8846cdf1a1c12eb5d6ddd17927495d064fef019a
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48 #include "dictionary.h"
49 #include "block.h"
50 #include "gdb_assert.h"
51 #include "mi/mi-common.h"
52 #include "event-top.h"
53 #include "record.h"
54 #include "inline-frame.h"
55 #include "jit.h"
56 #include "tracepoint.h"
57 #include "continuations.h"
58 #include "interps.h"
59
60 /* Prototypes for local functions */
61
62 static void signals_info (char *, int);
63
64 static void handle_command (char *, int);
65
66 static void sig_print_info (enum target_signal);
67
68 static void sig_print_header (void);
69
70 static void resume_cleanups (void *);
71
72 static int hook_stop_stub (void *);
73
74 static int restore_selected_frame (void *);
75
76 static int follow_fork (void);
77
78 static void set_schedlock_func (char *args, int from_tty,
79 struct cmd_list_element *c);
80
81 static int currently_stepping (struct thread_info *tp);
82
83 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
84 void *data);
85
86 static void xdb_handle_command (char *args, int from_tty);
87
88 static int prepare_to_proceed (int);
89
90 static void print_exited_reason (int exitstatus);
91
92 static void print_signal_exited_reason (enum target_signal siggnal);
93
94 static void print_no_history_reason (void);
95
96 static void print_signal_received_reason (enum target_signal siggnal);
97
98 static void print_end_stepping_range_reason (void);
99
100 void _initialize_infrun (void);
101
102 void nullify_last_target_wait_ptid (void);
103
104 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
105
106 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
107
108 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
109
110 /* When set, stop the 'step' command if we enter a function which has
111 no line number information. The normal behavior is that we step
112 over such function. */
113 int step_stop_if_no_debug = 0;
114 static void
115 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
116 struct cmd_list_element *c, const char *value)
117 {
118 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
119 }
120
121 /* In asynchronous mode, but simulating synchronous execution. */
122
123 int sync_execution = 0;
124
125 /* wait_for_inferior and normal_stop use this to notify the user
126 when the inferior stopped in a different thread than it had been
127 running in. */
128
129 static ptid_t previous_inferior_ptid;
130
131 /* Default behavior is to detach newly forked processes (legacy). */
132 int detach_fork = 1;
133
134 int debug_displaced = 0;
135 static void
136 show_debug_displaced (struct ui_file *file, int from_tty,
137 struct cmd_list_element *c, const char *value)
138 {
139 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
140 }
141
142 int debug_infrun = 0;
143 static void
144 show_debug_infrun (struct ui_file *file, int from_tty,
145 struct cmd_list_element *c, const char *value)
146 {
147 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
148 }
149
150 /* If the program uses ELF-style shared libraries, then calls to
151 functions in shared libraries go through stubs, which live in a
152 table called the PLT (Procedure Linkage Table). The first time the
153 function is called, the stub sends control to the dynamic linker,
154 which looks up the function's real address, patches the stub so
155 that future calls will go directly to the function, and then passes
156 control to the function.
157
158 If we are stepping at the source level, we don't want to see any of
159 this --- we just want to skip over the stub and the dynamic linker.
160 The simple approach is to single-step until control leaves the
161 dynamic linker.
162
163 However, on some systems (e.g., Red Hat's 5.2 distribution) the
164 dynamic linker calls functions in the shared C library, so you
165 can't tell from the PC alone whether the dynamic linker is still
166 running. In this case, we use a step-resume breakpoint to get us
167 past the dynamic linker, as if we were using "next" to step over a
168 function call.
169
170 in_solib_dynsym_resolve_code() says whether we're in the dynamic
171 linker code or not. Normally, this means we single-step. However,
172 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
173 address where we can place a step-resume breakpoint to get past the
174 linker's symbol resolution function.
175
176 in_solib_dynsym_resolve_code() can generally be implemented in a
177 pretty portable way, by comparing the PC against the address ranges
178 of the dynamic linker's sections.
