* Makefile.am: Run "make dep-am".
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
6 Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include "symtab.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "exceptions.h"
32 #include "breakpoint.h"
33 #include "gdb_wait.h"
34 #include "gdbcore.h"
35 #include "gdbcmd.h"
36 #include "cli/cli-script.h"
37 #include "target.h"
38 #include "gdbthread.h"
39 #include "annotate.h"
40 #include "symfile.h"
41 #include "top.h"
42 #include <signal.h>
43 #include "inf-loop.h"
44 #include "regcache.h"
45 #include "value.h"
46 #include "observer.h"
47 #include "language.h"
48 #include "solib.h"
49 #include "main.h"
50
51 #include "gdb_assert.h"
52 #include "mi/mi-common.h"
53
54 /* Prototypes for local functions */
55
56 static void signals_info (char *, int);
57
58 static void handle_command (char *, int);
59
60 static void sig_print_info (enum target_signal);
61
62 static void sig_print_header (void);
63
64 static void resume_cleanups (void *);
65
66 static int hook_stop_stub (void *);
67
68 static int restore_selected_frame (void *);
69
70 static void build_infrun (void);
71
72 static int follow_fork (void);
73
74 static void set_schedlock_func (char *args, int from_tty,
75 struct cmd_list_element *c);
76
77 struct execution_control_state;
78
79 static int currently_stepping (struct execution_control_state *ecs);
80
81 static void xdb_handle_command (char *args, int from_tty);
82
83 static int prepare_to_proceed (void);
84
85 void _initialize_infrun (void);
86
87 int inferior_ignoring_startup_exec_events = 0;
88 int inferior_ignoring_leading_exec_events = 0;
89
90 /* When set, stop the 'step' command if we enter a function which has
91 no line number information. The normal behavior is that we step
92 over such function. */
93 int step_stop_if_no_debug = 0;
94 static void
95 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
96 struct cmd_list_element *c, const char *value)
97 {
98 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
99 }
100
101 /* In asynchronous mode, but simulating synchronous execution. */
102
103 int sync_execution = 0;
104
105 /* wait_for_inferior and normal_stop use this to notify the user
106 when the inferior stopped in a different thread than it had been
107 running in. */
108
109 static ptid_t previous_inferior_ptid;
110
111 /* This is true for configurations that may follow through execl() and
112 similar functions. At present this is only true for HP-UX native. */
113
114 #ifndef MAY_FOLLOW_EXEC
115 #define MAY_FOLLOW_EXEC (0)
116 #endif
117
118 static int may_follow_exec = MAY_FOLLOW_EXEC;
119
120 static int debug_infrun = 0;
121 static void
122 show_debug_infrun (struct ui_file *file, int from_tty,
123 struct cmd_list_element *c, const char *value)
124 {
125 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
126 }
127
128 /* If the program uses ELF-style shared libraries, then calls to
129 functions in shared libraries go through stubs, which live in a
130 table called the PLT (Procedure Linkage Table). The first time the
131 function is called, the stub sends control to the dynamic linker,
132 which looks up the function's real address, patches the stub so
133 that future calls will go directly to the function, and then passes
134 control to the function.
135
136 If we are stepping at the source level, we don't want to see any of
137 this --- we just want to skip over the stub and the dynamic linker.
138 The simple approach is to single-step until control leaves the
139 dynamic linker.
140
141 However, on some systems (e.g., Red Hat's 5.2 distribution) the
142 dynamic linker calls functions in the shared C library, so you
143 can't tell from the PC alone whether the dynamic linker is still
144 running. In this case, we use a step-resume breakpoint to get us
145 past the dynamic linker, as if we were using "next" to step over a
146 function call.
147
148 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
149 linker code or not. Normally, this means we single-step. However,
150 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
151 address where we can place a step-resume breakpoint to get past the
152 linker's symbol resolution function.
153
154 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
155 pretty portable way, by comparing the PC against the address ranges
156 of the dynamic linker's sections.
157
158 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
159 it depends on internal details of the dynamic linker. It's usually
160 not too hard to figure out where to put a breakpoint, but it
161 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
162 sanity checking. If it can't figure things out, returning zero and
163 getting the (possibly confusing) stepping behavior is better than
164 signalling an error, which will obscure the change in the
165 inferior's state. */
166
167 /* This function returns TRUE if pc is the address of an instruction
168 that lies within the dynamic linker (such as the event hook, or the
169 dld itself).
170
171 This function must be used only when a dynamic linker event has
172 been caught, and the inferior is being stepped out of the hook, or
173 undefined results are guaranteed. */
174
175 #ifndef SOLIB_IN_DYNAMIC_LINKER
176 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
177 #endif
178
179 /* We can't step off a permanent breakpoint in the ordinary way, because we
180 can't remove it. Instead, we have to advance the PC to the next
181 instruction. This macro should expand to a pointer to a function that
182 does that, or zero if we have no such function. If we don't have a
183 definition for it, we have to report an error. */
184 #ifndef SKIP_PERMANENT_BREAKPOINT
185 #define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
186 static void
187 default_skip_permanent_breakpoint (void)
188 {
189 error (_("\
190 The program is stopped at a permanent breakpoint, but GDB does not know\n\
191 how to step past a permanent breakpoint on this architecture. Try using\n\
192 a command like `return' or `jump' to continue execution."));
193 }
194 #endif
195
196
197 /* Convert the #defines into values. This is temporary until wfi control
198 flow is completely sorted out. */
199
200 #ifndef HAVE_STEPPABLE_WATCHPOINT
201 #define HAVE_STEPPABLE_WATCHPOINT 0
202 #else
203 #undef HAVE_STEPPABLE_WATCHPOINT
204 #define HAVE_STEPPABLE_WATCHPOINT 1
205 #endif
206
207 #ifndef CANNOT_STEP_HW_WATCHPOINTS
208 #define CANNOT_STEP_HW_WATCHPOINTS 0
209 #else
210 #undef CANNOT_STEP_HW_WATCHPOINTS
211 #define CANNOT_STEP_HW_WATCHPOINTS 1
212 #endif
213
214 /* Tables of how to react to signals; the user sets them. */
215
216 static unsigned char *signal_stop;
217 static unsigned char *signal_print;
218 static unsigned char *signal_program;
219
220 #define SET_SIGS(nsigs,sigs,flags) \
221 do { \
222 int signum = (nsigs); \
223 while (signum-- > 0) \
224 if ((sigs)[signum]) \
225 (flags)[signum] = 1; \
226 } while (0)
227
228 #define UNSET_SIGS(nsigs,sigs,flags) \
229 do { \
230 int signum = (nsigs); \
231 while (signum-- > 0) \
232 if ((sigs)[signum]) \
233 (flags)[signum] = 0; \
234 } while (0)
235
236 /* Value to pass to target_resume() to cause all threads to resume */
237
238 #define RESUME_ALL (pid_to_ptid (-1))
239
240 /* Command list pointer for the "stop" placeholder. */
241
242 static struct cmd_list_element *stop_command;
243
244 /* Nonzero if breakpoints are now inserted in the inferior. */
245
246 static int breakpoints_inserted;
247
248 /* Function inferior was in as of last step command. */
249
250 static struct symbol *step_start_function;
251
252 /* Nonzero if we are expecting a trace trap and should proceed from it. */
253
254 static int trap_expected;
255
256 /* Nonzero if we want to give control to the user when we're notified
257 of shared library events by the dynamic linker. */
258 static int stop_on_solib_events;
259 static void
260 show_stop_on_solib_events (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262 {
263 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
264 value);
265 }
266
267 /* Nonzero means expecting a trace trap
268 and should stop the inferior and return silently when it happens. */
269
270 int stop_after_trap;
271
272 /* Nonzero means expecting a trap and caller will handle it themselves.
273 It is used after attach, due to attaching to a process;
274 when running in the shell before the child program has been exec'd;
275 and when running some kinds of remote stuff (FIXME?). */
276
277 enum stop_kind stop_soon;
278
279 /* Nonzero if proceed is being used for a "finish" command or a similar
280 situation when stop_registers should be saved. */
281
282 int proceed_to_finish;
283
284 /* Save register contents here when about to pop a stack dummy frame,
285 if-and-only-if proceed_to_finish is set.
286 Thus this contains the return value from the called function (assuming
287 values are returned in a register). */
288
289 struct regcache *stop_registers;
290
291 /* Nonzero if program stopped due to error trying to insert breakpoints. */
292
293 static int breakpoints_failed;
294
295 /* Nonzero after stop if current stack frame should be printed. */
296
297 static int stop_print_frame;
298
299 static struct breakpoint *step_resume_breakpoint = NULL;
300
301 /* This is a cached copy of the pid/waitstatus of the last event
302 returned by target_wait()/deprecated_target_wait_hook(). This
303 information is returned by get_last_target_status(). */
304 static ptid_t target_last_wait_ptid;
305 static struct target_waitstatus target_last_waitstatus;
306
307 /* This is used to remember when a fork, vfork or exec event
308 was caught by a catchpoint, and thus the event is to be
309 followed at the next resume of the inferior, and not
310 immediately. */
311 static struct
312 {
313 enum target_waitkind kind;
314 struct
315 {
316 int parent_pid;
317 int child_pid;
318 }
319 fork_event;
320 char *execd_pathname;
321 }
322 pending_follow;
323
324 static const char follow_fork_mode_child[] = "child";
325 static const char follow_fork_mode_parent[] = "parent";
326
327 static const char *follow_fork_mode_kind_names[] = {
328 follow_fork_mode_child,
329 follow_fork_mode_parent,
330 NULL
331 };
332
333 static const char *follow_fork_mode_string = follow_fork_mode_parent;
334 static void
335 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
336 struct cmd_list_element *c, const char *value)
337 {
338 fprintf_filtered (file, _("\
339 Debugger response to a program call of fork or vfork is \"%s\".\n"),
340 value);
341 }
342 \f
343
344 static int
345 follow_fork (void)
346 {
347 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
348
349 return target_follow_fork (follow_child);
350 }
351
352 void
353 follow_inferior_reset_breakpoints (void)
354 {
355 /* Was there a step_resume breakpoint? (There was if the user
356 did a "next" at the fork() call.) If so, explicitly reset its
357 thread number.
358
359 step_resumes are a form of bp that are made to be per-thread.
360 Since we created the step_resume bp when the parent process
361 was being debugged, and now are switching to the child process,
362 from the breakpoint package's viewpoint, that's a switch of
363 "threads". We must update the bp's notion of which thread
364 it is for, or it'll be ignored when it triggers. */
365
366 if (step_resume_breakpoint)
367 breakpoint_re_set_thread (step_resume_breakpoint);
368
369 /* Reinsert all breakpoints in the child. The user may have set
370 breakpoints after catching the fork, in which case those
371 were never set in the child, but only in the parent. This makes
372 sure the inserted breakpoints match the breakpoint list. */
373
374 breakpoint_re_set ();
375 insert_breakpoints ();
376 }
377
378 /* EXECD_PATHNAME is assumed to be non-NULL. */
379
380 static void
381 follow_exec (int pid, char *execd_pathname)
382 {
383 int saved_pid = pid;
384 struct target_ops *tgt;
385
386 if (!may_follow_exec)
387 return;
388
389 /* This is an exec event that we actually wish to pay attention to.
390 Refresh our symbol table to the newly exec'd program, remove any
391 momentary bp's, etc.
392
393 If there are breakpoints, they aren't really inserted now,
394 since the exec() transformed our inferior into a fresh set
395 of instructions.
396
397 We want to preserve symbolic breakpoints on the list, since
398 we have hopes that they can be reset after the new a.out's
399 symbol table is read.
400
401 However, any "raw" breakpoints must be removed from the list
402 (e.g., the solib bp's), since their address is probably invalid
403 now.
404
405 And, we DON'T want to call delete_breakpoints() here, since
406 that may write the bp's "shadow contents" (the instruction
407 value that was overwritten witha TRAP instruction). Since
408 we now have a new a.out, those shadow contents aren't valid. */
409 update_breakpoints_after_exec ();
410
411 /* If there was one, it's gone now. We cannot truly step-to-next
412 statement through an exec(). */
413 step_resume_breakpoint = NULL;
414 step_range_start = 0;
415 step_range_end = 0;
416
417 /* What is this a.out's name? */
418 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
419
420 /* We've followed the inferior through an exec. Therefore, the
421 inferior has essentially been killed & reborn. */
422
423 /* First collect the run target in effect. */
424 tgt = find_run_target ();
425 /* If we can't find one, things are in a very strange state... */
426 if (tgt == NULL)
427 error (_("Could find run target to save before following exec"));
428
429 gdb_flush (gdb_stdout);
430 target_mourn_inferior ();
431 inferior_ptid = pid_to_ptid (saved_pid);
432 /* Because mourn_inferior resets inferior_ptid. */
433 push_target (tgt);
434
435 /* That a.out is now the one to use. */
436 exec_file_attach (execd_pathname, 0);
437
438 /* And also is where symbols can be found. */
439 symbol_file_add_main (execd_pathname, 0);
440
441 /* Reset the shared library package. This ensures that we get
442 a shlib event when the child reaches "_start", at which point
443 the dld will have had a chance to initialize the child. */
444 #if defined(SOLIB_RESTART)
445 SOLIB_RESTART ();
446 #endif
447 #ifdef SOLIB_CREATE_INFERIOR_HOOK
448 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
449 #else
450 solib_create_inferior_hook ();
451 #endif
452
453 /* Reinsert all breakpoints. (Those which were symbolic have
454 been reset to the proper address in the new a.out, thanks
455 to symbol_file_command...) */
456 insert_breakpoints ();
457
458 /* The next resume of this inferior should bring it to the shlib
459 startup breakpoints. (If the user had also set bp's on
460 "main" from the old (parent) process, then they'll auto-
461 matically get reset there in the new process.) */
462 }
463
464 /* Non-zero if we just simulating a single-step. This is needed
465 because we cannot remove the breakpoints in the inferior process
466 until after the `wait' in `wait_for_inferior'. */
467 static int singlestep_breakpoints_inserted_p = 0;
468
469 /* The thread we inserted single-step breakpoints for. */
470 static ptid_t singlestep_ptid;
471
472 /* If another thread hit the singlestep breakpoint, we save the original
473 thread here so that we can resume single-stepping it later. */
474 static ptid_t saved_singlestep_ptid;
475 static int stepping_past_singlestep_breakpoint;
476 \f
477
478 /* Things to clean up if we QUIT out of resume (). */
479 static void
480 resume_cleanups (void *ignore)
481 {
482 normal_stop ();
483 }
484
485 static const char schedlock_off[] = "off";
486 static const char schedlock_on[] = "on";
487 static const char schedlock_step[] = "step";
488 static const char *scheduler_enums[] = {
489 schedlock_off,
490 schedlock_on,
491 schedlock_step,
492 NULL
493 };
494 static const char *scheduler_mode = schedlock_off;
495 static void
496 show_scheduler_mode (struct ui_file *file, int from_tty,
497 struct cmd_list_element *c, const char *value)
498 {
499 fprintf_filtered (file, _("\
500 Mode for locking scheduler during execution is \"%s\".\n"),
501 value);
502 }
503
504 static void
505 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
506 {
507 if (!target_can_lock_scheduler)
508 {
509 scheduler_mode = schedlock_off;
510 error (_("Target '%s' cannot support this command."), target_shortname);
511 }
512 }
513
514
515 /* Resume the inferior, but allow a QUIT. This is useful if the user
516 wants to interrupt some lengthy single-stepping operation
517 (for child processes, the SIGINT goes to the inferior, and so
518 we get a SIGINT random_signal, but for remote debugging and perhaps
519 other targets, that's not true).
520
521 STEP nonzero if we should step (zero to continue instead).
522 SIG is the signal to give the inferior (zero for none). */
523 void
524 resume (int step, enum target_signal sig)
525 {
526 int should_resume = 1;
527 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
528 QUIT;
529
530 if (debug_infrun)
531 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
532 step, sig);
533
534 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
535
536
537 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
538 over an instruction that causes a page fault without triggering
539 a hardware watchpoint. The kernel properly notices that it shouldn't
540 stop, because the hardware watchpoint is not triggered, but it forgets
541 the step request and continues the program normally.
