* gdb.base/display.c (do_loops): Add float variable `f'.
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior process.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
3 1996, 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include <ctype.h>
25 #include "symtab.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "breakpoint.h"
29 #include "gdb_wait.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "cli/cli-script.h"
33 #include "target.h"
34 #include "gdbthread.h"
35 #include "annotate.h"
36 #include "symfile.h"
37 #include "top.h"
38 #include <signal.h>
39 #include "inf-loop.h"
40 #include "regcache.h"
41
42 /* Prototypes for local functions */
43
44 static void signals_info (char *, int);
45
46 static void handle_command (char *, int);
47
48 static void sig_print_info (enum target_signal);
49
50 static void sig_print_header (void);
51
52 static void resume_cleanups (void *);
53
54 static int hook_stop_stub (void *);
55
56 static void delete_breakpoint_current_contents (void *);
57
58 static void set_follow_fork_mode_command (char *arg, int from_tty,
59 struct cmd_list_element * c);
60
61 static struct inferior_status *xmalloc_inferior_status (void);
62
63 static void free_inferior_status (struct inferior_status *);
64
65 static int restore_selected_frame (void *);
66
67 static void build_infrun (void);
68
69 static void follow_inferior_fork (int parent_pid, int child_pid,
70 int has_forked, int has_vforked);
71
72 static void follow_fork (int parent_pid, int child_pid);
73
74 static void follow_vfork (int parent_pid, int child_pid);
75
76 static void set_schedlock_func (char *args, int from_tty,
77 struct cmd_list_element * c);
78
79 struct execution_control_state;
80
81 static int currently_stepping (struct execution_control_state *ecs);
82
83 static void xdb_handle_command (char *args, int from_tty);
84
85 void _initialize_infrun (void);
86
87 int inferior_ignoring_startup_exec_events = 0;
88 int inferior_ignoring_leading_exec_events = 0;
89
90 /* When set, stop the 'step' command if we enter a function which has
91 no line number information. The normal behavior is that we step
92 over such function. */
93 int step_stop_if_no_debug = 0;
94
95 /* In asynchronous mode, but simulating synchronous execution. */
96
97 int sync_execution = 0;
98
99 /* wait_for_inferior and normal_stop use this to notify the user
100 when the inferior stopped in a different thread than it had been
101 running in. */
102
103 static ptid_t previous_inferior_ptid;
104
105 /* This is true for configurations that may follow through execl() and
106 similar functions. At present this is only true for HP-UX native. */
107
108 #ifndef MAY_FOLLOW_EXEC
109 #define MAY_FOLLOW_EXEC (0)
110 #endif
111
112 static int may_follow_exec = MAY_FOLLOW_EXEC;
113
114 /* GET_LONGJMP_TARGET returns the PC at which longjmp() will resume the
115 program. It needs to examine the jmp_buf argument and extract the PC
116 from it. The return value is non-zero on success, zero otherwise. */
117
118 #ifndef GET_LONGJMP_TARGET
119 #define GET_LONGJMP_TARGET(PC_ADDR) 0
120 #endif
121
122
123 /* Dynamic function trampolines are similar to solib trampolines in that they
124 are between the caller and the callee. The difference is that when you
125 enter a dynamic trampoline, you can't determine the callee's address. Some
126 (usually complex) code needs to run in the dynamic trampoline to figure out
127 the callee's address. This macro is usually called twice. First, when we
128 enter the trampoline (looks like a normal function call at that point). It
129 should return the PC of a point within the trampoline where the callee's
130 address is known. Second, when we hit the breakpoint, this routine returns
131 the callee's address. At that point, things proceed as per a step resume
132 breakpoint. */
133
134 #ifndef DYNAMIC_TRAMPOLINE_NEXTPC
135 #define DYNAMIC_TRAMPOLINE_NEXTPC(pc) 0
136 #endif
137
138 /* If the program uses ELF-style shared libraries, then calls to
139 functions in shared libraries go through stubs, which live in a
140 table called the PLT (Procedure Linkage Table). The first time the
141 function is called, the stub sends control to the dynamic linker,
142 which looks up the function's real address, patches the stub so
143 that future calls will go directly to the function, and then passes
144 control to the function.
145
146 If we are stepping at the source level, we don't want to see any of
147 this --- we just want to skip over the stub and the dynamic linker.
148 The simple approach is to single-step until control leaves the
149 dynamic linker.
150
151 However, on some systems (e.g., Red Hat Linux 5.2) the dynamic
152 linker calls functions in the shared C library, so you can't tell
153 from the PC alone whether the dynamic linker is still running. In
154 this case, we use a step-resume breakpoint to get us past the
155 dynamic linker, as if we were using "next" to step over a function
156 call.
157
158 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
159 linker code or not. Normally, this means we single-step. However,
160 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
161 address where we can place a step-resume breakpoint to get past the
162 linker's symbol resolution function.
163
164 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
165 pretty portable way, by comparing the PC against the address ranges
166 of the dynamic linker's sections.
167
168 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
169 it depends on internal details of the dynamic linker. It's usually
170 not too hard to figure out where to put a breakpoint, but it
171 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
172 sanity checking. If it can't figure things out, returning zero and
173 getting the (possibly confusing) stepping behavior is better than
174 signalling an error, which will obscure the change in the
175 inferior's state. */
176
177 #ifndef IN_SOLIB_DYNSYM_RESOLVE_CODE
178 #define IN_SOLIB_DYNSYM_RESOLVE_CODE(pc) 0
179 #endif
180
181 #ifndef SKIP_SOLIB_RESOLVER
182 #define SKIP_SOLIB_RESOLVER(pc) 0
183 #endif
184
185 /* For SVR4 shared libraries, each call goes through a small piece of
186 trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
187 to nonzero if we are current stopped in one of these. */
188
189 #ifndef IN_SOLIB_CALL_TRAMPOLINE
190 #define IN_SOLIB_CALL_TRAMPOLINE(pc,name) 0
191 #endif
192
193 /* In some shared library schemes, the return path from a shared library
194 call may need to go through a trampoline too. */
195
196 #ifndef IN_SOLIB_RETURN_TRAMPOLINE
197 #define IN_SOLIB_RETURN_TRAMPOLINE(pc,name) 0
198 #endif
199
200 /* This function returns TRUE if pc is the address of an instruction
201 that lies within the dynamic linker (such as the event hook, or the
202 dld itself).
203
204 This function must be used only when a dynamic linker event has
205 been caught, and the inferior is being stepped out of the hook, or
206 undefined results are guaranteed. */
207
208 #ifndef SOLIB_IN_DYNAMIC_LINKER
209 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
210 #endif
211
212 /* On MIPS16, a function that returns a floating point value may call
213 a library helper function to copy the return value to a floating point
214 register. The IGNORE_HELPER_CALL macro returns non-zero if we
215 should ignore (i.e. step over) this function call. */
216 #ifndef IGNORE_HELPER_CALL
217 #define IGNORE_HELPER_CALL(pc) 0
218 #endif
219
220 /* On some systems, the PC may be left pointing at an instruction that won't
221 actually be executed. This is usually indicated by a bit in the PSW. If
222 we find ourselves in such a state, then we step the target beyond the
223 nullified instruction before returning control to the user so as to avoid
224 confusion. */
225
226 #ifndef INSTRUCTION_NULLIFIED
227 #define INSTRUCTION_NULLIFIED 0
228 #endif
229
230 /* We can't step off a permanent breakpoint in the ordinary way, because we
231 can't remove it. Instead, we have to advance the PC to the next
232 instruction. This macro should expand to a pointer to a function that
233 does that, or zero if we have no such function. If we don't have a
234 definition for it, we have to report an error. */
235 #ifndef SKIP_PERMANENT_BREAKPOINT
236 #define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
237 static void
238 default_skip_permanent_breakpoint (void)
239 {
240 error_begin ();
241 fprintf_filtered (gdb_stderr, "\
242 The program is stopped at a permanent breakpoint, but GDB does not know\n\
243 how to step past a permanent breakpoint on this architecture. Try using\n\
244 a command like `return' or `jump' to continue execution.\n");
245 return_to_top_level (RETURN_ERROR);
246 }
247 #endif
248
249
250 /* Convert the #defines into values. This is temporary until wfi control
251 flow is completely sorted out. */
252
253 #ifndef HAVE_STEPPABLE_WATCHPOINT
254 #define HAVE_STEPPABLE_WATCHPOINT 0
255 #else
256 #undef HAVE_STEPPABLE_WATCHPOINT
257 #define HAVE_STEPPABLE_WATCHPOINT 1
258 #endif
259
260 #ifndef HAVE_NONSTEPPABLE_WATCHPOINT
261 #define HAVE_NONSTEPPABLE_WATCHPOINT 0
262 #else
263 #undef HAVE_NONSTEPPABLE_WATCHPOINT
264 #define HAVE_NONSTEPPABLE_WATCHPOINT 1
265 #endif
266
267 #ifndef HAVE_CONTINUABLE_WATCHPOINT
268 #define HAVE_CONTINUABLE_WATCHPOINT 0
269 #else
270 #undef HAVE_CONTINUABLE_WATCHPOINT
271 #define HAVE_CONTINUABLE_WATCHPOINT 1
272 #endif
273
274 #ifndef CANNOT_STEP_HW_WATCHPOINTS
275 #define CANNOT_STEP_HW_WATCHPOINTS 0
276 #else
277 #undef CANNOT_STEP_HW_WATCHPOINTS
278 #define CANNOT_STEP_HW_WATCHPOINTS 1
279 #endif
280
281 /* Tables of how to react to signals; the user sets them. */
282
283 static unsigned char *signal_stop;
284 static unsigned char *signal_print;
285 static unsigned char *signal_program;
286
287 #define SET_SIGS(nsigs,sigs,flags) \
288 do { \
289 int signum = (nsigs); \
290 while (signum-- > 0) \
291 if ((sigs)[signum]) \
292 (flags)[signum] = 1; \
293 } while (0)
294
295 #define UNSET_SIGS(nsigs,sigs,flags) \
296 do { \
297 int signum = (nsigs); \
298 while (signum-- > 0) \
299 if ((sigs)[signum]) \
300 (flags)[signum] = 0; \
301 } while (0)
302
303 /* Value to pass to target_resume() to cause all threads to resume */
304
305 #define RESUME_ALL (pid_to_ptid (-1))
306
307 /* Command list pointer for the "stop" placeholder. */
308
309 static struct cmd_list_element *stop_command;
310
311 /* Nonzero if breakpoints are now inserted in the inferior. */
312
313 static int breakpoints_inserted;
314
315 /* Function inferior was in as of last step command. */
316
317 static struct symbol *step_start_function;
318
319 /* Nonzero if we are expecting a trace trap and should proceed from it. */
320
321 static int trap_expected;
322
323 #ifdef SOLIB_ADD
324 /* Nonzero if we want to give control to the user when we're notified
325 of shared library events by the dynamic linker. */
326 static int stop_on_solib_events;
327 #endif
328
329 #ifdef HP_OS_BUG
330 /* Nonzero if the next time we try to continue the inferior, it will
331 step one instruction and generate a spurious trace trap.
332 This is used to compensate for a bug in HP-UX. */
333
334 static int trap_expected_after_continue;
335 #endif
336
337 /* Nonzero means expecting a trace trap
338 and should stop the inferior and return silently when it happens. */
339
340 int stop_after_trap;
341
342 /* Nonzero means expecting a trap and caller will handle it themselves.
343 It is used after attach, due to attaching to a process;
344 when running in the shell before the child program has been exec'd;
345 and when running some kinds of remote stuff (FIXME?). */
346
347 int stop_soon_quietly;
348
349 /* Nonzero if proceed is being used for a "finish" command or a similar
350 situation when stop_registers should be saved. */
351
352 int proceed_to_finish;
353
354 /* Save register contents here when about to pop a stack dummy frame,
355 if-and-only-if proceed_to_finish is set.
356 Thus this contains the return value from the called function (assuming
357 values are returned in a register). */
358
359 char *stop_registers;
360
361 /* Nonzero if program stopped due to error trying to insert breakpoints. */
362
363 static int breakpoints_failed;
364
365 /* Nonzero after stop if current stack frame should be printed. */
366
367 static int stop_print_frame;
368
369 static struct breakpoint *step_resume_breakpoint = NULL;
370 static struct breakpoint *through_sigtramp_breakpoint = NULL;
371
372 /* On some platforms (e.g., HP-UX), hardware watchpoints have bad
373 interactions with an inferior that is running a kernel function
374 (aka, a system call or "syscall"). wait_for_inferior therefore
375 may have a need to know when the inferior is in a syscall. This
376 is a count of the number of inferior threads which are known to
377 currently be running in a syscall. */
378 static int number_of_threads_in_syscalls;
379
380 /* This is a cached copy of the pid/waitstatus of the last event
381 returned by target_wait()/target_wait_hook(). This information is
382 returned by get_last_target_status(). */
383 static ptid_t target_last_wait_ptid;
384 static struct target_waitstatus target_last_waitstatus;
385
386 /* This is used to remember when a fork, vfork or exec event
387 was caught by a catchpoint, and thus the event is to be
388 followed at the next resume of the inferior, and not
389 immediately. */
390 static struct
391 {
392 enum target_waitkind kind;
393 struct
394 {
395 int parent_pid;
396 int saw_parent_fork;
397 int child_pid;
398 int saw_child_fork;
399 int saw_child_exec;
400 }
401 fork_event;
402 char *execd_pathname;
403 }
404 pending_follow;
405
406 /* Some platforms don't allow us to do anything meaningful with a
407 vforked child until it has exec'd. Vforked processes on such
408 platforms can only be followed after they've exec'd.
409
410 When this is set to 0, a vfork can be immediately followed,
411 and an exec can be followed merely as an exec. When this is
412 set to 1, a vfork event has been seen, but cannot be followed
413 until the exec is seen.
414
415 (In the latter case, inferior_ptid is still the parent of the
416 vfork, and pending_follow.fork_event.child_pid is the child. The
417 appropriate process is followed, according to the setting of
418 follow-fork-mode.) */
419 static int follow_vfork_when_exec;
420
421 static const char follow_fork_mode_ask[] = "ask";
422 static const char follow_fork_mode_both[] = "both";
423 static const char follow_fork_mode_child[] = "child";
424 static const char follow_fork_mode_parent[] = "parent";
425
426 static const char *follow_fork_mode_kind_names[] =
427 {
428 follow_fork_mode_ask,
429 /* ??rehrauer: The "both" option is broken, by what may be a 10.20
430 kernel problem. It's also not terribly useful without a GUI to
431 help the user drive two debuggers. So for now, I'm disabling the
432 "both" option. */
433 /* follow_fork_mode_both, */
434 follow_fork_mode_child,
435 follow_fork_mode_parent,
436 NULL
437 };
438
439 static const char *follow_fork_mode_string = follow_fork_mode_parent;
440 \f
441
442 static void
443 follow_inferior_fork (int parent_pid, int child_pid, int has_forked,
444 int has_vforked)
445 {
446 int followed_parent = 0;
447 int followed_child = 0;
448
449 /* Which process did the user want us to follow? */
450 const char *follow_mode = follow_fork_mode_string;
451
452 /* Or, did the user not know, and want us to ask? */
453 if (follow_fork_mode_string == follow_fork_mode_ask)
454 {
455 internal_error (__FILE__, __LINE__,
456 "follow_inferior_fork: \"ask\" mode not implemented");
457 /* follow_mode = follow_fork_mode_...; */
458 }
459
460 /* If we're to be following the parent, then detach from child_pid.
461 We're already following the parent, so need do nothing explicit
462 for it. */
463 if (follow_mode == follow_fork_mode_parent)
464 {
465 followed_parent = 1;
466
467 /* We're already attached to the parent, by default. */
468
469 /* Before detaching from the child, remove all breakpoints from
470 it. (This won't actually modify the breakpoint list, but will
471 physically remove the breakpoints from the child.) */
472 if (!has_vforked || !follow_vfork_when_exec)
473 {
474 detach_breakpoints (child_pid);
475 #ifdef SOLIB_REMOVE_INFERIOR_HOOK
476 SOLIB_REMOVE_INFERIOR_HOOK (child_pid);
477 #endif
478 }
479
480 /* Detach from the child. */
481 dont_repeat ();
482
483 target_require_detach (child_pid, "", 1);
484 }
485
486 /* If we're to be following the child, then attach to it, detach
487 from inferior_ptid, and set inferior_ptid to child_pid. */
488 else if (follow_mode == follow_fork_mode_child)
489 {
490 char child_pid_spelling[100]; /* Arbitrary length. */
491
492 followed_child = 1;
493
494 /* Before detaching from the parent, detach all breakpoints from
495 the child. But only if we're forking, or if we follow vforks
496 as soon as they happen. (If we're following vforks only when
497 the child has exec'd, then it's very wrong to try to write
498 back the "shadow contents" of inserted breakpoints now -- they
499 belong to the child's pre-exec'd a.out.) */
500 if (!has_vforked || !follow_vfork_when_exec)
501 {
502 detach_breakpoints (child_pid);
503 }
504
505 /* Before detaching from the parent, remove all breakpoints from it. */
506 remove_breakpoints ();
507
508 /* Also reset the solib inferior hook from the parent. */
509 #ifdef SOLIB_REMOVE_INFERIOR_HOOK
510 SOLIB_REMOVE_INFERIOR_HOOK (PIDGET (inferior_ptid));
511 #endif
512
513 /* Detach from the parent. */
514 dont_repeat ();
515 target_detach (NULL, 1);
516
517 /* Attach to the child. */
518 inferior_ptid = pid_to_ptid (child_pid);
519 sprintf (child_pid_spelling, "%d", child_pid);
520 dont_repeat ();
521
522 target_require_attach (child_pid_spelling, 1);
523
524 /* Was there a step_resume breakpoint? (There was if the user
525 did a "next" at the fork() call.) If so, explicitly reset its
526 thread number.
527
528 step_resumes are a form of bp that are made to be per-thread.
529 Since we created the step_resume bp when the parent process
530 was being debugged, and now are switching to the child process,
531 from the breakpoint package's viewpoint, that's a switch of
532 "threads". We must update the bp's notion of which thread
533 it is for, or it'll be ignored when it triggers... */
534 if (step_resume_breakpoint &&
535 (!has_vforked || !follow_vfork_when_exec))
536 breakpoint_re_set_thread (step_resume_breakpoint);
537
538 /* Reinsert all breakpoints in the child. (The user may've set
539 breakpoints after catching the fork, in which case those
540 actually didn't get set in the child, but only in the parent.) */
541 if (!has_vforked || !follow_vfork_when_exec)
542 {
543 breakpoint_re_set ();
544 insert_breakpoints ();
545 }
546 }
547
548 /* If we're to be following both parent and child, then fork ourselves,
549 and attach the debugger clone to the child. */
550 else if (follow_mode == follow_fork_mode_both)
551 {
552 char pid_suffix[100]; /* Arbitrary length. */
553
554 /* Clone ourselves to follow the child. This is the end of our
555 involvement with child_pid; our clone will take it from here... */
556 dont_repeat ();
557 target_clone_and_follow_inferior (child_pid, &followed_child);
558 followed_parent = !followed_child;
559
560 /* We continue to follow the parent. To help distinguish the two
561 debuggers, though, both we and our clone will reset our prompts. */
562 sprintf (pid_suffix, "[%d] ", PIDGET (inferior_ptid));
563 set_prompt (strcat (get_prompt (), pid_suffix));
564 }
565
566 /* The parent and child of a vfork share the same address space.
567 Also, on some targets the order in which vfork and exec events
568 are received for parent in child requires some delicate handling
569 of the events.