179
180 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
181 it depends on internal details of the dynamic linker. It's usually
182 not too hard to figure out where to put a breakpoint, but it
183 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
184 sanity checking. If it can't figure things out, returning zero and
185 getting the (possibly confusing) stepping behavior is better than
186 signalling an error, which will obscure the change in the
187 inferior's state. */
188
189 /* This function returns TRUE if pc is the address of an instruction
190 that lies within the dynamic linker (such as the event hook, or the
191 dld itself).
192
193 This function must be used only when a dynamic linker event has
194 been caught, and the inferior is being stepped out of the hook, or
195 undefined results are guaranteed. */
196
197 #ifndef SOLIB_IN_DYNAMIC_LINKER
198 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
199 #endif
200
201 /* "Observer mode" is somewhat like a more extreme version of
202 non-stop, in which all GDB operations that might affect the
203 target's execution have been disabled. */
204
205 static int non_stop_1 = 0;
206
207 int observer_mode = 0;
208 static int observer_mode_1 = 0;
209
210 static void
211 set_observer_mode (char *args, int from_tty,
212 struct cmd_list_element *c)
213 {
214 extern int pagination_enabled;
215
216 if (target_has_execution)
217 {
218 observer_mode_1 = observer_mode;
219 error (_("Cannot change this setting while the inferior is running."));
220 }
221
222 observer_mode = observer_mode_1;
223
224 may_write_registers = !observer_mode;
225 may_write_memory = !observer_mode;
226 may_insert_breakpoints = !observer_mode;
227 may_insert_tracepoints = !observer_mode;
228 /* We can insert fast tracepoints in or out of observer mode,
229 but enable them if we're going into this mode. */
230 if (observer_mode)
231 may_insert_fast_tracepoints = 1;
232 may_stop = !observer_mode;
233 update_target_permissions ();
234
235 /* Going *into* observer mode we must force non-stop, then
236 going out we leave it that way. */
237 if (observer_mode)
238 {
239 target_async_permitted = 1;
240 pagination_enabled = 0;
241 non_stop = non_stop_1 = 1;
242 }
243
244 if (from_tty)
245 printf_filtered (_("Observer mode is now %s.\n"),
246 (observer_mode ? "on" : "off"));
247 }
248
249 static void
250 show_observer_mode (struct ui_file *file, int from_tty,
251 struct cmd_list_element *c, const char *value)
252 {
253 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
254 }
255
256 /* This updates the value of observer mode based on changes in
257 permissions. Note that we are deliberately ignoring the values of
258 may-write-registers and may-write-memory, since the user may have
259 reason to enable these during a session, for instance to turn on a
260 debugging-related global. */
261
262 void
263 update_observer_mode (void)
264 {
265 int newval;
266
267 newval = (!may_insert_breakpoints
268 && !may_insert_tracepoints
269 && may_insert_fast_tracepoints
270 && !may_stop
271 && non_stop);
272
273 /* Let the user know if things change. */
274 if (newval != observer_mode)
275 printf_filtered (_("Observer mode is now %s.\n"),
276 (newval ? "on" : "off"));
277
278 observer_mode = observer_mode_1 = newval;
279 }
280
281 /* Tables of how to react to signals; the user sets them. */
282
283 static unsigned char *signal_stop;
284 static unsigned char *signal_print;
285 static unsigned char *signal_program;
286
287 /* Table of signals that the target may silently handle.
