2011-10-06 Justin Lebar <justin.lebar@gmail.com>
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48 #include "dictionary.h"
49 #include "block.h"
50 #include "gdb_assert.h"
51 #include "mi/mi-common.h"
52 #include "event-top.h"
53 #include "record.h"
54 #include "inline-frame.h"
55 #include "jit.h"
56 #include "tracepoint.h"
57 #include "continuations.h"
58 #include "interps.h"
59 #include "skip.h"
60
61 /* Prototypes for local functions */
62
63 static void signals_info (char *, int);
64
65 static void handle_command (char *, int);
66
67 static void sig_print_info (enum target_signal);
68
69 static void sig_print_header (void);
70
71 static void resume_cleanups (void *);
72
73 static int hook_stop_stub (void *);
74
75 static int restore_selected_frame (void *);
76
77 static int follow_fork (void);
78
79 static void set_schedlock_func (char *args, int from_tty,
80 struct cmd_list_element *c);
81
82 static int currently_stepping (struct thread_info *tp);
83
84 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
85 void *data);
86
87 static void xdb_handle_command (char *args, int from_tty);
88
89 static int prepare_to_proceed (int);
90
91 static void print_exited_reason (int exitstatus);
92
93 static void print_signal_exited_reason (enum target_signal siggnal);
94
95 static void print_no_history_reason (void);
96
97 static void print_signal_received_reason (enum target_signal siggnal);
98
99 static void print_end_stepping_range_reason (void);
100
101 void _initialize_infrun (void);
102
103 void nullify_last_target_wait_ptid (void);
104
105 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
106
107 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
108
109 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
110
111 /* When set, stop the 'step' command if we enter a function which has
112 no line number information. The normal behavior is that we step
113 over such function. */
114 int step_stop_if_no_debug = 0;
115 static void
116 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
117 struct cmd_list_element *c, const char *value)
118 {
119 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
120 }
121
122 /* In asynchronous mode, but simulating synchronous execution. */
123
124 int sync_execution = 0;
125
126 /* wait_for_inferior and normal_stop use this to notify the user
127 when the inferior stopped in a different thread than it had been
128 running in. */
129
130 static ptid_t previous_inferior_ptid;
131
132 /* Default behavior is to detach newly forked processes (legacy). */
133 int detach_fork = 1;
134
135 int debug_displaced = 0;
136 static void
137 show_debug_displaced (struct ui_file *file, int from_tty,
138 struct cmd_list_element *c, const char *value)
139 {
140 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
141 }
142
143 int debug_infrun = 0;
144 static void
145 show_debug_infrun (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147 {
148 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
149 }
150
151
152 /* Support for disabling address space randomization. */
153
154 int disable_randomization = 1;
155
156 static void
157 show_disable_randomization (struct ui_file *file, int from_tty,
158 struct cmd_list_element *c, const char *value)
159 {
160 if (target_supports_disable_randomization ())
161 fprintf_filtered (file,
162 _("Disabling randomization of debuggee's "
163 "virtual address space is %s.\n"),
164 value);
165 else
166 fputs_filtered (_("Disabling randomization of debuggee's "
167 "virtual address space is unsupported on\n"
168 "this platform.\n"), file);
169 }
170
171 static void
172 set_disable_randomization (char *args, int from_tty,
173 struct cmd_list_element *c)
174 {
175 if (!target_supports_disable_randomization ())
176 error (_("Disabling randomization of debuggee's "
177 "virtual address space is unsupported on\n"
178 "this platform."));
179 }
180
181
182 /* If the program uses ELF-style shared libraries, then calls to
183 functions in shared libraries go through stubs, which live in a
184 table called the PLT (Procedure Linkage Table). The first time the
185 function is called, the stub sends control to the dynamic linker,
186 which looks up the function's real address, patches the stub so
187 that future calls will go directly to the function, and then passes
188 control to the function.
189
190 If we are stepping at the source level, we don't want to see any of
191 this --- we just want to skip over the stub and the dynamic linker.
192 The simple approach is to single-step until control leaves the
193 dynamic linker.
194
195 However, on some systems (e.g., Red Hat's 5.2 distribution) the
196 dynamic linker calls functions in the shared C library, so you
197 can't tell from the PC alone whether the dynamic linker is still
198 running. In this case, we use a step-resume breakpoint to get us
199 past the dynamic linker, as if we were using "next" to step over a
200 function call.
201
202 in_solib_dynsym_resolve_code() says whether we're in the dynamic
203 linker code or not. Normally, this means we single-step. However,
204 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
205 address where we can place a step-resume breakpoint to get past the
206 linker's symbol resolution function.
207
208 in_solib_dynsym_resolve_code() can generally be implemented in a
209 pretty portable way, by comparing the PC against the address ranges
210 of the dynamic linker's sections.
211
212 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
213 it depends on internal details of the dynamic linker. It's usually
214 not too hard to figure out where to put a breakpoint, but it
215 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
216 sanity checking. If it can't figure things out, returning zero and
217 getting the (possibly confusing) stepping behavior is better than
218 signalling an error, which will obscure the change in the
219 inferior's state. */
220
221 /* This function returns TRUE if pc is the address of an instruction
222 that lies within the dynamic linker (such as the event hook, or the
223 dld itself).
224
225 This function must be used only when a dynamic linker event has
226 been caught, and the inferior is being stepped out of the hook, or
227 undefined results are guaranteed. */
228
229 #ifndef SOLIB_IN_DYNAMIC_LINKER
230 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
231 #endif
232
233 /* "Observer mode" is somewhat like a more extreme version of
234 non-stop, in which all GDB operations that might affect the
235 target's execution have been disabled. */
236
237 static int non_stop_1 = 0;
238
239 int observer_mode = 0;
240 static int observer_mode_1 = 0;
241
242 static void
243 set_observer_mode (char *args, int from_tty,
244 struct cmd_list_element *c)
245 {
246 extern int pagination_enabled;
247
248 if (target_has_execution)
249 {
250 observer_mode_1 = observer_mode;
251 error (_("Cannot change this setting while the inferior is running."));
252 }
253
254 observer_mode = observer_mode_1;
255
256 may_write_registers = !observer_mode;
257 may_write_memory = !observer_mode;
258 may_insert_breakpoints = !observer_mode;
259 may_insert_tracepoints = !observer_mode;
260 /* We can insert fast tracepoints in or out of observer mode,
261 but enable them if we're going into this mode. */
262 if (observer_mode)
263 may_insert_fast_tracepoints = 1;
264 may_stop = !observer_mode;
265 update_target_permissions ();
266
267 /* Going *into* observer mode we must force non-stop, then
268 going out we leave it that way. */
269 if (observer_mode)
270 {
271 target_async_permitted = 1;
272 pagination_enabled = 0;
273 non_stop = non_stop_1 = 1;
274 }
275
276 if (from_tty)
277 printf_filtered (_("Observer mode is now %s.\n"),
278 (observer_mode ? "on" : "off"));
279 }
280
281 static void
282 show_observer_mode (struct ui_file *file, int from_tty,
283 struct cmd_list_element *c, const char *value)
284 {
285 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
286 }
287
288 /* This updates the value of observer mode based on changes in
289 permissions. Note that we are deliberately ignoring the values of
290 may-write-registers and may-write-memory, since the user may have
291 reason to enable these during a session, for instance to turn on a
292 debugging-related global. */
293
294 void
295 update_observer_mode (void)
296 {
297 int newval;
298
299 newval = (!may_insert_breakpoints
300 && !may_insert_tracepoints
301 && may_insert_fast_tracepoints
302 && !may_stop
303 && non_stop);
304
305 /* Let the user know if things change. */
306 if (newval != observer_mode)
307 printf_filtered (_("Observer mode is now %s.\n"),
308 (newval ? "on" : "off"));
309
310 observer_mode = observer_mode_1 = newval;
311 }
312
313 /* Tables of how to react to signals; the user sets them. */
314
315 static unsigned char *signal_stop;
316 static unsigned char *signal_print;
317 static unsigned char *signal_program;
318
319 /* Table of signals that the target may silently handle.
320 This is automatically determined from the flags above,
321 and simply cached here. */
322 static unsigned char *signal_pass;
323
324 #define SET_SIGS(nsigs,sigs,flags) \
325 do { \
326 int signum = (nsigs); \
327 while (signum-- > 0) \
328 if ((sigs)[signum]) \
329 (flags)[signum] = 1; \
330 } while (0)
331
332 #define UNSET_SIGS(nsigs,sigs,flags) \
333 do { \
334 int signum = (nsigs); \
335 while (signum-- > 0) \
336 if ((sigs)[signum]) \
337 (flags)[signum] = 0; \
338 } while (0)
339
340 /* Value to pass to target_resume() to cause all threads to resume. */
341
342 #define RESUME_ALL minus_one_ptid
343
344 /* Command list pointer for the "stop" placeholder. */
345
346 static struct cmd_list_element *stop_command;
347
348 /* Function inferior was in as of last step command. */
349
350 static struct symbol *step_start_function;
351
352 /* Nonzero if we want to give control to the user when we're notified
353 of shared library events by the dynamic linker. */
354 int stop_on_solib_events;
355 static void
356 show_stop_on_solib_events (struct ui_file *file, int from_tty,
357 struct cmd_list_element *c, const char *value)
358 {
359 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
360 value);
361 }
362
363 /* Nonzero means expecting a trace trap
364 and should stop the inferior and return silently when it happens. */
365
366 int stop_after_trap;
367
368 /* Save register contents here when executing a "finish" command or are
369 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
370 Thus this contains the return value from the called function (assuming
371 values are returned in a register). */
372
373 struct regcache *stop_registers;
374
375 /* Nonzero after stop if current stack frame should be printed. */
376
377 static int stop_print_frame;
378
379 /* This is a cached copy of the pid/waitstatus of the last event
380 returned by target_wait()/deprecated_target_wait_hook(). This
381 information is returned by get_last_target_status(). */
382 static ptid_t target_last_wait_ptid;
383 static struct target_waitstatus target_last_waitstatus;
384
385 static void context_switch (ptid_t ptid);
386
387 void init_thread_stepping_state (struct thread_info *tss);
388
389 void init_infwait_state (void);
390
391 static const char follow_fork_mode_child[] = "child";
392 static const char follow_fork_mode_parent[] = "parent";
393
394 static const char *follow_fork_mode_kind_names[] = {
395 follow_fork_mode_child,
396 follow_fork_mode_parent,
397 NULL
398 };
399
400 static const char *follow_fork_mode_string = follow_fork_mode_parent;
401 static void
402 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
403 struct cmd_list_element *c, const char *value)
404 {
405 fprintf_filtered (file,
406 _("Debugger response to a program "
407 "call of fork or vfork is \"%s\".\n"),
408 value);
409 }
410 \f
411
412 /* Tell the target to follow the fork we're stopped at. Returns true
413 if the inferior should be resumed; false, if the target for some
414 reason decided it's best not to resume. */
415
416 static int
417 follow_fork (void)
418 {
419 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
420 int should_resume = 1;
421 struct thread_info *tp;
422
423 /* Copy user stepping state to the new inferior thread. FIXME: the
424 followed fork child thread should have a copy of most of the
425 parent thread structure's run control related fields, not just these.
426 Initialized to avoid "may be used uninitialized" warnings from gcc. */
427 struct breakpoint *step_resume_breakpoint = NULL;
428 struct breakpoint *exception_resume_breakpoint = NULL;
429 CORE_ADDR step_range_start = 0;
430 CORE_ADDR step_range_end = 0;
431 struct frame_id step_frame_id = { 0 };
432
433 if (!non_stop)
434 {
435 ptid_t wait_ptid;
436 struct target_waitstatus wait_status;
437
438 /* Get the last target status returned by target_wait(). */
439 get_last_target_status (&wait_ptid, &wait_status);
440
441 /* If not stopped at a fork event, then there's nothing else to
442 do. */
443 if (wait_status.kind != TARGET_WAITKIND_FORKED
444 && wait_status.kind != TARGET_WAITKIND_VFORKED)
445 return 1;
446
447 /* Check if we switched over from WAIT_PTID, since the event was
448 reported. */
449 if (!ptid_equal (wait_ptid, minus_one_ptid)
450 && !ptid_equal (inferior_ptid, wait_ptid))
451 {
452 /* We did. Switch back to WAIT_PTID thread, to tell the
453 target to follow it (in either direction). We'll
454 afterwards refuse to resume, and inform the user what
455 happened. */
456 switch_to_thread (wait_ptid);
457 should_resume = 0;
458 }
459 }
460
461 tp = inferior_thread ();
462
463 /* If there were any forks/vforks that were caught and are now to be
464 followed, then do so now. */
465 switch (tp->pending_follow.kind)
466 {
467 case TARGET_WAITKIND_FORKED:
468 case TARGET_WAITKIND_VFORKED:
469 {
470 ptid_t parent, child;
471
472 /* If the user did a next/step, etc, over a fork call,
473 preserve the stepping state in the fork child. */
474 if (follow_child && should_resume)
475 {
476 step_resume_breakpoint = clone_momentary_breakpoint
477 (tp->control.step_resume_breakpoint);
478 step_range_start = tp->control.step_range_start;
479 step_range_end = tp->control.step_range_end;
480 step_frame_id = tp->control.step_frame_id;
481 exception_resume_breakpoint
482 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
483
484 /* For now, delete the parent's sr breakpoint, otherwise,
485 parent/child sr breakpoints are considered duplicates,
486 and the child version will not be installed. Remove
487 this when the breakpoints module becomes aware of
488 inferiors and address spaces. */
489 delete_step_resume_breakpoint (tp);
490 tp->control.step_range_start = 0;
491 tp->control.step_range_end = 0;
492 tp->control.step_frame_id = null_frame_id;
493 delete_exception_resume_breakpoint (tp);
494 }
495
496 parent = inferior_ptid;
497 child = tp->pending_follow.value.related_pid;
498
499 /* Tell the target to do whatever is necessary to follow
500 either parent or child. */
501 if (target_follow_fork (follow_child))
502 {
503 /* Target refused to follow, or there's some other reason
504 we shouldn't resume. */
505 should_resume = 0;
506 }
507 else
508 {
509 /* This pending follow fork event is now handled, one way
510 or another. The previous selected thread may be gone
511 from the lists by now, but if it is still around, need
512 to clear the pending follow request. */
513 tp = find_thread_ptid (parent);
514 if (tp)
515 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
516
517 /* This makes sure we don't try to apply the "Switched
518 over from WAIT_PID" logic above. */
519 nullify_last_target_wait_ptid ();
520
521 /* If we followed the child, switch to it... */
522 if (follow_child)
523 {
524 switch_to_thread (child);
525
526 /* ... and preserve the stepping state, in case the
527 user was stepping over the fork call. */
528 if (should_resume)
529 {
530 tp = inferior_thread ();
531 tp->control.step_resume_breakpoint
532 = step_resume_breakpoint;
533 tp->control.step_range_start = step_range_start;
534 tp->control.step_range_end = step_range_end;
535 tp->control.step_frame_id = step_frame_id;
536 tp->control.exception_resume_breakpoint
537 = exception_resume_breakpoint;
538 }
539 else
540 {
541 /* If we get here, it was because we're trying to
542 resume from a fork catchpoint, but, the user
543 has switched threads away from the thread that
544 forked. In that case, the resume command
545 issued is most likely not applicable to the
546 child, so just warn, and refuse to resume. */
547 warning (_("Not resuming: switched threads "
548 "before following fork child.\n"));
549 }
550
551 /* Reset breakpoints in the child as appropriate. */
552 follow_inferior_reset_breakpoints ();
553 }
554 else
555 switch_to_thread (parent);
556 }
557 }
558 break;
559 case TARGET_WAITKIND_SPURIOUS:
560 /* Nothing to follow. */
561 break;
562 default:
563 internal_error (__FILE__, __LINE__,
564 "Unexpected pending_follow.kind %d\n",
565 tp->pending_follow.kind);
566 break;
567 }
568
569 return should_resume;
570 }
571
572 void
573 follow_inferior_reset_breakpoints (void)
574 {
575 struct thread_info *tp = inferior_thread ();
576
577 /* Was there a step_resume breakpoint? (There was if the user
578 did a "next" at the fork() call.) If so, explicitly reset its
579 thread number.
580
581 step_resumes are a form of bp that are made to be per-thread.
582 Since we created the step_resume bp when the parent process
583 was being debugged, and now are switching to the child process,
584 from the breakpoint package's viewpoint, that's a switch of
585 "threads". We must update the bp's notion of which thread
586 it is for, or it'll be ignored when it triggers. */
587
588 if (tp->control.step_resume_breakpoint)
589 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
590
591 if (tp->control.exception_resume_breakpoint)
592 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
593
594 /* Reinsert all breakpoints in the child. The user may have set
595 breakpoints after catching the fork, in which case those
596 were never set in the child, but only in the parent. This makes
597 sure the inserted breakpoints match the breakpoint list. */
598
599 breakpoint_re_set ();
600 insert_breakpoints ();
601 }
602
603 /* The child has exited or execed: resume threads of the parent the
604 user wanted to be executing. */
605
606 static int
607 proceed_after_vfork_done (struct thread_info *thread,
608 void *arg)
609 {
610 int pid = * (int *) arg;
611
612 if (ptid_get_pid (thread->ptid) == pid
613 && is_running (thread->ptid)
614 && !is_executing (thread->ptid)
615 && !thread->stop_requested
616 && thread->suspend.stop_signal == TARGET_SIGNAL_0)
617 {
618 if (debug_infrun)
619 fprintf_unfiltered (gdb_stdlog,
620 "infrun: resuming vfork parent thread %s\n",
621 target_pid_to_str (thread->ptid));
622
623 switch_to_thread (thread->ptid);
624 clear_proceed_status ();
625 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
626 }
627
628 return 0;
629 }
630
631 /* Called whenever we notice an exec or exit event, to handle
632 detaching or resuming a vfork parent. */
633
634 static void
635 handle_vfork_child_exec_or_exit (int exec)
636 {
637 struct inferior *inf = current_inferior ();
638
639 if (inf->vfork_parent)
640 {
641 int resume_parent = -1;
642
643 /* This exec or exit marks the end of the shared memory region
644 between the parent and the child. If the user wanted to
645 detach from the parent, now is the time. */
646
647 if (inf->vfork_parent->pending_detach)
648 {
649 struct thread_info *tp;
650 struct cleanup *old_chain;
651 struct program_space *pspace;
652 struct address_space *aspace;
653
654 /* follow-fork child, detach-on-fork on. */
655
656 old_chain = make_cleanup_restore_current_thread ();
657
658 /* We're letting loose of the parent. */
659 tp = any_live_thread_of_process (inf->vfork_parent->pid);
660 switch_to_thread (tp->ptid);
661
662 /* We're about to detach from the parent, which implicitly
663 removes breakpoints from its address space. There's a
664 catch here: we want to reuse the spaces for the child,
665 but, parent/child are still sharing the pspace at this
666 point, although the exec in reality makes the kernel give
667 the child a fresh set of new pages. The problem here is
668 that the breakpoints module being unaware of this, would
669 likely chose the child process to write to the parent
670 address space. Swapping the child temporarily away from
671 the spaces has the desired effect. Yes, this is "sort
672 of" a hack. */
673
674 pspace = inf->pspace;
675 aspace = inf->aspace;
676 inf->aspace = NULL;
677 inf->pspace = NULL;
678
679 if (debug_infrun || info_verbose)
680 {
681 target_terminal_ours ();
682
683 if (exec)
684 fprintf_filtered (gdb_stdlog,
685 "Detaching vfork parent process "
686 "%d after child exec.\n",
687 inf->vfork_parent->pid);
688 else
689 fprintf_filtered (gdb_stdlog,
690 "Detaching vfork parent process "
691 "%d after child exit.\n",
692 inf->vfork_parent->pid);
693 }
694
695 target_detach (NULL, 0);
696
697 /* Put it back. */
698 inf->pspace = pspace;
699 inf->aspace = aspace;
700
701 do_cleanups (old_chain);
702 }
703 else if (exec)
704 {
705 /* We're staying attached to the parent, so, really give the
706 child a new address space. */
707 inf->pspace = add_program_space (maybe_new_address_space ());
708 inf->aspace = inf->pspace->aspace;
709 inf->removable = 1;
710 set_current_program_space (inf->pspace);
711
712 resume_parent = inf->vfork_parent->pid;
713
714 /* Break the bonds. */
715 inf->vfork_parent->vfork_child = NULL;
716 }
717 else
718 {
719 struct cleanup *old_chain;
720 struct program_space *pspace;
721
722 /* If this is a vfork child exiting, then the pspace and
723 aspaces were shared with the parent. Since we're
724 reporting the process exit, we'll be mourning all that is
725 found in the address space, and switching to null_ptid,
726 preparing to start a new inferior. But, since we don't
727 want to clobber the parent's address/program spaces, we
728 go ahead and create a new one for this exiting
729 inferior. */
730
731 /* Switch to null_ptid, so that clone_program_space doesn't want
732 to read the selected frame of a dead process. */
733 old_chain = save_inferior_ptid ();
734 inferior_ptid = null_ptid;
735
736 /* This inferior is dead, so avoid giving the breakpoints
737 module the option to write through to it (cloning a
738 program space resets breakpoints). */
739 inf->aspace = NULL;
740 inf->pspace = NULL;
741 pspace = add_program_space (maybe_new_address_space ());
742 set_current_program_space (pspace);
743 inf->removable = 1;
744 clone_program_space (pspace, inf->vfork_parent->pspace);
745 inf->pspace = pspace;
746 inf->aspace = pspace->aspace;
747
748 /* Put back inferior_ptid. We'll continue mourning this
749 inferior. */
750 do_cleanups (old_chain);
751
752 resume_parent = inf->vfork_parent->pid;
753 /* Break the bonds. */
754 inf->vfork_parent->vfork_child = NULL;
755 }
756
757 inf->vfork_parent = NULL;
758
759 gdb_assert (current_program_space == inf->pspace);
760
761 if (non_stop && resume_parent != -1)
762 {
763 /* If the user wanted the parent to be running, let it go
764 free now. */
765 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
766
767 if (debug_infrun)
768 fprintf_unfiltered (gdb_stdlog,
769 "infrun: resuming vfork parent process %d\n",
770 resume_parent);
771
772 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
773
774 do_cleanups (old_chain);
775 }
776 }
777 }
778
779 /* Enum strings for "set|show displaced-stepping". */
780
781 static const char follow_exec_mode_new[] = "new";
782 static const char follow_exec_mode_same[] = "same";
783 static const char *follow_exec_mode_names[] =
784 {
785 follow_exec_mode_new,
786 follow_exec_mode_same,
787 NULL,
788 };
789
790 static const char *follow_exec_mode_string = follow_exec_mode_same;
791 static void
792 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
793 struct cmd_list_element *c, const char *value)
794 {
795 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
796 }
797
798 /* EXECD_PATHNAME is assumed to be non-NULL. */
799
800 static void
801 follow_exec (ptid_t pid, char *execd_pathname)
802 {
803 struct thread_info *th = inferior_thread ();
804 struct inferior *inf = current_inferior ();
805
806 /* This is an exec event that we actually wish to pay attention to.
807 Refresh our symbol table to the newly exec'd program, remove any
808 momentary bp's, etc.
809
810 If there are breakpoints, they aren't really inserted now,
811 since the exec() transformed our inferior into a fresh set
812 of instructions.
813
814 We want to preserve symbolic breakpoints on the list, since
815 we have hopes that they can be reset after the new a.out's
816 symbol table is read.
817
818 However, any "raw" breakpoints must be removed from the list
819 (e.g., the solib bp's), since their address is probably invalid
820 now.
821
822 And, we DON'T want to call delete_breakpoints() here, since
823 that may write the bp's "shadow contents" (the instruction
824 value that was overwritten witha TRAP instruction). Since
825 we now have a new a.out, those shadow contents aren't valid. */
826
827 mark_breakpoints_out ();
828
829 update_breakpoints_after_exec ();
830
831 /* If there was one, it's gone now. We cannot truly step-to-next
832 statement through an exec(). */
833 th->control.step_resume_breakpoint = NULL;
834 th->control.exception_resume_breakpoint = NULL;
835 th->control.step_range_start = 0;
836 th->control.step_range_end = 0;
837
838 /* The target reports the exec event to the main thread, even if
839 some other thread does the exec, and even if the main thread was
840 already stopped --- if debugging in non-stop mode, it's possible
841 the user had the main thread held stopped in the previous image
842 --- release it now. This is the same behavior as step-over-exec
843 with scheduler-locking on in all-stop mode. */
844 th->stop_requested = 0;
845
846 /* What is this a.out's name? */
847 printf_unfiltered (_("%s is executing new program: %s\n"),
848 target_pid_to_str (inferior_ptid),
849 execd_pathname);
850
851 /* We've followed the inferior through an exec. Therefore, the
852 inferior has essentially been killed & reborn. */
853
854 gdb_flush (gdb_stdout);
855
856 breakpoint_init_inferior (inf_execd);
857
858 if (gdb_sysroot && *gdb_sysroot)
859 {
860 char *name = alloca (strlen (gdb_sysroot)
861 + strlen (execd_pathname)
862 + 1);
863
864 strcpy (name, gdb_sysroot);
865 strcat (name, execd_pathname);
866 execd_pathname = name;
867 }
868
869 /* Reset the shared library package. This ensures that we get a
870 shlib event when the child reaches "_start", at which point the
871 dld will have had a chance to initialize the child. */
872 /* Also, loading a symbol file below may trigger symbol lookups, and
873 we don't want those to be satisfied by the libraries of the
874 previous incarnation of this process. */
875 no_shared_libraries (NULL, 0);
876
877 if (follow_exec_mode_string == follow_exec_mode_new)
878 {
879 struct program_space *pspace;
880
881 /* The user wants to keep the old inferior and program spaces
882 around. Create a new fresh one, and switch to it. */
883
884 inf = add_inferior (current_inferior ()->pid);
885 pspace = add_program_space (maybe_new_address_space ());
886 inf->pspace = pspace;
887 inf->aspace = pspace->aspace;
888
889 exit_inferior_num_silent (current_inferior ()->num);
890
891 set_current_inferior (inf);
892 set_current_program_space (pspace);
893 }
894
895 gdb_assert (current_program_space == inf->pspace);
896
897 /* That a.out is now the one to use. */
898 exec_file_attach (execd_pathname, 0);
899
900 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
901 (Position Independent Executable) main symbol file will get applied by
902 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
903 the breakpoints with the zero displacement. */
904
905 symbol_file_add (execd_pathname, SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET,
906 NULL, 0);
907
908 set_initial_language ();
909
910 #ifdef SOLIB_CREATE_INFERIOR_HOOK
911 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
912 #else
913 solib_create_inferior_hook (0);
914 #endif
915
916 jit_inferior_created_hook ();
917
918 breakpoint_re_set ();
919
920 /* Reinsert all breakpoints. (Those which were symbolic have
921 been reset to the proper address in the new a.out, thanks
922 to symbol_file_command...). */
923 insert_breakpoints ();
924
925 /* The next resume of this inferior should bring it to the shlib
926 startup breakpoints. (If the user had also set bp's on
927 "main" from the old (parent) process, then they'll auto-
928 matically get reset there in the new process.). */
929 }
930
931 /* Non-zero if we just simulating a single-step. This is needed
932 because we cannot remove the breakpoints in the inferior process
933 until after the `wait' in `wait_for_inferior'. */
934 static int singlestep_breakpoints_inserted_p = 0;
935
936 /* The thread we inserted single-step breakpoints for. */
937 static ptid_t singlestep_ptid;
938
939 /* PC when we started this single-step. */
940 static CORE_ADDR singlestep_pc;
941
942 /* If another thread hit the singlestep breakpoint, we save the original
943 thread here so that we can resume single-stepping it later. */
944 static ptid_t saved_singlestep_ptid;
945 static int stepping_past_singlestep_breakpoint;
946
947 /* If not equal to null_ptid, this means that after stepping over breakpoint
948 is finished, we need to switch to deferred_step_ptid, and step it.
949
950 The use case is when one thread has hit a breakpoint, and then the user
951 has switched to another thread and issued 'step'. We need to step over
952 breakpoint in the thread which hit the breakpoint, but then continue
953 stepping the thread user has selected. */
954 static ptid_t deferred_step_ptid;
955 \f
956 /* Displaced stepping. */
957
958 /* In non-stop debugging mode, we must take special care to manage
959 breakpoints properly; in particular, the traditional strategy for
960 stepping a thread past a breakpoint it has hit is unsuitable.
961 'Displaced stepping' is a tactic for stepping one thread past a
962 breakpoint it has hit while ensuring that other threads running
963 concurrently will hit the breakpoint as they should.
964
965 The traditional way to step a thread T off a breakpoint in a
966 multi-threaded program in all-stop mode is as follows:
967
968 a0) Initially, all threads are stopped, and breakpoints are not
969 inserted.
970 a1) We single-step T, leaving breakpoints uninserted.
971 a2) We insert breakpoints, and resume all threads.
972
973 In non-stop debugging, however, this strategy is unsuitable: we
974 don't want to have to stop all threads in the system in order to
975 continue or step T past a breakpoint. Instead, we use displaced
976 stepping:
977
978 n0) Initially, T is stopped, other threads are running, and
979 breakpoints are inserted.
980 n1) We copy the instruction "under" the breakpoint to a separate
981 location, outside the main code stream, making any adjustments
982 to the instruction, register, and memory state as directed by
983 T's architecture.
984 n2) We single-step T over the instruction at its new location.
985 n3) We adjust the resulting register and memory state as directed
986 by T's architecture. This includes resetting T's PC to point
987 back into the main instruction stream.
988 n4) We resume T.
989
990 This approach depends on the following gdbarch methods:
991
992 - gdbarch_max_insn_length and gdbarch_displaced_step_location
993 indicate where to copy the instruction, and how much space must
994 be reserved there. We use these in step n1.
995
996 - gdbarch_displaced_step_copy_insn copies a instruction to a new
997 address, and makes any necessary adjustments to the instruction,
998 register contents, and memory. We use this in step n1.
