5d420043df8a522b8d8e96a5401e128504dfbe40
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48
49 #include "gdb_assert.h"
50 #include "mi/mi-common.h"
51 #include "event-top.h"
52
53 /* Prototypes for local functions */
54
55 static void signals_info (char *, int);
56
57 static void handle_command (char *, int);
58
59 static void sig_print_info (enum target_signal);
60
61 static void sig_print_header (void);
62
63 static void resume_cleanups (void *);
64
65 static int hook_stop_stub (void *);
66
67 static int restore_selected_frame (void *);
68
69 static void build_infrun (void);
70
71 static int follow_fork (void);
72
73 static void set_schedlock_func (char *args, int from_tty,
74 struct cmd_list_element *c);
75
76 struct thread_stepping_state;
77
78 static int currently_stepping (struct thread_stepping_state *tss);
79
80 static void xdb_handle_command (char *args, int from_tty);
81
82 static int prepare_to_proceed (int);
83
84 void _initialize_infrun (void);
85
86 /* When set, stop the 'step' command if we enter a function which has
87 no line number information. The normal behavior is that we step
88 over such function. */
89 int step_stop_if_no_debug = 0;
90 static void
91 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
92 struct cmd_list_element *c, const char *value)
93 {
94 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
95 }
96
97 /* In asynchronous mode, but simulating synchronous execution. */
98
99 int sync_execution = 0;
100
101 /* wait_for_inferior and normal_stop use this to notify the user
102 when the inferior stopped in a different thread than it had been
103 running in. */
104
105 static ptid_t previous_inferior_ptid;
106
107 int debug_displaced = 0;
108 static void
109 show_debug_displaced (struct ui_file *file, int from_tty,
110 struct cmd_list_element *c, const char *value)
111 {
112 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
113 }
114
115 static int debug_infrun = 0;
116 static void
117 show_debug_infrun (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c, const char *value)
119 {
120 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
121 }
122
123 /* If the program uses ELF-style shared libraries, then calls to
124 functions in shared libraries go through stubs, which live in a
125 table called the PLT (Procedure Linkage Table). The first time the
126 function is called, the stub sends control to the dynamic linker,
127 which looks up the function's real address, patches the stub so
128 that future calls will go directly to the function, and then passes
129 control to the function.
130
131 If we are stepping at the source level, we don't want to see any of
132 this --- we just want to skip over the stub and the dynamic linker.
133 The simple approach is to single-step until control leaves the
134 dynamic linker.
135
136 However, on some systems (e.g., Red Hat's 5.2 distribution) the
137 dynamic linker calls functions in the shared C library, so you
138 can't tell from the PC alone whether the dynamic linker is still
139 running. In this case, we use a step-resume breakpoint to get us
140 past the dynamic linker, as if we were using "next" to step over a
141 function call.
142
143 in_solib_dynsym_resolve_code() says whether we're in the dynamic
144 linker code or not. Normally, this means we single-step. However,
145 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
146 address where we can place a step-resume breakpoint to get past the
147 linker's symbol resolution function.
148
149 in_solib_dynsym_resolve_code() can generally be implemented in a
150 pretty portable way, by comparing the PC against the address ranges
151 of the dynamic linker's sections.
152
153 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
154 it depends on internal details of the dynamic linker. It's usually
155 not too hard to figure out where to put a breakpoint, but it
156 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
157 sanity checking. If it can't figure things out, returning zero and
158 getting the (possibly confusing) stepping behavior is better than
159 signalling an error, which will obscure the change in the
160 inferior's state. */
161
162 /* This function returns TRUE if pc is the address of an instruction
163 that lies within the dynamic linker (such as the event hook, or the
164 dld itself).
165
166 This function must be used only when a dynamic linker event has
167 been caught, and the inferior is being stepped out of the hook, or
168 undefined results are guaranteed. */
169
170 #ifndef SOLIB_IN_DYNAMIC_LINKER
171 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
172 #endif
173
174
175 /* Convert the #defines into values. This is temporary until wfi control
176 flow is completely sorted out. */
177
178 #ifndef CANNOT_STEP_HW_WATCHPOINTS
179 #define CANNOT_STEP_HW_WATCHPOINTS 0
180 #else
181 #undef CANNOT_STEP_HW_WATCHPOINTS
182 #define CANNOT_STEP_HW_WATCHPOINTS 1
183 #endif
184
185 /* Tables of how to react to signals; the user sets them. */
186
187 static unsigned char *signal_stop;
188 static unsigned char *signal_print;
189 static unsigned char *signal_program;
190
191 #define SET_SIGS(nsigs,sigs,flags) \
192 do { \
193 int signum = (nsigs); \
194 while (signum-- > 0) \
195 if ((sigs)[signum]) \
196 (flags)[signum] = 1; \
197 } while (0)
198
199 #define UNSET_SIGS(nsigs,sigs,flags) \
200 do { \
201 int signum = (nsigs); \
202 while (signum-- > 0) \
203 if ((sigs)[signum]) \
204 (flags)[signum] = 0; \
205 } while (0)
206
207 /* Value to pass to target_resume() to cause all threads to resume */
208
209 #define RESUME_ALL (pid_to_ptid (-1))
210
211 /* Command list pointer for the "stop" placeholder. */
212
213 static struct cmd_list_element *stop_command;
214
215 /* Function inferior was in as of last step command. */
216
217 static struct symbol *step_start_function;
218
219 /* Nonzero if we are presently stepping over a breakpoint.
220
221 If we hit a breakpoint or watchpoint, and then continue,
222 we need to single step the current thread with breakpoints
223 disabled, to avoid hitting the same breakpoint or
224 watchpoint again. And we should step just a single
225 thread and keep other threads stopped, so that
226 other threads don't miss breakpoints while they are removed.
227
228 So, this variable simultaneously means that we need to single
229 step the current thread, keep other threads stopped, and that
230 breakpoints should be removed while we step.
231
232 This variable is set either:
233 - in proceed, when we resume inferior on user's explicit request
234 - in keep_going, if handle_inferior_event decides we need to
235 step over breakpoint.
236
237 The variable is cleared in clear_proceed_status, called every
238 time before we call proceed. The proceed calls wait_for_inferior,
239 which calls handle_inferior_event in a loop, and until
240 wait_for_inferior exits, this variable is changed only by keep_going. */
241
242 static int stepping_over_breakpoint;
243
244 /* Nonzero if we want to give control to the user when we're notified
245 of shared library events by the dynamic linker. */
246 static int stop_on_solib_events;
247 static void
248 show_stop_on_solib_events (struct ui_file *file, int from_tty,
249 struct cmd_list_element *c, const char *value)
250 {
251 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
252 value);
253 }
254
255 /* Nonzero means expecting a trace trap
256 and should stop the inferior and return silently when it happens. */
257
258 int stop_after_trap;
259
260 /* Nonzero means expecting a trap and caller will handle it themselves.
261 It is used after attach, due to attaching to a process;
262 when running in the shell before the child program has been exec'd;
263 and when running some kinds of remote stuff (FIXME?). */
264
265 enum stop_kind stop_soon;
266
267 /* Nonzero if proceed is being used for a "finish" command or a similar
268 situation when stop_registers should be saved. */
269
270 int proceed_to_finish;
271
272 /* Save register contents here when about to pop a stack dummy frame,
273 if-and-only-if proceed_to_finish is set.
274 Thus this contains the return value from the called function (assuming
275 values are returned in a register). */
276
277 struct regcache *stop_registers;
278
279 /* Nonzero after stop if current stack frame should be printed. */
280
281 static int stop_print_frame;
282
283 /* Step-resume or longjmp-resume breakpoint. */
284 static struct breakpoint *step_resume_breakpoint = NULL;
285
286 /* This is a cached copy of the pid/waitstatus of the last event
287 returned by target_wait()/deprecated_target_wait_hook(). This
288 information is returned by get_last_target_status(). */
289 static ptid_t target_last_wait_ptid;
290 static struct target_waitstatus target_last_waitstatus;
291
292 /* Context-switchable data. */
293 struct thread_stepping_state
294 {
295 /* Should we step over breakpoint next time keep_going
296 is called? */
297 int stepping_over_breakpoint;
298 int current_line;
299 struct symtab *current_symtab;
300 int step_after_step_resume_breakpoint;
301 int stepping_through_solib_after_catch;
302 bpstat stepping_through_solib_catchpoints;
303 };
304
305 struct thread_stepping_state gtss;
306 struct thread_stepping_state *tss = &gtss;
307
308 static void context_switch (ptid_t ptid);
309
310 void init_thread_stepping_state (struct thread_stepping_state *tss);
311
312 void init_infwait_state (void);
313
314 /* This is used to remember when a fork, vfork or exec event
315 was caught by a catchpoint, and thus the event is to be
316 followed at the next resume of the inferior, and not
317 immediately. */
318 static struct
319 {
320 enum target_waitkind kind;
321 struct
322 {
323 ptid_t parent_pid;
324 ptid_t child_pid;
325 }
326 fork_event;
327 char *execd_pathname;
328 }
329 pending_follow;
330
331 static const char follow_fork_mode_child[] = "child";
332 static const char follow_fork_mode_parent[] = "parent";
333
334 static const char *follow_fork_mode_kind_names[] = {
335 follow_fork_mode_child,
336 follow_fork_mode_parent,
337 NULL
338 };
339
340 static const char *follow_fork_mode_string = follow_fork_mode_parent;
341 static void
342 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
343 struct cmd_list_element *c, const char *value)
344 {
345 fprintf_filtered (file, _("\
346 Debugger response to a program call of fork or vfork is \"%s\".\n"),
347 value);
348 }
349 \f
350
351 static int
352 follow_fork (void)
353 {
354 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
355
356 return target_follow_fork (follow_child);
357 }
358
359 void
360 follow_inferior_reset_breakpoints (void)
361 {
362 /* Was there a step_resume breakpoint? (There was if the user
363 did a "next" at the fork() call.) If so, explicitly reset its
364 thread number.
365
366 step_resumes are a form of bp that are made to be per-thread.
367 Since we created the step_resume bp when the parent process
368 was being debugged, and now are switching to the child process,
369 from the breakpoint package's viewpoint, that's a switch of
370 "threads". We must update the bp's notion of which thread
371 it is for, or it'll be ignored when it triggers. */
372
373 if (step_resume_breakpoint)
374 breakpoint_re_set_thread (step_resume_breakpoint);
375
376 /* Reinsert all breakpoints in the child. The user may have set
377 breakpoints after catching the fork, in which case those
378 were never set in the child, but only in the parent. This makes
379 sure the inserted breakpoints match the breakpoint list. */
380
381 breakpoint_re_set ();
382 insert_breakpoints ();
383 }
384
385 /* EXECD_PATHNAME is assumed to be non-NULL. */
386
387 static void
388 follow_exec (ptid_t pid, char *execd_pathname)
389 {
390 ptid_t saved_pid = pid;
391 struct target_ops *tgt;
392
393 /* This is an exec event that we actually wish to pay attention to.
394 Refresh our symbol table to the newly exec'd program, remove any
395 momentary bp's, etc.
396
397 If there are breakpoints, they aren't really inserted now,
398 since the exec() transformed our inferior into a fresh set
399 of instructions.
400
401 We want to preserve symbolic breakpoints on the list, since
402 we have hopes that they can be reset after the new a.out's
403 symbol table is read.
404
405 However, any "raw" breakpoints must be removed from the list
406 (e.g., the solib bp's), since their address is probably invalid
407 now.
408
409 And, we DON'T want to call delete_breakpoints() here, since
410 that may write the bp's "shadow contents" (the instruction
411 value that was overwritten witha TRAP instruction). Since
412 we now have a new a.out, those shadow contents aren't valid. */
413 update_breakpoints_after_exec ();
414
415 /* If there was one, it's gone now. We cannot truly step-to-next
416 statement through an exec(). */
417 step_resume_breakpoint = NULL;
418 step_range_start = 0;
419 step_range_end = 0;
420
421 /* What is this a.out's name? */
422 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
423
424 /* We've followed the inferior through an exec. Therefore, the
425 inferior has essentially been killed & reborn. */
426
427 gdb_flush (gdb_stdout);
428 generic_mourn_inferior ();
429 /* Because mourn_inferior resets inferior_ptid. */
430 inferior_ptid = saved_pid;
431
432 if (gdb_sysroot && *gdb_sysroot)
433 {
434 char *name = alloca (strlen (gdb_sysroot)
435 + strlen (execd_pathname)
436 + 1);
437 strcpy (name, gdb_sysroot);
438 strcat (name, execd_pathname);
439 execd_pathname = name;
440 }
441
442 /* That a.out is now the one to use. */
443 exec_file_attach (execd_pathname, 0);
444
445 /* Reset the shared library package. This ensures that we get a
446 shlib event when the child reaches "_start", at which point the
447 dld will have had a chance to initialize the child. */
448 /* Also, loading a symbol file below may trigger symbol lookups, and
449 we don't want those to be satisfied by the libraries of the
450 previous incarnation of this process. */
451 no_shared_libraries (NULL, 0);
452
453 /* Load the main file's symbols. */
454 symbol_file_add_main (execd_pathname, 0);
455
456 #ifdef SOLIB_CREATE_INFERIOR_HOOK
457 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
458 #else
459 solib_create_inferior_hook ();
460 #endif
461
462 /* Reinsert all breakpoints. (Those which were symbolic have
463 been reset to the proper address in the new a.out, thanks
464 to symbol_file_command...) */
465 insert_breakpoints ();
466
467 /* The next resume of this inferior should bring it to the shlib
468 startup breakpoints. (If the user had also set bp's on
469 "main" from the old (parent) process, then they'll auto-
470 matically get reset there in the new process.) */
471 }
472
473 /* Non-zero if we just simulating a single-step. This is needed
474 because we cannot remove the breakpoints in the inferior process
475 until after the `wait' in `wait_for_inferior'. */
476 static int singlestep_breakpoints_inserted_p = 0;
477
478 /* The thread we inserted single-step breakpoints for. */
479 static ptid_t singlestep_ptid;
480
481 /* PC when we started this single-step. */
482 static CORE_ADDR singlestep_pc;
483
484 /* If another thread hit the singlestep breakpoint, we save the original
485 thread here so that we can resume single-stepping it later. */
486 static ptid_t saved_singlestep_ptid;
487 static int stepping_past_singlestep_breakpoint;
488
489 /* If not equal to null_ptid, this means that after stepping over breakpoint
490 is finished, we need to switch to deferred_step_ptid, and step it.
491
492 The use case is when one thread has hit a breakpoint, and then the user
493 has switched to another thread and issued 'step'. We need to step over
494 breakpoint in the thread which hit the breakpoint, but then continue
495 stepping the thread user has selected. */
496 static ptid_t deferred_step_ptid;
497 \f
498 /* Displaced stepping. */
499
500 /* In non-stop debugging mode, we must take special care to manage
501 breakpoints properly; in particular, the traditional strategy for
502 stepping a thread past a breakpoint it has hit is unsuitable.
503 'Displaced stepping' is a tactic for stepping one thread past a
504 breakpoint it has hit while ensuring that other threads running
505 concurrently will hit the breakpoint as they should.
506
507 The traditional way to step a thread T off a breakpoint in a
508 multi-threaded program in all-stop mode is as follows:
509
510 a0) Initially, all threads are stopped, and breakpoints are not
511 inserted.
512 a1) We single-step T, leaving breakpoints uninserted.
513 a2) We insert breakpoints, and resume all threads.
514
515 In non-stop debugging, however, this strategy is unsuitable: we
516 don't want to have to stop all threads in the system in order to
517 continue or step T past a breakpoint. Instead, we use displaced
518 stepping:
519
520 n0) Initially, T is stopped, other threads are running, and
521 breakpoints are inserted.
522 n1) We copy the instruction "under" the breakpoint to a separate
523 location, outside the main code stream, making any adjustments
524 to the instruction, register, and memory state as directed by
525 T's architecture.
526 n2) We single-step T over the instruction at its new location.
527 n3) We adjust the resulting register and memory state as directed
528 by T's architecture. This includes resetting T's PC to point
529 back into the main instruction stream.
530 n4) We resume T.
531
532 This approach depends on the following gdbarch methods:
533
534 - gdbarch_max_insn_length and gdbarch_displaced_step_location
535 indicate where to copy the instruction, and how much space must
536 be reserved there. We use these in step n1.
537
538 - gdbarch_displaced_step_copy_insn copies a instruction to a new
539 address, and makes any necessary adjustments to the instruction,
540 register contents, and memory. We use this in step n1.
541
542 - gdbarch_displaced_step_fixup adjusts registers and memory after
543 we have successfuly single-stepped the instruction, to yield the
544 same effect the instruction would have had if we had executed it
545 at its original address. We use this in step n3.
546
547 - gdbarch_displaced_step_free_closure provides cleanup.
548
549 The gdbarch_displaced_step_copy_insn and
550 gdbarch_displaced_step_fixup functions must be written so that
551 copying an instruction with gdbarch_displaced_step_copy_insn,
552 single-stepping across the copied instruction, and then applying
553 gdbarch_displaced_insn_fixup should have the same effects on the
554 thread's memory and registers as stepping the instruction in place
555 would have. Exactly which responsibilities fall to the copy and
556 which fall to the fixup is up to the author of those functions.
557
558 See the comments in gdbarch.sh for details.
559
560 Note that displaced stepping and software single-step cannot
561 currently be used in combination, although with some care I think
562 they could be made to. Software single-step works by placing
563 breakpoints on all possible subsequent instructions; if the
564 displaced instruction is a PC-relative jump, those breakpoints
565 could fall in very strange places --- on pages that aren't
566 executable, or at addresses that are not proper instruction
567 boundaries. (We do generally let other threads run while we wait
568 to hit the software single-step breakpoint, and they might
569 encounter such a corrupted instruction.) One way to work around
570 this would be to have gdbarch_displaced_step_copy_insn fully
571 simulate the effect of PC-relative instructions (and return NULL)
572 on architectures that use software single-stepping.
573
574 In non-stop mode, we can have independent and simultaneous step
575 requests, so more than one thread may need to simultaneously step
576 over a breakpoint. The current implementation assumes there is
577 only one scratch space per process. In this case, we have to
578 serialize access to the scratch space. If thread A wants to step
579 over a breakpoint, but we are currently waiting for some other
580 thread to complete a displaced step, we leave thread A stopped and
581 place it in the displaced_step_request_queue. Whenever a displaced
582 step finishes, we pick the next thread in the queue and start a new
583 displaced step operation on it. See displaced_step_prepare and
584 displaced_step_fixup for details. */
585
586 /* If this is not null_ptid, this is the thread carrying out a
587 displaced single-step. This thread's state will require fixing up
588 once it has completed its step. */
589 static ptid_t displaced_step_ptid;
590
591 struct displaced_step_request
592 {
593 ptid_t ptid;
594 struct displaced_step_request *next;
595 };
596
597 /* A queue of pending displaced stepping requests. */
598 struct displaced_step_request *displaced_step_request_queue;
599
600 /* The architecture the thread had when we stepped it. */
601 static struct gdbarch *displaced_step_gdbarch;
602
603 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
604 for post-step cleanup. */
605 static struct displaced_step_closure *displaced_step_closure;
606
607 /* The address of the original instruction, and the copy we made. */
608 static CORE_ADDR displaced_step_original, displaced_step_copy;
609
610 /* Saved contents of copy area. */
611 static gdb_byte *displaced_step_saved_copy;
612
613 /* When this is non-zero, we are allowed to use displaced stepping, if
614 the architecture supports it. When this is zero, we use
615 traditional the hold-and-step approach. */
616 int can_use_displaced_stepping = 1;
617 static void
618 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
619 struct cmd_list_element *c,
620 const char *value)
621 {
622 fprintf_filtered (file, _("\
623 Debugger's willingness to use displaced stepping to step over "
624 "breakpoints is %s.\n"), value);
625 }
626
627 /* Return non-zero if displaced stepping is enabled, and can be used
628 with GDBARCH. */
629 static int
630 use_displaced_stepping (struct gdbarch *gdbarch)
631 {
632 return (can_use_displaced_stepping
633 && gdbarch_displaced_step_copy_insn_p (gdbarch));
634 }
635
636 /* Clean out any stray displaced stepping state. */
637 static void
638 displaced_step_clear (void)
639 {
640 /* Indicate that there is no cleanup pending. */
641 displaced_step_ptid = null_ptid;
642
643 if (displaced_step_closure)
644 {
645 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
646 displaced_step_closure);
647 displaced_step_closure = NULL;
648 }
649 }
650
651 static void
652 cleanup_displaced_step_closure (void *ptr)
653 {
654 struct displaced_step_closure *closure = ptr;
655
656 gdbarch_displaced_step_free_closure (current_gdbarch, closure);
657 }
658
659 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
660 void
661 displaced_step_dump_bytes (struct ui_file *file,
662 const gdb_byte *buf,
663 size_t len)
664 {
665 int i;
666
667 for (i = 0; i < len; i++)
668 fprintf_unfiltered (file, "%02x ", buf[i]);
669 fputs_unfiltered ("\n", file);
670 }
671
672 /* Prepare to single-step, using displaced stepping.