570
571 For instance, on ptrace-based HPUX we receive the child's vfork
572 event first, at which time the parent has been suspended by the
573 OS and is essentially untouchable until the child's exit or second
574 exec event arrives. At that time, the parent's vfork event is
575 delivered to us, and that's when we see and decide how to follow
576 the vfork. But to get to that point, we must continue the child
577 until it execs or exits. To do that smoothly, all breakpoints
578 must be removed from the child, in case there are any set between
579 the vfork() and exec() calls. But removing them from the child
580 also removes them from the parent, due to the shared-address-space
581 nature of a vfork'd parent and child. On HPUX, therefore, we must
582 take care to restore the bp's to the parent before we continue it.
583 Else, it's likely that we may not stop in the expected place. (The
584 worst scenario is when the user tries to step over a vfork() call;
585 the step-resume bp must be restored for the step to properly stop
586 in the parent after the call completes!)
587
588 Sequence of events, as reported to gdb from HPUX:
589
590 Parent Child Action for gdb to take
591 -------------------------------------------------------
592 1 VFORK Continue child
593 2 EXEC
594 3 EXEC or EXIT
595 4 VFORK */
596 if (has_vforked)
597 {
598 target_post_follow_vfork (parent_pid,
599 followed_parent,
600 child_pid,
601 followed_child);
602 }
603
604 pending_follow.fork_event.saw_parent_fork = 0;
605 pending_follow.fork_event.saw_child_fork = 0;
606 }
607
608 static void
609 follow_fork (int parent_pid, int child_pid)
610 {
611 follow_inferior_fork (parent_pid, child_pid, 1, 0);
612 }
613
614
615 /* Forward declaration. */
616 static void follow_exec (int, char *);
617
618 static void
619 follow_vfork (int parent_pid, int child_pid)
620 {
621 follow_inferior_fork (parent_pid, child_pid, 0, 1);
622
623 /* Did we follow the child? Had it exec'd before we saw the parent vfork? */
624 if (pending_follow.fork_event.saw_child_exec
625 && (PIDGET (inferior_ptid) == child_pid))
626 {
627 pending_follow.fork_event.saw_child_exec = 0;
628 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
629 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
630 xfree (pending_follow.execd_pathname);
631 }
632 }
633
634 /* EXECD_PATHNAME is assumed to be non-NULL. */
635
636 static void
637 follow_exec (int pid, char *execd_pathname)
638 {
639 int saved_pid = pid;
640 struct target_ops *tgt;
641
642 if (!may_follow_exec)
643 return;
644
645 /* Did this exec() follow a vfork()? If so, we must follow the
646 vfork now too. Do it before following the exec. */
647 if (follow_vfork_when_exec &&
648 (pending_follow.kind == TARGET_WAITKIND_VFORKED))
649 {
650 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
651 follow_vfork (PIDGET (inferior_ptid),
652 pending_follow.fork_event.child_pid);
653 follow_vfork_when_exec = 0;
654 saved_pid = PIDGET (inferior_ptid);
655
656 /* Did we follow the parent? If so, we're done. If we followed
657 the child then we must also follow its exec(). */
658 if (PIDGET (inferior_ptid) == pending_follow.fork_event.parent_pid)
659 return;
660 }
661
662 /* This is an exec event that we actually wish to pay attention to.
663 Refresh our symbol table to the newly exec'd program, remove any
664 momentary bp's, etc.
665
666 If there are breakpoints, they aren't really inserted now,
667 since the exec() transformed our inferior into a fresh set
668 of instructions.
669
670 We want to preserve symbolic breakpoints on the list, since
671 we have hopes that they can be reset after the new a.out's
672 symbol table is read.
673
674 However, any "raw" breakpoints must be removed from the list
675 (e.g., the solib bp's), since their address is probably invalid
676 now.
677
678 And, we DON'T want to call delete_breakpoints() here, since
679 that may write the bp's "shadow contents" (the instruction
680 value that was overwritten witha TRAP instruction). Since
681 we now have a new a.out, those shadow contents aren't valid. */
682 update_breakpoints_after_exec ();
683
684 /* If there was one, it's gone now. We cannot truly step-to-next
685 statement through an exec(). */
686 step_resume_breakpoint = NULL;
687 step_range_start = 0;
688 step_range_end = 0;
689
690 /* If there was one, it's gone now. */
691 through_sigtramp_breakpoint = NULL;
692
693 /* What is this a.out's name? */
694 printf_unfiltered ("Executing new program: %s\n", execd_pathname);
695
696 /* We've followed the inferior through an exec. Therefore, the
697 inferior has essentially been killed & reborn. */
698
699 /* First collect the run target in effect. */
700 tgt = find_run_target ();
701 /* If we can't find one, things are in a very strange state... */
702 if (tgt == NULL)
703 error ("Could find run target to save before following exec");
704
705 gdb_flush (gdb_stdout);
706 target_mourn_inferior ();
707 inferior_ptid = pid_to_ptid (saved_pid);
708 /* Because mourn_inferior resets inferior_ptid. */
709 push_target (tgt);
710
711 /* That a.out is now the one to use. */
712 exec_file_attach (execd_pathname, 0);
713
714 /* And also is where symbols can be found. */
715 symbol_file_add_main (execd_pathname, 0);
716
717 /* Reset the shared library package. This ensures that we get
718 a shlib event when the child reaches "_start", at which point
719 the dld will have had a chance to initialize the child. */
720 #if defined(SOLIB_RESTART)
721 SOLIB_RESTART ();
722 #endif
723 #ifdef SOLIB_CREATE_INFERIOR_HOOK
724 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
725 #endif
726
727 /* Reinsert all breakpoints. (Those which were symbolic have
728 been reset to the proper address in the new a.out, thanks
729 to symbol_file_command...) */
730 insert_breakpoints ();
731
732 /* The next resume of this inferior should bring it to the shlib
733 startup breakpoints. (If the user had also set bp's on
734 "main" from the old (parent) process, then they'll auto-
735 matically get reset there in the new process.) */
736 }
737
738 /* Non-zero if we just simulating a single-step. This is needed
739 because we cannot remove the breakpoints in the inferior process
740 until after the `wait' in `wait_for_inferior'. */
741 static int singlestep_breakpoints_inserted_p = 0;
742 \f
743
744 /* Things to clean up if we QUIT out of resume (). */
745 /* ARGSUSED */
746 static void
747 resume_cleanups (void *ignore)
748 {
749 normal_stop ();
750 }
751
752 static const char schedlock_off[] = "off";
753 static const char schedlock_on[] = "on";
754 static const char schedlock_step[] = "step";
755 static const char *scheduler_mode = schedlock_off;
756 static const char *scheduler_enums[] =
757 {
758 schedlock_off,
759 schedlock_on,
760 schedlock_step,
761 NULL
762 };
763
764 static void
765 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
766 {
767 if (c->type == set_cmd)
768 if (!target_can_lock_scheduler)
769 {
770 scheduler_mode = schedlock_off;
771 error ("Target '%s' cannot support this command.",
772 target_shortname);
773 }
774 }
775
776
777 /* Resume the inferior, but allow a QUIT. This is useful if the user
778 wants to interrupt some lengthy single-stepping operation
779 (for child processes, the SIGINT goes to the inferior, and so
780 we get a SIGINT random_signal, but for remote debugging and perhaps
781 other targets, that's not true).
782
783 STEP nonzero if we should step (zero to continue instead).
784 SIG is the signal to give the inferior (zero for none). */
785 void
786 resume (int step, enum target_signal sig)
787 {
788 int should_resume = 1;
789 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
790 QUIT;
791
792 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
793
794
795 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
796 over an instruction that causes a page fault without triggering
797 a hardware watchpoint. The kernel properly notices that it shouldn't
798 stop, because the hardware watchpoint is not triggered, but it forgets
799 the step request and continues the program normally.
800 Work around the problem by removing hardware watchpoints if a step is
801 requested, GDB will check for a hardware watchpoint trigger after the
802 step anyway. */
803 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
804 remove_hw_watchpoints ();
805
806
807 /* Normally, by the time we reach `resume', the breakpoints are either
808 removed or inserted, as appropriate. The exception is if we're sitting
809 at a permanent breakpoint; we need to step over it, but permanent
810 breakpoints can't be removed. So we have to test for it here. */
811 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
812 SKIP_PERMANENT_BREAKPOINT ();
813
814 if (SOFTWARE_SINGLE_STEP_P () && step)
815 {
816 /* Do it the hard way, w/temp breakpoints */
817 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
818 /* ...and don't ask hardware to do it. */
819 step = 0;
820 /* and do not pull these breakpoints until after a `wait' in
821 `wait_for_inferior' */
822 singlestep_breakpoints_inserted_p = 1;
823 }
824
825 /* Handle any optimized stores to the inferior NOW... */
826 #ifdef DO_DEFERRED_STORES
827 DO_DEFERRED_STORES;
828 #endif
829
830 /* If there were any forks/vforks/execs that were caught and are
831 now to be followed, then do so. */
832 switch (pending_follow.kind)
833 {
834 case (TARGET_WAITKIND_FORKED):
835 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
836 follow_fork (PIDGET (inferior_ptid),
837 pending_follow.fork_event.child_pid);
838 break;
839
840 case (TARGET_WAITKIND_VFORKED):
841 {
842 int saw_child_exec = pending_follow.fork_event.saw_child_exec;
843
844 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
845 follow_vfork (PIDGET (inferior_ptid),
846 pending_follow.fork_event.child_pid);
847
848 /* Did we follow the child, but not yet see the child's exec event?
849 If so, then it actually ought to be waiting for us; we respond to
850 parent vfork events. We don't actually want to resume the child
851 in this situation; we want to just get its exec event. */
852 if (!saw_child_exec &&
853 (PIDGET (inferior_ptid) == pending_follow.fork_event.child_pid))
854 should_resume = 0;
855 }
856 break;
857
858 case (TARGET_WAITKIND_EXECD):
859 /* If we saw a vfork event but couldn't follow it until we saw
860 an exec, then now might be the time! */
861 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
862 /* follow_exec is called as soon as the exec event is seen. */
863 break;
864
865 default:
866 break;
867 }
868
869 /* Install inferior's terminal modes. */
870 target_terminal_inferior ();
871
872 if (should_resume)
873 {
874 ptid_t resume_ptid;
875
876 resume_ptid = RESUME_ALL; /* Default */
877
878 if ((step || singlestep_breakpoints_inserted_p) &&
879 !breakpoints_inserted && breakpoint_here_p (read_pc ()))
880 {
881 /* Stepping past a breakpoint without inserting breakpoints.
882 Make sure only the current thread gets to step, so that
883 other threads don't sneak past breakpoints while they are
884 not inserted. */
885
886 resume_ptid = inferior_ptid;
887 }
888
889 if ((scheduler_mode == schedlock_on) ||
890 (scheduler_mode == schedlock_step &&
891 (step || singlestep_breakpoints_inserted_p)))
892 {
893 /* User-settable 'scheduler' mode requires solo thread resume. */
894 resume_ptid = inferior_ptid;
895 }
896
897 #ifdef CANNOT_STEP_BREAKPOINT
898 /* Most targets can step a breakpoint instruction, thus executing it
899 normally. But if this one cannot, just continue and we will hit
900 it anyway. */
901 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
902 step = 0;
903 #endif
904 target_resume (resume_ptid, step, sig);
905 }
906
907 discard_cleanups (old_cleanups);
908 }
909 \f
910
911 /* Clear out all variables saying what to do when inferior is continued.
912 First do this, then set the ones you want, then call `proceed'. */
913
914 void
915 clear_proceed_status (void)
916 {
917 trap_expected = 0;
918 step_range_start = 0;
919 step_range_end = 0;
920 step_frame_address = 0;
921 step_over_calls = STEP_OVER_UNDEBUGGABLE;
922 stop_after_trap = 0;
923 stop_soon_quietly = 0;
924 proceed_to_finish = 0;
925 breakpoint_proceeded = 1; /* We're about to proceed... */
926
927 /* Discard any remaining commands or status from previous stop. */
928 bpstat_clear (&stop_bpstat);
929 }
930
931 /* Basic routine for continuing the program in various fashions.
932
933 ADDR is the address to resume at, or -1 for resume where stopped.
934 SIGGNAL is the signal to give it, or 0 for none,
935 or -1 for act according to how it stopped.
936 STEP is nonzero if should trap after one instruction.
937 -1 means return after that and print nothing.
938 You should probably set various step_... variables
939 before calling here, if you are stepping.
940
941 You should call clear_proceed_status before calling proceed. */
942
943 void
944 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
945 {
946 int oneproc = 0;
947
948 if (step > 0)
949 step_start_function = find_pc_function (read_pc ());
950 if (step < 0)
951 stop_after_trap = 1;
952
953 if (addr == (CORE_ADDR) -1)
954 {
955 /* If there is a breakpoint at the address we will resume at,
956 step one instruction before inserting breakpoints
957 so that we do not stop right away (and report a second
958 hit at this breakpoint). */
959
960 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
961 oneproc = 1;
962
963 #ifndef STEP_SKIPS_DELAY
964 #define STEP_SKIPS_DELAY(pc) (0)
965 #define STEP_SKIPS_DELAY_P (0)
966 #endif
967 /* Check breakpoint_here_p first, because breakpoint_here_p is fast
968 (it just checks internal GDB data structures) and STEP_SKIPS_DELAY
969 is slow (it needs to read memory from the target). */
970 if (STEP_SKIPS_DELAY_P
971 && breakpoint_here_p (read_pc () + 4)
972 && STEP_SKIPS_DELAY (read_pc ()))
973 oneproc = 1;
974 }
975 else
976 {
977 write_pc (addr);
978 }
979
980 #ifdef PREPARE_TO_PROCEED
981 /* In a multi-threaded task we may select another thread
982 and then continue or step.
983
984 But if the old thread was stopped at a breakpoint, it
985 will immediately cause another breakpoint stop without
986 any execution (i.e. it will report a breakpoint hit
987 incorrectly). So we must step over it first.
988
989 PREPARE_TO_PROCEED checks the current thread against the thread
990 that reported the most recent event. If a step-over is required
991 it returns TRUE and sets the current thread to the old thread. */
992 if (PREPARE_TO_PROCEED (1) && breakpoint_here_p (read_pc ()))
993 {
994 oneproc = 1;
995 }
996
997 #endif /* PREPARE_TO_PROCEED */
998
999 #ifdef HP_OS_BUG
1000 if (trap_expected_after_continue)
1001 {
1002 /* If (step == 0), a trap will be automatically generated after
1003 the first instruction is executed. Force step one
1004 instruction to clear this condition. This should not occur
1005 if step is nonzero, but it is harmless in that case. */
1006 oneproc = 1;
1007 trap_expected_after_continue = 0;
1008 }
1009 #endif /* HP_OS_BUG */
1010
1011 if (oneproc)
1012 /* We will get a trace trap after one instruction.
1013 Continue it automatically and insert breakpoints then. */
1014 trap_expected = 1;
1015 else
1016 {
1017 int temp = insert_breakpoints ();
1018 if (temp)
1019 {
1020 print_sys_errmsg ("insert_breakpoints", temp);
1021 error ("Cannot insert breakpoints.\n\
1022 The same program may be running in another process,\n\
1023 or you may have requested too many hardware\n\
1024 breakpoints and/or watchpoints.\n");
1025 }
1026
1027 breakpoints_inserted = 1;
1028 }
1029
1030 if (siggnal != TARGET_SIGNAL_DEFAULT)
1031 stop_signal = siggnal;
1032 /* If this signal should not be seen by program,
1033 give it zero. Used for debugging signals. */
1034 else if (!signal_program[stop_signal])
1035 stop_signal = TARGET_SIGNAL_0;
1036
1037 annotate_starting ();
1038
1039 /* Make sure that output from GDB appears before output from the
1040 inferior. */
1041 gdb_flush (gdb_stdout);
1042
1043 /* Resume inferior. */
1044 resume (oneproc || step || bpstat_should_step (), stop_signal);
1045
1046 /* Wait for it to stop (if not standalone)
1047 and in any case decode why it stopped, and act accordingly. */
1048 /* Do this only if we are not using the event loop, or if the target
1049 does not support asynchronous execution. */
1050 if (!event_loop_p || !target_can_async_p ())
1051 {
1052 wait_for_inferior ();
1053 normal_stop ();
1054 }
1055 }
1056
1057 /* Record the pc and sp of the program the last time it stopped.
1058 These are just used internally by wait_for_inferior, but need
1059 to be preserved over calls to it and cleared when the inferior
1060 is started. */
1061 static CORE_ADDR prev_pc;
1062 static CORE_ADDR prev_func_start;
1063 static char *prev_func_name;
1064 \f
1065
1066 /* Start remote-debugging of a machine over a serial link. */
1067
1068 void
1069 start_remote (void)
1070 {
1071 init_thread_list ();
1072 init_wait_for_inferior ();
1073 stop_soon_quietly = 1;
1074 trap_expected = 0;
1075
1076 /* Always go on waiting for the target, regardless of the mode. */
1077 /* FIXME: cagney/1999-09-23: At present it isn't possible to
1078 indicate to wait_for_inferior that a target should timeout if
1079 nothing is returned (instead of just blocking). Because of this,
1080 targets expecting an immediate response need to, internally, set
1081 things up so that the target_wait() is forced to eventually
1082 timeout. */
1083 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1084 differentiate to its caller what the state of the target is after
1085 the initial open has been performed. Here we're assuming that
1086 the target has stopped. It should be possible to eventually have
1087 target_open() return to the caller an indication that the target
1088 is currently running and GDB state should be set to the same as
1089 for an async run. */
1090 wait_for_inferior ();
1091 normal_stop ();
1092 }
1093
1094 /* Initialize static vars when a new inferior begins. */
1095
1096 void
1097 init_wait_for_inferior (void)
1098 {
1099 /* These are meaningless until the first time through wait_for_inferior. */
1100 prev_pc = 0;
1101 prev_func_start = 0;
1102 prev_func_name = NULL;
1103
1104 #ifdef HP_OS_BUG
1105 trap_expected_after_continue = 0;
1106 #endif
1107 breakpoints_inserted = 0;
1108 breakpoint_init_inferior (inf_starting);
1109
1110 /* Don't confuse first call to proceed(). */
1111 stop_signal = TARGET_SIGNAL_0;
1112
1113 /* The first resume is not following a fork/vfork/exec. */
1114 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
1115 pending_follow.fork_event.saw_parent_fork = 0;
1116 pending_follow.fork_event.saw_child_fork = 0;
1117 pending_follow.fork_event.saw_child_exec = 0;
1118
1119 /* See wait_for_inferior's handling of SYSCALL_ENTRY/RETURN events. */
1120 number_of_threads_in_syscalls = 0;
1121
1122 clear_proceed_status ();
1123 }
1124
1125 static void
1126 delete_breakpoint_current_contents (void *arg)
1127 {
1128 struct breakpoint **breakpointp = (struct breakpoint **) arg;
1129 if (*breakpointp != NULL)
1130 {
1131 delete_breakpoint (*breakpointp);
1132 *breakpointp = NULL;
1133 }
1134 }
1135 \f
1136 /* This enum encodes possible reasons for doing a target_wait, so that
1137 wfi can call target_wait in one place. (Ultimately the call will be
1138 moved out of the infinite loop entirely.) */
1139
1140 enum infwait_states
1141 {
1142 infwait_normal_state,
1143 infwait_thread_hop_state,
1144 infwait_nullified_state,
1145 infwait_nonstep_watch_state
1146 };
1147
1148 /* Why did the inferior stop? Used to print the appropriate messages
1149 to the interface from within handle_inferior_event(). */
1150 enum inferior_stop_reason
1151 {
1152 /* We don't know why. */
1153 STOP_UNKNOWN,
1154 /* Step, next, nexti, stepi finished. */
1155 END_STEPPING_RANGE,
1156 /* Found breakpoint. */
1157 BREAKPOINT_HIT,
1158 /* Inferior terminated by signal. */
1159 SIGNAL_EXITED,
1160 /* Inferior exited. */
1161 EXITED,
1162 /* Inferior received signal, and user asked to be notified. */
1163 SIGNAL_RECEIVED
1164 };
1165
1166 /* This structure contains what used to be local variables in
1167 wait_for_inferior. Probably many of them can return to being
1168 locals in handle_inferior_event. */
1169
1170 struct execution_control_state
1171 {
1172 struct target_waitstatus ws;
1173 struct target_waitstatus *wp;
1174 int another_trap;
1175 int random_signal;
1176 CORE_ADDR stop_func_start;
1177 CORE_ADDR stop_func_end;
1178 char *stop_func_name;
1179 struct symtab_and_line sal;
1180 int remove_breakpoints_on_following_step;
1181 int current_line;
1182 struct symtab *current_symtab;
1183 int handling_longjmp; /* FIXME */
1184 ptid_t ptid;
1185 ptid_t saved_inferior_ptid;
1186 int update_step_sp;
1187 int stepping_through_solib_after_catch;
1188 bpstat stepping_through_solib_catchpoints;
1189 int enable_hw_watchpoints_after_wait;
1190 int stepping_through_sigtramp;
1191 int new_thread_event;
1192 struct target_waitstatus tmpstatus;
1193 enum infwait_states infwait_state;
1194 ptid_t waiton_ptid;
1195 int wait_some_more;
1196 };
1197
1198 void init_execution_control_state (struct execution_control_state * ecs);
1199
1200 void handle_inferior_event (struct execution_control_state * ecs);
1201
1202 static void check_sigtramp2 (struct execution_control_state *ecs);
1203 static void step_into_function (struct execution_control_state *ecs);
1204 static void step_over_function (struct execution_control_state *ecs);
1205 static void stop_stepping (struct execution_control_state *ecs);
1206 static void prepare_to_wait (struct execution_control_state *ecs);
1207 static void keep_going (struct execution_control_state *ecs);
1208 static void print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info);
1209
1210 /* Wait for control to return from inferior to debugger.