999
1000 - gdbarch_displaced_step_fixup adjusts registers and memory after
1001 we have successfuly single-stepped the instruction, to yield the
1002 same effect the instruction would have had if we had executed it
1003 at its original address. We use this in step n3.
1004
1005 - gdbarch_displaced_step_free_closure provides cleanup.
1006
1007 The gdbarch_displaced_step_copy_insn and
1008 gdbarch_displaced_step_fixup functions must be written so that
1009 copying an instruction with gdbarch_displaced_step_copy_insn,
1010 single-stepping across the copied instruction, and then applying
1011 gdbarch_displaced_insn_fixup should have the same effects on the
1012 thread's memory and registers as stepping the instruction in place
1013 would have. Exactly which responsibilities fall to the copy and
1014 which fall to the fixup is up to the author of those functions.
1015
1016 See the comments in gdbarch.sh for details.
1017
1018 Note that displaced stepping and software single-step cannot
1019 currently be used in combination, although with some care I think
1020 they could be made to. Software single-step works by placing
1021 breakpoints on all possible subsequent instructions; if the
1022 displaced instruction is a PC-relative jump, those breakpoints
1023 could fall in very strange places --- on pages that aren't
1024 executable, or at addresses that are not proper instruction
1025 boundaries. (We do generally let other threads run while we wait
1026 to hit the software single-step breakpoint, and they might
1027 encounter such a corrupted instruction.) One way to work around
1028 this would be to have gdbarch_displaced_step_copy_insn fully
1029 simulate the effect of PC-relative instructions (and return NULL)
1030 on architectures that use software single-stepping.
1031
1032 In non-stop mode, we can have independent and simultaneous step
1033 requests, so more than one thread may need to simultaneously step
1034 over a breakpoint. The current implementation assumes there is
1035 only one scratch space per process. In this case, we have to
1036 serialize access to the scratch space. If thread A wants to step
1037 over a breakpoint, but we are currently waiting for some other
1038 thread to complete a displaced step, we leave thread A stopped and
1039 place it in the displaced_step_request_queue. Whenever a displaced
1040 step finishes, we pick the next thread in the queue and start a new
1041 displaced step operation on it. See displaced_step_prepare and
1042 displaced_step_fixup for details. */
1043
1044 struct displaced_step_request
1045 {
1046 ptid_t ptid;
1047 struct displaced_step_request *next;
1048 };
1049
1050 /* Per-inferior displaced stepping state. */
1051 struct displaced_step_inferior_state
1052 {
1053 /* Pointer to next in linked list. */
1054 struct displaced_step_inferior_state *next;
1055
1056 /* The process this displaced step state refers to. */
1057 int pid;
1058
1059 /* A queue of pending displaced stepping requests. One entry per
1060 thread that needs to do a displaced step. */
1061 struct displaced_step_request *step_request_queue;
1062
1063 /* If this is not null_ptid, this is the thread carrying out a
1064 displaced single-step in process PID. This thread's state will
1065 require fixing up once it has completed its step. */
1066 ptid_t step_ptid;
1067
1068 /* The architecture the thread had when we stepped it. */
1069 struct gdbarch *step_gdbarch;
1070
1071 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1072 for post-step cleanup. */
1073 struct displaced_step_closure *step_closure;
1074
1075 /* The address of the original instruction, and the copy we
1076 made. */
1077 CORE_ADDR step_original, step_copy;
1078
1079 /* Saved contents of copy area. */
1080 gdb_byte *step_saved_copy;
1081 };
1082
1083 /* The list of states of processes involved in displaced stepping
1084 presently. */
1085 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1086
1087 /* Get the displaced stepping state of process PID. */
1088
1089 static struct displaced_step_inferior_state *
1090 get_displaced_stepping_state (int pid)
1091 {
1092 struct displaced_step_inferior_state *state;
1093
1094 for (state = displaced_step_inferior_states;
1095 state != NULL;
1096 state = state->next)
1097 if (state->pid == pid)
1098 return state;
1099
1100 return NULL;
1101 }
1102
1103 /* Add a new displaced stepping state for process PID to the displaced
1104 stepping state list, or return a pointer to an already existing
1105 entry, if it already exists. Never returns NULL. */
1106
1107 static struct displaced_step_inferior_state *
1108 add_displaced_stepping_state (int pid)
1109 {
1110 struct displaced_step_inferior_state *state;
1111
1112 for (state = displaced_step_inferior_states;
1113 state != NULL;
1114 state = state->next)
1115 if (state->pid == pid)
1116 return state;
1117
1118 state = xcalloc (1, sizeof (*state));
1119 state->pid = pid;
1120 state->next = displaced_step_inferior_states;
1121 displaced_step_inferior_states = state;
1122
1123 return state;
1124 }
1125
1126 /* If inferior is in displaced stepping, and ADDR equals to starting address
1127 of copy area, return corresponding displaced_step_closure. Otherwise,
1128 return NULL. */
1129
1130 struct displaced_step_closure*
1131 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1132 {
1133 struct displaced_step_inferior_state *displaced
1134 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1135
1136 /* If checking the mode of displaced instruction in copy area. */
1137 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1138 && (displaced->step_copy == addr))
1139 return displaced->step_closure;
1140
1141 return NULL;
1142 }
1143
1144 /* Remove the displaced stepping state of process PID. */
1145
1146 static void
1147 remove_displaced_stepping_state (int pid)
1148 {
1149 struct displaced_step_inferior_state *it, **prev_next_p;
1150
1151 gdb_assert (pid != 0);
1152
1153 it = displaced_step_inferior_states;
1154 prev_next_p = &displaced_step_inferior_states;
1155 while (it)
1156 {
1157 if (it->pid == pid)
1158 {
1159 *prev_next_p = it->next;
1160 xfree (it);
1161 return;
1162 }
1163
1164 prev_next_p = &it->next;
1165 it = *prev_next_p;
1166 }
1167 }
1168
1169 static void
1170 infrun_inferior_exit (struct inferior *inf)
1171 {
1172 remove_displaced_stepping_state (inf->pid);
1173 }
1174
1175 /* Enum strings for "set|show displaced-stepping". */
1176
1177 static const char can_use_displaced_stepping_auto[] = "auto";
1178 static const char can_use_displaced_stepping_on[] = "on";
1179 static const char can_use_displaced_stepping_off[] = "off";
1180 static const char *can_use_displaced_stepping_enum[] =
1181 {
1182 can_use_displaced_stepping_auto,
1183 can_use_displaced_stepping_on,
1184 can_use_displaced_stepping_off,
1185 NULL,
1186 };
1187
1188 /* If ON, and the architecture supports it, GDB will use displaced
1189 stepping to step over breakpoints. If OFF, or if the architecture
1190 doesn't support it, GDB will instead use the traditional
1191 hold-and-step approach. If AUTO (which is the default), GDB will
1192 decide which technique to use to step over breakpoints depending on
1193 which of all-stop or non-stop mode is active --- displaced stepping
1194 in non-stop mode; hold-and-step in all-stop mode. */
1195
1196 static const char *can_use_displaced_stepping =
1197 can_use_displaced_stepping_auto;
1198
1199 static void
1200 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1201 struct cmd_list_element *c,
1202 const char *value)
1203 {
1204 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
1205 fprintf_filtered (file,
1206 _("Debugger's willingness to use displaced stepping "
1207 "to step over breakpoints is %s (currently %s).\n"),
1208 value, non_stop ? "on" : "off");
1209 else
1210 fprintf_filtered (file,
1211 _("Debugger's willingness to use displaced stepping "
1212 "to step over breakpoints is %s.\n"), value);
1213 }
1214
1215 /* Return non-zero if displaced stepping can/should be used to step
1216 over breakpoints. */
1217
1218 static int
1219 use_displaced_stepping (struct gdbarch *gdbarch)
1220 {
1221 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
1222 && non_stop)
1223 || can_use_displaced_stepping == can_use_displaced_stepping_on)
1224 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1225 && !RECORD_IS_USED);
1226 }
1227
1228 /* Clean out any stray displaced stepping state. */
1229 static void
1230 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1231 {
1232 /* Indicate that there is no cleanup pending. */
1233 displaced->step_ptid = null_ptid;
1234
1235 if (displaced->step_closure)
1236 {
1237 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1238 displaced->step_closure);
1239 displaced->step_closure = NULL;
1240 }
1241 }
1242
1243 static void
1244 displaced_step_clear_cleanup (void *arg)
1245 {
1246 struct displaced_step_inferior_state *state = arg;
1247
1248 displaced_step_clear (state);
1249 }
1250
1251 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1252 void
1253 displaced_step_dump_bytes (struct ui_file *file,
1254 const gdb_byte *buf,
1255 size_t len)
1256 {
1257 int i;
1258
1259 for (i = 0; i < len; i++)
1260 fprintf_unfiltered (file, "%02x ", buf[i]);
1261 fputs_unfiltered ("\n", file);
1262 }
1263
1264 /* Prepare to single-step, using displaced stepping.
1265
1266 Note that we cannot use displaced stepping when we have a signal to
1267 deliver. If we have a signal to deliver and an instruction to step
1268 over, then after the step, there will be no indication from the
1269 target whether the thread entered a signal handler or ignored the
1270 signal and stepped over the instruction successfully --- both cases
1271 result in a simple SIGTRAP. In the first case we mustn't do a
1272 fixup, and in the second case we must --- but we can't tell which.
1273 Comments in the code for 'random signals' in handle_inferior_event
1274 explain how we handle this case instead.
1275
1276 Returns 1 if preparing was successful -- this thread is going to be
1277 stepped now; or 0 if displaced stepping this thread got queued. */
1278 static int
1279 displaced_step_prepare (ptid_t ptid)
1280 {
1281 struct cleanup *old_cleanups, *ignore_cleanups;
1282 struct regcache *regcache = get_thread_regcache (ptid);
1283 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1284 CORE_ADDR original, copy;
1285 ULONGEST len;
1286 struct displaced_step_closure *closure;
1287 struct displaced_step_inferior_state *displaced;
1288
1289 /* We should never reach this function if the architecture does not
1290 support displaced stepping. */
1291 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1292
1293 /* We have to displaced step one thread at a time, as we only have
1294 access to a single scratch space per inferior. */
1295
1296 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1297
1298 if (!ptid_equal (displaced->step_ptid, null_ptid))
1299 {
1300 /* Already waiting for a displaced step to finish. Defer this
1301 request and place in queue. */
1302 struct displaced_step_request *req, *new_req;
1303
1304 if (debug_displaced)
1305 fprintf_unfiltered (gdb_stdlog,
1306 "displaced: defering step of %s\n",
1307 target_pid_to_str (ptid));
1308
1309 new_req = xmalloc (sizeof (*new_req));
1310 new_req->ptid = ptid;
1311 new_req->next = NULL;
1312
1313 if (displaced->step_request_queue)
1314 {
1315 for (req = displaced->step_request_queue;
1316 req && req->next;
1317 req = req->next)
1318 ;
1319 req->next = new_req;
1320 }
1321 else
1322 displaced->step_request_queue = new_req;
1323
1324 return 0;
1325 }
1326 else
1327 {
1328 if (debug_displaced)
1329 fprintf_unfiltered (gdb_stdlog,
1330 "displaced: stepping %s now\n",
1331 target_pid_to_str (ptid));
1332 }
1333
1334 displaced_step_clear (displaced);
1335
1336 old_cleanups = save_inferior_ptid ();
1337 inferior_ptid = ptid;
1338
1339 original = regcache_read_pc (regcache);
1340
1341 copy = gdbarch_displaced_step_location (gdbarch);
1342 len = gdbarch_max_insn_length (gdbarch);
1343
1344 /* Save the original contents of the copy area. */
1345 displaced->step_saved_copy = xmalloc (len);
1346 ignore_cleanups = make_cleanup (free_current_contents,
1347 &displaced->step_saved_copy);
1348 read_memory (copy, displaced->step_saved_copy, len);
1349 if (debug_displaced)
1350 {
1351 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1352 paddress (gdbarch, copy));
1353 displaced_step_dump_bytes (gdb_stdlog,
1354 displaced->step_saved_copy,
1355 len);
1356 };
1357
1358 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1359 original, copy, regcache);
1360
1361 /* We don't support the fully-simulated case at present. */
1362 gdb_assert (closure);
1363
1364 /* Save the information we need to fix things up if the step
1365 succeeds. */
1366 displaced->step_ptid = ptid;
1367 displaced->step_gdbarch = gdbarch;
1368 displaced->step_closure = closure;
1369 displaced->step_original = original;
1370 displaced->step_copy = copy;
1371
1372 make_cleanup (displaced_step_clear_cleanup, displaced);
1373
1374 /* Resume execution at the copy. */
1375 regcache_write_pc (regcache, copy);
1376
1377 discard_cleanups (ignore_cleanups);
1378
1379 do_cleanups (old_cleanups);
1380
1381 if (debug_displaced)
1382 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1383 paddress (gdbarch, copy));
1384
1385 return 1;
1386 }
1387
1388 static void
1389 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1390 const gdb_byte *myaddr, int len)
1391 {
1392 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1393
1394 inferior_ptid = ptid;
1395 write_memory (memaddr, myaddr, len);
1396 do_cleanups (ptid_cleanup);
1397 }
1398
1399 /* Restore the contents of the copy area for thread PTID. */
1400
1401 static void
1402 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1403 ptid_t ptid)
1404 {
1405 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1406
1407 write_memory_ptid (ptid, displaced->step_copy,
1408 displaced->step_saved_copy, len);
1409 if (debug_displaced)
1410 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1411 target_pid_to_str (ptid),
1412 paddress (displaced->step_gdbarch,
1413 displaced->step_copy));
1414 }
1415
1416 static void
1417 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
1418 {
1419 struct cleanup *old_cleanups;
1420 struct displaced_step_inferior_state *displaced
1421 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1422
1423 /* Was any thread of this process doing a displaced step? */
1424 if (displaced == NULL)
1425 return;
1426
1427 /* Was this event for the pid we displaced? */
1428 if (ptid_equal (displaced->step_ptid, null_ptid)
1429 || ! ptid_equal (displaced->step_ptid, event_ptid))
1430 return;
1431
1432 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1433
1434 displaced_step_restore (displaced, displaced->step_ptid);
1435
1436 /* Did the instruction complete successfully? */
1437 if (signal == TARGET_SIGNAL_TRAP)
1438 {
1439 /* Fix up the resulting state. */
1440 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1441 displaced->step_closure,
1442 displaced->step_original,
1443 displaced->step_copy,
1444 get_thread_regcache (displaced->step_ptid));
1445 }
1446 else
1447 {
1448 /* Since the instruction didn't complete, all we can do is
1449 relocate the PC. */
1450 struct regcache *regcache = get_thread_regcache (event_ptid);
1451 CORE_ADDR pc = regcache_read_pc (regcache);
1452
1453 pc = displaced->step_original + (pc - displaced->step_copy);
1454 regcache_write_pc (regcache, pc);
1455 }
1456
1457 do_cleanups (old_cleanups);
1458
1459 displaced->step_ptid = null_ptid;
1460
1461 /* Are there any pending displaced stepping requests? If so, run
1462 one now. Leave the state object around, since we're likely to
1463 need it again soon. */
1464 while (displaced->step_request_queue)
1465 {
1466 struct displaced_step_request *head;
1467 ptid_t ptid;
1468 struct regcache *regcache;
1469 struct gdbarch *gdbarch;
1470 CORE_ADDR actual_pc;
1471 struct address_space *aspace;
1472
1473 head = displaced->step_request_queue;
1474 ptid = head->ptid;
1475 displaced->step_request_queue = head->next;
1476 xfree (head);
1477
1478 context_switch (ptid);
1479
1480 regcache = get_thread_regcache (ptid);
1481 actual_pc = regcache_read_pc (regcache);
1482 aspace = get_regcache_aspace (regcache);
1483
1484 if (breakpoint_here_p (aspace, actual_pc))
1485 {
1486 if (debug_displaced)
1487 fprintf_unfiltered (gdb_stdlog,
1488 "displaced: stepping queued %s now\n",
1489 target_pid_to_str (ptid));
1490
1491 displaced_step_prepare (ptid);
1492
1493 gdbarch = get_regcache_arch (regcache);
1494
1495 if (debug_displaced)
1496 {
1497 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1498 gdb_byte buf[4];
1499
1500 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1501 paddress (gdbarch, actual_pc));
1502 read_memory (actual_pc, buf, sizeof (buf));
1503 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1504 }
1505
1506 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1507 displaced->step_closure))
1508 target_resume (ptid, 1, TARGET_SIGNAL_0);
1509 else
1510 target_resume (ptid, 0, TARGET_SIGNAL_0);
1511
1512 /* Done, we're stepping a thread. */
1513 break;
1514 }
1515 else
1516 {
1517 int step;
1518 struct thread_info *tp = inferior_thread ();
1519
1520 /* The breakpoint we were sitting under has since been
1521 removed. */
1522 tp->control.trap_expected = 0;
1523
1524 /* Go back to what we were trying to do. */
1525 step = currently_stepping (tp);
1526
1527 if (debug_displaced)
1528 fprintf_unfiltered (gdb_stdlog,
1529 "breakpoint is gone %s: step(%d)\n",
1530 target_pid_to_str (tp->ptid), step);
1531
1532 target_resume (ptid, step, TARGET_SIGNAL_0);
1533 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1534
1535 /* This request was discarded. See if there's any other
1536 thread waiting for its turn. */
1537 }
1538 }
1539 }
1540
1541 /* Update global variables holding ptids to hold NEW_PTID if they were
1542 holding OLD_PTID. */
1543 static void
1544 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1545 {
1546 struct displaced_step_request *it;
1547 struct displaced_step_inferior_state *displaced;
1548
1549 if (ptid_equal (inferior_ptid, old_ptid))
1550 inferior_ptid = new_ptid;
1551
1552 if (ptid_equal (singlestep_ptid, old_ptid))
1553 singlestep_ptid = new_ptid;
1554
1555 if (ptid_equal (deferred_step_ptid, old_ptid))
1556 deferred_step_ptid = new_ptid;
1557
1558 for (displaced = displaced_step_inferior_states;
1559 displaced;
1560 displaced = displaced->next)
1561 {
1562 if (ptid_equal (displaced->step_ptid, old_ptid))
1563 displaced->step_ptid = new_ptid;
1564
1565 for (it = displaced->step_request_queue; it; it = it->next)
1566 if (ptid_equal (it->ptid, old_ptid))
1567 it->ptid = new_ptid;
1568 }
1569 }
1570
1571 \f
1572 /* Resuming. */
1573
1574 /* Things to clean up if we QUIT out of resume (). */
1575 static void
1576 resume_cleanups (void *ignore)
1577 {
1578 normal_stop ();
1579 }
1580
1581 static const char schedlock_off[] = "off";
1582 static const char schedlock_on[] = "on";
1583 static const char schedlock_step[] = "step";
1584 static const char *scheduler_enums[] = {
1585 schedlock_off,
1586 schedlock_on,
1587 schedlock_step,
1588 NULL
1589 };
1590 static const char *scheduler_mode = schedlock_off;
1591 static void
1592 show_scheduler_mode (struct ui_file *file, int from_tty,
1593 struct cmd_list_element *c, const char *value)
1594 {
1595 fprintf_filtered (file,
1596 _("Mode for locking scheduler "
1597 "during execution is \"%s\".\n"),
1598 value);
1599 }
1600
1601 static void
1602 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1603 {
1604 if (!target_can_lock_scheduler)
1605 {
1606 scheduler_mode = schedlock_off;
1607 error (_("Target '%s' cannot support this command."), target_shortname);
1608 }
1609 }
1610
1611 /* True if execution commands resume all threads of all processes by
1612 default; otherwise, resume only threads of the current inferior
1613 process. */
1614 int sched_multi = 0;
1615
1616 /* Try to setup for software single stepping over the specified location.
1617 Return 1 if target_resume() should use hardware single step.
1618
1619 GDBARCH the current gdbarch.
1620 PC the location to step over. */
1621
1622 static int
1623 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1624 {
1625 int hw_step = 1;
1626
1627 if (execution_direction == EXEC_FORWARD
1628 && gdbarch_software_single_step_p (gdbarch)
1629 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1630 {
1631 hw_step = 0;
1632 /* Do not pull these breakpoints until after a `wait' in
1633 `wait_for_inferior'. */
1634 singlestep_breakpoints_inserted_p = 1;
1635 singlestep_ptid = inferior_ptid;
1636 singlestep_pc = pc;
1637 }
1638 return hw_step;
1639 }
1640
1641 /* Return a ptid representing the set of threads that we will proceed,
1642 in the perspective of the user/frontend. We may actually resume
1643 fewer threads at first, e.g., if a thread is stopped at a
1644 breakpoint that needs stepping-off, but that should not be visible
1645 to the user/frontend, and neither should the frontend/user be
1646 allowed to proceed any of the threads that happen to be stopped for
1647 internal run control handling, if a previous command wanted them
1648 resumed. */
1649
1650 ptid_t
1651 user_visible_resume_ptid (int step)
1652 {
1653 /* By default, resume all threads of all processes. */
1654 ptid_t resume_ptid = RESUME_ALL;
1655
1656 /* Maybe resume only all threads of the current process. */
1657 if (!sched_multi && target_supports_multi_process ())
1658 {
1659 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1660 }
1661
1662 /* Maybe resume a single thread after all. */
1663 if (non_stop)
1664 {
1665 /* With non-stop mode on, threads are always handled
1666 individually. */
1667 resume_ptid = inferior_ptid;
1668 }
1669 else if ((scheduler_mode == schedlock_on)
1670 || (scheduler_mode == schedlock_step
1671 && (step || singlestep_breakpoints_inserted_p)))
1672 {
1673 /* User-settable 'scheduler' mode requires solo thread resume. */
1674 resume_ptid = inferior_ptid;
1675 }
1676
1677 return resume_ptid;
1678 }
1679
1680 /* Resume the inferior, but allow a QUIT. This is useful if the user
1681 wants to interrupt some lengthy single-stepping operation
1682 (for child processes, the SIGINT goes to the inferior, and so
1683 we get a SIGINT random_signal, but for remote debugging and perhaps
1684 other targets, that's not true).
1685
1686 STEP nonzero if we should step (zero to continue instead).
1687 SIG is the signal to give the inferior (zero for none). */
1688 void
1689 resume (int step, enum target_signal sig)
1690 {
1691 int should_resume = 1;
1692 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1693 struct regcache *regcache = get_current_regcache ();
1694 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1695 struct thread_info *tp = inferior_thread ();
1696 CORE_ADDR pc = regcache_read_pc (regcache);
1697 struct address_space *aspace = get_regcache_aspace (regcache);
1698
1699 QUIT;
1700
1701 if (current_inferior ()->waiting_for_vfork_done)
1702 {
1703 /* Don't try to single-step a vfork parent that is waiting for
1704 the child to get out of the shared memory region (by exec'ing
1705 or exiting). This is particularly important on software
1706 single-step archs, as the child process would trip on the
1707 software single step breakpoint inserted for the parent
1708 process. Since the parent will not actually execute any
1709 instruction until the child is out of the shared region (such
1710 are vfork's semantics), it is safe to simply continue it.
1711 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1712 the parent, and tell it to `keep_going', which automatically
1713 re-sets it stepping. */
1714 if (debug_infrun)
1715 fprintf_unfiltered (gdb_stdlog,
1716 "infrun: resume : clear step\n");
1717 step = 0;
1718 }
1719
1720 if (debug_infrun)
1721 fprintf_unfiltered (gdb_stdlog,
1722 "infrun: resume (step=%d, signal=%d), "
1723 "trap_expected=%d, current thread [%s] at %s\n",
1724 step, sig, tp->control.trap_expected,
1725 target_pid_to_str (inferior_ptid),
1726 paddress (gdbarch, pc));
1727
1728 /* Normally, by the time we reach `resume', the breakpoints are either
1729 removed or inserted, as appropriate. The exception is if we're sitting
1730 at a permanent breakpoint; we need to step over it, but permanent
1731 breakpoints can't be removed. So we have to test for it here. */
1732 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1733 {
1734 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1735 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1736 else
1737 error (_("\
1738 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1739 how to step past a permanent breakpoint on this architecture. Try using\n\
1740 a command like `return' or `jump' to continue execution."));
1741 }
1742
1743 /* If enabled, step over breakpoints by executing a copy of the
1744 instruction at a different address.
1745
1746 We can't use displaced stepping when we have a signal to deliver;
1747 the comments for displaced_step_prepare explain why. The
1748 comments in the handle_inferior event for dealing with 'random
1749 signals' explain what we do instead.
1750
1751 We can't use displaced stepping when we are waiting for vfork_done
1752 event, displaced stepping breaks the vfork child similarly as single
1753 step software breakpoint. */
1754 if (use_displaced_stepping (gdbarch)
1755 && (tp->control.trap_expected
1756 || (step && gdbarch_software_single_step_p (gdbarch)))
1757 && sig == TARGET_SIGNAL_0
1758 && !current_inferior ()->waiting_for_vfork_done)
1759 {
1760 struct displaced_step_inferior_state *displaced;
1761
1762 if (!displaced_step_prepare (inferior_ptid))
1763 {
1764 /* Got placed in displaced stepping queue. Will be resumed
1765 later when all the currently queued displaced stepping
1766 requests finish. The thread is not executing at this point,
1767 and the call to set_executing will be made later. But we
1768 need to call set_running here, since from frontend point of view,
1769 the thread is running. */
1770 set_running (inferior_ptid, 1);
1771 discard_cleanups (old_cleanups);
1772 return;
1773 }
1774
1775 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1776 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1777 displaced->step_closure);
1778 }
1779
1780 /* Do we need to do it the hard way, w/temp breakpoints? */
1781 else if (step)
1782 step = maybe_software_singlestep (gdbarch, pc);
1783
1784 /* Currently, our software single-step implementation leads to different
1785 results than hardware single-stepping in one situation: when stepping
1786 into delivering a signal which has an associated signal handler,
1787 hardware single-step will stop at the first instruction of the handler,
1788 while software single-step will simply skip execution of the handler.
1789
1790 For now, this difference in behavior is accepted since there is no
1791 easy way to actually implement single-stepping into a signal handler
1792 without kernel support.
1793
1794 However, there is one scenario where this difference leads to follow-on
1795 problems: if we're stepping off a breakpoint by removing all breakpoints
1796 and then single-stepping. In this case, the software single-step
1797 behavior means that even if there is a *breakpoint* in the signal
1798 handler, GDB still would not stop.
1799
1800 Fortunately, we can at least fix this particular issue. We detect
1801 here the case where we are about to deliver a signal while software
1802 single-stepping with breakpoints removed. In this situation, we
1803 revert the decisions to remove all breakpoints and insert single-
1804 step breakpoints, and instead we install a step-resume breakpoint
1805 at the current address, deliver the signal without stepping, and
1806 once we arrive back at the step-resume breakpoint, actually step
1807 over the breakpoint we originally wanted to step over. */
1808 if (singlestep_breakpoints_inserted_p
1809 && tp->control.trap_expected && sig != TARGET_SIGNAL_0)
1810 {
1811 /* If we have nested signals or a pending signal is delivered
1812 immediately after a handler returns, might might already have
1813 a step-resume breakpoint set on the earlier handler. We cannot
1814 set another step-resume breakpoint; just continue on until the
1815 original breakpoint is hit. */
1816 if (tp->control.step_resume_breakpoint == NULL)
1817 {
1818 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
1819 tp->step_after_step_resume_breakpoint = 1;
1820 }
1821
1822 remove_single_step_breakpoints ();
1823 singlestep_breakpoints_inserted_p = 0;
1824
1825 insert_breakpoints ();
1826 tp->control.trap_expected = 0;
1827 }
1828
1829 if (should_resume)
1830 {
1831 ptid_t resume_ptid;
1832
1833 /* If STEP is set, it's a request to use hardware stepping
1834 facilities. But in that case, we should never
1835 use singlestep breakpoint. */
1836 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1837
1838 /* Decide the set of threads to ask the target to resume. Start
1839 by assuming everything will be resumed, than narrow the set
1840 by applying increasingly restricting conditions. */
1841 resume_ptid = user_visible_resume_ptid (step);
1842
1843 /* Maybe resume a single thread after all. */
1844 if (singlestep_breakpoints_inserted_p
1845 && stepping_past_singlestep_breakpoint)
1846 {
1847 /* The situation here is as follows. In thread T1 we wanted to
1848 single-step. Lacking hardware single-stepping we've
1849 set breakpoint at the PC of the next instruction -- call it
1850 P. After resuming, we've hit that breakpoint in thread T2.
1851 Now we've removed original breakpoint, inserted breakpoint
1852 at P+1, and try to step to advance T2 past breakpoint.
1853 We need to step only T2, as if T1 is allowed to freely run,
1854 it can run past P, and if other threads are allowed to run,
1855 they can hit breakpoint at P+1, and nested hits of single-step
1856 breakpoints is not something we'd want -- that's complicated
1857 to support, and has no value. */
1858 resume_ptid = inferior_ptid;
1859 }
1860 else if ((step || singlestep_breakpoints_inserted_p)
1861 && tp->control.trap_expected)
1862 {
1863 /* We're allowing a thread to run past a breakpoint it has
1864 hit, by single-stepping the thread with the breakpoint
1865 removed. In which case, we need to single-step only this
1866 thread, and keep others stopped, as they can miss this
1867 breakpoint if allowed to run.