673
674 Note that we cannot use displaced stepping when we have a signal to
675 deliver. If we have a signal to deliver and an instruction to step
676 over, then after the step, there will be no indication from the
677 target whether the thread entered a signal handler or ignored the
678 signal and stepped over the instruction successfully --- both cases
679 result in a simple SIGTRAP. In the first case we mustn't do a
680 fixup, and in the second case we must --- but we can't tell which.
681 Comments in the code for 'random signals' in handle_inferior_event
682 explain how we handle this case instead.
683
684 Returns 1 if preparing was successful -- this thread is going to be
685 stepped now; or 0 if displaced stepping this thread got queued. */
686 static int
687 displaced_step_prepare (ptid_t ptid)
688 {
689 struct cleanup *old_cleanups;
690 struct regcache *regcache = get_thread_regcache (ptid);
691 struct gdbarch *gdbarch = get_regcache_arch (regcache);
692 CORE_ADDR original, copy;
693 ULONGEST len;
694 struct displaced_step_closure *closure;
695
696 /* We should never reach this function if the architecture does not
697 support displaced stepping. */
698 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
699
700 /* For the first cut, we're displaced stepping one thread at a
701 time. */
702
703 if (!ptid_equal (displaced_step_ptid, null_ptid))
704 {
705 /* Already waiting for a displaced step to finish. Defer this
706 request and place in queue. */
707 struct displaced_step_request *req, *new_req;
708
709 if (debug_displaced)
710 fprintf_unfiltered (gdb_stdlog,
711 "displaced: defering step of %s\n",
712 target_pid_to_str (ptid));
713
714 new_req = xmalloc (sizeof (*new_req));
715 new_req->ptid = ptid;
716 new_req->next = NULL;
717
718 if (displaced_step_request_queue)
719 {
720 for (req = displaced_step_request_queue;
721 req && req->next;
722 req = req->next)
723 ;
724 req->next = new_req;
725 }
726 else
727 displaced_step_request_queue = new_req;
728
729 return 0;
730 }
731 else
732 {
733 if (debug_displaced)
734 fprintf_unfiltered (gdb_stdlog,
735 "displaced: stepping %s now\n",
736 target_pid_to_str (ptid));
737 }
738
739 displaced_step_clear ();
740
741 original = regcache_read_pc (regcache);
742
743 copy = gdbarch_displaced_step_location (gdbarch);
744 len = gdbarch_max_insn_length (gdbarch);
745
746 /* Save the original contents of the copy area. */
747 displaced_step_saved_copy = xmalloc (len);
748 old_cleanups = make_cleanup (free_current_contents,
749 &displaced_step_saved_copy);
750 read_memory (copy, displaced_step_saved_copy, len);
751 if (debug_displaced)
752 {
753 fprintf_unfiltered (gdb_stdlog, "displaced: saved 0x%s: ",
754 paddr_nz (copy));
755 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
756 };
757
758 closure = gdbarch_displaced_step_copy_insn (gdbarch,
759 original, copy, regcache);
760
761 /* We don't support the fully-simulated case at present. */
762 gdb_assert (closure);
763
764 make_cleanup (cleanup_displaced_step_closure, closure);
765
766 /* Resume execution at the copy. */
767 regcache_write_pc (regcache, copy);
768
769 discard_cleanups (old_cleanups);
770
771 if (debug_displaced)
772 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to 0x%s\n",
773 paddr_nz (copy));
774
775 /* Save the information we need to fix things up if the step
776 succeeds. */
777 displaced_step_ptid = ptid;
778 displaced_step_gdbarch = gdbarch;
779 displaced_step_closure = closure;
780 displaced_step_original = original;
781 displaced_step_copy = copy;
782 return 1;
783 }
784
785 static void
786 displaced_step_clear_cleanup (void *ignore)
787 {
788 displaced_step_clear ();
789 }
790
791 static void
792 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
793 {
794 struct cleanup *ptid_cleanup = save_inferior_ptid ();
795 inferior_ptid = ptid;
796 write_memory (memaddr, myaddr, len);
797 do_cleanups (ptid_cleanup);
798 }
799
800 static void
801 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
802 {
803 struct cleanup *old_cleanups;
804
805 /* Was this event for the pid we displaced? */
806 if (ptid_equal (displaced_step_ptid, null_ptid)
807 || ! ptid_equal (displaced_step_ptid, event_ptid))
808 return;
809
810 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
811
812 /* Restore the contents of the copy area. */
813 {
814 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
815 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
816 displaced_step_saved_copy, len);
817 if (debug_displaced)
818 fprintf_unfiltered (gdb_stdlog, "displaced: restored 0x%s\n",
819 paddr_nz (displaced_step_copy));
820 }
821
822 /* Did the instruction complete successfully? */
823 if (signal == TARGET_SIGNAL_TRAP)
824 {
825 /* Fix up the resulting state. */
826 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
827 displaced_step_closure,
828 displaced_step_original,
829 displaced_step_copy,
830 get_thread_regcache (displaced_step_ptid));
831 }
832 else
833 {
834 /* Since the instruction didn't complete, all we can do is
835 relocate the PC. */
836 struct regcache *regcache = get_thread_regcache (event_ptid);
837 CORE_ADDR pc = regcache_read_pc (regcache);
838 pc = displaced_step_original + (pc - displaced_step_copy);
839 regcache_write_pc (regcache, pc);
840 }
841
842 do_cleanups (old_cleanups);
843
844 /* Are there any pending displaced stepping requests? If so, run
845 one now. */
846 if (displaced_step_request_queue)
847 {
848 struct displaced_step_request *head;
849 ptid_t ptid;
850
851 head = displaced_step_request_queue;
852 ptid = head->ptid;
853 displaced_step_request_queue = head->next;
854 xfree (head);
855
856 if (debug_displaced)
857 fprintf_unfiltered (gdb_stdlog,
858 "displaced: stepping queued %s now\n",
859 target_pid_to_str (ptid));
860
861
862 displaced_step_ptid = null_ptid;
863 displaced_step_prepare (ptid);
864 target_resume (ptid, 1, TARGET_SIGNAL_0);
865 }
866 }
867
868 /* Update global variables holding ptids to hold NEW_PTID if they were
869 holding OLD_PTID. */
870 static void
871 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
872 {
873 struct displaced_step_request *it;
874
875 if (ptid_equal (inferior_ptid, old_ptid))
876 inferior_ptid = new_ptid;
877
878 if (ptid_equal (singlestep_ptid, old_ptid))
879 singlestep_ptid = new_ptid;
880
881 if (ptid_equal (displaced_step_ptid, old_ptid))
882 displaced_step_ptid = new_ptid;
883
884 if (ptid_equal (deferred_step_ptid, old_ptid))
885 deferred_step_ptid = new_ptid;
886
887 for (it = displaced_step_request_queue; it; it = it->next)
888 if (ptid_equal (it->ptid, old_ptid))
889 it->ptid = new_ptid;
890 }
891
892 \f
893 /* Resuming. */
894
895 /* Things to clean up if we QUIT out of resume (). */
896 static void
897 resume_cleanups (void *ignore)
898 {
899 normal_stop ();
900 }
901
902 static const char schedlock_off[] = "off";
903 static const char schedlock_on[] = "on";
904 static const char schedlock_step[] = "step";
905 static const char *scheduler_enums[] = {
906 schedlock_off,
907 schedlock_on,
908 schedlock_step,
909 NULL
910 };
911 static const char *scheduler_mode = schedlock_off;
912 static void
913 show_scheduler_mode (struct ui_file *file, int from_tty,
914 struct cmd_list_element *c, const char *value)
915 {
916 fprintf_filtered (file, _("\
917 Mode for locking scheduler during execution is \"%s\".\n"),
918 value);
919 }
920
921 static void
922 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
923 {
924 if (!target_can_lock_scheduler)
925 {
926 scheduler_mode = schedlock_off;
927 error (_("Target '%s' cannot support this command."), target_shortname);
928 }
929 }
930
931
932 /* Resume the inferior, but allow a QUIT. This is useful if the user
933 wants to interrupt some lengthy single-stepping operation
934 (for child processes, the SIGINT goes to the inferior, and so
935 we get a SIGINT random_signal, but for remote debugging and perhaps
936 other targets, that's not true).
937
938 STEP nonzero if we should step (zero to continue instead).
939 SIG is the signal to give the inferior (zero for none). */
940 void
941 resume (int step, enum target_signal sig)
942 {
943 int should_resume = 1;
944 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
945 struct regcache *regcache = get_current_regcache ();
946 struct gdbarch *gdbarch = get_regcache_arch (regcache);
947 CORE_ADDR pc = regcache_read_pc (regcache);
948 QUIT;
949
950 if (debug_infrun)
951 fprintf_unfiltered (gdb_stdlog,
952 "infrun: resume (step=%d, signal=%d), "
953 "stepping_over_breakpoint=%d\n",
954 step, sig, stepping_over_breakpoint);
955
956 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
957 over an instruction that causes a page fault without triggering
958 a hardware watchpoint. The kernel properly notices that it shouldn't
959 stop, because the hardware watchpoint is not triggered, but it forgets
960 the step request and continues the program normally.
961 Work around the problem by removing hardware watchpoints if a step is
962 requested, GDB will check for a hardware watchpoint trigger after the
963 step anyway. */
964 if (CANNOT_STEP_HW_WATCHPOINTS && step)
965 remove_hw_watchpoints ();
966
967
968 /* Normally, by the time we reach `resume', the breakpoints are either
969 removed or inserted, as appropriate. The exception is if we're sitting
970 at a permanent breakpoint; we need to step over it, but permanent
971 breakpoints can't be removed. So we have to test for it here. */
972 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
973 {
974 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
975 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
976 else
977 error (_("\
978 The program is stopped at a permanent breakpoint, but GDB does not know\n\
979 how to step past a permanent breakpoint on this architecture. Try using\n\
980 a command like `return' or `jump' to continue execution."));
981 }
982
983 /* If enabled, step over breakpoints by executing a copy of the
984 instruction at a different address.
985
986 We can't use displaced stepping when we have a signal to deliver;
987 the comments for displaced_step_prepare explain why. The
988 comments in the handle_inferior event for dealing with 'random
989 signals' explain what we do instead. */
990 if (use_displaced_stepping (gdbarch)
991 && stepping_over_breakpoint
992 && sig == TARGET_SIGNAL_0)
993 {
994 if (!displaced_step_prepare (inferior_ptid))
995 {
996 /* Got placed in displaced stepping queue. Will be resumed
997 later when all the currently queued displaced stepping
998 requests finish. The thread is not executing at this point,
999 and the call to set_executing will be made later. But we
1000 need to call set_running here, since from frontend point of view,
1001 the thread is running. */
1002 set_running (inferior_ptid, 1);
1003 discard_cleanups (old_cleanups);
1004 return;
1005 }
1006 }
1007
1008 if (step && gdbarch_software_single_step_p (gdbarch))
1009 {
1010 /* Do it the hard way, w/temp breakpoints */
1011 if (gdbarch_software_single_step (gdbarch, get_current_frame ()))
1012 {
1013 /* ...and don't ask hardware to do it. */
1014 step = 0;
1015 /* and do not pull these breakpoints until after a `wait' in
1016 `wait_for_inferior' */
1017 singlestep_breakpoints_inserted_p = 1;
1018 singlestep_ptid = inferior_ptid;
1019 singlestep_pc = pc;
1020 }
1021 }
1022
1023 /* If there were any forks/vforks/execs that were caught and are
1024 now to be followed, then do so. */
1025 switch (pending_follow.kind)
1026 {
1027 case TARGET_WAITKIND_FORKED:
1028 case TARGET_WAITKIND_VFORKED:
1029 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
1030 if (follow_fork ())
1031 should_resume = 0;
1032 break;
1033
1034 case TARGET_WAITKIND_EXECD:
1035 /* follow_exec is called as soon as the exec event is seen. */
1036 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
1037 break;
1038
1039 default:
1040 break;
1041 }
1042
1043 /* Install inferior's terminal modes. */
1044 target_terminal_inferior ();
1045
1046 if (should_resume)
1047 {
1048 ptid_t resume_ptid;
1049
1050 resume_ptid = RESUME_ALL; /* Default */
1051
1052 /* If STEP is set, it's a request to use hardware stepping
1053 facilities. But in that case, we should never
1054 use singlestep breakpoint. */
1055 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1056
1057 if (singlestep_breakpoints_inserted_p
1058 && stepping_past_singlestep_breakpoint)
1059 {
1060 /* The situation here is as follows. In thread T1 we wanted to
1061 single-step. Lacking hardware single-stepping we've
1062 set breakpoint at the PC of the next instruction -- call it
1063 P. After resuming, we've hit that breakpoint in thread T2.
1064 Now we've removed original breakpoint, inserted breakpoint
1065 at P+1, and try to step to advance T2 past breakpoint.
1066 We need to step only T2, as if T1 is allowed to freely run,
1067 it can run past P, and if other threads are allowed to run,
1068 they can hit breakpoint at P+1, and nested hits of single-step
1069 breakpoints is not something we'd want -- that's complicated
1070 to support, and has no value. */
1071 resume_ptid = inferior_ptid;
1072 }
1073
1074 if ((step || singlestep_breakpoints_inserted_p)
1075 && stepping_over_breakpoint)
1076 {
1077 /* We're allowing a thread to run past a breakpoint it has
1078 hit, by single-stepping the thread with the breakpoint
1079 removed. In which case, we need to single-step only this
1080 thread, and keep others stopped, as they can miss this
1081 breakpoint if allowed to run.
1082
1083 The current code actually removes all breakpoints when
1084 doing this, not just the one being stepped over, so if we
1085 let other threads run, we can actually miss any
1086 breakpoint, not just the one at PC. */
1087 resume_ptid = inferior_ptid;
1088 }
1089
1090 if (non_stop)
1091 {
1092 /* With non-stop mode on, threads are always handled
1093 individually. */
1094 resume_ptid = inferior_ptid;
1095 }
1096 else if ((scheduler_mode == schedlock_on)
1097 || (scheduler_mode == schedlock_step
1098 && (step || singlestep_breakpoints_inserted_p)))
1099 {
1100 /* User-settable 'scheduler' mode requires solo thread resume. */
1101 resume_ptid = inferior_ptid;
1102 }
1103
1104 if (gdbarch_cannot_step_breakpoint (gdbarch))
1105 {
1106 /* Most targets can step a breakpoint instruction, thus
1107 executing it normally. But if this one cannot, just
1108 continue and we will hit it anyway. */
1109 if (step && breakpoint_inserted_here_p (pc))
1110 step = 0;
1111 }
1112
1113 if (debug_displaced
1114 && use_displaced_stepping (gdbarch)
1115 && stepping_over_breakpoint)
1116 {
1117 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1118 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1119 gdb_byte buf[4];
1120
1121 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
1122 paddr_nz (actual_pc));
1123 read_memory (actual_pc, buf, sizeof (buf));
1124 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1125 }
1126
1127 target_resume (resume_ptid, step, sig);
1128 }
1129
1130 discard_cleanups (old_cleanups);
1131 }
1132 \f
1133 /* Proceeding. */
1134
1135 /* Clear out all variables saying what to do when inferior is continued.
1136 First do this, then set the ones you want, then call `proceed'. */
1137
1138 void
1139 clear_proceed_status (void)
1140 {
1141 stepping_over_breakpoint = 0;
1142 step_range_start = 0;
1143 step_range_end = 0;
1144 step_frame_id = null_frame_id;
1145 step_over_calls = STEP_OVER_UNDEBUGGABLE;
1146 stop_after_trap = 0;
1147 stop_soon = NO_STOP_QUIETLY;
1148 proceed_to_finish = 0;
1149 breakpoint_proceeded = 1; /* We're about to proceed... */
1150
1151 if (stop_registers)
1152 {
1153 regcache_xfree (stop_registers);
1154 stop_registers = NULL;
1155 }
1156
1157 /* Discard any remaining commands or status from previous stop. */
1158 bpstat_clear (&stop_bpstat);
1159 }
1160
1161 /* This should be suitable for any targets that support threads. */
1162
1163 static int
1164 prepare_to_proceed (int step)
1165 {
1166 ptid_t wait_ptid;
1167 struct target_waitstatus wait_status;
1168
1169 /* Get the last target status returned by target_wait(). */
1170 get_last_target_status (&wait_ptid, &wait_status);
1171
1172 /* Make sure we were stopped at a breakpoint. */
1173 if (wait_status.kind != TARGET_WAITKIND_STOPPED
1174 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
1175 {
1176 return 0;
1177 }
1178
1179 /* Switched over from WAIT_PID. */
1180 if (!ptid_equal (wait_ptid, minus_one_ptid)
1181 && !ptid_equal (inferior_ptid, wait_ptid))
1182 {
1183 struct regcache *regcache = get_thread_regcache (wait_ptid);
1184
1185 if (breakpoint_here_p (regcache_read_pc (regcache)))
1186 {
1187 /* If stepping, remember current thread to switch back to. */
1188 if (step)
1189 deferred_step_ptid = inferior_ptid;
1190
1191 /* Switch back to WAIT_PID thread. */
1192 switch_to_thread (wait_ptid);
1193
1194 /* We return 1 to indicate that there is a breakpoint here,
1195 so we need to step over it before continuing to avoid
1196 hitting it straight away. */
1197 return 1;
1198 }
1199 }
1200
1201 return 0;
1202 }
1203
1204 /* Record the pc of the program the last time it stopped. This is
1205 just used internally by wait_for_inferior, but need to be preserved
1206 over calls to it and cleared when the inferior is started. */
1207 static CORE_ADDR prev_pc;
1208
1209 /* Basic routine for continuing the program in various fashions.
1210
1211 ADDR is the address to resume at, or -1 for resume where stopped.
1212 SIGGNAL is the signal to give it, or 0 for none,
1213 or -1 for act according to how it stopped.
1214 STEP is nonzero if should trap after one instruction.
1215 -1 means return after that and print nothing.
1216 You should probably set various step_... variables
1217 before calling here, if you are stepping.
1218
1219 You should call clear_proceed_status before calling proceed. */
1220
1221 void
1222 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
1223 {
1224 struct regcache *regcache = get_current_regcache ();
1225 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1226 CORE_ADDR pc = regcache_read_pc (regcache);
1227 int oneproc = 0;
1228
1229 if (step > 0)
1230 step_start_function = find_pc_function (pc);
1231 if (step < 0)
1232 stop_after_trap = 1;
1233
1234 if (addr == (CORE_ADDR) -1)
1235 {
1236 if (pc == stop_pc && breakpoint_here_p (pc))
1237 /* There is a breakpoint at the address we will resume at,
1238 step one instruction before inserting breakpoints so that
1239 we do not stop right away (and report a second hit at this
1240 breakpoint). */
1241 oneproc = 1;
1242 else if (gdbarch_single_step_through_delay_p (gdbarch)
1243 && gdbarch_single_step_through_delay (gdbarch,
1244 get_current_frame ()))
1245 /* We stepped onto an instruction that needs to be stepped
1246 again before re-inserting the breakpoint, do so. */
1247 oneproc = 1;
1248 }
1249 else
1250 {
1251 regcache_write_pc (regcache, addr);
1252 }
1253
1254 if (debug_infrun)
1255 fprintf_unfiltered (gdb_stdlog,
1256 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
1257 paddr_nz (addr), siggnal, step);
1258
1259 if (non_stop)
1260 /* In non-stop, each thread is handled individually. The context
1261 must already be set to the right thread here. */
1262 ;
1263 else
1264 {
1265 /* In a multi-threaded task we may select another thread and
1266 then continue or step.
1267
1268 But if the old thread was stopped at a breakpoint, it will
1269 immediately cause another breakpoint stop without any
1270 execution (i.e. it will report a breakpoint hit incorrectly).