288 This is automatically determined from the flags above,
289 and simply cached here. */
290 static unsigned char *signal_pass;
291
292 #define SET_SIGS(nsigs,sigs,flags) \
293 do { \
294 int signum = (nsigs); \
295 while (signum-- > 0) \
296 if ((sigs)[signum]) \
297 (flags)[signum] = 1; \
298 } while (0)
299
300 #define UNSET_SIGS(nsigs,sigs,flags) \
301 do { \
302 int signum = (nsigs); \
303 while (signum-- > 0) \
304 if ((sigs)[signum]) \
305 (flags)[signum] = 0; \
306 } while (0)
307
308 /* Value to pass to target_resume() to cause all threads to resume. */
309
310 #define RESUME_ALL minus_one_ptid
311
312 /* Command list pointer for the "stop" placeholder. */
313
314 static struct cmd_list_element *stop_command;
315
316 /* Function inferior was in as of last step command. */
317
318 static struct symbol *step_start_function;
319
320 /* Nonzero if we want to give control to the user when we're notified
321 of shared library events by the dynamic linker. */
322 int stop_on_solib_events;
323 static void
324 show_stop_on_solib_events (struct ui_file *file, int from_tty,
325 struct cmd_list_element *c, const char *value)
326 {
327 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
328 value);
329 }
330
331 /* Nonzero means expecting a trace trap
332 and should stop the inferior and return silently when it happens. */
333
334 int stop_after_trap;
335
336 /* Save register contents here when executing a "finish" command or are
337 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
338 Thus this contains the return value from the called function (assuming
339 values are returned in a register). */
340
341 struct regcache *stop_registers;
342
343 /* Nonzero after stop if current stack frame should be printed. */
344
345 static int stop_print_frame;
346
347 /* This is a cached copy of the pid/waitstatus of the last event
348 returned by target_wait()/deprecated_target_wait_hook(). This
349 information is returned by get_last_target_status(). */
350 static ptid_t target_last_wait_ptid;
351 static struct target_waitstatus target_last_waitstatus;
352
353 static void context_switch (ptid_t ptid);
354
355 void init_thread_stepping_state (struct thread_info *tss);
356
357 void init_infwait_state (void);
358
359 static const char follow_fork_mode_child[] = "child";
360 static const char follow_fork_mode_parent[] = "parent";
361
362 static const char *follow_fork_mode_kind_names[] = {
363 follow_fork_mode_child,
364 follow_fork_mode_parent,
365 NULL
366 };
367
368 static const char *follow_fork_mode_string = follow_fork_mode_parent;
369 static void
370 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
371 struct cmd_list_element *c, const char *value)
372 {
373 fprintf_filtered (file,
374 _("Debugger response to a program "
375 "call of fork or vfork is \"%s\".\n"),
376 value);
377 }
378 \f
379
380 /* Tell the target to follow the fork we're stopped at. Returns true
381 if the inferior should be resumed; false, if the target for some
382 reason decided it's best not to resume. */
383
384 static int
385 follow_fork (void)
386 {
387 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
388 int should_resume = 1;
389 struct thread_info *tp;
390
391 /* Copy user stepping state to the new inferior thread. FIXME: the
392 followed fork child thread should have a copy of most of the
393 parent thread structure's run control related fields, not just these.
394 Initialized to avoid "may be used uninitialized" warnings from gcc. */
395 struct breakpoint *step_resume_breakpoint = NULL;
396 struct breakpoint *exception_resume_breakpoint = NULL;
397 CORE_ADDR step_range_start = 0;
398 CORE_ADDR step_range_end = 0;
399 struct frame_id step_frame_id = { 0 };
400
401 if (!non_stop)
402 {
403 ptid_t wait_ptid;
404 struct target_waitstatus wait_status;
405
406 /* Get the last target status returned by target_wait(). */
407 get_last_target_status (&wait_ptid, &wait_status);
408
409 /* If not stopped at a fork event, then there's nothing else to
410 do. */
411 if (wait_status.kind != TARGET_WAITKIND_FORKED
412 && wait_status.kind != TARGET_WAITKIND_VFORKED)
413 return 1;
414
415 /* Check if we switched over from WAIT_PTID, since the event was
416 reported. */