542 Work around the problem by removing hardware watchpoints if a step is
543 requested, GDB will check for a hardware watchpoint trigger after the
544 step anyway. */
545 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
546 remove_hw_watchpoints ();
547
548
549 /* Normally, by the time we reach `resume', the breakpoints are either
550 removed or inserted, as appropriate. The exception is if we're sitting
551 at a permanent breakpoint; we need to step over it, but permanent
552 breakpoints can't be removed. So we have to test for it here. */
553 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
554 SKIP_PERMANENT_BREAKPOINT ();
555
556 if (SOFTWARE_SINGLE_STEP_P () && step)
557 {
558 /* Do it the hard way, w/temp breakpoints */
559 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
560 /* ...and don't ask hardware to do it. */
561 step = 0;
562 /* and do not pull these breakpoints until after a `wait' in
563 `wait_for_inferior' */
564 singlestep_breakpoints_inserted_p = 1;
565 singlestep_ptid = inferior_ptid;
566 }
567
568 /* If there were any forks/vforks/execs that were caught and are
569 now to be followed, then do so. */
570 switch (pending_follow.kind)
571 {
572 case TARGET_WAITKIND_FORKED:
573 case TARGET_WAITKIND_VFORKED:
574 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
575 if (follow_fork ())
576 should_resume = 0;
577 break;
578
579 case TARGET_WAITKIND_EXECD:
580 /* follow_exec is called as soon as the exec event is seen. */
581 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
582 break;
583
584 default:
585 break;
586 }
587
588 /* Install inferior's terminal modes. */
589 target_terminal_inferior ();
590
591 if (should_resume)
592 {
593 ptid_t resume_ptid;
594
595 resume_ptid = RESUME_ALL; /* Default */
596
597 if ((step || singlestep_breakpoints_inserted_p)
598 && (stepping_past_singlestep_breakpoint
599 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
600 {
601 /* Stepping past a breakpoint without inserting breakpoints.
602 Make sure only the current thread gets to step, so that
603 other threads don't sneak past breakpoints while they are
604 not inserted. */
605
606 resume_ptid = inferior_ptid;
607 }
608
609 if ((scheduler_mode == schedlock_on)
610 || (scheduler_mode == schedlock_step
611 && (step || singlestep_breakpoints_inserted_p)))
612 {
613 /* User-settable 'scheduler' mode requires solo thread resume. */
614 resume_ptid = inferior_ptid;
615 }
616
617 if (CANNOT_STEP_BREAKPOINT)
618 {
619 /* Most targets can step a breakpoint instruction, thus
620 executing it normally. But if this one cannot, just
621 continue and we will hit it anyway. */
622 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
623 step = 0;
624 }
625 target_resume (resume_ptid, step, sig);
626 }
627
628 discard_cleanups (old_cleanups);
629 }
630 \f
631
632 /* Clear out all variables saying what to do when inferior is continued.
633 First do this, then set the ones you want, then call `proceed'. */
634
635 void
636 clear_proceed_status (void)
637 {
638 trap_expected = 0;
639 step_range_start = 0;
640 step_range_end = 0;
641 step_frame_id = null_frame_id;
642 step_over_calls = STEP_OVER_UNDEBUGGABLE;
643 stop_after_trap = 0;
644 stop_soon = NO_STOP_QUIETLY;
645 proceed_to_finish = 0;
646 breakpoint_proceeded = 1; /* We're about to proceed... */
647
648 /* Discard any remaining commands or status from previous stop. */
649 bpstat_clear (&stop_bpstat);
650 }
651
652 /* This should be suitable for any targets that support threads. */
653
654 static int
655 prepare_to_proceed (void)
656 {
657 ptid_t wait_ptid;
658 struct target_waitstatus wait_status;
659
660 /* Get the last target status returned by target_wait(). */
661 get_last_target_status (&wait_ptid, &wait_status);
662
663 /* Make sure we were stopped either at a breakpoint, or because
664 of a Ctrl-C. */
665 if (wait_status.kind != TARGET_WAITKIND_STOPPED
666 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
667 && wait_status.value.sig != TARGET_SIGNAL_INT))
668 {
669 return 0;
670 }
671
672 if (!ptid_equal (wait_ptid, minus_one_ptid)
673 && !ptid_equal (inferior_ptid, wait_ptid))
674 {
675 /* Switched over from WAIT_PID. */
676 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
677
678 if (wait_pc != read_pc ())
679 {
680 /* Switch back to WAIT_PID thread. */
681 inferior_ptid = wait_ptid;
682
683 /* FIXME: This stuff came from switch_to_thread() in
684 thread.c (which should probably be a public function). */
685 flush_cached_frames ();
686 registers_changed ();
687 stop_pc = wait_pc;
688 select_frame (get_current_frame ());
689 }
690
691 /* We return 1 to indicate that there is a breakpoint here,
692 so we need to step over it before continuing to avoid
693 hitting it straight away. */
694 if (breakpoint_here_p (wait_pc))
695 return 1;
696 }
697
698 return 0;
699
700 }
701
702 /* Record the pc of the program the last time it stopped. This is
703 just used internally by wait_for_inferior, but need to be preserved
704 over calls to it and cleared when the inferior is started. */
705 static CORE_ADDR prev_pc;
706
707 /* Basic routine for continuing the program in various fashions.
708
709 ADDR is the address to resume at, or -1 for resume where stopped.
710 SIGGNAL is the signal to give it, or 0 for none,
711 or -1 for act according to how it stopped.
712 STEP is nonzero if should trap after one instruction.
713 -1 means return after that and print nothing.
714 You should probably set various step_... variables
715 before calling here, if you are stepping.
716
717 You should call clear_proceed_status before calling proceed. */
718
719 void
720 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
721 {
722 int oneproc = 0;
723
724 if (step > 0)
725 step_start_function = find_pc_function (read_pc ());
726 if (step < 0)
727 stop_after_trap = 1;
728
729 if (addr == (CORE_ADDR) -1)
730 {
731 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
732 /* There is a breakpoint at the address we will resume at,
733 step one instruction before inserting breakpoints so that
734 we do not stop right away (and report a second hit at this
735 breakpoint). */
736 oneproc = 1;
737 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
738 && gdbarch_single_step_through_delay (current_gdbarch,
739 get_current_frame ()))
740 /* We stepped onto an instruction that needs to be stepped
741 again before re-inserting the breakpoint, do so. */
742 oneproc = 1;
743 }
744 else
745 {
746 write_pc (addr);
747 }
748
749 if (debug_infrun)
750 fprintf_unfiltered (gdb_stdlog,
751 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
752 paddr_nz (addr), siggnal, step);
753
754 /* In a multi-threaded task we may select another thread
755 and then continue or step.
756
757 But if the old thread was stopped at a breakpoint, it
758 will immediately cause another breakpoint stop without
759 any execution (i.e. it will report a breakpoint hit
760 incorrectly). So we must step over it first.
761
762 prepare_to_proceed checks the current thread against the thread
763 that reported the most recent event. If a step-over is required
764 it returns TRUE and sets the current thread to the old thread. */
765 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
766 oneproc = 1;
767
768 if (oneproc)
769 /* We will get a trace trap after one instruction.
770 Continue it automatically and insert breakpoints then. */
771 trap_expected = 1;
772 else
773 {
774 insert_breakpoints ();
775 /* If we get here there was no call to error() in
776 insert breakpoints -- so they were inserted. */
777 breakpoints_inserted = 1;
778 }
779
780 if (siggnal != TARGET_SIGNAL_DEFAULT)
781 stop_signal = siggnal;
782 /* If this signal should not be seen by program,
783 give it zero. Used for debugging signals. */
784 else if (!signal_program[stop_signal])
785 stop_signal = TARGET_SIGNAL_0;
786
787 annotate_starting ();
788
789 /* Make sure that output from GDB appears before output from the
790 inferior. */
791 gdb_flush (gdb_stdout);
792
793 /* Refresh prev_pc value just prior to resuming. This used to be
794 done in stop_stepping, however, setting prev_pc there did not handle
795 scenarios such as inferior function calls or returning from
796 a function via the return command. In those cases, the prev_pc
797 value was not set properly for subsequent commands. The prev_pc value
798 is used to initialize the starting line number in the ecs. With an
799 invalid value, the gdb next command ends up stopping at the position
800 represented by the next line table entry past our start position.
801 On platforms that generate one line table entry per line, this
802 is not a problem. However, on the ia64, the compiler generates
803 extraneous line table entries that do not increase the line number.
804 When we issue the gdb next command on the ia64 after an inferior call
805 or a return command, we often end up a few instructions forward, still
806 within the original line we started.
807
808 An attempt was made to have init_execution_control_state () refresh
809 the prev_pc value before calculating the line number. This approach
810 did not work because on platforms that use ptrace, the pc register
811 cannot be read unless the inferior is stopped. At that point, we
812 are not guaranteed the inferior is stopped and so the read_pc ()
813 call can fail. Setting the prev_pc value here ensures the value is
814 updated correctly when the inferior is stopped. */
815 prev_pc = read_pc ();
816
817 /* Resume inferior. */
818 resume (oneproc || step || bpstat_should_step (), stop_signal);
819
820 /* Wait for it to stop (if not standalone)
821 and in any case decode why it stopped, and act accordingly. */
822 /* Do this only if we are not using the event loop, or if the target
823 does not support asynchronous execution. */
824 if (!target_can_async_p ())
825 {
826 wait_for_inferior ();
827 normal_stop ();
828 }
829 }
830 \f
831
832 /* Start remote-debugging of a machine over a serial link. */
833
834 void
835 start_remote (void)
836 {
837 init_thread_list ();
838 init_wait_for_inferior ();
839 stop_soon = STOP_QUIETLY;
840 trap_expected = 0;
841
842 /* Always go on waiting for the target, regardless of the mode. */
843 /* FIXME: cagney/1999-09-23: At present it isn't possible to
844 indicate to wait_for_inferior that a target should timeout if
845 nothing is returned (instead of just blocking). Because of this,
846 targets expecting an immediate response need to, internally, set
847 things up so that the target_wait() is forced to eventually
848 timeout. */
849 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
850 differentiate to its caller what the state of the target is after
851 the initial open has been performed. Here we're assuming that
852 the target has stopped. It should be possible to eventually have
853 target_open() return to the caller an indication that the target
854 is currently running and GDB state should be set to the same as
855 for an async run. */
856 wait_for_inferior ();
857 normal_stop ();
858 }
859
860 /* Initialize static vars when a new inferior begins. */
861
862 void
863 init_wait_for_inferior (void)
864 {
865 /* These are meaningless until the first time through wait_for_inferior. */
866 prev_pc = 0;
867
868 breakpoints_inserted = 0;
869 breakpoint_init_inferior (inf_starting);
870
871 /* Don't confuse first call to proceed(). */
872 stop_signal = TARGET_SIGNAL_0;
873
874 /* The first resume is not following a fork/vfork/exec. */
875 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
876
877 clear_proceed_status ();
878
879 stepping_past_singlestep_breakpoint = 0;
880 }
881 \f
882 /* This enum encodes possible reasons for doing a target_wait, so that
883 wfi can call target_wait in one place. (Ultimately the call will be
884 moved out of the infinite loop entirely.) */
885
886 enum infwait_states
887 {
888 infwait_normal_state,
889 infwait_thread_hop_state,
890 infwait_nonstep_watch_state
891 };
892
893 /* Why did the inferior stop? Used to print the appropriate messages
894 to the interface from within handle_inferior_event(). */
895 enum inferior_stop_reason
896 {
897 /* We don't know why. */
898 STOP_UNKNOWN,
899 /* Step, next, nexti, stepi finished. */
900 END_STEPPING_RANGE,
901 /* Found breakpoint. */
902 BREAKPOINT_HIT,
903 /* Inferior terminated by signal. */
904 SIGNAL_EXITED,
905 /* Inferior exited. */
906 EXITED,
907 /* Inferior received signal, and user asked to be notified. */
908 SIGNAL_RECEIVED
909 };
910
911 /* This structure contains what used to be local variables in
912 wait_for_inferior. Probably many of them can return to being
913 locals in handle_inferior_event. */
914
915 struct execution_control_state
916 {
917 struct target_waitstatus ws;
918 struct target_waitstatus *wp;
919 int another_trap;
920 int random_signal;
921 CORE_ADDR stop_func_start;
922 CORE_ADDR stop_func_end;
923 char *stop_func_name;
924 struct symtab_and_line sal;
925 int current_line;
926 struct symtab *current_symtab;
927 int handling_longjmp; /* FIXME */
928 ptid_t ptid;
929 ptid_t saved_inferior_ptid;
930 int step_after_step_resume_breakpoint;
931 int stepping_through_solib_after_catch;
932 bpstat stepping_through_solib_catchpoints;
933 int new_thread_event;
934 struct target_waitstatus tmpstatus;
935 enum infwait_states infwait_state;
936 ptid_t waiton_ptid;
937 int wait_some_more;
938 };
939
940 void init_execution_control_state (struct execution_control_state *ecs);
941
942 void handle_inferior_event (struct execution_control_state *ecs);
943
944 static void step_into_function (struct execution_control_state *ecs);
945 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
946 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
947 struct frame_id sr_id);
948 static void stop_stepping (struct execution_control_state *ecs);
949 static void prepare_to_wait (struct execution_control_state *ecs);
950 static void keep_going (struct execution_control_state *ecs);
951 static void print_stop_reason (enum inferior_stop_reason stop_reason,
952 int stop_info);
953
954 /* Wait for control to return from inferior to debugger.
955 If inferior gets a signal, we may decide to start it up again
956 instead of returning. That is why there is a loop in this function.
957 When this function actually returns it means the inferior
958 should be left stopped and GDB should read more commands. */
959
960 void
961 wait_for_inferior (void)
962 {
963 struct cleanup *old_cleanups;
964 struct execution_control_state ecss;
965 struct execution_control_state *ecs;
966
967 if (debug_infrun)
968 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
969
970 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
971 &step_resume_breakpoint);
972
973 /* wfi still stays in a loop, so it's OK just to take the address of
974 a local to get the ecs pointer. */
975 ecs = &ecss;
976
977 /* Fill in with reasonable starting values. */
978 init_execution_control_state (ecs);
979
980 /* We'll update this if & when we switch to a new thread. */
981 previous_inferior_ptid = inferior_ptid;
982
983 overlay_cache_invalid = 1;
984
985 /* We have to invalidate the registers BEFORE calling target_wait
986 because they can be loaded from the target while in target_wait.
987 This makes remote debugging a bit more efficient for those
988 targets that provide critical registers as part of their normal
989 status mechanism. */
990
991 registers_changed ();
992
993 while (1)
994 {
995 if (deprecated_target_wait_hook)
996 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
997 else
998 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
999
1000 /* Now figure out what to do with the result of the result. */
1001 handle_inferior_event (ecs);
1002
1003 if (!ecs->wait_some_more)
1004 break;
1005 }
1006 do_cleanups (old_cleanups);
1007 }
1008
1009 /* Asynchronous version of wait_for_inferior. It is called by the
1010 event loop whenever a change of state is detected on the file
1011 descriptor corresponding to the target. It can be called more than
1012 once to complete a single execution command. In such cases we need
1013 to keep the state in a global variable ASYNC_ECSS. If it is the
1014 last time that this function is called for a single execution
1015 command, then report to the user that the inferior has stopped, and
1016 do the necessary cleanups. */
1017
1018 struct execution_control_state async_ecss;
1019 struct execution_control_state *async_ecs;
1020
1021 void
1022 fetch_inferior_event (void *client_data)
1023 {
1024 static struct cleanup *old_cleanups;
1025
1026 async_ecs = &async_ecss;
1027
1028 if (!async_ecs->wait_some_more)
1029 {
1030 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1031 &step_resume_breakpoint);
1032
1033 /* Fill in with reasonable starting values. */
1034 init_execution_control_state (async_ecs);
1035
1036 /* We'll update this if & when we switch to a new thread. */
1037 previous_inferior_ptid = inferior_ptid;
1038
1039 overlay_cache_invalid = 1;
1040
1041 /* We have to invalidate the registers BEFORE calling target_wait
1042 because they can be loaded from the target while in target_wait.