1868
1869 The current code actually removes all breakpoints when
1870 doing this, not just the one being stepped over, so if we
1871 let other threads run, we can actually miss any
1872 breakpoint, not just the one at PC. */
1873 resume_ptid = inferior_ptid;
1874 }
1875
1876 if (gdbarch_cannot_step_breakpoint (gdbarch))
1877 {
1878 /* Most targets can step a breakpoint instruction, thus
1879 executing it normally. But if this one cannot, just
1880 continue and we will hit it anyway. */
1881 if (step && breakpoint_inserted_here_p (aspace, pc))
1882 step = 0;
1883 }
1884
1885 if (debug_displaced
1886 && use_displaced_stepping (gdbarch)
1887 && tp->control.trap_expected)
1888 {
1889 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1890 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1891 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1892 gdb_byte buf[4];
1893
1894 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1895 paddress (resume_gdbarch, actual_pc));
1896 read_memory (actual_pc, buf, sizeof (buf));
1897 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1898 }
1899
1900 /* Install inferior's terminal modes. */
1901 target_terminal_inferior ();
1902
1903 /* Avoid confusing the next resume, if the next stop/resume
1904 happens to apply to another thread. */
1905 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1906
1907 /* Advise target which signals may be handled silently. If we have
1908 removed breakpoints because we are stepping over one (which can
1909 happen only if we are not using displaced stepping), we need to
1910 receive all signals to avoid accidentally skipping a breakpoint
1911 during execution of a signal handler. */
1912 if ((step || singlestep_breakpoints_inserted_p)
1913 && tp->control.trap_expected
1914 && !use_displaced_stepping (gdbarch))
1915 target_pass_signals (0, NULL);
1916 else
1917 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
1918
1919 target_resume (resume_ptid, step, sig);
1920 }
1921
1922 discard_cleanups (old_cleanups);
1923 }
1924 \f
1925 /* Proceeding. */
1926
1927 /* Clear out all variables saying what to do when inferior is continued.
1928 First do this, then set the ones you want, then call `proceed'. */
1929
1930 static void
1931 clear_proceed_status_thread (struct thread_info *tp)
1932 {
1933 if (debug_infrun)
1934 fprintf_unfiltered (gdb_stdlog,
1935 "infrun: clear_proceed_status_thread (%s)\n",
1936 target_pid_to_str (tp->ptid));
1937
1938 tp->control.trap_expected = 0;
1939 tp->control.step_range_start = 0;
1940 tp->control.step_range_end = 0;
1941 tp->control.step_frame_id = null_frame_id;
1942 tp->control.step_stack_frame_id = null_frame_id;
1943 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
1944 tp->stop_requested = 0;
1945
1946 tp->control.stop_step = 0;
1947
1948 tp->control.proceed_to_finish = 0;
1949
1950 /* Discard any remaining commands or status from previous stop. */
1951 bpstat_clear (&tp->control.stop_bpstat);
1952 }
1953
1954 static int
1955 clear_proceed_status_callback (struct thread_info *tp, void *data)
1956 {
1957 if (is_exited (tp->ptid))
1958 return 0;
1959
1960 clear_proceed_status_thread (tp);
1961 return 0;
1962 }
1963
1964 void
1965 clear_proceed_status (void)
1966 {
1967 if (!non_stop)
1968 {
1969 /* In all-stop mode, delete the per-thread status of all
1970 threads, even if inferior_ptid is null_ptid, there may be
1971 threads on the list. E.g., we may be launching a new
1972 process, while selecting the executable. */
1973 iterate_over_threads (clear_proceed_status_callback, NULL);
1974 }
1975
1976 if (!ptid_equal (inferior_ptid, null_ptid))
1977 {
1978 struct inferior *inferior;
1979
1980 if (non_stop)
1981 {
1982 /* If in non-stop mode, only delete the per-thread status of
1983 the current thread. */
1984 clear_proceed_status_thread (inferior_thread ());
1985 }
1986
1987 inferior = current_inferior ();
1988 inferior->control.stop_soon = NO_STOP_QUIETLY;
1989 }
1990
1991 stop_after_trap = 0;
1992
1993 observer_notify_about_to_proceed ();
1994
1995 if (stop_registers)
1996 {
1997 regcache_xfree (stop_registers);
1998 stop_registers = NULL;
1999 }
2000 }
2001
2002 /* Check the current thread against the thread that reported the most recent
2003 event. If a step-over is required return TRUE and set the current thread
2004 to the old thread. Otherwise return FALSE.
2005
2006 This should be suitable for any targets that support threads. */
2007
2008 static int
2009 prepare_to_proceed (int step)
2010 {
2011 ptid_t wait_ptid;
2012 struct target_waitstatus wait_status;
2013 int schedlock_enabled;
2014
2015 /* With non-stop mode on, threads are always handled individually. */
2016 gdb_assert (! non_stop);
2017
2018 /* Get the last target status returned by target_wait(). */
2019 get_last_target_status (&wait_ptid, &wait_status);
2020
2021 /* Make sure we were stopped at a breakpoint. */
2022 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2023 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
2024 && wait_status.value.sig != TARGET_SIGNAL_ILL
2025 && wait_status.value.sig != TARGET_SIGNAL_SEGV
2026 && wait_status.value.sig != TARGET_SIGNAL_EMT))
2027 {
2028 return 0;
2029 }
2030
2031 schedlock_enabled = (scheduler_mode == schedlock_on
2032 || (scheduler_mode == schedlock_step
2033 && step));
2034
2035 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2036 if (schedlock_enabled)
2037 return 0;
2038
2039 /* Don't switch over if we're about to resume some other process
2040 other than WAIT_PTID's, and schedule-multiple is off. */
2041 if (!sched_multi
2042 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2043 return 0;
2044
2045 /* Switched over from WAIT_PID. */
2046 if (!ptid_equal (wait_ptid, minus_one_ptid)
2047 && !ptid_equal (inferior_ptid, wait_ptid))
2048 {
2049 struct regcache *regcache = get_thread_regcache (wait_ptid);
2050
2051 if (breakpoint_here_p (get_regcache_aspace (regcache),
2052 regcache_read_pc (regcache)))
2053 {
2054 /* If stepping, remember current thread to switch back to. */
2055 if (step)
2056 deferred_step_ptid = inferior_ptid;
2057
2058 /* Switch back to WAIT_PID thread. */
2059 switch_to_thread (wait_ptid);
2060
2061 if (debug_infrun)
2062 fprintf_unfiltered (gdb_stdlog,
2063 "infrun: prepare_to_proceed (step=%d), "
2064 "switched to [%s]\n",
2065 step, target_pid_to_str (inferior_ptid));
2066
2067 /* We return 1 to indicate that there is a breakpoint here,
2068 so we need to step over it before continuing to avoid
2069 hitting it straight away. */
2070 return 1;
2071 }
2072 }
2073
2074 return 0;
2075 }
2076
2077 /* Basic routine for continuing the program in various fashions.
2078
2079 ADDR is the address to resume at, or -1 for resume where stopped.
2080 SIGGNAL is the signal to give it, or 0 for none,
2081 or -1 for act according to how it stopped.
2082 STEP is nonzero if should trap after one instruction.
2083 -1 means return after that and print nothing.
2084 You should probably set various step_... variables
2085 before calling here, if you are stepping.
2086
2087 You should call clear_proceed_status before calling proceed. */
2088
2089 void
2090 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
2091 {
2092 struct regcache *regcache;
2093 struct gdbarch *gdbarch;
2094 struct thread_info *tp;
2095 CORE_ADDR pc;
2096 struct address_space *aspace;
2097 int oneproc = 0;
2098
2099 /* If we're stopped at a fork/vfork, follow the branch set by the
2100 "set follow-fork-mode" command; otherwise, we'll just proceed
2101 resuming the current thread. */
2102 if (!follow_fork ())
2103 {
2104 /* The target for some reason decided not to resume. */
2105 normal_stop ();
2106 if (target_can_async_p ())
2107 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2108 return;
2109 }
2110
2111 /* We'll update this if & when we switch to a new thread. */
2112 previous_inferior_ptid = inferior_ptid;
2113
2114 regcache = get_current_regcache ();
2115 gdbarch = get_regcache_arch (regcache);
2116 aspace = get_regcache_aspace (regcache);
2117 pc = regcache_read_pc (regcache);
2118
2119 if (step > 0)
2120 step_start_function = find_pc_function (pc);
2121 if (step < 0)
2122 stop_after_trap = 1;
2123
2124 if (addr == (CORE_ADDR) -1)
2125 {
2126 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
2127 && execution_direction != EXEC_REVERSE)
2128 /* There is a breakpoint at the address we will resume at,
2129 step one instruction before inserting breakpoints so that
2130 we do not stop right away (and report a second hit at this
2131 breakpoint).
2132
2133 Note, we don't do this in reverse, because we won't
2134 actually be executing the breakpoint insn anyway.
2135 We'll be (un-)executing the previous instruction. */
2136
2137 oneproc = 1;
2138 else if (gdbarch_single_step_through_delay_p (gdbarch)
2139 && gdbarch_single_step_through_delay (gdbarch,
2140 get_current_frame ()))
2141 /* We stepped onto an instruction that needs to be stepped
2142 again before re-inserting the breakpoint, do so. */
2143 oneproc = 1;
2144 }
2145 else
2146 {
2147 regcache_write_pc (regcache, addr);
2148 }
2149
2150 if (debug_infrun)
2151 fprintf_unfiltered (gdb_stdlog,
2152 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2153 paddress (gdbarch, addr), siggnal, step);
2154
2155 if (non_stop)
2156 /* In non-stop, each thread is handled individually. The context
2157 must already be set to the right thread here. */
2158 ;
2159 else
2160 {
2161 /* In a multi-threaded task we may select another thread and
2162 then continue or step.
2163
2164 But if the old thread was stopped at a breakpoint, it will
2165 immediately cause another breakpoint stop without any
2166 execution (i.e. it will report a breakpoint hit incorrectly).
2167 So we must step over it first.
2168
2169 prepare_to_proceed checks the current thread against the
2170 thread that reported the most recent event. If a step-over
2171 is required it returns TRUE and sets the current thread to
2172 the old thread. */
2173 if (prepare_to_proceed (step))
2174 oneproc = 1;
2175 }
2176
2177 /* prepare_to_proceed may change the current thread. */
2178 tp = inferior_thread ();
2179
2180 if (oneproc)
2181 {
2182 tp->control.trap_expected = 1;
2183 /* If displaced stepping is enabled, we can step over the
2184 breakpoint without hitting it, so leave all breakpoints
2185 inserted. Otherwise we need to disable all breakpoints, step
2186 one instruction, and then re-add them when that step is
2187 finished. */
2188 if (!use_displaced_stepping (gdbarch))
2189 remove_breakpoints ();
2190 }
2191
2192 /* We can insert breakpoints if we're not trying to step over one,
2193 or if we are stepping over one but we're using displaced stepping
2194 to do so. */
2195 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2196 insert_breakpoints ();
2197
2198 if (!non_stop)
2199 {
2200 /* Pass the last stop signal to the thread we're resuming,
2201 irrespective of whether the current thread is the thread that
2202 got the last event or not. This was historically GDB's
2203 behaviour before keeping a stop_signal per thread. */
2204
2205 struct thread_info *last_thread;
2206 ptid_t last_ptid;
2207 struct target_waitstatus last_status;
2208
2209 get_last_target_status (&last_ptid, &last_status);
2210 if (!ptid_equal (inferior_ptid, last_ptid)
2211 && !ptid_equal (last_ptid, null_ptid)
2212 && !ptid_equal (last_ptid, minus_one_ptid))
2213 {
2214 last_thread = find_thread_ptid (last_ptid);
2215 if (last_thread)
2216 {
2217 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2218 last_thread->suspend.stop_signal = TARGET_SIGNAL_0;
2219 }
2220 }
2221 }
2222
2223 if (siggnal != TARGET_SIGNAL_DEFAULT)
2224 tp->suspend.stop_signal = siggnal;
2225 /* If this signal should not be seen by program,
2226 give it zero. Used for debugging signals. */
2227 else if (!signal_program[tp->suspend.stop_signal])
2228 tp->suspend.stop_signal = TARGET_SIGNAL_0;
2229
2230 annotate_starting ();
2231
2232 /* Make sure that output from GDB appears before output from the
2233 inferior. */
2234 gdb_flush (gdb_stdout);
2235
2236 /* Refresh prev_pc value just prior to resuming. This used to be
2237 done in stop_stepping, however, setting prev_pc there did not handle
2238 scenarios such as inferior function calls or returning from
2239 a function via the return command. In those cases, the prev_pc
2240 value was not set properly for subsequent commands. The prev_pc value
2241 is used to initialize the starting line number in the ecs. With an
2242 invalid value, the gdb next command ends up stopping at the position
2243 represented by the next line table entry past our start position.
2244 On platforms that generate one line table entry per line, this
2245 is not a problem. However, on the ia64, the compiler generates
2246 extraneous line table entries that do not increase the line number.
2247 When we issue the gdb next command on the ia64 after an inferior call
2248 or a return command, we often end up a few instructions forward, still
2249 within the original line we started.
2250
2251 An attempt was made to refresh the prev_pc at the same time the
2252 execution_control_state is initialized (for instance, just before
2253 waiting for an inferior event). But this approach did not work
2254 because of platforms that use ptrace, where the pc register cannot
2255 be read unless the inferior is stopped. At that point, we are not
2256 guaranteed the inferior is stopped and so the regcache_read_pc() call
2257 can fail. Setting the prev_pc value here ensures the value is updated
2258 correctly when the inferior is stopped. */
2259 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2260
2261 /* Fill in with reasonable starting values. */
2262 init_thread_stepping_state (tp);
2263
2264 /* Reset to normal state. */
2265 init_infwait_state ();
2266
2267 /* Resume inferior. */
2268 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
2269
2270 /* Wait for it to stop (if not standalone)
2271 and in any case decode why it stopped, and act accordingly. */
2272 /* Do this only if we are not using the event loop, or if the target
2273 does not support asynchronous execution. */
2274 if (!target_can_async_p ())
2275 {
2276 wait_for_inferior ();
2277 normal_stop ();
2278 }
2279 }
2280 \f
2281
2282 /* Start remote-debugging of a machine over a serial link. */
2283
2284 void
2285 start_remote (int from_tty)
2286 {
2287 struct inferior *inferior;
2288
2289 inferior = current_inferior ();
2290 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2291
2292 /* Always go on waiting for the target, regardless of the mode. */
2293 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2294 indicate to wait_for_inferior that a target should timeout if
2295 nothing is returned (instead of just blocking). Because of this,
2296 targets expecting an immediate response need to, internally, set
2297 things up so that the target_wait() is forced to eventually
2298 timeout. */
2299 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2300 differentiate to its caller what the state of the target is after
2301 the initial open has been performed. Here we're assuming that
2302 the target has stopped. It should be possible to eventually have
2303 target_open() return to the caller an indication that the target
2304 is currently running and GDB state should be set to the same as
2305 for an async run. */
2306 wait_for_inferior ();
2307
2308 /* Now that the inferior has stopped, do any bookkeeping like
2309 loading shared libraries. We want to do this before normal_stop,
2310 so that the displayed frame is up to date. */
2311 post_create_inferior (&current_target, from_tty);
2312
2313 normal_stop ();
2314 }
2315
2316 /* Initialize static vars when a new inferior begins. */
2317
2318 void
2319 init_wait_for_inferior (void)
2320 {
2321 /* These are meaningless until the first time through wait_for_inferior. */
2322
2323 breakpoint_init_inferior (inf_starting);
2324
2325 clear_proceed_status ();
2326
2327 stepping_past_singlestep_breakpoint = 0;
2328 deferred_step_ptid = null_ptid;
2329
2330 target_last_wait_ptid = minus_one_ptid;
2331
2332 previous_inferior_ptid = inferior_ptid;
2333 init_infwait_state ();
2334
2335 /* Discard any skipped inlined frames. */
2336 clear_inline_frame_state (minus_one_ptid);
2337 }
2338
2339 \f
2340 /* This enum encodes possible reasons for doing a target_wait, so that
2341 wfi can call target_wait in one place. (Ultimately the call will be
2342 moved out of the infinite loop entirely.) */
2343
2344 enum infwait_states
2345 {
2346 infwait_normal_state,
2347 infwait_thread_hop_state,
2348 infwait_step_watch_state,
2349 infwait_nonstep_watch_state
2350 };
2351
2352 /* The PTID we'll do a target_wait on.*/
2353 ptid_t waiton_ptid;
2354
2355 /* Current inferior wait state. */
2356 enum infwait_states infwait_state;
2357
2358 /* Data to be passed around while handling an event. This data is
2359 discarded between events. */
2360 struct execution_control_state
2361 {
2362 ptid_t ptid;
2363 /* The thread that got the event, if this was a thread event; NULL
2364 otherwise. */
2365 struct thread_info *event_thread;
2366
2367 struct target_waitstatus ws;
2368 int random_signal;
2369 int stop_func_filled_in;
2370 CORE_ADDR stop_func_start;
2371 CORE_ADDR stop_func_end;
2372 char *stop_func_name;
2373 int new_thread_event;
2374 int wait_some_more;
2375 };
2376
2377 static void handle_inferior_event (struct execution_control_state *ecs);
2378
2379 static void handle_step_into_function (struct gdbarch *gdbarch,
2380 struct execution_control_state *ecs);
2381 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2382 struct execution_control_state *ecs);
2383 static void check_exception_resume (struct execution_control_state *,
2384 struct frame_info *, struct symbol *);
2385
2386 static void stop_stepping (struct execution_control_state *ecs);
2387 static void prepare_to_wait (struct execution_control_state *ecs);
2388 static void keep_going (struct execution_control_state *ecs);
2389
2390 /* Callback for iterate over threads. If the thread is stopped, but
2391 the user/frontend doesn't know about that yet, go through
2392 normal_stop, as if the thread had just stopped now. ARG points at
2393 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2394 ptid_is_pid(PTID) is true, applies to all threads of the process
2395 pointed at by PTID. Otherwise, apply only to the thread pointed by
2396 PTID. */
2397
2398 static int
2399 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2400 {
2401 ptid_t ptid = * (ptid_t *) arg;
2402
2403 if ((ptid_equal (info->ptid, ptid)
2404 || ptid_equal (minus_one_ptid, ptid)
2405 || (ptid_is_pid (ptid)
2406 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2407 && is_running (info->ptid)
2408 && !is_executing (info->ptid))
2409 {
2410 struct cleanup *old_chain;
2411 struct execution_control_state ecss;
2412 struct execution_control_state *ecs = &ecss;
2413
2414 memset (ecs, 0, sizeof (*ecs));
2415
2416 old_chain = make_cleanup_restore_current_thread ();
2417
2418 switch_to_thread (info->ptid);
2419
2420 /* Go through handle_inferior_event/normal_stop, so we always
2421 have consistent output as if the stop event had been
2422 reported. */
2423 ecs->ptid = info->ptid;
2424 ecs->event_thread = find_thread_ptid (info->ptid);
2425 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2426 ecs->ws.value.sig = TARGET_SIGNAL_0;
2427
2428 handle_inferior_event (ecs);
2429
2430 if (!ecs->wait_some_more)
2431 {
2432 struct thread_info *tp;
2433
2434 normal_stop ();
2435
2436 /* Finish off the continuations. */
2437 tp = inferior_thread ();
2438 do_all_intermediate_continuations_thread (tp, 1);
2439 do_all_continuations_thread (tp, 1);
2440 }
2441
2442 do_cleanups (old_chain);
2443 }
2444
2445 return 0;
2446 }
2447
2448 /* This function is attached as a "thread_stop_requested" observer.
2449 Cleanup local state that assumed the PTID was to be resumed, and
2450 report the stop to the frontend. */
2451
2452 static void
2453 infrun_thread_stop_requested (ptid_t ptid)
2454 {
2455 struct displaced_step_inferior_state *displaced;
2456
2457 /* PTID was requested to stop. Remove it from the displaced
2458 stepping queue, so we don't try to resume it automatically. */
2459
2460 for (displaced = displaced_step_inferior_states;
2461 displaced;
2462 displaced = displaced->next)
2463 {
2464 struct displaced_step_request *it, **prev_next_p;
2465
2466 it = displaced->step_request_queue;
2467 prev_next_p = &displaced->step_request_queue;
2468 while (it)
2469 {
2470 if (ptid_match (it->ptid, ptid))
2471 {
2472 *prev_next_p = it->next;
2473 it->next = NULL;
2474 xfree (it);
2475 }
2476 else
2477 {
2478 prev_next_p = &it->next;
2479 }
2480
2481 it = *prev_next_p;
2482 }
2483 }
2484
2485 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2486 }
2487
2488 static void
2489 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2490 {
2491 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2492 nullify_last_target_wait_ptid ();
2493 }
2494
2495 /* Callback for iterate_over_threads. */
2496
2497 static int
2498 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2499 {
2500 if (is_exited (info->ptid))
2501 return 0;
2502
2503 delete_step_resume_breakpoint (info);
2504 delete_exception_resume_breakpoint (info);
2505 return 0;
2506 }
2507
2508 /* In all-stop, delete the step resume breakpoint of any thread that
2509 had one. In non-stop, delete the step resume breakpoint of the
2510 thread that just stopped. */
2511
2512 static void
2513 delete_step_thread_step_resume_breakpoint (void)
2514 {
2515 if (!target_has_execution
2516 || ptid_equal (inferior_ptid, null_ptid))
2517 /* If the inferior has exited, we have already deleted the step
2518 resume breakpoints out of GDB's lists. */
2519 return;
2520
2521 if (non_stop)
2522 {
2523 /* If in non-stop mode, only delete the step-resume or
2524 longjmp-resume breakpoint of the thread that just stopped
2525 stepping. */
2526 struct thread_info *tp = inferior_thread ();
2527
2528 delete_step_resume_breakpoint (tp);
2529 delete_exception_resume_breakpoint (tp);
2530 }
2531 else
2532 /* In all-stop mode, delete all step-resume and longjmp-resume
2533 breakpoints of any thread that had them. */
2534 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2535 }
2536
2537 /* A cleanup wrapper. */
2538
2539 static void
2540 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2541 {
2542 delete_step_thread_step_resume_breakpoint ();
2543 }
2544
2545 /* Pretty print the results of target_wait, for debugging purposes. */
2546
2547 static void
2548 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2549 const struct target_waitstatus *ws)
2550 {
2551 char *status_string = target_waitstatus_to_string (ws);
2552 struct ui_file *tmp_stream = mem_fileopen ();
2553 char *text;
2554
2555 /* The text is split over several lines because it was getting too long.
2556 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2557 output as a unit; we want only one timestamp printed if debug_timestamp
2558 is set. */
2559
2560 fprintf_unfiltered (tmp_stream,
2561 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2562 if (PIDGET (waiton_ptid) != -1)
2563 fprintf_unfiltered (tmp_stream,
2564 " [%s]", target_pid_to_str (waiton_ptid));
2565 fprintf_unfiltered (tmp_stream, ", status) =\n");
2566 fprintf_unfiltered (tmp_stream,
2567 "infrun: %d [%s],\n",
2568 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2569 fprintf_unfiltered (tmp_stream,
2570 "infrun: %s\n",
2571 status_string);
2572
2573 text = ui_file_xstrdup (tmp_stream, NULL);
2574
2575 /* This uses %s in part to handle %'s in the text, but also to avoid
2576 a gcc error: the format attribute requires a string literal. */
2577 fprintf_unfiltered (gdb_stdlog, "%s", text);
2578
2579 xfree (status_string);
2580 xfree (text);
2581 ui_file_delete (tmp_stream);
2582 }
2583
2584 /* Prepare and stabilize the inferior for detaching it. E.g.,
2585 detaching while a thread is displaced stepping is a recipe for
2586 crashing it, as nothing would readjust the PC out of the scratch
2587 pad. */
2588
2589 void
2590 prepare_for_detach (void)
2591 {
2592 struct inferior *inf = current_inferior ();
2593 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2594 struct cleanup *old_chain_1;
2595 struct displaced_step_inferior_state *displaced;
2596
2597 displaced = get_displaced_stepping_state (inf->pid);
2598
2599 /* Is any thread of this process displaced stepping? If not,
2600 there's nothing else to do. */
2601 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2602 return;
2603
2604 if (debug_infrun)
2605 fprintf_unfiltered (gdb_stdlog,
2606 "displaced-stepping in-process while detaching");
2607
2608 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2609 inf->detaching = 1;
2610
2611 while (!ptid_equal (displaced->step_ptid, null_ptid))
2612 {
2613 struct cleanup *old_chain_2;
2614 struct execution_control_state ecss;
2615 struct execution_control_state *ecs;
2616
2617 ecs = &ecss;
2618 memset (ecs, 0, sizeof (*ecs));
2619
2620 overlay_cache_invalid = 1;
2621
2622 if (deprecated_target_wait_hook)
2623 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2624 else
2625 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2626
2627 if (debug_infrun)
2628 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2629
2630 /* If an error happens while handling the event, propagate GDB's
2631 knowledge of the executing state to the frontend/user running
2632 state. */
2633 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2634 &minus_one_ptid);
2635
2636 /* In non-stop mode, each thread is handled individually.
2637 Switch early, so the global state is set correctly for this
2638 thread. */
2639 if (non_stop
2640 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2641 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2642 context_switch (ecs->ptid);
2643
2644 /* Now figure out what to do with the result of the result. */
2645 handle_inferior_event (ecs);
2646
2647 /* No error, don't finish the state yet. */
2648 discard_cleanups (old_chain_2);
2649
2650 /* Breakpoints and watchpoints are not installed on the target
2651 at this point, and signals are passed directly to the
2652 inferior, so this must mean the process is gone. */
2653 if (!ecs->wait_some_more)
2654 {
2655 discard_cleanups (old_chain_1);
2656 error (_("Program exited while detaching"));
2657 }
2658 }
2659
2660 discard_cleanups (old_chain_1);
2661 }
2662
2663 /* Wait for control to return from inferior to debugger.
2664
2665 If inferior gets a signal, we may decide to start it up again
2666 instead of returning. That is why there is a loop in this function.
2667 When this function actually returns it means the inferior
2668 should be left stopped and GDB should read more commands. */
2669
2670 void
2671 wait_for_inferior (void)
2672 {
2673 struct cleanup *old_cleanups;
2674 struct execution_control_state ecss;
2675 struct execution_control_state *ecs;
2676
2677 if (debug_infrun)
2678 fprintf_unfiltered
2679 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
2680
2681 old_cleanups =
2682 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2683
2684 ecs = &ecss;
2685 memset (ecs, 0, sizeof (*ecs));
2686
2687 while (1)
2688 {
2689 struct cleanup *old_chain;
2690
2691 overlay_cache_invalid = 1;
2692
2693 if (deprecated_target_wait_hook)
2694 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2695 else
2696 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2697
2698 if (debug_infrun)
2699 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2700
2701 /* If an error happens while handling the event, propagate GDB's
2702 knowledge of the executing state to the frontend/user running
2703 state. */
2704 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2705
2706 if (ecs->ws.kind == TARGET_WAITKIND_SYSCALL_ENTRY
2707 || ecs->ws.kind == TARGET_WAITKIND_SYSCALL_RETURN)
2708 ecs->ws.value.syscall_number = UNKNOWN_SYSCALL;
2709
2710 /* Now figure out what to do with the result of the result. */
2711 handle_inferior_event (ecs);
2712
2713 /* No error, don't finish the state yet. */
2714 discard_cleanups (old_chain);
2715
2716 if (!ecs->wait_some_more)
2717 break;
2718 }
2719
2720 do_cleanups (old_cleanups);
2721 }
2722
2723 /* Asynchronous version of wait_for_inferior. It is called by the
2724 event loop whenever a change of state is detected on the file
2725 descriptor corresponding to the target. It can be called more than
2726 once to complete a single execution command. In such cases we need
2727 to keep the state in a global variable ECSS. If it is the last time
2728 that this function is called for a single execution command, then
2729 report to the user that the inferior has stopped, and do the
2730 necessary cleanups. */
2731
2732 void
2733 fetch_inferior_event (void *client_data)
2734 {
2735 struct execution_control_state ecss;
2736 struct execution_control_state *ecs = &ecss;
2737 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2738 struct cleanup *ts_old_chain;
2739 int was_sync = sync_execution;
2740 int cmd_done = 0;
2741
2742 memset (ecs, 0, sizeof (*ecs));
2743
2744 /* We're handling a live event, so make sure we're doing live
2745 debugging. If we're looking at traceframes while the target is
2746 running, we're going to need to get back to that mode after
2747 handling the event. */
2748 if (non_stop)
2749 {
2750 make_cleanup_restore_current_traceframe ();
2751 set_current_traceframe (-1);
2752 }
2753
2754 if (non_stop)
2755 /* In non-stop mode, the user/frontend should not notice a thread
2756 switch due to internal events. Make sure we reverse to the
2757 user selected thread and frame after handling the event and
2758 running any breakpoint commands. */
2759 make_cleanup_restore_current_thread ();
2760
2761 overlay_cache_invalid = 1;
2762
2763 make_cleanup_restore_integer (&execution_direction);
2764 execution_direction = target_execution_direction ();
2765
2766 if (deprecated_target_wait_hook)
2767 ecs->ptid =
2768 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2769 else
2770 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2771
2772 if (debug_infrun)
2773 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2774
2775 if (non_stop
2776 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2777 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
2778 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2779 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2780 /* In non-stop mode, each thread is handled individually. Switch
2781 early, so the global state is set correctly for this
2782 thread. */
2783 context_switch (ecs->ptid);
2784
2785 /* If an error happens while handling the event, propagate GDB's
2786 knowledge of the executing state to the frontend/user running
2787 state. */
2788 if (!non_stop)
2789 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2790 else
2791 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2792
2793 /* Get executed before make_cleanup_restore_current_thread above to apply
2794 still for the thread which has thrown the exception. */
2795 make_bpstat_clear_actions_cleanup ();
2796
2797 /* Now figure out what to do with the result of the result. */
2798 handle_inferior_event (ecs);
2799
2800 if (!ecs->wait_some_more)
2801 {
2802 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2803
2804 delete_step_thread_step_resume_breakpoint ();
2805
2806 /* We may not find an inferior if this was a process exit. */
2807 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
2808 normal_stop ();
2809
2810 if (target_has_execution
2811 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
2812 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2813 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2814 && ecs->event_thread->step_multi
2815 && ecs->event_thread->control.stop_step)
2816 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2817 else
2818 {
2819 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2820 cmd_done = 1;
2821 }
2822 }
2823
2824 /* No error, don't finish the thread states yet. */
2825 discard_cleanups (ts_old_chain);
2826
2827 /* Revert thread and frame. */
2828 do_cleanups (old_chain);
2829
2830 /* If the inferior was in sync execution mode, and now isn't,
2831 restore the prompt (a synchronous execution command has finished,
2832 and we're ready for input). */
2833 if (interpreter_async && was_sync && !sync_execution)
2834 display_gdb_prompt (0);
2835
2836 if (cmd_done
2837 && !was_sync
2838 && exec_done_display_p
2839 && (ptid_equal (inferior_ptid, null_ptid)
2840 || !is_running (inferior_ptid)))
2841 printf_unfiltered (_("completed.\n"));
2842 }
2843
2844 /* Record the frame and location we're currently stepping through. */
2845 void
2846 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2847 {
2848 struct thread_info *tp = inferior_thread ();
2849
2850 tp->control.step_frame_id = get_frame_id (frame);
2851 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
2852
2853 tp->current_symtab = sal.symtab;
2854 tp->current_line = sal.line;
2855 }
2856
2857 /* Clear context switchable stepping state. */
2858
2859 void
2860 init_thread_stepping_state (struct thread_info *tss)
2861 {
2862 tss->stepping_over_breakpoint = 0;
2863 tss->step_after_step_resume_breakpoint = 0;
2864 }
2865
2866 /* Return the cached copy of the last pid/waitstatus returned by
2867 target_wait()/deprecated_target_wait_hook(). The data is actually
2868 cached by handle_inferior_event(), which gets called immediately
2869 after target_wait()/deprecated_target_wait_hook(). */
2870
2871 void
2872 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2873 {
2874 *ptidp = target_last_wait_ptid;
2875 *status = target_last_waitstatus;
2876 }
2877
2878 void
2879 nullify_last_target_wait_ptid (void)
2880 {
2881 target_last_wait_ptid = minus_one_ptid;
2882 }
2883
2884 /* Switch thread contexts. */
2885
2886 static void
2887 context_switch (ptid_t ptid)
2888 {
2889 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
2890 {
2891 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2892 target_pid_to_str (inferior_ptid));
2893 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2894 target_pid_to_str (ptid));
2895 }
2896
2897 switch_to_thread (ptid);
2898 }
2899
2900 static void
2901 adjust_pc_after_break (struct execution_control_state *ecs)
2902 {
2903 struct regcache *regcache;
2904 struct gdbarch *gdbarch;
2905 struct address_space *aspace;
2906 CORE_ADDR breakpoint_pc;
2907
2908 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2909 we aren't, just return.