1271 So we must step over it first.
1272
1273 prepare_to_proceed checks the current thread against the
1274 thread that reported the most recent event. If a step-over
1275 is required it returns TRUE and sets the current thread to
1276 the old thread. */
1277 if (prepare_to_proceed (step))
1278 oneproc = 1;
1279 }
1280
1281 if (oneproc)
1282 {
1283 stepping_over_breakpoint = 1;
1284 /* If displaced stepping is enabled, we can step over the
1285 breakpoint without hitting it, so leave all breakpoints
1286 inserted. Otherwise we need to disable all breakpoints, step
1287 one instruction, and then re-add them when that step is
1288 finished. */
1289 if (!use_displaced_stepping (gdbarch))
1290 remove_breakpoints ();
1291 }
1292
1293 /* We can insert breakpoints if we're not trying to step over one,
1294 or if we are stepping over one but we're using displaced stepping
1295 to do so. */
1296 if (! stepping_over_breakpoint || use_displaced_stepping (gdbarch))
1297 insert_breakpoints ();
1298
1299 if (siggnal != TARGET_SIGNAL_DEFAULT)
1300 stop_signal = siggnal;
1301 /* If this signal should not be seen by program,
1302 give it zero. Used for debugging signals. */
1303 else if (!signal_program[stop_signal])
1304 stop_signal = TARGET_SIGNAL_0;
1305
1306 annotate_starting ();
1307
1308 /* Make sure that output from GDB appears before output from the
1309 inferior. */
1310 gdb_flush (gdb_stdout);
1311
1312 /* Refresh prev_pc value just prior to resuming. This used to be
1313 done in stop_stepping, however, setting prev_pc there did not handle
1314 scenarios such as inferior function calls or returning from
1315 a function via the return command. In those cases, the prev_pc
1316 value was not set properly for subsequent commands. The prev_pc value
1317 is used to initialize the starting line number in the ecs. With an
1318 invalid value, the gdb next command ends up stopping at the position
1319 represented by the next line table entry past our start position.
1320 On platforms that generate one line table entry per line, this
1321 is not a problem. However, on the ia64, the compiler generates
1322 extraneous line table entries that do not increase the line number.
1323 When we issue the gdb next command on the ia64 after an inferior call
1324 or a return command, we often end up a few instructions forward, still
1325 within the original line we started.
1326
1327 An attempt was made to have init_execution_control_state () refresh
1328 the prev_pc value before calculating the line number. This approach
1329 did not work because on platforms that use ptrace, the pc register
1330 cannot be read unless the inferior is stopped. At that point, we
1331 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
1332 call can fail. Setting the prev_pc value here ensures the value is
1333 updated correctly when the inferior is stopped. */
1334 prev_pc = regcache_read_pc (get_current_regcache ());
1335
1336 /* Fill in with reasonable starting values. */
1337 init_thread_stepping_state (tss);
1338
1339 /* We'll update this if & when we switch to a new thread. */
1340 previous_inferior_ptid = inferior_ptid;
1341
1342 /* Reset to normal state. */
1343 init_infwait_state ();
1344
1345 /* Resume inferior. */
1346 resume (oneproc || step || bpstat_should_step (), stop_signal);
1347
1348 /* Wait for it to stop (if not standalone)
1349 and in any case decode why it stopped, and act accordingly. */
1350 /* Do this only if we are not using the event loop, or if the target
1351 does not support asynchronous execution. */
1352 if (!target_can_async_p ())
1353 {
1354 wait_for_inferior (0);
1355 normal_stop ();
1356 }
1357 }
1358 \f
1359
1360 /* Start remote-debugging of a machine over a serial link. */
1361
1362 void
1363 start_remote (int from_tty)
1364 {
1365 init_wait_for_inferior ();
1366 stop_soon = STOP_QUIETLY_REMOTE;
1367 stepping_over_breakpoint = 0;
1368
1369 /* Always go on waiting for the target, regardless of the mode. */
1370 /* FIXME: cagney/1999-09-23: At present it isn't possible to
1371 indicate to wait_for_inferior that a target should timeout if
1372 nothing is returned (instead of just blocking). Because of this,
1373 targets expecting an immediate response need to, internally, set
1374 things up so that the target_wait() is forced to eventually
1375 timeout. */
1376 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1377 differentiate to its caller what the state of the target is after
1378 the initial open has been performed. Here we're assuming that
1379 the target has stopped. It should be possible to eventually have
1380 target_open() return to the caller an indication that the target
1381 is currently running and GDB state should be set to the same as
1382 for an async run. */
1383 wait_for_inferior (0);
1384
1385 /* Now that the inferior has stopped, do any bookkeeping like
1386 loading shared libraries. We want to do this before normal_stop,
1387 so that the displayed frame is up to date. */
1388 post_create_inferior (&current_target, from_tty);
1389
1390 normal_stop ();
1391 }
1392
1393 /* Initialize static vars when a new inferior begins. */
1394
1395 void
1396 init_wait_for_inferior (void)
1397 {
1398 /* These are meaningless until the first time through wait_for_inferior. */
1399 prev_pc = 0;
1400
1401 breakpoint_init_inferior (inf_starting);
1402
1403 /* Don't confuse first call to proceed(). */
1404 stop_signal = TARGET_SIGNAL_0;
1405
1406 /* The first resume is not following a fork/vfork/exec. */
1407 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
1408
1409 clear_proceed_status ();
1410
1411 stepping_past_singlestep_breakpoint = 0;
1412 deferred_step_ptid = null_ptid;
1413
1414 target_last_wait_ptid = minus_one_ptid;
1415
1416 init_thread_stepping_state (tss);
1417 previous_inferior_ptid = null_ptid;
1418 init_infwait_state ();
1419
1420 displaced_step_clear ();
1421 }
1422
1423 \f
1424 /* This enum encodes possible reasons for doing a target_wait, so that
1425 wfi can call target_wait in one place. (Ultimately the call will be
1426 moved out of the infinite loop entirely.) */
1427
1428 enum infwait_states
1429 {
1430 infwait_normal_state,
1431 infwait_thread_hop_state,
1432 infwait_step_watch_state,
1433 infwait_nonstep_watch_state
1434 };
1435
1436 /* Why did the inferior stop? Used to print the appropriate messages
1437 to the interface from within handle_inferior_event(). */
1438 enum inferior_stop_reason
1439 {
1440 /* Step, next, nexti, stepi finished. */
1441 END_STEPPING_RANGE,
1442 /* Inferior terminated by signal. */
1443 SIGNAL_EXITED,
1444 /* Inferior exited. */
1445 EXITED,
1446 /* Inferior received signal, and user asked to be notified. */
1447 SIGNAL_RECEIVED
1448 };
1449
1450 /* The PTID we'll do a target_wait on.*/
1451 ptid_t waiton_ptid;
1452
1453 /* Current inferior wait state. */
1454 enum infwait_states infwait_state;
1455
1456 /* Data to be passed around while handling an event. This data is
1457 discarded between events. */
1458 struct execution_control_state
1459 {
1460 ptid_t ptid;
1461 struct target_waitstatus ws;
1462 int random_signal;
1463 CORE_ADDR stop_func_start;
1464 CORE_ADDR stop_func_end;
1465 char *stop_func_name;
1466 int new_thread_event;
1467 int wait_some_more;
1468 };
1469
1470 void init_execution_control_state (struct execution_control_state *ecs);
1471
1472 void handle_inferior_event (struct execution_control_state *ecs);
1473
1474 static void step_into_function (struct execution_control_state *ecs);
1475 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
1476 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
1477 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
1478 struct frame_id sr_id);
1479 static void insert_longjmp_resume_breakpoint (CORE_ADDR);
1480
1481 static void stop_stepping (struct execution_control_state *ecs);
1482 static void prepare_to_wait (struct execution_control_state *ecs);
1483 static void keep_going (struct execution_control_state *ecs);
1484 static void print_stop_reason (enum inferior_stop_reason stop_reason,
1485 int stop_info);
1486
1487 /* Wait for control to return from inferior to debugger.
1488
1489 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1490 as if they were SIGTRAP signals. This can be useful during
1491 the startup sequence on some targets such as HP/UX, where
1492 we receive an EXEC event instead of the expected SIGTRAP.
1493
1494 If inferior gets a signal, we may decide to start it up again
1495 instead of returning. That is why there is a loop in this function.
1496 When this function actually returns it means the inferior
1497 should be left stopped and GDB should read more commands. */
1498
1499 void
1500 wait_for_inferior (int treat_exec_as_sigtrap)
1501 {
1502 struct cleanup *old_cleanups;
1503 struct execution_control_state ecss;
1504 struct execution_control_state *ecs;
1505
1506 if (debug_infrun)
1507 fprintf_unfiltered
1508 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1509 treat_exec_as_sigtrap);
1510
1511 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
1512 &step_resume_breakpoint);
1513
1514 ecs = &ecss;
1515 memset (ecs, 0, sizeof (*ecs));
1516
1517 overlay_cache_invalid = 1;
1518
1519 /* We have to invalidate the registers BEFORE calling target_wait
1520 because they can be loaded from the target while in target_wait.
1521 This makes remote debugging a bit more efficient for those
1522 targets that provide critical registers as part of their normal
1523 status mechanism. */
1524
1525 registers_changed ();
1526
1527 while (1)
1528 {
1529 if (deprecated_target_wait_hook)
1530 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
1531 else
1532 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
1533
1534 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1535 {
1536 xfree (ecs->ws.value.execd_pathname);
1537 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1538 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1539 }
1540
1541 /* Now figure out what to do with the result of the result. */
1542 handle_inferior_event (ecs);
1543
1544 if (!ecs->wait_some_more)
1545 break;
1546 }
1547 do_cleanups (old_cleanups);
1548 }
1549
1550 /* Asynchronous version of wait_for_inferior. It is called by the
1551 event loop whenever a change of state is detected on the file
1552 descriptor corresponding to the target. It can be called more than
1553 once to complete a single execution command. In such cases we need
1554 to keep the state in a global variable ECSS. If it is the last time
1555 that this function is called for a single execution command, then
1556 report to the user that the inferior has stopped, and do the
1557 necessary cleanups. */
1558
1559 void
1560 fetch_inferior_event (void *client_data)
1561 {
1562 struct execution_control_state ecss;
1563 struct execution_control_state *ecs = &ecss;
1564 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
1565 int was_sync = sync_execution;
1566
1567 memset (ecs, 0, sizeof (*ecs));
1568
1569 overlay_cache_invalid = 1;
1570
1571 if (non_stop)
1572 /* In non-stop mode, the user/frontend should not notice a thread
1573 switch due to internal events. Make sure we reverse to the
1574 user selected thread and frame after handling the event and
1575 running any breakpoint commands. */
1576 make_cleanup_restore_current_thread ();
1577
1578 /* We have to invalidate the registers BEFORE calling target_wait
1579 because they can be loaded from the target while in target_wait.
1580 This makes remote debugging a bit more efficient for those
1581 targets that provide critical registers as part of their normal
1582 status mechanism. */
1583
1584 registers_changed ();
1585
1586 if (deprecated_target_wait_hook)
1587 ecs->ptid =
1588 deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
1589 else
1590 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
1591
1592 if (non_stop
1593 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
1594 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1595 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
1596 /* In non-stop mode, each thread is handled individually. Switch
1597 early, so the global state is set correctly for this
1598 thread. */
1599 context_switch (ecs->ptid);
1600
1601 /* Now figure out what to do with the result of the result. */
1602 handle_inferior_event (ecs);
1603
1604 if (!ecs->wait_some_more)
1605 {
1606 delete_step_resume_breakpoint (&step_resume_breakpoint);
1607
1608 if (stop_soon == NO_STOP_QUIETLY)
1609 normal_stop ();
1610
1611 if (step_multi && stop_step)
1612 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1613 else
1614 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1615 }
1616
1617 /* Revert thread and frame. */
1618 do_cleanups (old_chain);
1619
1620 /* If the inferior was in sync execution mode, and now isn't,
1621 restore the prompt. */
1622 if (was_sync && !sync_execution)
1623 display_gdb_prompt (0);
1624 }
1625
1626 /* Prepare an execution control state for looping through a
1627 wait_for_inferior-type loop. */
1628
1629 void
1630 init_execution_control_state (struct execution_control_state *ecs)
1631 {
1632 ecs->random_signal = 0;
1633 }
1634
1635 /* Clear context switchable stepping state. */
1636
1637 void
1638 init_thread_stepping_state (struct thread_stepping_state *tss)
1639 {
1640 struct symtab_and_line sal;
1641
1642 tss->stepping_over_breakpoint = 0;
1643 tss->step_after_step_resume_breakpoint = 0;
1644 tss->stepping_through_solib_after_catch = 0;
1645 tss->stepping_through_solib_catchpoints = NULL;
1646
1647 sal = find_pc_line (prev_pc, 0);
1648 tss->current_line = sal.line;
1649 tss->current_symtab = sal.symtab;
1650 }
1651
1652 /* Return the cached copy of the last pid/waitstatus returned by
1653 target_wait()/deprecated_target_wait_hook(). The data is actually
1654 cached by handle_inferior_event(), which gets called immediately
1655 after target_wait()/deprecated_target_wait_hook(). */
1656
1657 void
1658 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1659 {
1660 *ptidp = target_last_wait_ptid;
1661 *status = target_last_waitstatus;
1662 }
1663
1664 void
1665 nullify_last_target_wait_ptid (void)
1666 {
1667 target_last_wait_ptid = minus_one_ptid;
1668 }
1669
1670 /* Switch thread contexts, maintaining "infrun state". */
1671
1672 static void
1673 context_switch (ptid_t ptid)
1674 {
1675 /* Caution: it may happen that the new thread (or the old one!)
1676 is not in the thread list. In this case we must not attempt
1677 to "switch context", or we run the risk that our context may
1678 be lost. This may happen as a result of the target module
1679 mishandling thread creation. */
1680
1681 if (debug_infrun)
1682 {
1683 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1684 target_pid_to_str (inferior_ptid));
1685 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1686 target_pid_to_str (ptid));
1687 }
1688
1689 if (in_thread_list (inferior_ptid) && in_thread_list (ptid))
1690 { /* Perform infrun state context switch: */
1691 /* Save infrun state for the old thread. */
1692 save_infrun_state (inferior_ptid, prev_pc,
1693 stepping_over_breakpoint, step_resume_breakpoint,
1694 step_range_start,
1695 step_range_end, &step_frame_id,
1696 tss->stepping_over_breakpoint,
1697 tss->stepping_through_solib_after_catch,
1698 tss->stepping_through_solib_catchpoints,
1699 tss->current_line, tss->current_symtab,
1700 cmd_continuation, intermediate_continuation,
1701 proceed_to_finish,
1702 step_over_calls,
1703 stop_step,
1704 step_multi,
1705 stop_signal,
1706 stop_bpstat);
1707
1708 /* Load infrun state for the new thread. */
1709 load_infrun_state (ptid, &prev_pc,
1710 &stepping_over_breakpoint, &step_resume_breakpoint,
1711 &step_range_start,
1712 &step_range_end, &step_frame_id,
1713 &tss->stepping_over_breakpoint,
1714 &tss->stepping_through_solib_after_catch,
1715 &tss->stepping_through_solib_catchpoints,
1716 &tss->current_line, &tss->current_symtab,
1717 &cmd_continuation, &intermediate_continuation,
1718 &proceed_to_finish,
1719 &step_over_calls,
1720 &stop_step,
1721 &step_multi,
1722 &stop_signal,
1723 &stop_bpstat);
1724 }
1725
1726 switch_to_thread (ptid);
1727 }
1728
1729 /* Context switch to thread PTID. */
1730 ptid_t
1731 context_switch_to (ptid_t ptid)
1732 {
1733 ptid_t current_ptid = inferior_ptid;
1734
1735 /* Context switch to the new thread. */
1736 if (!ptid_equal (ptid, inferior_ptid))
1737 {
1738 context_switch (ptid);
1739 }
1740 return current_ptid;
1741 }
1742
1743 static void
1744 adjust_pc_after_break (struct execution_control_state *ecs)
1745 {
1746 struct regcache *regcache = get_thread_regcache (ecs->ptid);
1747 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1748 CORE_ADDR breakpoint_pc;
1749
1750 /* If this target does not decrement the PC after breakpoints, then
1751 we have nothing to do. */
1752 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
1753 return;
1754
1755 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1756 we aren't, just return.
1757
1758 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1759 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1760 implemented by software breakpoints should be handled through the normal
1761 breakpoint layer.
1762
1763 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1764 different signals (SIGILL or SIGEMT for instance), but it is less
1765 clear where the PC is pointing afterwards. It may not match
1766 gdbarch_decr_pc_after_break. I don't know any specific target that
1767 generates these signals at breakpoints (the code has been in GDB since at
1768 least 1992) so I can not guess how to handle them here.
1769
1770 In earlier versions of GDB, a target with
1771 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
1772 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1773 target with both of these set in GDB history, and it seems unlikely to be
1774 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
1775
1776 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1777 return;
1778
1779 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1780 return;
1781
1782 /* Find the location where (if we've hit a breakpoint) the
1783 breakpoint would be. */
1784 breakpoint_pc = regcache_read_pc (regcache)
1785 - gdbarch_decr_pc_after_break (gdbarch);
1786
1787 /* Check whether there actually is a software breakpoint inserted
1788 at that location. */
1789 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1790 {
1791 /* When using hardware single-step, a SIGTRAP is reported for both
1792 a completed single-step and a software breakpoint. Need to
1793 differentiate between the two, as the latter needs adjusting
1794 but the former does not.
1795
1796 The SIGTRAP can be due to a completed hardware single-step only if
1797 - we didn't insert software single-step breakpoints
1798 - the thread to be examined is still the current thread
1799 - this thread is currently being stepped
1800
1801 If any of these events did not occur, we must have stopped due
1802 to hitting a software breakpoint, and have to back up to the
1803 breakpoint address.