1043 This makes remote debugging a bit more efficient for those
1044 targets that provide critical registers as part of their normal
1045 status mechanism. */
1046
1047 registers_changed ();
1048 }
1049
1050 if (deprecated_target_wait_hook)
1051 async_ecs->ptid =
1052 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1053 else
1054 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1055
1056 /* Now figure out what to do with the result of the result. */
1057 handle_inferior_event (async_ecs);
1058
1059 if (!async_ecs->wait_some_more)
1060 {
1061 /* Do only the cleanups that have been added by this
1062 function. Let the continuations for the commands do the rest,
1063 if there are any. */
1064 do_exec_cleanups (old_cleanups);
1065 normal_stop ();
1066 if (step_multi && stop_step)
1067 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1068 else
1069 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1070 }
1071 }
1072
1073 /* Prepare an execution control state for looping through a
1074 wait_for_inferior-type loop. */
1075
1076 void
1077 init_execution_control_state (struct execution_control_state *ecs)
1078 {
1079 ecs->another_trap = 0;
1080 ecs->random_signal = 0;
1081 ecs->step_after_step_resume_breakpoint = 0;
1082 ecs->handling_longjmp = 0; /* FIXME */
1083 ecs->stepping_through_solib_after_catch = 0;
1084 ecs->stepping_through_solib_catchpoints = NULL;
1085 ecs->sal = find_pc_line (prev_pc, 0);
1086 ecs->current_line = ecs->sal.line;
1087 ecs->current_symtab = ecs->sal.symtab;
1088 ecs->infwait_state = infwait_normal_state;
1089 ecs->waiton_ptid = pid_to_ptid (-1);
1090 ecs->wp = &(ecs->ws);
1091 }
1092
1093 /* Return the cached copy of the last pid/waitstatus returned by
1094 target_wait()/deprecated_target_wait_hook(). The data is actually
1095 cached by handle_inferior_event(), which gets called immediately
1096 after target_wait()/deprecated_target_wait_hook(). */
1097
1098 void
1099 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1100 {
1101 *ptidp = target_last_wait_ptid;
1102 *status = target_last_waitstatus;
1103 }
1104
1105 /* Switch thread contexts, maintaining "infrun state". */
1106
1107 static void
1108 context_switch (struct execution_control_state *ecs)
1109 {
1110 /* Caution: it may happen that the new thread (or the old one!)
1111 is not in the thread list. In this case we must not attempt
1112 to "switch context", or we run the risk that our context may
1113 be lost. This may happen as a result of the target module
1114 mishandling thread creation. */
1115
1116 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1117 { /* Perform infrun state context switch: */
1118 /* Save infrun state for the old thread. */
1119 save_infrun_state (inferior_ptid, prev_pc,
1120 trap_expected, step_resume_breakpoint,
1121 step_range_start,
1122 step_range_end, &step_frame_id,
1123 ecs->handling_longjmp, ecs->another_trap,
1124 ecs->stepping_through_solib_after_catch,
1125 ecs->stepping_through_solib_catchpoints,
1126 ecs->current_line, ecs->current_symtab);
1127
1128 /* Load infrun state for the new thread. */
1129 load_infrun_state (ecs->ptid, &prev_pc,
1130 &trap_expected, &step_resume_breakpoint,
1131 &step_range_start,
1132 &step_range_end, &step_frame_id,
1133 &ecs->handling_longjmp, &ecs->another_trap,
1134 &ecs->stepping_through_solib_after_catch,
1135 &ecs->stepping_through_solib_catchpoints,
1136 &ecs->current_line, &ecs->current_symtab);
1137 }
1138 inferior_ptid = ecs->ptid;
1139 }
1140
1141 static void
1142 adjust_pc_after_break (struct execution_control_state *ecs)
1143 {
1144 CORE_ADDR breakpoint_pc;
1145
1146 /* If this target does not decrement the PC after breakpoints, then
1147 we have nothing to do. */
1148 if (DECR_PC_AFTER_BREAK == 0)
1149 return;
1150
1151 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1152 we aren't, just return.
1153
1154 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1155 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1156 by software breakpoints should be handled through the normal breakpoint
1157 layer.
1158
1159 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1160 different signals (SIGILL or SIGEMT for instance), but it is less
1161 clear where the PC is pointing afterwards. It may not match
1162 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1163 these signals at breakpoints (the code has been in GDB since at least
1164 1992) so I can not guess how to handle them here.
1165
1166 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1167 would have the PC after hitting a watchpoint affected by
1168 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1169 in GDB history, and it seems unlikely to be correct, so
1170 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1171
1172 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1173 return;
1174
1175 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1176 return;
1177
1178 /* Find the location where (if we've hit a breakpoint) the
1179 breakpoint would be. */
1180 breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1181
1182 if (SOFTWARE_SINGLE_STEP_P ())
1183 {
1184 /* When using software single-step, a SIGTRAP can only indicate
1185 an inserted breakpoint. This actually makes things
1186 easier. */
1187 if (singlestep_breakpoints_inserted_p)
1188 /* When software single stepping, the instruction at [prev_pc]
1189 is never a breakpoint, but the instruction following
1190 [prev_pc] (in program execution order) always is. Assume
1191 that following instruction was reached and hence a software
1192 breakpoint was hit. */
1193 write_pc_pid (breakpoint_pc, ecs->ptid);
1194 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1195 /* The inferior was free running (i.e., no single-step
1196 breakpoints inserted) and it hit a software breakpoint. */
1197 write_pc_pid (breakpoint_pc, ecs->ptid);
1198 }
1199 else
1200 {
1201 /* When using hardware single-step, a SIGTRAP is reported for
1202 both a completed single-step and a software breakpoint. Need
1203 to differentiate between the two as the latter needs
1204 adjusting but the former does not.
1205
1206 When the thread to be examined does not match the current thread
1207 context we can't use currently_stepping, so assume no
1208 single-stepping in this case. */
1209 if (ptid_equal (ecs->ptid, inferior_ptid) && currently_stepping (ecs))
1210 {
1211 if (prev_pc == breakpoint_pc
1212 && software_breakpoint_inserted_here_p (breakpoint_pc))
1213 /* Hardware single-stepped a software breakpoint (as
1214 occures when the inferior is resumed with PC pointing
1215 at not-yet-hit software breakpoint). Since the
1216 breakpoint really is executed, the inferior needs to be
1217 backed up to the breakpoint address. */
1218 write_pc_pid (breakpoint_pc, ecs->ptid);
1219 }
1220 else
1221 {
1222 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1223 /* The inferior was free running (i.e., no hardware
1224 single-step and no possibility of a false SIGTRAP) and
1225 hit a software breakpoint. */
1226 write_pc_pid (breakpoint_pc, ecs->ptid);
1227 }
1228 }
1229 }
1230
1231 /* Given an execution control state that has been freshly filled in
1232 by an event from the inferior, figure out what it means and take
1233 appropriate action. */
1234
1235 int stepped_after_stopped_by_watchpoint;
1236
1237 void
1238 handle_inferior_event (struct execution_control_state *ecs)
1239 {
1240 /* NOTE: bje/2005-05-02: If you're looking at this code and thinking
1241 that the variable stepped_after_stopped_by_watchpoint isn't used,
1242 then you're wrong! See remote.c:remote_stopped_data_address. */
1243
1244 int sw_single_step_trap_p = 0;
1245 int stopped_by_watchpoint = -1; /* Mark as unknown. */
1246
1247 /* Cache the last pid/waitstatus. */
1248 target_last_wait_ptid = ecs->ptid;
1249 target_last_waitstatus = *ecs->wp;
1250
1251 adjust_pc_after_break (ecs);
1252
1253 switch (ecs->infwait_state)
1254 {
1255 case infwait_thread_hop_state:
1256 if (debug_infrun)
1257 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1258 /* Cancel the waiton_ptid. */
1259 ecs->waiton_ptid = pid_to_ptid (-1);
1260 break;
1261
1262 case infwait_normal_state:
1263 if (debug_infrun)
1264 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1265 stepped_after_stopped_by_watchpoint = 0;
1266 break;
1267
1268 case infwait_nonstep_watch_state:
1269 if (debug_infrun)
1270 fprintf_unfiltered (gdb_stdlog,
1271 "infrun: infwait_nonstep_watch_state\n");
1272 insert_breakpoints ();
1273
1274 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1275 handle things like signals arriving and other things happening
1276 in combination correctly? */
1277 stepped_after_stopped_by_watchpoint = 1;
1278 break;
1279
1280 default:
1281 internal_error (__FILE__, __LINE__, _("bad switch"));
1282 }
1283 ecs->infwait_state = infwait_normal_state;
1284
1285 flush_cached_frames ();
1286
1287 /* If it's a new process, add it to the thread database */
1288
1289 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1290 && !ptid_equal (ecs->ptid, minus_one_ptid)
1291 && !in_thread_list (ecs->ptid));
1292
1293 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1294 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1295 {
1296 add_thread (ecs->ptid);
1297
1298 ui_out_text (uiout, "[New ");
1299 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1300 ui_out_text (uiout, "]\n");
1301 }
1302
1303 switch (ecs->ws.kind)
1304 {
1305 case TARGET_WAITKIND_LOADED:
1306 if (debug_infrun)
1307 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1308 /* Ignore gracefully during startup of the inferior, as it
1309 might be the shell which has just loaded some objects,
1310 otherwise add the symbols for the newly loaded objects. */
1311 #ifdef SOLIB_ADD
1312 if (stop_soon == NO_STOP_QUIETLY)
1313 {
1314 /* Remove breakpoints, SOLIB_ADD might adjust
1315 breakpoint addresses via breakpoint_re_set. */
1316 if (breakpoints_inserted)
1317 remove_breakpoints ();
1318
1319 /* Check for any newly added shared libraries if we're
1320 supposed to be adding them automatically. Switch
1321 terminal for any messages produced by
1322 breakpoint_re_set. */
1323 target_terminal_ours_for_output ();
1324 /* NOTE: cagney/2003-11-25: Make certain that the target
1325 stack's section table is kept up-to-date. Architectures,
1326 (e.g., PPC64), use the section table to perform
1327 operations such as address => section name and hence
1328 require the table to contain all sections (including
1329 those found in shared libraries). */
1330 /* NOTE: cagney/2003-11-25: Pass current_target and not
1331 exec_ops to SOLIB_ADD. This is because current GDB is
1332 only tooled to propagate section_table changes out from
1333 the "current_target" (see target_resize_to_sections), and
1334 not up from the exec stratum. This, of course, isn't
1335 right. "infrun.c" should only interact with the
1336 exec/process stratum, instead relying on the target stack
1337 to propagate relevant changes (stop, section table
1338 changed, ...) up to other layers. */
1339 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1340 target_terminal_inferior ();
1341
1342 /* Reinsert breakpoints and continue. */
1343 if (breakpoints_inserted)
1344 insert_breakpoints ();
1345 }
1346 #endif
1347 resume (0, TARGET_SIGNAL_0);
1348 prepare_to_wait (ecs);
1349 return;
1350
1351 case TARGET_WAITKIND_SPURIOUS:
1352 if (debug_infrun)
1353 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1354 resume (0, TARGET_SIGNAL_0);
1355 prepare_to_wait (ecs);
1356 return;
1357
1358 case TARGET_WAITKIND_EXITED:
1359 if (debug_infrun)
1360 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1361 target_terminal_ours (); /* Must do this before mourn anyway */
1362 print_stop_reason (EXITED, ecs->ws.value.integer);
1363
1364 /* Record the exit code in the convenience variable $_exitcode, so
1365 that the user can inspect this again later. */
1366 set_internalvar (lookup_internalvar ("_exitcode"),
1367 value_from_longest (builtin_type_int,
1368 (LONGEST) ecs->ws.value.integer));
1369 gdb_flush (gdb_stdout);
1370 target_mourn_inferior ();
1371 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1372 stop_print_frame = 0;
1373 stop_stepping (ecs);
1374 return;
1375
1376 case TARGET_WAITKIND_SIGNALLED:
1377 if (debug_infrun)
1378 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1379 stop_print_frame = 0;
1380 stop_signal = ecs->ws.value.sig;
1381 target_terminal_ours (); /* Must do this before mourn anyway */
1382
1383 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1384 reach here unless the inferior is dead. However, for years
1385 target_kill() was called here, which hints that fatal signals aren't
1386 really fatal on some systems. If that's true, then some changes
1387 may be needed. */
1388 target_mourn_inferior ();
1389
1390 print_stop_reason (SIGNAL_EXITED, stop_signal);
1391 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1392 stop_stepping (ecs);
1393 return;
1394
1395 /* The following are the only cases in which we keep going;
1396 the above cases end in a continue or goto. */
1397 case TARGET_WAITKIND_FORKED:
1398 case TARGET_WAITKIND_VFORKED:
1399 if (debug_infrun)
1400 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1401 stop_signal = TARGET_SIGNAL_TRAP;
1402 pending_follow.kind = ecs->ws.kind;
1403
1404 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1405 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1406
1407 stop_pc = read_pc ();
1408
1409 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1410
1411 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1412
1413 /* If no catchpoint triggered for this, then keep going. */
1414 if (ecs->random_signal)
1415 {
1416 stop_signal = TARGET_SIGNAL_0;
1417 keep_going (ecs);
1418 return;
1419 }
1420 goto process_event_stop_test;
1421
1422 case TARGET_WAITKIND_EXECD:
1423 if (debug_infrun)
1424 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECED\n");
1425 stop_signal = TARGET_SIGNAL_TRAP;
1426
1427 /* NOTE drow/2002-12-05: This code should be pushed down into the
1428 target_wait function. Until then following vfork on HP/UX 10.20
1429 is probably broken by this. Of course, it's broken anyway. */
1430 /* Is this a target which reports multiple exec events per actual
1431 call to exec()? (HP-UX using ptrace does, for example.) If so,
1432 ignore all but the last one. Just resume the exec'r, and wait
1433 for the next exec event. */
1434 if (inferior_ignoring_leading_exec_events)
1435 {
1436 inferior_ignoring_leading_exec_events--;
1437 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1438 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1439 parent_pid);
1440 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1441 prepare_to_wait (ecs);
1442 return;
1443 }
1444 inferior_ignoring_leading_exec_events =
1445 target_reported_exec_events_per_exec_call () - 1;
1446
1447 pending_follow.execd_pathname =
1448 savestring (ecs->ws.value.execd_pathname,
1449 strlen (ecs->ws.value.execd_pathname));
1450
1451 /* This causes the eventpoints and symbol table to be reset. Must
1452 do this now, before trying to determine whether to stop. */
1453 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1454 xfree (pending_follow.execd_pathname);
1455
1456 stop_pc = read_pc_pid (ecs->ptid);
1457 ecs->saved_inferior_ptid = inferior_ptid;
1458 inferior_ptid = ecs->ptid;
1459
1460 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1461
1462 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1463 inferior_ptid = ecs->saved_inferior_ptid;
1464
1465 /* If no catchpoint triggered for this, then keep going. */
1466 if (ecs->random_signal)
1467 {
1468 stop_signal = TARGET_SIGNAL_0;
1469 keep_going (ecs);
1470 return;
1471 }
1472 goto process_event_stop_test;
1473
1474 /* Be careful not to try to gather much state about a thread
1475 that's in a syscall. It's frequently a losing proposition. */
1476 case TARGET_WAITKIND_SYSCALL_ENTRY:
1477 if (debug_infrun)
1478 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1479 resume (0, TARGET_SIGNAL_0);
1480 prepare_to_wait (ecs);
1481 return;
1482
1483 /* Before examining the threads further, step this thread to
1484 get it entirely out of the syscall. (We get notice of the
1485 event when the thread is just on the verge of exiting a
1486 syscall. Stepping one instruction seems to get it back
1487 into user code.) */
1488 case TARGET_WAITKIND_SYSCALL_RETURN:
1489 if (debug_infrun)
1490 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1491 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1492 prepare_to_wait (ecs);
1493 return;
1494
1495 case TARGET_WAITKIND_STOPPED:
1496 if (debug_infrun)
1497 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1498 stop_signal = ecs->ws.value.sig;
1499 break;
1500
1501 /* We had an event in the inferior, but we are not interested
1502 in handling it at this level. The lower layers have already
1503 done what needs to be done, if anything.