1211 If inferior gets a signal, we may decide to start it up again
1212 instead of returning. That is why there is a loop in this function.
1213 When this function actually returns it means the inferior
1214 should be left stopped and GDB should read more commands. */
1215
1216 void
1217 wait_for_inferior (void)
1218 {
1219 struct cleanup *old_cleanups;
1220 struct execution_control_state ecss;
1221 struct execution_control_state *ecs;
1222
1223 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
1224 &step_resume_breakpoint);
1225 make_cleanup (delete_breakpoint_current_contents,
1226 &through_sigtramp_breakpoint);
1227
1228 /* wfi still stays in a loop, so it's OK just to take the address of
1229 a local to get the ecs pointer. */
1230 ecs = &ecss;
1231
1232 /* Fill in with reasonable starting values. */
1233 init_execution_control_state (ecs);
1234
1235 /* We'll update this if & when we switch to a new thread. */
1236 previous_inferior_ptid = inferior_ptid;
1237
1238 overlay_cache_invalid = 1;
1239
1240 /* We have to invalidate the registers BEFORE calling target_wait
1241 because they can be loaded from the target while in target_wait.
1242 This makes remote debugging a bit more efficient for those
1243 targets that provide critical registers as part of their normal
1244 status mechanism. */
1245
1246 registers_changed ();
1247
1248 while (1)
1249 {
1250 if (target_wait_hook)
1251 ecs->ptid = target_wait_hook (ecs->waiton_ptid, ecs->wp);
1252 else
1253 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
1254
1255 /* Now figure out what to do with the result of the result. */
1256 handle_inferior_event (ecs);
1257
1258 if (!ecs->wait_some_more)
1259 break;
1260 }
1261 do_cleanups (old_cleanups);
1262 }
1263
1264 /* Asynchronous version of wait_for_inferior. It is called by the
1265 event loop whenever a change of state is detected on the file
1266 descriptor corresponding to the target. It can be called more than
1267 once to complete a single execution command. In such cases we need
1268 to keep the state in a global variable ASYNC_ECSS. If it is the
1269 last time that this function is called for a single execution
1270 command, then report to the user that the inferior has stopped, and
1271 do the necessary cleanups. */
1272
1273 struct execution_control_state async_ecss;
1274 struct execution_control_state *async_ecs;
1275
1276 void
1277 fetch_inferior_event (void *client_data)
1278 {
1279 static struct cleanup *old_cleanups;
1280
1281 async_ecs = &async_ecss;
1282
1283 if (!async_ecs->wait_some_more)
1284 {
1285 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1286 &step_resume_breakpoint);
1287 make_exec_cleanup (delete_breakpoint_current_contents,
1288 &through_sigtramp_breakpoint);
1289
1290 /* Fill in with reasonable starting values. */
1291 init_execution_control_state (async_ecs);
1292
1293 /* We'll update this if & when we switch to a new thread. */
1294 previous_inferior_ptid = inferior_ptid;
1295
1296 overlay_cache_invalid = 1;
1297
1298 /* We have to invalidate the registers BEFORE calling target_wait
1299 because they can be loaded from the target while in target_wait.
1300 This makes remote debugging a bit more efficient for those
1301 targets that provide critical registers as part of their normal
1302 status mechanism. */
1303
1304 registers_changed ();
1305 }
1306
1307 if (target_wait_hook)
1308 async_ecs->ptid = target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1309 else
1310 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1311
1312 /* Now figure out what to do with the result of the result. */
1313 handle_inferior_event (async_ecs);
1314
1315 if (!async_ecs->wait_some_more)
1316 {
1317 /* Do only the cleanups that have been added by this
1318 function. Let the continuations for the commands do the rest,
1319 if there are any. */
1320 do_exec_cleanups (old_cleanups);
1321 normal_stop ();
1322 if (step_multi && stop_step)
1323 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1324 else
1325 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1326 }
1327 }
1328
1329 /* Prepare an execution control state for looping through a
1330 wait_for_inferior-type loop. */
1331
1332 void
1333 init_execution_control_state (struct execution_control_state *ecs)
1334 {
1335 /* ecs->another_trap? */
1336 ecs->random_signal = 0;
1337 ecs->remove_breakpoints_on_following_step = 0;
1338 ecs->handling_longjmp = 0; /* FIXME */
1339 ecs->update_step_sp = 0;
1340 ecs->stepping_through_solib_after_catch = 0;
1341 ecs->stepping_through_solib_catchpoints = NULL;
1342 ecs->enable_hw_watchpoints_after_wait = 0;
1343 ecs->stepping_through_sigtramp = 0;
1344 ecs->sal = find_pc_line (prev_pc, 0);
1345 ecs->current_line = ecs->sal.line;
1346 ecs->current_symtab = ecs->sal.symtab;
1347 ecs->infwait_state = infwait_normal_state;
1348 ecs->waiton_ptid = pid_to_ptid (-1);
1349 ecs->wp = &(ecs->ws);
1350 }
1351
1352 /* Call this function before setting step_resume_breakpoint, as a
1353 sanity check. There should never be more than one step-resume
1354 breakpoint per thread, so we should never be setting a new
1355 step_resume_breakpoint when one is already active. */
1356 static void
1357 check_for_old_step_resume_breakpoint (void)
1358 {
1359 if (step_resume_breakpoint)
1360 warning ("GDB bug: infrun.c (wait_for_inferior): dropping old step_resume breakpoint");
1361 }
1362
1363 /* Return the cached copy of the last pid/waitstatus returned by
1364 target_wait()/target_wait_hook(). The data is actually cached by
1365 handle_inferior_event(), which gets called immediately after
1366 target_wait()/target_wait_hook(). */
1367
1368 void
1369 get_last_target_status(ptid_t *ptidp, struct target_waitstatus *status)
1370 {
1371 *ptidp = target_last_wait_ptid;
1372 *status = target_last_waitstatus;
1373 }
1374
1375 /* Switch thread contexts, maintaining "infrun state". */
1376
1377 static void
1378 context_switch (struct execution_control_state *ecs)
1379 {
1380 /* Caution: it may happen that the new thread (or the old one!)
1381 is not in the thread list. In this case we must not attempt
1382 to "switch context", or we run the risk that our context may
1383 be lost. This may happen as a result of the target module
1384 mishandling thread creation. */
1385
1386 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1387 { /* Perform infrun state context switch: */
1388 /* Save infrun state for the old thread. */
1389 save_infrun_state (inferior_ptid, prev_pc,
1390 prev_func_start, prev_func_name,
1391 trap_expected, step_resume_breakpoint,
1392 through_sigtramp_breakpoint, step_range_start,
1393 step_range_end, step_frame_address,
1394 ecs->handling_longjmp, ecs->another_trap,
1395 ecs->stepping_through_solib_after_catch,
1396 ecs->stepping_through_solib_catchpoints,
1397 ecs->stepping_through_sigtramp,
1398 ecs->current_line, ecs->current_symtab,
1399 step_sp);
1400
1401 /* Load infrun state for the new thread. */
1402 load_infrun_state (ecs->ptid, &prev_pc,
1403 &prev_func_start, &prev_func_name,
1404 &trap_expected, &step_resume_breakpoint,
1405 &through_sigtramp_breakpoint, &step_range_start,
1406 &step_range_end, &step_frame_address,
1407 &ecs->handling_longjmp, &ecs->another_trap,
1408 &ecs->stepping_through_solib_after_catch,
1409 &ecs->stepping_through_solib_catchpoints,
1410 &ecs->stepping_through_sigtramp,
1411 &ecs->current_line, &ecs->current_symtab,
1412 &step_sp);
1413 }
1414 inferior_ptid = ecs->ptid;
1415 }
1416
1417
1418 /* Given an execution control state that has been freshly filled in
1419 by an event from the inferior, figure out what it means and take
1420 appropriate action. */
1421
1422 void
1423 handle_inferior_event (struct execution_control_state *ecs)
1424 {
1425 CORE_ADDR tmp;
1426 int stepped_after_stopped_by_watchpoint;
1427
1428 /* Cache the last pid/waitstatus. */
1429 target_last_wait_ptid = ecs->ptid;
1430 target_last_waitstatus = *ecs->wp;
1431
1432 /* Keep this extra brace for now, minimizes diffs. */
1433 {
1434 switch (ecs->infwait_state)
1435 {
1436 case infwait_thread_hop_state:
1437 /* Cancel the waiton_ptid. */
1438 ecs->waiton_ptid = pid_to_ptid (-1);
1439 /* Fall thru to the normal_state case. */
1440
1441 case infwait_normal_state:
1442 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1443 is serviced in this loop, below. */
1444 if (ecs->enable_hw_watchpoints_after_wait)
1445 {
1446 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1447 ecs->enable_hw_watchpoints_after_wait = 0;
1448 }
1449 stepped_after_stopped_by_watchpoint = 0;
1450 break;
1451
1452 case infwait_nullified_state:
1453 break;
1454
1455 case infwait_nonstep_watch_state:
1456 insert_breakpoints ();
1457
1458 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1459 handle things like signals arriving and other things happening
1460 in combination correctly? */
1461 stepped_after_stopped_by_watchpoint = 1;
1462 break;
1463 }
1464 ecs->infwait_state = infwait_normal_state;
1465
1466 flush_cached_frames ();
1467
1468 /* If it's a new process, add it to the thread database */
1469
1470 ecs->new_thread_event = (! ptid_equal (ecs->ptid, inferior_ptid)
1471 && ! in_thread_list (ecs->ptid));
1472
1473 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1474 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
1475 && ecs->new_thread_event)
1476 {
1477 add_thread (ecs->ptid);
1478
1479 #ifdef UI_OUT
1480 ui_out_text (uiout, "[New ");
1481 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1482 ui_out_text (uiout, "]\n");
1483 #else
1484 printf_filtered ("[New %s]\n", target_pid_or_tid_to_str (ecs->ptid));
1485 #endif
1486
1487 #if 0
1488 /* NOTE: This block is ONLY meant to be invoked in case of a
1489 "thread creation event"! If it is invoked for any other
1490 sort of event (such as a new thread landing on a breakpoint),
1491 the event will be discarded, which is almost certainly
1492 a bad thing!
1493
1494 To avoid this, the low-level module (eg. target_wait)
1495 should call in_thread_list and add_thread, so that the
1496 new thread is known by the time we get here. */
1497
1498 /* We may want to consider not doing a resume here in order
1499 to give the user a chance to play with the new thread.
1500 It might be good to make that a user-settable option. */
1501
1502 /* At this point, all threads are stopped (happens
1503 automatically in either the OS or the native code).
1504 Therefore we need to continue all threads in order to
1505 make progress. */
1506
1507 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1508 prepare_to_wait (ecs);
1509 return;
1510 #endif
1511 }
1512
1513 switch (ecs->ws.kind)
1514 {
1515 case TARGET_WAITKIND_LOADED:
1516 /* Ignore gracefully during startup of the inferior, as it
1517 might be the shell which has just loaded some objects,
1518 otherwise add the symbols for the newly loaded objects. */
1519 #ifdef SOLIB_ADD
1520 if (!stop_soon_quietly)
1521 {
1522 /* Remove breakpoints, SOLIB_ADD might adjust
1523 breakpoint addresses via breakpoint_re_set. */
1524 if (breakpoints_inserted)
1525 remove_breakpoints ();
1526
1527 /* Check for any newly added shared libraries if we're
1528 supposed to be adding them automatically. */
1529 if (auto_solib_add)
1530 {
1531 /* Switch terminal for any messages produced by
1532 breakpoint_re_set. */
1533 target_terminal_ours_for_output ();
1534 SOLIB_ADD (NULL, 0, NULL);
1535 target_terminal_inferior ();
1536 }
1537
1538 /* Reinsert breakpoints and continue. */
1539 if (breakpoints_inserted)
1540 insert_breakpoints ();
1541 }
1542 #endif
1543 resume (0, TARGET_SIGNAL_0);
1544 prepare_to_wait (ecs);
1545 return;
1546
1547 case TARGET_WAITKIND_SPURIOUS:
1548 resume (0, TARGET_SIGNAL_0);
1549 prepare_to_wait (ecs);
1550 return;
1551
1552 case TARGET_WAITKIND_EXITED:
1553 target_terminal_ours (); /* Must do this before mourn anyway */
1554 print_stop_reason (EXITED, ecs->ws.value.integer);
1555
1556 /* Record the exit code in the convenience variable $_exitcode, so
1557 that the user can inspect this again later. */
1558 set_internalvar (lookup_internalvar ("_exitcode"),
1559 value_from_longest (builtin_type_int,
1560 (LONGEST) ecs->ws.value.integer));
1561 gdb_flush (gdb_stdout);
1562 target_mourn_inferior ();
1563 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1564 stop_print_frame = 0;
1565 stop_stepping (ecs);
1566 return;
1567
1568 case TARGET_WAITKIND_SIGNALLED:
1569 stop_print_frame = 0;
1570 stop_signal = ecs->ws.value.sig;
1571 target_terminal_ours (); /* Must do this before mourn anyway */
1572
1573 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1574 reach here unless the inferior is dead. However, for years
1575 target_kill() was called here, which hints that fatal signals aren't
1576 really fatal on some systems. If that's true, then some changes
1577 may be needed. */
1578 target_mourn_inferior ();
1579
1580 print_stop_reason (SIGNAL_EXITED, stop_signal);
1581 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1582 stop_stepping (ecs);
1583 return;
1584
1585 /* The following are the only cases in which we keep going;
1586 the above cases end in a continue or goto. */
1587 case TARGET_WAITKIND_FORKED:
1588 stop_signal = TARGET_SIGNAL_TRAP;
1589 pending_follow.kind = ecs->ws.kind;
1590
1591 /* Ignore fork events reported for the parent; we're only
1592 interested in reacting to forks of the child. Note that
1593 we expect the child's fork event to be available if we
1594 waited for it now. */
1595 if (ptid_equal (inferior_ptid, ecs->ptid))
1596 {
1597 pending_follow.fork_event.saw_parent_fork = 1;
1598 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1599 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1600 prepare_to_wait (ecs);
1601 return;
1602 }
1603 else
1604 {
1605 pending_follow.fork_event.saw_child_fork = 1;
1606 pending_follow.fork_event.child_pid = PIDGET (ecs->ptid);
1607 pending_follow.fork_event.parent_pid = ecs->ws.value.related_pid;
1608 }
1609
1610 stop_pc = read_pc_pid (ecs->ptid);
1611 ecs->saved_inferior_ptid = inferior_ptid;
1612 inferior_ptid = ecs->ptid;
1613 /* The second argument of bpstat_stop_status is meant to help
1614 distinguish between a breakpoint trap and a singlestep trap.
1615 This is only important on targets where DECR_PC_AFTER_BREAK
1616 is non-zero. The prev_pc test is meant to distinguish between
1617 singlestepping a trap instruction, and singlestepping thru a
1618 jump to the instruction following a trap instruction. */
1619
1620 stop_bpstat = bpstat_stop_status (&stop_pc,
1621 currently_stepping (ecs) &&
1622 prev_pc !=
1623 stop_pc - DECR_PC_AFTER_BREAK);
1624 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1625 inferior_ptid = ecs->saved_inferior_ptid;
1626 goto process_event_stop_test;
1627
1628 /* If this a platform which doesn't allow a debugger to touch a
1629 vfork'd inferior until after it exec's, then we'd best keep
1630 our fingers entirely off the inferior, other than continuing
1631 it. This has the unfortunate side-effect that catchpoints
1632 of vforks will be ignored. But since the platform doesn't
1633 allow the inferior be touched at vfork time, there's really
1634 little choice. */
1635 case TARGET_WAITKIND_VFORKED:
1636 stop_signal = TARGET_SIGNAL_TRAP;
1637 pending_follow.kind = ecs->ws.kind;
1638
1639 /* Is this a vfork of the parent? If so, then give any
1640 vfork catchpoints a chance to trigger now. (It's
1641 dangerous to do so if the child canot be touched until
1642 it execs, and the child has not yet exec'd. We probably
1643 should warn the user to that effect when the catchpoint
1644 triggers...) */
1645 if (ptid_equal (ecs->ptid, inferior_ptid))
1646 {
1647 pending_follow.fork_event.saw_parent_fork = 1;
1648 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1649 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1650 }
1651
1652 /* If we've seen the child's vfork event but cannot really touch
1653 the child until it execs, then we must continue the child now.
1654 Else, give any vfork catchpoints a chance to trigger now. */
1655 else
1656 {
1657 pending_follow.fork_event.saw_child_fork = 1;
1658 pending_follow.fork_event.child_pid = PIDGET (ecs->ptid);
1659 pending_follow.fork_event.parent_pid = ecs->ws.value.related_pid;
1660 target_post_startup_inferior (
1661 pid_to_ptid (pending_follow.fork_event.child_pid));
1662 follow_vfork_when_exec = !target_can_follow_vfork_prior_to_exec ();
1663 if (follow_vfork_when_exec)
1664 {
1665 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1666 prepare_to_wait (ecs);
1667 return;
1668 }
1669 }
1670
1671 stop_pc = read_pc ();
1672 /* The second argument of bpstat_stop_status is meant to help
1673 distinguish between a breakpoint trap and a singlestep trap.
1674 This is only important on targets where DECR_PC_AFTER_BREAK
1675 is non-zero. The prev_pc test is meant to distinguish between
1676 singlestepping a trap instruction, and singlestepping thru a
1677 jump to the instruction following a trap instruction. */
1678
1679 stop_bpstat = bpstat_stop_status (&stop_pc,
1680 currently_stepping (ecs) &&
1681 prev_pc !=
1682 stop_pc - DECR_PC_AFTER_BREAK);
1683 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1684 goto process_event_stop_test;
1685
1686 case TARGET_WAITKIND_EXECD:
1687 stop_signal = TARGET_SIGNAL_TRAP;
1688
1689 /* Is this a target which reports multiple exec events per actual
1690 call to exec()? (HP-UX using ptrace does, for example.) If so,
1691 ignore all but the last one. Just resume the exec'r, and wait
1692 for the next exec event. */
1693 if (inferior_ignoring_leading_exec_events)
1694 {
1695 inferior_ignoring_leading_exec_events--;
1696 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1697 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.parent_pid);
1698 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1699 prepare_to_wait (ecs);
1700 return;
1701 }
1702 inferior_ignoring_leading_exec_events =
1703 target_reported_exec_events_per_exec_call () - 1;
1704
1705 pending_follow.execd_pathname =
1706 savestring (ecs->ws.value.execd_pathname,
1707 strlen (ecs->ws.value.execd_pathname));
1708
1709 /* Did inferior_ptid exec, or did a (possibly not-yet-followed)
1710 child of a vfork exec?