1804
1805 As a special case, we could have hardware single-stepped a
1806 software breakpoint. In this case (prev_pc == breakpoint_pc),
1807 we also need to back up to the breakpoint address. */
1808
1809 if (singlestep_breakpoints_inserted_p
1810 || !ptid_equal (ecs->ptid, inferior_ptid)
1811 || !currently_stepping (tss)
1812 || prev_pc == breakpoint_pc)
1813 regcache_write_pc (regcache, breakpoint_pc);
1814 }
1815 }
1816
1817 void
1818 init_infwait_state (void)
1819 {
1820 waiton_ptid = pid_to_ptid (-1);
1821 infwait_state = infwait_normal_state;
1822 }
1823
1824 void
1825 error_is_running (void)
1826 {
1827 error (_("\
1828 Cannot execute this command while the selected thread is running."));
1829 }
1830
1831 void
1832 ensure_not_running (void)
1833 {
1834 if (is_running (inferior_ptid))
1835 error_is_running ();
1836 }
1837
1838 /* Given an execution control state that has been freshly filled in
1839 by an event from the inferior, figure out what it means and take
1840 appropriate action. */
1841
1842 void
1843 handle_inferior_event (struct execution_control_state *ecs)
1844 {
1845 int sw_single_step_trap_p = 0;
1846 int stopped_by_watchpoint;
1847 int stepped_after_stopped_by_watchpoint = 0;
1848 struct symtab_and_line stop_pc_sal;
1849
1850 breakpoint_retire_moribund ();
1851
1852 /* Cache the last pid/waitstatus. */
1853 target_last_wait_ptid = ecs->ptid;
1854 target_last_waitstatus = ecs->ws;
1855
1856 /* Always clear state belonging to the previous time we stopped. */
1857 stop_stack_dummy = 0;
1858
1859 adjust_pc_after_break (ecs);
1860
1861 reinit_frame_cache ();
1862
1863 /* If it's a new process, add it to the thread database */
1864
1865 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1866 && !ptid_equal (ecs->ptid, minus_one_ptid)
1867 && !in_thread_list (ecs->ptid));
1868
1869 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1870 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1871 add_thread (ecs->ptid);
1872
1873 if (ecs->ws.kind != TARGET_WAITKIND_IGNORE)
1874 {
1875 /* Mark the non-executing threads accordingly. */
1876 if (!non_stop
1877 || ecs->ws.kind == TARGET_WAITKIND_EXITED
1878 || ecs->ws.kind == TARGET_WAITKIND_SIGNALLED)
1879 set_executing (pid_to_ptid (-1), 0);
1880 else
1881 set_executing (ecs->ptid, 0);
1882 }
1883
1884 switch (infwait_state)
1885 {
1886 case infwait_thread_hop_state:
1887 if (debug_infrun)
1888 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1889 /* Cancel the waiton_ptid. */
1890 waiton_ptid = pid_to_ptid (-1);
1891 break;
1892
1893 case infwait_normal_state:
1894 if (debug_infrun)
1895 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1896 break;
1897
1898 case infwait_step_watch_state:
1899 if (debug_infrun)
1900 fprintf_unfiltered (gdb_stdlog,
1901 "infrun: infwait_step_watch_state\n");
1902
1903 stepped_after_stopped_by_watchpoint = 1;
1904 break;
1905
1906 case infwait_nonstep_watch_state:
1907 if (debug_infrun)
1908 fprintf_unfiltered (gdb_stdlog,
1909 "infrun: infwait_nonstep_watch_state\n");
1910 insert_breakpoints ();
1911
1912 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1913 handle things like signals arriving and other things happening
1914 in combination correctly? */
1915 stepped_after_stopped_by_watchpoint = 1;
1916 break;
1917
1918 default:
1919 internal_error (__FILE__, __LINE__, _("bad switch"));
1920 }
1921 infwait_state = infwait_normal_state;
1922
1923 switch (ecs->ws.kind)
1924 {
1925 case TARGET_WAITKIND_LOADED:
1926 if (debug_infrun)
1927 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1928 /* Ignore gracefully during startup of the inferior, as it might
1929 be the shell which has just loaded some objects, otherwise
1930 add the symbols for the newly loaded objects. Also ignore at
1931 the beginning of an attach or remote session; we will query
1932 the full list of libraries once the connection is
1933 established. */
1934 if (stop_soon == NO_STOP_QUIETLY)
1935 {
1936 /* Check for any newly added shared libraries if we're
1937 supposed to be adding them automatically. Switch
1938 terminal for any messages produced by
1939 breakpoint_re_set. */
1940 target_terminal_ours_for_output ();
1941 /* NOTE: cagney/2003-11-25: Make certain that the target
1942 stack's section table is kept up-to-date. Architectures,
1943 (e.g., PPC64), use the section table to perform
1944 operations such as address => section name and hence
1945 require the table to contain all sections (including
1946 those found in shared libraries). */
1947 /* NOTE: cagney/2003-11-25: Pass current_target and not
1948 exec_ops to SOLIB_ADD. This is because current GDB is
1949 only tooled to propagate section_table changes out from
1950 the "current_target" (see target_resize_to_sections), and
1951 not up from the exec stratum. This, of course, isn't
1952 right. "infrun.c" should only interact with the
1953 exec/process stratum, instead relying on the target stack
1954 to propagate relevant changes (stop, section table
1955 changed, ...) up to other layers. */
1956 #ifdef SOLIB_ADD
1957 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1958 #else
1959 solib_add (NULL, 0, &current_target, auto_solib_add);
1960 #endif
1961 target_terminal_inferior ();
1962
1963 /* If requested, stop when the dynamic linker notifies
1964 gdb of events. This allows the user to get control
1965 and place breakpoints in initializer routines for
1966 dynamically loaded objects (among other things). */
1967 if (stop_on_solib_events)
1968 {
1969 stop_stepping (ecs);
1970 return;
1971 }
1972
1973 /* NOTE drow/2007-05-11: This might be a good place to check
1974 for "catch load". */
1975 }
1976
1977 /* If we are skipping through a shell, or through shared library
1978 loading that we aren't interested in, resume the program. If
1979 we're running the program normally, also resume. But stop if
1980 we're attaching or setting up a remote connection. */
1981 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
1982 {
1983 /* Loading of shared libraries might have changed breakpoint
1984 addresses. Make sure new breakpoints are inserted. */
1985 if (stop_soon == NO_STOP_QUIETLY
1986 && !breakpoints_always_inserted_mode ())
1987 insert_breakpoints ();
1988 resume (0, TARGET_SIGNAL_0);
1989 prepare_to_wait (ecs);
1990 return;
1991 }
1992
1993 break;
1994
1995 case TARGET_WAITKIND_SPURIOUS:
1996 if (debug_infrun)
1997 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1998 resume (0, TARGET_SIGNAL_0);
1999 prepare_to_wait (ecs);
2000 return;
2001
2002 case TARGET_WAITKIND_EXITED:
2003 if (debug_infrun)
2004 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
2005 target_terminal_ours (); /* Must do this before mourn anyway */
2006 print_stop_reason (EXITED, ecs->ws.value.integer);
2007
2008 /* Record the exit code in the convenience variable $_exitcode, so
2009 that the user can inspect this again later. */
2010 set_internalvar (lookup_internalvar ("_exitcode"),
2011 value_from_longest (builtin_type_int,
2012 (LONGEST) ecs->ws.value.integer));
2013 gdb_flush (gdb_stdout);
2014 target_mourn_inferior ();
2015 singlestep_breakpoints_inserted_p = 0;
2016 stop_print_frame = 0;
2017 stop_stepping (ecs);
2018 return;
2019
2020 case TARGET_WAITKIND_SIGNALLED:
2021 if (debug_infrun)
2022 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
2023 stop_print_frame = 0;
2024 stop_signal = ecs->ws.value.sig;
2025 target_terminal_ours (); /* Must do this before mourn anyway */
2026
2027 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2028 reach here unless the inferior is dead. However, for years
2029 target_kill() was called here, which hints that fatal signals aren't
2030 really fatal on some systems. If that's true, then some changes
2031 may be needed. */
2032 target_mourn_inferior ();
2033
2034 print_stop_reason (SIGNAL_EXITED, stop_signal);
2035 singlestep_breakpoints_inserted_p = 0;
2036 stop_stepping (ecs);
2037 return;
2038
2039 /* The following are the only cases in which we keep going;
2040 the above cases end in a continue or goto. */
2041 case TARGET_WAITKIND_FORKED:
2042 case TARGET_WAITKIND_VFORKED:
2043 if (debug_infrun)
2044 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
2045 stop_signal = TARGET_SIGNAL_TRAP;
2046 pending_follow.kind = ecs->ws.kind;
2047
2048 pending_follow.fork_event.parent_pid = ecs->ptid;
2049 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
2050
2051 if (!ptid_equal (ecs->ptid, inferior_ptid))
2052 {
2053 context_switch (ecs->ptid);
2054 reinit_frame_cache ();
2055 }
2056
2057 stop_pc = read_pc ();
2058
2059 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2060
2061 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
2062
2063 /* If no catchpoint triggered for this, then keep going. */
2064 if (ecs->random_signal)
2065 {
2066 stop_signal = TARGET_SIGNAL_0;
2067 keep_going (ecs);
2068 return;
2069 }
2070 goto process_event_stop_test;
2071
2072 case TARGET_WAITKIND_EXECD:
2073 if (debug_infrun)
2074 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
2075 stop_signal = TARGET_SIGNAL_TRAP;
2076
2077 pending_follow.execd_pathname =
2078 savestring (ecs->ws.value.execd_pathname,
2079 strlen (ecs->ws.value.execd_pathname));
2080
2081 /* This causes the eventpoints and symbol table to be reset. Must
2082 do this now, before trying to determine whether to stop. */
2083 follow_exec (inferior_ptid, pending_follow.execd_pathname);
2084 xfree (pending_follow.execd_pathname);
2085
2086 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2087
2088 {
2089 /* The breakpoints module may need to touch the inferior's
2090 memory. Switch to the (stopped) event ptid
2091 momentarily. */
2092 ptid_t saved_inferior_ptid = inferior_ptid;
2093 inferior_ptid = ecs->ptid;
2094
2095 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2096
2097 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
2098 inferior_ptid = saved_inferior_ptid;
2099 }
2100
2101 if (!ptid_equal (ecs->ptid, inferior_ptid))
2102 {
2103 context_switch (ecs->ptid);
2104 reinit_frame_cache ();
2105 }
2106
2107 /* If no catchpoint triggered for this, then keep going. */
2108 if (ecs->random_signal)
2109 {
2110 stop_signal = TARGET_SIGNAL_0;
2111 keep_going (ecs);
2112 return;
2113 }
2114 goto process_event_stop_test;
2115
2116 /* Be careful not to try to gather much state about a thread
2117 that's in a syscall. It's frequently a losing proposition. */
2118 case TARGET_WAITKIND_SYSCALL_ENTRY:
2119 if (debug_infrun)
2120 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
2121 resume (0, TARGET_SIGNAL_0);
2122 prepare_to_wait (ecs);
2123 return;
2124
2125 /* Before examining the threads further, step this thread to
2126 get it entirely out of the syscall. (We get notice of the
2127 event when the thread is just on the verge of exiting a
2128 syscall. Stepping one instruction seems to get it back
2129 into user code.) */
2130 case TARGET_WAITKIND_SYSCALL_RETURN:
2131 if (debug_infrun)
2132 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
2133 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
2134 prepare_to_wait (ecs);
2135 return;
2136
2137 case TARGET_WAITKIND_STOPPED:
2138 if (debug_infrun)
2139 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2140 stop_signal = ecs->ws.value.sig;
2141 break;
2142
2143 /* We had an event in the inferior, but we are not interested
2144 in handling it at this level. The lower layers have already
2145 done what needs to be done, if anything.
2146
2147 One of the possible circumstances for this is when the
2148 inferior produces output for the console. The inferior has
2149 not stopped, and we are ignoring the event. Another possible
2150 circumstance is any event which the lower level knows will be
2151 reported multiple times without an intervening resume. */
2152 case TARGET_WAITKIND_IGNORE:
2153 if (debug_infrun)
2154 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
2155 prepare_to_wait (ecs);
2156 return;
2157 }
2158
2159 if (ecs->new_thread_event)
2160 {
2161 if (non_stop)
2162 /* Non-stop assumes that the target handles adding new threads
2163 to the thread list. */
2164 internal_error (__FILE__, __LINE__, "\
2165 targets should add new threads to the thread list themselves in non-stop mode.");
2166
2167 /* We may want to consider not doing a resume here in order to
2168 give the user a chance to play with the new thread. It might
2169 be good to make that a user-settable option. */
2170
2171 /* At this point, all threads are stopped (happens automatically
2172 in either the OS or the native code). Therefore we need to
2173 continue all threads in order to make progress. */
2174
2175 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2176 prepare_to_wait (ecs);
2177 return;
2178 }
2179
2180 /* Do we need to clean up the state of a thread that has completed a
2181 displaced single-step? (Doing so usually affects the PC, so do
2182 it here, before we set stop_pc.) */
2183 displaced_step_fixup (ecs->ptid, stop_signal);
2184
2185 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2186
2187 if (debug_infrun)
2188 {
2189 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n",
2190 paddr_nz (stop_pc));
2191 if (STOPPED_BY_WATCHPOINT (&ecs->ws))
2192 {
2193 CORE_ADDR addr;
2194 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2195
2196 if (target_stopped_data_address (&current_target, &addr))
2197 fprintf_unfiltered (gdb_stdlog,
2198 "infrun: stopped data address = 0x%s\n",
2199 paddr_nz (addr));
2200 else
2201 fprintf_unfiltered (gdb_stdlog,
2202 "infrun: (no data address available)\n");
2203 }
2204 }
2205
2206 if (stepping_past_singlestep_breakpoint)
2207 {
2208 gdb_assert (singlestep_breakpoints_inserted_p);
2209 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2210 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2211
2212 stepping_past_singlestep_breakpoint = 0;
2213
2214 /* We've either finished single-stepping past the single-step
2215 breakpoint, or stopped for some other reason. It would be nice if
2216 we could tell, but we can't reliably. */
2217 if (stop_signal == TARGET_SIGNAL_TRAP)
2218 {
2219 if (debug_infrun)
2220 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
2221 /* Pull the single step breakpoints out of the target. */
2222 remove_single_step_breakpoints ();
2223 singlestep_breakpoints_inserted_p = 0;
2224
2225 ecs->random_signal = 0;
2226
2227 context_switch (saved_singlestep_ptid);
2228 if (deprecated_context_hook)
2229 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2230
2231 resume (1, TARGET_SIGNAL_0);
2232 prepare_to_wait (ecs);
2233 return;
2234 }
2235 }
2236
2237 stepping_past_singlestep_breakpoint = 0;
2238
2239 if (!ptid_equal (deferred_step_ptid, null_ptid))
2240 {
2241 /* In non-stop mode, there's never a deferred_step_ptid set. */
2242 gdb_assert (!non_stop);
2243
2244 /* If we stopped for some other reason than single-stepping, ignore
2245 the fact that we were supposed to switch back. */
2246 if (stop_signal == TARGET_SIGNAL_TRAP)
2247 {
2248 if (debug_infrun)
2249 fprintf_unfiltered (gdb_stdlog,
2250 "infrun: handling deferred step\n");
2251
2252 /* Pull the single step breakpoints out of the target. */
2253 if (singlestep_breakpoints_inserted_p)
2254 {
2255 remove_single_step_breakpoints ();
2256 singlestep_breakpoints_inserted_p = 0;
2257 }
2258
2259 /* Note: We do not call context_switch at this point, as the
2260 context is already set up for stepping the original thread. */
2261 switch_to_thread (deferred_step_ptid);
2262 deferred_step_ptid = null_ptid;
2263 /* Suppress spurious "Switching to ..." message. */
2264 previous_inferior_ptid = inferior_ptid;
2265
2266 resume (1, TARGET_SIGNAL_0);
2267 prepare_to_wait (ecs);
2268 return;
2269 }
2270
2271 deferred_step_ptid = null_ptid;
2272 }
2273
2274 /* See if a thread hit a thread-specific breakpoint that was meant for
2275 another thread. If so, then step that thread past the breakpoint,
2276 and continue it. */
2277
2278 if (stop_signal == TARGET_SIGNAL_TRAP)
2279 {
2280 int thread_hop_needed = 0;
2281
2282 /* Check if a regular breakpoint has been hit before checking
2283 for a potential single step breakpoint. Otherwise, GDB will
2284 not see this breakpoint hit when stepping onto breakpoints. */
2285 if (regular_breakpoint_inserted_here_p (stop_pc))
2286 {
2287 ecs->random_signal = 0;
2288 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
2289 thread_hop_needed = 1;
2290 }
2291 else if (singlestep_breakpoints_inserted_p)
2292 {
2293 /* We have not context switched yet, so this should be true
2294 no matter which thread hit the singlestep breakpoint. */
2295 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2296 if (debug_infrun)
2297 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2298 "trap for %s\n",
2299 target_pid_to_str (ecs->ptid));
2300
2301 ecs->random_signal = 0;
2302 /* The call to in_thread_list is necessary because PTIDs sometimes
2303 change when we go from single-threaded to multi-threaded. If
2304 the singlestep_ptid is still in the list, assume that it is
2305 really different from ecs->ptid. */
2306 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2307 && in_thread_list (singlestep_ptid))
2308 {
2309 /* If the PC of the thread we were trying to single-step
2310 has changed, discard this event (which we were going
2311 to ignore anyway), and pretend we saw that thread
2312 trap. This prevents us continuously moving the
2313 single-step breakpoint forward, one instruction at a
2314 time. If the PC has changed, then the thread we were
2315 trying to single-step has trapped or been signalled,
2316 but the event has not been reported to GDB yet.
2317
2318 There might be some cases where this loses signal
2319 information, if a signal has arrived at exactly the
2320 same time that the PC changed, but this is the best
2321 we can do with the information available. Perhaps we
2322 should arrange to report all events for all threads
2323 when they stop, or to re-poll the remote looking for
2324 this particular thread (i.e. temporarily enable
2325 schedlock). */
2326
2327 CORE_ADDR new_singlestep_pc
2328 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2329
2330 if (new_singlestep_pc != singlestep_pc)
2331 {
2332 if (debug_infrun)
2333 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2334 " but expected thread advanced also\n");
2335
2336 /* The current context still belongs to
2337 singlestep_ptid. Don't swap here, since that's
2338 the context we want to use. Just fudge our
2339 state and continue. */
2340 ecs->ptid = singlestep_ptid;
2341 stop_pc = new_singlestep_pc;
2342 }
2343 else
2344 {
2345 if (debug_infrun)
2346 fprintf_unfiltered (gdb_stdlog,
2347 "infrun: unexpected thread\n");
2348
2349 thread_hop_needed = 1;
2350 stepping_past_singlestep_breakpoint = 1;
2351 saved_singlestep_ptid = singlestep_ptid;
2352 }
2353 }
2354 }
2355
2356 if (thread_hop_needed)
2357 {
2358 int remove_status = 0;
2359
2360 if (debug_infrun)
2361 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
2362
2363 /* Saw a breakpoint, but it was hit by the wrong thread.
2364 Just continue. */
2365
2366 if (singlestep_breakpoints_inserted_p)
2367 {
2368 /* Pull the single step breakpoints out of the target. */
2369 remove_single_step_breakpoints ();
2370 singlestep_breakpoints_inserted_p = 0;
2371 }
2372
2373 /* If the arch can displace step, don't remove the
2374 breakpoints. */
2375 if (!use_displaced_stepping (current_gdbarch))
2376 remove_status = remove_breakpoints ();
2377
2378 /* Did we fail to remove breakpoints? If so, try
2379 to set the PC past the bp. (There's at least
2380 one situation in which we can fail to remove
2381 the bp's: On HP-UX's that use ttrace, we can't
2382 change the address space of a vforking child
2383 process until the child exits (well, okay, not
2384 then either :-) or execs. */
2385 if (remove_status != 0)
2386 error (_("Cannot step over breakpoint hit in wrong thread"));
2387 else
2388 { /* Single step */
2389 if (!ptid_equal (inferior_ptid, ecs->ptid))
2390 context_switch (ecs->ptid);
2391
2392 if (!non_stop)
2393 {
2394 /* Only need to require the next event from this
2395 thread in all-stop mode. */
2396 waiton_ptid = ecs->ptid;
2397 infwait_state = infwait_thread_hop_state;
2398 }
2399
2400 tss->stepping_over_breakpoint = 1;
2401 keep_going (ecs);
2402 registers_changed ();
2403 return;
2404 }
2405 }
2406 else if (singlestep_breakpoints_inserted_p)
2407 {
2408 sw_single_step_trap_p = 1;
2409 ecs->random_signal = 0;
2410 }
2411 }
2412 else
2413 ecs->random_signal = 1;
2414
2415 /* See if something interesting happened to the non-current thread. If
2416 so, then switch to that thread. */
2417 if (!ptid_equal (ecs->ptid, inferior_ptid))
2418 {
2419 if (debug_infrun)
2420 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
2421
2422 context_switch (ecs->ptid);
2423
2424 if (deprecated_context_hook)
2425 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2426 }
2427
2428 if (singlestep_breakpoints_inserted_p)
2429 {
2430 /* Pull the single step breakpoints out of the target. */
2431 remove_single_step_breakpoints ();
2432 singlestep_breakpoints_inserted_p = 0;
2433 }
2434
2435 if (stepped_after_stopped_by_watchpoint)
2436 stopped_by_watchpoint = 0;
2437 else
2438 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
2439
2440 /* If necessary, step over this watchpoint. We'll be back to display
2441 it in a moment. */
2442 if (stopped_by_watchpoint
2443 && (HAVE_STEPPABLE_WATCHPOINT
2444 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
2445 {
2446 /* At this point, we are stopped at an instruction which has
2447 attempted to write to a piece of memory under control of
2448 a watchpoint. The instruction hasn't actually executed
2449 yet. If we were to evaluate the watchpoint expression
2450 now, we would get the old value, and therefore no change
2451 would seem to have occurred.
2452
2453 In order to make watchpoints work `right', we really need
2454 to complete the memory write, and then evaluate the
2455 watchpoint expression. We do this by single-stepping the
2456 target.
2457
2458 It may not be necessary to disable the watchpoint to stop over
2459 it. For example, the PA can (with some kernel cooperation)
2460 single step over a watchpoint without disabling the watchpoint.