1504
1505 One of the possible circumstances for this is when the
1506 inferior produces output for the console. The inferior has
1507 not stopped, and we are ignoring the event. Another possible
1508 circumstance is any event which the lower level knows will be
1509 reported multiple times without an intervening resume. */
1510 case TARGET_WAITKIND_IGNORE:
1511 if (debug_infrun)
1512 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1513 prepare_to_wait (ecs);
1514 return;
1515 }
1516
1517 /* We may want to consider not doing a resume here in order to give
1518 the user a chance to play with the new thread. It might be good
1519 to make that a user-settable option. */
1520
1521 /* At this point, all threads are stopped (happens automatically in
1522 either the OS or the native code). Therefore we need to continue
1523 all threads in order to make progress. */
1524 if (ecs->new_thread_event)
1525 {
1526 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1527 prepare_to_wait (ecs);
1528 return;
1529 }
1530
1531 stop_pc = read_pc_pid (ecs->ptid);
1532
1533 if (debug_infrun)
1534 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1535
1536 if (stepping_past_singlestep_breakpoint)
1537 {
1538 gdb_assert (SOFTWARE_SINGLE_STEP_P ()
1539 && singlestep_breakpoints_inserted_p);
1540 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1541 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1542
1543 stepping_past_singlestep_breakpoint = 0;
1544
1545 /* We've either finished single-stepping past the single-step
1546 breakpoint, or stopped for some other reason. It would be nice if
1547 we could tell, but we can't reliably. */
1548 if (stop_signal == TARGET_SIGNAL_TRAP)
1549 {
1550 if (debug_infrun)
1551 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
1552 /* Pull the single step breakpoints out of the target. */
1553 SOFTWARE_SINGLE_STEP (0, 0);
1554 singlestep_breakpoints_inserted_p = 0;
1555
1556 ecs->random_signal = 0;
1557
1558 ecs->ptid = saved_singlestep_ptid;
1559 context_switch (ecs);
1560 if (deprecated_context_hook)
1561 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1562
1563 resume (1, TARGET_SIGNAL_0);
1564 prepare_to_wait (ecs);
1565 return;
1566 }
1567 }
1568
1569 stepping_past_singlestep_breakpoint = 0;
1570
1571 /* See if a thread hit a thread-specific breakpoint that was meant for
1572 another thread. If so, then step that thread past the breakpoint,
1573 and continue it. */
1574
1575 if (stop_signal == TARGET_SIGNAL_TRAP)
1576 {
1577 int thread_hop_needed = 0;
1578
1579 /* Check if a regular breakpoint has been hit before checking
1580 for a potential single step breakpoint. Otherwise, GDB will
1581 not see this breakpoint hit when stepping onto breakpoints. */
1582 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
1583 {
1584 ecs->random_signal = 0;
1585 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1586 thread_hop_needed = 1;
1587 }
1588 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1589 {
1590 ecs->random_signal = 0;
1591 /* The call to in_thread_list is necessary because PTIDs sometimes
1592 change when we go from single-threaded to multi-threaded. If
1593 the singlestep_ptid is still in the list, assume that it is
1594 really different from ecs->ptid. */
1595 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1596 && in_thread_list (singlestep_ptid))
1597 {
1598 thread_hop_needed = 1;
1599 stepping_past_singlestep_breakpoint = 1;
1600 saved_singlestep_ptid = singlestep_ptid;
1601 }
1602 }
1603
1604 if (thread_hop_needed)
1605 {
1606 int remove_status;
1607
1608 if (debug_infrun)
1609 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
1610
1611 /* Saw a breakpoint, but it was hit by the wrong thread.
1612 Just continue. */
1613
1614 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1615 {
1616 /* Pull the single step breakpoints out of the target. */
1617 SOFTWARE_SINGLE_STEP (0, 0);
1618 singlestep_breakpoints_inserted_p = 0;
1619 }
1620
1621 remove_status = remove_breakpoints ();
1622 /* Did we fail to remove breakpoints? If so, try
1623 to set the PC past the bp. (There's at least
1624 one situation in which we can fail to remove
1625 the bp's: On HP-UX's that use ttrace, we can't
1626 change the address space of a vforking child
1627 process until the child exits (well, okay, not
1628 then either :-) or execs. */
1629 if (remove_status != 0)
1630 {
1631 /* FIXME! This is obviously non-portable! */
1632 write_pc_pid (stop_pc + 4, ecs->ptid);
1633 /* We need to restart all the threads now,
1634 * unles we're running in scheduler-locked mode.
1635 * Use currently_stepping to determine whether to
1636 * step or continue.
1637 */
1638 /* FIXME MVS: is there any reason not to call resume()? */
1639 if (scheduler_mode == schedlock_on)
1640 target_resume (ecs->ptid,
1641 currently_stepping (ecs), TARGET_SIGNAL_0);
1642 else
1643 target_resume (RESUME_ALL,
1644 currently_stepping (ecs), TARGET_SIGNAL_0);
1645 prepare_to_wait (ecs);
1646 return;
1647 }
1648 else
1649 { /* Single step */
1650 breakpoints_inserted = 0;
1651 if (!ptid_equal (inferior_ptid, ecs->ptid))
1652 context_switch (ecs);
1653 ecs->waiton_ptid = ecs->ptid;
1654 ecs->wp = &(ecs->ws);
1655 ecs->another_trap = 1;
1656
1657 ecs->infwait_state = infwait_thread_hop_state;
1658 keep_going (ecs);
1659 registers_changed ();
1660 return;
1661 }
1662 }
1663 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1664 {
1665 sw_single_step_trap_p = 1;
1666 ecs->random_signal = 0;
1667 }
1668 }
1669 else
1670 ecs->random_signal = 1;
1671
1672 /* See if something interesting happened to the non-current thread. If
1673 so, then switch to that thread. */
1674 if (!ptid_equal (ecs->ptid, inferior_ptid))
1675 {
1676 if (debug_infrun)
1677 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
1678
1679 context_switch (ecs);
1680
1681 if (deprecated_context_hook)
1682 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1683
1684 flush_cached_frames ();
1685 }
1686
1687 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1688 {
1689 /* Pull the single step breakpoints out of the target. */
1690 SOFTWARE_SINGLE_STEP (0, 0);
1691 singlestep_breakpoints_inserted_p = 0;
1692 }
1693
1694 /* It may not be necessary to disable the watchpoint to stop over
1695 it. For example, the PA can (with some kernel cooperation)
1696 single step over a watchpoint without disabling the watchpoint. */
1697 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1698 {
1699 if (debug_infrun)
1700 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1701 resume (1, 0);
1702 prepare_to_wait (ecs);
1703 return;
1704 }
1705
1706 /* It is far more common to need to disable a watchpoint to step
1707 the inferior over it. FIXME. What else might a debug
1708 register or page protection watchpoint scheme need here? */
1709 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1710 {
1711 /* At this point, we are stopped at an instruction which has
1712 attempted to write to a piece of memory under control of
1713 a watchpoint. The instruction hasn't actually executed
1714 yet. If we were to evaluate the watchpoint expression
1715 now, we would get the old value, and therefore no change
1716 would seem to have occurred.
1717
1718 In order to make watchpoints work `right', we really need
1719 to complete the memory write, and then evaluate the
1720 watchpoint expression. The following code does that by
1721 removing the watchpoint (actually, all watchpoints and
1722 breakpoints), single-stepping the target, re-inserting
1723 watchpoints, and then falling through to let normal
1724 single-step processing handle proceed. Since this
1725 includes evaluating watchpoints, things will come to a
1726 stop in the correct manner. */
1727
1728 if (debug_infrun)
1729 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1730 remove_breakpoints ();
1731 registers_changed ();
1732 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1733
1734 ecs->waiton_ptid = ecs->ptid;
1735 ecs->wp = &(ecs->ws);
1736 ecs->infwait_state = infwait_nonstep_watch_state;
1737 prepare_to_wait (ecs);
1738 return;
1739 }
1740
1741 /* It may be possible to simply continue after a watchpoint. */
1742 if (HAVE_CONTINUABLE_WATCHPOINT)
1743 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
1744
1745 ecs->stop_func_start = 0;
1746 ecs->stop_func_end = 0;
1747 ecs->stop_func_name = 0;
1748 /* Don't care about return value; stop_func_start and stop_func_name
1749 will both be 0 if it doesn't work. */
1750 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1751 &ecs->stop_func_start, &ecs->stop_func_end);
1752 ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET;
1753 ecs->another_trap = 0;
1754 bpstat_clear (&stop_bpstat);
1755 stop_step = 0;
1756 stop_stack_dummy = 0;
1757 stop_print_frame = 1;
1758 ecs->random_signal = 0;
1759 stopped_by_random_signal = 0;
1760 breakpoints_failed = 0;
1761
1762 if (stop_signal == TARGET_SIGNAL_TRAP
1763 && trap_expected
1764 && gdbarch_single_step_through_delay_p (current_gdbarch)
1765 && currently_stepping (ecs))
1766 {
1767 /* We're trying to step of a breakpoint. Turns out that we're
1768 also on an instruction that needs to be stepped multiple
1769 times before it's been fully executing. E.g., architectures
1770 with a delay slot. It needs to be stepped twice, once for
1771 the instruction and once for the delay slot. */
1772 int step_through_delay
1773 = gdbarch_single_step_through_delay (current_gdbarch,
1774 get_current_frame ());
1775 if (debug_infrun && step_through_delay)
1776 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
1777 if (step_range_end == 0 && step_through_delay)
1778 {
1779 /* The user issued a continue when stopped at a breakpoint.
1780 Set up for another trap and get out of here. */
1781 ecs->another_trap = 1;
1782 keep_going (ecs);
1783 return;
1784 }
1785 else if (step_through_delay)
1786 {
1787 /* The user issued a step when stopped at a breakpoint.
1788 Maybe we should stop, maybe we should not - the delay
1789 slot *might* correspond to a line of source. In any
1790 case, don't decide that here, just set ecs->another_trap,
1791 making sure we single-step again before breakpoints are
1792 re-inserted. */
1793 ecs->another_trap = 1;
1794 }
1795 }
1796
1797 /* Look at the cause of the stop, and decide what to do.
1798 The alternatives are:
1799 1) break; to really stop and return to the debugger,
1800 2) drop through to start up again
1801 (set ecs->another_trap to 1 to single step once)
1802 3) set ecs->random_signal to 1, and the decision between 1 and 2
1803 will be made according to the signal handling tables. */
1804
1805 /* First, distinguish signals caused by the debugger from signals
1806 that have to do with the program's own actions. Note that
1807 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1808 on the operating system version. Here we detect when a SIGILL or
1809 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1810 something similar for SIGSEGV, since a SIGSEGV will be generated
1811 when we're trying to execute a breakpoint instruction on a
1812 non-executable stack. This happens for call dummy breakpoints
1813 for architectures like SPARC that place call dummies on the
1814 stack. */
1815
1816 if (stop_signal == TARGET_SIGNAL_TRAP
1817 || (breakpoints_inserted
1818 && (stop_signal == TARGET_SIGNAL_ILL
1819 || stop_signal == TARGET_SIGNAL_SEGV
1820 || stop_signal == TARGET_SIGNAL_EMT))
1821 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1822 {
1823 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1824 {
1825 if (debug_infrun)
1826 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
1827 stop_print_frame = 0;
1828 stop_stepping (ecs);
1829 return;
1830 }
1831
1832 /* This is originated from start_remote(), start_inferior() and
1833 shared libraries hook functions. */
1834 if (stop_soon == STOP_QUIETLY)
1835 {
1836 if (debug_infrun)
1837 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
1838 stop_stepping (ecs);
1839 return;
1840 }
1841
1842 /* This originates from attach_command(). We need to overwrite
1843 the stop_signal here, because some kernels don't ignore a
1844 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1845 See more comments in inferior.h. */
1846 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1847 {
1848 stop_stepping (ecs);
1849 if (stop_signal == TARGET_SIGNAL_STOP)
1850 stop_signal = TARGET_SIGNAL_0;
1851 return;
1852 }
1853
1854 /* Don't even think about breakpoints if just proceeded over a
1855 breakpoint. */
1856 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
1857 {
1858 if (debug_infrun)
1859 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
1860 bpstat_clear (&stop_bpstat);
1861 }
1862 else
1863 {
1864 /* See if there is a breakpoint at the current PC. */
1865 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
1866 stopped_by_watchpoint);
1867
1868 /* Following in case break condition called a
1869 function. */
1870 stop_print_frame = 1;
1871 }
1872
1873 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1874 at one stage in the past included checks for an inferior
1875 function call's call dummy's return breakpoint. The original
1876 comment, that went with the test, read:
1877
1878 ``End of a stack dummy. Some systems (e.g. Sony news) give
1879 another signal besides SIGTRAP, so check here as well as
1880 above.''
1881
1882 If someone ever tries to get get call dummys on a
1883 non-executable stack to work (where the target would stop
1884 with something like a SIGSEGV), then those tests might need
1885 to be re-instated. Given, however, that the tests were only
1886 enabled when momentary breakpoints were not being used, I
1887 suspect that it won't be the case.
1888
1889 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1890 be necessary for call dummies on a non-executable stack on
1891 SPARC. */
1892
1893 if (stop_signal == TARGET_SIGNAL_TRAP)
1894 ecs->random_signal
1895 = !(bpstat_explains_signal (stop_bpstat)
1896 || trap_expected
1897 || (step_range_end && step_resume_breakpoint == NULL));
1898 else
1899 {
1900 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1901 if (!ecs->random_signal)
1902 stop_signal = TARGET_SIGNAL_TRAP;
1903 }
1904 }
1905
1906 /* When we reach this point, we've pretty much decided
1907 that the reason for stopping must've been a random
1908 (unexpected) signal. */
1909
1910 else
1911 ecs->random_signal = 1;
1912
1913 process_event_stop_test:
1914 /* For the program's own signals, act according to
1915 the signal handling tables. */
1916
1917 if (ecs->random_signal)
1918 {
1919 /* Signal not for debugging purposes. */
1920 int printed = 0;
1921
1922 if (debug_infrun)
1923 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
1924
1925 stopped_by_random_signal = 1;
1926
1927 if (signal_print[stop_signal])
1928 {
1929 printed = 1;
1930 target_terminal_ours_for_output ();
1931 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1932 }
1933 if (signal_stop[stop_signal])
1934 {
1935 stop_stepping (ecs);
1936 return;
1937 }
1938 /* If not going to stop, give terminal back
1939 if we took it away. */
1940 else if (printed)
1941 target_terminal_inferior ();
1942
1943 /* Clear the signal if it should not be passed. */
1944 if (signal_program[stop_signal] == 0)
1945 stop_signal = TARGET_SIGNAL_0;
1946
1947 if (prev_pc == read_pc ()
1948 && !breakpoints_inserted
1949 && breakpoint_here_p (read_pc ())
1950 && step_resume_breakpoint == NULL)
1951 {
1952 /* We were just starting a new sequence, attempting to
1953 single-step off of a breakpoint and expecting a SIGTRAP.
1954 Intead this signal arrives. This signal will take us out
1955 of the stepping range so GDB needs to remember to, when
1956 the signal handler returns, resume stepping off that
1957 breakpoint. */
1958 /* To simplify things, "continue" is forced to use the same
1959 code paths as single-step - set a breakpoint at the
1960 signal return address and then, once hit, step off that
1961 breakpoint. */
1962 insert_step_resume_breakpoint_at_frame (get_current_frame ());
1963 ecs->step_after_step_resume_breakpoint = 1;
1964 keep_going (ecs);
1965 return;
1966 }
1967
1968 if (step_range_end != 0
1969 && stop_signal != TARGET_SIGNAL_0
1970 && stop_pc >= step_range_start && stop_pc < step_range_end
1971 && frame_id_eq (get_frame_id (get_current_frame ()),
1972 step_frame_id)
1973 && step_resume_breakpoint == NULL)
1974 {
1975 /* The inferior is about to take a signal that will take it
1976 out of the single step range. Set a breakpoint at the
1977 current PC (which is presumably where the signal handler
1978 will eventually return) and then allow the inferior to
1979 run free.