2910
2911 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2912 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2913 implemented by software breakpoints should be handled through the normal
2914 breakpoint layer.
2915
2916 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2917 different signals (SIGILL or SIGEMT for instance), but it is less
2918 clear where the PC is pointing afterwards. It may not match
2919 gdbarch_decr_pc_after_break. I don't know any specific target that
2920 generates these signals at breakpoints (the code has been in GDB since at
2921 least 1992) so I can not guess how to handle them here.
2922
2923 In earlier versions of GDB, a target with
2924 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2925 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2926 target with both of these set in GDB history, and it seems unlikely to be
2927 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2928
2929 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2930 return;
2931
2932 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2933 return;
2934
2935 /* In reverse execution, when a breakpoint is hit, the instruction
2936 under it has already been de-executed. The reported PC always
2937 points at the breakpoint address, so adjusting it further would
2938 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2939 architecture:
2940
2941 B1 0x08000000 : INSN1
2942 B2 0x08000001 : INSN2
2943 0x08000002 : INSN3
2944 PC -> 0x08000003 : INSN4
2945
2946 Say you're stopped at 0x08000003 as above. Reverse continuing
2947 from that point should hit B2 as below. Reading the PC when the
2948 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2949 been de-executed already.
2950
2951 B1 0x08000000 : INSN1
2952 B2 PC -> 0x08000001 : INSN2
2953 0x08000002 : INSN3
2954 0x08000003 : INSN4
2955
2956 We can't apply the same logic as for forward execution, because
2957 we would wrongly adjust the PC to 0x08000000, since there's a
2958 breakpoint at PC - 1. We'd then report a hit on B1, although
2959 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2960 behaviour. */
2961 if (execution_direction == EXEC_REVERSE)
2962 return;
2963
2964 /* If this target does not decrement the PC after breakpoints, then
2965 we have nothing to do. */
2966 regcache = get_thread_regcache (ecs->ptid);
2967 gdbarch = get_regcache_arch (regcache);
2968 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2969 return;
2970
2971 aspace = get_regcache_aspace (regcache);
2972
2973 /* Find the location where (if we've hit a breakpoint) the
2974 breakpoint would be. */
2975 breakpoint_pc = regcache_read_pc (regcache)
2976 - gdbarch_decr_pc_after_break (gdbarch);
2977
2978 /* Check whether there actually is a software breakpoint inserted at
2979 that location.
2980
2981 If in non-stop mode, a race condition is possible where we've
2982 removed a breakpoint, but stop events for that breakpoint were
2983 already queued and arrive later. To suppress those spurious
2984 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2985 and retire them after a number of stop events are reported. */
2986 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2987 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
2988 {
2989 struct cleanup *old_cleanups = NULL;
2990
2991 if (RECORD_IS_USED)
2992 old_cleanups = record_gdb_operation_disable_set ();
2993
2994 /* When using hardware single-step, a SIGTRAP is reported for both
2995 a completed single-step and a software breakpoint. Need to
2996 differentiate between the two, as the latter needs adjusting
2997 but the former does not.
2998
2999 The SIGTRAP can be due to a completed hardware single-step only if
3000 - we didn't insert software single-step breakpoints
3001 - the thread to be examined is still the current thread
3002 - this thread is currently being stepped
3003
3004 If any of these events did not occur, we must have stopped due
3005 to hitting a software breakpoint, and have to back up to the
3006 breakpoint address.
3007
3008 As a special case, we could have hardware single-stepped a
3009 software breakpoint. In this case (prev_pc == breakpoint_pc),
3010 we also need to back up to the breakpoint address. */
3011
3012 if (singlestep_breakpoints_inserted_p
3013 || !ptid_equal (ecs->ptid, inferior_ptid)
3014 || !currently_stepping (ecs->event_thread)
3015 || ecs->event_thread->prev_pc == breakpoint_pc)
3016 regcache_write_pc (regcache, breakpoint_pc);
3017
3018 if (RECORD_IS_USED)
3019 do_cleanups (old_cleanups);
3020 }
3021 }
3022
3023 void
3024 init_infwait_state (void)
3025 {
3026 waiton_ptid = pid_to_ptid (-1);
3027 infwait_state = infwait_normal_state;
3028 }
3029
3030 void
3031 error_is_running (void)
3032 {
3033 error (_("Cannot execute this command while "
3034 "the selected thread is running."));
3035 }
3036
3037 void
3038 ensure_not_running (void)
3039 {
3040 if (is_running (inferior_ptid))
3041 error_is_running ();
3042 }
3043
3044 static int
3045 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3046 {
3047 for (frame = get_prev_frame (frame);
3048 frame != NULL;
3049 frame = get_prev_frame (frame))
3050 {
3051 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3052 return 1;
3053 if (get_frame_type (frame) != INLINE_FRAME)
3054 break;
3055 }
3056
3057 return 0;
3058 }
3059
3060 /* Auxiliary function that handles syscall entry/return events.
3061 It returns 1 if the inferior should keep going (and GDB
3062 should ignore the event), or 0 if the event deserves to be
3063 processed. */
3064
3065 static int
3066 handle_syscall_event (struct execution_control_state *ecs)
3067 {
3068 struct regcache *regcache;
3069 struct gdbarch *gdbarch;
3070 int syscall_number;
3071
3072 if (!ptid_equal (ecs->ptid, inferior_ptid))
3073 context_switch (ecs->ptid);
3074
3075 regcache = get_thread_regcache (ecs->ptid);
3076 gdbarch = get_regcache_arch (regcache);
3077 syscall_number = gdbarch_get_syscall_number (gdbarch, ecs->ptid);
3078 stop_pc = regcache_read_pc (regcache);
3079
3080 target_last_waitstatus.value.syscall_number = syscall_number;
3081
3082 if (catch_syscall_enabled () > 0
3083 && catching_syscall_number (syscall_number) > 0)
3084 {
3085 if (debug_infrun)
3086 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3087 syscall_number);
3088
3089 ecs->event_thread->control.stop_bpstat
3090 = bpstat_stop_status (get_regcache_aspace (regcache),
3091 stop_pc, ecs->ptid);
3092 ecs->random_signal
3093 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3094
3095 if (!ecs->random_signal)
3096 {
3097 /* Catchpoint hit. */
3098 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3099 return 0;
3100 }
3101 }
3102
3103 /* If no catchpoint triggered for this, then keep going. */
3104 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3105 keep_going (ecs);
3106 return 1;
3107 }
3108
3109 /* Clear the supplied execution_control_state's stop_func_* fields. */
3110
3111 static void
3112 clear_stop_func (struct execution_control_state *ecs)
3113 {
3114 ecs->stop_func_filled_in = 0;
3115 ecs->stop_func_start = 0;
3116 ecs->stop_func_end = 0;
3117 ecs->stop_func_name = NULL;
3118 }
3119
3120 /* Lazily fill in the execution_control_state's stop_func_* fields. */
3121
3122 static void
3123 fill_in_stop_func (struct gdbarch *gdbarch,
3124 struct execution_control_state *ecs)
3125 {
3126 if (!ecs->stop_func_filled_in)
3127 {
3128 /* Don't care about return value; stop_func_start and stop_func_name
3129 will both be 0 if it doesn't work. */
3130 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3131 &ecs->stop_func_start, &ecs->stop_func_end);
3132 ecs->stop_func_start
3133 += gdbarch_deprecated_function_start_offset (gdbarch);
3134
3135 ecs->stop_func_filled_in = 1;
3136 }
3137 }
3138
3139 /* Given an execution control state that has been freshly filled in
3140 by an event from the inferior, figure out what it means and take
3141 appropriate action. */
3142
3143 static void
3144 handle_inferior_event (struct execution_control_state *ecs)
3145 {
3146 struct frame_info *frame;
3147 struct gdbarch *gdbarch;
3148 int stopped_by_watchpoint;
3149 int stepped_after_stopped_by_watchpoint = 0;
3150 struct symtab_and_line stop_pc_sal;
3151 enum stop_kind stop_soon;
3152
3153 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3154 {
3155 /* We had an event in the inferior, but we are not interested in
3156 handling it at this level. The lower layers have already
3157 done what needs to be done, if anything.
3158
3159 One of the possible circumstances for this is when the
3160 inferior produces output for the console. The inferior has
3161 not stopped, and we are ignoring the event. Another possible
3162 circumstance is any event which the lower level knows will be
3163 reported multiple times without an intervening resume. */
3164 if (debug_infrun)
3165 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3166 prepare_to_wait (ecs);
3167 return;
3168 }
3169
3170 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3171 && target_can_async_p () && !sync_execution)
3172 {
3173 /* There were no unwaited-for children left in the target, but,
3174 we're not synchronously waiting for events either. Just
3175 ignore. Otherwise, if we were running a synchronous
3176 execution command, we need to cancel it and give the user
3177 back the terminal. */
3178 if (debug_infrun)
3179 fprintf_unfiltered (gdb_stdlog,
3180 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3181 prepare_to_wait (ecs);
3182 return;
3183 }
3184
3185 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3186 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3187 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3188 {
3189 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3190
3191 gdb_assert (inf);
3192 stop_soon = inf->control.stop_soon;
3193 }
3194 else
3195 stop_soon = NO_STOP_QUIETLY;
3196
3197 /* Cache the last pid/waitstatus. */
3198 target_last_wait_ptid = ecs->ptid;
3199 target_last_waitstatus = ecs->ws;
3200
3201 /* Always clear state belonging to the previous time we stopped. */
3202 stop_stack_dummy = STOP_NONE;
3203
3204 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3205 {
3206 /* No unwaited-for children left. IOW, all resumed children
3207 have exited. */
3208 if (debug_infrun)
3209 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3210
3211 stop_print_frame = 0;
3212 stop_stepping (ecs);
3213 return;
3214 }
3215
3216 /* If it's a new process, add it to the thread database. */
3217
3218 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
3219 && !ptid_equal (ecs->ptid, minus_one_ptid)
3220 && !in_thread_list (ecs->ptid));
3221
3222 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3223 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
3224 add_thread (ecs->ptid);
3225
3226 ecs->event_thread = find_thread_ptid (ecs->ptid);
3227
3228 /* Dependent on valid ECS->EVENT_THREAD. */
3229 adjust_pc_after_break (ecs);
3230
3231 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3232 reinit_frame_cache ();
3233
3234 breakpoint_retire_moribund ();
3235
3236 /* First, distinguish signals caused by the debugger from signals
3237 that have to do with the program's own actions. Note that
3238 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3239 on the operating system version. Here we detect when a SIGILL or
3240 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3241 something similar for SIGSEGV, since a SIGSEGV will be generated
3242 when we're trying to execute a breakpoint instruction on a
3243 non-executable stack. This happens for call dummy breakpoints
3244 for architectures like SPARC that place call dummies on the
3245 stack. */
3246 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3247 && (ecs->ws.value.sig == TARGET_SIGNAL_ILL
3248 || ecs->ws.value.sig == TARGET_SIGNAL_SEGV
3249 || ecs->ws.value.sig == TARGET_SIGNAL_EMT))
3250 {
3251 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3252
3253 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3254 regcache_read_pc (regcache)))
3255 {
3256 if (debug_infrun)
3257 fprintf_unfiltered (gdb_stdlog,
3258 "infrun: Treating signal as SIGTRAP\n");
3259 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
3260 }
3261 }
3262
3263 /* Mark the non-executing threads accordingly. In all-stop, all
3264 threads of all processes are stopped when we get any event
3265 reported. In non-stop mode, only the event thread stops. If
3266 we're handling a process exit in non-stop mode, there's nothing
3267 to do, as threads of the dead process are gone, and threads of
3268 any other process were left running. */
3269 if (!non_stop)
3270 set_executing (minus_one_ptid, 0);
3271 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3272 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3273 set_executing (ecs->ptid, 0);
3274
3275 switch (infwait_state)
3276 {
3277 case infwait_thread_hop_state:
3278 if (debug_infrun)
3279 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
3280 break;
3281
3282 case infwait_normal_state:
3283 if (debug_infrun)
3284 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
3285 break;
3286
3287 case infwait_step_watch_state:
3288 if (debug_infrun)
3289 fprintf_unfiltered (gdb_stdlog,
3290 "infrun: infwait_step_watch_state\n");
3291
3292 stepped_after_stopped_by_watchpoint = 1;
3293 break;
3294
3295 case infwait_nonstep_watch_state:
3296 if (debug_infrun)
3297 fprintf_unfiltered (gdb_stdlog,
3298 "infrun: infwait_nonstep_watch_state\n");
3299 insert_breakpoints ();
3300
3301 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3302 handle things like signals arriving and other things happening
3303 in combination correctly? */
3304 stepped_after_stopped_by_watchpoint = 1;
3305 break;
3306
3307 default:
3308 internal_error (__FILE__, __LINE__, _("bad switch"));
3309 }
3310
3311 infwait_state = infwait_normal_state;
3312 waiton_ptid = pid_to_ptid (-1);
3313
3314 switch (ecs->ws.kind)
3315 {
3316 case TARGET_WAITKIND_LOADED:
3317 if (debug_infrun)
3318 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3319 /* Ignore gracefully during startup of the inferior, as it might
3320 be the shell which has just loaded some objects, otherwise
3321 add the symbols for the newly loaded objects. Also ignore at
3322 the beginning of an attach or remote session; we will query
3323 the full list of libraries once the connection is
3324 established. */
3325 if (stop_soon == NO_STOP_QUIETLY)
3326 {
3327 /* Check for any newly added shared libraries if we're
3328 supposed to be adding them automatically. Switch
3329 terminal for any messages produced by
3330 breakpoint_re_set. */
3331 target_terminal_ours_for_output ();
3332 /* NOTE: cagney/2003-11-25: Make certain that the target
3333 stack's section table is kept up-to-date. Architectures,
3334 (e.g., PPC64), use the section table to perform
3335 operations such as address => section name and hence
3336 require the table to contain all sections (including
3337 those found in shared libraries). */
3338 #ifdef SOLIB_ADD
3339 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
3340 #else
3341 solib_add (NULL, 0, &current_target, auto_solib_add);
3342 #endif
3343 target_terminal_inferior ();
3344
3345 /* If requested, stop when the dynamic linker notifies
3346 gdb of events. This allows the user to get control
3347 and place breakpoints in initializer routines for
3348 dynamically loaded objects (among other things). */
3349 if (stop_on_solib_events)
3350 {
3351 /* Make sure we print "Stopped due to solib-event" in
3352 normal_stop. */
3353 stop_print_frame = 1;
3354
3355 stop_stepping (ecs);
3356 return;
3357 }
3358
3359 /* NOTE drow/2007-05-11: This might be a good place to check
3360 for "catch load". */
3361 }
3362
3363 /* If we are skipping through a shell, or through shared library
3364 loading that we aren't interested in, resume the program. If
3365 we're running the program normally, also resume. But stop if
3366 we're attaching or setting up a remote connection. */
3367 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3368 {
3369 /* Loading of shared libraries might have changed breakpoint
3370 addresses. Make sure new breakpoints are inserted. */
3371 if (stop_soon == NO_STOP_QUIETLY
3372 && !breakpoints_always_inserted_mode ())
3373 insert_breakpoints ();
3374 resume (0, TARGET_SIGNAL_0);
3375 prepare_to_wait (ecs);
3376 return;
3377 }
3378
3379 break;
3380
3381 case TARGET_WAITKIND_SPURIOUS:
3382 if (debug_infrun)
3383 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3384 resume (0, TARGET_SIGNAL_0);
3385 prepare_to_wait (ecs);
3386 return;
3387
3388 case TARGET_WAITKIND_EXITED:
3389 if (debug_infrun)
3390 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
3391 inferior_ptid = ecs->ptid;
3392 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3393 set_current_program_space (current_inferior ()->pspace);
3394 handle_vfork_child_exec_or_exit (0);
3395 target_terminal_ours (); /* Must do this before mourn anyway. */
3396 print_exited_reason (ecs->ws.value.integer);
3397
3398 /* Record the exit code in the convenience variable $_exitcode, so
3399 that the user can inspect this again later. */
3400 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3401 (LONGEST) ecs->ws.value.integer);
3402
3403 /* Also record this in the inferior itself. */
3404 current_inferior ()->has_exit_code = 1;
3405 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3406
3407 gdb_flush (gdb_stdout);
3408 target_mourn_inferior ();
3409 singlestep_breakpoints_inserted_p = 0;
3410 cancel_single_step_breakpoints ();
3411 stop_print_frame = 0;
3412 stop_stepping (ecs);
3413 return;
3414
3415 case TARGET_WAITKIND_SIGNALLED:
3416 if (debug_infrun)
3417 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
3418 inferior_ptid = ecs->ptid;
3419 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3420 set_current_program_space (current_inferior ()->pspace);
3421 handle_vfork_child_exec_or_exit (0);
3422 stop_print_frame = 0;
3423 target_terminal_ours (); /* Must do this before mourn anyway. */
3424
3425 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3426 reach here unless the inferior is dead. However, for years
3427 target_kill() was called here, which hints that fatal signals aren't
3428 really fatal on some systems. If that's true, then some changes
3429 may be needed. */
3430 target_mourn_inferior ();
3431
3432 print_signal_exited_reason (ecs->ws.value.sig);
3433 singlestep_breakpoints_inserted_p = 0;
3434 cancel_single_step_breakpoints ();
3435 stop_stepping (ecs);
3436 return;
3437
3438 /* The following are the only cases in which we keep going;
3439 the above cases end in a continue or goto. */
3440 case TARGET_WAITKIND_FORKED:
3441 case TARGET_WAITKIND_VFORKED:
3442 if (debug_infrun)
3443 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3444
3445 /* Check whether the inferior is displaced stepping. */
3446 {
3447 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3448 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3449 struct displaced_step_inferior_state *displaced
3450 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3451
3452 /* If checking displaced stepping is supported, and thread
3453 ecs->ptid is displaced stepping. */
3454 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3455 {
3456 struct inferior *parent_inf
3457 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3458 struct regcache *child_regcache;
3459 CORE_ADDR parent_pc;
3460
3461 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3462 indicating that the displaced stepping of syscall instruction
3463 has been done. Perform cleanup for parent process here. Note
3464 that this operation also cleans up the child process for vfork,
3465 because their pages are shared. */
3466 displaced_step_fixup (ecs->ptid, TARGET_SIGNAL_TRAP);
3467
3468 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3469 {
3470 /* Restore scratch pad for child process. */
3471 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3472 }
3473
3474 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3475 the child's PC is also within the scratchpad. Set the child's PC
3476 to the parent's PC value, which has already been fixed up.
3477 FIXME: we use the parent's aspace here, although we're touching
3478 the child, because the child hasn't been added to the inferior
3479 list yet at this point. */
3480
3481 child_regcache
3482 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3483 gdbarch,
3484 parent_inf->aspace);
3485 /* Read PC value of parent process. */
3486 parent_pc = regcache_read_pc (regcache);
3487
3488 if (debug_displaced)
3489 fprintf_unfiltered (gdb_stdlog,
3490 "displaced: write child pc from %s to %s\n",
3491 paddress (gdbarch,
3492 regcache_read_pc (child_regcache)),
3493 paddress (gdbarch, parent_pc));
3494
3495 regcache_write_pc (child_regcache, parent_pc);
3496 }
3497 }
3498
3499 if (!ptid_equal (ecs->ptid, inferior_ptid))
3500 {
3501 context_switch (ecs->ptid);
3502 reinit_frame_cache ();
3503 }
3504
3505 /* Immediately detach breakpoints from the child before there's
3506 any chance of letting the user delete breakpoints from the
3507 breakpoint lists. If we don't do this early, it's easy to
3508 leave left over traps in the child, vis: "break foo; catch
3509 fork; c; <fork>; del; c; <child calls foo>". We only follow
3510 the fork on the last `continue', and by that time the
3511 breakpoint at "foo" is long gone from the breakpoint table.
3512 If we vforked, then we don't need to unpatch here, since both
3513 parent and child are sharing the same memory pages; we'll
3514 need to unpatch at follow/detach time instead to be certain
3515 that new breakpoints added between catchpoint hit time and
3516 vfork follow are detached. */
3517 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3518 {
3519 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
3520
3521 /* This won't actually modify the breakpoint list, but will
3522 physically remove the breakpoints from the child. */
3523 detach_breakpoints (child_pid);
3524 }
3525
3526 if (singlestep_breakpoints_inserted_p)
3527 {
3528 /* Pull the single step breakpoints out of the target. */
3529 remove_single_step_breakpoints ();
3530 singlestep_breakpoints_inserted_p = 0;
3531 }
3532
3533 /* In case the event is caught by a catchpoint, remember that
3534 the event is to be followed at the next resume of the thread,
3535 and not immediately. */
3536 ecs->event_thread->pending_follow = ecs->ws;
3537
3538 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3539
3540 ecs->event_thread->control.stop_bpstat
3541 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3542 stop_pc, ecs->ptid);
3543
3544 /* Note that we're interested in knowing the bpstat actually
3545 causes a stop, not just if it may explain the signal.
3546 Software watchpoints, for example, always appear in the
3547 bpstat. */
3548 ecs->random_signal
3549 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
3550
3551 /* If no catchpoint triggered for this, then keep going. */
3552 if (ecs->random_signal)
3553 {
3554 ptid_t parent;
3555 ptid_t child;
3556 int should_resume;
3557 int follow_child
3558 = (follow_fork_mode_string == follow_fork_mode_child);
3559
3560 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3561
3562 should_resume = follow_fork ();
3563
3564 parent = ecs->ptid;
3565 child = ecs->ws.value.related_pid;
3566
3567 /* In non-stop mode, also resume the other branch. */
3568 if (non_stop && !detach_fork)
3569 {
3570 if (follow_child)
3571 switch_to_thread (parent);
3572 else
3573 switch_to_thread (child);
3574
3575 ecs->event_thread = inferior_thread ();
3576 ecs->ptid = inferior_ptid;
3577 keep_going (ecs);
3578 }
3579
3580 if (follow_child)
3581 switch_to_thread (child);
3582 else
3583 switch_to_thread (parent);
3584
3585 ecs->event_thread = inferior_thread ();
3586 ecs->ptid = inferior_ptid;
3587
3588 if (should_resume)
3589 keep_going (ecs);
3590 else
3591 stop_stepping (ecs);
3592 return;
3593 }
3594 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3595 goto process_event_stop_test;
3596
3597 case TARGET_WAITKIND_VFORK_DONE:
3598 /* Done with the shared memory region. Re-insert breakpoints in
3599 the parent, and keep going. */
3600
3601 if (debug_infrun)
3602 fprintf_unfiltered (gdb_stdlog,
3603 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3604
3605 if (!ptid_equal (ecs->ptid, inferior_ptid))
3606 context_switch (ecs->ptid);
3607
3608 current_inferior ()->waiting_for_vfork_done = 0;
3609 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3610 /* This also takes care of reinserting breakpoints in the
3611 previously locked inferior. */
3612 keep_going (ecs);
3613 return;
3614
3615 case TARGET_WAITKIND_EXECD:
3616 if (debug_infrun)
3617 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3618
3619 if (!ptid_equal (ecs->ptid, inferior_ptid))
3620 {
3621 context_switch (ecs->ptid);
3622 reinit_frame_cache ();
3623 }
3624
3625 singlestep_breakpoints_inserted_p = 0;
3626 cancel_single_step_breakpoints ();
3627
3628 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3629
3630 /* Do whatever is necessary to the parent branch of the vfork. */
3631 handle_vfork_child_exec_or_exit (1);
3632
3633 /* This causes the eventpoints and symbol table to be reset.
3634 Must do this now, before trying to determine whether to
3635 stop. */
3636 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3637
3638 ecs->event_thread->control.stop_bpstat
3639 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3640 stop_pc, ecs->ptid);
3641 ecs->random_signal
3642 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3643
3644 /* Note that this may be referenced from inside
3645 bpstat_stop_status above, through inferior_has_execd. */
3646 xfree (ecs->ws.value.execd_pathname);
3647 ecs->ws.value.execd_pathname = NULL;
3648
3649 /* If no catchpoint triggered for this, then keep going. */
3650 if (ecs->random_signal)
3651 {
3652 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3653 keep_going (ecs);
3654 return;
3655 }
3656 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3657 goto process_event_stop_test;
3658
3659 /* Be careful not to try to gather much state about a thread
3660 that's in a syscall. It's frequently a losing proposition. */
3661 case TARGET_WAITKIND_SYSCALL_ENTRY:
3662 if (debug_infrun)
3663 fprintf_unfiltered (gdb_stdlog,
3664 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3665 /* Getting the current syscall number. */
3666 if (handle_syscall_event (ecs) != 0)
3667 return;
3668 goto process_event_stop_test;
3669
3670 /* Before examining the threads further, step this thread to
3671 get it entirely out of the syscall. (We get notice of the
3672 event when the thread is just on the verge of exiting a
3673 syscall. Stepping one instruction seems to get it back
3674 into user code.) */
3675 case TARGET_WAITKIND_SYSCALL_RETURN:
3676 if (debug_infrun)
3677 fprintf_unfiltered (gdb_stdlog,
3678 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3679 if (handle_syscall_event (ecs) != 0)
3680 return;
3681 goto process_event_stop_test;
3682
3683 case TARGET_WAITKIND_STOPPED:
3684 if (debug_infrun)
3685 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3686 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
3687 break;
3688
3689 case TARGET_WAITKIND_NO_HISTORY:
3690 if (debug_infrun)
3691 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
3692 /* Reverse execution: target ran out of history info. */
3693 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3694 print_no_history_reason ();
3695 stop_stepping (ecs);
3696 return;
3697 }
3698
3699 if (ecs->new_thread_event)
3700 {
3701 if (non_stop)
3702 /* Non-stop assumes that the target handles adding new threads
3703 to the thread list. */
3704 internal_error (__FILE__, __LINE__,
3705 "targets should add new threads to the thread "
3706 "list themselves in non-stop mode.");
3707
3708 /* We may want to consider not doing a resume here in order to
3709 give the user a chance to play with the new thread. It might
3710 be good to make that a user-settable option. */
3711
3712 /* At this point, all threads are stopped (happens automatically
3713 in either the OS or the native code). Therefore we need to
3714 continue all threads in order to make progress. */
3715
3716 if (!ptid_equal (ecs->ptid, inferior_ptid))
3717 context_switch (ecs->ptid);
3718 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
3719 prepare_to_wait (ecs);
3720 return;
3721 }
3722
3723 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
3724 {
3725 /* Do we need to clean up the state of a thread that has
3726 completed a displaced single-step? (Doing so usually affects
3727 the PC, so do it here, before we set stop_pc.) */
3728 displaced_step_fixup (ecs->ptid,
3729 ecs->event_thread->suspend.stop_signal);
3730
3731 /* If we either finished a single-step or hit a breakpoint, but
3732 the user wanted this thread to be stopped, pretend we got a
3733 SIG0 (generic unsignaled stop). */
3734
3735 if (ecs->event_thread->stop_requested
3736 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3737 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3738 }
3739
3740 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3741
3742 if (debug_infrun)
3743 {
3744 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3745 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3746 struct cleanup *old_chain = save_inferior_ptid ();
3747
3748 inferior_ptid = ecs->ptid;
3749
3750 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3751 paddress (gdbarch, stop_pc));
3752 if (target_stopped_by_watchpoint ())
3753 {
3754 CORE_ADDR addr;
3755
3756 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3757
3758 if (target_stopped_data_address (&current_target, &addr))
3759 fprintf_unfiltered (gdb_stdlog,
3760 "infrun: stopped data address = %s\n",
3761 paddress (gdbarch, addr));
3762 else
3763 fprintf_unfiltered (gdb_stdlog,
3764 "infrun: (no data address available)\n");
3765 }
3766
3767 do_cleanups (old_chain);
3768 }
3769
3770 if (stepping_past_singlestep_breakpoint)
3771 {
3772 gdb_assert (singlestep_breakpoints_inserted_p);
3773 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3774 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3775
3776 stepping_past_singlestep_breakpoint = 0;
3777
3778 /* We've either finished single-stepping past the single-step
3779 breakpoint, or stopped for some other reason. It would be nice if
3780 we could tell, but we can't reliably. */
3781 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3782 {
3783 if (debug_infrun)
3784 fprintf_unfiltered (gdb_stdlog,
3785 "infrun: stepping_past_"
3786 "singlestep_breakpoint\n");
3787 /* Pull the single step breakpoints out of the target. */
3788 remove_single_step_breakpoints ();
3789 singlestep_breakpoints_inserted_p = 0;
3790
3791 ecs->random_signal = 0;
3792 ecs->event_thread->control.trap_expected = 0;
3793
3794 context_switch (saved_singlestep_ptid);
3795 if (deprecated_context_hook)
3796 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3797
3798 resume (1, TARGET_SIGNAL_0);
3799 prepare_to_wait (ecs);
3800 return;
3801 }
3802 }
3803
3804 if (!ptid_equal (deferred_step_ptid, null_ptid))
3805 {
3806 /* In non-stop mode, there's never a deferred_step_ptid set. */
3807 gdb_assert (!non_stop);
3808
3809 /* If we stopped for some other reason than single-stepping, ignore
3810 the fact that we were supposed to switch back. */
3811 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3812 {
3813 if (debug_infrun)
3814 fprintf_unfiltered (gdb_stdlog,
3815 "infrun: handling deferred step\n");
3816
3817 /* Pull the single step breakpoints out of the target. */
3818 if (singlestep_breakpoints_inserted_p)
3819 {
3820 remove_single_step_breakpoints ();
3821 singlestep_breakpoints_inserted_p = 0;
3822 }
3823
3824 ecs->event_thread->control.trap_expected = 0;
3825
3826 /* Note: We do not call context_switch at this point, as the
3827 context is already set up for stepping the original thread. */
3828 switch_to_thread (deferred_step_ptid);
3829 deferred_step_ptid = null_ptid;
3830 /* Suppress spurious "Switching to ..." message. */
3831 previous_inferior_ptid = inferior_ptid;
3832
3833 resume (1, TARGET_SIGNAL_0);
3834 prepare_to_wait (ecs);
3835 return;
3836 }
3837
3838 deferred_step_ptid = null_ptid;
3839 }
3840
3841 /* See if a thread hit a thread-specific breakpoint that was meant for
3842 another thread. If so, then step that thread past the breakpoint,
3843 and continue it. */
3844
3845 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3846 {
3847 int thread_hop_needed = 0;
3848 struct address_space *aspace =
3849 get_regcache_aspace (get_thread_regcache (ecs->ptid));
3850
3851 /* Check if a regular breakpoint has been hit before checking
3852 for a potential single step breakpoint. Otherwise, GDB will
3853 not see this breakpoint hit when stepping onto breakpoints. */
3854 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3855 {
3856 ecs->random_signal = 0;
3857 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3858 thread_hop_needed = 1;
3859 }
3860 else if (singlestep_breakpoints_inserted_p)
3861 {
3862 /* We have not context switched yet, so this should be true
3863 no matter which thread hit the singlestep breakpoint. */
3864 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3865 if (debug_infrun)
3866 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3867 "trap for %s\n",
3868 target_pid_to_str (ecs->ptid));
3869
3870 ecs->random_signal = 0;
3871 /* The call to in_thread_list is necessary because PTIDs sometimes
3872 change when we go from single-threaded to multi-threaded. If
3873 the singlestep_ptid is still in the list, assume that it is
3874 really different from ecs->ptid. */
3875 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3876 && in_thread_list (singlestep_ptid))
3877 {
3878 /* If the PC of the thread we were trying to single-step
3879 has changed, discard this event (which we were going
3880 to ignore anyway), and pretend we saw that thread
3881 trap. This prevents us continuously moving the
3882 single-step breakpoint forward, one instruction at a
3883 time. If the PC has changed, then the thread we were
3884 trying to single-step has trapped or been signalled,
3885 but the event has not been reported to GDB yet.