2461
2462 It is far more common to need to disable a watchpoint to step
2463 the inferior over it. If we have non-steppable watchpoints,
2464 we must disable the current watchpoint; it's simplest to
2465 disable all watchpoints and breakpoints. */
2466
2467 if (!HAVE_STEPPABLE_WATCHPOINT)
2468 remove_breakpoints ();
2469 registers_changed ();
2470 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
2471 waiton_ptid = ecs->ptid;
2472 if (HAVE_STEPPABLE_WATCHPOINT)
2473 infwait_state = infwait_step_watch_state;
2474 else
2475 infwait_state = infwait_nonstep_watch_state;
2476 prepare_to_wait (ecs);
2477 return;
2478 }
2479
2480 ecs->stop_func_start = 0;
2481 ecs->stop_func_end = 0;
2482 ecs->stop_func_name = 0;
2483 /* Don't care about return value; stop_func_start and stop_func_name
2484 will both be 0 if it doesn't work. */
2485 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2486 &ecs->stop_func_start, &ecs->stop_func_end);
2487 ecs->stop_func_start
2488 += gdbarch_deprecated_function_start_offset (current_gdbarch);
2489 tss->stepping_over_breakpoint = 0;
2490 bpstat_clear (&stop_bpstat);
2491 stop_step = 0;
2492 stop_print_frame = 1;
2493 ecs->random_signal = 0;
2494 stopped_by_random_signal = 0;
2495
2496 if (stop_signal == TARGET_SIGNAL_TRAP
2497 && stepping_over_breakpoint
2498 && gdbarch_single_step_through_delay_p (current_gdbarch)
2499 && currently_stepping (tss))
2500 {
2501 /* We're trying to step off a breakpoint. Turns out that we're
2502 also on an instruction that needs to be stepped multiple
2503 times before it's been fully executing. E.g., architectures
2504 with a delay slot. It needs to be stepped twice, once for
2505 the instruction and once for the delay slot. */
2506 int step_through_delay
2507 = gdbarch_single_step_through_delay (current_gdbarch,
2508 get_current_frame ());
2509 if (debug_infrun && step_through_delay)
2510 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
2511 if (step_range_end == 0 && step_through_delay)
2512 {
2513 /* The user issued a continue when stopped at a breakpoint.
2514 Set up for another trap and get out of here. */
2515 tss->stepping_over_breakpoint = 1;
2516 keep_going (ecs);
2517 return;
2518 }
2519 else if (step_through_delay)
2520 {
2521 /* The user issued a step when stopped at a breakpoint.
2522 Maybe we should stop, maybe we should not - the delay
2523 slot *might* correspond to a line of source. In any
2524 case, don't decide that here, just set
2525 ecs->stepping_over_breakpoint, making sure we
2526 single-step again before breakpoints are re-inserted. */
2527 tss->stepping_over_breakpoint = 1;
2528 }
2529 }
2530
2531 /* Look at the cause of the stop, and decide what to do.
2532 The alternatives are:
2533 1) stop_stepping and return; to really stop and return to the debugger,
2534 2) keep_going and return to start up again
2535 (set tss->stepping_over_breakpoint to 1 to single step once)
2536 3) set ecs->random_signal to 1, and the decision between 1 and 2
2537 will be made according to the signal handling tables. */
2538
2539 /* First, distinguish signals caused by the debugger from signals
2540 that have to do with the program's own actions. Note that
2541 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
2542 on the operating system version. Here we detect when a SIGILL or
2543 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
2544 something similar for SIGSEGV, since a SIGSEGV will be generated
2545 when we're trying to execute a breakpoint instruction on a
2546 non-executable stack. This happens for call dummy breakpoints
2547 for architectures like SPARC that place call dummies on the
2548 stack.
2549
2550 If we're doing a displaced step past a breakpoint, then the
2551 breakpoint is always inserted at the original instruction;
2552 non-standard signals can't be explained by the breakpoint. */
2553 if (stop_signal == TARGET_SIGNAL_TRAP
2554 || (! stepping_over_breakpoint
2555 && breakpoint_inserted_here_p (stop_pc)
2556 && (stop_signal == TARGET_SIGNAL_ILL
2557 || stop_signal == TARGET_SIGNAL_SEGV
2558 || stop_signal == TARGET_SIGNAL_EMT))
2559 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
2560 || stop_soon == STOP_QUIETLY_REMOTE)
2561 {
2562 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
2563 {
2564 if (debug_infrun)
2565 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
2566 stop_print_frame = 0;
2567 stop_stepping (ecs);
2568 return;
2569 }
2570
2571 /* This is originated from start_remote(), start_inferior() and
2572 shared libraries hook functions. */
2573 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
2574 {
2575 if (debug_infrun)
2576 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
2577 stop_stepping (ecs);
2578 return;
2579 }
2580
2581 /* This originates from attach_command(). We need to overwrite
2582 the stop_signal here, because some kernels don't ignore a
2583 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
2584 See more comments in inferior.h. On the other hand, if we
2585 get a non-SIGSTOP, report it to the user - assume the backend
2586 will handle the SIGSTOP if it should show up later.
2587
2588 Also consider that the attach is complete when we see a
2589 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
2590 target extended-remote report it instead of a SIGSTOP
2591 (e.g. gdbserver). We already rely on SIGTRAP being our
2592 signal, so this is no exception. */
2593 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2594 && (stop_signal == TARGET_SIGNAL_STOP
2595 || stop_signal == TARGET_SIGNAL_TRAP))
2596 {
2597 stop_stepping (ecs);
2598 stop_signal = TARGET_SIGNAL_0;
2599 return;
2600 }
2601
2602 /* See if there is a breakpoint at the current PC. */
2603 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2604
2605 /* Following in case break condition called a
2606 function. */
2607 stop_print_frame = 1;
2608
2609 /* NOTE: cagney/2003-03-29: These two checks for a random signal
2610 at one stage in the past included checks for an inferior
2611 function call's call dummy's return breakpoint. The original
2612 comment, that went with the test, read:
2613
2614 ``End of a stack dummy. Some systems (e.g. Sony news) give
2615 another signal besides SIGTRAP, so check here as well as
2616 above.''
2617
2618 If someone ever tries to get get call dummys on a
2619 non-executable stack to work (where the target would stop
2620 with something like a SIGSEGV), then those tests might need
2621 to be re-instated. Given, however, that the tests were only
2622 enabled when momentary breakpoints were not being used, I
2623 suspect that it won't be the case.
2624
2625 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2626 be necessary for call dummies on a non-executable stack on
2627 SPARC. */
2628
2629 if (stop_signal == TARGET_SIGNAL_TRAP)
2630 ecs->random_signal
2631 = !(bpstat_explains_signal (stop_bpstat)
2632 || stepping_over_breakpoint
2633 || (step_range_end && step_resume_breakpoint == NULL));
2634 else
2635 {
2636 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
2637 if (!ecs->random_signal)
2638 stop_signal = TARGET_SIGNAL_TRAP;
2639 }
2640 }
2641
2642 /* When we reach this point, we've pretty much decided
2643 that the reason for stopping must've been a random
2644 (unexpected) signal. */
2645
2646 else
2647 ecs->random_signal = 1;
2648
2649 process_event_stop_test:
2650 /* For the program's own signals, act according to
2651 the signal handling tables. */
2652
2653 if (ecs->random_signal)
2654 {
2655 /* Signal not for debugging purposes. */
2656 int printed = 0;
2657
2658 if (debug_infrun)
2659 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
2660
2661 stopped_by_random_signal = 1;
2662
2663 if (signal_print[stop_signal])
2664 {
2665 printed = 1;
2666 target_terminal_ours_for_output ();
2667 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2668 }
2669 if (signal_stop_state (stop_signal))
2670 {
2671 stop_stepping (ecs);
2672 return;
2673 }
2674 /* If not going to stop, give terminal back
2675 if we took it away. */
2676 else if (printed)
2677 target_terminal_inferior ();
2678
2679 /* Clear the signal if it should not be passed. */
2680 if (signal_program[stop_signal] == 0)
2681 stop_signal = TARGET_SIGNAL_0;
2682
2683 if (prev_pc == read_pc ()
2684 && stepping_over_breakpoint
2685 && step_resume_breakpoint == NULL)
2686 {
2687 /* We were just starting a new sequence, attempting to
2688 single-step off of a breakpoint and expecting a SIGTRAP.
2689 Instead this signal arrives. This signal will take us out
2690 of the stepping range so GDB needs to remember to, when
2691 the signal handler returns, resume stepping off that
2692 breakpoint. */
2693 /* To simplify things, "continue" is forced to use the same
2694 code paths as single-step - set a breakpoint at the
2695 signal return address and then, once hit, step off that
2696 breakpoint. */
2697 if (debug_infrun)
2698 fprintf_unfiltered (gdb_stdlog,
2699 "infrun: signal arrived while stepping over "
2700 "breakpoint\n");
2701
2702 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2703 tss->step_after_step_resume_breakpoint = 1;
2704 keep_going (ecs);
2705 return;
2706 }
2707
2708 if (step_range_end != 0
2709 && stop_signal != TARGET_SIGNAL_0
2710 && stop_pc >= step_range_start && stop_pc < step_range_end
2711 && frame_id_eq (get_frame_id (get_current_frame ()),
2712 step_frame_id)
2713 && step_resume_breakpoint == NULL)
2714 {
2715 /* The inferior is about to take a signal that will take it
2716 out of the single step range. Set a breakpoint at the
2717 current PC (which is presumably where the signal handler
2718 will eventually return) and then allow the inferior to
2719 run free.
2720
2721 Note that this is only needed for a signal delivered
2722 while in the single-step range. Nested signals aren't a
2723 problem as they eventually all return. */
2724 if (debug_infrun)
2725 fprintf_unfiltered (gdb_stdlog,
2726 "infrun: signal may take us out of "
2727 "single-step range\n");
2728
2729 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2730 keep_going (ecs);
2731 return;
2732 }
2733
2734 /* Note: step_resume_breakpoint may be non-NULL. This occures
2735 when either there's a nested signal, or when there's a
2736 pending signal enabled just as the signal handler returns
2737 (leaving the inferior at the step-resume-breakpoint without
2738 actually executing it). Either way continue until the
2739 breakpoint is really hit. */
2740 keep_going (ecs);
2741 return;
2742 }
2743
2744 /* Handle cases caused by hitting a breakpoint. */
2745 {
2746 CORE_ADDR jmp_buf_pc;
2747 struct bpstat_what what;
2748
2749 what = bpstat_what (stop_bpstat);
2750
2751 if (what.call_dummy)
2752 {
2753 stop_stack_dummy = 1;
2754 }
2755
2756 switch (what.main_action)
2757 {
2758 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2759 /* If we hit the breakpoint at longjmp while stepping, we
2760 install a momentary breakpoint at the target of the
2761 jmp_buf. */
2762
2763 if (debug_infrun)
2764 fprintf_unfiltered (gdb_stdlog,
2765 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2766
2767 tss->stepping_over_breakpoint = 1;
2768
2769 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
2770 || !gdbarch_get_longjmp_target (current_gdbarch,
2771 get_current_frame (), &jmp_buf_pc))
2772 {
2773 if (debug_infrun)
2774 fprintf_unfiltered (gdb_stdlog, "\
2775 infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
2776 keep_going (ecs);
2777 return;
2778 }
2779
2780 /* We're going to replace the current step-resume breakpoint
2781 with a longjmp-resume breakpoint. */
2782 if (step_resume_breakpoint != NULL)
2783 delete_step_resume_breakpoint (&step_resume_breakpoint);
2784
2785 /* Insert a breakpoint at resume address. */
2786 insert_longjmp_resume_breakpoint (jmp_buf_pc);
2787
2788 keep_going (ecs);
2789 return;
2790
2791 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2792 if (debug_infrun)
2793 fprintf_unfiltered (gdb_stdlog,
2794 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2795
2796 gdb_assert (step_resume_breakpoint != NULL);
2797 delete_step_resume_breakpoint (&step_resume_breakpoint);
2798
2799 stop_step = 1;
2800 print_stop_reason (END_STEPPING_RANGE, 0);
2801 stop_stepping (ecs);
2802 return;
2803
2804 case BPSTAT_WHAT_SINGLE:
2805 if (debug_infrun)
2806 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2807 tss->stepping_over_breakpoint = 1;
2808 /* Still need to check other stuff, at least the case
2809 where we are stepping and step out of the right range. */
2810 break;
2811
2812 case BPSTAT_WHAT_STOP_NOISY:
2813 if (debug_infrun)
2814 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2815 stop_print_frame = 1;
2816
2817 /* We are about to nuke the step_resume_breakpointt via the
2818 cleanup chain, so no need to worry about it here. */
2819
2820 stop_stepping (ecs);
2821 return;
2822
2823 case BPSTAT_WHAT_STOP_SILENT:
2824 if (debug_infrun)
2825 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2826 stop_print_frame = 0;
2827
2828 /* We are about to nuke the step_resume_breakpoin via the
2829 cleanup chain, so no need to worry about it here. */
2830
2831 stop_stepping (ecs);
2832 return;
2833
2834 case BPSTAT_WHAT_STEP_RESUME:
2835 /* This proably demands a more elegant solution, but, yeah
2836 right...
2837
2838 This function's use of the simple variable
2839 step_resume_breakpoint doesn't seem to accomodate
2840 simultaneously active step-resume bp's, although the
2841 breakpoint list certainly can.
2842
2843 If we reach here and step_resume_breakpoint is already
2844 NULL, then apparently we have multiple active
2845 step-resume bp's. We'll just delete the breakpoint we
2846 stopped at, and carry on.
2847
2848 Correction: what the code currently does is delete a
2849 step-resume bp, but it makes no effort to ensure that
2850 the one deleted is the one currently stopped at. MVS */
2851
2852 if (debug_infrun)
2853 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2854
2855 if (step_resume_breakpoint == NULL)
2856 {
2857 step_resume_breakpoint =
2858 bpstat_find_step_resume_breakpoint (stop_bpstat);
2859 }
2860 delete_step_resume_breakpoint (&step_resume_breakpoint);
2861 if (tss->step_after_step_resume_breakpoint)
2862 {
2863 /* Back when the step-resume breakpoint was inserted, we
2864 were trying to single-step off a breakpoint. Go back
2865 to doing that. */
2866 tss->step_after_step_resume_breakpoint = 0;
2867 tss->stepping_over_breakpoint = 1;
2868 keep_going (ecs);
2869 return;
2870 }
2871 break;
2872
2873 case BPSTAT_WHAT_CHECK_SHLIBS:
2874 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2875 {
2876 if (debug_infrun)
2877 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2878
2879 /* Check for any newly added shared libraries if we're
2880 supposed to be adding them automatically. Switch
2881 terminal for any messages produced by
2882 breakpoint_re_set. */
2883 target_terminal_ours_for_output ();
2884 /* NOTE: cagney/2003-11-25: Make certain that the target
2885 stack's section table is kept up-to-date. Architectures,
2886 (e.g., PPC64), use the section table to perform
2887 operations such as address => section name and hence
2888 require the table to contain all sections (including
2889 those found in shared libraries). */
2890 /* NOTE: cagney/2003-11-25: Pass current_target and not
2891 exec_ops to SOLIB_ADD. This is because current GDB is
2892 only tooled to propagate section_table changes out from
2893 the "current_target" (see target_resize_to_sections), and
2894 not up from the exec stratum. This, of course, isn't
2895 right. "infrun.c" should only interact with the
2896 exec/process stratum, instead relying on the target stack
2897 to propagate relevant changes (stop, section table
2898 changed, ...) up to other layers. */
2899 #ifdef SOLIB_ADD
2900 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2901 #else
2902 solib_add (NULL, 0, &current_target, auto_solib_add);
2903 #endif
2904 target_terminal_inferior ();
2905
2906 /* If requested, stop when the dynamic linker notifies
2907 gdb of events. This allows the user to get control
2908 and place breakpoints in initializer routines for
2909 dynamically loaded objects (among other things). */
2910 if (stop_on_solib_events || stop_stack_dummy)
2911 {
2912 stop_stepping (ecs);
2913 return;
2914 }
2915
2916 /* If we stopped due to an explicit catchpoint, then the
2917 (see above) call to SOLIB_ADD pulled in any symbols
2918 from a newly-loaded library, if appropriate.
2919
2920 We do want the inferior to stop, but not where it is
2921 now, which is in the dynamic linker callback. Rather,
2922 we would like it stop in the user's program, just after
2923 the call that caused this catchpoint to trigger. That
2924 gives the user a more useful vantage from which to
2925 examine their program's state. */
2926 else if (what.main_action
2927 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2928 {
2929 /* ??rehrauer: If I could figure out how to get the
2930 right return PC from here, we could just set a temp
2931 breakpoint and resume. I'm not sure we can without
2932 cracking open the dld's shared libraries and sniffing
2933 their unwind tables and text/data ranges, and that's
2934 not a terribly portable notion.
2935
2936 Until that time, we must step the inferior out of the
2937 dld callback, and also out of the dld itself (and any
2938 code or stubs in libdld.sl, such as "shl_load" and
2939 friends) until we reach non-dld code. At that point,
2940 we can stop stepping. */
2941 bpstat_get_triggered_catchpoints (stop_bpstat,
2942 &tss->
2943 stepping_through_solib_catchpoints);
2944 tss->stepping_through_solib_after_catch = 1;
2945
2946 /* Be sure to lift all breakpoints, so the inferior does
2947 actually step past this point... */
2948 tss->stepping_over_breakpoint = 1;
2949 break;
2950 }
2951 else
2952 {
2953 /* We want to step over this breakpoint, then keep going. */
2954 tss->stepping_over_breakpoint = 1;
2955 break;
2956 }
2957 }
2958 break;
2959
2960 case BPSTAT_WHAT_LAST:
2961 /* Not a real code, but listed here to shut up gcc -Wall. */
2962
2963 case BPSTAT_WHAT_KEEP_CHECKING:
2964 break;
2965 }
2966 }
2967
2968 /* We come here if we hit a breakpoint but should not
2969 stop for it. Possibly we also were stepping
2970 and should stop for that. So fall through and
2971 test for stepping. But, if not stepping,
2972 do not stop. */
2973
2974 /* Are we stepping to get the inferior out of the dynamic linker's
2975 hook (and possibly the dld itself) after catching a shlib
2976 event? */
2977 if (tss->stepping_through_solib_after_catch)
2978 {
2979 #if defined(SOLIB_ADD)
2980 /* Have we reached our destination? If not, keep going. */
2981 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2982 {
2983 if (debug_infrun)
2984 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2985 tss->stepping_over_breakpoint = 1;
2986 keep_going (ecs);
2987 return;
2988 }
2989 #endif
2990 if (debug_infrun)
2991 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2992 /* Else, stop and report the catchpoint(s) whose triggering
2993 caused us to begin stepping. */
2994 tss->stepping_through_solib_after_catch = 0;
2995 bpstat_clear (&stop_bpstat);
2996 stop_bpstat = bpstat_copy (tss->stepping_through_solib_catchpoints);
2997 bpstat_clear (&tss->stepping_through_solib_catchpoints);
2998 stop_print_frame = 1;
2999 stop_stepping (ecs);
3000 return;
3001 }
3002
3003 if (step_resume_breakpoint)
3004 {
3005 if (debug_infrun)
3006 fprintf_unfiltered (gdb_stdlog,
3007 "infrun: step-resume breakpoint is inserted\n");
3008
3009 /* Having a step-resume breakpoint overrides anything
3010 else having to do with stepping commands until
3011 that breakpoint is reached. */
3012 keep_going (ecs);
3013 return;
3014 }
3015
3016 if (step_range_end == 0)
3017 {
3018 if (debug_infrun)
3019 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
3020 /* Likewise if we aren't even stepping. */
3021 keep_going (ecs);
3022 return;
3023 }
3024
3025 /* If stepping through a line, keep going if still within it.
3026
3027 Note that step_range_end is the address of the first instruction
3028 beyond the step range, and NOT the address of the last instruction
3029 within it! */
3030 if (stop_pc >= step_range_start && stop_pc < step_range_end)
3031 {
3032 if (debug_infrun)
3033 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
3034 paddr_nz (step_range_start),
3035 paddr_nz (step_range_end));
3036 keep_going (ecs);
3037 return;
3038 }
3039
3040 /* We stepped out of the stepping range. */
3041
3042 /* If we are stepping at the source level and entered the runtime
3043 loader dynamic symbol resolution code, we keep on single stepping
3044 until we exit the run time loader code and reach the callee's
3045 address. */
3046 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
3047 && in_solib_dynsym_resolve_code (stop_pc))
3048 {
3049 CORE_ADDR pc_after_resolver =
3050 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
3051
3052 if (debug_infrun)
3053 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
3054
3055 if (pc_after_resolver)
3056 {
3057 /* Set up a step-resume breakpoint at the address
3058 indicated by SKIP_SOLIB_RESOLVER. */
3059 struct symtab_and_line sr_sal;
3060 init_sal (&sr_sal);
3061 sr_sal.pc = pc_after_resolver;
3062
3063 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3064 }
3065
3066 keep_going (ecs);
3067 return;
3068 }
3069
3070 if (step_range_end != 1
3071 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
3072 || step_over_calls == STEP_OVER_ALL)
3073 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
3074 {
3075 if (debug_infrun)
3076 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
3077 /* The inferior, while doing a "step" or "next", has ended up in
3078 a signal trampoline (either by a signal being delivered or by
3079 the signal handler returning). Just single-step until the
3080 inferior leaves the trampoline (either by calling the handler
3081 or returning). */
3082 keep_going (ecs);
3083 return;
3084 }
3085
3086 /* Check for subroutine calls. The check for the current frame
3087 equalling the step ID is not necessary - the check of the
3088 previous frame's ID is sufficient - but it is a common case and
3089 cheaper than checking the previous frame's ID.