1980
1981 Note that this is only needed for a signal delivered
1982 while in the single-step range. Nested signals aren't a
1983 problem as they eventually all return. */
1984 insert_step_resume_breakpoint_at_frame (get_current_frame ());
1985 keep_going (ecs);
1986 return;
1987 }
1988
1989 /* Note: step_resume_breakpoint may be non-NULL. This occures
1990 when either there's a nested signal, or when there's a
1991 pending signal enabled just as the signal handler returns
1992 (leaving the inferior at the step-resume-breakpoint without
1993 actually executing it). Either way continue until the
1994 breakpoint is really hit. */
1995 keep_going (ecs);
1996 return;
1997 }
1998
1999 /* Handle cases caused by hitting a breakpoint. */
2000 {
2001 CORE_ADDR jmp_buf_pc;
2002 struct bpstat_what what;
2003
2004 what = bpstat_what (stop_bpstat);
2005
2006 if (what.call_dummy)
2007 {
2008 stop_stack_dummy = 1;
2009 }
2010
2011 switch (what.main_action)
2012 {
2013 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2014 /* If we hit the breakpoint at longjmp, disable it for the
2015 duration of this command. Then, install a temporary
2016 breakpoint at the target of the jmp_buf. */
2017 if (debug_infrun)
2018 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_SET_LONGJMP_RESUME\n");
2019 disable_longjmp_breakpoint ();
2020 remove_breakpoints ();
2021 breakpoints_inserted = 0;
2022 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
2023 {
2024 keep_going (ecs);
2025 return;
2026 }
2027
2028 /* Need to blow away step-resume breakpoint, as it
2029 interferes with us */
2030 if (step_resume_breakpoint != NULL)
2031 {
2032 delete_step_resume_breakpoint (&step_resume_breakpoint);
2033 }
2034
2035 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2036 ecs->handling_longjmp = 1; /* FIXME */
2037 keep_going (ecs);
2038 return;
2039
2040 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2041 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2042 if (debug_infrun)
2043 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_CLEAR_LONGJMP_RESUME\n");
2044 remove_breakpoints ();
2045 breakpoints_inserted = 0;
2046 disable_longjmp_breakpoint ();
2047 ecs->handling_longjmp = 0; /* FIXME */
2048 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2049 break;
2050 /* else fallthrough */
2051
2052 case BPSTAT_WHAT_SINGLE:
2053 if (debug_infrun)
2054 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_SINGLE\n");
2055 if (breakpoints_inserted)
2056 {
2057 remove_breakpoints ();
2058 }
2059 breakpoints_inserted = 0;
2060 ecs->another_trap = 1;
2061 /* Still need to check other stuff, at least the case
2062 where we are stepping and step out of the right range. */
2063 break;
2064
2065 case BPSTAT_WHAT_STOP_NOISY:
2066 if (debug_infrun)
2067 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_STOP_NOISY\n");
2068 stop_print_frame = 1;
2069
2070 /* We are about to nuke the step_resume_breakpointt via the
2071 cleanup chain, so no need to worry about it here. */
2072
2073 stop_stepping (ecs);
2074 return;
2075
2076 case BPSTAT_WHAT_STOP_SILENT:
2077 if (debug_infrun)
2078 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_STOP_SILENT\n");
2079 stop_print_frame = 0;
2080
2081 /* We are about to nuke the step_resume_breakpoin via the
2082 cleanup chain, so no need to worry about it here. */
2083
2084 stop_stepping (ecs);
2085 return;
2086
2087 case BPSTAT_WHAT_STEP_RESUME:
2088 /* This proably demands a more elegant solution, but, yeah
2089 right...
2090
2091 This function's use of the simple variable
2092 step_resume_breakpoint doesn't seem to accomodate
2093 simultaneously active step-resume bp's, although the
2094 breakpoint list certainly can.
2095
2096 If we reach here and step_resume_breakpoint is already
2097 NULL, then apparently we have multiple active
2098 step-resume bp's. We'll just delete the breakpoint we
2099 stopped at, and carry on.
2100
2101 Correction: what the code currently does is delete a
2102 step-resume bp, but it makes no effort to ensure that
2103 the one deleted is the one currently stopped at. MVS */
2104
2105 if (debug_infrun)
2106 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_STEP_RESUME\n");
2107
2108 if (step_resume_breakpoint == NULL)
2109 {
2110 step_resume_breakpoint =
2111 bpstat_find_step_resume_breakpoint (stop_bpstat);
2112 }
2113 delete_step_resume_breakpoint (&step_resume_breakpoint);
2114 if (ecs->step_after_step_resume_breakpoint)
2115 {
2116 /* Back when the step-resume breakpoint was inserted, we
2117 were trying to single-step off a breakpoint. Go back
2118 to doing that. */
2119 ecs->step_after_step_resume_breakpoint = 0;
2120 remove_breakpoints ();
2121 breakpoints_inserted = 0;
2122 ecs->another_trap = 1;
2123 keep_going (ecs);
2124 return;
2125 }
2126 break;
2127
2128 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2129 if (debug_infrun)
2130 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_THROUGH_SIGTRAMP\n");
2131 /* If were waiting for a trap, hitting the step_resume_break
2132 doesn't count as getting it. */
2133 if (trap_expected)
2134 ecs->another_trap = 1;
2135 break;
2136
2137 case BPSTAT_WHAT_CHECK_SHLIBS:
2138 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2139 {
2140 if (debug_infrun)
2141 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_CHECK_SHLIBS\n");
2142 /* Remove breakpoints, we eventually want to step over the
2143 shlib event breakpoint, and SOLIB_ADD might adjust
2144 breakpoint addresses via breakpoint_re_set. */
2145 if (breakpoints_inserted)
2146 remove_breakpoints ();
2147 breakpoints_inserted = 0;
2148
2149 /* Check for any newly added shared libraries if we're
2150 supposed to be adding them automatically. Switch
2151 terminal for any messages produced by
2152 breakpoint_re_set. */
2153 target_terminal_ours_for_output ();
2154 /* NOTE: cagney/2003-11-25: Make certain that the target
2155 stack's section table is kept up-to-date. Architectures,
2156 (e.g., PPC64), use the section table to perform
2157 operations such as address => section name and hence
2158 require the table to contain all sections (including
2159 those found in shared libraries). */
2160 /* NOTE: cagney/2003-11-25: Pass current_target and not
2161 exec_ops to SOLIB_ADD. This is because current GDB is
2162 only tooled to propagate section_table changes out from
2163 the "current_target" (see target_resize_to_sections), and
2164 not up from the exec stratum. This, of course, isn't
2165 right. "infrun.c" should only interact with the
2166 exec/process stratum, instead relying on the target stack
2167 to propagate relevant changes (stop, section table
2168 changed, ...) up to other layers. */
2169 #ifdef SOLIB_ADD
2170 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2171 #else
2172 solib_add (NULL, 0, &current_target, auto_solib_add);
2173 #endif
2174 target_terminal_inferior ();
2175
2176 /* Try to reenable shared library breakpoints, additional
2177 code segments in shared libraries might be mapped in now. */
2178 re_enable_breakpoints_in_shlibs ();
2179
2180 /* If requested, stop when the dynamic linker notifies
2181 gdb of events. This allows the user to get control
2182 and place breakpoints in initializer routines for
2183 dynamically loaded objects (among other things). */
2184 if (stop_on_solib_events || stop_stack_dummy)
2185 {
2186 stop_stepping (ecs);
2187 return;
2188 }
2189
2190 /* If we stopped due to an explicit catchpoint, then the
2191 (see above) call to SOLIB_ADD pulled in any symbols
2192 from a newly-loaded library, if appropriate.
2193
2194 We do want the inferior to stop, but not where it is
2195 now, which is in the dynamic linker callback. Rather,
2196 we would like it stop in the user's program, just after
2197 the call that caused this catchpoint to trigger. That
2198 gives the user a more useful vantage from which to
2199 examine their program's state. */
2200 else if (what.main_action
2201 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2202 {
2203 /* ??rehrauer: If I could figure out how to get the
2204 right return PC from here, we could just set a temp
2205 breakpoint and resume. I'm not sure we can without
2206 cracking open the dld's shared libraries and sniffing
2207 their unwind tables and text/data ranges, and that's
2208 not a terribly portable notion.
2209
2210 Until that time, we must step the inferior out of the
2211 dld callback, and also out of the dld itself (and any
2212 code or stubs in libdld.sl, such as "shl_load" and
2213 friends) until we reach non-dld code. At that point,
2214 we can stop stepping. */
2215 bpstat_get_triggered_catchpoints (stop_bpstat,
2216 &ecs->
2217 stepping_through_solib_catchpoints);
2218 ecs->stepping_through_solib_after_catch = 1;
2219
2220 /* Be sure to lift all breakpoints, so the inferior does
2221 actually step past this point... */
2222 ecs->another_trap = 1;
2223 break;
2224 }
2225 else
2226 {
2227 /* We want to step over this breakpoint, then keep going. */
2228 ecs->another_trap = 1;
2229 break;
2230 }
2231 }
2232 break;
2233
2234 case BPSTAT_WHAT_LAST:
2235 /* Not a real code, but listed here to shut up gcc -Wall. */
2236
2237 case BPSTAT_WHAT_KEEP_CHECKING:
2238 break;
2239 }
2240 }
2241
2242 /* We come here if we hit a breakpoint but should not
2243 stop for it. Possibly we also were stepping
2244 and should stop for that. So fall through and
2245 test for stepping. But, if not stepping,
2246 do not stop. */
2247
2248 /* Are we stepping to get the inferior out of the dynamic linker's
2249 hook (and possibly the dld itself) after catching a shlib
2250 event? */
2251 if (ecs->stepping_through_solib_after_catch)
2252 {
2253 #if defined(SOLIB_ADD)
2254 /* Have we reached our destination? If not, keep going. */
2255 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2256 {
2257 if (debug_infrun)
2258 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2259 ecs->another_trap = 1;
2260 keep_going (ecs);
2261 return;
2262 }
2263 #endif
2264 if (debug_infrun)
2265 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2266 /* Else, stop and report the catchpoint(s) whose triggering
2267 caused us to begin stepping. */
2268 ecs->stepping_through_solib_after_catch = 0;
2269 bpstat_clear (&stop_bpstat);
2270 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2271 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2272 stop_print_frame = 1;
2273 stop_stepping (ecs);
2274 return;
2275 }
2276
2277 if (step_resume_breakpoint)
2278 {
2279 if (debug_infrun)
2280 fprintf_unfiltered (gdb_stdlog, "infrun: step-resume breakpoint\n");
2281
2282 /* Having a step-resume breakpoint overrides anything
2283 else having to do with stepping commands until
2284 that breakpoint is reached. */
2285 keep_going (ecs);
2286 return;
2287 }
2288
2289 if (step_range_end == 0)
2290 {
2291 if (debug_infrun)
2292 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2293 /* Likewise if we aren't even stepping. */
2294 keep_going (ecs);
2295 return;
2296 }
2297
2298 /* If stepping through a line, keep going if still within it.
2299
2300 Note that step_range_end is the address of the first instruction
2301 beyond the step range, and NOT the address of the last instruction
2302 within it! */
2303 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2304 {
2305 if (debug_infrun)
2306 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2307 paddr_nz (step_range_start),
2308 paddr_nz (step_range_end));
2309 keep_going (ecs);
2310 return;
2311 }
2312
2313 /* We stepped out of the stepping range. */
2314
2315 /* If we are stepping at the source level and entered the runtime
2316 loader dynamic symbol resolution code, we keep on single stepping
2317 until we exit the run time loader code and reach the callee's
2318 address. */
2319 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2320 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2321 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2322 #else
2323 && in_solib_dynsym_resolve_code (stop_pc)
2324 #endif
2325 )
2326 {
2327 CORE_ADDR pc_after_resolver =
2328 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2329
2330 if (debug_infrun)
2331 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2332
2333 if (pc_after_resolver)
2334 {
2335 /* Set up a step-resume breakpoint at the address
2336 indicated by SKIP_SOLIB_RESOLVER. */
2337 struct symtab_and_line sr_sal;
2338 init_sal (&sr_sal);
2339 sr_sal.pc = pc_after_resolver;
2340
2341 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2342 }
2343
2344 keep_going (ecs);
2345 return;
2346 }
2347
2348 if (step_range_end != 1
2349 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2350 || step_over_calls == STEP_OVER_ALL)
2351 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2352 {
2353 if (debug_infrun)
2354 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2355 /* The inferior, while doing a "step" or "next", has ended up in
2356 a signal trampoline (either by a signal being delivered or by
2357 the signal handler returning). Just single-step until the
2358 inferior leaves the trampoline (either by calling the handler
2359 or returning). */
2360 keep_going (ecs);
2361 return;
2362 }
2363
2364 if (frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2365 {
2366 /* It's a subroutine call. */
2367 CORE_ADDR real_stop_pc;
2368
2369 if (debug_infrun)
2370 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2371
2372 if ((step_over_calls == STEP_OVER_NONE)
2373 || ((step_range_end == 1)
2374 && in_prologue (prev_pc, ecs->stop_func_start)))
2375 {
2376 /* I presume that step_over_calls is only 0 when we're
2377 supposed to be stepping at the assembly language level
2378 ("stepi"). Just stop. */
2379 /* Also, maybe we just did a "nexti" inside a prolog, so we
2380 thought it was a subroutine call but it was not. Stop as
2381 well. FENN */
2382 stop_step = 1;
2383 print_stop_reason (END_STEPPING_RANGE, 0);
2384 stop_stepping (ecs);
2385 return;
2386 }
2387
2388 if (step_over_calls == STEP_OVER_ALL)
2389 {
2390 /* We're doing a "next", set a breakpoint at callee's return
2391 address (the address at which the caller will
2392 resume). */
2393 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
2394 keep_going (ecs);
2395 return;
2396 }
2397
2398 /* If we are in a function call trampoline (a stub between the
2399 calling routine and the real function), locate the real
2400 function. That's what tells us (a) whether we want to step
2401 into it at all, and (b) what prologue we want to run to the
2402 end of, if we do step into it. */
2403 real_stop_pc = skip_language_trampoline (stop_pc);
2404 if (real_stop_pc == 0)
2405 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2406 if (real_stop_pc != 0)
2407 ecs->stop_func_start = real_stop_pc;
2408
2409 if (
2410 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2411 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2412 #else
2413 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2414 #endif
2415 )
2416 {
2417 struct symtab_and_line sr_sal;
2418 init_sal (&sr_sal);
2419 sr_sal.pc = ecs->stop_func_start;
2420
2421 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2422 keep_going (ecs);
2423 return;
2424 }
2425
2426 /* If we have line number information for the function we are
2427 thinking of stepping into, step into it.
2428
2429 If there are several symtabs at that PC (e.g. with include
2430 files), just want to know whether *any* of them have line
2431 numbers. find_pc_line handles this. */
2432 {
2433 struct symtab_and_line tmp_sal;
2434
2435 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2436 if (tmp_sal.line != 0)
2437 {
2438 step_into_function (ecs);
2439 return;
2440 }
2441 }
2442
2443 /* If we have no line number and the step-stop-if-no-debug is
2444 set, we stop the step so that the user has a chance to switch
2445 in assembly mode. */
2446 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2447 {
2448 stop_step = 1;
2449 print_stop_reason (END_STEPPING_RANGE, 0);
2450 stop_stepping (ecs);
2451 return;
2452 }
2453
2454 /* Set a breakpoint at callee's return address (the address at
2455 which the caller will resume). */
2456 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
2457 keep_going (ecs);
2458 return;
2459 }
2460
2461 /* If we're in the return path from a shared library trampoline,
2462 we want to proceed through the trampoline when stepping. */
2463 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2464 {
2465 /* Determine where this trampoline returns. */
2466 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2467
2468 if (debug_infrun)
2469 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
2470
2471 /* Only proceed through if we know where it's going. */
2472 if (real_stop_pc)
2473 {
2474 /* And put the step-breakpoint there and go until there. */
2475 struct symtab_and_line sr_sal;
2476
2477 init_sal (&sr_sal); /* initialize to zeroes */
2478 sr_sal.pc = real_stop_pc;
2479 sr_sal.section = find_pc_overlay (sr_sal.pc);
2480
2481 /* Do not specify what the fp should be when we stop since
2482 on some machines the prologue is where the new fp value
2483 is established. */
2484 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2485
2486 /* Restart without fiddling with the step ranges or
2487 other state. */
2488 keep_going (ecs);
2489 return;
2490 }
2491 }
2492
2493 ecs->sal = find_pc_line (stop_pc, 0);
2494
2495 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2496 the trampoline processing logic, however, there are some trampolines
2497 that have no names, so we should do trampoline handling first. */
2498 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2499 && ecs->stop_func_name == NULL
2500 && ecs->sal.line == 0)
2501 {
2502 if (debug_infrun)
2503 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
2504
2505 /* The inferior just stepped into, or returned to, an
2506 undebuggable function (where there is no debugging information
2507 and no line number corresponding to the address where the
2508 inferior stopped). Since we want to skip this kind of code,
2509 we keep going until the inferior returns from this
2510 function. */
2511 if (step_stop_if_no_debug)
2512 {
2513 /* If we have no line number and the step-stop-if-no-debug
2514 is set, we stop the step so that the user has a chance to
2515 switch in assembly mode. */
2516 stop_step = 1;
2517 print_stop_reason (END_STEPPING_RANGE, 0);
2518 stop_stepping (ecs);
2519 return;
2520 }
2521 else
2522 {
2523 /* Set a breakpoint at callee's return address (the address
2524 at which the caller will resume). */
2525 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
2526 keep_going (ecs);
2527 return;
2528 }
2529 }
2530
2531 if (step_range_end == 1)
2532 {
2533 /* It is stepi or nexti. We always want to stop stepping after
2534 one instruction. */
2535 if (debug_infrun)
2536 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
2537 stop_step = 1;
2538 print_stop_reason (END_STEPPING_RANGE, 0);
2539 stop_stepping (ecs);
2540 return;
2541 }
2542
2543 if (ecs->sal.line == 0)
2544 {
2545 /* We have no line number information. That means to stop
2546 stepping (does this always happen right after one instruction,
2547 when we do "s" in a function with no line numbers,
2548 or can this happen as a result of a return or longjmp?). */
2549 if (debug_infrun)
2550 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
2551 stop_step = 1;
2552 print_stop_reason (END_STEPPING_RANGE, 0);
2553 stop_stepping (ecs);
2554 return;
2555 }
2556
2557 if ((stop_pc == ecs->sal.pc)
2558 && (ecs->current_line != ecs->sal.line
2559 || ecs->current_symtab != ecs->sal.symtab))
2560 {
2561 /* We are at the start of a different line. So stop. Note that
2562 we don't stop if we step into the middle of a different line.