1711
1712 ??rehrauer: This is unabashedly an HP-UX specific thing. On
1713 HP-UX, events associated with a vforking inferior come in
1714 threes: a vfork event for the child (always first), followed
1715 a vfork event for the parent and an exec event for the child.
1716 The latter two can come in either order.
1717
1718 If we get the parent vfork event first, life's good: We follow
1719 either the parent or child, and then the child's exec event is
1720 a "don't care".
1721
1722 But if we get the child's exec event first, then we delay
1723 responding to it until we handle the parent's vfork. Because,
1724 otherwise we can't satisfy a "catch vfork". */
1725 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1726 {
1727 pending_follow.fork_event.saw_child_exec = 1;
1728
1729 /* On some targets, the child must be resumed before
1730 the parent vfork event is delivered. A single-step
1731 suffices. */
1732 if (RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK ())
1733 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1734 /* We expect the parent vfork event to be available now. */
1735 prepare_to_wait (ecs);
1736 return;
1737 }
1738
1739 /* This causes the eventpoints and symbol table to be reset. Must
1740 do this now, before trying to determine whether to stop. */
1741 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1742 xfree (pending_follow.execd_pathname);
1743
1744 stop_pc = read_pc_pid (ecs->ptid);
1745 ecs->saved_inferior_ptid = inferior_ptid;
1746 inferior_ptid = ecs->ptid;
1747 /* The second argument of bpstat_stop_status is meant to help
1748 distinguish between a breakpoint trap and a singlestep trap.
1749 This is only important on targets where DECR_PC_AFTER_BREAK
1750 is non-zero. The prev_pc test is meant to distinguish between
1751 singlestepping a trap instruction, and singlestepping thru a
1752 jump to the instruction following a trap instruction. */
1753
1754 stop_bpstat = bpstat_stop_status (&stop_pc,
1755 currently_stepping (ecs) &&
1756 prev_pc !=
1757 stop_pc - DECR_PC_AFTER_BREAK);
1758 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1759 inferior_ptid = ecs->saved_inferior_ptid;
1760 goto process_event_stop_test;
1761
1762 /* These syscall events are returned on HP-UX, as part of its
1763 implementation of page-protection-based "hardware" watchpoints.
1764 HP-UX has unfortunate interactions between page-protections and
1765 some system calls. Our solution is to disable hardware watches
1766 when a system call is entered, and reenable them when the syscall
1767 completes. The downside of this is that we may miss the precise
1768 point at which a watched piece of memory is modified. "Oh well."
1769
1770 Note that we may have multiple threads running, which may each
1771 enter syscalls at roughly the same time. Since we don't have a
1772 good notion currently of whether a watched piece of memory is
1773 thread-private, we'd best not have any page-protections active
1774 when any thread is in a syscall. Thus, we only want to reenable
1775 hardware watches when no threads are in a syscall.
1776
1777 Also, be careful not to try to gather much state about a thread
1778 that's in a syscall. It's frequently a losing proposition. */
1779 case TARGET_WAITKIND_SYSCALL_ENTRY:
1780 number_of_threads_in_syscalls++;
1781 if (number_of_threads_in_syscalls == 1)
1782 {
1783 TARGET_DISABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1784 }
1785 resume (0, TARGET_SIGNAL_0);
1786 prepare_to_wait (ecs);
1787 return;
1788
1789 /* Before examining the threads further, step this thread to
1790 get it entirely out of the syscall. (We get notice of the
1791 event when the thread is just on the verge of exiting a
1792 syscall. Stepping one instruction seems to get it back
1793 into user code.)
1794
1795 Note that although the logical place to reenable h/w watches
1796 is here, we cannot. We cannot reenable them before stepping
1797 the thread (this causes the next wait on the thread to hang).
1798
1799 Nor can we enable them after stepping until we've done a wait.
1800 Thus, we simply set the flag ecs->enable_hw_watchpoints_after_wait
1801 here, which will be serviced immediately after the target
1802 is waited on. */
1803 case TARGET_WAITKIND_SYSCALL_RETURN:
1804 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1805
1806 if (number_of_threads_in_syscalls > 0)
1807 {
1808 number_of_threads_in_syscalls--;
1809 ecs->enable_hw_watchpoints_after_wait =
1810 (number_of_threads_in_syscalls == 0);
1811 }
1812 prepare_to_wait (ecs);
1813 return;
1814
1815 case TARGET_WAITKIND_STOPPED:
1816 stop_signal = ecs->ws.value.sig;
1817 break;
1818
1819 /* We had an event in the inferior, but we are not interested
1820 in handling it at this level. The lower layers have already
1821 done what needs to be done, if anything. This case can
1822 occur only when the target is async or extended-async. One
1823 of the circumstamces for this to happen is when the
1824 inferior produces output for the console. The inferior has
1825 not stopped, and we are ignoring the event. */
1826 case TARGET_WAITKIND_IGNORE:
1827 ecs->wait_some_more = 1;
1828 return;
1829 }
1830
1831 /* We may want to consider not doing a resume here in order to give
1832 the user a chance to play with the new thread. It might be good
1833 to make that a user-settable option. */
1834
1835 /* At this point, all threads are stopped (happens automatically in
1836 either the OS or the native code). Therefore we need to continue
1837 all threads in order to make progress. */
1838 if (ecs->new_thread_event)
1839 {
1840 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1841 prepare_to_wait (ecs);
1842 return;
1843 }
1844
1845 stop_pc = read_pc_pid (ecs->ptid);
1846
1847 /* See if a thread hit a thread-specific breakpoint that was meant for
1848 another thread. If so, then step that thread past the breakpoint,
1849 and continue it. */
1850
1851 if (stop_signal == TARGET_SIGNAL_TRAP)
1852 {
1853 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1854 ecs->random_signal = 0;
1855 else if (breakpoints_inserted
1856 && breakpoint_here_p (stop_pc - DECR_PC_AFTER_BREAK))
1857 {
1858 ecs->random_signal = 0;
1859 if (!breakpoint_thread_match (stop_pc - DECR_PC_AFTER_BREAK,
1860 ecs->ptid))
1861 {
1862 int remove_status;
1863
1864 /* Saw a breakpoint, but it was hit by the wrong thread.
1865 Just continue. */
1866 if (DECR_PC_AFTER_BREAK)
1867 write_pc_pid (stop_pc - DECR_PC_AFTER_BREAK, ecs->ptid);
1868
1869 remove_status = remove_breakpoints ();
1870 /* Did we fail to remove breakpoints? If so, try
1871 to set the PC past the bp. (There's at least
1872 one situation in which we can fail to remove
1873 the bp's: On HP-UX's that use ttrace, we can't
1874 change the address space of a vforking child
1875 process until the child exits (well, okay, not
1876 then either :-) or execs. */
1877 if (remove_status != 0)
1878 {
1879 /* FIXME! This is obviously non-portable! */
1880 write_pc_pid (stop_pc - DECR_PC_AFTER_BREAK + 4,
1881 ecs->ptid);
1882 /* We need to restart all the threads now,
1883 * unles we're running in scheduler-locked mode.
1884 * Use currently_stepping to determine whether to
1885 * step or continue.
1886 */
1887 /* FIXME MVS: is there any reason not to call resume()? */
1888 if (scheduler_mode == schedlock_on)
1889 target_resume (ecs->ptid,
1890 currently_stepping (ecs),
1891 TARGET_SIGNAL_0);
1892 else
1893 target_resume (RESUME_ALL,
1894 currently_stepping (ecs),
1895 TARGET_SIGNAL_0);
1896 prepare_to_wait (ecs);
1897 return;
1898 }
1899 else
1900 { /* Single step */
1901 breakpoints_inserted = 0;
1902 if (!ptid_equal (inferior_ptid, ecs->ptid))
1903 context_switch (ecs);
1904 ecs->waiton_ptid = ecs->ptid;
1905 ecs->wp = &(ecs->ws);
1906 ecs->another_trap = 1;
1907
1908 ecs->infwait_state = infwait_thread_hop_state;
1909 keep_going (ecs);
1910 registers_changed ();
1911 return;
1912 }
1913 }
1914 }
1915 }
1916 else
1917 ecs->random_signal = 1;
1918
1919 /* See if something interesting happened to the non-current thread. If
1920 so, then switch to that thread, and eventually give control back to
1921 the user.
1922
1923 Note that if there's any kind of pending follow (i.e., of a fork,
1924 vfork or exec), we don't want to do this now. Rather, we'll let
1925 the next resume handle it. */
1926 if (! ptid_equal (ecs->ptid, inferior_ptid) &&
1927 (pending_follow.kind == TARGET_WAITKIND_SPURIOUS))
1928 {
1929 int printed = 0;
1930
1931 /* If it's a random signal for a non-current thread, notify user
1932 if he's expressed an interest. */
1933 if (ecs->random_signal
1934 && signal_print[stop_signal])
1935 {
1936 /* ??rehrauer: I don't understand the rationale for this code. If the
1937 inferior will stop as a result of this signal, then the act of handling
1938 the stop ought to print a message that's couches the stoppage in user
1939 terms, e.g., "Stopped for breakpoint/watchpoint". If the inferior
1940 won't stop as a result of the signal -- i.e., if the signal is merely
1941 a side-effect of something GDB's doing "under the covers" for the
1942 user, such as stepping threads over a breakpoint they shouldn't stop
1943 for -- then the message seems to be a serious annoyance at best.
1944
1945 For now, remove the message altogether. */
1946 #if 0
1947 printed = 1;
1948 target_terminal_ours_for_output ();
1949 printf_filtered ("\nProgram received signal %s, %s.\n",
1950 target_signal_to_name (stop_signal),
1951 target_signal_to_string (stop_signal));
1952 gdb_flush (gdb_stdout);
1953 #endif
1954 }
1955
1956 /* If it's not SIGTRAP and not a signal we want to stop for, then
1957 continue the thread. */
1958
1959 if (stop_signal != TARGET_SIGNAL_TRAP
1960 && !signal_stop[stop_signal])
1961 {
1962 if (printed)
1963 target_terminal_inferior ();
1964
1965 /* Clear the signal if it should not be passed. */
1966 if (signal_program[stop_signal] == 0)
1967 stop_signal = TARGET_SIGNAL_0;
1968
1969 target_resume (ecs->ptid, 0, stop_signal);
1970 prepare_to_wait (ecs);
1971 return;
1972 }
1973
1974 /* It's a SIGTRAP or a signal we're interested in. Switch threads,
1975 and fall into the rest of wait_for_inferior(). */
1976
1977 context_switch (ecs);
1978
1979 if (context_hook)
1980 context_hook (pid_to_thread_id (ecs->ptid));
1981
1982 flush_cached_frames ();
1983 }
1984
1985 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1986 {
1987 /* Pull the single step breakpoints out of the target. */
1988 SOFTWARE_SINGLE_STEP (0, 0);
1989 singlestep_breakpoints_inserted_p = 0;
1990 }
1991
1992 /* If PC is pointing at a nullified instruction, then step beyond
1993 it so that the user won't be confused when GDB appears to be ready
1994 to execute it. */
1995
1996 /* if (INSTRUCTION_NULLIFIED && currently_stepping (ecs)) */
1997 if (INSTRUCTION_NULLIFIED)
1998 {
1999 registers_changed ();
2000 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
2001
2002 /* We may have received a signal that we want to pass to
2003 the inferior; therefore, we must not clobber the waitstatus
2004 in WS. */
2005
2006 ecs->infwait_state = infwait_nullified_state;
2007 ecs->waiton_ptid = ecs->ptid;
2008 ecs->wp = &(ecs->tmpstatus);
2009 prepare_to_wait (ecs);
2010 return;
2011 }
2012
2013 /* It may not be necessary to disable the watchpoint to stop over
2014 it. For example, the PA can (with some kernel cooperation)
2015 single step over a watchpoint without disabling the watchpoint. */
2016 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
2017 {
2018 resume (1, 0);
2019 prepare_to_wait (ecs);
2020 return;
2021 }
2022
2023 /* It is far more common to need to disable a watchpoint to step
2024 the inferior over it. FIXME. What else might a debug
2025 register or page protection watchpoint scheme need here? */
2026 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
2027 {
2028 /* At this point, we are stopped at an instruction which has
2029 attempted to write to a piece of memory under control of
2030 a watchpoint. The instruction hasn't actually executed
2031 yet. If we were to evaluate the watchpoint expression
2032 now, we would get the old value, and therefore no change
2033 would seem to have occurred.
2034
2035 In order to make watchpoints work `right', we really need
2036 to complete the memory write, and then evaluate the
2037 watchpoint expression. The following code does that by
2038 removing the watchpoint (actually, all watchpoints and
2039 breakpoints), single-stepping the target, re-inserting
2040 watchpoints, and then falling through to let normal
2041 single-step processing handle proceed. Since this
2042 includes evaluating watchpoints, things will come to a
2043 stop in the correct manner. */
2044
2045 if (DECR_PC_AFTER_BREAK)
2046 write_pc (stop_pc - DECR_PC_AFTER_BREAK);
2047
2048 remove_breakpoints ();
2049 registers_changed ();
2050 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
2051
2052 ecs->waiton_ptid = ecs->ptid;
2053 ecs->wp = &(ecs->ws);
2054 ecs->infwait_state = infwait_nonstep_watch_state;
2055 prepare_to_wait (ecs);
2056 return;
2057 }
2058
2059 /* It may be possible to simply continue after a watchpoint. */
2060 if (HAVE_CONTINUABLE_WATCHPOINT)
2061 STOPPED_BY_WATCHPOINT (ecs->ws);
2062
2063 ecs->stop_func_start = 0;
2064 ecs->stop_func_end = 0;
2065 ecs->stop_func_name = 0;
2066 /* Don't care about return value; stop_func_start and stop_func_name
2067 will both be 0 if it doesn't work. */
2068 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2069 &ecs->stop_func_start, &ecs->stop_func_end);
2070 ecs->stop_func_start += FUNCTION_START_OFFSET;
2071 ecs->another_trap = 0;
2072 bpstat_clear (&stop_bpstat);
2073 stop_step = 0;
2074 stop_stack_dummy = 0;
2075 stop_print_frame = 1;
2076 ecs->random_signal = 0;
2077 stopped_by_random_signal = 0;
2078 breakpoints_failed = 0;
2079
2080 /* Look at the cause of the stop, and decide what to do.
2081 The alternatives are:
2082 1) break; to really stop and return to the debugger,
2083 2) drop through to start up again
2084 (set ecs->another_trap to 1 to single step once)
2085 3) set ecs->random_signal to 1, and the decision between 1 and 2
2086 will be made according to the signal handling tables. */
2087
2088 /* First, distinguish signals caused by the debugger from signals
2089 that have to do with the program's own actions.
2090 Note that breakpoint insns may cause SIGTRAP or SIGILL
2091 or SIGEMT, depending on the operating system version.
2092 Here we detect when a SIGILL or SIGEMT is really a breakpoint
2093 and change it to SIGTRAP. */
2094
2095 if (stop_signal == TARGET_SIGNAL_TRAP
2096 || (breakpoints_inserted &&
2097 (stop_signal == TARGET_SIGNAL_ILL
2098 || stop_signal == TARGET_SIGNAL_EMT
2099 ))
2100 || stop_soon_quietly)
2101 {
2102 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
2103 {
2104 stop_print_frame = 0;
2105 stop_stepping (ecs);
2106 return;
2107 }
2108 if (stop_soon_quietly)
2109 {
2110 stop_stepping (ecs);
2111 return;
2112 }
2113
2114 /* Don't even think about breakpoints
2115 if just proceeded over a breakpoint.
2116
2117 However, if we are trying to proceed over a breakpoint
2118 and end up in sigtramp, then through_sigtramp_breakpoint
2119 will be set and we should check whether we've hit the
2120 step breakpoint. */
2121 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected
2122 && through_sigtramp_breakpoint == NULL)
2123 bpstat_clear (&stop_bpstat);
2124 else
2125 {
2126 /* See if there is a breakpoint at the current PC. */
2127
2128 /* The second argument of bpstat_stop_status is meant to help
2129 distinguish between a breakpoint trap and a singlestep trap.
2130 This is only important on targets where DECR_PC_AFTER_BREAK
2131 is non-zero. The prev_pc test is meant to distinguish between
2132 singlestepping a trap instruction, and singlestepping thru a
2133 jump to the instruction following a trap instruction. */
2134
2135 stop_bpstat = bpstat_stop_status
2136 (&stop_pc,
2137 /* Pass TRUE if our reason for stopping is something other
2138 than hitting a breakpoint. We do this by checking that
2139 1) stepping is going on and 2) we didn't hit a breakpoint
2140 in a signal handler without an intervening stop in
2141 sigtramp, which is detected by a new stack pointer value
2142 below any usual function calling stack adjustments. */
2143 (currently_stepping (ecs)
2144 && prev_pc != stop_pc - DECR_PC_AFTER_BREAK
2145 && !(step_range_end
2146 && INNER_THAN (read_sp (), (step_sp - 16))))
2147 );
2148 /* Following in case break condition called a
2149 function. */
2150 stop_print_frame = 1;
2151 }
2152
2153 if (stop_signal == TARGET_SIGNAL_TRAP)
2154 ecs->random_signal
2155 = !(bpstat_explains_signal (stop_bpstat)
2156 || trap_expected
2157 || (!CALL_DUMMY_BREAKPOINT_OFFSET_P
2158 && PC_IN_CALL_DUMMY (stop_pc, read_sp (),
2159 FRAME_FP (get_current_frame ())))
2160 || (step_range_end && step_resume_breakpoint == NULL));
2161
2162 else
2163 {
2164 ecs->random_signal
2165 = !(bpstat_explains_signal (stop_bpstat)
2166 /* End of a stack dummy. Some systems (e.g. Sony
2167 news) give another signal besides SIGTRAP, so
2168 check here as well as above. */
2169 || (!CALL_DUMMY_BREAKPOINT_OFFSET_P
2170 && PC_IN_CALL_DUMMY (stop_pc, read_sp (),
2171 FRAME_FP (get_current_frame ())))
2172 );
2173 if (!ecs->random_signal)
2174 stop_signal = TARGET_SIGNAL_TRAP;
2175 }
2176 }
2177
2178 /* When we reach this point, we've pretty much decided
2179 that the reason for stopping must've been a random
2180 (unexpected) signal. */
2181
2182 else
2183 ecs->random_signal = 1;
2184 /* If a fork, vfork or exec event was seen, then there are two
2185 possible responses we can make:
2186
2187 1. If a catchpoint triggers for the event (ecs->random_signal == 0),
2188 then we must stop now and issue a prompt. We will resume
2189 the inferior when the user tells us to.
2190 2. If no catchpoint triggers for the event (ecs->random_signal == 1),
2191 then we must resume the inferior now and keep checking.
2192
2193 In either case, we must take appropriate steps to "follow" the
2194 the fork/vfork/exec when the inferior is resumed. For example,
2195 if follow-fork-mode is "child", then we must detach from the
2196 parent inferior and follow the new child inferior.