3886
3887 There might be some cases where this loses signal
3888 information, if a signal has arrived at exactly the
3889 same time that the PC changed, but this is the best
3890 we can do with the information available. Perhaps we
3891 should arrange to report all events for all threads
3892 when they stop, or to re-poll the remote looking for
3893 this particular thread (i.e. temporarily enable
3894 schedlock). */
3895
3896 CORE_ADDR new_singlestep_pc
3897 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3898
3899 if (new_singlestep_pc != singlestep_pc)
3900 {
3901 enum target_signal stop_signal;
3902
3903 if (debug_infrun)
3904 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3905 " but expected thread advanced also\n");
3906
3907 /* The current context still belongs to
3908 singlestep_ptid. Don't swap here, since that's
3909 the context we want to use. Just fudge our
3910 state and continue. */
3911 stop_signal = ecs->event_thread->suspend.stop_signal;
3912 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3913 ecs->ptid = singlestep_ptid;
3914 ecs->event_thread = find_thread_ptid (ecs->ptid);
3915 ecs->event_thread->suspend.stop_signal = stop_signal;
3916 stop_pc = new_singlestep_pc;
3917 }
3918 else
3919 {
3920 if (debug_infrun)
3921 fprintf_unfiltered (gdb_stdlog,
3922 "infrun: unexpected thread\n");
3923
3924 thread_hop_needed = 1;
3925 stepping_past_singlestep_breakpoint = 1;
3926 saved_singlestep_ptid = singlestep_ptid;
3927 }
3928 }
3929 }
3930
3931 if (thread_hop_needed)
3932 {
3933 struct regcache *thread_regcache;
3934 int remove_status = 0;
3935
3936 if (debug_infrun)
3937 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
3938
3939 /* Switch context before touching inferior memory, the
3940 previous thread may have exited. */
3941 if (!ptid_equal (inferior_ptid, ecs->ptid))
3942 context_switch (ecs->ptid);
3943
3944 /* Saw a breakpoint, but it was hit by the wrong thread.
3945 Just continue. */
3946
3947 if (singlestep_breakpoints_inserted_p)
3948 {
3949 /* Pull the single step breakpoints out of the target. */
3950 remove_single_step_breakpoints ();
3951 singlestep_breakpoints_inserted_p = 0;
3952 }
3953
3954 /* If the arch can displace step, don't remove the
3955 breakpoints. */
3956 thread_regcache = get_thread_regcache (ecs->ptid);
3957 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
3958 remove_status = remove_breakpoints ();
3959
3960 /* Did we fail to remove breakpoints? If so, try
3961 to set the PC past the bp. (There's at least
3962 one situation in which we can fail to remove
3963 the bp's: On HP-UX's that use ttrace, we can't
3964 change the address space of a vforking child
3965 process until the child exits (well, okay, not
3966 then either :-) or execs. */
3967 if (remove_status != 0)
3968 error (_("Cannot step over breakpoint hit in wrong thread"));
3969 else
3970 { /* Single step */
3971 if (!non_stop)
3972 {
3973 /* Only need to require the next event from this
3974 thread in all-stop mode. */
3975 waiton_ptid = ecs->ptid;
3976 infwait_state = infwait_thread_hop_state;
3977 }
3978
3979 ecs->event_thread->stepping_over_breakpoint = 1;
3980 keep_going (ecs);
3981 return;
3982 }
3983 }
3984 else if (singlestep_breakpoints_inserted_p)
3985 {
3986 ecs->random_signal = 0;
3987 }
3988 }
3989 else
3990 ecs->random_signal = 1;
3991
3992 /* See if something interesting happened to the non-current thread. If
3993 so, then switch to that thread. */
3994 if (!ptid_equal (ecs->ptid, inferior_ptid))
3995 {
3996 if (debug_infrun)
3997 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
3998
3999 context_switch (ecs->ptid);
4000
4001 if (deprecated_context_hook)
4002 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
4003 }
4004
4005 /* At this point, get hold of the now-current thread's frame. */
4006 frame = get_current_frame ();
4007 gdbarch = get_frame_arch (frame);
4008
4009 if (singlestep_breakpoints_inserted_p)
4010 {
4011 /* Pull the single step breakpoints out of the target. */
4012 remove_single_step_breakpoints ();
4013 singlestep_breakpoints_inserted_p = 0;
4014 }
4015
4016 if (stepped_after_stopped_by_watchpoint)
4017 stopped_by_watchpoint = 0;
4018 else
4019 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4020
4021 /* If necessary, step over this watchpoint. We'll be back to display
4022 it in a moment. */
4023 if (stopped_by_watchpoint
4024 && (target_have_steppable_watchpoint
4025 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
4026 {
4027 /* At this point, we are stopped at an instruction which has
4028 attempted to write to a piece of memory under control of
4029 a watchpoint. The instruction hasn't actually executed
4030 yet. If we were to evaluate the watchpoint expression
4031 now, we would get the old value, and therefore no change
4032 would seem to have occurred.
4033
4034 In order to make watchpoints work `right', we really need
4035 to complete the memory write, and then evaluate the
4036 watchpoint expression. We do this by single-stepping the
4037 target.
4038
4039 It may not be necessary to disable the watchpoint to stop over
4040 it. For example, the PA can (with some kernel cooperation)
4041 single step over a watchpoint without disabling the watchpoint.
4042
4043 It is far more common to need to disable a watchpoint to step
4044 the inferior over it. If we have non-steppable watchpoints,
4045 we must disable the current watchpoint; it's simplest to
4046 disable all watchpoints and breakpoints. */
4047 int hw_step = 1;
4048
4049 if (!target_have_steppable_watchpoint)
4050 {
4051 remove_breakpoints ();
4052 /* See comment in resume why we need to stop bypassing signals
4053 while breakpoints have been removed. */
4054 target_pass_signals (0, NULL);
4055 }
4056 /* Single step */
4057 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
4058 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
4059 waiton_ptid = ecs->ptid;
4060 if (target_have_steppable_watchpoint)
4061 infwait_state = infwait_step_watch_state;
4062 else
4063 infwait_state = infwait_nonstep_watch_state;
4064 prepare_to_wait (ecs);
4065 return;
4066 }
4067
4068 clear_stop_func (ecs);
4069 ecs->event_thread->stepping_over_breakpoint = 0;
4070 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4071 ecs->event_thread->control.stop_step = 0;
4072 stop_print_frame = 1;
4073 ecs->random_signal = 0;
4074 stopped_by_random_signal = 0;
4075
4076 /* Hide inlined functions starting here, unless we just performed stepi or
4077 nexti. After stepi and nexti, always show the innermost frame (not any
4078 inline function call sites). */
4079 if (ecs->event_thread->control.step_range_end != 1)
4080 {
4081 struct address_space *aspace =
4082 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4083
4084 /* skip_inline_frames is expensive, so we avoid it if we can
4085 determine that the address is one where functions cannot have
4086 been inlined. This improves performance with inferiors that
4087 load a lot of shared libraries, because the solib event
4088 breakpoint is defined as the address of a function (i.e. not
4089 inline). Note that we have to check the previous PC as well
4090 as the current one to catch cases when we have just
4091 single-stepped off a breakpoint prior to reinstating it.
4092 Note that we're assuming that the code we single-step to is
4093 not inline, but that's not definitive: there's nothing
4094 preventing the event breakpoint function from containing
4095 inlined code, and the single-step ending up there. If the
4096 user had set a breakpoint on that inlined code, the missing
4097 skip_inline_frames call would break things. Fortunately
4098 that's an extremely unlikely scenario. */
4099 if (!pc_at_non_inline_function (aspace, stop_pc)
4100 && !(ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4101 && ecs->event_thread->control.trap_expected
4102 && pc_at_non_inline_function (aspace,
4103 ecs->event_thread->prev_pc)))
4104 skip_inline_frames (ecs->ptid);
4105 }
4106
4107 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4108 && ecs->event_thread->control.trap_expected
4109 && gdbarch_single_step_through_delay_p (gdbarch)
4110 && currently_stepping (ecs->event_thread))
4111 {
4112 /* We're trying to step off a breakpoint. Turns out that we're
4113 also on an instruction that needs to be stepped multiple
4114 times before it's been fully executing. E.g., architectures
4115 with a delay slot. It needs to be stepped twice, once for
4116 the instruction and once for the delay slot. */
4117 int step_through_delay
4118 = gdbarch_single_step_through_delay (gdbarch, frame);
4119
4120 if (debug_infrun && step_through_delay)
4121 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4122 if (ecs->event_thread->control.step_range_end == 0
4123 && step_through_delay)
4124 {
4125 /* The user issued a continue when stopped at a breakpoint.
4126 Set up for another trap and get out of here. */
4127 ecs->event_thread->stepping_over_breakpoint = 1;
4128 keep_going (ecs);
4129 return;
4130 }
4131 else if (step_through_delay)
4132 {
4133 /* The user issued a step when stopped at a breakpoint.
4134 Maybe we should stop, maybe we should not - the delay
4135 slot *might* correspond to a line of source. In any
4136 case, don't decide that here, just set
4137 ecs->stepping_over_breakpoint, making sure we
4138 single-step again before breakpoints are re-inserted. */
4139 ecs->event_thread->stepping_over_breakpoint = 1;
4140 }
4141 }
4142
4143 /* Look at the cause of the stop, and decide what to do.
4144 The alternatives are:
4145 1) stop_stepping and return; to really stop and return to the debugger,
4146 2) keep_going and return to start up again
4147 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
4148 3) set ecs->random_signal to 1, and the decision between 1 and 2
4149 will be made according to the signal handling tables. */
4150
4151 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4152 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
4153 || stop_soon == STOP_QUIETLY_REMOTE)
4154 {
4155 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4156 && stop_after_trap)
4157 {
4158 if (debug_infrun)
4159 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4160 stop_print_frame = 0;
4161 stop_stepping (ecs);
4162 return;
4163 }
4164
4165 /* This is originated from start_remote(), start_inferior() and
4166 shared libraries hook functions. */
4167 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4168 {
4169 if (debug_infrun)
4170 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4171 stop_stepping (ecs);
4172 return;
4173 }
4174
4175 /* This originates from attach_command(). We need to overwrite
4176 the stop_signal here, because some kernels don't ignore a
4177 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4178 See more comments in inferior.h. On the other hand, if we
4179 get a non-SIGSTOP, report it to the user - assume the backend
4180 will handle the SIGSTOP if it should show up later.
4181
4182 Also consider that the attach is complete when we see a
4183 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4184 target extended-remote report it instead of a SIGSTOP
4185 (e.g. gdbserver). We already rely on SIGTRAP being our
4186 signal, so this is no exception.
4187
4188 Also consider that the attach is complete when we see a
4189 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4190 the target to stop all threads of the inferior, in case the
4191 low level attach operation doesn't stop them implicitly. If
4192 they weren't stopped implicitly, then the stub will report a
4193 TARGET_SIGNAL_0, meaning: stopped for no particular reason
4194 other than GDB's request. */
4195 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4196 && (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_STOP
4197 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4198 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_0))
4199 {
4200 stop_stepping (ecs);
4201 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
4202 return;
4203 }
4204
4205 /* See if there is a breakpoint at the current PC. */
4206 ecs->event_thread->control.stop_bpstat
4207 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4208 stop_pc, ecs->ptid);
4209
4210 /* Following in case break condition called a
4211 function. */
4212 stop_print_frame = 1;
4213
4214 /* This is where we handle "moribund" watchpoints. Unlike
4215 software breakpoints traps, hardware watchpoint traps are
4216 always distinguishable from random traps. If no high-level
4217 watchpoint is associated with the reported stop data address
4218 anymore, then the bpstat does not explain the signal ---
4219 simply make sure to ignore it if `stopped_by_watchpoint' is
4220 set. */
4221
4222 if (debug_infrun
4223 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4224 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4225 && stopped_by_watchpoint)
4226 fprintf_unfiltered (gdb_stdlog,
4227 "infrun: no user watchpoint explains "
4228 "watchpoint SIGTRAP, ignoring\n");
4229
4230 /* NOTE: cagney/2003-03-29: These two checks for a random signal
4231 at one stage in the past included checks for an inferior
4232 function call's call dummy's return breakpoint. The original
4233 comment, that went with the test, read:
4234
4235 ``End of a stack dummy. Some systems (e.g. Sony news) give
4236 another signal besides SIGTRAP, so check here as well as
4237 above.''
4238
4239 If someone ever tries to get call dummys on a
4240 non-executable stack to work (where the target would stop
4241 with something like a SIGSEGV), then those tests might need
4242 to be re-instated. Given, however, that the tests were only
4243 enabled when momentary breakpoints were not being used, I
4244 suspect that it won't be the case.
4245
4246 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4247 be necessary for call dummies on a non-executable stack on
4248 SPARC. */
4249
4250 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
4251 ecs->random_signal
4252 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4253 || stopped_by_watchpoint
4254 || ecs->event_thread->control.trap_expected
4255 || (ecs->event_thread->control.step_range_end
4256 && (ecs->event_thread->control.step_resume_breakpoint
4257 == NULL)));
4258 else
4259 {
4260 ecs->random_signal = !bpstat_explains_signal
4261 (ecs->event_thread->control.stop_bpstat);
4262 if (!ecs->random_signal)
4263 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
4264 }
4265 }
4266
4267 /* When we reach this point, we've pretty much decided
4268 that the reason for stopping must've been a random
4269 (unexpected) signal. */
4270
4271 else
4272 ecs->random_signal = 1;
4273
4274 process_event_stop_test:
4275
4276 /* Re-fetch current thread's frame in case we did a
4277 "goto process_event_stop_test" above. */
4278 frame = get_current_frame ();
4279 gdbarch = get_frame_arch (frame);
4280
4281 /* For the program's own signals, act according to
4282 the signal handling tables. */
4283
4284 if (ecs->random_signal)
4285 {
4286 /* Signal not for debugging purposes. */
4287 int printed = 0;
4288 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4289
4290 if (debug_infrun)
4291 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
4292 ecs->event_thread->suspend.stop_signal);
4293
4294 stopped_by_random_signal = 1;
4295
4296 if (signal_print[ecs->event_thread->suspend.stop_signal])
4297 {
4298 printed = 1;
4299 target_terminal_ours_for_output ();
4300 print_signal_received_reason
4301 (ecs->event_thread->suspend.stop_signal);
4302 }
4303 /* Always stop on signals if we're either just gaining control
4304 of the program, or the user explicitly requested this thread
4305 to remain stopped. */
4306 if (stop_soon != NO_STOP_QUIETLY
4307 || ecs->event_thread->stop_requested
4308 || (!inf->detaching
4309 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4310 {
4311 stop_stepping (ecs);
4312 return;
4313 }
4314 /* If not going to stop, give terminal back
4315 if we took it away. */
4316 else if (printed)
4317 target_terminal_inferior ();
4318
4319 /* Clear the signal if it should not be passed. */
4320 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4321 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
4322
4323 if (ecs->event_thread->prev_pc == stop_pc
4324 && ecs->event_thread->control.trap_expected
4325 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4326 {
4327 /* We were just starting a new sequence, attempting to
4328 single-step off of a breakpoint and expecting a SIGTRAP.
4329 Instead this signal arrives. This signal will take us out
4330 of the stepping range so GDB needs to remember to, when
4331 the signal handler returns, resume stepping off that
4332 breakpoint. */
4333 /* To simplify things, "continue" is forced to use the same
4334 code paths as single-step - set a breakpoint at the
4335 signal return address and then, once hit, step off that
4336 breakpoint. */
4337 if (debug_infrun)
4338 fprintf_unfiltered (gdb_stdlog,
4339 "infrun: signal arrived while stepping over "
4340 "breakpoint\n");
4341
4342 insert_hp_step_resume_breakpoint_at_frame (frame);
4343 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4344 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4345 ecs->event_thread->control.trap_expected = 0;
4346 keep_going (ecs);
4347 return;
4348 }
4349
4350 if (ecs->event_thread->control.step_range_end != 0
4351 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_0
4352 && (ecs->event_thread->control.step_range_start <= stop_pc
4353 && stop_pc < ecs->event_thread->control.step_range_end)
4354 && frame_id_eq (get_stack_frame_id (frame),
4355 ecs->event_thread->control.step_stack_frame_id)
4356 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4357 {
4358 /* The inferior is about to take a signal that will take it
4359 out of the single step range. Set a breakpoint at the
4360 current PC (which is presumably where the signal handler
4361 will eventually return) and then allow the inferior to
4362 run free.
4363
4364 Note that this is only needed for a signal delivered
4365 while in the single-step range. Nested signals aren't a
4366 problem as they eventually all return. */
4367 if (debug_infrun)
4368 fprintf_unfiltered (gdb_stdlog,
4369 "infrun: signal may take us out of "
4370 "single-step range\n");
4371
4372 insert_hp_step_resume_breakpoint_at_frame (frame);
4373 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4374 ecs->event_thread->control.trap_expected = 0;
4375 keep_going (ecs);
4376 return;
4377 }
4378
4379 /* Note: step_resume_breakpoint may be non-NULL. This occures
4380 when either there's a nested signal, or when there's a
4381 pending signal enabled just as the signal handler returns
4382 (leaving the inferior at the step-resume-breakpoint without
4383 actually executing it). Either way continue until the
4384 breakpoint is really hit. */
4385 keep_going (ecs);
4386 return;
4387 }
4388
4389 /* Handle cases caused by hitting a breakpoint. */
4390 {
4391 CORE_ADDR jmp_buf_pc;
4392 struct bpstat_what what;
4393
4394 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4395
4396 if (what.call_dummy)
4397 {
4398 stop_stack_dummy = what.call_dummy;
4399 }
4400
4401 /* If we hit an internal event that triggers symbol changes, the
4402 current frame will be invalidated within bpstat_what (e.g., if
4403 we hit an internal solib event). Re-fetch it. */
4404 frame = get_current_frame ();
4405 gdbarch = get_frame_arch (frame);
4406
4407 switch (what.main_action)
4408 {
4409 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4410 /* If we hit the breakpoint at longjmp while stepping, we
4411 install a momentary breakpoint at the target of the
4412 jmp_buf. */
4413
4414 if (debug_infrun)
4415 fprintf_unfiltered (gdb_stdlog,
4416 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4417
4418 ecs->event_thread->stepping_over_breakpoint = 1;
4419
4420 if (what.is_longjmp)
4421 {
4422 if (!gdbarch_get_longjmp_target_p (gdbarch)
4423 || !gdbarch_get_longjmp_target (gdbarch,
4424 frame, &jmp_buf_pc))
4425 {
4426 if (debug_infrun)
4427 fprintf_unfiltered (gdb_stdlog,
4428 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4429 "(!gdbarch_get_longjmp_target)\n");
4430 keep_going (ecs);
4431 return;
4432 }
4433
4434 /* We're going to replace the current step-resume breakpoint
4435 with a longjmp-resume breakpoint. */
4436 delete_step_resume_breakpoint (ecs->event_thread);
4437
4438 /* Insert a breakpoint at resume address. */
4439 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4440 }
4441 else
4442 {
4443 struct symbol *func = get_frame_function (frame);
4444
4445 if (func)
4446 check_exception_resume (ecs, frame, func);
4447 }
4448 keep_going (ecs);
4449 return;
4450
4451 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4452 if (debug_infrun)
4453 fprintf_unfiltered (gdb_stdlog,
4454 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4455
4456 if (what.is_longjmp)
4457 {
4458 gdb_assert (ecs->event_thread->control.step_resume_breakpoint
4459 != NULL);
4460 delete_step_resume_breakpoint (ecs->event_thread);
4461 }
4462 else
4463 {
4464 /* There are several cases to consider.
4465
4466 1. The initiating frame no longer exists. In this case
4467 we must stop, because the exception has gone too far.
4468
4469 2. The initiating frame exists, and is the same as the
4470 current frame. We stop, because the exception has been
4471 caught.
4472
4473 3. The initiating frame exists and is different from
4474 the current frame. This means the exception has been
4475 caught beneath the initiating frame, so keep going. */
4476 struct frame_info *init_frame
4477 = frame_find_by_id (ecs->event_thread->initiating_frame);
4478
4479 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4480 != NULL);
4481 delete_exception_resume_breakpoint (ecs->event_thread);
4482
4483 if (init_frame)
4484 {
4485 struct frame_id current_id
4486 = get_frame_id (get_current_frame ());
4487 if (frame_id_eq (current_id,
4488 ecs->event_thread->initiating_frame))
4489 {
4490 /* Case 2. Fall through. */
4491 }
4492 else
4493 {
4494 /* Case 3. */
4495 keep_going (ecs);
4496 return;
4497 }
4498 }
4499
4500 /* For Cases 1 and 2, remove the step-resume breakpoint,
4501 if it exists. */
4502 delete_step_resume_breakpoint (ecs->event_thread);
4503 }
4504
4505 ecs->event_thread->control.stop_step = 1;
4506 print_end_stepping_range_reason ();
4507 stop_stepping (ecs);
4508 return;
4509
4510 case BPSTAT_WHAT_SINGLE:
4511 if (debug_infrun)
4512 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4513 ecs->event_thread->stepping_over_breakpoint = 1;
4514 /* Still need to check other stuff, at least the case
4515 where we are stepping and step out of the right range. */
4516 break;
4517
4518 case BPSTAT_WHAT_STEP_RESUME:
4519 if (debug_infrun)
4520 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4521
4522 delete_step_resume_breakpoint (ecs->event_thread);
4523 if (ecs->event_thread->control.proceed_to_finish
4524 && execution_direction == EXEC_REVERSE)
4525 {
4526 struct thread_info *tp = ecs->event_thread;
4527
4528 /* We are finishing a function in reverse, and just hit
4529 the step-resume breakpoint at the start address of the
4530 function, and we're almost there -- just need to back
4531 up by one more single-step, which should take us back
4532 to the function call. */
4533 tp->control.step_range_start = tp->control.step_range_end = 1;
4534 keep_going (ecs);
4535 return;
4536 }
4537 fill_in_stop_func (gdbarch, ecs);
4538 if (stop_pc == ecs->stop_func_start
4539 && execution_direction == EXEC_REVERSE)
4540 {
4541 /* We are stepping over a function call in reverse, and
4542 just hit the step-resume breakpoint at the start
4543 address of the function. Go back to single-stepping,
4544 which should take us back to the function call. */
4545 ecs->event_thread->stepping_over_breakpoint = 1;
4546 keep_going (ecs);
4547 return;
4548 }
4549 break;
4550
4551 case BPSTAT_WHAT_STOP_NOISY:
4552 if (debug_infrun)
4553 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4554 stop_print_frame = 1;
4555
4556 /* We are about to nuke the step_resume_breakpointt via the
4557 cleanup chain, so no need to worry about it here. */
4558
4559 stop_stepping (ecs);
4560 return;
4561
4562 case BPSTAT_WHAT_STOP_SILENT:
4563 if (debug_infrun)
4564 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4565 stop_print_frame = 0;
4566
4567 /* We are about to nuke the step_resume_breakpoin via the
4568 cleanup chain, so no need to worry about it here. */
4569
4570 stop_stepping (ecs);
4571 return;
4572
4573 case BPSTAT_WHAT_HP_STEP_RESUME:
4574 if (debug_infrun)
4575 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4576
4577 delete_step_resume_breakpoint (ecs->event_thread);
4578 if (ecs->event_thread->step_after_step_resume_breakpoint)
4579 {
4580 /* Back when the step-resume breakpoint was inserted, we
4581 were trying to single-step off a breakpoint. Go back
4582 to doing that. */
4583 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4584 ecs->event_thread->stepping_over_breakpoint = 1;
4585 keep_going (ecs);
4586 return;
4587 }
4588 break;
4589
4590 case BPSTAT_WHAT_KEEP_CHECKING:
4591 break;
4592 }
4593 }
4594
4595 /* We come here if we hit a breakpoint but should not
4596 stop for it. Possibly we also were stepping
4597 and should stop for that. So fall through and
4598 test for stepping. But, if not stepping,
4599 do not stop. */
4600
4601 /* In all-stop mode, if we're currently stepping but have stopped in
4602 some other thread, we need to switch back to the stepped thread. */
4603 if (!non_stop)
4604 {
4605 struct thread_info *tp;
4606
4607 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
4608 ecs->event_thread);
4609 if (tp)
4610 {
4611 /* However, if the current thread is blocked on some internal
4612 breakpoint, and we simply need to step over that breakpoint
4613 to get it going again, do that first. */
4614 if ((ecs->event_thread->control.trap_expected
4615 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
4616 || ecs->event_thread->stepping_over_breakpoint)
4617 {
4618 keep_going (ecs);
4619 return;
4620 }
4621
4622 /* If the stepping thread exited, then don't try to switch
4623 back and resume it, which could fail in several different
4624 ways depending on the target. Instead, just keep going.
4625
4626 We can find a stepping dead thread in the thread list in
4627 two cases:
4628
4629 - The target supports thread exit events, and when the
4630 target tries to delete the thread from the thread list,
4631 inferior_ptid pointed at the exiting thread. In such
4632 case, calling delete_thread does not really remove the
4633 thread from the list; instead, the thread is left listed,
4634 with 'exited' state.
4635
4636 - The target's debug interface does not support thread
4637 exit events, and so we have no idea whatsoever if the
4638 previously stepping thread is still alive. For that
4639 reason, we need to synchronously query the target
4640 now. */
4641 if (is_exited (tp->ptid)
4642 || !target_thread_alive (tp->ptid))
4643 {
4644 if (debug_infrun)
4645 fprintf_unfiltered (gdb_stdlog,
4646 "infrun: not switching back to "
4647 "stepped thread, it has vanished\n");
4648
4649 delete_thread (tp->ptid);
4650 keep_going (ecs);
4651 return;
4652 }
4653
4654 /* Otherwise, we no longer expect a trap in the current thread.