2563 That is said to make things like for (;;) statements work
2564 better. */
2565 if (debug_infrun)
2566 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
2567 stop_step = 1;
2568 print_stop_reason (END_STEPPING_RANGE, 0);
2569 stop_stepping (ecs);
2570 return;
2571 }
2572
2573 /* We aren't done stepping.
2574
2575 Optimize by setting the stepping range to the line.
2576 (We might not be in the original line, but if we entered a
2577 new line in mid-statement, we continue stepping. This makes
2578 things like for(;;) statements work better.) */
2579
2580 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2581 {
2582 /* If this is the last line of the function, don't keep stepping
2583 (it would probably step us out of the function).
2584 This is particularly necessary for a one-line function,
2585 in which after skipping the prologue we better stop even though
2586 we will be in mid-line. */
2587 if (debug_infrun)
2588 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
2589 stop_step = 1;
2590 print_stop_reason (END_STEPPING_RANGE, 0);
2591 stop_stepping (ecs);
2592 return;
2593 }
2594 step_range_start = ecs->sal.pc;
2595 step_range_end = ecs->sal.end;
2596 step_frame_id = get_frame_id (get_current_frame ());
2597 ecs->current_line = ecs->sal.line;
2598 ecs->current_symtab = ecs->sal.symtab;
2599
2600 /* In the case where we just stepped out of a function into the
2601 middle of a line of the caller, continue stepping, but
2602 step_frame_id must be modified to current frame */
2603 #if 0
2604 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2605 generous. It will trigger on things like a step into a frameless
2606 stackless leaf function. I think the logic should instead look
2607 at the unwound frame ID has that should give a more robust
2608 indication of what happened. */
2609 if (step - ID == current - ID)
2610 still stepping in same function;
2611 else if (step - ID == unwind (current - ID))
2612 stepped into a function;
2613 else
2614 stepped out of a function;
2615 /* Of course this assumes that the frame ID unwind code is robust
2616 and we're willing to introduce frame unwind logic into this
2617 function. Fortunately, those days are nearly upon us. */
2618 #endif
2619 {
2620 struct frame_id current_frame = get_frame_id (get_current_frame ());
2621 if (!(frame_id_inner (current_frame, step_frame_id)))
2622 step_frame_id = current_frame;
2623 }
2624
2625 if (debug_infrun)
2626 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
2627 keep_going (ecs);
2628 }
2629
2630 /* Are we in the middle of stepping? */
2631
2632 static int
2633 currently_stepping (struct execution_control_state *ecs)
2634 {
2635 return ((!ecs->handling_longjmp
2636 && ((step_range_end && step_resume_breakpoint == NULL)
2637 || trap_expected))
2638 || ecs->stepping_through_solib_after_catch
2639 || bpstat_should_step ());
2640 }
2641
2642 /* Subroutine call with source code we should not step over. Do step
2643 to the first line of code in it. */
2644
2645 static void
2646 step_into_function (struct execution_control_state *ecs)
2647 {
2648 struct symtab *s;
2649 struct symtab_and_line sr_sal;
2650
2651 s = find_pc_symtab (stop_pc);
2652 if (s && s->language != language_asm)
2653 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2654
2655 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2656 /* Use the step_resume_break to step until the end of the prologue,
2657 even if that involves jumps (as it seems to on the vax under
2658 4.2). */
2659 /* If the prologue ends in the middle of a source line, continue to
2660 the end of that source line (if it is still within the function).
2661 Otherwise, just go to end of prologue. */
2662 if (ecs->sal.end
2663 && ecs->sal.pc != ecs->stop_func_start
2664 && ecs->sal.end < ecs->stop_func_end)
2665 ecs->stop_func_start = ecs->sal.end;
2666
2667 /* Architectures which require breakpoint adjustment might not be able
2668 to place a breakpoint at the computed address. If so, the test
2669 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2670 ecs->stop_func_start to an address at which a breakpoint may be
2671 legitimately placed.
2672
2673 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2674 made, GDB will enter an infinite loop when stepping through
2675 optimized code consisting of VLIW instructions which contain
2676 subinstructions corresponding to different source lines. On
2677 FR-V, it's not permitted to place a breakpoint on any but the
2678 first subinstruction of a VLIW instruction. When a breakpoint is
2679 set, GDB will adjust the breakpoint address to the beginning of
2680 the VLIW instruction. Thus, we need to make the corresponding
2681 adjustment here when computing the stop address. */
2682
2683 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2684 {
2685 ecs->stop_func_start
2686 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2687 ecs->stop_func_start);
2688 }
2689
2690 if (ecs->stop_func_start == stop_pc)
2691 {
2692 /* We are already there: stop now. */
2693 stop_step = 1;
2694 print_stop_reason (END_STEPPING_RANGE, 0);
2695 stop_stepping (ecs);
2696 return;
2697 }
2698 else
2699 {
2700 /* Put the step-breakpoint there and go until there. */
2701 init_sal (&sr_sal); /* initialize to zeroes */
2702 sr_sal.pc = ecs->stop_func_start;
2703 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2704
2705 /* Do not specify what the fp should be when we stop since on
2706 some machines the prologue is where the new fp value is
2707 established. */
2708 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2709
2710 /* And make sure stepping stops right away then. */
2711 step_range_end = step_range_start;
2712 }
2713 keep_going (ecs);
2714 }
2715
2716 /* Insert a "step resume breakpoint" at SR_SAL with frame ID SR_ID.
2717 This is used to both functions and to skip over code. */
2718
2719 static void
2720 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2721 struct frame_id sr_id)
2722 {
2723 /* There should never be more than one step-resume breakpoint per
2724 thread, so we should never be setting a new
2725 step_resume_breakpoint when one is already active. */
2726 gdb_assert (step_resume_breakpoint == NULL);
2727 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2728 bp_step_resume);
2729 if (breakpoints_inserted)
2730 insert_breakpoints ();
2731 }
2732
2733 /* Insert a "step resume breakpoint" at RETURN_FRAME.pc. This is used
2734 to skip a function (next, skip-no-debug) or signal. It's assumed
2735 that the function/signal handler being skipped eventually returns
2736 to the breakpoint inserted at RETURN_FRAME.pc.
2737
2738 For the skip-function case, the function may have been reached by
2739 either single stepping a call / return / signal-return instruction,
2740 or by hitting a breakpoint. In all cases, the RETURN_FRAME belongs
2741 to the skip-function's caller.
2742
2743 For the signals case, this is called with the interrupted
2744 function's frame. The signal handler, when it returns, will resume
2745 the interrupted function at RETURN_FRAME.pc. */
2746
2747 static void
2748 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2749 {
2750 struct symtab_and_line sr_sal;
2751
2752 init_sal (&sr_sal); /* initialize to zeros */
2753
2754 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (return_frame));
2755 sr_sal.section = find_pc_overlay (sr_sal.pc);
2756
2757 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2758 }
2759
2760 static void
2761 stop_stepping (struct execution_control_state *ecs)
2762 {
2763 if (debug_infrun)
2764 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
2765
2766 /* Let callers know we don't want to wait for the inferior anymore. */
2767 ecs->wait_some_more = 0;
2768 }
2769
2770 /* This function handles various cases where we need to continue
2771 waiting for the inferior. */
2772 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2773
2774 static void
2775 keep_going (struct execution_control_state *ecs)
2776 {
2777 /* Save the pc before execution, to compare with pc after stop. */
2778 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2779
2780 /* If we did not do break;, it means we should keep running the
2781 inferior and not return to debugger. */
2782
2783 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2784 {
2785 /* We took a signal (which we are supposed to pass through to
2786 the inferior, else we'd have done a break above) and we
2787 haven't yet gotten our trap. Simply continue. */
2788 resume (currently_stepping (ecs), stop_signal);
2789 }
2790 else
2791 {
2792 /* Either the trap was not expected, but we are continuing
2793 anyway (the user asked that this signal be passed to the
2794 child)
2795 -- or --
2796 The signal was SIGTRAP, e.g. it was our signal, but we
2797 decided we should resume from it.
2798
2799 We're going to run this baby now! */
2800
2801 if (!breakpoints_inserted && !ecs->another_trap)
2802 {
2803 breakpoints_failed = insert_breakpoints ();
2804 if (breakpoints_failed)
2805 {
2806 stop_stepping (ecs);
2807 return;
2808 }
2809 breakpoints_inserted = 1;
2810 }
2811
2812 trap_expected = ecs->another_trap;
2813
2814 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2815 specifies that such a signal should be delivered to the
2816 target program).
2817
2818 Typically, this would occure when a user is debugging a
2819 target monitor on a simulator: the target monitor sets a
2820 breakpoint; the simulator encounters this break-point and
2821 halts the simulation handing control to GDB; GDB, noteing
2822 that the break-point isn't valid, returns control back to the
2823 simulator; the simulator then delivers the hardware
2824 equivalent of a SIGNAL_TRAP to the program being debugged. */
2825
2826 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2827 stop_signal = TARGET_SIGNAL_0;
2828
2829
2830 resume (currently_stepping (ecs), stop_signal);
2831 }
2832
2833 prepare_to_wait (ecs);
2834 }
2835
2836 /* This function normally comes after a resume, before
2837 handle_inferior_event exits. It takes care of any last bits of
2838 housekeeping, and sets the all-important wait_some_more flag. */
2839
2840 static void
2841 prepare_to_wait (struct execution_control_state *ecs)
2842 {
2843 if (debug_infrun)
2844 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
2845 if (ecs->infwait_state == infwait_normal_state)
2846 {
2847 overlay_cache_invalid = 1;
2848
2849 /* We have to invalidate the registers BEFORE calling
2850 target_wait because they can be loaded from the target while
2851 in target_wait. This makes remote debugging a bit more
2852 efficient for those targets that provide critical registers
2853 as part of their normal status mechanism. */
2854
2855 registers_changed ();
2856 ecs->waiton_ptid = pid_to_ptid (-1);
2857 ecs->wp = &(ecs->ws);
2858 }
2859 /* This is the old end of the while loop. Let everybody know we
2860 want to wait for the inferior some more and get called again
2861 soon. */
2862 ecs->wait_some_more = 1;
2863 }
2864
2865 /* Print why the inferior has stopped. We always print something when
2866 the inferior exits, or receives a signal. The rest of the cases are
2867 dealt with later on in normal_stop() and print_it_typical(). Ideally
2868 there should be a call to this function from handle_inferior_event()
2869 each time stop_stepping() is called.*/
2870 static void
2871 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2872 {
2873 switch (stop_reason)
2874 {
2875 case STOP_UNKNOWN:
2876 /* We don't deal with these cases from handle_inferior_event()
2877 yet. */
2878 break;
2879 case END_STEPPING_RANGE:
2880 /* We are done with a step/next/si/ni command. */
2881 /* For now print nothing. */
2882 /* Print a message only if not in the middle of doing a "step n"
2883 operation for n > 1 */
2884 if (!step_multi || !stop_step)
2885 if (ui_out_is_mi_like_p (uiout))
2886 ui_out_field_string
2887 (uiout, "reason",
2888 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
2889 break;
2890 case BREAKPOINT_HIT:
2891 /* We found a breakpoint. */
2892 /* For now print nothing. */
2893 break;
2894 case SIGNAL_EXITED:
2895 /* The inferior was terminated by a signal. */
2896 annotate_signalled ();
2897 if (ui_out_is_mi_like_p (uiout))
2898 ui_out_field_string
2899 (uiout, "reason",
2900 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
2901 ui_out_text (uiout, "\nProgram terminated with signal ");
2902 annotate_signal_name ();
2903 ui_out_field_string (uiout, "signal-name",
2904 target_signal_to_name (stop_info));
2905 annotate_signal_name_end ();
2906 ui_out_text (uiout, ", ");
2907 annotate_signal_string ();
2908 ui_out_field_string (uiout, "signal-meaning",
2909 target_signal_to_string (stop_info));
2910 annotate_signal_string_end ();
2911 ui_out_text (uiout, ".\n");
2912 ui_out_text (uiout, "The program no longer exists.\n");
2913 break;
2914 case EXITED:
2915 /* The inferior program is finished. */
2916 annotate_exited (stop_info);
2917 if (stop_info)
2918 {
2919 if (ui_out_is_mi_like_p (uiout))
2920 ui_out_field_string (uiout, "reason",
2921 async_reason_lookup (EXEC_ASYNC_EXITED));
2922 ui_out_text (uiout, "\nProgram exited with code ");
2923 ui_out_field_fmt (uiout, "exit-code", "0%o",
2924 (unsigned int) stop_info);
2925 ui_out_text (uiout, ".\n");
2926 }
2927 else
2928 {
2929 if (ui_out_is_mi_like_p (uiout))
2930 ui_out_field_string
2931 (uiout, "reason",
2932 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
2933 ui_out_text (uiout, "\nProgram exited normally.\n");
2934 }
2935 /* Support the --return-child-result option. */
2936 return_child_result_value = stop_info;
2937 break;
2938 case SIGNAL_RECEIVED:
2939 /* Signal received. The signal table tells us to print about
2940 it. */
2941 annotate_signal ();
2942 ui_out_text (uiout, "\nProgram received signal ");
2943 annotate_signal_name ();
2944 if (ui_out_is_mi_like_p (uiout))
2945 ui_out_field_string
2946 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
2947 ui_out_field_string (uiout, "signal-name",
2948 target_signal_to_name (stop_info));
2949 annotate_signal_name_end ();
2950 ui_out_text (uiout, ", ");
2951 annotate_signal_string ();
2952 ui_out_field_string (uiout, "signal-meaning",
2953 target_signal_to_string (stop_info));
2954 annotate_signal_string_end ();
2955 ui_out_text (uiout, ".\n");
2956 break;
2957 default:
2958 internal_error (__FILE__, __LINE__,
2959 _("print_stop_reason: unrecognized enum value"));
2960 break;
2961 }
2962 }
2963 \f
2964
2965 /* Here to return control to GDB when the inferior stops for real.
2966 Print appropriate messages, remove breakpoints, give terminal our modes.
2967
2968 STOP_PRINT_FRAME nonzero means print the executing frame
2969 (pc, function, args, file, line number and line text).
2970 BREAKPOINTS_FAILED nonzero means stop was due to error
2971 attempting to insert breakpoints. */
2972
2973 void
2974 normal_stop (void)
2975 {
2976 struct target_waitstatus last;
2977 ptid_t last_ptid;
2978
2979 get_last_target_status (&last_ptid, &last);
2980
2981 /* As with the notification of thread events, we want to delay
2982 notifying the user that we've switched thread context until
2983 the inferior actually stops.
2984
2985 There's no point in saying anything if the inferior has exited.
2986 Note that SIGNALLED here means "exited with a signal", not
2987 "received a signal". */
2988 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
2989 && target_has_execution
2990 && last.kind != TARGET_WAITKIND_SIGNALLED
2991 && last.kind != TARGET_WAITKIND_EXITED)
2992 {
2993 target_terminal_ours_for_output ();
2994 printf_filtered (_("[Switching to %s]\n"),
2995 target_pid_or_tid_to_str (inferior_ptid));
2996 previous_inferior_ptid = inferior_ptid;
2997 }
2998
2999 /* NOTE drow/2004-01-17: Is this still necessary? */
3000 /* Make sure that the current_frame's pc is correct. This
3001 is a correction for setting up the frame info before doing
3002 DECR_PC_AFTER_BREAK */
3003 if (target_has_execution)
3004 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3005 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
3006 frame code to check for this and sort out any resultant mess.