2197
2198 In either case, setting pending_follow causes the next resume()
2199 to take the appropriate following action. */
2200 process_event_stop_test:
2201 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
2202 {
2203 if (ecs->random_signal) /* I.e., no catchpoint triggered for this. */
2204 {
2205 trap_expected = 1;
2206 stop_signal = TARGET_SIGNAL_0;
2207 keep_going (ecs);
2208 return;
2209 }
2210 }
2211 else if (ecs->ws.kind == TARGET_WAITKIND_VFORKED)
2212 {
2213 if (ecs->random_signal) /* I.e., no catchpoint triggered for this. */
2214 {
2215 stop_signal = TARGET_SIGNAL_0;
2216 keep_going (ecs);
2217 return;
2218 }
2219 }
2220 else if (ecs->ws.kind == TARGET_WAITKIND_EXECD)
2221 {
2222 pending_follow.kind = ecs->ws.kind;
2223 if (ecs->random_signal) /* I.e., no catchpoint triggered for this. */
2224 {
2225 trap_expected = 1;
2226 stop_signal = TARGET_SIGNAL_0;
2227 keep_going (ecs);
2228 return;
2229 }
2230 }
2231
2232 /* For the program's own signals, act according to
2233 the signal handling tables. */
2234
2235 if (ecs->random_signal)
2236 {
2237 /* Signal not for debugging purposes. */
2238 int printed = 0;
2239
2240 stopped_by_random_signal = 1;
2241
2242 if (signal_print[stop_signal])
2243 {
2244 printed = 1;
2245 target_terminal_ours_for_output ();
2246 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2247 }
2248 if (signal_stop[stop_signal])
2249 {
2250 stop_stepping (ecs);
2251 return;
2252 }
2253 /* If not going to stop, give terminal back
2254 if we took it away. */
2255 else if (printed)
2256 target_terminal_inferior ();
2257
2258 /* Clear the signal if it should not be passed. */
2259 if (signal_program[stop_signal] == 0)
2260 stop_signal = TARGET_SIGNAL_0;
2261
2262 /* I'm not sure whether this needs to be check_sigtramp2 or
2263 whether it could/should be keep_going.
2264
2265 This used to jump to step_over_function if we are stepping,
2266 which is wrong.
2267
2268 Suppose the user does a `next' over a function call, and while
2269 that call is in progress, the inferior receives a signal for
2270 which GDB does not stop (i.e., signal_stop[SIG] is false). In
2271 that case, when we reach this point, there is already a
2272 step-resume breakpoint established, right where it should be:
2273 immediately after the function call the user is "next"-ing
2274 over. If we call step_over_function now, two bad things
2275 happen:
2276
2277 - we'll create a new breakpoint, at wherever the current
2278 frame's return address happens to be. That could be
2279 anywhere, depending on what function call happens to be on
2280 the top of the stack at that point. Point is, it's probably
2281 not where we need it.
2282
2283 - the existing step-resume breakpoint (which is at the correct
2284 address) will get orphaned: step_resume_breakpoint will point
2285 to the new breakpoint, and the old step-resume breakpoint
2286 will never be cleaned up.
2287
2288 The old behavior was meant to help HP-UX single-step out of
2289 sigtramps. It would place the new breakpoint at prev_pc, which
2290 was certainly wrong. I don't know the details there, so fixing
2291 this probably breaks that. As with anything else, it's up to
2292 the HP-UX maintainer to furnish a fix that doesn't break other
2293 platforms. --JimB, 20 May 1999 */
2294 check_sigtramp2 (ecs);
2295 keep_going (ecs);
2296 return;
2297 }
2298
2299 /* Handle cases caused by hitting a breakpoint. */
2300 {
2301 CORE_ADDR jmp_buf_pc;
2302 struct bpstat_what what;
2303
2304 what = bpstat_what (stop_bpstat);
2305
2306 if (what.call_dummy)
2307 {
2308 stop_stack_dummy = 1;
2309 #ifdef HP_OS_BUG
2310 trap_expected_after_continue = 1;
2311 #endif
2312 }
2313
2314 switch (what.main_action)
2315 {
2316 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2317 /* If we hit the breakpoint at longjmp, disable it for the
2318 duration of this command. Then, install a temporary
2319 breakpoint at the target of the jmp_buf. */
2320 disable_longjmp_breakpoint ();
2321 remove_breakpoints ();
2322 breakpoints_inserted = 0;
2323 if (!GET_LONGJMP_TARGET (&jmp_buf_pc))
2324 {
2325 keep_going (ecs);
2326 return;
2327 }
2328
2329 /* Need to blow away step-resume breakpoint, as it
2330 interferes with us */
2331 if (step_resume_breakpoint != NULL)
2332 {
2333 delete_step_resume_breakpoint (&step_resume_breakpoint);
2334 }
2335 /* Not sure whether we need to blow this away too, but probably
2336 it is like the step-resume breakpoint. */
2337 if (through_sigtramp_breakpoint != NULL)
2338 {
2339 delete_breakpoint (through_sigtramp_breakpoint);
2340 through_sigtramp_breakpoint = NULL;
2341 }
2342
2343 #if 0
2344 /* FIXME - Need to implement nested temporary breakpoints */
2345 if (step_over_calls > 0)
2346 set_longjmp_resume_breakpoint (jmp_buf_pc,
2347 get_current_frame ());
2348 else
2349 #endif /* 0 */
2350 set_longjmp_resume_breakpoint (jmp_buf_pc, NULL);
2351 ecs->handling_longjmp = 1; /* FIXME */
2352 keep_going (ecs);
2353 return;
2354
2355 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2356 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2357 remove_breakpoints ();
2358 breakpoints_inserted = 0;
2359 #if 0
2360 /* FIXME - Need to implement nested temporary breakpoints */
2361 if (step_over_calls
2362 && (INNER_THAN (FRAME_FP (get_current_frame ()),
2363 step_frame_address)))
2364 {
2365 ecs->another_trap = 1;
2366 keep_going (ecs);
2367 return;
2368 }
2369 #endif /* 0 */
2370 disable_longjmp_breakpoint ();
2371 ecs->handling_longjmp = 0; /* FIXME */
2372 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2373 break;
2374 /* else fallthrough */
2375
2376 case BPSTAT_WHAT_SINGLE:
2377 if (breakpoints_inserted)
2378 {
2379 remove_breakpoints ();
2380 }
2381 breakpoints_inserted = 0;
2382 ecs->another_trap = 1;
2383 /* Still need to check other stuff, at least the case
2384 where we are stepping and step out of the right range. */
2385 break;
2386
2387 case BPSTAT_WHAT_STOP_NOISY:
2388 stop_print_frame = 1;
2389
2390 /* We are about to nuke the step_resume_breakpoint and
2391 through_sigtramp_breakpoint via the cleanup chain, so
2392 no need to worry about it here. */
2393
2394 stop_stepping (ecs);
2395 return;
2396
2397 case BPSTAT_WHAT_STOP_SILENT:
2398 stop_print_frame = 0;
2399
2400 /* We are about to nuke the step_resume_breakpoint and
2401 through_sigtramp_breakpoint via the cleanup chain, so
2402 no need to worry about it here. */
2403
2404 stop_stepping (ecs);
2405 return;
2406
2407 case BPSTAT_WHAT_STEP_RESUME:
2408 /* This proably demands a more elegant solution, but, yeah
2409 right...
2410
2411 This function's use of the simple variable
2412 step_resume_breakpoint doesn't seem to accomodate
2413 simultaneously active step-resume bp's, although the
2414 breakpoint list certainly can.
2415
2416 If we reach here and step_resume_breakpoint is already
2417 NULL, then apparently we have multiple active
2418 step-resume bp's. We'll just delete the breakpoint we
2419 stopped at, and carry on.
2420
2421 Correction: what the code currently does is delete a
2422 step-resume bp, but it makes no effort to ensure that
2423 the one deleted is the one currently stopped at. MVS */
2424
2425 if (step_resume_breakpoint == NULL)
2426 {
2427 step_resume_breakpoint =
2428 bpstat_find_step_resume_breakpoint (stop_bpstat);
2429 }
2430 delete_step_resume_breakpoint (&step_resume_breakpoint);
2431 break;
2432
2433 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2434 if (through_sigtramp_breakpoint)
2435 delete_breakpoint (through_sigtramp_breakpoint);
2436 through_sigtramp_breakpoint = NULL;
2437
2438 /* If were waiting for a trap, hitting the step_resume_break
2439 doesn't count as getting it. */
2440 if (trap_expected)
2441 ecs->another_trap = 1;
2442 break;
2443
2444 case BPSTAT_WHAT_CHECK_SHLIBS:
2445 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2446 #ifdef SOLIB_ADD
2447 {
2448 /* Remove breakpoints, we eventually want to step over the
2449 shlib event breakpoint, and SOLIB_ADD might adjust
2450 breakpoint addresses via breakpoint_re_set. */
2451 if (breakpoints_inserted)
2452 remove_breakpoints ();
2453 breakpoints_inserted = 0;
2454
2455 /* Check for any newly added shared libraries if we're
2456 supposed to be adding them automatically. */
2457 if (auto_solib_add)
2458 {
2459 /* Switch terminal for any messages produced by
2460 breakpoint_re_set. */
2461 target_terminal_ours_for_output ();
2462 SOLIB_ADD (NULL, 0, NULL);
2463 target_terminal_inferior ();
2464 }
2465
2466 /* Try to reenable shared library breakpoints, additional
2467 code segments in shared libraries might be mapped in now. */
2468 re_enable_breakpoints_in_shlibs ();
2469
2470 /* If requested, stop when the dynamic linker notifies
2471 gdb of events. This allows the user to get control
2472 and place breakpoints in initializer routines for
2473 dynamically loaded objects (among other things). */
2474 if (stop_on_solib_events)
2475 {
2476 stop_stepping (ecs);
2477 return;
2478 }
2479
2480 /* If we stopped due to an explicit catchpoint, then the
2481 (see above) call to SOLIB_ADD pulled in any symbols
2482 from a newly-loaded library, if appropriate.
2483
2484 We do want the inferior to stop, but not where it is
2485 now, which is in the dynamic linker callback. Rather,
2486 we would like it stop in the user's program, just after
2487 the call that caused this catchpoint to trigger. That
2488 gives the user a more useful vantage from which to
2489 examine their program's state. */
2490 else if (what.main_action == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2491 {
2492 /* ??rehrauer: If I could figure out how to get the
2493 right return PC from here, we could just set a temp
2494 breakpoint and resume. I'm not sure we can without
2495 cracking open the dld's shared libraries and sniffing
2496 their unwind tables and text/data ranges, and that's
2497 not a terribly portable notion.
2498
2499 Until that time, we must step the inferior out of the
2500 dld callback, and also out of the dld itself (and any
2501 code or stubs in libdld.sl, such as "shl_load" and
2502 friends) until we reach non-dld code. At that point,
2503 we can stop stepping. */
2504 bpstat_get_triggered_catchpoints (stop_bpstat,
2505 &ecs->stepping_through_solib_catchpoints);
2506 ecs->stepping_through_solib_after_catch = 1;
2507
2508 /* Be sure to lift all breakpoints, so the inferior does
2509 actually step past this point... */
2510 ecs->another_trap = 1;
2511 break;
2512 }
2513 else
2514 {
2515 /* We want to step over this breakpoint, then keep going. */
2516 ecs->another_trap = 1;
2517 break;
2518 }
2519 }
2520 #endif
2521 break;
2522
2523 case BPSTAT_WHAT_LAST:
2524 /* Not a real code, but listed here to shut up gcc -Wall. */
2525
2526 case BPSTAT_WHAT_KEEP_CHECKING:
2527 break;
2528 }
2529 }
2530
2531 /* We come here if we hit a breakpoint but should not
2532 stop for it. Possibly we also were stepping
2533 and should stop for that. So fall through and
2534 test for stepping. But, if not stepping,
2535 do not stop. */
2536
2537 /* Are we stepping to get the inferior out of the dynamic
2538 linker's hook (and possibly the dld itself) after catching
2539 a shlib event? */
2540 if (ecs->stepping_through_solib_after_catch)
2541 {
2542 #if defined(SOLIB_ADD)
2543 /* Have we reached our destination? If not, keep going. */
2544 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2545 {
2546 ecs->another_trap = 1;
2547 keep_going (ecs);
2548 return;
2549 }
2550 #endif
2551 /* Else, stop and report the catchpoint(s) whose triggering
2552 caused us to begin stepping. */
2553 ecs->stepping_through_solib_after_catch = 0;
2554 bpstat_clear (&stop_bpstat);
2555 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2556 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2557 stop_print_frame = 1;
2558 stop_stepping (ecs);
2559 return;
2560 }
2561
2562 if (!CALL_DUMMY_BREAKPOINT_OFFSET_P)
2563 {
2564 /* This is the old way of detecting the end of the stack dummy.
2565 An architecture which defines CALL_DUMMY_BREAKPOINT_OFFSET gets
2566 handled above. As soon as we can test it on all of them, all
2567 architectures should define it. */
2568
2569 /* If this is the breakpoint at the end of a stack dummy,
2570 just stop silently, unless the user was doing an si/ni, in which
2571 case she'd better know what she's doing. */
2572
2573 if (CALL_DUMMY_HAS_COMPLETED (stop_pc, read_sp (),
2574 FRAME_FP (get_current_frame ()))
2575 && !step_range_end)
2576 {
2577 stop_print_frame = 0;
2578 stop_stack_dummy = 1;
2579 #ifdef HP_OS_BUG
2580 trap_expected_after_continue = 1;
2581 #endif
2582 stop_stepping (ecs);
2583 return;
2584 }
2585 }
2586
2587 if (step_resume_breakpoint)
2588 {
2589 /* Having a step-resume breakpoint overrides anything
2590 else having to do with stepping commands until
2591 that breakpoint is reached. */
2592 /* I'm not sure whether this needs to be check_sigtramp2 or
2593 whether it could/should be keep_going. */
2594 check_sigtramp2 (ecs);
2595 keep_going (ecs);
2596 return;
2597 }
2598
2599 if (step_range_end == 0)
2600 {
2601 /* Likewise if we aren't even stepping. */
2602 /* I'm not sure whether this needs to be check_sigtramp2 or
2603 whether it could/should be keep_going. */
2604 check_sigtramp2 (ecs);
2605 keep_going (ecs);
2606 return;
2607 }
2608
2609 /* If stepping through a line, keep going if still within it.
2610
2611 Note that step_range_end is the address of the first instruction
2612 beyond the step range, and NOT the address of the last instruction
2613 within it! */
2614 if (stop_pc >= step_range_start
2615 && stop_pc < step_range_end)
2616 {
2617 /* We might be doing a BPSTAT_WHAT_SINGLE and getting a signal.
2618 So definately need to check for sigtramp here. */
2619 check_sigtramp2 (ecs);
2620 keep_going (ecs);
2621 return;
2622 }
2623
2624 /* We stepped out of the stepping range. */
2625
2626 /* If we are stepping at the source level and entered the runtime
2627 loader dynamic symbol resolution code, we keep on single stepping
2628 until we exit the run time loader code and reach the callee's
2629 address. */
2630 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc))
2631 {
2632 CORE_ADDR pc_after_resolver = SKIP_SOLIB_RESOLVER (stop_pc);
2633
2634 if (pc_after_resolver)
2635 {
2636 /* Set up a step-resume breakpoint at the address
2637 indicated by SKIP_SOLIB_RESOLVER. */
2638 struct symtab_and_line sr_sal;
2639 INIT_SAL (&sr_sal);
2640 sr_sal.pc = pc_after_resolver;
2641
2642 check_for_old_step_resume_breakpoint ();
2643 step_resume_breakpoint =
2644 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
2645 if (breakpoints_inserted)
2646 insert_breakpoints ();
2647 }
2648
2649 keep_going (ecs);
2650 return;
2651 }
2652
2653 /* We can't update step_sp every time through the loop, because
2654 reading the stack pointer would slow down stepping too much.
2655 But we can update it every time we leave the step range. */
2656 ecs->update_step_sp = 1;
2657
2658 /* Did we just take a signal? */
2659 if (IN_SIGTRAMP (stop_pc, ecs->stop_func_name)
2660 && !IN_SIGTRAMP (prev_pc, prev_func_name)
2661 && INNER_THAN (read_sp (), step_sp))
2662 {
2663 /* We've just taken a signal; go until we are back to
2664 the point where we took it and one more. */
2665
2666 /* Note: The test above succeeds not only when we stepped
2667 into a signal handler, but also when we step past the last
2668 statement of a signal handler and end up in the return stub
2669 of the signal handler trampoline. To distinguish between
2670 these two cases, check that the frame is INNER_THAN the
2671 previous one below. pai/1997-09-11 */
2672
2673
2674 {
2675 CORE_ADDR current_frame = FRAME_FP (get_current_frame ());
2676
2677 if (INNER_THAN (current_frame, step_frame_address))
2678 {
2679 /* We have just taken a signal; go until we are back to
2680 the point where we took it and one more. */
2681
2682 /* This code is needed at least in the following case:
2683 The user types "next" and then a signal arrives (before
2684 the "next" is done). */
2685
2686 /* Note that if we are stopped at a breakpoint, then we need
2687 the step_resume breakpoint to override any breakpoints at
2688 the same location, so that we will still step over the
2689 breakpoint even though the signal happened. */
2690 struct symtab_and_line sr_sal;
2691
2692 INIT_SAL (&sr_sal);
2693 sr_sal.symtab = NULL;
2694 sr_sal.line = 0;
2695 sr_sal.pc = prev_pc;
2696 /* We could probably be setting the frame to
2697 step_frame_address; I don't think anyone thought to
2698 try it. */
2699 check_for_old_step_resume_breakpoint ();
2700 step_resume_breakpoint =
2701 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
2702 if (breakpoints_inserted)
2703 insert_breakpoints ();
2704 }
2705 else
2706 {
2707 /* We just stepped out of a signal handler and into
2708 its calling trampoline.
2709
2710 Normally, we'd call step_over_function from
2711 here, but for some reason GDB can't unwind the
2712 stack correctly to find the real PC for the point
2713 user code where the signal trampoline will return
2714 -- FRAME_SAVED_PC fails, at least on HP-UX 10.20.
2715 But signal trampolines are pretty small stubs of
2716 code, anyway, so it's OK instead to just
2717 single-step out. Note: assuming such trampolines
2718 don't exhibit recursion on any platform... */
2719 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2720 &ecs->stop_func_start,
2721 &ecs->stop_func_end);
2722 /* Readjust stepping range */
2723 step_range_start = ecs->stop_func_start;
2724 step_range_end = ecs->stop_func_end;
2725 ecs->stepping_through_sigtramp = 1;
2726 }
2727 }
2728
2729
2730 /* If this is stepi or nexti, make sure that the stepping range
2731 gets us past that instruction. */
2732 if (step_range_end == 1)
2733 /* FIXME: Does this run afoul of the code below which, if
2734 we step into the middle of a line, resets the stepping
2735 range? */
2736 step_range_end = (step_range_start = prev_pc) + 1;
2737
2738 ecs->remove_breakpoints_on_following_step = 1;
2739 keep_going (ecs);
2740 return;
2741 }
2742
2743 if (stop_pc == ecs->stop_func_start /* Quick test */
2744 || (in_prologue (stop_pc, ecs->stop_func_start) &&
2745 !IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2746 || IN_SOLIB_CALL_TRAMPOLINE (stop_pc, ecs->stop_func_name)
2747 || ecs->stop_func_name == 0)
2748 {
2749 /* It's a subroutine call. */
2750
2751 if ((step_over_calls == STEP_OVER_NONE)
2752 || ((step_range_end == 1)
2753 && in_prologue (prev_pc, ecs->stop_func_start)))
2754 {
2755 /* I presume that step_over_calls is only 0 when we're
2756 supposed to be stepping at the assembly language level
2757 ("stepi"). Just stop. */
2758 /* Also, maybe we just did a "nexti" inside a prolog,
2759 so we thought it was a subroutine call but it was not.