4655 Clear the trap_expected flag before switching back -- this is
4656 what keep_going would do as well, if we called it. */
4657 ecs->event_thread->control.trap_expected = 0;
4658
4659 if (debug_infrun)
4660 fprintf_unfiltered (gdb_stdlog,
4661 "infrun: switching back to stepped thread\n");
4662
4663 ecs->event_thread = tp;
4664 ecs->ptid = tp->ptid;
4665 context_switch (ecs->ptid);
4666 keep_going (ecs);
4667 return;
4668 }
4669 }
4670
4671 if (ecs->event_thread->control.step_resume_breakpoint)
4672 {
4673 if (debug_infrun)
4674 fprintf_unfiltered (gdb_stdlog,
4675 "infrun: step-resume breakpoint is inserted\n");
4676
4677 /* Having a step-resume breakpoint overrides anything
4678 else having to do with stepping commands until
4679 that breakpoint is reached. */
4680 keep_going (ecs);
4681 return;
4682 }
4683
4684 if (ecs->event_thread->control.step_range_end == 0)
4685 {
4686 if (debug_infrun)
4687 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4688 /* Likewise if we aren't even stepping. */
4689 keep_going (ecs);
4690 return;
4691 }
4692
4693 /* Re-fetch current thread's frame in case the code above caused
4694 the frame cache to be re-initialized, making our FRAME variable
4695 a dangling pointer. */
4696 frame = get_current_frame ();
4697 gdbarch = get_frame_arch (frame);
4698 fill_in_stop_func (gdbarch, ecs);
4699
4700 /* If stepping through a line, keep going if still within it.
4701
4702 Note that step_range_end is the address of the first instruction
4703 beyond the step range, and NOT the address of the last instruction
4704 within it!
4705
4706 Note also that during reverse execution, we may be stepping
4707 through a function epilogue and therefore must detect when
4708 the current-frame changes in the middle of a line. */
4709
4710 if (stop_pc >= ecs->event_thread->control.step_range_start
4711 && stop_pc < ecs->event_thread->control.step_range_end
4712 && (execution_direction != EXEC_REVERSE
4713 || frame_id_eq (get_frame_id (frame),
4714 ecs->event_thread->control.step_frame_id)))
4715 {
4716 if (debug_infrun)
4717 fprintf_unfiltered
4718 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4719 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4720 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4721
4722 /* When stepping backward, stop at beginning of line range
4723 (unless it's the function entry point, in which case
4724 keep going back to the call point). */
4725 if (stop_pc == ecs->event_thread->control.step_range_start
4726 && stop_pc != ecs->stop_func_start
4727 && execution_direction == EXEC_REVERSE)
4728 {
4729 ecs->event_thread->control.stop_step = 1;
4730 print_end_stepping_range_reason ();
4731 stop_stepping (ecs);
4732 }
4733 else
4734 keep_going (ecs);
4735
4736 return;
4737 }
4738
4739 /* We stepped out of the stepping range. */
4740
4741 /* If we are stepping at the source level and entered the runtime
4742 loader dynamic symbol resolution code...
4743
4744 EXEC_FORWARD: we keep on single stepping until we exit the run
4745 time loader code and reach the callee's address.
4746
4747 EXEC_REVERSE: we've already executed the callee (backward), and
4748 the runtime loader code is handled just like any other
4749 undebuggable function call. Now we need only keep stepping
4750 backward through the trampoline code, and that's handled further
4751 down, so there is nothing for us to do here. */
4752
4753 if (execution_direction != EXEC_REVERSE
4754 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4755 && in_solib_dynsym_resolve_code (stop_pc))
4756 {
4757 CORE_ADDR pc_after_resolver =
4758 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4759
4760 if (debug_infrun)
4761 fprintf_unfiltered (gdb_stdlog,
4762 "infrun: stepped into dynsym resolve code\n");
4763
4764 if (pc_after_resolver)
4765 {
4766 /* Set up a step-resume breakpoint at the address
4767 indicated by SKIP_SOLIB_RESOLVER. */
4768 struct symtab_and_line sr_sal;
4769
4770 init_sal (&sr_sal);
4771 sr_sal.pc = pc_after_resolver;
4772 sr_sal.pspace = get_frame_program_space (frame);
4773
4774 insert_step_resume_breakpoint_at_sal (gdbarch,
4775 sr_sal, null_frame_id);
4776 }
4777
4778 keep_going (ecs);
4779 return;
4780 }
4781
4782 if (ecs->event_thread->control.step_range_end != 1
4783 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4784 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4785 && get_frame_type (frame) == SIGTRAMP_FRAME)
4786 {
4787 if (debug_infrun)
4788 fprintf_unfiltered (gdb_stdlog,
4789 "infrun: stepped into signal trampoline\n");
4790 /* The inferior, while doing a "step" or "next", has ended up in
4791 a signal trampoline (either by a signal being delivered or by
4792 the signal handler returning). Just single-step until the
4793 inferior leaves the trampoline (either by calling the handler
4794 or returning). */
4795 keep_going (ecs);
4796 return;
4797 }
4798
4799 /* Check for subroutine calls. The check for the current frame
4800 equalling the step ID is not necessary - the check of the
4801 previous frame's ID is sufficient - but it is a common case and
4802 cheaper than checking the previous frame's ID.
4803
4804 NOTE: frame_id_eq will never report two invalid frame IDs as
4805 being equal, so to get into this block, both the current and
4806 previous frame must have valid frame IDs. */
4807 /* The outer_frame_id check is a heuristic to detect stepping
4808 through startup code. If we step over an instruction which
4809 sets the stack pointer from an invalid value to a valid value,
4810 we may detect that as a subroutine call from the mythical
4811 "outermost" function. This could be fixed by marking
4812 outermost frames as !stack_p,code_p,special_p. Then the
4813 initial outermost frame, before sp was valid, would
4814 have code_addr == &_start. See the comment in frame_id_eq
4815 for more. */
4816 if (!frame_id_eq (get_stack_frame_id (frame),
4817 ecs->event_thread->control.step_stack_frame_id)
4818 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4819 ecs->event_thread->control.step_stack_frame_id)
4820 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4821 outer_frame_id)
4822 || step_start_function != find_pc_function (stop_pc))))
4823 {
4824 CORE_ADDR real_stop_pc;
4825
4826 if (debug_infrun)
4827 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4828
4829 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4830 || ((ecs->event_thread->control.step_range_end == 1)
4831 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4832 ecs->stop_func_start)))
4833 {
4834 /* I presume that step_over_calls is only 0 when we're
4835 supposed to be stepping at the assembly language level
4836 ("stepi"). Just stop. */
4837 /* Also, maybe we just did a "nexti" inside a prolog, so we
4838 thought it was a subroutine call but it was not. Stop as
4839 well. FENN */
4840 /* And this works the same backward as frontward. MVS */
4841 ecs->event_thread->control.stop_step = 1;
4842 print_end_stepping_range_reason ();
4843 stop_stepping (ecs);
4844 return;
4845 }
4846
4847 /* Reverse stepping through solib trampolines. */
4848
4849 if (execution_direction == EXEC_REVERSE
4850 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
4851 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4852 || (ecs->stop_func_start == 0
4853 && in_solib_dynsym_resolve_code (stop_pc))))
4854 {
4855 /* Any solib trampoline code can be handled in reverse
4856 by simply continuing to single-step. We have already
4857 executed the solib function (backwards), and a few
4858 steps will take us back through the trampoline to the
4859 caller. */
4860 keep_going (ecs);
4861 return;
4862 }
4863
4864 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4865 {
4866 /* We're doing a "next".
4867
4868 Normal (forward) execution: set a breakpoint at the
4869 callee's return address (the address at which the caller
4870 will resume).
4871
4872 Reverse (backward) execution. set the step-resume
4873 breakpoint at the start of the function that we just
4874 stepped into (backwards), and continue to there. When we
4875 get there, we'll need to single-step back to the caller. */
4876
4877 if (execution_direction == EXEC_REVERSE)
4878 {
4879 struct symtab_and_line sr_sal;
4880
4881 /* Normal function call return (static or dynamic). */
4882 init_sal (&sr_sal);
4883 sr_sal.pc = ecs->stop_func_start;
4884 sr_sal.pspace = get_frame_program_space (frame);
4885 insert_step_resume_breakpoint_at_sal (gdbarch,
4886 sr_sal, null_frame_id);
4887 }
4888 else
4889 insert_step_resume_breakpoint_at_caller (frame);
4890
4891 keep_going (ecs);
4892 return;
4893 }
4894
4895 /* If we are in a function call trampoline (a stub between the
4896 calling routine and the real function), locate the real
4897 function. That's what tells us (a) whether we want to step
4898 into it at all, and (b) what prologue we want to run to the
4899 end of, if we do step into it. */
4900 real_stop_pc = skip_language_trampoline (frame, stop_pc);
4901 if (real_stop_pc == 0)
4902 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4903 if (real_stop_pc != 0)
4904 ecs->stop_func_start = real_stop_pc;
4905
4906 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4907 {
4908 struct symtab_and_line sr_sal;
4909
4910 init_sal (&sr_sal);
4911 sr_sal.pc = ecs->stop_func_start;
4912 sr_sal.pspace = get_frame_program_space (frame);
4913
4914 insert_step_resume_breakpoint_at_sal (gdbarch,
4915 sr_sal, null_frame_id);
4916 keep_going (ecs);
4917 return;
4918 }
4919
4920 /* If we have line number information for the function we are
4921 thinking of stepping into and the function isn't on the skip
4922 list, step into it.
4923
4924 If there are several symtabs at that PC (e.g. with include
4925 files), just want to know whether *any* of them have line
4926 numbers. find_pc_line handles this. */
4927 {
4928 struct symtab_and_line tmp_sal;
4929
4930 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4931 if (tmp_sal.line != 0 &&
4932 !function_pc_is_marked_for_skip (ecs->stop_func_start))
4933 {
4934 if (execution_direction == EXEC_REVERSE)
4935 handle_step_into_function_backward (gdbarch, ecs);
4936 else
4937 handle_step_into_function (gdbarch, ecs);
4938 return;
4939 }
4940 }
4941
4942 /* If we have no line number and the step-stop-if-no-debug is
4943 set, we stop the step so that the user has a chance to switch
4944 in assembly mode. */
4945 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4946 && step_stop_if_no_debug)
4947 {
4948 ecs->event_thread->control.stop_step = 1;
4949 print_end_stepping_range_reason ();
4950 stop_stepping (ecs);
4951 return;
4952 }
4953
4954 if (execution_direction == EXEC_REVERSE)
4955 {
4956 /* Set a breakpoint at callee's start address.
4957 From there we can step once and be back in the caller. */
4958 struct symtab_and_line sr_sal;
4959
4960 init_sal (&sr_sal);
4961 sr_sal.pc = ecs->stop_func_start;
4962 sr_sal.pspace = get_frame_program_space (frame);
4963 insert_step_resume_breakpoint_at_sal (gdbarch,
4964 sr_sal, null_frame_id);
4965 }
4966 else
4967 /* Set a breakpoint at callee's return address (the address
4968 at which the caller will resume). */
4969 insert_step_resume_breakpoint_at_caller (frame);
4970
4971 keep_going (ecs);
4972 return;
4973 }
4974
4975 /* Reverse stepping through solib trampolines. */
4976
4977 if (execution_direction == EXEC_REVERSE
4978 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4979 {
4980 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4981 || (ecs->stop_func_start == 0
4982 && in_solib_dynsym_resolve_code (stop_pc)))
4983 {
4984 /* Any solib trampoline code can be handled in reverse
4985 by simply continuing to single-step. We have already
4986 executed the solib function (backwards), and a few
4987 steps will take us back through the trampoline to the
4988 caller. */
4989 keep_going (ecs);
4990 return;
4991 }
4992 else if (in_solib_dynsym_resolve_code (stop_pc))
4993 {
4994 /* Stepped backward into the solib dynsym resolver.
4995 Set a breakpoint at its start and continue, then
4996 one more step will take us out. */
4997 struct symtab_and_line sr_sal;
4998
4999 init_sal (&sr_sal);
5000 sr_sal.pc = ecs->stop_func_start;
5001 sr_sal.pspace = get_frame_program_space (frame);
5002 insert_step_resume_breakpoint_at_sal (gdbarch,
5003 sr_sal, null_frame_id);
5004 keep_going (ecs);
5005 return;
5006 }
5007 }
5008
5009 /* If we're in the return path from a shared library trampoline,
5010 we want to proceed through the trampoline when stepping. */
5011 if (gdbarch_in_solib_return_trampoline (gdbarch,
5012 stop_pc, ecs->stop_func_name))
5013 {
5014 /* Determine where this trampoline returns. */
5015 CORE_ADDR real_stop_pc;
5016
5017 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
5018
5019 if (debug_infrun)
5020 fprintf_unfiltered (gdb_stdlog,
5021 "infrun: stepped into solib return tramp\n");
5022
5023 /* Only proceed through if we know where it's going. */
5024 if (real_stop_pc)
5025 {
5026 /* And put the step-breakpoint there and go until there. */
5027 struct symtab_and_line sr_sal;
5028
5029 init_sal (&sr_sal); /* initialize to zeroes */
5030 sr_sal.pc = real_stop_pc;
5031 sr_sal.section = find_pc_overlay (sr_sal.pc);
5032 sr_sal.pspace = get_frame_program_space (frame);
5033
5034 /* Do not specify what the fp should be when we stop since
5035 on some machines the prologue is where the new fp value
5036 is established. */
5037 insert_step_resume_breakpoint_at_sal (gdbarch,
5038 sr_sal, null_frame_id);
5039
5040 /* Restart without fiddling with the step ranges or
5041 other state. */
5042 keep_going (ecs);
5043 return;
5044 }
5045 }
5046
5047 stop_pc_sal = find_pc_line (stop_pc, 0);
5048
5049 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5050 the trampoline processing logic, however, there are some trampolines
5051 that have no names, so we should do trampoline handling first. */
5052 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5053 && ecs->stop_func_name == NULL
5054 && stop_pc_sal.line == 0)
5055 {
5056 if (debug_infrun)
5057 fprintf_unfiltered (gdb_stdlog,
5058 "infrun: stepped into undebuggable function\n");
5059
5060 /* The inferior just stepped into, or returned to, an
5061 undebuggable function (where there is no debugging information
5062 and no line number corresponding to the address where the
5063 inferior stopped). Since we want to skip this kind of code,
5064 we keep going until the inferior returns from this
5065 function - unless the user has asked us not to (via
5066 set step-mode) or we no longer know how to get back
5067 to the call site. */
5068 if (step_stop_if_no_debug
5069 || !frame_id_p (frame_unwind_caller_id (frame)))
5070 {
5071 /* If we have no line number and the step-stop-if-no-debug
5072 is set, we stop the step so that the user has a chance to
5073 switch in assembly mode. */
5074 ecs->event_thread->control.stop_step = 1;
5075 print_end_stepping_range_reason ();
5076 stop_stepping (ecs);
5077 return;
5078 }
5079 else
5080 {
5081 /* Set a breakpoint at callee's return address (the address
5082 at which the caller will resume). */
5083 insert_step_resume_breakpoint_at_caller (frame);
5084 keep_going (ecs);
5085 return;
5086 }
5087 }
5088
5089 if (ecs->event_thread->control.step_range_end == 1)
5090 {
5091 /* It is stepi or nexti. We always want to stop stepping after
5092 one instruction. */
5093 if (debug_infrun)
5094 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
5095 ecs->event_thread->control.stop_step = 1;
5096 print_end_stepping_range_reason ();
5097 stop_stepping (ecs);
5098 return;
5099 }
5100
5101 if (stop_pc_sal.line == 0)
5102 {
5103 /* We have no line number information. That means to stop
5104 stepping (does this always happen right after one instruction,
5105 when we do "s" in a function with no line numbers,
5106 or can this happen as a result of a return or longjmp?). */
5107 if (debug_infrun)
5108 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
5109 ecs->event_thread->control.stop_step = 1;
5110 print_end_stepping_range_reason ();
5111 stop_stepping (ecs);
5112 return;
5113 }
5114
5115 /* Look for "calls" to inlined functions, part one. If the inline
5116 frame machinery detected some skipped call sites, we have entered
5117 a new inline function. */
5118
5119 if (frame_id_eq (get_frame_id (get_current_frame ()),
5120 ecs->event_thread->control.step_frame_id)
5121 && inline_skipped_frames (ecs->ptid))
5122 {
5123 struct symtab_and_line call_sal;
5124
5125 if (debug_infrun)
5126 fprintf_unfiltered (gdb_stdlog,
5127 "infrun: stepped into inlined function\n");
5128
5129 find_frame_sal (get_current_frame (), &call_sal);
5130
5131 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5132 {
5133 /* For "step", we're going to stop. But if the call site
5134 for this inlined function is on the same source line as
5135 we were previously stepping, go down into the function
5136 first. Otherwise stop at the call site. */
5137
5138 if (call_sal.line == ecs->event_thread->current_line
5139 && call_sal.symtab == ecs->event_thread->current_symtab)
5140 step_into_inline_frame (ecs->ptid);
5141
5142 ecs->event_thread->control.stop_step = 1;
5143 print_end_stepping_range_reason ();
5144 stop_stepping (ecs);
5145 return;
5146 }
5147 else
5148 {
5149 /* For "next", we should stop at the call site if it is on a
5150 different source line. Otherwise continue through the
5151 inlined function. */
5152 if (call_sal.line == ecs->event_thread->current_line
5153 && call_sal.symtab == ecs->event_thread->current_symtab)
5154 keep_going (ecs);
5155 else
5156 {
5157 ecs->event_thread->control.stop_step = 1;
5158 print_end_stepping_range_reason ();
5159 stop_stepping (ecs);
5160 }
5161 return;
5162 }
5163 }
5164
5165 /* Look for "calls" to inlined functions, part two. If we are still
5166 in the same real function we were stepping through, but we have
5167 to go further up to find the exact frame ID, we are stepping
5168 through a more inlined call beyond its call site. */
5169
5170 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5171 && !frame_id_eq (get_frame_id (get_current_frame ()),
5172 ecs->event_thread->control.step_frame_id)
5173 && stepped_in_from (get_current_frame (),
5174 ecs->event_thread->control.step_frame_id))
5175 {
5176 if (debug_infrun)
5177 fprintf_unfiltered (gdb_stdlog,
5178 "infrun: stepping through inlined function\n");
5179
5180 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5181 keep_going (ecs);
5182 else
5183 {
5184 ecs->event_thread->control.stop_step = 1;
5185 print_end_stepping_range_reason ();
5186 stop_stepping (ecs);
5187 }
5188 return;
5189 }
5190
5191 if ((stop_pc == stop_pc_sal.pc)
5192 && (ecs->event_thread->current_line != stop_pc_sal.line
5193 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5194 {
5195 /* We are at the start of a different line. So stop. Note that
5196 we don't stop if we step into the middle of a different line.
5197 That is said to make things like for (;;) statements work
5198 better. */
5199 if (debug_infrun)
5200 fprintf_unfiltered (gdb_stdlog,
5201 "infrun: stepped to a different line\n");
5202 ecs->event_thread->control.stop_step = 1;
5203 print_end_stepping_range_reason ();
5204 stop_stepping (ecs);
5205 return;
5206 }
5207
5208 /* We aren't done stepping.
5209
5210 Optimize by setting the stepping range to the line.
5211 (We might not be in the original line, but if we entered a
5212 new line in mid-statement, we continue stepping. This makes
5213 things like for(;;) statements work better.) */
5214
5215 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5216 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5217 set_step_info (frame, stop_pc_sal);
5218
5219 if (debug_infrun)
5220 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5221 keep_going (ecs);
5222 }
5223
5224 /* Is thread TP in the middle of single-stepping? */
5225
5226 static int
5227 currently_stepping (struct thread_info *tp)
5228 {
5229 return ((tp->control.step_range_end
5230 && tp->control.step_resume_breakpoint == NULL)
5231 || tp->control.trap_expected
5232 || bpstat_should_step ());
5233 }
5234
5235 /* Returns true if any thread *but* the one passed in "data" is in the
5236 middle of stepping or of handling a "next". */
5237
5238 static int
5239 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
5240 {
5241 if (tp == data)
5242 return 0;
5243
5244 return (tp->control.step_range_end
5245 || tp->control.trap_expected);
5246 }
5247
5248 /* Inferior has stepped into a subroutine call with source code that
5249 we should not step over. Do step to the first line of code in
5250 it. */
5251
5252 static void
5253 handle_step_into_function (struct gdbarch *gdbarch,
5254 struct execution_control_state *ecs)
5255 {
5256 struct symtab *s;
5257 struct symtab_and_line stop_func_sal, sr_sal;
5258
5259 fill_in_stop_func (gdbarch, ecs);
5260
5261 s = find_pc_symtab (stop_pc);
5262 if (s && s->language != language_asm)
5263 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5264 ecs->stop_func_start);
5265
5266 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5267 /* Use the step_resume_break to step until the end of the prologue,
5268 even if that involves jumps (as it seems to on the vax under
5269 4.2). */
5270 /* If the prologue ends in the middle of a source line, continue to
5271 the end of that source line (if it is still within the function).
5272 Otherwise, just go to end of prologue. */
5273 if (stop_func_sal.end
5274 && stop_func_sal.pc != ecs->stop_func_start
5275 && stop_func_sal.end < ecs->stop_func_end)
5276 ecs->stop_func_start = stop_func_sal.end;
5277
5278 /* Architectures which require breakpoint adjustment might not be able
5279 to place a breakpoint at the computed address. If so, the test
5280 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5281 ecs->stop_func_start to an address at which a breakpoint may be
5282 legitimately placed.
5283
5284 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5285 made, GDB will enter an infinite loop when stepping through
5286 optimized code consisting of VLIW instructions which contain
5287 subinstructions corresponding to different source lines. On
5288 FR-V, it's not permitted to place a breakpoint on any but the
5289 first subinstruction of a VLIW instruction. When a breakpoint is
5290 set, GDB will adjust the breakpoint address to the beginning of
5291 the VLIW instruction. Thus, we need to make the corresponding
5292 adjustment here when computing the stop address. */
5293
5294 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5295 {
5296 ecs->stop_func_start
5297 = gdbarch_adjust_breakpoint_address (gdbarch,
5298 ecs->stop_func_start);
5299 }
5300
5301 if (ecs->stop_func_start == stop_pc)
5302 {
5303 /* We are already there: stop now. */
5304 ecs->event_thread->control.stop_step = 1;
5305 print_end_stepping_range_reason ();
5306 stop_stepping (ecs);
5307 return;
5308 }
5309 else
5310 {
5311 /* Put the step-breakpoint there and go until there. */
5312 init_sal (&sr_sal); /* initialize to zeroes */
5313 sr_sal.pc = ecs->stop_func_start;
5314 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5315 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5316
5317 /* Do not specify what the fp should be when we stop since on
5318 some machines the prologue is where the new fp value is
5319 established. */
5320 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5321
5322 /* And make sure stepping stops right away then. */
5323 ecs->event_thread->control.step_range_end
5324 = ecs->event_thread->control.step_range_start;
5325 }
5326 keep_going (ecs);
5327 }
5328
5329 /* Inferior has stepped backward into a subroutine call with source
5330 code that we should not step over. Do step to the beginning of the
5331 last line of code in it. */
5332
5333 static void
5334 handle_step_into_function_backward (struct gdbarch *gdbarch,
5335 struct execution_control_state *ecs)
5336 {
5337 struct symtab *s;
5338 struct symtab_and_line stop_func_sal;
5339
5340 fill_in_stop_func (gdbarch, ecs);
5341
5342 s = find_pc_symtab (stop_pc);
5343 if (s && s->language != language_asm)
5344 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5345 ecs->stop_func_start);
5346
5347 stop_func_sal = find_pc_line (stop_pc, 0);
5348
5349 /* OK, we're just going to keep stepping here. */
5350 if (stop_func_sal.pc == stop_pc)
5351 {
5352 /* We're there already. Just stop stepping now. */
5353 ecs->event_thread->control.stop_step = 1;
5354 print_end_stepping_range_reason ();
5355 stop_stepping (ecs);
5356 }
5357 else
5358 {
5359 /* Else just reset the step range and keep going.
5360 No step-resume breakpoint, they don't work for
5361 epilogues, which can have multiple entry paths. */
5362 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5363 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5364 keep_going (ecs);
5365 }
5366 return;
5367 }
5368
5369 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5370 This is used to both functions and to skip over code. */
5371
5372 static void
5373 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5374 struct symtab_and_line sr_sal,
5375 struct frame_id sr_id,
5376 enum bptype sr_type)
5377 {
5378 /* There should never be more than one step-resume or longjmp-resume
5379 breakpoint per thread, so we should never be setting a new
5380 step_resume_breakpoint when one is already active. */
5381 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5382 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5383
5384 if (debug_infrun)
5385 fprintf_unfiltered (gdb_stdlog,
5386 "infrun: inserting step-resume breakpoint at %s\n",
5387 paddress (gdbarch, sr_sal.pc));
5388
5389 inferior_thread ()->control.step_resume_breakpoint
5390 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5391 }
5392
5393 void
5394 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5395 struct symtab_and_line sr_sal,
5396 struct frame_id sr_id)
5397 {
5398 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5399 sr_sal, sr_id,
5400 bp_step_resume);
5401 }
5402
5403 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5404 This is used to skip a potential signal handler.
5405
5406 This is called with the interrupted function's frame. The signal
5407 handler, when it returns, will resume the interrupted function at
5408 RETURN_FRAME.pc. */
5409
5410 static void
5411 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5412 {
5413 struct symtab_and_line sr_sal;
5414 struct gdbarch *gdbarch;
5415
5416 gdb_assert (return_frame != NULL);
5417 init_sal (&sr_sal); /* initialize to zeros */
5418
5419 gdbarch = get_frame_arch (return_frame);
5420 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5421 sr_sal.section = find_pc_overlay (sr_sal.pc);
5422 sr_sal.pspace = get_frame_program_space (return_frame);
5423
5424 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5425 get_stack_frame_id (return_frame),
5426 bp_hp_step_resume);
5427 }
5428
5429 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
5430 is used to skip a function after stepping into it (for "next" or if
5431 the called function has no debugging information).
5432
5433 The current function has almost always been reached by single
5434 stepping a call or return instruction. NEXT_FRAME belongs to the
5435 current function, and the breakpoint will be set at the caller's
5436 resume address.
5437
5438 This is a separate function rather than reusing
5439 insert_hp_step_resume_breakpoint_at_frame in order to avoid
5440 get_prev_frame, which may stop prematurely (see the implementation
5441 of frame_unwind_caller_id for an example). */
5442
5443 static void
5444 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5445 {
5446 struct symtab_and_line sr_sal;
5447 struct gdbarch *gdbarch;
5448
5449 /* We shouldn't have gotten here if we don't know where the call site
5450 is. */
5451 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5452
5453 init_sal (&sr_sal); /* initialize to zeros */
5454
5455 gdbarch = frame_unwind_caller_arch (next_frame);
5456 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5457 frame_unwind_caller_pc (next_frame));
5458 sr_sal.section = find_pc_overlay (sr_sal.pc);
5459 sr_sal.pspace = frame_unwind_program_space (next_frame);
5460
5461 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5462 frame_unwind_caller_id (next_frame));
5463 }
5464
5465 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5466 new breakpoint at the target of a jmp_buf. The handling of
5467 longjmp-resume uses the same mechanisms used for handling
5468 "step-resume" breakpoints. */
5469
5470 static void
5471 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5472 {
5473 /* There should never be more than one step-resume or longjmp-resume
5474 breakpoint per thread, so we should never be setting a new
5475 longjmp_resume_breakpoint when one is already active. */
5476 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5477
5478 if (debug_infrun)
5479 fprintf_unfiltered (gdb_stdlog,
5480 "infrun: inserting longjmp-resume breakpoint at %s\n",
5481 paddress (gdbarch, pc));
5482
5483 inferior_thread ()->control.step_resume_breakpoint =
5484 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5485 }
5486
5487 /* Insert an exception resume breakpoint. TP is the thread throwing
5488 the exception. The block B is the block of the unwinder debug hook
5489 function. FRAME is the frame corresponding to the call to this
5490 function. SYM is the symbol of the function argument holding the
5491 target PC of the exception. */
5492
5493 static void
5494 insert_exception_resume_breakpoint (struct thread_info *tp,
5495 struct block *b,
5496 struct frame_info *frame,
5497 struct symbol *sym)
5498 {
5499 struct gdb_exception e;
5500
5501 /* We want to ignore errors here. */
5502 TRY_CATCH (e, RETURN_MASK_ERROR)
5503 {
5504 struct symbol *vsym;
5505 struct value *value;
5506 CORE_ADDR handler;
5507 struct breakpoint *bp;
5508
5509 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5510 value = read_var_value (vsym, frame);
5511 /* If the value was optimized out, revert to the old behavior. */
5512 if (! value_optimized_out (value))
5513 {
5514 handler = value_as_address (value);
5515
5516 if (debug_infrun)
5517 fprintf_unfiltered (gdb_stdlog,
5518 "infrun: exception resume at %lx\n",
5519 (unsigned long) handler);
5520
5521 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5522 handler, bp_exception_resume);
5523 bp->thread = tp->num;
5524 inferior_thread ()->control.exception_resume_breakpoint = bp;
5525 }
5526 }
5527 }
5528
5529 /* This is called when an exception has been intercepted. Check to
5530 see whether the exception's destination is of interest, and if so,
5531 set an exception resume breakpoint there. */
5532
5533 static void
5534 check_exception_resume (struct execution_control_state *ecs,
5535 struct frame_info *frame, struct symbol *func)
5536 {
5537 struct gdb_exception e;
5538
5539 TRY_CATCH (e, RETURN_MASK_ERROR)
5540 {
5541 struct block *b;
5542 struct dict_iterator iter;
5543 struct symbol *sym;
5544 int argno = 0;
5545
5546 /* The exception breakpoint is a thread-specific breakpoint on
5547 the unwinder's debug hook, declared as:
5548
5549 void _Unwind_DebugHook (void *cfa, void *handler);
5550
5551 The CFA argument indicates the frame to which control is
5552 about to be transferred. HANDLER is the destination PC.