3007 DECR_PC_AFTER_BREAK needs to just go away. */
3008 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3009
3010 if (target_has_execution && breakpoints_inserted)
3011 {
3012 if (remove_breakpoints ())
3013 {
3014 target_terminal_ours_for_output ();
3015 printf_filtered (_("\
3016 Cannot remove breakpoints because program is no longer writable.\n\
3017 It might be running in another process.\n\
3018 Further execution is probably impossible.\n"));
3019 }
3020 }
3021 breakpoints_inserted = 0;
3022
3023 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3024 Delete any breakpoint that is to be deleted at the next stop. */
3025
3026 breakpoint_auto_delete (stop_bpstat);
3027
3028 /* If an auto-display called a function and that got a signal,
3029 delete that auto-display to avoid an infinite recursion. */
3030
3031 if (stopped_by_random_signal)
3032 disable_current_display ();
3033
3034 /* Don't print a message if in the middle of doing a "step n"
3035 operation for n > 1 */
3036 if (step_multi && stop_step)
3037 goto done;
3038
3039 target_terminal_ours ();
3040
3041 /* Look up the hook_stop and run it (CLI internally handles problem
3042 of stop_command's pre-hook not existing). */
3043 if (stop_command)
3044 catch_errors (hook_stop_stub, stop_command,
3045 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3046
3047 if (!target_has_stack)
3048 {
3049
3050 goto done;
3051 }
3052
3053 /* Select innermost stack frame - i.e., current frame is frame 0,
3054 and current location is based on that.
3055 Don't do this on return from a stack dummy routine,
3056 or if the program has exited. */
3057
3058 if (!stop_stack_dummy)
3059 {
3060 select_frame (get_current_frame ());
3061
3062 /* Print current location without a level number, if
3063 we have changed functions or hit a breakpoint.
3064 Print source line if we have one.
3065 bpstat_print() contains the logic deciding in detail
3066 what to print, based on the event(s) that just occurred. */
3067
3068 if (stop_print_frame && deprecated_selected_frame)
3069 {
3070 int bpstat_ret;
3071 int source_flag;
3072 int do_frame_printing = 1;
3073
3074 bpstat_ret = bpstat_print (stop_bpstat);
3075 switch (bpstat_ret)
3076 {
3077 case PRINT_UNKNOWN:
3078 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3079 (or should) carry around the function and does (or
3080 should) use that when doing a frame comparison. */
3081 if (stop_step
3082 && frame_id_eq (step_frame_id,
3083 get_frame_id (get_current_frame ()))
3084 && step_start_function == find_pc_function (stop_pc))
3085 source_flag = SRC_LINE; /* finished step, just print source line */
3086 else
3087 source_flag = SRC_AND_LOC; /* print location and source line */
3088 break;
3089 case PRINT_SRC_AND_LOC:
3090 source_flag = SRC_AND_LOC; /* print location and source line */
3091 break;
3092 case PRINT_SRC_ONLY:
3093 source_flag = SRC_LINE;
3094 break;
3095 case PRINT_NOTHING:
3096 source_flag = SRC_LINE; /* something bogus */
3097 do_frame_printing = 0;
3098 break;
3099 default:
3100 internal_error (__FILE__, __LINE__, _("Unknown value."));
3101 }
3102 /* For mi, have the same behavior every time we stop:
3103 print everything but the source line. */
3104 if (ui_out_is_mi_like_p (uiout))
3105 source_flag = LOC_AND_ADDRESS;
3106
3107 if (ui_out_is_mi_like_p (uiout))
3108 ui_out_field_int (uiout, "thread-id",
3109 pid_to_thread_id (inferior_ptid));
3110 /* The behavior of this routine with respect to the source
3111 flag is:
3112 SRC_LINE: Print only source line
3113 LOCATION: Print only location
3114 SRC_AND_LOC: Print location and source line */
3115 if (do_frame_printing)
3116 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3117
3118 /* Display the auto-display expressions. */
3119 do_displays ();
3120 }
3121 }
3122
3123 /* Save the function value return registers, if we care.
3124 We might be about to restore their previous contents. */
3125 if (proceed_to_finish)
3126 /* NB: The copy goes through to the target picking up the value of
3127 all the registers. */
3128 regcache_cpy (stop_registers, current_regcache);
3129
3130 if (stop_stack_dummy)
3131 {
3132 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3133 ends with a setting of the current frame, so we can use that
3134 next. */
3135 frame_pop (get_current_frame ());
3136 /* Set stop_pc to what it was before we called the function.
3137 Can't rely on restore_inferior_status because that only gets
3138 called if we don't stop in the called function. */
3139 stop_pc = read_pc ();
3140 select_frame (get_current_frame ());
3141 }
3142
3143 done:
3144 annotate_stopped ();
3145 observer_notify_normal_stop (stop_bpstat);
3146 }
3147
3148 static int
3149 hook_stop_stub (void *cmd)
3150 {
3151 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3152 return (0);
3153 }
3154 \f
3155 int
3156 signal_stop_state (int signo)
3157 {
3158 return signal_stop[signo];
3159 }
3160
3161 int
3162 signal_print_state (int signo)
3163 {
3164 return signal_print[signo];
3165 }
3166
3167 int
3168 signal_pass_state (int signo)
3169 {
3170 return signal_program[signo];
3171 }
3172
3173 int
3174 signal_stop_update (int signo, int state)
3175 {
3176 int ret = signal_stop[signo];
3177 signal_stop[signo] = state;
3178 return ret;
3179 }
3180
3181 int
3182 signal_print_update (int signo, int state)
3183 {
3184 int ret = signal_print[signo];
3185 signal_print[signo] = state;
3186 return ret;
3187 }
3188
3189 int
3190 signal_pass_update (int signo, int state)
3191 {
3192 int ret = signal_program[signo];
3193 signal_program[signo] = state;
3194 return ret;
3195 }
3196
3197 static void
3198 sig_print_header (void)
3199 {
3200 printf_filtered (_("\
3201 Signal Stop\tPrint\tPass to program\tDescription\n"));
3202 }
3203
3204 static void
3205 sig_print_info (enum target_signal oursig)
3206 {
3207 char *name = target_signal_to_name (oursig);
3208 int name_padding = 13 - strlen (name);
3209
3210 if (name_padding <= 0)
3211 name_padding = 0;
3212
3213 printf_filtered ("%s", name);
3214 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3215 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3216 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3217 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3218 printf_filtered ("%s\n", target_signal_to_string (oursig));
3219 }
3220
3221 /* Specify how various signals in the inferior should be handled. */
3222
3223 static void
3224 handle_command (char *args, int from_tty)
3225 {
3226 char **argv;
3227 int digits, wordlen;
3228 int sigfirst, signum, siglast;
3229 enum target_signal oursig;
3230 int allsigs;
3231 int nsigs;
3232 unsigned char *sigs;
3233 struct cleanup *old_chain;
3234
3235 if (args == NULL)
3236 {
3237 error_no_arg (_("signal to handle"));
3238 }
3239
3240 /* Allocate and zero an array of flags for which signals to handle. */
3241
3242 nsigs = (int) TARGET_SIGNAL_LAST;
3243 sigs = (unsigned char *) alloca (nsigs);
3244 memset (sigs, 0, nsigs);
3245
3246 /* Break the command line up into args. */
3247
3248 argv = buildargv (args);
3249 if (argv == NULL)
3250 {
3251 nomem (0);
3252 }
3253 old_chain = make_cleanup_freeargv (argv);
3254
3255 /* Walk through the args, looking for signal oursigs, signal names, and
3256 actions. Signal numbers and signal names may be interspersed with
3257 actions, with the actions being performed for all signals cumulatively
3258 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3259
3260 while (*argv != NULL)
3261 {
3262 wordlen = strlen (*argv);
3263 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3264 {;
3265 }
3266 allsigs = 0;
3267 sigfirst = siglast = -1;
3268
3269 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3270 {
3271 /* Apply action to all signals except those used by the
3272 debugger. Silently skip those. */
3273 allsigs = 1;
3274 sigfirst = 0;
3275 siglast = nsigs - 1;
3276 }
3277 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3278 {
3279 SET_SIGS (nsigs, sigs, signal_stop);
3280 SET_SIGS (nsigs, sigs, signal_print);
3281 }
3282 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3283 {
3284 UNSET_SIGS (nsigs, sigs, signal_program);
3285 }
3286 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3287 {
3288 SET_SIGS (nsigs, sigs, signal_print);
3289 }
3290 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3291 {
3292 SET_SIGS (nsigs, sigs, signal_program);
3293 }
3294 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3295 {
3296 UNSET_SIGS (nsigs, sigs, signal_stop);
3297 }
3298 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3299 {
3300 SET_SIGS (nsigs, sigs, signal_program);
3301 }
3302 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3303 {
3304 UNSET_SIGS (nsigs, sigs, signal_print);
3305 UNSET_SIGS (nsigs, sigs, signal_stop);
3306 }
3307 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3308 {
3309 UNSET_SIGS (nsigs, sigs, signal_program);
3310 }
3311 else if (digits > 0)
3312 {
3313 /* It is numeric. The numeric signal refers to our own
3314 internal signal numbering from target.h, not to host/target
3315 signal number. This is a feature; users really should be
3316 using symbolic names anyway, and the common ones like
3317 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3318
3319 sigfirst = siglast = (int)
3320 target_signal_from_command (atoi (*argv));
3321 if ((*argv)[digits] == '-')
3322 {
3323 siglast = (int)
3324 target_signal_from_command (atoi ((*argv) + digits + 1));
3325 }
3326 if (sigfirst > siglast)
3327 {
3328 /* Bet he didn't figure we'd think of this case... */
3329 signum = sigfirst;
3330 sigfirst = siglast;
3331 siglast = signum;
3332 }
3333 }
3334 else
3335 {
3336 oursig = target_signal_from_name (*argv);
3337 if (oursig != TARGET_SIGNAL_UNKNOWN)
3338 {
3339 sigfirst = siglast = (int) oursig;
3340 }
3341 else
3342 {
3343 /* Not a number and not a recognized flag word => complain. */
3344 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3345 }
3346 }
3347
3348 /* If any signal numbers or symbol names were found, set flags for
3349 which signals to apply actions to. */
3350
3351 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3352 {
3353 switch ((enum target_signal) signum)
3354 {
3355 case TARGET_SIGNAL_TRAP:
3356 case TARGET_SIGNAL_INT:
3357 if (!allsigs && !sigs[signum])
3358 {
3359 if (query ("%s is used by the debugger.\n\
3360 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3361 {
3362 sigs[signum] = 1;
3363 }
3364 else
3365 {
3366 printf_unfiltered (_("Not confirmed, unchanged.\n"));
3367 gdb_flush (gdb_stdout);
3368 }
3369 }
3370 break;
3371 case TARGET_SIGNAL_0:
3372 case TARGET_SIGNAL_DEFAULT:
3373 case TARGET_SIGNAL_UNKNOWN:
3374 /* Make sure that "all" doesn't print these. */
3375 break;
3376 default:
3377 sigs[signum] = 1;
3378 break;
3379 }
3380 }
3381
3382 argv++;
3383 }
3384
3385 target_notice_signals (inferior_ptid);
3386
3387 if (from_tty)
3388 {
3389 /* Show the results. */
3390 sig_print_header ();
3391 for (signum = 0; signum < nsigs; signum++)
3392 {
3393 if (sigs[signum])
3394 {
3395 sig_print_info (signum);
3396 }
3397 }
3398 }
3399
3400 do_cleanups (old_chain);
3401 }
3402
3403 static void
3404 xdb_handle_command (char *args, int from_tty)
3405 {
3406 char **argv;
3407 struct cleanup *old_chain;
3408
3409 /* Break the command line up into args. */
3410
3411 argv = buildargv (args);
3412 if (argv == NULL)
3413 {
3414 nomem (0);
3415 }
3416 old_chain = make_cleanup_freeargv (argv);
3417 if (argv[1] != (char *) NULL)
3418 {
3419 char *argBuf;
3420 int bufLen;
3421
3422 bufLen = strlen (argv[0]) + 20;
3423 argBuf = (char *) xmalloc (bufLen);
3424 if (argBuf)
3425 {
3426 int validFlag = 1;
3427 enum target_signal oursig;
3428
3429 oursig = target_signal_from_name (argv[0]);
3430 memset (argBuf, 0, bufLen);
3431 if (strcmp (argv[1], "Q") == 0)
3432 sprintf (argBuf, "%s %s", argv[0], "noprint");
3433 else
3434 {
3435 if (strcmp (argv[1], "s") == 0)
3436 {
3437 if (!signal_stop[oursig])
3438 sprintf (argBuf, "%s %s", argv[0], "stop");
3439 else
3440 sprintf (argBuf, "%s %s", argv[0], "nostop");
3441 }
3442 else if (strcmp (argv[1], "i") == 0)
3443 {
3444 if (!signal_program[oursig])
3445 sprintf (argBuf, "%s %s", argv[0], "pass");
3446 else
3447 sprintf (argBuf, "%s %s", argv[0], "nopass");
3448 }
3449 else if (strcmp (argv[1], "r") == 0)
3450 {
3451 if (!signal_print[oursig])
3452 sprintf (argBuf, "%s %s", argv[0], "print");
3453 else
3454 sprintf (argBuf, "%s %s", argv[0], "noprint");
3455 }
3456 else
3457 validFlag = 0;
3458 }
3459 if (validFlag)
3460 handle_command (argBuf, from_tty);
3461 else
3462 printf_filtered (_("Invalid signal handling flag.\n"));
3463 if (argBuf)
3464 xfree (argBuf);
3465 }
3466 }
3467 do_cleanups (old_chain);
3468 }
3469
3470 /* Print current contents of the tables set by the handle command.
3471 It is possible we should just be printing signals actually used
3472 by the current target (but for things to work right when switching
3473 targets, all signals should be in the signal tables). */
3474
3475 static void
3476 signals_info (char *signum_exp, int from_tty)
3477 {
3478 enum target_signal oursig;
3479 sig_print_header ();
3480
3481 if (signum_exp)
3482 {
3483 /* First see if this is a symbol name. */
3484 oursig = target_signal_from_name (signum_exp);
3485 if (oursig == TARGET_SIGNAL_UNKNOWN)
3486 {
3487 /* No, try numeric. */
3488 oursig =
3489 target_signal_from_command (parse_and_eval_long (signum_exp));
3490 }
3491 sig_print_info (oursig);
3492 return;
3493 }
3494
3495 printf_filtered ("\n");
3496 /* These ugly casts brought to you by the native VAX compiler. */
3497 for (oursig = TARGET_SIGNAL_FIRST;
3498 (int) oursig < (int) TARGET_SIGNAL_LAST;
3499 oursig = (enum target_signal) ((int) oursig + 1))
3500 {
3501 QUIT;
3502
3503 if (oursig != TARGET_SIGNAL_UNKNOWN
3504 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3505 sig_print_info (oursig);
3506 }
3507
3508 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
3509 }
3510 \f
3511 struct inferior_status
3512 {
3513 enum target_signal stop_signal;
3514 CORE_ADDR stop_pc;
3515 bpstat stop_bpstat;
3516 int stop_step;
3517 int stop_stack_dummy;
3518 int stopped_by_random_signal;
3519 int trap_expected;
3520 CORE_ADDR step_range_start;
3521 CORE_ADDR step_range_end;
3522 struct frame_id step_frame_id;
3523 enum step_over_calls_kind step_over_calls;
3524 CORE_ADDR step_resume_break_address;
3525 int stop_after_trap;
3526 int stop_soon;
3527 struct regcache *stop_registers;
3528
3529 /* These are here because if call_function_by_hand has written some
3530 registers and then decides to call error(), we better not have changed
3531 any registers. */
3532 struct regcache *registers;
3533
3534 /* A frame unique identifier. */
3535 struct frame_id selected_frame_id;
3536
3537 int breakpoint_proceeded;
3538 int restore_stack_info;
3539 int proceed_to_finish;
3540 };
3541
3542 void
3543 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3544 LONGEST val)
3545 {
3546 int size = register_size (current_gdbarch, regno);
3547 void *buf = alloca (size);
3548 store_signed_integer (buf, size, val);
3549 regcache_raw_write (inf_status->registers, regno, buf);
3550 }
3551
3552 /* Save all of the information associated with the inferior<==>gdb
3553 connection. INF_STATUS is a pointer to a "struct inferior_status"
3554 (defined in inferior.h). */
3555
3556 struct inferior_status *
3557 save_inferior_status (int restore_stack_info)
3558 {
3559 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3560
3561 inf_status->stop_signal = stop_signal;
3562 inf_status->stop_pc = stop_pc;
3563 inf_status->stop_step = stop_step;
3564 inf_status->stop_stack_dummy = stop_stack_dummy;
3565 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3566 inf_status->trap_expected = trap_expected;
3567 inf_status->step_range_start = step_range_start;
3568 inf_status->step_range_end = step_range_end;
3569 inf_status->step_frame_id = step_frame_id;
3570 inf_status->step_over_calls = step_over_calls;
3571 inf_status->stop_after_trap = stop_after_trap;
3572 inf_status->stop_soon = stop_soon;
3573 /* Save original bpstat chain here; replace it with copy of chain.