417 if (!ptid_equal (wait_ptid, minus_one_ptid)
418 && !ptid_equal (inferior_ptid, wait_ptid))
419 {
420 /* We did. Switch back to WAIT_PTID thread, to tell the
421 target to follow it (in either direction). We'll
422 afterwards refuse to resume, and inform the user what
423 happened. */
424 switch_to_thread (wait_ptid);
425 should_resume = 0;
426 }
427 }
428
429 tp = inferior_thread ();
430
431 /* If there were any forks/vforks that were caught and are now to be
432 followed, then do so now. */
433 switch (tp->pending_follow.kind)
434 {
435 case TARGET_WAITKIND_FORKED:
436 case TARGET_WAITKIND_VFORKED:
437 {
438 ptid_t parent, child;
439
440 /* If the user did a next/step, etc, over a fork call,
441 preserve the stepping state in the fork child. */
442 if (follow_child && should_resume)
443 {
444 step_resume_breakpoint = clone_momentary_breakpoint
445 (tp->control.step_resume_breakpoint);
446 step_range_start = tp->control.step_range_start;
447 step_range_end = tp->control.step_range_end;
448 step_frame_id = tp->control.step_frame_id;
449 exception_resume_breakpoint
450 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
451
452 /* For now, delete the parent's sr breakpoint, otherwise,
453 parent/child sr breakpoints are considered duplicates,
454 and the child version will not be installed. Remove
455 this when the breakpoints module becomes aware of
456 inferiors and address spaces. */
457 delete_step_resume_breakpoint (tp);
458 tp->control.step_range_start = 0;
459 tp->control.step_range_end = 0;
460 tp->control.step_frame_id = null_frame_id;
461 delete_exception_resume_breakpoint (tp);
462 }
463
464 parent = inferior_ptid;
465 child = tp->pending_follow.value.related_pid;
466
467 /* Tell the target to do whatever is necessary to follow
468 either parent or child. */
469 if (target_follow_fork (follow_child))
470 {
471 /* Target refused to follow, or there's some other reason
472 we shouldn't resume. */
473 should_resume = 0;
474 }
475 else
476 {
477 /* This pending follow fork event is now handled, one way
478 or another. The previous selected thread may be gone
479 from the lists by now, but if it is still around, need
480 to clear the pending follow request. */
481 tp = find_thread_ptid (parent);
482 if (tp)
483 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
484
485 /* This makes sure we don't try to apply the "Switched
486 over from WAIT_PID" logic above. */
487 nullify_last_target_wait_ptid ();
488
489 /* If we followed the child, switch to it... */
490 if (follow_child)
491 {
492 switch_to_thread (child);
493
494 /* ... and preserve the stepping state, in case the
495 user was stepping over the fork call. */
496 if (should_resume)
497 {
498 tp = inferior_thread ();
499 tp->control.step_resume_breakpoint
500 = step_resume_breakpoint;
501 tp->control.step_range_start = step_range_start;
502 tp->control.step_range_end = step_range_end;
503 tp->control.step_frame_id = step_frame_id;
504 tp->control.exception_resume_breakpoint
505 = exception_resume_breakpoint;
506 }
507 else
508 {
509 /* If we get here, it was because we're trying to
510 resume from a fork catchpoint, but, the user
511 has switched threads away from the thread that
512 forked. In that case, the resume command
513 issued is most likely not applicable to the
514 child, so just warn, and refuse to resume. */
515 warning (_("Not resuming: switched threads "
516 "before following fork child.\n"));
517 }
518
519 /* Reset breakpoints in the child as appropriate. */
520 follow_inferior_reset_breakpoints ();
521 }
522 else
523 switch_to_thread (parent);
524 }
525 }
526 break;
527 case TARGET_WAITKIND_SPURIOUS:
528 /* Nothing to follow. */
529 break;
530 default:
531 internal_error (__FILE__, __LINE__,
532 "Unexpected pending_follow.kind %d\n",
533 tp->pending_follow.kind);
534 break;
535 }
536
537 return should_resume;
538 }
539
540 void
541 follow_inferior_reset_breakpoints (void)
542 {
543 struct thread_info *tp = inferior_thread ();
544
545 /* Was there a step_resume breakpoint? (There was if the user
546 did a "next" at the fork() call.) If so, explicitly reset its
547 thread number.
548
549 step_resumes are a form of bp that are made to be per-thread.