5553
5554 We ignore the CFA and set a temporary breakpoint at HANDLER.
5555 This is not extremely efficient but it avoids issues in gdb
5556 with computing the DWARF CFA, and it also works even in weird
5557 cases such as throwing an exception from inside a signal
5558 handler. */
5559
5560 b = SYMBOL_BLOCK_VALUE (func);
5561 ALL_BLOCK_SYMBOLS (b, iter, sym)
5562 {
5563 if (!SYMBOL_IS_ARGUMENT (sym))
5564 continue;
5565
5566 if (argno == 0)
5567 ++argno;
5568 else
5569 {
5570 insert_exception_resume_breakpoint (ecs->event_thread,
5571 b, frame, sym);
5572 break;
5573 }
5574 }
5575 }
5576 }
5577
5578 static void
5579 stop_stepping (struct execution_control_state *ecs)
5580 {
5581 if (debug_infrun)
5582 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
5583
5584 /* Let callers know we don't want to wait for the inferior anymore. */
5585 ecs->wait_some_more = 0;
5586 }
5587
5588 /* This function handles various cases where we need to continue
5589 waiting for the inferior. */
5590 /* (Used to be the keep_going: label in the old wait_for_inferior). */
5591
5592 static void
5593 keep_going (struct execution_control_state *ecs)
5594 {
5595 /* Make sure normal_stop is called if we get a QUIT handled before
5596 reaching resume. */
5597 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5598
5599 /* Save the pc before execution, to compare with pc after stop. */
5600 ecs->event_thread->prev_pc
5601 = regcache_read_pc (get_thread_regcache (ecs->ptid));
5602
5603 /* If we did not do break;, it means we should keep running the
5604 inferior and not return to debugger. */
5605
5606 if (ecs->event_thread->control.trap_expected
5607 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
5608 {
5609 /* We took a signal (which we are supposed to pass through to
5610 the inferior, else we'd not get here) and we haven't yet
5611 gotten our trap. Simply continue. */
5612
5613 discard_cleanups (old_cleanups);
5614 resume (currently_stepping (ecs->event_thread),
5615 ecs->event_thread->suspend.stop_signal);
5616 }
5617 else
5618 {
5619 /* Either the trap was not expected, but we are continuing
5620 anyway (the user asked that this signal be passed to the
5621 child)
5622 -- or --
5623 The signal was SIGTRAP, e.g. it was our signal, but we
5624 decided we should resume from it.
5625
5626 We're going to run this baby now!
5627
5628 Note that insert_breakpoints won't try to re-insert
5629 already inserted breakpoints. Therefore, we don't
5630 care if breakpoints were already inserted, or not. */
5631
5632 if (ecs->event_thread->stepping_over_breakpoint)
5633 {
5634 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
5635
5636 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
5637 /* Since we can't do a displaced step, we have to remove
5638 the breakpoint while we step it. To keep things
5639 simple, we remove them all. */
5640 remove_breakpoints ();
5641 }
5642 else
5643 {
5644 struct gdb_exception e;
5645
5646 /* Stop stepping when inserting breakpoints
5647 has failed. */
5648 TRY_CATCH (e, RETURN_MASK_ERROR)
5649 {
5650 insert_breakpoints ();
5651 }
5652 if (e.reason < 0)
5653 {
5654 exception_print (gdb_stderr, e);
5655 stop_stepping (ecs);
5656 return;
5657 }
5658 }
5659
5660 ecs->event_thread->control.trap_expected
5661 = ecs->event_thread->stepping_over_breakpoint;
5662
5663 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
5664 specifies that such a signal should be delivered to the
5665 target program).
5666
5667 Typically, this would occure when a user is debugging a
5668 target monitor on a simulator: the target monitor sets a
5669 breakpoint; the simulator encounters this break-point and
5670 halts the simulation handing control to GDB; GDB, noteing
5671 that the break-point isn't valid, returns control back to the
5672 simulator; the simulator then delivers the hardware
5673 equivalent of a SIGNAL_TRAP to the program being debugged. */
5674
5675 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
5676 && !signal_program[ecs->event_thread->suspend.stop_signal])
5677 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
5678
5679 discard_cleanups (old_cleanups);
5680 resume (currently_stepping (ecs->event_thread),
5681 ecs->event_thread->suspend.stop_signal);
5682 }
5683
5684 prepare_to_wait (ecs);
5685 }
5686
5687 /* This function normally comes after a resume, before
5688 handle_inferior_event exits. It takes care of any last bits of
5689 housekeeping, and sets the all-important wait_some_more flag. */
5690
5691 static void
5692 prepare_to_wait (struct execution_control_state *ecs)
5693 {
5694 if (debug_infrun)
5695 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
5696
5697 /* This is the old end of the while loop. Let everybody know we
5698 want to wait for the inferior some more and get called again
5699 soon. */
5700 ecs->wait_some_more = 1;
5701 }
5702
5703 /* Several print_*_reason functions to print why the inferior has stopped.
5704 We always print something when the inferior exits, or receives a signal.
5705 The rest of the cases are dealt with later on in normal_stop and
5706 print_it_typical. Ideally there should be a call to one of these
5707 print_*_reason functions functions from handle_inferior_event each time
5708 stop_stepping is called. */
5709
5710 /* Print why the inferior has stopped.
5711 We are done with a step/next/si/ni command, print why the inferior has
5712 stopped. For now print nothing. Print a message only if not in the middle
5713 of doing a "step n" operation for n > 1. */
5714
5715 static void
5716 print_end_stepping_range_reason (void)
5717 {
5718 if ((!inferior_thread ()->step_multi
5719 || !inferior_thread ()->control.stop_step)
5720 && ui_out_is_mi_like_p (current_uiout))
5721 ui_out_field_string (current_uiout, "reason",
5722 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5723 }
5724
5725 /* The inferior was terminated by a signal, print why it stopped. */
5726
5727 static void
5728 print_signal_exited_reason (enum target_signal siggnal)
5729 {
5730 struct ui_out *uiout = current_uiout;
5731
5732 annotate_signalled ();
5733 if (ui_out_is_mi_like_p (uiout))
5734 ui_out_field_string
5735 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5736 ui_out_text (uiout, "\nProgram terminated with signal ");
5737 annotate_signal_name ();
5738 ui_out_field_string (uiout, "signal-name",
5739 target_signal_to_name (siggnal));
5740 annotate_signal_name_end ();
5741 ui_out_text (uiout, ", ");
5742 annotate_signal_string ();
5743 ui_out_field_string (uiout, "signal-meaning",
5744 target_signal_to_string (siggnal));
5745 annotate_signal_string_end ();
5746 ui_out_text (uiout, ".\n");
5747 ui_out_text (uiout, "The program no longer exists.\n");
5748 }
5749
5750 /* The inferior program is finished, print why it stopped. */
5751
5752 static void
5753 print_exited_reason (int exitstatus)
5754 {
5755 struct inferior *inf = current_inferior ();
5756 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5757 struct ui_out *uiout = current_uiout;
5758
5759 annotate_exited (exitstatus);
5760 if (exitstatus)
5761 {
5762 if (ui_out_is_mi_like_p (uiout))
5763 ui_out_field_string (uiout, "reason",
5764 async_reason_lookup (EXEC_ASYNC_EXITED));
5765 ui_out_text (uiout, "[Inferior ");
5766 ui_out_text (uiout, plongest (inf->num));
5767 ui_out_text (uiout, " (");
5768 ui_out_text (uiout, pidstr);
5769 ui_out_text (uiout, ") exited with code ");
5770 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
5771 ui_out_text (uiout, "]\n");
5772 }
5773 else
5774 {
5775 if (ui_out_is_mi_like_p (uiout))
5776 ui_out_field_string
5777 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5778 ui_out_text (uiout, "[Inferior ");
5779 ui_out_text (uiout, plongest (inf->num));
5780 ui_out_text (uiout, " (");
5781 ui_out_text (uiout, pidstr);
5782 ui_out_text (uiout, ") exited normally]\n");
5783 }
5784 /* Support the --return-child-result option. */
5785 return_child_result_value = exitstatus;
5786 }
5787
5788 /* Signal received, print why the inferior has stopped. The signal table
5789 tells us to print about it. */
5790
5791 static void
5792 print_signal_received_reason (enum target_signal siggnal)
5793 {
5794 struct ui_out *uiout = current_uiout;
5795
5796 annotate_signal ();
5797
5798 if (siggnal == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5799 {
5800 struct thread_info *t = inferior_thread ();
5801
5802 ui_out_text (uiout, "\n[");
5803 ui_out_field_string (uiout, "thread-name",
5804 target_pid_to_str (t->ptid));
5805 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5806 ui_out_text (uiout, " stopped");
5807 }
5808 else
5809 {
5810 ui_out_text (uiout, "\nProgram received signal ");
5811 annotate_signal_name ();
5812 if (ui_out_is_mi_like_p (uiout))
5813 ui_out_field_string
5814 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5815 ui_out_field_string (uiout, "signal-name",
5816 target_signal_to_name (siggnal));
5817 annotate_signal_name_end ();
5818 ui_out_text (uiout, ", ");
5819 annotate_signal_string ();
5820 ui_out_field_string (uiout, "signal-meaning",
5821 target_signal_to_string (siggnal));
5822 annotate_signal_string_end ();
5823 }
5824 ui_out_text (uiout, ".\n");
5825 }
5826
5827 /* Reverse execution: target ran out of history info, print why the inferior
5828 has stopped. */
5829
5830 static void
5831 print_no_history_reason (void)
5832 {
5833 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
5834 }
5835
5836 /* Here to return control to GDB when the inferior stops for real.
5837 Print appropriate messages, remove breakpoints, give terminal our modes.
5838
5839 STOP_PRINT_FRAME nonzero means print the executing frame
5840 (pc, function, args, file, line number and line text).
5841 BREAKPOINTS_FAILED nonzero means stop was due to error
5842 attempting to insert breakpoints. */
5843
5844 void
5845 normal_stop (void)
5846 {
5847 struct target_waitstatus last;
5848 ptid_t last_ptid;
5849 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5850
5851 get_last_target_status (&last_ptid, &last);
5852
5853 /* If an exception is thrown from this point on, make sure to
5854 propagate GDB's knowledge of the executing state to the
5855 frontend/user running state. A QUIT is an easy exception to see
5856 here, so do this before any filtered output. */
5857 if (!non_stop)
5858 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5859 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5860 && last.kind != TARGET_WAITKIND_EXITED
5861 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5862 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
5863
5864 /* In non-stop mode, we don't want GDB to switch threads behind the
5865 user's back, to avoid races where the user is typing a command to
5866 apply to thread x, but GDB switches to thread y before the user
5867 finishes entering the command. */
5868
5869 /* As with the notification of thread events, we want to delay
5870 notifying the user that we've switched thread context until
5871 the inferior actually stops.
5872
5873 There's no point in saying anything if the inferior has exited.
5874 Note that SIGNALLED here means "exited with a signal", not
5875 "received a signal". */
5876 if (!non_stop
5877 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
5878 && target_has_execution
5879 && last.kind != TARGET_WAITKIND_SIGNALLED
5880 && last.kind != TARGET_WAITKIND_EXITED
5881 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5882 {
5883 target_terminal_ours_for_output ();
5884 printf_filtered (_("[Switching to %s]\n"),
5885 target_pid_to_str (inferior_ptid));
5886 annotate_thread_changed ();
5887 previous_inferior_ptid = inferior_ptid;
5888 }
5889
5890 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
5891 {
5892 gdb_assert (sync_execution || !target_can_async_p ());
5893
5894 target_terminal_ours_for_output ();
5895 printf_filtered (_("No unwaited-for children left.\n"));
5896 }
5897
5898 if (!breakpoints_always_inserted_mode () && target_has_execution)
5899 {
5900 if (remove_breakpoints ())
5901 {
5902 target_terminal_ours_for_output ();
5903 printf_filtered (_("Cannot remove breakpoints because "
5904 "program is no longer writable.\nFurther "
5905 "execution is probably impossible.\n"));
5906 }
5907 }
5908
5909 /* If an auto-display called a function and that got a signal,
5910 delete that auto-display to avoid an infinite recursion. */
5911
5912 if (stopped_by_random_signal)
5913 disable_current_display ();
5914
5915 /* Don't print a message if in the middle of doing a "step n"
5916 operation for n > 1 */
5917 if (target_has_execution
5918 && last.kind != TARGET_WAITKIND_SIGNALLED
5919 && last.kind != TARGET_WAITKIND_EXITED
5920 && inferior_thread ()->step_multi
5921 && inferior_thread ()->control.stop_step)
5922 goto done;
5923
5924 target_terminal_ours ();
5925 async_enable_stdin ();
5926
5927 /* Set the current source location. This will also happen if we
5928 display the frame below, but the current SAL will be incorrect
5929 during a user hook-stop function. */
5930 if (has_stack_frames () && !stop_stack_dummy)
5931 set_current_sal_from_frame (get_current_frame (), 1);
5932
5933 /* Let the user/frontend see the threads as stopped. */
5934 do_cleanups (old_chain);
5935
5936 /* Look up the hook_stop and run it (CLI internally handles problem
5937 of stop_command's pre-hook not existing). */
5938 if (stop_command)
5939 catch_errors (hook_stop_stub, stop_command,
5940 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5941
5942 if (!has_stack_frames ())
5943 goto done;
5944
5945 if (last.kind == TARGET_WAITKIND_SIGNALLED
5946 || last.kind == TARGET_WAITKIND_EXITED)
5947 goto done;
5948
5949 /* Select innermost stack frame - i.e., current frame is frame 0,
5950 and current location is based on that.
5951 Don't do this on return from a stack dummy routine,
5952 or if the program has exited. */
5953
5954 if (!stop_stack_dummy)
5955 {
5956 select_frame (get_current_frame ());
5957
5958 /* Print current location without a level number, if
5959 we have changed functions or hit a breakpoint.
5960 Print source line if we have one.
5961 bpstat_print() contains the logic deciding in detail
5962 what to print, based on the event(s) that just occurred. */
5963
5964 /* If --batch-silent is enabled then there's no need to print the current
5965 source location, and to try risks causing an error message about
5966 missing source files. */
5967 if (stop_print_frame && !batch_silent)
5968 {
5969 int bpstat_ret;
5970 int source_flag;
5971 int do_frame_printing = 1;
5972 struct thread_info *tp = inferior_thread ();
5973
5974 bpstat_ret = bpstat_print (tp->control.stop_bpstat);
5975 switch (bpstat_ret)
5976 {
5977 case PRINT_UNKNOWN:
5978 /* If we had hit a shared library event breakpoint,
5979 bpstat_print would print out this message. If we hit
5980 an OS-level shared library event, do the same
5981 thing. */
5982 if (last.kind == TARGET_WAITKIND_LOADED)
5983 {
5984 printf_filtered (_("Stopped due to shared library event\n"));
5985 source_flag = SRC_LINE; /* something bogus */
5986 do_frame_printing = 0;
5987 break;
5988 }
5989
5990 /* FIXME: cagney/2002-12-01: Given that a frame ID does
5991 (or should) carry around the function and does (or
5992 should) use that when doing a frame comparison. */
5993 if (tp->control.stop_step
5994 && frame_id_eq (tp->control.step_frame_id,
5995 get_frame_id (get_current_frame ()))
5996 && step_start_function == find_pc_function (stop_pc))
5997 source_flag = SRC_LINE; /* Finished step, just
5998 print source line. */
5999 else
6000 source_flag = SRC_AND_LOC; /* Print location and
6001 source line. */
6002 break;
6003 case PRINT_SRC_AND_LOC:
6004 source_flag = SRC_AND_LOC; /* Print location and
6005 source line. */
6006 break;
6007 case PRINT_SRC_ONLY:
6008 source_flag = SRC_LINE;
6009 break;
6010 case PRINT_NOTHING:
6011 source_flag = SRC_LINE; /* something bogus */
6012 do_frame_printing = 0;
6013 break;
6014 default:
6015 internal_error (__FILE__, __LINE__, _("Unknown value."));
6016 }
6017
6018 /* The behavior of this routine with respect to the source
6019 flag is:
6020 SRC_LINE: Print only source line
6021 LOCATION: Print only location
6022 SRC_AND_LOC: Print location and source line. */
6023 if (do_frame_printing)
6024 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
6025
6026 /* Display the auto-display expressions. */
6027 do_displays ();
6028 }
6029 }
6030
6031 /* Save the function value return registers, if we care.
6032 We might be about to restore their previous contents. */
6033 if (inferior_thread ()->control.proceed_to_finish
6034 && execution_direction != EXEC_REVERSE)
6035 {
6036 /* This should not be necessary. */
6037 if (stop_registers)
6038 regcache_xfree (stop_registers);
6039
6040 /* NB: The copy goes through to the target picking up the value of
6041 all the registers. */
6042 stop_registers = regcache_dup (get_current_regcache ());
6043 }
6044
6045 if (stop_stack_dummy == STOP_STACK_DUMMY)
6046 {
6047 /* Pop the empty frame that contains the stack dummy.
6048 This also restores inferior state prior to the call
6049 (struct infcall_suspend_state). */
6050 struct frame_info *frame = get_current_frame ();
6051
6052 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6053 frame_pop (frame);
6054 /* frame_pop() calls reinit_frame_cache as the last thing it
6055 does which means there's currently no selected frame. We
6056 don't need to re-establish a selected frame if the dummy call
6057 returns normally, that will be done by
6058 restore_infcall_control_state. However, we do have to handle
6059 the case where the dummy call is returning after being
6060 stopped (e.g. the dummy call previously hit a breakpoint).
6061 We can't know which case we have so just always re-establish
6062 a selected frame here. */
6063 select_frame (get_current_frame ());
6064 }
6065
6066 done:
6067 annotate_stopped ();
6068
6069 /* Suppress the stop observer if we're in the middle of:
6070
6071 - a step n (n > 1), as there still more steps to be done.
6072
6073 - a "finish" command, as the observer will be called in
6074 finish_command_continuation, so it can include the inferior
6075 function's return value.
6076
6077 - calling an inferior function, as we pretend we inferior didn't
6078 run at all. The return value of the call is handled by the
6079 expression evaluator, through call_function_by_hand. */
6080
6081 if (!target_has_execution
6082 || last.kind == TARGET_WAITKIND_SIGNALLED
6083 || last.kind == TARGET_WAITKIND_EXITED
6084 || last.kind == TARGET_WAITKIND_NO_RESUMED
6085 || (!inferior_thread ()->step_multi
6086 && !(inferior_thread ()->control.stop_bpstat
6087 && inferior_thread ()->control.proceed_to_finish)
6088 && !inferior_thread ()->control.in_infcall))
6089 {
6090 if (!ptid_equal (inferior_ptid, null_ptid))
6091 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
6092 stop_print_frame);
6093 else
6094 observer_notify_normal_stop (NULL, stop_print_frame);
6095 }
6096
6097 if (target_has_execution)
6098 {
6099 if (last.kind != TARGET_WAITKIND_SIGNALLED
6100 && last.kind != TARGET_WAITKIND_EXITED)
6101 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6102 Delete any breakpoint that is to be deleted at the next stop. */
6103 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
6104 }
6105
6106 /* Try to get rid of automatically added inferiors that are no
6107 longer needed. Keeping those around slows down things linearly.
6108 Note that this never removes the current inferior. */
6109 prune_inferiors ();
6110 }
6111
6112 static int
6113 hook_stop_stub (void *cmd)
6114 {
6115 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
6116 return (0);
6117 }
6118 \f
6119 int
6120 signal_stop_state (int signo)
6121 {
6122 return signal_stop[signo];
6123 }
6124
6125 int
6126 signal_print_state (int signo)
6127 {
6128 return signal_print[signo];
6129 }
6130
6131 int
6132 signal_pass_state (int signo)
6133 {
6134 return signal_program[signo];
6135 }
6136
6137 static void
6138 signal_cache_update (int signo)
6139 {
6140 if (signo == -1)
6141 {
6142 for (signo = 0; signo < (int) TARGET_SIGNAL_LAST; signo++)
6143 signal_cache_update (signo);
6144
6145 return;
6146 }
6147
6148 signal_pass[signo] = (signal_stop[signo] == 0
6149 && signal_print[signo] == 0
6150 && signal_program[signo] == 1);
6151 }
6152
6153 int
6154 signal_stop_update (int signo, int state)
6155 {
6156 int ret = signal_stop[signo];
6157
6158 signal_stop[signo] = state;
6159 signal_cache_update (signo);
6160 return ret;
6161 }
6162
6163 int
6164 signal_print_update (int signo, int state)
6165 {
6166 int ret = signal_print[signo];
6167
6168 signal_print[signo] = state;
6169 signal_cache_update (signo);
6170 return ret;
6171 }
6172
6173 int
6174 signal_pass_update (int signo, int state)
6175 {
6176 int ret = signal_program[signo];
6177
6178 signal_program[signo] = state;
6179 signal_cache_update (signo);
6180 return ret;
6181 }
6182
6183 static void
6184 sig_print_header (void)
6185 {
6186 printf_filtered (_("Signal Stop\tPrint\tPass "
6187 "to program\tDescription\n"));
6188 }
6189
6190 static void
6191 sig_print_info (enum target_signal oursig)
6192 {
6193 const char *name = target_signal_to_name (oursig);
6194 int name_padding = 13 - strlen (name);
6195
6196 if (name_padding <= 0)
6197 name_padding = 0;
6198
6199 printf_filtered ("%s", name);
6200 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6201 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6202 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6203 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6204 printf_filtered ("%s\n", target_signal_to_string (oursig));
6205 }
6206
6207 /* Specify how various signals in the inferior should be handled. */
6208
6209 static void
6210 handle_command (char *args, int from_tty)
6211 {
6212 char **argv;
6213 int digits, wordlen;
6214 int sigfirst, signum, siglast;
6215 enum target_signal oursig;
6216 int allsigs;
6217 int nsigs;
6218 unsigned char *sigs;
6219 struct cleanup *old_chain;
6220
6221 if (args == NULL)
6222 {
6223 error_no_arg (_("signal to handle"));
6224 }
6225
6226 /* Allocate and zero an array of flags for which signals to handle. */
6227
6228 nsigs = (int) TARGET_SIGNAL_LAST;
6229 sigs = (unsigned char *) alloca (nsigs);
6230 memset (sigs, 0, nsigs);
6231
6232 /* Break the command line up into args. */
6233
6234 argv = gdb_buildargv (args);
6235 old_chain = make_cleanup_freeargv (argv);
6236
6237 /* Walk through the args, looking for signal oursigs, signal names, and
6238 actions. Signal numbers and signal names may be interspersed with
6239 actions, with the actions being performed for all signals cumulatively
6240 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6241
6242 while (*argv != NULL)
6243 {
6244 wordlen = strlen (*argv);
6245 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6246 {;
6247 }
6248 allsigs = 0;
6249 sigfirst = siglast = -1;
6250
6251 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6252 {
6253 /* Apply action to all signals except those used by the
6254 debugger. Silently skip those. */
6255 allsigs = 1;
6256 sigfirst = 0;
6257 siglast = nsigs - 1;
6258 }
6259 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6260 {
6261 SET_SIGS (nsigs, sigs, signal_stop);
6262 SET_SIGS (nsigs, sigs, signal_print);
6263 }
6264 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6265 {
6266 UNSET_SIGS (nsigs, sigs, signal_program);
6267 }
6268 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6269 {
6270 SET_SIGS (nsigs, sigs, signal_print);
6271 }
6272 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6273 {
6274 SET_SIGS (nsigs, sigs, signal_program);
6275 }
6276 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6277 {
6278 UNSET_SIGS (nsigs, sigs, signal_stop);
6279 }
6280 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6281 {
6282 SET_SIGS (nsigs, sigs, signal_program);
6283 }
6284 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6285 {
6286 UNSET_SIGS (nsigs, sigs, signal_print);
6287 UNSET_SIGS (nsigs, sigs, signal_stop);
6288 }
6289 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6290 {
6291 UNSET_SIGS (nsigs, sigs, signal_program);
6292 }
6293 else if (digits > 0)
6294 {
6295 /* It is numeric. The numeric signal refers to our own
6296 internal signal numbering from target.h, not to host/target
6297 signal number. This is a feature; users really should be
6298 using symbolic names anyway, and the common ones like
6299 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6300
6301 sigfirst = siglast = (int)
6302 target_signal_from_command (atoi (*argv));
6303 if ((*argv)[digits] == '-')
6304 {
6305 siglast = (int)
6306 target_signal_from_command (atoi ((*argv) + digits + 1));
6307 }
6308 if (sigfirst > siglast)
6309 {
6310 /* Bet he didn't figure we'd think of this case... */
6311 signum = sigfirst;
6312 sigfirst = siglast;
6313 siglast = signum;
6314 }
6315 }
6316 else
6317 {
6318 oursig = target_signal_from_name (*argv);
6319 if (oursig != TARGET_SIGNAL_UNKNOWN)
6320 {
6321 sigfirst = siglast = (int) oursig;
6322 }
6323 else
6324 {
6325 /* Not a number and not a recognized flag word => complain. */
6326 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6327 }
6328 }
6329
6330 /* If any signal numbers or symbol names were found, set flags for
6331 which signals to apply actions to. */
6332
6333 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6334 {
6335 switch ((enum target_signal) signum)
6336 {
6337 case TARGET_SIGNAL_TRAP:
6338 case TARGET_SIGNAL_INT:
6339 if (!allsigs && !sigs[signum])
6340 {
6341 if (query (_("%s is used by the debugger.\n\
6342 Are you sure you want to change it? "),
6343 target_signal_to_name ((enum target_signal) signum)))
6344 {
6345 sigs[signum] = 1;
6346 }
6347 else
6348 {
6349 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6350 gdb_flush (gdb_stdout);
6351 }
6352 }
6353 break;
6354 case TARGET_SIGNAL_0:
6355 case TARGET_SIGNAL_DEFAULT:
6356 case TARGET_SIGNAL_UNKNOWN:
6357 /* Make sure that "all" doesn't print these. */
6358 break;
6359 default:
6360 sigs[signum] = 1;
6361 break;
6362 }
6363 }
6364
6365 argv++;
6366 }
6367
6368 for (signum = 0; signum < nsigs; signum++)
6369 if (sigs[signum])
6370 {
6371 signal_cache_update (-1);
6372 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
6373
6374 if (from_tty)
6375 {
6376 /* Show the results. */
6377 sig_print_header ();
6378 for (; signum < nsigs; signum++)
6379 if (sigs[signum])
6380 sig_print_info (signum);
6381 }
6382
6383 break;
6384 }
6385
6386 do_cleanups (old_chain);
6387 }
6388
6389 static void
6390 xdb_handle_command (char *args, int from_tty)
6391 {
6392 char **argv;
6393 struct cleanup *old_chain;
6394
6395 if (args == NULL)
6396 error_no_arg (_("xdb command"));
6397
6398 /* Break the command line up into args. */
6399
6400 argv = gdb_buildargv (args);
6401 old_chain = make_cleanup_freeargv (argv);
6402 if (argv[1] != (char *) NULL)
6403 {
6404 char *argBuf;
6405 int bufLen;
6406
6407 bufLen = strlen (argv[0]) + 20;
6408 argBuf = (char *) xmalloc (bufLen);
6409 if (argBuf)
6410 {
6411 int validFlag = 1;
6412 enum target_signal oursig;
6413
6414 oursig = target_signal_from_name (argv[0]);
6415 memset (argBuf, 0, bufLen);
6416 if (strcmp (argv[1], "Q") == 0)
6417 sprintf (argBuf, "%s %s", argv[0], "noprint");
6418 else
6419 {
6420 if (strcmp (argv[1], "s") == 0)
6421 {
6422 if (!signal_stop[oursig])
6423 sprintf (argBuf, "%s %s", argv[0], "stop");
6424 else
6425 sprintf (argBuf, "%s %s", argv[0], "nostop");
6426 }
6427 else if (strcmp (argv[1], "i") == 0)
6428 {
6429 if (!signal_program[oursig])
6430 sprintf (argBuf, "%s %s", argv[0], "pass");
6431 else
6432 sprintf (argBuf, "%s %s", argv[0], "nopass");
6433 }
6434 else if (strcmp (argv[1], "r") == 0)
6435 {
6436 if (!signal_print[oursig])
6437 sprintf (argBuf, "%s %s", argv[0], "print");
6438 else
6439 sprintf (argBuf, "%s %s", argv[0], "noprint");
6440 }
6441 else
6442 validFlag = 0;
6443 }
6444 if (validFlag)
6445 handle_command (argBuf, from_tty);
6446 else
6447 printf_filtered (_("Invalid signal handling flag.\n"));
6448 if (argBuf)
6449 xfree (argBuf);
6450 }
6451 }
6452 do_cleanups (old_chain);
6453 }
6454
6455 /* Print current contents of the tables set by the handle command.
6456 It is possible we should just be printing signals actually used
6457 by the current target (but for things to work right when switching
6458 targets, all signals should be in the signal tables). */
6459
6460 static void
6461 signals_info (char *signum_exp, int from_tty)
6462 {
6463 enum target_signal oursig;
6464
6465 sig_print_header ();
6466
6467 if (signum_exp)
6468 {
6469 /* First see if this is a symbol name. */
6470 oursig = target_signal_from_name (signum_exp);
6471 if (oursig == TARGET_SIGNAL_UNKNOWN)
6472 {
6473 /* No, try numeric. */
6474 oursig =
6475 target_signal_from_command (parse_and_eval_long (signum_exp));
6476 }
6477 sig_print_info (oursig);
6478 return;
6479 }
6480
6481 printf_filtered ("\n");
6482 /* These ugly casts brought to you by the native VAX compiler. */
6483 for (oursig = TARGET_SIGNAL_FIRST;
6484 (int) oursig < (int) TARGET_SIGNAL_LAST;
6485 oursig = (enum target_signal) ((int) oursig + 1))
6486 {
6487 QUIT;
6488
6489 if (oursig != TARGET_SIGNAL_UNKNOWN
6490 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
6491 sig_print_info (oursig);
6492 }
6493
6494 printf_filtered (_("\nUse the \"handle\" command "
6495 "to change these tables.\n"));
6496 }
6497
6498 /* Check if it makes sense to read $_siginfo from the current thread
6499 at this point. If not, throw an error. */
6500
6501 static void
6502 validate_siginfo_access (void)
6503 {
6504 /* No current inferior, no siginfo. */
6505 if (ptid_equal (inferior_ptid, null_ptid))
6506 error (_("No thread selected."));
6507
6508 /* Don't try to read from a dead thread. */
6509 if (is_exited (inferior_ptid))
6510 error (_("The current thread has terminated"));
6511
6512 /* ... or from a spinning thread. */
6513 if (is_running (inferior_ptid))
6514 error (_("Selected thread is running."));
6515 }
6516
6517 /* The $_siginfo convenience variable is a bit special. We don't know
6518 for sure the type of the value until we actually have a chance to
6519 fetch the data. The type can change depending on gdbarch, so it is
6520 also dependent on which thread you have selected.