3574 If caller's caller is walking the chain, they'll be happier if we
3575 hand them back the original chain when restore_inferior_status is
3576 called. */
3577 inf_status->stop_bpstat = stop_bpstat;
3578 stop_bpstat = bpstat_copy (stop_bpstat);
3579 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3580 inf_status->restore_stack_info = restore_stack_info;
3581 inf_status->proceed_to_finish = proceed_to_finish;
3582
3583 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
3584
3585 inf_status->registers = regcache_dup (current_regcache);
3586
3587 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
3588 return inf_status;
3589 }
3590
3591 static int
3592 restore_selected_frame (void *args)
3593 {
3594 struct frame_id *fid = (struct frame_id *) args;
3595 struct frame_info *frame;
3596
3597 frame = frame_find_by_id (*fid);
3598
3599 /* If inf_status->selected_frame_id is NULL, there was no previously
3600 selected frame. */
3601 if (frame == NULL)
3602 {
3603 warning (_("Unable to restore previously selected frame."));
3604 return 0;
3605 }
3606
3607 select_frame (frame);
3608
3609 return (1);
3610 }
3611
3612 void
3613 restore_inferior_status (struct inferior_status *inf_status)
3614 {
3615 stop_signal = inf_status->stop_signal;
3616 stop_pc = inf_status->stop_pc;
3617 stop_step = inf_status->stop_step;
3618 stop_stack_dummy = inf_status->stop_stack_dummy;
3619 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3620 trap_expected = inf_status->trap_expected;
3621 step_range_start = inf_status->step_range_start;
3622 step_range_end = inf_status->step_range_end;
3623 step_frame_id = inf_status->step_frame_id;
3624 step_over_calls = inf_status->step_over_calls;
3625 stop_after_trap = inf_status->stop_after_trap;
3626 stop_soon = inf_status->stop_soon;
3627 bpstat_clear (&stop_bpstat);
3628 stop_bpstat = inf_status->stop_bpstat;
3629 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3630 proceed_to_finish = inf_status->proceed_to_finish;
3631
3632 /* FIXME: Is the restore of stop_registers always needed. */
3633 regcache_xfree (stop_registers);
3634 stop_registers = inf_status->stop_registers;
3635
3636 /* The inferior can be gone if the user types "print exit(0)"
3637 (and perhaps other times). */
3638 if (target_has_execution)
3639 /* NB: The register write goes through to the target. */
3640 regcache_cpy (current_regcache, inf_status->registers);
3641 regcache_xfree (inf_status->registers);
3642
3643 /* FIXME: If we are being called after stopping in a function which
3644 is called from gdb, we should not be trying to restore the
3645 selected frame; it just prints a spurious error message (The
3646 message is useful, however, in detecting bugs in gdb (like if gdb
3647 clobbers the stack)). In fact, should we be restoring the
3648 inferior status at all in that case? . */
3649
3650 if (target_has_stack && inf_status->restore_stack_info)
3651 {
3652 /* The point of catch_errors is that if the stack is clobbered,
3653 walking the stack might encounter a garbage pointer and
3654 error() trying to dereference it. */
3655 if (catch_errors
3656 (restore_selected_frame, &inf_status->selected_frame_id,
3657 "Unable to restore previously selected frame:\n",
3658 RETURN_MASK_ERROR) == 0)
3659 /* Error in restoring the selected frame. Select the innermost
3660 frame. */
3661 select_frame (get_current_frame ());
3662
3663 }
3664
3665 xfree (inf_status);
3666 }
3667
3668 static void
3669 do_restore_inferior_status_cleanup (void *sts)
3670 {
3671 restore_inferior_status (sts);
3672 }
3673
3674 struct cleanup *
3675 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3676 {
3677 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3678 }
3679
3680 void
3681 discard_inferior_status (struct inferior_status *inf_status)
3682 {
3683 /* See save_inferior_status for info on stop_bpstat. */
3684 bpstat_clear (&inf_status->stop_bpstat);
3685 regcache_xfree (inf_status->registers);
3686 regcache_xfree (inf_status->stop_registers);
3687 xfree (inf_status);
3688 }
3689
3690 int
3691 inferior_has_forked (int pid, int *child_pid)
3692 {
3693 struct target_waitstatus last;
3694 ptid_t last_ptid;
3695
3696 get_last_target_status (&last_ptid, &last);
3697
3698 if (last.kind != TARGET_WAITKIND_FORKED)
3699 return 0;
3700
3701 if (ptid_get_pid (last_ptid) != pid)
3702 return 0;
3703
3704 *child_pid = last.value.related_pid;
3705 return 1;
3706 }
3707
3708 int
3709 inferior_has_vforked (int pid, int *child_pid)
3710 {
3711 struct target_waitstatus last;
3712 ptid_t last_ptid;
3713
3714 get_last_target_status (&last_ptid, &last);
3715
3716 if (last.kind != TARGET_WAITKIND_VFORKED)
3717 return 0;
3718
3719 if (ptid_get_pid (last_ptid) != pid)
3720 return 0;
3721
3722 *child_pid = last.value.related_pid;
3723 return 1;
3724 }
3725
3726 int
3727 inferior_has_execd (int pid, char **execd_pathname)
3728 {
3729 struct target_waitstatus last;
3730 ptid_t last_ptid;
3731
3732 get_last_target_status (&last_ptid, &last);
3733
3734 if (last.kind != TARGET_WAITKIND_EXECD)
3735 return 0;
3736
3737 if (ptid_get_pid (last_ptid) != pid)
3738 return 0;
3739
3740 *execd_pathname = xstrdup (last.value.execd_pathname);
3741 return 1;
3742 }
3743
3744 /* Oft used ptids */
3745 ptid_t null_ptid;
3746 ptid_t minus_one_ptid;
3747
3748 /* Create a ptid given the necessary PID, LWP, and TID components. */
3749
3750 ptid_t
3751 ptid_build (int pid, long lwp, long tid)
3752 {
3753 ptid_t ptid;
3754
3755 ptid.pid = pid;
3756 ptid.lwp = lwp;
3757 ptid.tid = tid;
3758 return ptid;
3759 }
3760
3761 /* Create a ptid from just a pid. */
3762
3763 ptid_t
3764 pid_to_ptid (int pid)
3765 {
3766 return ptid_build (pid, 0, 0);
3767 }
3768
3769 /* Fetch the pid (process id) component from a ptid. */
3770
3771 int
3772 ptid_get_pid (ptid_t ptid)
3773 {
3774 return ptid.pid;
3775 }
3776
3777 /* Fetch the lwp (lightweight process) component from a ptid. */
3778
3779 long
3780 ptid_get_lwp (ptid_t ptid)
3781 {
3782 return ptid.lwp;
3783 }
3784
3785 /* Fetch the tid (thread id) component from a ptid. */
3786
3787 long
3788 ptid_get_tid (ptid_t ptid)
3789 {
3790 return ptid.tid;
3791 }
3792
3793 /* ptid_equal() is used to test equality of two ptids. */
3794
3795 int
3796 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3797 {
3798 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3799 && ptid1.tid == ptid2.tid);
3800 }
3801
3802 /* restore_inferior_ptid() will be used by the cleanup machinery
3803 to restore the inferior_ptid value saved in a call to
3804 save_inferior_ptid(). */
3805
3806 static void
3807 restore_inferior_ptid (void *arg)
3808 {
3809 ptid_t *saved_ptid_ptr = arg;
3810 inferior_ptid = *saved_ptid_ptr;
3811 xfree (arg);
3812 }
3813
3814 /* Save the value of inferior_ptid so that it may be restored by a
3815 later call to do_cleanups(). Returns the struct cleanup pointer
3816 needed for later doing the cleanup. */
3817
3818 struct cleanup *
3819 save_inferior_ptid (void)
3820 {
3821 ptid_t *saved_ptid_ptr;
3822
3823 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3824 *saved_ptid_ptr = inferior_ptid;
3825 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3826 }
3827 \f
3828
3829 static void
3830 build_infrun (void)
3831 {
3832 stop_registers = regcache_xmalloc (current_gdbarch);
3833 }
3834
3835 void
3836 _initialize_infrun (void)
3837 {
3838 int i;
3839 int numsigs;
3840 struct cmd_list_element *c;
3841
3842 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3843 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
3844
3845 add_info ("signals", signals_info, _("\
3846 What debugger does when program gets various signals.\n\
3847 Specify a signal as argument to print info on that signal only."));
3848 add_info_alias ("handle", "signals", 0);
3849
3850 add_com ("handle", class_run, handle_command, _("\
3851 Specify how to handle a signal.\n\
3852 Args are signals and actions to apply to those signals.\n\
3853 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3854 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3855 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3856 The special arg \"all\" is recognized to mean all signals except those\n\
3857 used by the debugger, typically SIGTRAP and SIGINT.\n\
3858 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3859 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3860 Stop means reenter debugger if this signal happens (implies print).\n\
3861 Print means print a message if this signal happens.\n\
3862 Pass means let program see this signal; otherwise program doesn't know.\n\
3863 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3864 Pass and Stop may be combined."));
3865 if (xdb_commands)
3866 {
3867 add_com ("lz", class_info, signals_info, _("\
3868 What debugger does when program gets various signals.\n\
3869 Specify a signal as argument to print info on that signal only."));
3870 add_com ("z", class_run, xdb_handle_command, _("\
3871 Specify how to handle a signal.\n\
3872 Args are signals and actions to apply to those signals.\n\
3873 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3874 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3875 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3876 The special arg \"all\" is recognized to mean all signals except those\n\
3877 used by the debugger, typically SIGTRAP and SIGINT.\n\
3878 Recognized actions include \"s\" (toggles between stop and nostop), \n\
3879 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3880 nopass), \"Q\" (noprint)\n\
3881 Stop means reenter debugger if this signal happens (implies print).\n\
3882 Print means print a message if this signal happens.\n\
3883 Pass means let program see this signal; otherwise program doesn't know.\n\
3884 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3885 Pass and Stop may be combined."));
3886 }
3887
3888 if (!dbx_commands)
3889 stop_command = add_cmd ("stop", class_obscure,
3890 not_just_help_class_command, _("\
3891 There is no `stop' command, but you can set a hook on `stop'.\n\
3892 This allows you to set a list of commands to be run each time execution\n\
3893 of the program stops."), &cmdlist);
3894
3895 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
3896 Set inferior debugging."), _("\
3897 Show inferior debugging."), _("\
3898 When non-zero, inferior specific debugging is enabled."),
3899 NULL,
3900 show_debug_infrun,
3901 &setdebuglist, &showdebuglist);
3902
3903 numsigs = (int) TARGET_SIGNAL_LAST;
3904 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
3905 signal_print = (unsigned char *)
3906 xmalloc (sizeof (signal_print[0]) * numsigs);
3907 signal_program = (unsigned char *)
3908 xmalloc (sizeof (signal_program[0]) * numsigs);
3909 for (i = 0; i < numsigs; i++)
3910 {
3911 signal_stop[i] = 1;
3912 signal_print[i] = 1;
3913 signal_program[i] = 1;
3914 }
3915
3916 /* Signals caused by debugger's own actions
3917 should not be given to the program afterwards. */
3918 signal_program[TARGET_SIGNAL_TRAP] = 0;
3919 signal_program[TARGET_SIGNAL_INT] = 0;
3920
3921 /* Signals that are not errors should not normally enter the debugger. */
3922 signal_stop[TARGET_SIGNAL_ALRM] = 0;
3923 signal_print[TARGET_SIGNAL_ALRM] = 0;
3924 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
3925 signal_print[TARGET_SIGNAL_VTALRM] = 0;
3926 signal_stop[TARGET_SIGNAL_PROF] = 0;
3927 signal_print[TARGET_SIGNAL_PROF] = 0;
3928 signal_stop[TARGET_SIGNAL_CHLD] = 0;
3929 signal_print[TARGET_SIGNAL_CHLD] = 0;
3930 signal_stop[TARGET_SIGNAL_IO] = 0;
3931 signal_print[TARGET_SIGNAL_IO] = 0;
3932 signal_stop[TARGET_SIGNAL_POLL] = 0;
3933 signal_print[TARGET_SIGNAL_POLL] = 0;
3934 signal_stop[TARGET_SIGNAL_URG] = 0;
3935 signal_print[TARGET_SIGNAL_URG] = 0;
3936 signal_stop[TARGET_SIGNAL_WINCH] = 0;
3937 signal_print[TARGET_SIGNAL_WINCH] = 0;
3938
3939 /* These signals are used internally by user-level thread
3940 implementations. (See signal(5) on Solaris.) Like the above
3941 signals, a healthy program receives and handles them as part of
3942 its normal operation. */
3943 signal_stop[TARGET_SIGNAL_LWP] = 0;
3944 signal_print[TARGET_SIGNAL_LWP] = 0;
3945 signal_stop[TARGET_SIGNAL_WAITING] = 0;
3946 signal_print[TARGET_SIGNAL_WAITING] = 0;
3947 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
3948 signal_print[TARGET_SIGNAL_CANCEL] = 0;
3949
3950 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
3951 &stop_on_solib_events, _("\
3952 Set stopping for shared library events."), _("\
3953 Show stopping for shared library events."), _("\
3954 If nonzero, gdb will give control to the user when the dynamic linker\n\
3955 notifies gdb of shared library events. The most common event of interest\n\
3956 to the user would be loading/unloading of a new library."),
3957 NULL,
3958 show_stop_on_solib_events,
3959 &setlist, &showlist);
3960
3961 add_setshow_enum_cmd ("follow-fork-mode", class_run,
3962 follow_fork_mode_kind_names,
3963 &follow_fork_mode_string, _("\
3964 Set debugger response to a program call of fork or vfork."), _("\
3965 Show debugger response to a program call of fork or vfork."), _("\
3966 A fork or vfork creates a new process. follow-fork-mode can be:\n\
3967 parent - the original process is debugged after a fork\n\
3968 child - the new process is debugged after a fork\n\
3969 The unfollowed process will continue to run.\n\
3970 By default, the debugger will follow the parent process."),
3971 NULL,
3972 show_follow_fork_mode_string,
3973 &setlist, &showlist);
3974
3975 add_setshow_enum_cmd ("scheduler-locking", class_run,
3976 scheduler_enums, &scheduler_mode, _("\
3977 Set mode for locking scheduler during execution."), _("\
3978 Show mode for locking scheduler during execution."), _("\
3979 off == no locking (threads may preempt at any time)\n\
3980 on == full locking (no thread except the current thread may run)\n\
3981 step == scheduler locked during every single-step operation.\n\
3982 In this mode, no other thread may run during a step command.\n\
3983 Other threads may run while stepping over a function call ('next')."),
3984 set_schedlock_func, /* traps on target vector */
3985 show_scheduler_mode,
3986 &setlist, &showlist);
3987
3988 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
3989 Set mode of the step operation."), _("\
3990 Show mode of the step operation."), _("\
3991 When set, doing a step over a function without debug line information\n\
3992 will stop at the first instruction of that function. Otherwise, the\n\
3993 function is skipped and the step command stops at a different source line."),
3994 NULL,
3995 show_step_stop_if_no_debug,
3996 &setlist, &showlist);
3997
3998 /* ptid initializations */
3999 null_ptid = ptid_build (0, 0, 0);
4000 minus_one_ptid = ptid_build (-1, 0, 0);
4001 inferior_ptid = null_ptid;
4002 target_last_wait_ptid = minus_one_ptid;
4003 }
This page took 0.118128 seconds and 4 git commands to generate.