3090
3091 NOTE: frame_id_eq will never report two invalid frame IDs as
3092 being equal, so to get into this block, both the current and
3093 previous frame must have valid frame IDs. */
3094 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
3095 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
3096 {
3097 CORE_ADDR real_stop_pc;
3098
3099 if (debug_infrun)
3100 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
3101
3102 if ((step_over_calls == STEP_OVER_NONE)
3103 || ((step_range_end == 1)
3104 && in_prologue (prev_pc, ecs->stop_func_start)))
3105 {
3106 /* I presume that step_over_calls is only 0 when we're
3107 supposed to be stepping at the assembly language level
3108 ("stepi"). Just stop. */
3109 /* Also, maybe we just did a "nexti" inside a prolog, so we
3110 thought it was a subroutine call but it was not. Stop as
3111 well. FENN */
3112 stop_step = 1;
3113 print_stop_reason (END_STEPPING_RANGE, 0);
3114 stop_stepping (ecs);
3115 return;
3116 }
3117
3118 if (step_over_calls == STEP_OVER_ALL)
3119 {
3120 /* We're doing a "next", set a breakpoint at callee's return
3121 address (the address at which the caller will
3122 resume). */
3123 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3124 keep_going (ecs);
3125 return;
3126 }
3127
3128 /* If we are in a function call trampoline (a stub between the
3129 calling routine and the real function), locate the real
3130 function. That's what tells us (a) whether we want to step
3131 into it at all, and (b) what prologue we want to run to the
3132 end of, if we do step into it. */
3133 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
3134 if (real_stop_pc == 0)
3135 real_stop_pc = gdbarch_skip_trampoline_code
3136 (current_gdbarch, get_current_frame (), stop_pc);
3137 if (real_stop_pc != 0)
3138 ecs->stop_func_start = real_stop_pc;
3139
3140 if (in_solib_dynsym_resolve_code (ecs->stop_func_start))
3141 {
3142 struct symtab_and_line sr_sal;
3143 init_sal (&sr_sal);
3144 sr_sal.pc = ecs->stop_func_start;
3145
3146 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3147 keep_going (ecs);
3148 return;
3149 }
3150
3151 /* If we have line number information for the function we are
3152 thinking of stepping into, step into it.
3153
3154 If there are several symtabs at that PC (e.g. with include
3155 files), just want to know whether *any* of them have line
3156 numbers. find_pc_line handles this. */
3157 {
3158 struct symtab_and_line tmp_sal;
3159
3160 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
3161 if (tmp_sal.line != 0)
3162 {
3163 step_into_function (ecs);
3164 return;
3165 }
3166 }
3167
3168 /* If we have no line number and the step-stop-if-no-debug is
3169 set, we stop the step so that the user has a chance to switch
3170 in assembly mode. */
3171 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
3172 {
3173 stop_step = 1;
3174 print_stop_reason (END_STEPPING_RANGE, 0);
3175 stop_stepping (ecs);
3176 return;
3177 }
3178
3179 /* Set a breakpoint at callee's return address (the address at
3180 which the caller will resume). */
3181 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3182 keep_going (ecs);
3183 return;
3184 }
3185
3186 /* If we're in the return path from a shared library trampoline,
3187 we want to proceed through the trampoline when stepping. */
3188 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
3189 stop_pc, ecs->stop_func_name))
3190 {
3191 /* Determine where this trampoline returns. */
3192 CORE_ADDR real_stop_pc;
3193 real_stop_pc = gdbarch_skip_trampoline_code
3194 (current_gdbarch, get_current_frame (), stop_pc);
3195
3196 if (debug_infrun)
3197 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
3198
3199 /* Only proceed through if we know where it's going. */
3200 if (real_stop_pc)
3201 {
3202 /* And put the step-breakpoint there and go until there. */
3203 struct symtab_and_line sr_sal;
3204
3205 init_sal (&sr_sal); /* initialize to zeroes */
3206 sr_sal.pc = real_stop_pc;
3207 sr_sal.section = find_pc_overlay (sr_sal.pc);
3208
3209 /* Do not specify what the fp should be when we stop since
3210 on some machines the prologue is where the new fp value
3211 is established. */
3212 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3213
3214 /* Restart without fiddling with the step ranges or
3215 other state. */
3216 keep_going (ecs);
3217 return;
3218 }
3219 }
3220
3221 stop_pc_sal = find_pc_line (stop_pc, 0);
3222
3223 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3224 the trampoline processing logic, however, there are some trampolines
3225 that have no names, so we should do trampoline handling first. */
3226 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
3227 && ecs->stop_func_name == NULL
3228 && stop_pc_sal.line == 0)
3229 {
3230 if (debug_infrun)
3231 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
3232
3233 /* The inferior just stepped into, or returned to, an
3234 undebuggable function (where there is no debugging information
3235 and no line number corresponding to the address where the
3236 inferior stopped). Since we want to skip this kind of code,
3237 we keep going until the inferior returns from this
3238 function - unless the user has asked us not to (via
3239 set step-mode) or we no longer know how to get back
3240 to the call site. */
3241 if (step_stop_if_no_debug
3242 || !frame_id_p (frame_unwind_id (get_current_frame ())))
3243 {
3244 /* If we have no line number and the step-stop-if-no-debug
3245 is set, we stop the step so that the user has a chance to
3246 switch in assembly mode. */
3247 stop_step = 1;
3248 print_stop_reason (END_STEPPING_RANGE, 0);
3249 stop_stepping (ecs);
3250 return;
3251 }
3252 else
3253 {
3254 /* Set a breakpoint at callee's return address (the address
3255 at which the caller will resume). */
3256 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3257 keep_going (ecs);
3258 return;
3259 }
3260 }
3261
3262 if (step_range_end == 1)
3263 {
3264 /* It is stepi or nexti. We always want to stop stepping after
3265 one instruction. */
3266 if (debug_infrun)
3267 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
3268 stop_step = 1;
3269 print_stop_reason (END_STEPPING_RANGE, 0);
3270 stop_stepping (ecs);
3271 return;
3272 }
3273
3274 if (stop_pc_sal.line == 0)
3275 {
3276 /* We have no line number information. That means to stop
3277 stepping (does this always happen right after one instruction,
3278 when we do "s" in a function with no line numbers,
3279 or can this happen as a result of a return or longjmp?). */
3280 if (debug_infrun)
3281 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
3282 stop_step = 1;
3283 print_stop_reason (END_STEPPING_RANGE, 0);
3284 stop_stepping (ecs);
3285 return;
3286 }
3287
3288 if ((stop_pc == stop_pc_sal.pc)
3289 && (tss->current_line != stop_pc_sal.line
3290 || tss->current_symtab != stop_pc_sal.symtab))
3291 {
3292 /* We are at the start of a different line. So stop. Note that
3293 we don't stop if we step into the middle of a different line.
3294 That is said to make things like for (;;) statements work
3295 better. */
3296 if (debug_infrun)
3297 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
3298 stop_step = 1;
3299 print_stop_reason (END_STEPPING_RANGE, 0);
3300 stop_stepping (ecs);
3301 return;
3302 }
3303
3304 /* We aren't done stepping.
3305
3306 Optimize by setting the stepping range to the line.
3307 (We might not be in the original line, but if we entered a
3308 new line in mid-statement, we continue stepping. This makes
3309 things like for(;;) statements work better.) */
3310
3311 step_range_start = stop_pc_sal.pc;
3312 step_range_end = stop_pc_sal.end;
3313 step_frame_id = get_frame_id (get_current_frame ());
3314 tss->current_line = stop_pc_sal.line;
3315 tss->current_symtab = stop_pc_sal.symtab;
3316
3317 /* In the case where we just stepped out of a function into the
3318 middle of a line of the caller, continue stepping, but
3319 step_frame_id must be modified to current frame */
3320 #if 0
3321 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
3322 generous. It will trigger on things like a step into a frameless
3323 stackless leaf function. I think the logic should instead look
3324 at the unwound frame ID has that should give a more robust
3325 indication of what happened. */
3326 if (step - ID == current - ID)
3327 still stepping in same function;
3328 else if (step - ID == unwind (current - ID))
3329 stepped into a function;
3330 else
3331 stepped out of a function;
3332 /* Of course this assumes that the frame ID unwind code is robust
3333 and we're willing to introduce frame unwind logic into this
3334 function. Fortunately, those days are nearly upon us. */
3335 #endif
3336 {
3337 struct frame_info *frame = get_current_frame ();
3338 struct frame_id current_frame = get_frame_id (frame);
3339 if (!(frame_id_inner (get_frame_arch (frame), current_frame,
3340 step_frame_id)))
3341 step_frame_id = current_frame;
3342 }
3343
3344 if (debug_infrun)
3345 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
3346 keep_going (ecs);
3347 }
3348
3349 /* Are we in the middle of stepping? */
3350
3351 static int
3352 currently_stepping (struct thread_stepping_state *tss)
3353 {
3354 return (((step_range_end && step_resume_breakpoint == NULL)
3355 || stepping_over_breakpoint)
3356 || tss->stepping_through_solib_after_catch
3357 || bpstat_should_step ());
3358 }
3359
3360 /* Subroutine call with source code we should not step over. Do step
3361 to the first line of code in it. */
3362
3363 static void
3364 step_into_function (struct execution_control_state *ecs)
3365 {
3366 struct symtab *s;
3367 struct symtab_and_line stop_func_sal, sr_sal;
3368
3369 s = find_pc_symtab (stop_pc);
3370 if (s && s->language != language_asm)
3371 ecs->stop_func_start = gdbarch_skip_prologue
3372 (current_gdbarch, ecs->stop_func_start);
3373
3374 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
3375 /* Use the step_resume_break to step until the end of the prologue,
3376 even if that involves jumps (as it seems to on the vax under
3377 4.2). */
3378 /* If the prologue ends in the middle of a source line, continue to
3379 the end of that source line (if it is still within the function).
3380 Otherwise, just go to end of prologue. */
3381 if (stop_func_sal.end
3382 && stop_func_sal.pc != ecs->stop_func_start
3383 && stop_func_sal.end < ecs->stop_func_end)
3384 ecs->stop_func_start = stop_func_sal.end;
3385
3386 /* Architectures which require breakpoint adjustment might not be able
3387 to place a breakpoint at the computed address. If so, the test
3388 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
3389 ecs->stop_func_start to an address at which a breakpoint may be
3390 legitimately placed.
3391
3392 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
3393 made, GDB will enter an infinite loop when stepping through
3394 optimized code consisting of VLIW instructions which contain
3395 subinstructions corresponding to different source lines. On
3396 FR-V, it's not permitted to place a breakpoint on any but the
3397 first subinstruction of a VLIW instruction. When a breakpoint is
3398 set, GDB will adjust the breakpoint address to the beginning of
3399 the VLIW instruction. Thus, we need to make the corresponding
3400 adjustment here when computing the stop address. */
3401
3402 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
3403 {
3404 ecs->stop_func_start
3405 = gdbarch_adjust_breakpoint_address (current_gdbarch,
3406 ecs->stop_func_start);
3407 }
3408
3409 if (ecs->stop_func_start == stop_pc)
3410 {
3411 /* We are already there: stop now. */
3412 stop_step = 1;
3413 print_stop_reason (END_STEPPING_RANGE, 0);
3414 stop_stepping (ecs);
3415 return;
3416 }
3417 else
3418 {
3419 /* Put the step-breakpoint there and go until there. */
3420 init_sal (&sr_sal); /* initialize to zeroes */
3421 sr_sal.pc = ecs->stop_func_start;
3422 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
3423
3424 /* Do not specify what the fp should be when we stop since on
3425 some machines the prologue is where the new fp value is
3426 established. */
3427 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3428
3429 /* And make sure stepping stops right away then. */
3430 step_range_end = step_range_start;
3431 }
3432 keep_going (ecs);
3433 }
3434
3435 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
3436 This is used to both functions and to skip over code. */
3437
3438 static void
3439 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
3440 struct frame_id sr_id)
3441 {
3442 /* There should never be more than one step-resume or longjmp-resume
3443 breakpoint per thread, so we should never be setting a new
3444 step_resume_breakpoint when one is already active. */
3445 gdb_assert (step_resume_breakpoint == NULL);
3446
3447 if (debug_infrun)
3448 fprintf_unfiltered (gdb_stdlog,
3449 "infrun: inserting step-resume breakpoint at 0x%s\n",
3450 paddr_nz (sr_sal.pc));
3451
3452 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
3453 bp_step_resume);
3454 }
3455
3456 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
3457 to skip a potential signal handler.
3458
3459 This is called with the interrupted function's frame. The signal
3460 handler, when it returns, will resume the interrupted function at
3461 RETURN_FRAME.pc. */
3462
3463 static void
3464 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
3465 {
3466 struct symtab_and_line sr_sal;
3467
3468 gdb_assert (return_frame != NULL);
3469 init_sal (&sr_sal); /* initialize to zeros */
3470
3471 sr_sal.pc = gdbarch_addr_bits_remove
3472 (current_gdbarch, get_frame_pc (return_frame));
3473 sr_sal.section = find_pc_overlay (sr_sal.pc);
3474
3475 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
3476 }
3477
3478 /* Similar to insert_step_resume_breakpoint_at_frame, except
3479 but a breakpoint at the previous frame's PC. This is used to
3480 skip a function after stepping into it (for "next" or if the called
3481 function has no debugging information).
3482
3483 The current function has almost always been reached by single
3484 stepping a call or return instruction. NEXT_FRAME belongs to the
3485 current function, and the breakpoint will be set at the caller's
3486 resume address.
3487
3488 This is a separate function rather than reusing
3489 insert_step_resume_breakpoint_at_frame in order to avoid
3490 get_prev_frame, which may stop prematurely (see the implementation
3491 of frame_unwind_id for an example). */
3492
3493 static void
3494 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
3495 {
3496 struct symtab_and_line sr_sal;
3497
3498 /* We shouldn't have gotten here if we don't know where the call site
3499 is. */
3500 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
3501
3502 init_sal (&sr_sal); /* initialize to zeros */
3503
3504 sr_sal.pc = gdbarch_addr_bits_remove
3505 (current_gdbarch, frame_pc_unwind (next_frame));
3506 sr_sal.section = find_pc_overlay (sr_sal.pc);
3507
3508 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
3509 }
3510
3511 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
3512 new breakpoint at the target of a jmp_buf. The handling of
3513 longjmp-resume uses the same mechanisms used for handling
3514 "step-resume" breakpoints. */
3515
3516 static void
3517 insert_longjmp_resume_breakpoint (CORE_ADDR pc)
3518 {
3519 /* There should never be more than one step-resume or longjmp-resume
3520 breakpoint per thread, so we should never be setting a new
3521 longjmp_resume_breakpoint when one is already active. */
3522 gdb_assert (step_resume_breakpoint == NULL);
3523
3524 if (debug_infrun)
3525 fprintf_unfiltered (gdb_stdlog,
3526 "infrun: inserting longjmp-resume breakpoint at 0x%s\n",
3527 paddr_nz (pc));
3528
3529 step_resume_breakpoint =
3530 set_momentary_breakpoint_at_pc (pc, bp_longjmp_resume);
3531 }
3532
3533 static void
3534 stop_stepping (struct execution_control_state *ecs)
3535 {
3536 if (debug_infrun)
3537 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
3538
3539 /* Let callers know we don't want to wait for the inferior anymore. */
3540 ecs->wait_some_more = 0;
3541 }
3542
3543 /* This function handles various cases where we need to continue
3544 waiting for the inferior. */
3545 /* (Used to be the keep_going: label in the old wait_for_inferior) */
3546
3547 static void
3548 keep_going (struct execution_control_state *ecs)
3549 {
3550 /* Save the pc before execution, to compare with pc after stop. */
3551 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
3552
3553 /* If we did not do break;, it means we should keep running the
3554 inferior and not return to debugger. */
3555
3556 if (stepping_over_breakpoint && stop_signal != TARGET_SIGNAL_TRAP)
3557 {
3558 /* We took a signal (which we are supposed to pass through to
3559 the inferior, else we'd have done a break above) and we
3560 haven't yet gotten our trap. Simply continue. */
3561 resume (currently_stepping (tss), stop_signal);
3562 }
3563 else
3564 {
3565 /* Either the trap was not expected, but we are continuing
3566 anyway (the user asked that this signal be passed to the
3567 child)
3568 -- or --
3569 The signal was SIGTRAP, e.g. it was our signal, but we
3570 decided we should resume from it.
3571
3572 We're going to run this baby now!
3573
3574 Note that insert_breakpoints won't try to re-insert
3575 already inserted breakpoints. Therefore, we don't
3576 care if breakpoints were already inserted, or not. */
3577
3578 if (tss->stepping_over_breakpoint)
3579 {
3580 if (! use_displaced_stepping (current_gdbarch))
3581 /* Since we can't do a displaced step, we have to remove
3582 the breakpoint while we step it. To keep things
3583 simple, we remove them all. */
3584 remove_breakpoints ();
3585 }
3586 else
3587 {
3588 struct gdb_exception e;
3589 /* Stop stepping when inserting breakpoints
3590 has failed. */
3591 TRY_CATCH (e, RETURN_MASK_ERROR)
3592 {
3593 insert_breakpoints ();
3594 }
3595 if (e.reason < 0)
3596 {
3597 stop_stepping (ecs);
3598 return;
3599 }
3600 }
3601
3602 stepping_over_breakpoint = tss->stepping_over_breakpoint;
3603
3604 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
3605 specifies that such a signal should be delivered to the
3606 target program).