550 Since we created the step_resume bp when the parent process
551 was being debugged, and now are switching to the child process,
552 from the breakpoint package's viewpoint, that's a switch of
553 "threads". We must update the bp's notion of which thread
554 it is for, or it'll be ignored when it triggers. */
555
556 if (tp->control.step_resume_breakpoint)
557 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
558
559 if (tp->control.exception_resume_breakpoint)
560 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
561
562 /* Reinsert all breakpoints in the child. The user may have set
563 breakpoints after catching the fork, in which case those
564 were never set in the child, but only in the parent. This makes
565 sure the inserted breakpoints match the breakpoint list. */
566
567 breakpoint_re_set ();
568 insert_breakpoints ();
569 }
570
571 /* The child has exited or execed: resume threads of the parent the
572 user wanted to be executing. */
573
574 static int
575 proceed_after_vfork_done (struct thread_info *thread,
576 void *arg)
577 {
578 int pid = * (int *) arg;
579
580 if (ptid_get_pid (thread->ptid) == pid
581 && is_running (thread->ptid)
582 && !is_executing (thread->ptid)
583 && !thread->stop_requested
584 && thread->suspend.stop_signal == TARGET_SIGNAL_0)
585 {
586 if (debug_infrun)
587 fprintf_unfiltered (gdb_stdlog,
588 "infrun: resuming vfork parent thread %s\n",
589 target_pid_to_str (thread->ptid));
590
591 switch_to_thread (thread->ptid);
592 clear_proceed_status ();
593 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
594 }
595
596 return 0;
597 }
598
599 /* Called whenever we notice an exec or exit event, to handle
600 detaching or resuming a vfork parent. */
601
602 static void
603 handle_vfork_child_exec_or_exit (int exec)
604 {
605 struct inferior *inf = current_inferior ();
606
607 if (inf->vfork_parent)
608 {
609 int resume_parent = -1;
610
611 /* This exec or exit marks the end of the shared memory region
612 between the parent and the child. If the user wanted to
613 detach from the parent, now is the time. */
614
615 if (inf->vfork_parent->pending_detach)
616 {
617 struct thread_info *tp;
618 struct cleanup *old_chain;
619 struct program_space *pspace;
620 struct address_space *aspace;
621
622 /* follow-fork child, detach-on-fork on. */
623
624 old_chain = make_cleanup_restore_current_thread ();
625
626 /* We're letting loose of the parent. */
627 tp = any_live_thread_of_process (inf->vfork_parent->pid);
628 switch_to_thread (tp->ptid);
629
630 /* We're about to detach from the parent, which implicitly
631 removes breakpoints from its address space. There's a
632 catch here: we want to reuse the spaces for the child,
633 but, parent/child are still sharing the pspace at this
634 point, although the exec in reality makes the kernel give
635 the child a fresh set of new pages. The problem here is
636 that the breakpoints module being unaware of this, would
637 likely chose the child process to write to the parent
638 address space. Swapping the child temporarily away from
639 the spaces has the desired effect. Yes, this is "sort
640 of" a hack. */
641
642 pspace = inf->pspace;
643 aspace = inf->aspace;
644 inf->aspace = NULL;
645 inf->pspace = NULL;
646
647 if (debug_infrun || info_verbose)
648 {
649 target_terminal_ours ();
650
651 if (exec)
652 fprintf_filtered (gdb_stdlog,
653 "Detaching vfork parent process "
654 "%d after child exec.\n",
655 inf->vfork_parent->pid);
656 else
657 fprintf_filtered (gdb_stdlog,
658 "Detaching vfork parent process "
659 "%d after child exit.\n",
660 inf->vfork_parent->pid);
661 }
662
663 target_detach (NULL, 0);
664
665 /* Put it back. */
666 inf->pspace = pspace;
667 inf->aspace = aspace;
668
669 do_cleanups (old_chain);
670 }
671 else if (exec)
672 {
673 /* We're staying attached to the parent, so, really give the
674 child a new address space. */
675 inf->pspace = add_program_space (maybe_new_address_space ());
676 inf->aspace = inf->pspace->aspace;
677 inf->removable = 1;
678 set_current_program_space (inf->pspace);
679
680 resume_parent = inf->vfork_parent->pid;
681
682 /* Break the bonds. */
683 inf->vfork_parent->vfork_child = NULL;
684 }
685 else
686 {
687 struct cleanup *old_chain;
688 struct program_space *pspace;
689
690 /* If this is a vfork child exiting, then the pspace and
691 aspaces were shared with the parent. Since we're
692 reporting the process exit, we'll be mourning all that is
