TARGET_SIGNAL_ALRM] = 0;
3896 signal_print[TARGET_SIGNAL_ALRM] = 0;
3897 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
3898 signal_print[TARGET_SIGNAL_VTALRM] = 0;
3899 signal_stop[TARGET_SIGNAL_PROF] = 0;
3900 signal_print[TARGET_SIGNAL_PROF] = 0;
3901 signal_stop[TARGET_SIGNAL_CHLD] = 0;
3902 signal_print[TARGET_SIGNAL_CHLD] = 0;
3903 signal_stop[TARGET_SIGNAL_IO] = 0;
3904 signal_print[TARGET_SIGNAL_IO] = 0;
3905 signal_stop[TARGET_SIGNAL_POLL] = 0;
3906 signal_print[TARGET_SIGNAL_POLL] = 0;
3907 signal_stop[TARGET_SIGNAL_URG] = 0;
3908 signal_print[TARGET_SIGNAL_URG] = 0;
3909 signal_stop[TARGET_SIGNAL_WINCH] = 0;
3910 signal_print[TARGET_SIGNAL_WINCH] = 0;
3911
3912 /* These signals are used internally by user-level thread
3913 implementations. (See signal(5) on Solaris.) Like the above
3914 signals, a healthy program receives and handles them as part of
3915 its normal operation. */
3916 signal_stop[TARGET_SIGNAL_LWP] = 0;
3917 signal_print[TARGET_SIGNAL_LWP] = 0;
3918 signal_stop[TARGET_SIGNAL_WAITING] = 0;
3919 signal_print[TARGET_SIGNAL_WAITING] = 0;
3920 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
3921 signal_print[TARGET_SIGNAL_CANCEL] = 0;
3922
3923 #ifdef SOLIB_ADD
3924 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
3925 &stop_on_solib_events, _("\
3926 Set stopping for shared library events."), _("\
3927 Show stopping for shared library events."), _("\
3928 If nonzero, gdb will give control to the user when the dynamic linker\n\
3929 notifies gdb of shared library events. The most common event of interest\n\
3930 to the user would be loading/unloading of a new library."),
3931 NULL,
3932 show_stop_on_solib_events,
3933 &setlist, &showlist);
3934 #endif
3935
3936 add_setshow_enum_cmd ("follow-fork-mode", class_run,
3937 follow_fork_mode_kind_names,
3938 &follow_fork_mode_string, _("\
3939 Set debugger response to a program call of fork or vfork."), _("\
3940 Show debugger response to a program call of fork or vfork."), _("\
3941 A fork or vfork creates a new process. follow-fork-mode can be:\n\
3942 parent - the original process is debugged after a fork\n\
3943 child - the new process is debugged after a fork\n\
3944 The unfollowed process will continue to run.\n\
3945 By default, the debugger will follow the parent process."),
3946 NULL,
3947 show_follow_fork_mode_string,
3948 &setlist, &showlist);
3949
3950 add_setshow_enum_cmd ("scheduler-locking", class_run,
3951 scheduler_enums, &scheduler_mode, _("\
3952 Set mode for locking scheduler during execution."), _("\
3953 Show mode for locking scheduler during execution."), _("\
3954 off == no locking (threads may preempt at any time)\n\
3955 on == full locking (no thread except the current thread may run)\n\
3956 step == scheduler locked during every single-step operation.\n\
3957 In this mode, no other thread may run during a step command.\n\
3958 Other threads may run while stepping over a function call ('next')."),
3959 set_schedlock_func, /* traps on target vector */
3960 show_scheduler_mode,
3961 &setlist, &showlist);
3962
3963 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
3964 Set mode of the step operation."), _("\
3965 Show mode of the step operation."), _("\
3966 When set, doing a step over a function without debug line information\n\
3967 will stop at the first instruction of that function. Otherwise, the\n\
3968 function is skipped and the step command stops at a different source line."),
3969 NULL,
3970 show_step_stop_if_no_debug,
3971 &setlist, &showlist);
3972
3973 /* ptid initializations */
3974 null_ptid = ptid_build (0, 0, 0);
3975 minus_one_ptid = ptid_build (-1, 0, 0);
3976 inferior_ptid = null_ptid;
3977 target_last_wait_ptid = minus_one_ptid;
3978 }
This page took 0.165403 seconds and 4 git commands to generate.