3607
3608 Typically, this would occure when a user is debugging a
3609 target monitor on a simulator: the target monitor sets a
3610 breakpoint; the simulator encounters this break-point and
3611 halts the simulation handing control to GDB; GDB, noteing
3612 that the break-point isn't valid, returns control back to the
3613 simulator; the simulator then delivers the hardware
3614 equivalent of a SIGNAL_TRAP to the program being debugged. */
3615
3616 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
3617 stop_signal = TARGET_SIGNAL_0;
3618
3619
3620 resume (currently_stepping (tss), stop_signal);
3621 }
3622
3623 prepare_to_wait (ecs);
3624 }
3625
3626 /* This function normally comes after a resume, before
3627 handle_inferior_event exits. It takes care of any last bits of
3628 housekeeping, and sets the all-important wait_some_more flag. */
3629
3630 static void
3631 prepare_to_wait (struct execution_control_state *ecs)
3632 {
3633 if (debug_infrun)
3634 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
3635 if (infwait_state == infwait_normal_state)
3636 {
3637 overlay_cache_invalid = 1;
3638
3639 /* We have to invalidate the registers BEFORE calling
3640 target_wait because they can be loaded from the target while
3641 in target_wait. This makes remote debugging a bit more
3642 efficient for those targets that provide critical registers
3643 as part of their normal status mechanism. */
3644
3645 registers_changed ();
3646 waiton_ptid = pid_to_ptid (-1);
3647 }
3648 /* This is the old end of the while loop. Let everybody know we
3649 want to wait for the inferior some more and get called again
3650 soon. */
3651 ecs->wait_some_more = 1;
3652 }
3653
3654 /* Print why the inferior has stopped. We always print something when
3655 the inferior exits, or receives a signal. The rest of the cases are
3656 dealt with later on in normal_stop() and print_it_typical(). Ideally
3657 there should be a call to this function from handle_inferior_event()
3658 each time stop_stepping() is called.*/
3659 static void
3660 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
3661 {
3662 switch (stop_reason)
3663 {
3664 case END_STEPPING_RANGE:
3665 /* We are done with a step/next/si/ni command. */
3666 /* For now print nothing. */
3667 /* Print a message only if not in the middle of doing a "step n"
3668 operation for n > 1 */
3669 if (!step_multi || !stop_step)
3670 if (ui_out_is_mi_like_p (uiout))
3671 ui_out_field_string
3672 (uiout, "reason",
3673 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
3674 break;
3675 case SIGNAL_EXITED:
3676 /* The inferior was terminated by a signal. */
3677 annotate_signalled ();
3678 if (ui_out_is_mi_like_p (uiout))
3679 ui_out_field_string
3680 (uiout, "reason",
3681 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
3682 ui_out_text (uiout, "\nProgram terminated with signal ");
3683 annotate_signal_name ();
3684 ui_out_field_string (uiout, "signal-name",
3685 target_signal_to_name (stop_info));
3686 annotate_signal_name_end ();
3687 ui_out_text (uiout, ", ");
3688 annotate_signal_string ();
3689 ui_out_field_string (uiout, "signal-meaning",
3690 target_signal_to_string (stop_info));
3691 annotate_signal_string_end ();
3692 ui_out_text (uiout, ".\n");
3693 ui_out_text (uiout, "The program no longer exists.\n");
3694 break;
3695 case EXITED:
3696 /* The inferior program is finished. */
3697 annotate_exited (stop_info);
3698 if (stop_info)
3699 {
3700 if (ui_out_is_mi_like_p (uiout))
3701 ui_out_field_string (uiout, "reason",
3702 async_reason_lookup (EXEC_ASYNC_EXITED));
3703 ui_out_text (uiout, "\nProgram exited with code ");
3704 ui_out_field_fmt (uiout, "exit-code", "0%o",
3705 (unsigned int) stop_info);
3706 ui_out_text (uiout, ".\n");
3707 }
3708 else
3709 {
3710 if (ui_out_is_mi_like_p (uiout))
3711 ui_out_field_string
3712 (uiout, "reason",
3713 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3714 ui_out_text (uiout, "\nProgram exited normally.\n");
3715 }
3716 /* Support the --return-child-result option. */
3717 return_child_result_value = stop_info;
3718 break;
3719 case SIGNAL_RECEIVED:
3720 /* Signal received. The signal table tells us to print about
3721 it. */
3722 annotate_signal ();
3723 ui_out_text (uiout, "\nProgram received signal ");
3724 annotate_signal_name ();
3725 if (ui_out_is_mi_like_p (uiout))
3726 ui_out_field_string
3727 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3728 ui_out_field_string (uiout, "signal-name",
3729 target_signal_to_name (stop_info));
3730 annotate_signal_name_end ();
3731 ui_out_text (uiout, ", ");
3732 annotate_signal_string ();
3733 ui_out_field_string (uiout, "signal-meaning",
3734 target_signal_to_string (stop_info));
3735 annotate_signal_string_end ();
3736 ui_out_text (uiout, ".\n");
3737 break;
3738 default:
3739 internal_error (__FILE__, __LINE__,
3740 _("print_stop_reason: unrecognized enum value"));
3741 break;
3742 }
3743 }
3744 \f
3745
3746 /* Here to return control to GDB when the inferior stops for real.
3747 Print appropriate messages, remove breakpoints, give terminal our modes.
3748
3749 STOP_PRINT_FRAME nonzero means print the executing frame
3750 (pc, function, args, file, line number and line text).
3751 BREAKPOINTS_FAILED nonzero means stop was due to error
3752 attempting to insert breakpoints. */
3753
3754 void
3755 normal_stop (void)
3756 {
3757 struct target_waitstatus last;
3758 ptid_t last_ptid;
3759
3760 get_last_target_status (&last_ptid, &last);
3761
3762 /* In non-stop mode, we don't want GDB to switch threads behind the
3763 user's back, to avoid races where the user is typing a command to
3764 apply to thread x, but GDB switches to thread y before the user
3765 finishes entering the command. */
3766
3767 /* As with the notification of thread events, we want to delay
3768 notifying the user that we've switched thread context until
3769 the inferior actually stops.
3770
3771 There's no point in saying anything if the inferior has exited.
3772 Note that SIGNALLED here means "exited with a signal", not
3773 "received a signal". */
3774 if (!non_stop
3775 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
3776 && target_has_execution
3777 && last.kind != TARGET_WAITKIND_SIGNALLED
3778 && last.kind != TARGET_WAITKIND_EXITED)
3779 {
3780 target_terminal_ours_for_output ();
3781 printf_filtered (_("[Switching to %s]\n"),
3782 target_pid_to_str (inferior_ptid));
3783 annotate_thread_changed ();
3784 previous_inferior_ptid = inferior_ptid;
3785 }
3786
3787 /* NOTE drow/2004-01-17: Is this still necessary? */
3788 /* Make sure that the current_frame's pc is correct. This
3789 is a correction for setting up the frame info before doing
3790 gdbarch_decr_pc_after_break */
3791 if (target_has_execution)
3792 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3793 gdbarch_decr_pc_after_break, the program counter can change. Ask the
3794 frame code to check for this and sort out any resultant mess.
3795 gdbarch_decr_pc_after_break needs to just go away. */
3796 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3797
3798 if (!breakpoints_always_inserted_mode () && target_has_execution)
3799 {
3800 if (remove_breakpoints ())
3801 {
3802 target_terminal_ours_for_output ();
3803 printf_filtered (_("\
3804 Cannot remove breakpoints because program is no longer writable.\n\
3805 It might be running in another process.\n\
3806 Further execution is probably impossible.\n"));
3807 }
3808 }
3809
3810 /* If an auto-display called a function and that got a signal,
3811 delete that auto-display to avoid an infinite recursion. */
3812
3813 if (stopped_by_random_signal)
3814 disable_current_display ();
3815
3816 /* Don't print a message if in the middle of doing a "step n"
3817 operation for n > 1 */
3818 if (step_multi && stop_step)
3819 goto done;
3820
3821 target_terminal_ours ();
3822
3823 /* Set the current source location. This will also happen if we
3824 display the frame below, but the current SAL will be incorrect
3825 during a user hook-stop function. */
3826 if (target_has_stack && !stop_stack_dummy)
3827 set_current_sal_from_frame (get_current_frame (), 1);
3828
3829 /* Look up the hook_stop and run it (CLI internally handles problem
3830 of stop_command's pre-hook not existing). */
3831 if (stop_command)
3832 catch_errors (hook_stop_stub, stop_command,
3833 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3834
3835 if (!target_has_stack)
3836 {
3837
3838 goto done;
3839 }
3840
3841 /* Select innermost stack frame - i.e., current frame is frame 0,
3842 and current location is based on that.
3843 Don't do this on return from a stack dummy routine,
3844 or if the program has exited. */
3845
3846 if (!stop_stack_dummy)
3847 {
3848 select_frame (get_current_frame ());
3849
3850 /* Print current location without a level number, if
3851 we have changed functions or hit a breakpoint.
3852 Print source line if we have one.
3853 bpstat_print() contains the logic deciding in detail
3854 what to print, based on the event(s) that just occurred. */
3855
3856 /* If --batch-silent is enabled then there's no need to print the current
3857 source location, and to try risks causing an error message about
3858 missing source files. */
3859 if (stop_print_frame && !batch_silent)
3860 {
3861 int bpstat_ret;
3862 int source_flag;
3863 int do_frame_printing = 1;
3864
3865 bpstat_ret = bpstat_print (stop_bpstat);
3866 switch (bpstat_ret)
3867 {
3868 case PRINT_UNKNOWN:
3869 /* If we had hit a shared library event breakpoint,
3870 bpstat_print would print out this message. If we hit
3871 an OS-level shared library event, do the same
3872 thing. */
3873 if (last.kind == TARGET_WAITKIND_LOADED)
3874 {
3875 printf_filtered (_("Stopped due to shared library event\n"));
3876 source_flag = SRC_LINE; /* something bogus */
3877 do_frame_printing = 0;
3878 break;
3879 }
3880
3881 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3882 (or should) carry around the function and does (or
3883 should) use that when doing a frame comparison. */
3884 if (stop_step
3885 && frame_id_eq (step_frame_id,
3886 get_frame_id (get_current_frame ()))
3887 && step_start_function == find_pc_function (stop_pc))
3888 source_flag = SRC_LINE; /* finished step, just print source line */
3889 else
3890 source_flag = SRC_AND_LOC; /* print location and source line */
3891 break;
3892 case PRINT_SRC_AND_LOC:
3893 source_flag = SRC_AND_LOC; /* print location and source line */
3894 break;
3895 case PRINT_SRC_ONLY:
3896 source_flag = SRC_LINE;
3897 break;
3898 case PRINT_NOTHING:
3899 source_flag = SRC_LINE; /* something bogus */
3900 do_frame_printing = 0;
3901 break;
3902 default:
3903 internal_error (__FILE__, __LINE__, _("Unknown value."));
3904 }
3905
3906 if (ui_out_is_mi_like_p (uiout))
3907 {
3908
3909 ui_out_field_int (uiout, "thread-id",
3910 pid_to_thread_id (inferior_ptid));
3911 if (non_stop)
3912 {
3913 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end
3914 (uiout, "stopped-threads");
3915 ui_out_field_int (uiout, NULL,
3916 pid_to_thread_id (inferior_ptid));
3917 do_cleanups (back_to);
3918 }
3919 else
3920 ui_out_field_string (uiout, "stopped-threads", "all");
3921 }
3922 /* The behavior of this routine with respect to the source
3923 flag is:
3924 SRC_LINE: Print only source line
3925 LOCATION: Print only location
3926 SRC_AND_LOC: Print location and source line */
3927 if (do_frame_printing)
3928 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3929
3930 /* Display the auto-display expressions. */
3931 do_displays ();
3932 }
3933 }
3934
3935 /* Save the function value return registers, if we care.
3936 We might be about to restore their previous contents. */
3937 if (proceed_to_finish)
3938 {
3939 /* This should not be necessary. */
3940 if (stop_registers)
3941 regcache_xfree (stop_registers);
3942
3943 /* NB: The copy goes through to the target picking up the value of
3944 all the registers. */
3945 stop_registers = regcache_dup (get_current_regcache ());
3946 }
3947
3948 if (stop_stack_dummy)
3949 {
3950 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3951 ends with a setting of the current frame, so we can use that
3952 next. */
3953 frame_pop (get_current_frame ());
3954 /* Set stop_pc to what it was before we called the function.
3955 Can't rely on restore_inferior_status because that only gets
3956 called if we don't stop in the called function. */
3957 stop_pc = read_pc ();
3958 select_frame (get_current_frame ());
3959 }
3960
3961 done:
3962 annotate_stopped ();
3963 if (!suppress_stop_observer && !step_multi)
3964 observer_notify_normal_stop (stop_bpstat);
3965 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3966 Delete any breakpoint that is to be deleted at the next stop. */
3967 breakpoint_auto_delete (stop_bpstat);
3968
3969 if (target_has_execution
3970 && last.kind != TARGET_WAITKIND_SIGNALLED
3971 && last.kind != TARGET_WAITKIND_EXITED)
3972 {
3973 if (!non_stop)
3974 set_running (pid_to_ptid (-1), 0);
3975 else
3976 set_running (inferior_ptid, 0);
3977 }
3978 }
3979
3980 static int
3981 hook_stop_stub (void *cmd)
3982 {
3983 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3984 return (0);
3985 }
3986 \f
3987 int
3988 signal_stop_state (int signo)
3989 {
3990 /* Always stop on signals if we're just gaining control of the
3991 program. */
3992 return signal_stop[signo] || stop_soon != NO_STOP_QUIETLY;
3993 }
3994
3995 int
3996 signal_print_state (int signo)
3997 {
3998 return signal_print[signo];
3999 }
4000
4001 int
4002 signal_pass_state (int signo)
4003 {
4004 return signal_program[signo];
4005 }
4006
4007 int
4008 signal_stop_update (int signo, int state)
4009 {
4010 int ret = signal_stop[signo];
4011 signal_stop[signo] = state;
4012 return ret;
4013 }
4014
4015 int
4016 signal_print_update (int signo, int state)
4017 {
4018 int ret = signal_print[signo];
4019 signal_print[signo] = state;
4020 return ret;
4021 }
4022
4023 int
4024 signal_pass_update (int signo, int state)
4025 {
4026 int ret = signal_program[signo];
4027 signal_program[signo] = state;
4028 return ret;
4029 }
4030
4031 static void
4032 sig_print_header (void)
4033 {
4034 printf_filtered (_("\
4035 Signal Stop\tPrint\tPass to program\tDescription\n"));
4036 }
4037
4038 static void
4039 sig_print_info (enum target_signal oursig)
4040 {
4041 char *name = target_signal_to_name (oursig);
4042 int name_padding = 13 - strlen (name);
4043
4044 if (name_padding <= 0)
4045 name_padding = 0;
4046
4047 printf_filtered ("%s", name);
4048 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
4049 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
4050 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
4051 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
4052 printf_filtered ("%s\n", target_signal_to_string (oursig));
4053 }
4054
4055 /* Specify how various signals in the inferior should be handled. */
4056
4057 static void
4058 handle_command (char *args, int from_tty)
4059 {
4060 char **argv;
4061 int digits, wordlen;
4062 int sigfirst, signum, siglast;
4063 enum target_signal oursig;
4064 int allsigs;
4065 int nsigs;
4066 unsigned char *sigs;
4067 struct cleanup *old_chain;
4068
4069 if (args == NULL)
4070 {
4071 error_no_arg (_("signal to handle"));
4072 }
4073
4074 /* Allocate and zero an array of flags for which signals to handle. */
4075
4076 nsigs = (int) TARGET_SIGNAL_LAST;
4077 sigs = (unsigned char *) alloca (nsigs);
4078 memset (sigs, 0, nsigs);
4079
4080 /* Break the command line up into args. */
4081
4082 argv = buildargv (args);
4083 if (argv == NULL)
4084 {
4085 nomem (0);
4086 }
4087 old_chain = make_cleanup_freeargv (argv);
4088
4089 /* Walk through the args, looking for signal oursigs, signal names, and
4090 actions. Signal numbers and signal names may be interspersed with
4091 actions, with the actions being performed for all signals cumulatively
4092 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
4093
4094 while (*argv != NULL)
4095 {
4096 wordlen = strlen (*argv);
4097 for (digits = 0; isdigit ((*argv)[digits]); digits++)
4098 {;
4099 }
4100 allsigs = 0;
4101 sigfirst = siglast = -1;
4102
4103 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
4104 {
4105 /* Apply action to all signals except those used by the
4106 debugger. Silently skip those. */
4107 allsigs = 1;
4108 sigfirst = 0;
4109 siglast = nsigs - 1;
4110 }
4111 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
4112 {
4113 SET_SIGS (nsigs, sigs, signal_stop);
4114 SET_SIGS (nsigs, sigs, signal_print);
4115 }
4116 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
4117 {
4118 UNSET_SIGS (nsigs, sigs, signal_program);
4119 }
4120 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
4121 {
4122 SET_SIGS (nsigs, sigs, signal_print);
4123 }
4124 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
4125 {
4126 SET_SIGS (nsigs, sigs, signal_program);
4127 }
4128 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
4129 {
4130 UNSET_SIGS (nsigs, sigs, signal_stop);
4131 }
4132 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
4133 {
4134 SET_SIGS (nsigs, sigs, signal_program);
4135 }
4136 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
4137 {
4138 UNSET_SIGS (nsigs, sigs, signal_print);
4139 UNSET_SIGS (nsigs, sigs, signal_stop);
4140 }
4141 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
4142 {
4143 UNSET_SIGS (nsigs, sigs, signal_program);
4144 }
4145 else if (digits > 0)
4146 {
4147 /* It is numeric. The numeric signal refers to our own
4148 internal signal numbering from target.h, not to host/target
4149 signal number. This is a feature; users really should be
4150 using symbolic names anyway, and the common ones like
4151 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
4152
4153 sigfirst = siglast = (int)
4154 target_signal_from_command (atoi (*argv));
4155 if ((*argv)[digits] == '-')
4156 {
4157 siglast = (int)
4158 target_signal_from_command (atoi ((*argv) + digits + 1));
4159 }
4160 if (sigfirst > siglast)
4161 {
4162 /* Bet he didn't figure we'd think of this case... */
4163 signum = sigfirst;
4164 sigfirst = siglast;
4165 siglast = signum;
4166 }
4167 }
4168 else
4169 {
4170 oursig = target_signal_from_name (*argv);
4171 if (oursig != TARGET_SIGNAL_UNKNOWN)
4172 {
4173 sigfirst = siglast = (int) oursig;
4174 }
4175 else
4176 {
4177 /* Not a number and not a recognized flag word => complain. */
4178 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
4179 }
4180 }
4181
4182 /* If any signal numbers or symbol names were found, set flags for
4183 which signals to apply actions to. */
4184
4185 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
4186 {
4187 switch ((enum target_signal) signum)
4188 {
4189 case TARGET_SIGNAL_TRAP:
4190 case TARGET_SIGNAL_INT:
4191 if (!allsigs && !sigs[signum])
4192 {
4193 if (query ("%s is used by the debugger.\n\
4194 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
4195 {
4196 sigs[signum] = 1;
4197 }
4198 else
4199 {
4200 printf_unfiltered (_("Not confirmed, unchanged.\n"));
4201 gdb_flush (gdb_stdout);
4202 }
4203 }
4204 break;
4205 case TARGET_SIGNAL_0:
4206 case TARGET_SIGNAL_DEFAULT:
4207 case TARGET_SIGNAL_UNKNOWN:
4208 /* Make sure that "all" doesn't print these. */
4209 break;
4210 default:
4211 sigs[signum] = 1;
4212 break;
4213 }
4214 }
4215
4216 argv++;
4217 }
4218
4219 target_notice_signals (inferior_ptid);
4220
4221 if (from_tty)
4222 {
4223 /* Show the results. */
4224 sig_print_header ();
4225 for (signum = 0; signum < nsigs; signum++)
4226 {
4227 if (sigs[signum])
4228 {
4229 sig_print_info (signum);
4230 }
4231 }
4232 }
4233
4234 do_cleanups (old_chain);
4235 }
4236
4237 static void
4238 xdb_handle_command (char *args, int from_tty)
4239 {
4240 char **argv;
4241 struct cleanup *old_chain;
4242
4243 /* Break the command line up into args. */
4244
4245 argv = buildargv (args);
4246 if (argv == NULL)
4247 {
4248 nomem (0);
4249 }
4250 old_chain = make_cleanup_freeargv (argv);
4251 if (argv[1] != (char *) NULL)
4252 {
4253 char *argBuf;
4254 int bufLen;
4255
4256 bufLen = strlen (argv[0]) + 20;
4257 argBuf = (char *) xmalloc (bufLen);
4258 if (argBuf)
4259 {
4260 int validFlag = 1;
4261 enum target_signal oursig;
4262
4263 oursig = target_signal_from_name (argv[0]);
4264 memset (argBuf, 0, bufLen);
4265 if (strcmp (argv[1], "Q") == 0)
4266 sprintf (argBuf, "%s %s", argv[0], "noprint");
4267 else
4268 {
4269 if (strcmp (argv[1], "s") == 0)
4270 {
4271 if (!signal_stop[oursig])
4272 sprintf (argBuf, "%s %s", argv[0], "stop");
4273 else
4274 sprintf (argBuf, "%s %s", argv[0], "nostop");
4275 }
4276 else if (strcmp (argv[1], "i") == 0)
4277 {
4278 if (!signal_program[oursig])
4279 sprintf (argBuf, "%s %s", argv[0], "pass");
4280 else
4281 sprintf (argBuf, "%s %s", argv[0], "nopass");
4282 }
4283 else if (strcmp (argv[1], "r") == 0)
4284 {
4285 if (!signal_print[oursig])
4286 sprintf (argBuf, "%s %s", argv[0], "print");
4287 else
4288 sprintf (argBuf, "%s %s", argv[0], "noprint");
4289 }
4290 else
4291 validFlag = 0;
4292 }
4293 if (validFlag)
4294 handle_command (argBuf, from_tty);
4295 else
4296 printf_filtered (_("Invalid signal handling flag.\n"));
4297 if (argBuf)
4298 xfree (argBuf);
4299 }
4300 }
4301 do_cleanups (old_chain);
4302 }
4303
4304 /* Print current contents of the tables set by the handle command.