2760 Stop as well. FENN */
2761 stop_step = 1;
2762 print_stop_reason (END_STEPPING_RANGE, 0);
2763 stop_stepping (ecs);
2764 return;
2765 }
2766
2767 if (step_over_calls == STEP_OVER_ALL || IGNORE_HELPER_CALL (stop_pc))
2768 {
2769 /* We're doing a "next". */
2770
2771 if (IN_SIGTRAMP (stop_pc, ecs->stop_func_name)
2772 && INNER_THAN (step_frame_address, read_sp()))
2773 /* We stepped out of a signal handler, and into its
2774 calling trampoline. This is misdetected as a
2775 subroutine call, but stepping over the signal
2776 trampoline isn't such a bad idea. In order to do
2777 that, we have to ignore the value in
2778 step_frame_address, since that doesn't represent the
2779 frame that'll reach when we return from the signal
2780 trampoline. Otherwise we'll probably continue to the
2781 end of the program. */
2782 step_frame_address = 0;
2783
2784 step_over_function (ecs);
2785 keep_going (ecs);
2786 return;
2787 }
2788
2789 /* If we are in a function call trampoline (a stub between
2790 the calling routine and the real function), locate the real
2791 function. That's what tells us (a) whether we want to step
2792 into it at all, and (b) what prologue we want to run to
2793 the end of, if we do step into it. */
2794 tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
2795 if (tmp != 0)
2796 ecs->stop_func_start = tmp;
2797 else
2798 {
2799 tmp = DYNAMIC_TRAMPOLINE_NEXTPC (stop_pc);
2800 if (tmp)
2801 {
2802 struct symtab_and_line xxx;
2803 /* Why isn't this s_a_l called "sr_sal", like all of the
2804 other s_a_l's where this code is duplicated? */
2805 INIT_SAL (&xxx); /* initialize to zeroes */
2806 xxx.pc = tmp;
2807 xxx.section = find_pc_overlay (xxx.pc);
2808 check_for_old_step_resume_breakpoint ();
2809 step_resume_breakpoint =
2810 set_momentary_breakpoint (xxx, NULL, bp_step_resume);
2811 insert_breakpoints ();
2812 keep_going (ecs);
2813 return;
2814 }
2815 }
2816
2817 /* If we have line number information for the function we
2818 are thinking of stepping into, step into it.
2819
2820 If there are several symtabs at that PC (e.g. with include
2821 files), just want to know whether *any* of them have line
2822 numbers. find_pc_line handles this. */
2823 {
2824 struct symtab_and_line tmp_sal;
2825
2826 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2827 if (tmp_sal.line != 0)
2828 {
2829 step_into_function (ecs);
2830 return;
2831 }
2832 }
2833
2834 /* If we have no line number and the step-stop-if-no-debug
2835 is set, we stop the step so that the user has a chance to
2836 switch in assembly mode. */
2837 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2838 {
2839 stop_step = 1;
2840 print_stop_reason (END_STEPPING_RANGE, 0);
2841 stop_stepping (ecs);
2842 return;
2843 }
2844
2845 step_over_function (ecs);
2846 keep_going (ecs);
2847 return;
2848
2849 }
2850
2851 /* We've wandered out of the step range. */
2852
2853 ecs->sal = find_pc_line (stop_pc, 0);
2854
2855 if (step_range_end == 1)
2856 {
2857 /* It is stepi or nexti. We always want to stop stepping after
2858 one instruction. */
2859 stop_step = 1;
2860 print_stop_reason (END_STEPPING_RANGE, 0);
2861 stop_stepping (ecs);
2862 return;
2863 }
2864
2865 /* If we're in the return path from a shared library trampoline,
2866 we want to proceed through the trampoline when stepping. */
2867 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2868 {
2869 CORE_ADDR tmp;
2870
2871 /* Determine where this trampoline returns. */
2872 tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
2873
2874 /* Only proceed through if we know where it's going. */
2875 if (tmp)
2876 {
2877 /* And put the step-breakpoint there and go until there. */
2878 struct symtab_and_line sr_sal;
2879
2880 INIT_SAL (&sr_sal); /* initialize to zeroes */
2881 sr_sal.pc = tmp;
2882 sr_sal.section = find_pc_overlay (sr_sal.pc);
2883 /* Do not specify what the fp should be when we stop
2884 since on some machines the prologue
2885 is where the new fp value is established. */
2886 check_for_old_step_resume_breakpoint ();
2887 step_resume_breakpoint =
2888 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
2889 if (breakpoints_inserted)
2890 insert_breakpoints ();
2891
2892 /* Restart without fiddling with the step ranges or
2893 other state. */
2894 keep_going (ecs);
2895 return;
2896 }
2897 }
2898
2899 if (ecs->sal.line == 0)
2900 {
2901 /* We have no line number information. That means to stop
2902 stepping (does this always happen right after one instruction,
2903 when we do "s" in a function with no line numbers,
2904 or can this happen as a result of a return or longjmp?). */
2905 stop_step = 1;
2906 print_stop_reason (END_STEPPING_RANGE, 0);
2907 stop_stepping (ecs);
2908 return;
2909 }
2910
2911 if ((stop_pc == ecs->sal.pc)
2912 && (ecs->current_line != ecs->sal.line || ecs->current_symtab != ecs->sal.symtab))
2913 {
2914 /* We are at the start of a different line. So stop. Note that
2915 we don't stop if we step into the middle of a different line.
2916 That is said to make things like for (;;) statements work
2917 better. */
2918 stop_step = 1;
2919 print_stop_reason (END_STEPPING_RANGE, 0);
2920 stop_stepping (ecs);
2921 return;
2922 }
2923
2924 /* We aren't done stepping.
2925
2926 Optimize by setting the stepping range to the line.
2927 (We might not be in the original line, but if we entered a
2928 new line in mid-statement, we continue stepping. This makes
2929 things like for(;;) statements work better.) */
2930
2931 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2932 {
2933 /* If this is the last line of the function, don't keep stepping
2934 (it would probably step us out of the function).
2935 This is particularly necessary for a one-line function,
2936 in which after skipping the prologue we better stop even though
2937 we will be in mid-line. */
2938 stop_step = 1;
2939 print_stop_reason (END_STEPPING_RANGE, 0);
2940 stop_stepping (ecs);
2941 return;
2942 }
2943 step_range_start = ecs->sal.pc;
2944 step_range_end = ecs->sal.end;
2945 step_frame_address = FRAME_FP (get_current_frame ());
2946 ecs->current_line = ecs->sal.line;
2947 ecs->current_symtab = ecs->sal.symtab;
2948
2949 /* In the case where we just stepped out of a function into the middle
2950 of a line of the caller, continue stepping, but step_frame_address
2951 must be modified to current frame */
2952 {
2953 CORE_ADDR current_frame = FRAME_FP (get_current_frame ());
2954 if (!(INNER_THAN (current_frame, step_frame_address)))
2955 step_frame_address = current_frame;
2956 }
2957
2958 keep_going (ecs);
2959
2960 } /* extra brace, to preserve old indentation */
2961 }
2962
2963 /* Are we in the middle of stepping? */
2964
2965 static int
2966 currently_stepping (struct execution_control_state *ecs)
2967 {
2968 return ((through_sigtramp_breakpoint == NULL
2969 && !ecs->handling_longjmp
2970 && ((step_range_end && step_resume_breakpoint == NULL)
2971 || trap_expected))
2972 || ecs->stepping_through_solib_after_catch
2973 || bpstat_should_step ());
2974 }
2975
2976 static void
2977 check_sigtramp2 (struct execution_control_state *ecs)
2978 {
2979 if (trap_expected
2980 && IN_SIGTRAMP (stop_pc, ecs->stop_func_name)
2981 && !IN_SIGTRAMP (prev_pc, prev_func_name)
2982 && INNER_THAN (read_sp (), step_sp))
2983 {
2984 /* What has happened here is that we have just stepped the
2985 inferior with a signal (because it is a signal which
2986 shouldn't make us stop), thus stepping into sigtramp.
2987
2988 So we need to set a step_resume_break_address breakpoint and
2989 continue until we hit it, and then step. FIXME: This should
2990 be more enduring than a step_resume breakpoint; we should
2991 know that we will later need to keep going rather than
2992 re-hitting the breakpoint here (see the testsuite,
2993 gdb.base/signals.exp where it says "exceedingly difficult"). */
2994
2995 struct symtab_and_line sr_sal;
2996
2997 INIT_SAL (&sr_sal); /* initialize to zeroes */
2998 sr_sal.pc = prev_pc;
2999 sr_sal.section = find_pc_overlay (sr_sal.pc);
3000 /* We perhaps could set the frame if we kept track of what the
3001 frame corresponding to prev_pc was. But we don't, so don't. */
3002 through_sigtramp_breakpoint =
3003 set_momentary_breakpoint (sr_sal, NULL, bp_through_sigtramp);
3004 if (breakpoints_inserted)
3005 insert_breakpoints ();
3006
3007 ecs->remove_breakpoints_on_following_step = 1;
3008 ecs->another_trap = 1;
3009 }
3010 }
3011
3012 /* Subroutine call with source code we should not step over. Do step
3013 to the first line of code in it. */
3014
3015 static void
3016 step_into_function (struct execution_control_state *ecs)
3017 {
3018 struct symtab *s;
3019 struct symtab_and_line sr_sal;
3020
3021 s = find_pc_symtab (stop_pc);
3022 if (s && s->language != language_asm)
3023 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
3024
3025 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
3026 /* Use the step_resume_break to step until the end of the prologue,
3027 even if that involves jumps (as it seems to on the vax under
3028 4.2). */
3029 /* If the prologue ends in the middle of a source line, continue to
3030 the end of that source line (if it is still within the function).
3031 Otherwise, just go to end of prologue. */
3032 #ifdef PROLOGUE_FIRSTLINE_OVERLAP
3033 /* no, don't either. It skips any code that's legitimately on the
3034 first line. */
3035 #else
3036 if (ecs->sal.end
3037 && ecs->sal.pc != ecs->stop_func_start
3038 && ecs->sal.end < ecs->stop_func_end)
3039 ecs->stop_func_start = ecs->sal.end;
3040 #endif
3041
3042 if (ecs->stop_func_start == stop_pc)
3043 {
3044 /* We are already there: stop now. */
3045 stop_step = 1;
3046 print_stop_reason (END_STEPPING_RANGE, 0);
3047 stop_stepping (ecs);
3048 return;
3049 }
3050 else
3051 {
3052 /* Put the step-breakpoint there and go until there. */
3053 INIT_SAL (&sr_sal); /* initialize to zeroes */
3054 sr_sal.pc = ecs->stop_func_start;
3055 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
3056 /* Do not specify what the fp should be when we stop since on
3057 some machines the prologue is where the new fp value is
3058 established. */
3059 check_for_old_step_resume_breakpoint ();
3060 step_resume_breakpoint =
3061 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
3062 if (breakpoints_inserted)
3063 insert_breakpoints ();
3064
3065 /* And make sure stepping stops right away then. */
3066 step_range_end = step_range_start;
3067 }
3068 keep_going (ecs);
3069 }
3070
3071 /* We've just entered a callee, and we wish to resume until it returns
3072 to the caller. Setting a step_resume breakpoint on the return
3073 address will catch a return from the callee.
3074
3075 However, if the callee is recursing, we want to be careful not to
3076 catch returns of those recursive calls, but only of THIS instance
3077 of the call.
3078
3079 To do this, we set the step_resume bp's frame to our current
3080 caller's frame (step_frame_address, which is set by the "next" or
3081 "until" command, before execution begins). */
3082
3083 static void
3084 step_over_function (struct execution_control_state *ecs)
3085 {
3086 struct symtab_and_line sr_sal;
3087
3088 INIT_SAL (&sr_sal); /* initialize to zeros */
3089 sr_sal.pc = ADDR_BITS_REMOVE (SAVED_PC_AFTER_CALL (get_current_frame ()));
3090 sr_sal.section = find_pc_overlay (sr_sal.pc);
3091
3092 check_for_old_step_resume_breakpoint ();
3093 step_resume_breakpoint =
3094 set_momentary_breakpoint (sr_sal, get_current_frame (), bp_step_resume);
3095
3096 if (step_frame_address && !IN_SOLIB_DYNSYM_RESOLVE_CODE (sr_sal.pc))
3097 step_resume_breakpoint->frame = step_frame_address;
3098
3099 if (breakpoints_inserted)
3100 insert_breakpoints ();
3101 }
3102
3103 static void
3104 stop_stepping (struct execution_control_state *ecs)
3105 {
3106 if (target_has_execution)
3107 {
3108 /* Are we stopping for a vfork event? We only stop when we see
3109 the child's event. However, we may not yet have seen the
3110 parent's event. And, inferior_ptid is still set to the
3111 parent's pid, until we resume again and follow either the
3112 parent or child.
3113
3114 To ensure that we can really touch inferior_ptid (aka, the
3115 parent process) -- which calls to functions like read_pc
3116 implicitly do -- wait on the parent if necessary. */
3117 if ((pending_follow.kind == TARGET_WAITKIND_VFORKED)
3118 && !pending_follow.fork_event.saw_parent_fork)
3119 {
3120 ptid_t parent_ptid;
3121
3122 do
3123 {
3124 if (target_wait_hook)
3125 parent_ptid = target_wait_hook (pid_to_ptid (-1), &(ecs->ws));
3126 else
3127 parent_ptid = target_wait (pid_to_ptid (-1), &(ecs->ws));
3128 }
3129 while (! ptid_equal (parent_ptid, inferior_ptid));
3130 }
3131
3132 /* Assuming the inferior still exists, set these up for next
3133 time, just like we did above if we didn't break out of the
3134 loop. */
3135 prev_pc = read_pc ();
3136 prev_func_start = ecs->stop_func_start;
3137 prev_func_name = ecs->stop_func_name;
3138 }
3139
3140 /* Let callers know we don't want to wait for the inferior anymore. */
3141 ecs->wait_some_more = 0;
3142 }
3143
3144 /* This function handles various cases where we need to continue
3145 waiting for the inferior. */
3146 /* (Used to be the keep_going: label in the old wait_for_inferior) */
3147
3148 static void
3149 keep_going (struct execution_control_state *ecs)
3150 {
3151 /* ??rehrauer: ttrace on HP-UX theoretically allows one to debug a
3152 vforked child between its creation and subsequent exit or call to
3153 exec(). However, I had big problems in this rather creaky exec
3154 engine, getting that to work. The fundamental problem is that
3155 I'm trying to debug two processes via an engine that only
3156 understands a single process with possibly multiple threads.
3157
3158 Hence, this spot is known to have problems when
3159 target_can_follow_vfork_prior_to_exec returns 1. */
3160
3161 /* Save the pc before execution, to compare with pc after stop. */
3162 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
3163 prev_func_start = ecs->stop_func_start; /* Ok, since if DECR_PC_AFTER
3164 BREAK is defined, the
3165 original pc would not have
3166 been at the start of a
3167 function. */
3168 prev_func_name = ecs->stop_func_name;
3169
3170 if (ecs->update_step_sp)
3171 step_sp = read_sp ();
3172 ecs->update_step_sp = 0;
3173
3174 /* If we did not do break;, it means we should keep running the
3175 inferior and not return to debugger. */
3176
3177 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
3178 {
3179 /* We took a signal (which we are supposed to pass through to
3180 the inferior, else we'd have done a break above) and we
3181 haven't yet gotten our trap. Simply continue. */
3182 resume (currently_stepping (ecs), stop_signal);
3183 }
3184 else
3185 {
3186 /* Either the trap was not expected, but we are continuing
3187 anyway (the user asked that this signal be passed to the
3188 child)
3189 -- or --
3190 The signal was SIGTRAP, e.g. it was our signal, but we
3191 decided we should resume from it.
3192
3193 We're going to run this baby now!
3194
3195 Insert breakpoints now, unless we are trying to one-proceed
3196 past a breakpoint. */
3197 /* If we've just finished a special step resume and we don't
3198 want to hit a breakpoint, pull em out. */
3199 if (step_resume_breakpoint == NULL
3200 && through_sigtramp_breakpoint == NULL
3201 && ecs->remove_breakpoints_on_following_step)
3202 {
3203 ecs->remove_breakpoints_on_following_step = 0;
3204 remove_breakpoints ();
3205 breakpoints_inserted = 0;
3206 }
3207 else if (!breakpoints_inserted &&
3208 (through_sigtramp_breakpoint != NULL || !ecs->another_trap))
3209 {
3210 breakpoints_failed = insert_breakpoints ();
3211 if (breakpoints_failed)
3212 {
3213 stop_stepping (ecs);
3214 return;
3215 }
3216 breakpoints_inserted = 1;
3217 }
3218
3219 trap_expected = ecs->another_trap;
3220
3221 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
3222 specifies that such a signal should be delivered to the
3223 target program).
3224
3225 Typically, this would occure when a user is debugging a
3226 target monitor on a simulator: the target monitor sets a
3227 breakpoint; the simulator encounters this break-point and
3228 halts the simulation handing control to GDB; GDB, noteing
3229 that the break-point isn't valid, returns control back to the
3230 simulator; the simulator then delivers the hardware
3231 equivalent of a SIGNAL_TRAP to the program being debugged. */
3232
3233 if (stop_signal == TARGET_SIGNAL_TRAP
3234 && !signal_program[stop_signal])
3235 stop_signal = TARGET_SIGNAL_0;
3236
3237 #ifdef SHIFT_INST_REGS
3238 /* I'm not sure when this following segment applies. I do know,
3239 now, that we shouldn't rewrite the regs when we were stopped
3240 by a random signal from the inferior process. */
3241 /* FIXME: Shouldn't this be based on the valid bit of the SXIP?