6521
6522 1. making $_siginfo be an internalvar that creates a new value on
6523 access.
6524
6525 2. making the value of $_siginfo be an lval_computed value. */
6526
6527 /* This function implements the lval_computed support for reading a
6528 $_siginfo value. */
6529
6530 static void
6531 siginfo_value_read (struct value *v)
6532 {
6533 LONGEST transferred;
6534
6535 validate_siginfo_access ();
6536
6537 transferred =
6538 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6539 NULL,
6540 value_contents_all_raw (v),
6541 value_offset (v),
6542 TYPE_LENGTH (value_type (v)));
6543
6544 if (transferred != TYPE_LENGTH (value_type (v)))
6545 error (_("Unable to read siginfo"));
6546 }
6547
6548 /* This function implements the lval_computed support for writing a
6549 $_siginfo value. */
6550
6551 static void
6552 siginfo_value_write (struct value *v, struct value *fromval)
6553 {
6554 LONGEST transferred;
6555
6556 validate_siginfo_access ();
6557
6558 transferred = target_write (&current_target,
6559 TARGET_OBJECT_SIGNAL_INFO,
6560 NULL,
6561 value_contents_all_raw (fromval),
6562 value_offset (v),
6563 TYPE_LENGTH (value_type (fromval)));
6564
6565 if (transferred != TYPE_LENGTH (value_type (fromval)))
6566 error (_("Unable to write siginfo"));
6567 }
6568
6569 static const struct lval_funcs siginfo_value_funcs =
6570 {
6571 siginfo_value_read,
6572 siginfo_value_write
6573 };
6574
6575 /* Return a new value with the correct type for the siginfo object of
6576 the current thread using architecture GDBARCH. Return a void value
6577 if there's no object available. */
6578
6579 static struct value *
6580 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
6581 {
6582 if (target_has_stack
6583 && !ptid_equal (inferior_ptid, null_ptid)
6584 && gdbarch_get_siginfo_type_p (gdbarch))
6585 {
6586 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6587
6588 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
6589 }
6590
6591 return allocate_value (builtin_type (gdbarch)->builtin_void);
6592 }
6593
6594 \f
6595 /* infcall_suspend_state contains state about the program itself like its
6596 registers and any signal it received when it last stopped.
6597 This state must be restored regardless of how the inferior function call
6598 ends (either successfully, or after it hits a breakpoint or signal)
6599 if the program is to properly continue where it left off. */
6600
6601 struct infcall_suspend_state
6602 {
6603 struct thread_suspend_state thread_suspend;
6604 struct inferior_suspend_state inferior_suspend;
6605
6606 /* Other fields: */
6607 CORE_ADDR stop_pc;
6608 struct regcache *registers;
6609
6610 /* Format of SIGINFO_DATA or NULL if it is not present. */
6611 struct gdbarch *siginfo_gdbarch;
6612
6613 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6614 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6615 content would be invalid. */
6616 gdb_byte *siginfo_data;
6617 };
6618
6619 struct infcall_suspend_state *
6620 save_infcall_suspend_state (void)
6621 {
6622 struct infcall_suspend_state *inf_state;
6623 struct thread_info *tp = inferior_thread ();
6624 struct inferior *inf = current_inferior ();
6625 struct regcache *regcache = get_current_regcache ();
6626 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6627 gdb_byte *siginfo_data = NULL;
6628
6629 if (gdbarch_get_siginfo_type_p (gdbarch))
6630 {
6631 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6632 size_t len = TYPE_LENGTH (type);
6633 struct cleanup *back_to;
6634
6635 siginfo_data = xmalloc (len);
6636 back_to = make_cleanup (xfree, siginfo_data);
6637
6638 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6639 siginfo_data, 0, len) == len)
6640 discard_cleanups (back_to);
6641 else
6642 {
6643 /* Errors ignored. */
6644 do_cleanups (back_to);
6645 siginfo_data = NULL;
6646 }
6647 }
6648
6649 inf_state = XZALLOC (struct infcall_suspend_state);
6650
6651 if (siginfo_data)
6652 {
6653 inf_state->siginfo_gdbarch = gdbarch;
6654 inf_state->siginfo_data = siginfo_data;
6655 }
6656
6657 inf_state->thread_suspend = tp->suspend;
6658 inf_state->inferior_suspend = inf->suspend;
6659
6660 /* run_inferior_call will not use the signal due to its `proceed' call with
6661 TARGET_SIGNAL_0 anyway. */
6662 tp->suspend.stop_signal = TARGET_SIGNAL_0;
6663
6664 inf_state->stop_pc = stop_pc;
6665
6666 inf_state->registers = regcache_dup (regcache);
6667
6668 return inf_state;
6669 }
6670
6671 /* Restore inferior session state to INF_STATE. */
6672
6673 void
6674 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6675 {
6676 struct thread_info *tp = inferior_thread ();
6677 struct inferior *inf = current_inferior ();
6678 struct regcache *regcache = get_current_regcache ();
6679 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6680
6681 tp->suspend = inf_state->thread_suspend;
6682 inf->suspend = inf_state->inferior_suspend;
6683
6684 stop_pc = inf_state->stop_pc;
6685
6686 if (inf_state->siginfo_gdbarch == gdbarch)
6687 {
6688 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6689 size_t len = TYPE_LENGTH (type);
6690
6691 /* Errors ignored. */
6692 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6693 inf_state->siginfo_data, 0, len);
6694 }
6695
6696 /* The inferior can be gone if the user types "print exit(0)"
6697 (and perhaps other times). */
6698 if (target_has_execution)
6699 /* NB: The register write goes through to the target. */
6700 regcache_cpy (regcache, inf_state->registers);
6701
6702 discard_infcall_suspend_state (inf_state);
6703 }
6704
6705 static void
6706 do_restore_infcall_suspend_state_cleanup (void *state)
6707 {
6708 restore_infcall_suspend_state (state);
6709 }
6710
6711 struct cleanup *
6712 make_cleanup_restore_infcall_suspend_state
6713 (struct infcall_suspend_state *inf_state)
6714 {
6715 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
6716 }
6717
6718 void
6719 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6720 {
6721 regcache_xfree (inf_state->registers);
6722 xfree (inf_state->siginfo_data);
6723 xfree (inf_state);
6724 }
6725
6726 struct regcache *
6727 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
6728 {
6729 return inf_state->registers;
6730 }
6731
6732 /* infcall_control_state contains state regarding gdb's control of the
6733 inferior itself like stepping control. It also contains session state like
6734 the user's currently selected frame. */
6735
6736 struct infcall_control_state
6737 {
6738 struct thread_control_state thread_control;
6739 struct inferior_control_state inferior_control;
6740
6741 /* Other fields: */
6742 enum stop_stack_kind stop_stack_dummy;
6743 int stopped_by_random_signal;
6744 int stop_after_trap;
6745
6746 /* ID if the selected frame when the inferior function call was made. */
6747 struct frame_id selected_frame_id;
6748 };
6749
6750 /* Save all of the information associated with the inferior<==>gdb
6751 connection. */
6752
6753 struct infcall_control_state *
6754 save_infcall_control_state (void)
6755 {
6756 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
6757 struct thread_info *tp = inferior_thread ();
6758 struct inferior *inf = current_inferior ();
6759
6760 inf_status->thread_control = tp->control;
6761 inf_status->inferior_control = inf->control;
6762
6763 tp->control.step_resume_breakpoint = NULL;
6764 tp->control.exception_resume_breakpoint = NULL;
6765
6766 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6767 chain. If caller's caller is walking the chain, they'll be happier if we
6768 hand them back the original chain when restore_infcall_control_state is
6769 called. */
6770 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
6771
6772 /* Other fields: */
6773 inf_status->stop_stack_dummy = stop_stack_dummy;
6774 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6775 inf_status->stop_after_trap = stop_after_trap;
6776
6777 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
6778
6779 return inf_status;
6780 }
6781
6782 static int
6783 restore_selected_frame (void *args)
6784 {
6785 struct frame_id *fid = (struct frame_id *) args;
6786 struct frame_info *frame;
6787
6788 frame = frame_find_by_id (*fid);
6789
6790 /* If inf_status->selected_frame_id is NULL, there was no previously
6791 selected frame. */
6792 if (frame == NULL)
6793 {
6794 warning (_("Unable to restore previously selected frame."));
6795 return 0;
6796 }
6797
6798 select_frame (frame);
6799
6800 return (1);
6801 }
6802
6803 /* Restore inferior session state to INF_STATUS. */
6804
6805 void
6806 restore_infcall_control_state (struct infcall_control_state *inf_status)
6807 {
6808 struct thread_info *tp = inferior_thread ();
6809 struct inferior *inf = current_inferior ();
6810
6811 if (tp->control.step_resume_breakpoint)
6812 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6813
6814 if (tp->control.exception_resume_breakpoint)
6815 tp->control.exception_resume_breakpoint->disposition
6816 = disp_del_at_next_stop;
6817
6818 /* Handle the bpstat_copy of the chain. */
6819 bpstat_clear (&tp->control.stop_bpstat);
6820
6821 tp->control = inf_status->thread_control;
6822 inf->control = inf_status->inferior_control;
6823
6824 /* Other fields: */
6825 stop_stack_dummy = inf_status->stop_stack_dummy;
6826 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6827 stop_after_trap = inf_status->stop_after_trap;
6828
6829 if (target_has_stack)
6830 {
6831 /* The point of catch_errors is that if the stack is clobbered,
6832 walking the stack might encounter a garbage pointer and
6833 error() trying to dereference it. */
6834 if (catch_errors
6835 (restore_selected_frame, &inf_status->selected_frame_id,
6836 "Unable to restore previously selected frame:\n",
6837 RETURN_MASK_ERROR) == 0)
6838 /* Error in restoring the selected frame. Select the innermost
6839 frame. */
6840 select_frame (get_current_frame ());
6841 }
6842
6843 xfree (inf_status);
6844 }
6845
6846 static void
6847 do_restore_infcall_control_state_cleanup (void *sts)
6848 {
6849 restore_infcall_control_state (sts);
6850 }
6851
6852 struct cleanup *
6853 make_cleanup_restore_infcall_control_state
6854 (struct infcall_control_state *inf_status)
6855 {
6856 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
6857 }
6858
6859 void
6860 discard_infcall_control_state (struct infcall_control_state *inf_status)
6861 {
6862 if (inf_status->thread_control.step_resume_breakpoint)
6863 inf_status->thread_control.step_resume_breakpoint->disposition
6864 = disp_del_at_next_stop;
6865
6866 if (inf_status->thread_control.exception_resume_breakpoint)
6867 inf_status->thread_control.exception_resume_breakpoint->disposition
6868 = disp_del_at_next_stop;
6869
6870 /* See save_infcall_control_state for info on stop_bpstat. */
6871 bpstat_clear (&inf_status->thread_control.stop_bpstat);
6872
6873 xfree (inf_status);
6874 }
6875 \f
6876 int
6877 inferior_has_forked (ptid_t pid, ptid_t *child_pid)
6878 {
6879 struct target_waitstatus last;
6880 ptid_t last_ptid;
6881
6882 get_last_target_status (&last_ptid, &last);
6883
6884 if (last.kind != TARGET_WAITKIND_FORKED)
6885 return 0;
6886
6887 if (!ptid_equal (last_ptid, pid))
6888 return 0;
6889
6890 *child_pid = last.value.related_pid;
6891 return 1;
6892 }
6893
6894 int
6895 inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
6896 {
6897 struct target_waitstatus last;
6898 ptid_t last_ptid;
6899
6900 get_last_target_status (&last_ptid, &last);
6901
6902 if (last.kind != TARGET_WAITKIND_VFORKED)
6903 return 0;
6904
6905 if (!ptid_equal (last_ptid, pid))
6906 return 0;
6907
6908 *child_pid = last.value.related_pid;
6909 return 1;
6910 }
6911
6912 int
6913 inferior_has_execd (ptid_t pid, char **execd_pathname)
6914 {
6915 struct target_waitstatus last;
6916 ptid_t last_ptid;
6917
6918 get_last_target_status (&last_ptid, &last);
6919
6920 if (last.kind != TARGET_WAITKIND_EXECD)
6921 return 0;
6922
6923 if (!ptid_equal (last_ptid, pid))
6924 return 0;
6925
6926 *execd_pathname = xstrdup (last.value.execd_pathname);
6927 return 1;
6928 }
6929
6930 int
6931 inferior_has_called_syscall (ptid_t pid, int *syscall_number)
6932 {
6933 struct target_waitstatus last;
6934 ptid_t last_ptid;
6935
6936 get_last_target_status (&last_ptid, &last);
6937
6938 if (last.kind != TARGET_WAITKIND_SYSCALL_ENTRY &&
6939 last.kind != TARGET_WAITKIND_SYSCALL_RETURN)
6940 return 0;
6941
6942 if (!ptid_equal (last_ptid, pid))
6943 return 0;
6944
6945 *syscall_number = last.value.syscall_number;
6946 return 1;
6947 }
6948
6949 int
6950 ptid_match (ptid_t ptid, ptid_t filter)
6951 {
6952 if (ptid_equal (filter, minus_one_ptid))
6953 return 1;
6954 if (ptid_is_pid (filter)
6955 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6956 return 1;
6957 else if (ptid_equal (ptid, filter))
6958 return 1;
6959
6960 return 0;
6961 }
6962
6963 /* restore_inferior_ptid() will be used by the cleanup machinery
6964 to restore the inferior_ptid value saved in a call to
6965 save_inferior_ptid(). */
6966
6967 static void
6968 restore_inferior_ptid (void *arg)
6969 {
6970 ptid_t *saved_ptid_ptr = arg;
6971
6972 inferior_ptid = *saved_ptid_ptr;
6973 xfree (arg);
6974 }
6975
6976 /* Save the value of inferior_ptid so that it may be restored by a
6977 later call to do_cleanups(). Returns the struct cleanup pointer
6978 needed for later doing the cleanup. */
6979
6980 struct cleanup *
6981 save_inferior_ptid (void)
6982 {
6983 ptid_t *saved_ptid_ptr;
6984
6985 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6986 *saved_ptid_ptr = inferior_ptid;
6987 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6988 }
6989 \f
6990
6991 /* User interface for reverse debugging:
6992 Set exec-direction / show exec-direction commands
6993 (returns error unless target implements to_set_exec_direction method). */
6994
6995 int execution_direction = EXEC_FORWARD;
6996 static const char exec_forward[] = "forward";
6997 static const char exec_reverse[] = "reverse";
6998 static const char *exec_direction = exec_forward;
6999 static const char *exec_direction_names[] = {
7000 exec_forward,
7001 exec_reverse,
7002 NULL
7003 };
7004
7005 static void
7006 set_exec_direction_func (char *args, int from_tty,
7007 struct cmd_list_element *cmd)
7008 {
7009 if (target_can_execute_reverse)
7010 {
7011 if (!strcmp (exec_direction, exec_forward))
7012 execution_direction = EXEC_FORWARD;
7013 else if (!strcmp (exec_direction, exec_reverse))
7014 execution_direction = EXEC_REVERSE;
7015 }
7016 else
7017 {
7018 exec_direction = exec_forward;
7019 error (_("Target does not support this operation."));
7020 }
7021 }
7022
7023 static void
7024 show_exec_direction_func (struct ui_file *out, int from_tty,
7025 struct cmd_list_element *cmd, const char *value)
7026 {
7027 switch (execution_direction) {
7028 case EXEC_FORWARD:
7029 fprintf_filtered (out, _("Forward.\n"));
7030 break;
7031 case EXEC_REVERSE:
7032 fprintf_filtered (out, _("Reverse.\n"));
7033 break;
7034 default:
7035 internal_error (__FILE__, __LINE__,
7036 _("bogus execution_direction value: %d"),
7037 (int) execution_direction);
7038 }
7039 }
7040
7041 /* User interface for non-stop mode. */
7042
7043 int non_stop = 0;
7044
7045 static void
7046 set_non_stop (char *args, int from_tty,
7047 struct cmd_list_element *c)
7048 {
7049 if (target_has_execution)
7050 {
7051 non_stop_1 = non_stop;
7052 error (_("Cannot change this setting while the inferior is running."));
7053 }
7054
7055 non_stop = non_stop_1;
7056 }
7057
7058 static void
7059 show_non_stop (struct ui_file *file, int from_tty,
7060 struct cmd_list_element *c, const char *value)
7061 {
7062 fprintf_filtered (file,
7063 _("Controlling the inferior in non-stop mode is %s.\n"),
7064 value);
7065 }
7066
7067 static void
7068 show_schedule_multiple (struct ui_file *file, int from_tty,
7069 struct cmd_list_element *c, const char *value)
7070 {
7071 fprintf_filtered (file, _("Resuming the execution of threads "
7072 "of all processes is %s.\n"), value);
7073 }
7074
7075 void
7076 _initialize_infrun (void)
7077 {
7078 int i;
7079 int numsigs;
7080
7081 add_info ("signals", signals_info, _("\
7082 What debugger does when program gets various signals.\n\
7083 Specify a signal as argument to print info on that signal only."));
7084 add_info_alias ("handle", "signals", 0);
7085
7086 add_com ("handle", class_run, handle_command, _("\
7087 Specify how to handle a signal.\n\
7088 Args are signals and actions to apply to those signals.\n\
7089 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7090 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7091 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7092 The special arg \"all\" is recognized to mean all signals except those\n\
7093 used by the debugger, typically SIGTRAP and SIGINT.\n\
7094 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
7095 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7096 Stop means reenter debugger if this signal happens (implies print).\n\
7097 Print means print a message if this signal happens.\n\
7098 Pass means let program see this signal; otherwise program doesn't know.\n\
7099 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7100 Pass and Stop may be combined."));
7101 if (xdb_commands)
7102 {
7103 add_com ("lz", class_info, signals_info, _("\
7104 What debugger does when program gets various signals.\n\
7105 Specify a signal as argument to print info on that signal only."));
7106 add_com ("z", class_run, xdb_handle_command, _("\
7107 Specify how to handle a signal.\n\
7108 Args are signals and actions to apply to those signals.\n\
7109 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7110 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7111 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7112 The special arg \"all\" is recognized to mean all signals except those\n\
7113 used by the debugger, typically SIGTRAP and SIGINT.\n\
7114 Recognized actions include \"s\" (toggles between stop and nostop),\n\
7115 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7116 nopass), \"Q\" (noprint)\n\
7117 Stop means reenter debugger if this signal happens (implies print).\n\
7118 Print means print a message if this signal happens.\n\
7119 Pass means let program see this signal; otherwise program doesn't know.\n\
7120 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7121 Pass and Stop may be combined."));
7122 }
7123
7124 if (!dbx_commands)
7125 stop_command = add_cmd ("stop", class_obscure,
7126 not_just_help_class_command, _("\
7127 There is no `stop' command, but you can set a hook on `stop'.\n\
7128 This allows you to set a list of commands to be run each time execution\n\
7129 of the program stops."), &cmdlist);
7130
7131 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7132 Set inferior debugging."), _("\
7133 Show inferior debugging."), _("\
7134 When non-zero, inferior specific debugging is enabled."),
7135 NULL,
7136 show_debug_infrun,
7137 &setdebuglist, &showdebuglist);
7138
7139 add_setshow_boolean_cmd ("displaced", class_maintenance,
7140 &debug_displaced, _("\
7141 Set displaced stepping debugging."), _("\
7142 Show displaced stepping debugging."), _("\
7143 When non-zero, displaced stepping specific debugging is enabled."),
7144 NULL,
7145 show_debug_displaced,
7146 &setdebuglist, &showdebuglist);
7147
7148 add_setshow_boolean_cmd ("non-stop", no_class,
7149 &non_stop_1, _("\
7150 Set whether gdb controls the inferior in non-stop mode."), _("\
7151 Show whether gdb controls the inferior in non-stop mode."), _("\
7152 When debugging a multi-threaded program and this setting is\n\
7153 off (the default, also called all-stop mode), when one thread stops\n\
7154 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7155 all other threads in the program while you interact with the thread of\n\
7156 interest. When you continue or step a thread, you can allow the other\n\
7157 threads to run, or have them remain stopped, but while you inspect any\n\
7158 thread's state, all threads stop.\n\
7159 \n\
7160 In non-stop mode, when one thread stops, other threads can continue\n\
7161 to run freely. You'll be able to step each thread independently,\n\
7162 leave it stopped or free to run as needed."),
7163 set_non_stop,
7164 show_non_stop,
7165 &setlist,
7166 &showlist);
7167
7168 numsigs = (int) TARGET_SIGNAL_LAST;
7169 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7170 signal_print = (unsigned char *)
7171 xmalloc (sizeof (signal_print[0]) * numsigs);
7172 signal_program = (unsigned char *)
7173 xmalloc (sizeof (signal_program[0]) * numsigs);
7174 signal_pass = (unsigned char *)
7175 xmalloc (sizeof (signal_program[0]) * numsigs);
7176 for (i = 0; i < numsigs; i++)
7177 {
7178 signal_stop[i] = 1;
7179 signal_print[i] = 1;
7180 signal_program[i] = 1;
7181 }
7182
7183 /* Signals caused by debugger's own actions
7184 should not be given to the program afterwards. */
7185 signal_program[TARGET_SIGNAL_TRAP] = 0;
7186 signal_program[TARGET_SIGNAL_INT] = 0;
7187
7188 /* Signals that are not errors should not normally enter the debugger. */
7189 signal_stop[TARGET_SIGNAL_ALRM] = 0;
7190 signal_print[TARGET_SIGNAL_ALRM] = 0;
7191 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
7192 signal_print[TARGET_SIGNAL_VTALRM] = 0;
7193 signal_stop[TARGET_SIGNAL_PROF] = 0;
7194 signal_print[TARGET_SIGNAL_PROF] = 0;
7195 signal_stop[TARGET_SIGNAL_CHLD] = 0;
7196 signal_print[TARGET_SIGNAL_CHLD] = 0;
7197 signal_stop[TARGET_SIGNAL_IO] = 0;
7198 signal_print[TARGET_SIGNAL_IO] = 0;
7199 signal_stop[TARGET_SIGNAL_POLL] = 0;
7200 signal_print[TARGET_SIGNAL_POLL] = 0;
7201 signal_stop[TARGET_SIGNAL_URG] = 0;
7202 signal_print[TARGET_SIGNAL_URG] = 0;
7203 signal_stop[TARGET_SIGNAL_WINCH] = 0;
7204 signal_print[TARGET_SIGNAL_WINCH] = 0;
7205 signal_stop[TARGET_SIGNAL_PRIO] = 0;
7206 signal_print[TARGET_SIGNAL_PRIO] = 0;
7207
7208 /* These signals are used internally by user-level thread
7209 implementations. (See signal(5) on Solaris.) Like the above
7210 signals, a healthy program receives and handles them as part of
7211 its normal operation. */
7212 signal_stop[TARGET_SIGNAL_LWP] = 0;
7213 signal_print[TARGET_SIGNAL_LWP] = 0;
7214 signal_stop[TARGET_SIGNAL_WAITING] = 0;
7215 signal_print[TARGET_SIGNAL_WAITING] = 0;
7216 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
7217 signal_print[TARGET_SIGNAL_CANCEL] = 0;
7218
7219 /* Update cached state. */
7220 signal_cache_update (-1);
7221
7222 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7223 &stop_on_solib_events, _("\
7224 Set stopping for shared library events."), _("\
7225 Show stopping for shared library events."), _("\
7226 If nonzero, gdb will give control to the user when the dynamic linker\n\
7227 notifies gdb of shared library events. The most common event of interest\n\
7228 to the user would be loading/unloading of a new library."),
7229 NULL,
7230 show_stop_on_solib_events,
7231 &setlist, &showlist);
7232
7233 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7234 follow_fork_mode_kind_names,
7235 &follow_fork_mode_string, _("\
7236 Set debugger response to a program call of fork or vfork."), _("\
7237 Show debugger response to a program call of fork or vfork."), _("\
7238 A fork or vfork creates a new process. follow-fork-mode can be:\n\
7239 parent - the original process is debugged after a fork\n\
7240 child - the new process is debugged after a fork\n\
7241 The unfollowed process will continue to run.\n\
7242 By default, the debugger will follow the parent process."),
7243 NULL,
7244 show_follow_fork_mode_string,
7245 &setlist, &showlist);
7246
7247 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7248 follow_exec_mode_names,
7249 &follow_exec_mode_string, _("\
7250 Set debugger response to a program call of exec."), _("\
7251 Show debugger response to a program call of exec."), _("\
7252 An exec call replaces the program image of a process.\n\
7253 \n\
7254 follow-exec-mode can be:\n\
7255 \n\
7256 new - the debugger creates a new inferior and rebinds the process\n\
7257 to this new inferior. The program the process was running before\n\
7258 the exec call can be restarted afterwards by restarting the original\n\
7259 inferior.\n\
7260 \n\
7261 same - the debugger keeps the process bound to the same inferior.\n\
7262 The new executable image replaces the previous executable loaded in\n\
7263 the inferior. Restarting the inferior after the exec call restarts\n\
7264 the executable the process was running after the exec call.\n\
7265 \n\
7266 By default, the debugger will use the same inferior."),
7267 NULL,
7268 show_follow_exec_mode_string,
7269 &setlist, &showlist);
7270
7271 add_setshow_enum_cmd ("scheduler-locking", class_run,
7272 scheduler_enums, &scheduler_mode, _("\
7273 Set mode for locking scheduler during execution."), _("\
7274 Show mode for locking scheduler during execution."), _("\
7275 off == no locking (threads may preempt at any time)\n\
7276 on == full locking (no thread except the current thread may run)\n\
7277 step == scheduler locked during every single-step operation.\n\
7278 In this mode, no other thread may run during a step command.\n\
7279 Other threads may run while stepping over a function call ('next')."),
7280 set_schedlock_func, /* traps on target vector */
7281 show_scheduler_mode,
7282 &setlist, &showlist);
7283
7284 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7285 Set mode for resuming threads of all processes."), _("\
7286 Show mode for resuming threads of all processes."), _("\
7287 When on, execution commands (such as 'continue' or 'next') resume all\n\
7288 threads of all processes. When off (which is the default), execution\n\
7289 commands only resume the threads of the current process. The set of\n\
7290 threads that are resumed is further refined by the scheduler-locking\n\
7291 mode (see help set scheduler-locking)."),
7292 NULL,
7293 show_schedule_multiple,
7294 &setlist, &showlist);
7295
7296 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7297 Set mode of the step operation."), _("\
7298 Show mode of the step operation."), _("\
7299 When set, doing a step over a function without debug line information\n\
7300 will stop at the first instruction of that function. Otherwise, the\n\
7301 function is skipped and the step command stops at a different source line."),
7302 NULL,
7303 show_step_stop_if_no_debug,
7304 &setlist, &showlist);
7305
7306 add_setshow_enum_cmd ("displaced-stepping", class_run,
7307 can_use_displaced_stepping_enum,
7308 &can_use_displaced_stepping, _("\
7309 Set debugger's willingness to use displaced stepping."), _("\
7310 Show debugger's willingness to use displaced stepping."), _("\
7311 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7312 supported by the target architecture. If off, gdb will not use displaced\n\
7313 stepping to step over breakpoints, even if such is supported by the target\n\
7314 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7315 if the target architecture supports it and non-stop mode is active, but will not\n\
7316 use it in all-stop mode (see help set non-stop)."),
7317 NULL,
7318 show_can_use_displaced_stepping,
7319 &setlist, &showlist);
7320
7321 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7322 &exec_direction, _("Set direction of execution.\n\
7323 Options are 'forward' or 'reverse'."),
7324 _("Show direction of execution (forward/reverse)."),
7325 _("Tells gdb whether to execute forward or backward."),
7326 set_exec_direction_func, show_exec_direction_func,
7327 &setlist, &showlist);
7328
7329 /* Set/show detach-on-fork: user-settable mode. */
7330
7331 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7332 Set whether gdb will detach the child of a fork."), _("\
7333 Show whether gdb will detach the child of a fork."), _("\
7334 Tells gdb whether to detach the child of a fork."),
7335 NULL, NULL, &setlist, &showlist);
7336
7337 /* Set/show disable address space randomization mode. */
7338
7339 add_setshow_boolean_cmd ("disable-randomization", class_support,
7340 &disable_randomization, _("\
7341 Set disabling of debuggee's virtual address space randomization."), _("\
7342 Show disabling of debuggee's virtual address space randomization."), _("\
7343 When this mode is on (which is the default), randomization of the virtual\n\
7344 address space is disabled. Standalone programs run with the randomization\n\
7345 enabled by default on some platforms."),
7346 &set_disable_randomization,
7347 &show_disable_randomization,
7348 &setlist, &showlist);
7349
7350 /* ptid initializations */
7351 inferior_ptid = null_ptid;
7352 target_last_wait_ptid = minus_one_ptid;
7353
7354 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7355 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7356 observer_attach_thread_exit (infrun_thread_thread_exit);
7357 observer_attach_inferior_exit (infrun_inferior_exit);
7358
7359 /* Explicitly create without lookup, since that tries to create a
7360 value with a void typed value, and when we get here, gdbarch
7361 isn't initialized yet. At this point, we're quite sure there
7362 isn't another convenience variable of the same name. */
7363 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
7364
7365 add_setshow_boolean_cmd ("observer", no_class,
7366 &observer_mode_1, _("\
7367 Set whether gdb controls the inferior in observer mode."), _("\
7368 Show whether gdb controls the inferior in observer mode."), _("\
7369 In observer mode, GDB can get data from the inferior, but not\n\
7370 affect its execution. Registers and memory may not be changed,\n\
7371 breakpoints may not be set, and the program cannot be interrupted\n\
7372 or signalled."),
7373 set_observer_mode,
7374 show_observer_mode,
7375 &setlist,
7376 &showlist);
7377 }
This page took 0.187786 seconds and 4 git commands to generate.