4305 It is possible we should just be printing signals actually used
4306 by the current target (but for things to work right when switching
4307 targets, all signals should be in the signal tables). */
4308
4309 static void
4310 signals_info (char *signum_exp, int from_tty)
4311 {
4312 enum target_signal oursig;
4313 sig_print_header ();
4314
4315 if (signum_exp)
4316 {
4317 /* First see if this is a symbol name. */
4318 oursig = target_signal_from_name (signum_exp);
4319 if (oursig == TARGET_SIGNAL_UNKNOWN)
4320 {
4321 /* No, try numeric. */
4322 oursig =
4323 target_signal_from_command (parse_and_eval_long (signum_exp));
4324 }
4325 sig_print_info (oursig);
4326 return;
4327 }
4328
4329 printf_filtered ("\n");
4330 /* These ugly casts brought to you by the native VAX compiler. */
4331 for (oursig = TARGET_SIGNAL_FIRST;
4332 (int) oursig < (int) TARGET_SIGNAL_LAST;
4333 oursig = (enum target_signal) ((int) oursig + 1))
4334 {
4335 QUIT;
4336
4337 if (oursig != TARGET_SIGNAL_UNKNOWN
4338 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
4339 sig_print_info (oursig);
4340 }
4341
4342 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
4343 }
4344 \f
4345 struct inferior_status
4346 {
4347 enum target_signal stop_signal;
4348 CORE_ADDR stop_pc;
4349 bpstat stop_bpstat;
4350 int stop_step;
4351 int stop_stack_dummy;
4352 int stopped_by_random_signal;
4353 int stepping_over_breakpoint;
4354 CORE_ADDR step_range_start;
4355 CORE_ADDR step_range_end;
4356 struct frame_id step_frame_id;
4357 enum step_over_calls_kind step_over_calls;
4358 CORE_ADDR step_resume_break_address;
4359 int stop_after_trap;
4360 int stop_soon;
4361
4362 /* These are here because if call_function_by_hand has written some
4363 registers and then decides to call error(), we better not have changed
4364 any registers. */
4365 struct regcache *registers;
4366
4367 /* A frame unique identifier. */
4368 struct frame_id selected_frame_id;
4369
4370 int breakpoint_proceeded;
4371 int restore_stack_info;
4372 int proceed_to_finish;
4373 };
4374
4375 void
4376 write_inferior_status_register (struct inferior_status *inf_status, int regno,
4377 LONGEST val)
4378 {
4379 int size = register_size (current_gdbarch, regno);
4380 void *buf = alloca (size);
4381 store_signed_integer (buf, size, val);
4382 regcache_raw_write (inf_status->registers, regno, buf);
4383 }
4384
4385 /* Save all of the information associated with the inferior<==>gdb
4386 connection. INF_STATUS is a pointer to a "struct inferior_status"
4387 (defined in inferior.h). */
4388
4389 struct inferior_status *
4390 save_inferior_status (int restore_stack_info)
4391 {
4392 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
4393
4394 inf_status->stop_signal = stop_signal;
4395 inf_status->stop_pc = stop_pc;
4396 inf_status->stop_step = stop_step;
4397 inf_status->stop_stack_dummy = stop_stack_dummy;
4398 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4399 inf_status->stepping_over_breakpoint = stepping_over_breakpoint;
4400 inf_status->step_range_start = step_range_start;
4401 inf_status->step_range_end = step_range_end;
4402 inf_status->step_frame_id = step_frame_id;
4403 inf_status->step_over_calls = step_over_calls;
4404 inf_status->stop_after_trap = stop_after_trap;
4405 inf_status->stop_soon = stop_soon;
4406 /* Save original bpstat chain here; replace it with copy of chain.
4407 If caller's caller is walking the chain, they'll be happier if we
4408 hand them back the original chain when restore_inferior_status is
4409 called. */
4410 inf_status->stop_bpstat = stop_bpstat;
4411 stop_bpstat = bpstat_copy (stop_bpstat);
4412 inf_status->breakpoint_proceeded = breakpoint_proceeded;
4413 inf_status->restore_stack_info = restore_stack_info;
4414 inf_status->proceed_to_finish = proceed_to_finish;
4415
4416 inf_status->registers = regcache_dup (get_current_regcache ());
4417
4418 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
4419 return inf_status;
4420 }
4421
4422 static int
4423 restore_selected_frame (void *args)
4424 {
4425 struct frame_id *fid = (struct frame_id *) args;
4426 struct frame_info *frame;
4427
4428 frame = frame_find_by_id (*fid);
4429
4430 /* If inf_status->selected_frame_id is NULL, there was no previously
4431 selected frame. */
4432 if (frame == NULL)
4433 {
4434 warning (_("Unable to restore previously selected frame."));
4435 return 0;
4436 }
4437
4438 select_frame (frame);
4439
4440 return (1);
4441 }
4442
4443 void
4444 restore_inferior_status (struct inferior_status *inf_status)
4445 {
4446 stop_signal = inf_status->stop_signal;
4447 stop_pc = inf_status->stop_pc;
4448 stop_step = inf_status->stop_step;
4449 stop_stack_dummy = inf_status->stop_stack_dummy;
4450 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4451 stepping_over_breakpoint = inf_status->stepping_over_breakpoint;
4452 step_range_start = inf_status->step_range_start;
4453 step_range_end = inf_status->step_range_end;
4454 step_frame_id = inf_status->step_frame_id;
4455 step_over_calls = inf_status->step_over_calls;
4456 stop_after_trap = inf_status->stop_after_trap;
4457 stop_soon = inf_status->stop_soon;
4458 bpstat_clear (&stop_bpstat);
4459 stop_bpstat = inf_status->stop_bpstat;
4460 breakpoint_proceeded = inf_status->breakpoint_proceeded;
4461 proceed_to_finish = inf_status->proceed_to_finish;
4462
4463 /* The inferior can be gone if the user types "print exit(0)"
4464 (and perhaps other times). */
4465 if (target_has_execution)
4466 /* NB: The register write goes through to the target. */
4467 regcache_cpy (get_current_regcache (), inf_status->registers);
4468 regcache_xfree (inf_status->registers);
4469
4470 /* FIXME: If we are being called after stopping in a function which
4471 is called from gdb, we should not be trying to restore the
4472 selected frame; it just prints a spurious error message (The
4473 message is useful, however, in detecting bugs in gdb (like if gdb
4474 clobbers the stack)). In fact, should we be restoring the
4475 inferior status at all in that case? . */
4476
4477 if (target_has_stack && inf_status->restore_stack_info)
4478 {
4479 /* The point of catch_errors is that if the stack is clobbered,
4480 walking the stack might encounter a garbage pointer and
4481 error() trying to dereference it. */
4482 if (catch_errors
4483 (restore_selected_frame, &inf_status->selected_frame_id,
4484 "Unable to restore previously selected frame:\n",
4485 RETURN_MASK_ERROR) == 0)
4486 /* Error in restoring the selected frame. Select the innermost
4487 frame. */
4488 select_frame (get_current_frame ());
4489
4490 }
4491
4492 xfree (inf_status);
4493 }
4494
4495 static void
4496 do_restore_inferior_status_cleanup (void *sts)
4497 {
4498 restore_inferior_status (sts);
4499 }
4500
4501 struct cleanup *
4502 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
4503 {
4504 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
4505 }
4506
4507 void
4508 discard_inferior_status (struct inferior_status *inf_status)
4509 {
4510 /* See save_inferior_status for info on stop_bpstat. */
4511 bpstat_clear (&inf_status->stop_bpstat);
4512 regcache_xfree (inf_status->registers);
4513 xfree (inf_status);
4514 }
4515
4516 int
4517 inferior_has_forked (ptid_t pid, ptid_t *child_pid)
4518 {
4519 struct target_waitstatus last;
4520 ptid_t last_ptid;
4521
4522 get_last_target_status (&last_ptid, &last);
4523
4524 if (last.kind != TARGET_WAITKIND_FORKED)
4525 return 0;
4526
4527 if (!ptid_equal (last_ptid, pid))
4528 return 0;
4529
4530 *child_pid = last.value.related_pid;
4531 return 1;
4532 }
4533
4534 int
4535 inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
4536 {
4537 struct target_waitstatus last;
4538 ptid_t last_ptid;
4539
4540 get_last_target_status (&last_ptid, &last);
4541
4542 if (last.kind != TARGET_WAITKIND_VFORKED)
4543 return 0;
4544
4545 if (!ptid_equal (last_ptid, pid))
4546 return 0;
4547
4548 *child_pid = last.value.related_pid;
4549 return 1;
4550 }
4551
4552 int
4553 inferior_has_execd (ptid_t pid, char **execd_pathname)
4554 {
4555 struct target_waitstatus last;
4556 ptid_t last_ptid;
4557
4558 get_last_target_status (&last_ptid, &last);
4559
4560 if (last.kind != TARGET_WAITKIND_EXECD)
4561 return 0;
4562
4563 if (!ptid_equal (last_ptid, pid))
4564 return 0;
4565
4566 *execd_pathname = xstrdup (last.value.execd_pathname);
4567 return 1;
4568 }
4569
4570 /* Oft used ptids */
4571 ptid_t null_ptid;
4572 ptid_t minus_one_ptid;
4573
4574 /* Create a ptid given the necessary PID, LWP, and TID components. */
4575
4576 ptid_t
4577 ptid_build (int pid, long lwp, long tid)
4578 {
4579 ptid_t ptid;
4580
4581 ptid.pid = pid;
4582 ptid.lwp = lwp;
4583 ptid.tid = tid;
4584 return ptid;
4585 }
4586
4587 /* Create a ptid from just a pid. */
4588
4589 ptid_t
4590 pid_to_ptid (int pid)
4591 {
4592 return ptid_build (pid, 0, 0);
4593 }
4594
4595 /* Fetch the pid (process id) component from a ptid. */
4596
4597 int
4598 ptid_get_pid (ptid_t ptid)
4599 {
4600 return ptid.pid;
4601 }
4602
4603 /* Fetch the lwp (lightweight process) component from a ptid. */
4604
4605 long
4606 ptid_get_lwp (ptid_t ptid)
4607 {
4608 return ptid.lwp;
4609 }
4610
4611 /* Fetch the tid (thread id) component from a ptid. */
4612
4613 long
4614 ptid_get_tid (ptid_t ptid)
4615 {
4616 return ptid.tid;
4617 }
4618
4619 /* ptid_equal() is used to test equality of two ptids. */
4620
4621 int
4622 ptid_equal (ptid_t ptid1, ptid_t ptid2)
4623 {
4624 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
4625 && ptid1.tid == ptid2.tid);
4626 }
4627
4628 /* restore_inferior_ptid() will be used by the cleanup machinery
4629 to restore the inferior_ptid value saved in a call to
4630 save_inferior_ptid(). */
4631
4632 static void
4633 restore_inferior_ptid (void *arg)
4634 {
4635 ptid_t *saved_ptid_ptr = arg;
4636 inferior_ptid = *saved_ptid_ptr;
4637 xfree (arg);
4638 }
4639
4640 /* Save the value of inferior_ptid so that it may be restored by a
4641 later call to do_cleanups(). Returns the struct cleanup pointer
4642 needed for later doing the cleanup. */
4643
4644 struct cleanup *
4645 save_inferior_ptid (void)
4646 {
4647 ptid_t *saved_ptid_ptr;
4648
4649 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
4650 *saved_ptid_ptr = inferior_ptid;
4651 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
4652 }
4653 \f
4654
4655 int non_stop = 0;
4656 static int non_stop_1 = 0;
4657
4658 static void
4659 set_non_stop (char *args, int from_tty,
4660 struct cmd_list_element *c)
4661 {
4662 if (target_has_execution)
4663 {
4664 non_stop_1 = non_stop;
4665 error (_("Cannot change this setting while the inferior is running."));
4666 }
4667
4668 non_stop = non_stop_1;
4669 }
4670
4671 static void
4672 show_non_stop (struct ui_file *file, int from_tty,
4673 struct cmd_list_element *c, const char *value)
4674 {
4675 fprintf_filtered (file,
4676 _("Controlling the inferior in non-stop mode is %s.\n"),
4677 value);
4678 }
4679
4680
4681 void
4682 _initialize_infrun (void)
4683 {
4684 int i;
4685 int numsigs;
4686 struct cmd_list_element *c;
4687
4688 add_info ("signals", signals_info, _("\
4689 What debugger does when program gets various signals.\n\
4690 Specify a signal as argument to print info on that signal only."));
4691 add_info_alias ("handle", "signals", 0);
4692
4693 add_com ("handle", class_run, handle_command, _("\
4694 Specify how to handle a signal.\n\
4695 Args are signals and actions to apply to those signals.\n\
4696 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4697 from 1-15 are allowed for compatibility with old versions of GDB.\n\
4698 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4699 The special arg \"all\" is recognized to mean all signals except those\n\
4700 used by the debugger, typically SIGTRAP and SIGINT.\n\
4701 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
4702 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
4703 Stop means reenter debugger if this signal happens (implies print).\n\
4704 Print means print a message if this signal happens.\n\
4705 Pass means let program see this signal; otherwise program doesn't know.\n\
4706 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4707 Pass and Stop may be combined."));
4708 if (xdb_commands)
4709 {
4710 add_com ("lz", class_info, signals_info, _("\
4711 What debugger does when program gets various signals.\n\
4712 Specify a signal as argument to print info on that signal only."));
4713 add_com ("z", class_run, xdb_handle_command, _("\
4714 Specify how to handle a signal.\n\
4715 Args are signals and actions to apply to those signals.\n\
4716 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4717 from 1-15 are allowed for compatibility with old versions of GDB.\n\
4718 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4719 The special arg \"all\" is recognized to mean all signals except those\n\
4720 used by the debugger, typically SIGTRAP and SIGINT.\n\
4721 Recognized actions include \"s\" (toggles between stop and nostop), \n\
4722 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4723 nopass), \"Q\" (noprint)\n\
4724 Stop means reenter debugger if this signal happens (implies print).\n\
4725 Print means print a message if this signal happens.\n\
4726 Pass means let program see this signal; otherwise program doesn't know.\n\
4727 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4728 Pass and Stop may be combined."));
4729 }
4730
4731 if (!dbx_commands)
4732 stop_command = add_cmd ("stop", class_obscure,
4733 not_just_help_class_command, _("\
4734 There is no `stop' command, but you can set a hook on `stop'.\n\
4735 This allows you to set a list of commands to be run each time execution\n\
4736 of the program stops."), &cmdlist);
4737
4738 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4739 Set inferior debugging."), _("\
4740 Show inferior debugging."), _("\
4741 When non-zero, inferior specific debugging is enabled."),
4742 NULL,
4743 show_debug_infrun,
4744 &setdebuglist, &showdebuglist);
4745
4746 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
4747 Set displaced stepping debugging."), _("\
4748 Show displaced stepping debugging."), _("\
4749 When non-zero, displaced stepping specific debugging is enabled."),
4750 NULL,
4751 show_debug_displaced,
4752 &setdebuglist, &showdebuglist);
4753
4754 add_setshow_boolean_cmd ("non-stop", no_class,
4755 &non_stop_1, _("\
4756 Set whether gdb controls the inferior in non-stop mode."), _("\
4757 Show whether gdb controls the inferior in non-stop mode."), _("\
4758 When debugging a multi-threaded program and this setting is\n\
4759 off (the default, also called all-stop mode), when one thread stops\n\
4760 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
4761 all other threads in the program while you interact with the thread of\n\
4762 interest. When you continue or step a thread, you can allow the other\n\
4763 threads to run, or have them remain stopped, but while you inspect any\n\
4764 thread's state, all threads stop.\n\
4765 \n\
4766 In non-stop mode, when one thread stops, other threads can continue\n\
4767 to run freely. You'll be able to step each thread independently,\n\
4768 leave it stopped or free to run as needed."),
4769 set_non_stop,
4770 show_non_stop,
4771 &setlist,
4772 &showlist);
4773
4774 numsigs = (int) TARGET_SIGNAL_LAST;
4775 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
4776 signal_print = (unsigned char *)
4777 xmalloc (sizeof (signal_print[0]) * numsigs);
4778 signal_program = (unsigned char *)
4779 xmalloc (sizeof (signal_program[0]) * numsigs);
4780 for (i = 0; i < numsigs; i++)
4781 {
4782 signal_stop[i] = 1;
4783 signal_print[i] = 1;
4784 signal_program[i] = 1;
4785 }
4786
4787 /* Signals caused by debugger's own actions
4788 should not be given to the program afterwards. */
4789 signal_program[TARGET_SIGNAL_TRAP] = 0;
4790 signal_program[TARGET_SIGNAL_INT] = 0;
4791
4792 /* Signals that are not errors should not normally enter the debugger. */
4793 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4794 signal_print[TARGET_SIGNAL_ALRM] = 0;
4795 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4796 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4797 signal_stop[TARGET_SIGNAL_PROF] = 0;
4798 signal_print[TARGET_SIGNAL_PROF] = 0;
4799 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4800 signal_print[TARGET_SIGNAL_CHLD] = 0;
4801 signal_stop[TARGET_SIGNAL_IO] = 0;
4802 signal_print[TARGET_SIGNAL_IO] = 0;
4803 signal_stop[TARGET_SIGNAL_POLL] = 0;
4804 signal_print[TARGET_SIGNAL_POLL] = 0;
4805 signal_stop[TARGET_SIGNAL_URG] = 0;
4806 signal_print[TARGET_SIGNAL_URG] = 0;
4807 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4808 signal_print[TARGET_SIGNAL_WINCH] = 0;
4809
4810 /* These signals are used internally by user-level thread
4811 implementations. (See signal(5) on Solaris.) Like the above
4812 signals, a healthy program receives and handles them as part of
4813 its normal operation. */
4814 signal_stop[TARGET_SIGNAL_LWP] = 0;
4815 signal_print[TARGET_SIGNAL_LWP] = 0;
4816 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4817 signal_print[TARGET_SIGNAL_WAITING] = 0;
4818 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4819 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4820
4821 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4822 &stop_on_solib_events, _("\
4823 Set stopping for shared library events."), _("\
4824 Show stopping for shared library events."), _("\
4825 If nonzero, gdb will give control to the user when the dynamic linker\n\
4826 notifies gdb of shared library events. The most common event of interest\n\
4827 to the user would be loading/unloading of a new library."),
4828 NULL,
4829 show_stop_on_solib_events,
4830 &setlist, &showlist);
4831
4832 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4833 follow_fork_mode_kind_names,
4834 &follow_fork_mode_string, _("\
4835 Set debugger response to a program call of fork or vfork."), _("\
4836 Show debugger response to a program call of fork or vfork."), _("\
4837 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4838 parent - the original process is debugged after a fork\n\
4839 child - the new process is debugged after a fork\n\
4840 The unfollowed process will continue to run.\n\
4841 By default, the debugger will follow the parent process."),
4842 NULL,
4843 show_follow_fork_mode_string,
4844 &setlist, &showlist);
4845
4846 add_setshow_enum_cmd ("scheduler-locking", class_run,
4847 scheduler_enums, &scheduler_mode, _("\
4848 Set mode for locking scheduler during execution."), _("\
4849 Show mode for locking scheduler during execution."), _("\
4850 off == no locking (threads may preempt at any time)\n\
4851 on == full locking (no thread except the current thread may run)\n\
4852 step == scheduler locked during every single-step operation.\n\
4853 In this mode, no other thread may run during a step command.\n\
4854 Other threads may run while stepping over a function call ('next')."),
4855 set_schedlock_func, /* traps on target vector */
4856 show_scheduler_mode,
4857 &setlist, &showlist);
4858
4859 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4860 Set mode of the step operation."), _("\
4861 Show mode of the step operation."), _("\
4862 When set, doing a step over a function without debug line information\n\
4863 will stop at the first instruction of that function. Otherwise, the\n\
4864 function is skipped and the step command stops at a different source line."),
4865 NULL,
4866 show_step_stop_if_no_debug,
4867 &setlist, &showlist);
4868
4869 add_setshow_boolean_cmd ("can-use-displaced-stepping", class_maintenance,
4870 &can_use_displaced_stepping, _("\
4871 Set debugger's willingness to use displaced stepping."), _("\
4872 Show debugger's willingness to use displaced stepping."), _("\
4873 If zero, gdb will not use displaced stepping to step over\n\
4874 breakpoints, even if such is supported by the target."),
4875 NULL,
4876 show_can_use_displaced_stepping,
4877 &maintenance_set_cmdlist,
4878 &maintenance_show_cmdlist);
4879
4880 /* ptid initializations */
4881 null_ptid = ptid_build (0, 0, 0);
4882 minus_one_ptid = ptid_build (-1, 0, 0);
4883 inferior_ptid = null_ptid;
4884 target_last_wait_ptid = minus_one_ptid;
4885 displaced_step_ptid = null_ptid;
4886
4887 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
4888 }
This page took 0.170564 seconds and 4 git commands to generate.