3242 (this is only used on the 88k). */
3243
3244 if (!bpstat_explains_signal (stop_bpstat)
3245 && (stop_signal != TARGET_SIGNAL_CHLD)
3246 && !stopped_by_random_signal)
3247 SHIFT_INST_REGS ();
3248 #endif /* SHIFT_INST_REGS */
3249
3250 resume (currently_stepping (ecs), stop_signal);
3251 }
3252
3253 prepare_to_wait (ecs);
3254 }
3255
3256 /* This function normally comes after a resume, before
3257 handle_inferior_event exits. It takes care of any last bits of
3258 housekeeping, and sets the all-important wait_some_more flag. */
3259
3260 static void
3261 prepare_to_wait (struct execution_control_state *ecs)
3262 {
3263 if (ecs->infwait_state == infwait_normal_state)
3264 {
3265 overlay_cache_invalid = 1;
3266
3267 /* We have to invalidate the registers BEFORE calling
3268 target_wait because they can be loaded from the target while
3269 in target_wait. This makes remote debugging a bit more
3270 efficient for those targets that provide critical registers
3271 as part of their normal status mechanism. */
3272
3273 registers_changed ();
3274 ecs->waiton_ptid = pid_to_ptid (-1);
3275 ecs->wp = &(ecs->ws);
3276 }
3277 /* This is the old end of the while loop. Let everybody know we
3278 want to wait for the inferior some more and get called again
3279 soon. */
3280 ecs->wait_some_more = 1;
3281 }
3282
3283 /* Print why the inferior has stopped. We always print something when
3284 the inferior exits, or receives a signal. The rest of the cases are
3285 dealt with later on in normal_stop() and print_it_typical(). Ideally
3286 there should be a call to this function from handle_inferior_event()
3287 each time stop_stepping() is called.*/
3288 static void
3289 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
3290 {
3291 switch (stop_reason)
3292 {
3293 case STOP_UNKNOWN:
3294 /* We don't deal with these cases from handle_inferior_event()
3295 yet. */
3296 break;
3297 case END_STEPPING_RANGE:
3298 /* We are done with a step/next/si/ni command. */
3299 /* For now print nothing. */
3300 #ifdef UI_OUT
3301 /* Print a message only if not in the middle of doing a "step n"
3302 operation for n > 1 */
3303 if (!step_multi || !stop_step)
3304 if (ui_out_is_mi_like_p (uiout))
3305 ui_out_field_string (uiout, "reason", "end-stepping-range");
3306 #endif
3307 break;
3308 case BREAKPOINT_HIT:
3309 /* We found a breakpoint. */
3310 /* For now print nothing. */
3311 break;
3312 case SIGNAL_EXITED:
3313 /* The inferior was terminated by a signal. */
3314 #ifdef UI_OUT
3315 annotate_signalled ();
3316 if (ui_out_is_mi_like_p (uiout))
3317 ui_out_field_string (uiout, "reason", "exited-signalled");
3318 ui_out_text (uiout, "\nProgram terminated with signal ");
3319 annotate_signal_name ();
3320 ui_out_field_string (uiout, "signal-name", target_signal_to_name (stop_info));
3321 annotate_signal_name_end ();
3322 ui_out_text (uiout, ", ");
3323 annotate_signal_string ();
3324 ui_out_field_string (uiout, "signal-meaning", target_signal_to_string (stop_info));
3325 annotate_signal_string_end ();
3326 ui_out_text (uiout, ".\n");
3327 ui_out_text (uiout, "The program no longer exists.\n");
3328 #else
3329 annotate_signalled ();
3330 printf_filtered ("\nProgram terminated with signal ");
3331 annotate_signal_name ();
3332 printf_filtered ("%s", target_signal_to_name (stop_info));
3333 annotate_signal_name_end ();
3334 printf_filtered (", ");
3335 annotate_signal_string ();
3336 printf_filtered ("%s", target_signal_to_string (stop_info));
3337 annotate_signal_string_end ();
3338 printf_filtered (".\n");
3339
3340 printf_filtered ("The program no longer exists.\n");
3341 gdb_flush (gdb_stdout);
3342 #endif
3343 break;
3344 case EXITED:
3345 /* The inferior program is finished. */
3346 #ifdef UI_OUT
3347 annotate_exited (stop_info);
3348 if (stop_info)
3349 {
3350 if (ui_out_is_mi_like_p (uiout))
3351 ui_out_field_string (uiout, "reason", "exited");
3352 ui_out_text (uiout, "\nProgram exited with code ");
3353 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) stop_info);
3354 ui_out_text (uiout, ".\n");
3355 }
3356 else
3357 {
3358 if (ui_out_is_mi_like_p (uiout))
3359 ui_out_field_string (uiout, "reason", "exited-normally");
3360 ui_out_text (uiout, "\nProgram exited normally.\n");
3361 }
3362 #else
3363 annotate_exited (stop_info);
3364 if (stop_info)
3365 printf_filtered ("\nProgram exited with code 0%o.\n",
3366 (unsigned int) stop_info);
3367 else
3368 printf_filtered ("\nProgram exited normally.\n");
3369 #endif
3370 break;
3371 case SIGNAL_RECEIVED:
3372 /* Signal received. The signal table tells us to print about
3373 it. */
3374 #ifdef UI_OUT
3375 annotate_signal ();
3376 ui_out_text (uiout, "\nProgram received signal ");
3377 annotate_signal_name ();
3378 if (ui_out_is_mi_like_p (uiout))
3379 ui_out_field_string (uiout, "reason", "signal-received");
3380 ui_out_field_string (uiout, "signal-name", target_signal_to_name (stop_info));
3381 annotate_signal_name_end ();
3382 ui_out_text (uiout, ", ");
3383 annotate_signal_string ();
3384 ui_out_field_string (uiout, "signal-meaning", target_signal_to_string (stop_info));
3385 annotate_signal_string_end ();
3386 ui_out_text (uiout, ".\n");
3387 #else
3388 annotate_signal ();
3389 printf_filtered ("\nProgram received signal ");
3390 annotate_signal_name ();
3391 printf_filtered ("%s", target_signal_to_name (stop_info));
3392 annotate_signal_name_end ();
3393 printf_filtered (", ");
3394 annotate_signal_string ();
3395 printf_filtered ("%s", target_signal_to_string (stop_info));
3396 annotate_signal_string_end ();
3397 printf_filtered (".\n");
3398 gdb_flush (gdb_stdout);
3399 #endif
3400 break;
3401 default:
3402 internal_error (__FILE__, __LINE__,
3403 "print_stop_reason: unrecognized enum value");
3404 break;
3405 }
3406 }
3407 \f
3408
3409 /* Here to return control to GDB when the inferior stops for real.
3410 Print appropriate messages, remove breakpoints, give terminal our modes.
3411
3412 STOP_PRINT_FRAME nonzero means print the executing frame
3413 (pc, function, args, file, line number and line text).
3414 BREAKPOINTS_FAILED nonzero means stop was due to error
3415 attempting to insert breakpoints. */
3416
3417 void
3418 normal_stop (void)
3419 {
3420 /* As with the notification of thread events, we want to delay
3421 notifying the user that we've switched thread context until
3422 the inferior actually stops.
3423
3424 (Note that there's no point in saying anything if the inferior
3425 has exited!) */
3426 if (! ptid_equal (previous_inferior_ptid, inferior_ptid)
3427 && target_has_execution)
3428 {
3429 target_terminal_ours_for_output ();
3430 printf_filtered ("[Switching to %s]\n",
3431 target_pid_or_tid_to_str (inferior_ptid));
3432 previous_inferior_ptid = inferior_ptid;
3433 }
3434
3435 /* Make sure that the current_frame's pc is correct. This
3436 is a correction for setting up the frame info before doing
3437 DECR_PC_AFTER_BREAK */
3438 if (target_has_execution && get_current_frame ())
3439 (get_current_frame ())->pc = read_pc ();
3440
3441 if (breakpoints_failed)
3442 {
3443 target_terminal_ours_for_output ();
3444 print_sys_errmsg ("While inserting breakpoints", breakpoints_failed);
3445 printf_filtered ("Stopped; cannot insert breakpoints.\n\
3446 The same program may be running in another process,\n\
3447 or you may have requested too many hardware breakpoints\n\
3448 and/or watchpoints.\n");
3449 }
3450
3451 if (target_has_execution && breakpoints_inserted)
3452 {
3453 if (remove_breakpoints ())
3454 {
3455 target_terminal_ours_for_output ();
3456 printf_filtered ("Cannot remove breakpoints because ");
3457 printf_filtered ("program is no longer writable.\n");
3458 printf_filtered ("It might be running in another process.\n");
3459 printf_filtered ("Further execution is probably impossible.\n");
3460 }
3461 }
3462 breakpoints_inserted = 0;
3463
3464 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3465 Delete any breakpoint that is to be deleted at the next stop. */
3466
3467 breakpoint_auto_delete (stop_bpstat);
3468
3469 /* If an auto-display called a function and that got a signal,
3470 delete that auto-display to avoid an infinite recursion. */
3471
3472 if (stopped_by_random_signal)
3473 disable_current_display ();
3474
3475 /* Don't print a message if in the middle of doing a "step n"
3476 operation for n > 1 */
3477 if (step_multi && stop_step)
3478 goto done;
3479
3480 target_terminal_ours ();
3481
3482 /* Look up the hook_stop and run it if it exists. */
3483
3484 if (stop_command && stop_command->hook_pre)
3485 {
3486 catch_errors (hook_stop_stub, stop_command->hook_pre,
3487 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3488 }
3489
3490 if (!target_has_stack)
3491 {
3492
3493 goto done;
3494 }
3495
3496 /* Select innermost stack frame - i.e., current frame is frame 0,
3497 and current location is based on that.
3498 Don't do this on return from a stack dummy routine,
3499 or if the program has exited. */
3500
3501 if (!stop_stack_dummy)
3502 {
3503 select_frame (get_current_frame (), 0);
3504
3505 /* Print current location without a level number, if
3506 we have changed functions or hit a breakpoint.
3507 Print source line if we have one.
3508 bpstat_print() contains the logic deciding in detail
3509 what to print, based on the event(s) that just occurred. */
3510
3511 if (stop_print_frame
3512 && selected_frame)
3513 {
3514 int bpstat_ret;
3515 int source_flag;
3516 int do_frame_printing = 1;
3517
3518 bpstat_ret = bpstat_print (stop_bpstat);
3519 switch (bpstat_ret)
3520 {
3521 case PRINT_UNKNOWN:
3522 if (stop_step
3523 && step_frame_address == FRAME_FP (get_current_frame ())
3524 && step_start_function == find_pc_function (stop_pc))
3525 source_flag = SRC_LINE; /* finished step, just print source line */
3526 else
3527 source_flag = SRC_AND_LOC; /* print location and source line */
3528 break;
3529 case PRINT_SRC_AND_LOC:
3530 source_flag = SRC_AND_LOC; /* print location and source line */
3531 break;
3532 case PRINT_SRC_ONLY:
3533 source_flag = SRC_LINE;
3534 break;
3535 case PRINT_NOTHING:
3536 source_flag = SRC_LINE; /* something bogus */
3537 do_frame_printing = 0;
3538 break;
3539 default:
3540 internal_error (__FILE__, __LINE__,
3541 "Unknown value.");
3542 }
3543 #ifdef UI_OUT
3544 /* For mi, have the same behavior every time we stop:
3545 print everything but the source line. */
3546 if (ui_out_is_mi_like_p (uiout))
3547 source_flag = LOC_AND_ADDRESS;
3548 #endif
3549
3550 #ifdef UI_OUT
3551 if (ui_out_is_mi_like_p (uiout))
3552 ui_out_field_int (uiout, "thread-id",
3553 pid_to_thread_id (inferior_ptid));
3554 #endif
3555 /* The behavior of this routine with respect to the source
3556 flag is:
3557 SRC_LINE: Print only source line
3558 LOCATION: Print only location
3559 SRC_AND_LOC: Print location and source line */
3560 if (do_frame_printing)
3561 show_and_print_stack_frame (selected_frame, -1, source_flag);
3562
3563 /* Display the auto-display expressions. */
3564 do_displays ();
3565 }
3566 }
3567
3568 /* Save the function value return registers, if we care.
3569 We might be about to restore their previous contents. */
3570 if (proceed_to_finish)
3571 read_register_bytes (0, stop_registers, REGISTER_BYTES);
3572
3573 if (stop_stack_dummy)
3574 {
3575 /* Pop the empty frame that contains the stack dummy.
3576 POP_FRAME ends with a setting of the current frame, so we
3577 can use that next. */
3578 POP_FRAME;
3579 /* Set stop_pc to what it was before we called the function.
3580 Can't rely on restore_inferior_status because that only gets
3581 called if we don't stop in the called function. */
3582 stop_pc = read_pc ();
3583 select_frame (get_current_frame (), 0);
3584 }
3585
3586 done:
3587 annotate_stopped ();
3588 }
3589
3590 static int
3591 hook_stop_stub (void *cmd)
3592 {
3593 execute_user_command ((struct cmd_list_element *) cmd, 0);
3594 return (0);
3595 }
3596 \f
3597 int
3598 signal_stop_state (int signo)
3599 {
3600 return signal_stop[signo];
3601 }
3602
3603 int
3604 signal_print_state (int signo)
3605 {
3606 return signal_print[signo];
3607 }
3608
3609 int
3610 signal_pass_state (int signo)
3611 {
3612 return signal_program[signo];
3613 }
3614
3615 int signal_stop_update (signo, state)
3616 int signo;
3617 int state;
3618 {
3619 int ret = signal_stop[signo];
3620 signal_stop[signo] = state;
3621 return ret;
3622 }
3623
3624 int signal_print_update (signo, state)
3625 int signo;
3626 int state;
3627 {
3628 int ret = signal_print[signo];
3629 signal_print[signo] = state;
3630 return ret;
3631 }
3632
3633 int signal_pass_update (signo, state)
3634 int signo;
3635 int state;
3636 {
3637 int ret = signal_program[signo];
3638 signal_program[signo] = state;
3639 return ret;
3640 }
3641
3642 static void
3643 sig_print_header (void)
3644 {
3645 printf_filtered ("\
3646 Signal Stop\tPrint\tPass to program\tDescription\n");
3647 }
3648
3649 static void
3650 sig_print_info (enum target_signal oursig)
3651 {
3652 char *name = target_signal_to_name (oursig);
3653 int name_padding = 13 - strlen (name);
3654
3655 if (name_padding <= 0)
3656 name_padding = 0;
3657
3658 printf_filtered ("%s", name);
3659 printf_filtered ("%*.*s ", name_padding, name_padding,
3660 " ");
3661 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3662 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3663 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3664 printf_filtered ("%s\n", target_signal_to_string (oursig));
3665 }
3666
3667 /* Specify how various signals in the inferior should be handled. */
3668
3669 static void
3670 handle_command (char *args, int from_tty)
3671 {
3672 char **argv;
3673 int digits, wordlen;
3674 int sigfirst, signum, siglast;
3675 enum target_signal oursig;
3676 int allsigs;
3677 int nsigs;
3678 unsigned char *sigs;
3679 struct cleanup *old_chain;
3680
3681 if (args == NULL)
3682 {
3683 error_no_arg ("signal to handle");
3684 }
3685
3686 /* Allocate and zero an array of flags for which signals to handle. */
3687
3688 nsigs = (int) TARGET_SIGNAL_LAST;
3689 sigs = (unsigned char *) alloca (nsigs);
3690 memset (sigs, 0, nsigs);
3691
3692 /* Break the command line up into args. */
3693
3694 argv = buildargv (args);
3695 if (argv == NULL)
3696 {
3697 nomem (0);
3698 }
3699 old_chain = make_cleanup_freeargv (argv);
3700
3701 /* Walk through the args, looking for signal oursigs, signal names, and
3702 actions. Signal numbers and signal names may be interspersed with
3703 actions, with the actions being performed for all signals cumulatively
3704 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3705
3706 while (*argv != NULL)
3707 {
3708 wordlen = strlen (*argv);
3709 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3710 {;
3711 }
3712 allsigs = 0;
3713 sigfirst = siglast = -1;
3714
3715 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3716 {
3717 /* Apply action to all signals except those used by the
3718 debugger. Silently skip those. */
3719 allsigs = 1;
3720 sigfirst = 0;
3721 siglast = nsigs - 1;
3722 }
3723 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3724 {
3725 SET_SIGS (nsigs, sigs, signal_stop);
3726 SET_SIGS (nsigs, sigs, signal_print);
3727 }
3728 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3729 {
3730 UNSET_SIGS (nsigs, sigs, signal_program);
3731 }
3732 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3733 {
3734 SET_SIGS (nsigs, sigs, signal_print);
3735 }
3736 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3737 {
3738 SET_SIGS (nsigs, sigs, signal_program);
3739 }
3740 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3741 {
3742 UNSET_SIGS (nsigs, sigs, signal_stop);
3743 }
3744 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3745 {
3746 SET_SIGS (nsigs, sigs, signal_program);
3747 }
3748 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3749 {
3750 UNSET_SIGS (nsigs, sigs, signal_print);
3751 UNSET_SIGS (nsigs, sigs, signal_stop);
3752 }
3753 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3754 {
3755 UNSET_SIGS (nsigs, sigs, signal_program);
3756 }
3757 else if (digits > 0)
3758 {
3759 /* It is numeric. The numeric signal refers to our own
3760 internal signal numbering from target.h, not to host/target
3761 signal number. This is a feature; users really should be
3762 using symbolic names anyway, and the common ones like
3763 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3764
3765 sigfirst = siglast = (int)
3766 target_signal_from_command (atoi (*argv));
3767 if ((*argv)[digits] == '-')
3768 {
3769 siglast = (int)
3770 target_signal_from_command (atoi ((*argv) + digits + 1));
3771 }
3772 if (sigfirst > siglast)
3773 {
3774 /* Bet he didn't figure we'd think of this case... */
3775 signum = sigfirst;
3776 sigfirst = siglast;
3777 siglast = signum;
3778 }
3779 }
3780 else
3781 {
3782 oursig = target_signal_from_name (*argv);
3783 if (oursig != TARGET_SIGNAL_UNKNOWN)
3784 {
3785 sigfirst = siglast = (int) oursig;
3786 }
3787 else
3788 {
3789 /* Not a number and not a recognized flag word => complain. */
3790 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
3791 }
3792 }
3793
3794 /* If any signal numbers or symbol names were found, set flags for
3795 which signals to apply actions to. */
3796
3797 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3798 {
3799 switch ((enum target_signal) signum)
3800 {
3801 case TARGET_SIGNAL_TRAP:
3802 case TARGET_SIGNAL_INT:
3803 if (!allsigs && !sigs[signum])
3804 {
3805 if (query ("%s is used by the debugger.\n\
3806 Are you sure you want to change it? ",
3807 target_signal_to_name
3808 ((enum target_signal) signum)))
3809 {
3810 sigs[signum] = 1;
3811 }
3812 else
3813 {
3814 printf_unfiltered ("Not confirmed, unchanged.\n");
3815 gdb_flush (gdb_stdout);
3816 }
3817 }
3818 break;
3819 case TARGET_SIGNAL_0:
3820 case TARGET_SIGNAL_DEFAULT:
3821 case TARGET_SIGNAL_UNKNOWN:
3822 /* Make sure that "all" doesn't print these. */
3823 break;
3824 default:
3825 sigs[signum] = 1;
3826 break;
3827 }
3828 }
3829
3830 argv++;
3831 }
3832
3833 target_notice_signals (inferior_ptid);
3834
3835 if (from_tty)
3836 {
3837 /* Show the results. */
3838 sig_print_header ();
3839 for (signum = 0; signum < nsigs; signum++)
3840 {
3841 if (sigs[signum])
3842 {
3843 sig_print_info (signum);
3844 }
3845 }
3846 }
3847
3848 do_cleanups (old_chain);
3849 }
3850
3851 static void
3852 xdb_handle_command (char *args, int from_tty)
3853 {
3854 char **argv;
3855 struct cleanup *old_chain;
3856
3857 /* Break the command line up into args. */
3858
3859 argv = buildargv (args);
3860 if (argv == NULL)
3861 {
3862 nomem (0);
3863 }
3864 old_chain = make_cleanup_freeargv (argv);
3865 if (argv[1] != (char *) NULL)
3866 {
3867 char *argBuf;
3868 int bufLen;
3869
3870 bufLen = strlen (argv[0]) + 20;
3871 argBuf = (char *) xmalloc (bufLen);
3872 if (argBuf)
3873 {
3874 int validFlag = 1;
3875 enum target_signal oursig;
3876
3877 oursig = target_signal_from_name (argv[0]);
3878 memset (argBuf, 0, bufLen);
3879 if (strcmp (argv[1], "Q") == 0)
3880 sprintf (argBuf, "%s %s", argv[0], "noprint");
3881 else
3882 {
3883 if (strcmp (argv[1], "s") == 0)
3884 {
3885 if (!signal_stop[oursig])
3886 sprintf (argBuf, "%s %s", argv[0], "stop");
3887 else
3888 sprintf (argBuf, "%s %s", argv[0], "nostop");
3889 }
3890 else if (strcmp (argv[1], "i") == 0)
3891 {
3892 if (!signal_program[oursig])
3893 sprintf (argBuf, "%s %s", argv[0], "pass");
3894 else
3895 sprintf (argBuf, "%s %s", argv[0], "nopass");
3896 }
3897 else if (strcmp (argv[1], "r") == 0)
3898 {
3899 if (!signal_print[oursig])
3900 sprintf (argBuf, "%s %s", argv[0], "print");
3901 else
3902 sprintf (argBuf, "%s %s", argv[0], "noprint");
3903 }
3904 else
3905 validFlag = 0;
3906 }
3907 if (validFlag)
3908 handle_command (argBuf, from_tty);
3909 else
3910 printf_filtered ("Invalid signal handling flag.\n");
3911 if (argBuf)
3912 xfree (argBuf);
3913 }
3914 }
3915 do_cleanups (old_chain);
3916 }
3917
3918 /* Print current contents of the tables set by the handle command.
3919 It is possible we should just be printing signals actually used
3920 by the current target (but for things to work right when switching
3921 targets, all signals should be in the signal tables). */
3922
3923 static void
3924 signals_info (char *signum_exp, int from_tty)
3925 {
3926 enum target_signal oursig;
3927 sig_print_header ();
3928
3929 if (signum_exp)
3930 {
3931 /* First see if this is a symbol name. */
3932 oursig = target_signal_from_name (signum_exp);
3933 if (oursig == TARGET_SIGNAL_UNKNOWN)
3934 {
3935 /* No, try numeric. */
3936 oursig =
3937 target_signal_from_command (parse_and_eval_long (signum_exp));
3938 }
3939 sig_print_info (oursig);
3940 return;
3941 }
3942
3943 printf_filtered ("\n");
3944 /* These ugly casts brought to you by the native VAX compiler. */
3945 for (oursig = TARGET_SIGNAL_FIRST;
3946 (int) oursig < (int) TARGET_SIGNAL_LAST;
3947 oursig = (enum target_signal) ((int) oursig + 1))
3948 {
3949 QUIT;
3950
3951 if (oursig != TARGET_SIGNAL_UNKNOWN
3952 && oursig != TARGET_SIGNAL_DEFAULT
3953 && oursig != TARGET_SIGNAL_0)
3954 sig_print_info (oursig);
3955 }
3956
3957 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
3958 }
3959 \f
3960 struct inferior_status
3961 {
3962 enum target_signal stop_signal;
3963 CORE_ADDR stop_pc;
3964 bpstat stop_bpstat;
3965 int stop_step;
3966 int stop_stack_dummy;
3967 int stopped_by_random_signal;
3968 int trap_expected;
3969 CORE_ADDR step_range_start;
3970 CORE_ADDR step_range_end;
3971 CORE_ADDR step_frame_address;
3972 enum step_over_calls_kind step_over_calls;
3973 CORE_ADDR step_resume_break_address;
3974 int stop_after_trap;
3975 int stop_soon_quietly;
3976 CORE_ADDR selected_frame_address;
3977 char *stop_registers;
3978
3979 /* These are here because if call_function_by_hand has written some
3980 registers and then decides to call error(), we better not have changed
3981 any registers. */
3982 char *registers;
3983
3984 int selected_level;
3985 int breakpoint_proceeded;
3986 int restore_stack_info;
3987 int proceed_to_finish;
3988 };
3989
3990 static struct inferior_status *
3991 xmalloc_inferior_status (void)
3992 {
3993 struct inferior_status *inf_status;
3994 inf_status = xmalloc (sizeof (struct inferior_status));
3995 inf_status->stop_registers = xmalloc (REGISTER_BYTES);
3996 inf_status->registers = xmalloc (REGISTER_BYTES);
3997 return inf_status;
3998 }
3999
4000 static void
4001 free_inferior_status (struct inferior_status *inf_status)
4002 {
4003 xfree (inf_status->registers);
4004 xfree (inf_status->stop_registers);
4005 xfree (inf_status);
4006 }
4007
4008 void
4009 write_inferior_status_register (struct inferior_status *inf_status, int regno,
4010 LONGEST val)
4011 {
4012 int size = REGISTER_RAW_SIZE (regno);
4013 void *buf = alloca (size);
4014 store_signed_integer (buf, size, val);
4015 memcpy (&inf_status->registers[REGISTER_BYTE (regno)], buf, size);
4016 }
4017
4018 /* Save all of the information associated with the inferior<==>gdb
4019 connection. INF_STATUS is a pointer to a "struct inferior_status"
4020 (defined in inferior.h). */
4021
4022 struct inferior_status *
4023 save_inferior_status (int restore_stack_info)
4024 {
4025 struct inferior_status *inf_status = xmalloc_inferior_status ();
4026
4027 inf_status->stop_signal = stop_signal;
4028 inf_status->stop_pc = stop_pc;
4029 inf_status->stop_step = stop_step;
4030 inf_status->stop_stack_dummy = stop_stack_dummy;
4031 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4032 inf_status->trap_expected = trap_expected;
4033 inf_status->step_range_start = step_range_start;
4034 inf_status->step_range_end = step_range_end;
4035 inf_status->step_frame_address = step_frame_address;
4036 inf_status->step_over_calls = step_over_calls;
4037 inf_status->stop_after_trap = stop_after_trap;
4038 inf_status->stop_soon_quietly = stop_soon_quietly;
4039 /* Save original bpstat chain here; replace it with copy of chain.
4040 If caller's caller is walking the chain, they'll be happier if we
4041 hand them back the original chain when restore_inferior_status is
4042 called. */
4043 inf_status->stop_bpstat = stop_bpstat;
4044 stop_bpstat = bpstat_copy (stop_bpstat);
4045 inf_status->breakpoint_proceeded = breakpoint_proceeded;
4046 inf_status->restore_stack_info = restore_stack_info;
4047 inf_status->proceed_to_finish = proceed_to_finish;
4048
4049 memcpy (inf_status->stop_registers, stop_registers, REGISTER_BYTES);
4050
4051 read_register_bytes (0, inf_status->registers, REGISTER_BYTES);
4052
4053 record_selected_frame (&(inf_status->selected_frame_address),
4054 &(inf_status->selected_level));
4055 return inf_status;
4056 }
4057
4058 struct restore_selected_frame_args
4059 {
4060 CORE_ADDR frame_address;
4061 int level;
4062 };
4063
4064 static int
4065 restore_selected_frame (void *args)
4066 {
4067 struct restore_selected_frame_args *fr =
4068 (struct restore_selected_frame_args *) args;
4069 struct frame_info *frame;
4070 int level = fr->level;
4071
4072 frame = find_relative_frame (get_current_frame (), &level);
4073
4074 /* If inf_status->selected_frame_address is NULL, there was no
4075 previously selected frame. */
4076 if (frame == NULL ||
4077 /* FRAME_FP (frame) != fr->frame_address || */
4078 /* elz: deleted this check as a quick fix to the problem that
4079 for function called by hand gdb creates no internal frame
4080 structure and the real stack and gdb's idea of stack are
4081 different if nested calls by hands are made.
4082
4083 mvs: this worries me. */
4084 level != 0)
4085 {
4086 warning ("Unable to restore previously selected frame.\n");
4087 return 0;
4088 }
4089
4090 select_frame (frame, fr->level);
4091
4092 return (1);
4093 }
4094
4095 void
4096 restore_inferior_status (struct inferior_status *inf_status)
4097 {
4098 stop_signal = inf_status->stop_signal;
4099 stop_pc = inf_status->stop_pc;
4100 stop_step = inf_status->stop_step;
4101 stop_stack_dummy = inf_status->stop_stack_dummy;
4102 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4103 trap_expected = inf_status->trap_expected;
4104 step_range_start = inf_status->step_range_start;
4105 step_range_end = inf_status->step_range_end;
4106 step_frame_address = inf_status->step_frame_address;
4107 step_over_calls = inf_status->step_over_calls;
4108 stop_after_trap = inf_status->stop_after_trap;
4109 stop_soon_quietly = inf_status->stop_soon_quietly;
4110 bpstat_clear (&stop_bpstat);
4111 stop_bpstat = inf_status->stop_bpstat;
4112 breakpoint_proceeded = inf_status->breakpoint_proceeded;
4113 proceed_to_finish = inf_status->proceed_to_finish;
4114
4115 /* FIXME: Is the restore of stop_registers always needed */
4116 memcpy (stop_registers, inf_status->stop_registers, REGISTER_BYTES);
4117
4118 /* The inferior can be gone if the user types "print exit(0)"
4119 (and perhaps other times). */
4120 if (target_has_execution)
4121 write_register_bytes (0, inf_status->registers, REGISTER_BYTES);
4122
4123 /* FIXME: If we are being called after stopping in a function which
4124 is called from gdb, we should not be trying to restore the
4125 selected frame; it just prints a spurious error message (The
4126 message is useful, however, in detecting bugs in gdb (like if gdb
4127 clobbers the stack)). In fact, should we be restoring the
4128 inferior status at all in that case? . */
4129
4130 if (target_has_stack && inf_status->restore_stack_info)
4131 {
4132 struct restore_selected_frame_args fr;
4133 fr.level = inf_status->selected_level;
4134 fr.frame_address = inf_status->selected_frame_address;
4135 /* The point of catch_errors is that if the stack is clobbered,
4136 walking the stack might encounter a garbage pointer and error()
4137 trying to dereference it. */
4138 if (catch_errors (restore_selected_frame, &fr,
4139 "Unable to restore previously selected frame:\n",
4140 RETURN_MASK_ERROR) == 0)
4141 /* Error in restoring the selected frame. Select the innermost
4142 frame. */
4143
4144
4145 select_frame (get_current_frame (), 0);
4146
4147 }
4148
4149 free_inferior_status (inf_status);
4150 }
4151
4152 static void
4153 do_restore_inferior_status_cleanup (void *sts)
4154 {
4155 restore_inferior_status (sts);
4156 }
4157
4158 struct cleanup *
4159 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
4160 {
4161 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
4162 }
4163
4164 void
4165 discard_inferior_status (struct inferior_status *inf_status)
4166 {
4167 /* See save_inferior_status for info on stop_bpstat. */
4168 bpstat_clear (&inf_status->stop_bpstat);
4169 free_inferior_status (inf_status);
4170 }
4171
4172 /* Oft used ptids */
4173 ptid_t null_ptid;
4174 ptid_t minus_one_ptid;
4175
4176 /* Create a ptid given the necessary PID, LWP, and TID components. */
4177
4178 ptid_t
4179 ptid_build (int pid, long lwp, long tid)
4180 {
4181 ptid_t ptid;
4182
4183 ptid.pid = pid;
4184 ptid.lwp = lwp;
4185 ptid.tid = tid;
4186 return ptid;
4187 }
4188
4189 /* Create a ptid from just a pid. */
4190
4191 ptid_t
4192 pid_to_ptid (int pid)
4193 {
4194 return ptid_build (pid, 0, 0);
4195 }
4196
4197 /* Fetch the pid (process id) component from a ptid. */
4198
4199 int
4200 ptid_get_pid (ptid_t ptid)
4201 {
4202 return ptid.pid;
4203 }
4204
4205 /* Fetch the lwp (lightweight process) component from a ptid. */
4206
4207 long
4208 ptid_get_lwp (ptid_t ptid)
4209 {
4210 return ptid.lwp;
4211 }
4212
4213 /* Fetch the tid (thread id) component from a ptid. */
4214
4215 long
4216 ptid_get_tid (ptid_t ptid)
4217 {
4218 return ptid.tid;
4219 }
4220
4221 /* ptid_equal() is used to test equality of two ptids. */
4222
4223 int
4224 ptid_equal (ptid_t ptid1, ptid_t ptid2)
4225 {
4226 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
4227 && ptid1.tid == ptid2.tid);
4228 }
4229
4230 /* restore_inferior_ptid() will be used by the cleanup machinery
4231 to restore the inferior_ptid value saved in a call to
4232 save_inferior_ptid(). */
4233
4234 static void
4235 restore_inferior_ptid (void *arg)
4236 {
4237 ptid_t *saved_ptid_ptr = arg;
4238 inferior_ptid = *saved_ptid_ptr;
4239 xfree (arg);
4240 }
4241
4242 /* Save the value of inferior_ptid so that it may be restored by a
4243 later call to do_cleanups(). Returns the struct cleanup pointer
4244 needed for later doing the cleanup. */
4245
4246 struct cleanup *
4247 save_inferior_ptid (void)
4248 {
4249 ptid_t *saved_ptid_ptr;
4250
4251 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
4252 *saved_ptid_ptr = inferior_ptid;
4253 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
4254 }
4255
4256 \f
4257 static void
4258 build_infrun (void)
4259 {
4260 stop_registers = xmalloc (REGISTER_BYTES);
4261 }
4262
4263 void
4264 _initialize_infrun (void)
4265 {
4266 register int i;
4267 register int numsigs;
4268 struct cmd_list_element *c;
4269
4270 build_infrun ();
4271
4272 register_gdbarch_swap (&stop_registers, sizeof (stop_registers), NULL);
4273 register_gdbarch_swap (NULL, 0, build_infrun);
4274
4275 add_info ("signals", signals_info,
4276 "What debugger does when program gets various signals.\n\
4277 Specify a signal as argument to print info on that signal only.");
4278 add_info_alias ("handle", "signals", 0);
4279
4280 add_com ("handle", class_run, handle_command,
4281 concat ("Specify how to handle a signal.\n\
4282 Args are signals and actions to apply to those signals.\n\
4283 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4284 from 1-15 are allowed for compatibility with old versions of GDB.\n\
4285 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4286 The special arg \"all\" is recognized to mean all signals except those\n\
4287 used by the debugger, typically SIGTRAP and SIGINT.\n",
4288 "Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
4289 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
4290 Stop means reenter debugger if this signal happens (implies print).\n\
4291 Print means print a message if this signal happens.\n\
4292 Pass means let program see this signal; otherwise program doesn't know.\n\
4293 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4294 Pass and Stop may be combined.", NULL));
4295 if (xdb_commands)
4296 {
4297 add_com ("lz", class_info, signals_info,
4298 "What debugger does when program gets various signals.\n\
4299 Specify a signal as argument to print info on that signal only.");
4300 add_com ("z", class_run, xdb_handle_command,
4301 concat ("Specify how to handle a signal.\n\
4302 Args are signals and actions to apply to those signals.\n\
4303 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4304 from 1-15 are allowed for compatibility with old versions of GDB.\n\
4305 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4306 The special arg \"all\" is recognized to mean all signals except those\n\
4307 used by the debugger, typically SIGTRAP and SIGINT.\n",
4308 "Recognized actions include \"s\" (toggles between stop and nostop), \n\
4309 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4310 nopass), \"Q\" (noprint)\n\
4311 Stop means reenter debugger if this signal happens (implies print).\n\
4312 Print means print a message if this signal happens.\n\
4313 Pass means let program see this signal; otherwise program doesn't know.\n\
4314 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4315 Pass and Stop may be combined.", NULL));
4316 }
4317
4318 if (!dbx_commands)
4319 stop_command = add_cmd ("stop", class_obscure, not_just_help_class_command,
4320 "There is no `stop' command, but you can set a hook on `stop'.\n\
4321 This allows you to set a list of commands to be run each time execution\n\
4322 of the program stops.", &cmdlist);
4323
4324 numsigs = (int) TARGET_SIGNAL_LAST;
4325 signal_stop = (unsigned char *)
4326 xmalloc (sizeof (signal_stop[0]) * numsigs);
4327 signal_print = (unsigned char *)
4328 xmalloc (sizeof (signal_print[0]) * numsigs);
4329 signal_program = (unsigned char *)
4330 xmalloc (sizeof (signal_program[0]) * numsigs);
4331 for (i = 0; i < numsigs; i++)
4332 {
4333 signal_stop[i] = 1;
4334 signal_print[i] = 1;
4335 signal_program[i] = 1;
4336 }
4337
4338 /* Signals caused by debugger's own actions
4339 should not be given to the program afterwards. */
4340 signal_program[TARGET_SIGNAL_TRAP] = 0;
4341 signal_program[TARGET_SIGNAL_INT] = 0;
4342
4343 /* Signals that are not errors should not normally enter the debugger. */
4344 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4345 signal_print[TARGET_SIGNAL_ALRM] = 0;
4346 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4347 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4348 signal_stop[TARGET_SIGNAL_PROF] = 0;
4349 signal_print[TARGET_SIGNAL_PROF] = 0;
4350 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4351 signal_print[TARGET_SIGNAL_CHLD] = 0;
4352 signal_stop[TARGET_SIGNAL_IO] = 0;
4353 signal_print[TARGET_SIGNAL_IO] = 0;
4354 signal_stop[TARGET_SIGNAL_POLL] = 0;
4355 signal_print[TARGET_SIGNAL_POLL] = 0;
4356 signal_stop[TARGET_SIGNAL_URG] = 0;
4357 signal_print[TARGET_SIGNAL_URG] = 0;
4358 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4359 signal_print[TARGET_SIGNAL_WINCH] = 0;
4360
4361 /* These signals are used internally by user-level thread
4362 implementations. (See signal(5) on Solaris.) Like the above
4363 signals, a healthy program receives and handles them as part of
4364 its normal operation. */
4365 signal_stop[TARGET_SIGNAL_LWP] = 0;
4366 signal_print[TARGET_SIGNAL_LWP] = 0;
4367 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4368 signal_print[TARGET_SIGNAL_WAITING] = 0;
4369 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4370 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4371
4372 #ifdef SOLIB_ADD
4373 add_show_from_set
4374 (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger,
4375 (char *) &stop_on_solib_events,
4376 "Set stopping for shared library events.\n\
4377 If nonzero, gdb will give control to the user when the dynamic linker\n\
4378 notifies gdb of shared library events. The most common event of interest\n\
4379 to the user would be loading/unloading of a new library.\n",
4380 &setlist),
4381 &showlist);
4382 #endif
4383
4384 c = add_set_enum_cmd ("follow-fork-mode",
4385 class_run,
4386 follow_fork_mode_kind_names,
4387 &follow_fork_mode_string,
4388 /* ??rehrauer: The "both" option is broken, by what may be a 10.20
4389 kernel problem. It's also not terribly useful without a GUI to
4390 help the user drive two debuggers. So for now, I'm disabling
4391 the "both" option. */
4392 /* "Set debugger response to a program call of fork \
4393 or vfork.\n\
4394 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4395 parent - the original process is debugged after a fork\n\
4396 child - the new process is debugged after a fork\n\
4397 both - both the parent and child are debugged after a fork\n\
4398 ask - the debugger will ask for one of the above choices\n\
4399 For \"both\", another copy of the debugger will be started to follow\n\
4400 the new child process. The original debugger will continue to follow\n\
4401 the original parent process. To distinguish their prompts, the\n\
4402 debugger copy's prompt will be changed.\n\
4403 For \"parent\" or \"child\", the unfollowed process will run free.\n\
4404 By default, the debugger will follow the parent process.",
4405 */
4406 "Set debugger response to a program call of fork \
4407 or vfork.\n\
4408 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4409 parent - the original process is debugged after a fork\n\
4410 child - the new process is debugged after a fork\n\
4411 ask - the debugger will ask for one of the above choices\n\
4412 For \"parent\" or \"child\", the unfollowed process will run free.\n\
4413 By default, the debugger will follow the parent process.",
4414 &setlist);
4415 /* c->function.sfunc = ; */
4416 add_show_from_set (c, &showlist);
4417
4418 c = add_set_enum_cmd ("scheduler-locking", class_run,
4419 scheduler_enums, /* array of string names */
4420 &scheduler_mode, /* current mode */
4421 "Set mode for locking scheduler during execution.\n\
4422 off == no locking (threads may preempt at any time)\n\
4423 on == full locking (no thread except the current thread may run)\n\
4424 step == scheduler locked during every single-step operation.\n\
4425 In this mode, no other thread may run during a step command.\n\
4426 Other threads may run while stepping over a function call ('next').",
4427 &setlist);
4428
4429 c->function.sfunc = set_schedlock_func; /* traps on target vector */
4430 add_show_from_set (c, &showlist);
4431
4432 c = add_set_cmd ("step-mode", class_run,
4433 var_boolean, (char*) &step_stop_if_no_debug,
4434 "Set mode of the step operation. When set, doing a step over a\n\
4435 function without debug line information will stop at the first\n\
4436 instruction of that function. Otherwise, the function is skipped and\n\
4437 the step command stops at a different source line.",
4438 &setlist);
4439 add_show_from_set (c, &showlist);
4440
4441 /* ptid initializations */
4442 null_ptid = ptid_build (0, 0, 0);
4443 minus_one_ptid = ptid_build (-1, 0, 0);
4444 inferior_ptid = null_ptid;
4445 target_last_wait_ptid = minus_one_ptid;
4446 }
This page took 0.118521 seconds and 4 git commands to generate.