693 found in the address space, and switching to null_ptid,
694 preparing to start a new inferior. But, since we don't
695 want to clobber the parent's address/program spaces, we
696 go ahead and create a new one for this exiting
697 inferior. */
698
699 /* Switch to null_ptid, so that clone_program_space doesn't want
700 to read the selected frame of a dead process. */
701 old_chain = save_inferior_ptid ();
702 inferior_ptid = null_ptid;
703
704 /* This inferior is dead, so avoid giving the breakpoints
705 module the option to write through to it (cloning a
706 program space resets breakpoints). */
707 inf->aspace = NULL;
708 inf->pspace = NULL;
709 pspace = add_program_space (maybe_new_address_space ());
710 set_current_program_space (pspace);
711 inf->removable = 1;
712 clone_program_space (pspace, inf->vfork_parent->pspace);
713 inf->pspace = pspace;
714 inf->aspace = pspace->aspace;
715
716 /* Put back inferior_ptid. We'll continue mourning this
717 inferior. */
718 do_cleanups (old_chain);
719
720 resume_parent = inf->vfork_parent->pid;
721 /* Break the bonds. */
722 inf->vfork_parent->vfork_child = NULL;
723 }
724
725 inf->vfork_parent = NULL;
726
727 gdb_assert (current_program_space == inf->pspace);
728
729 if (non_stop && resume_parent != -1)
730 {
731 /* If the user wanted the parent to be running, let it go
732 free now. */
733 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
734
735 if (debug_infrun)
736 fprintf_unfiltered (gdb_stdlog,
737 "infrun: resuming vfork parent process %d\n",
738 resume_parent);
739
740 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
741
742 do_cleanups (old_chain);
743 }
744 }
745 }
746
747 /* Enum strings for "set|show displaced-stepping". */
748
749 static const char follow_exec_mode_new[] = "new";
750 static const char follow_exec_mode_same[] = "same";
751 static const char *follow_exec_mode_names[] =
752 {
753 follow_exec_mode_new,
754 follow_exec_mode_same,
755 NULL,
756 };
757
758 static const char *follow_exec_mode_string = follow_exec_mode_same;
759 static void
760 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
761 struct cmd_list_element *c, const char *value)
762 {
763 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
764 }
765
766 /* EXECD_PATHNAME is assumed to be non-NULL. */
767
768 static void
769 follow_exec (ptid_t pid, char *execd_pathname)
770 {
771 struct thread_info *th = inferior_thread ();
772 struct inferior *inf = current_inferior ();
773
774 /* This is an exec event that we actually wish to pay attention to.
775 Refresh our symbol table to the newly exec'd program, remove any
776 momentary bp's, etc.
777
778 If there are breakpoints, they aren't really inserted now,
779 since the exec() transformed our inferior into a fresh set
780 of instructions.
781
782 We want to preserve symbolic breakpoints on the list, since
783 we have hopes that they can be reset after the new a.out's
784 symbol table is read.
785
786 However, any "raw" breakpoints must be removed from the list
787 (e.g., the solib bp's), since their address is probably invalid
788 now.
789
790 And, we DON'T want to call delete_breakpoints() here, since
791 that may write the bp's "shadow contents" (the instruction
792 value that was overwritten witha TRAP instruction). Since
793 we now have a new a.out, those shadow contents aren't valid. */
794
795 mark_breakpoints_out ();
796
797 update_breakpoints_after_exec ();
798
799 /* If there was one, it's gone now. We cannot truly step-to-next
800 statement through an exec(). */
801 th->control.step_resume_breakpoint = NULL;
802 th->control.exception_resume_breakpoint = NULL;
803 th->control.step_range_start = 0;
804 th->control.step_range_end = 0;
805
806 /* The target reports the exec event to the main thread, even if
807 some other thread does the exec, and even if the main thread was
808 already stopped --- if debugging in non-stop mode, it's possible
809 the user had the main thread held stopped in the previous image
810 --- release it now. This is the same behavior as step-over-exec
811 with scheduler-locking on in all-stop mode. */
812 th->stop_requested = 0;
813
814 /* What is this a.out's name? */
815 printf_unfiltered (_("%s is executing new program: %s\n"),
816 target_pid_to_str (inferior_ptid),
817 execd_pathname);
818
819 /* We've followed the inferior through an exec. Therefore, the
820 inferior has essentially been killed & reborn. */
821
822 gdb_flush (gdb_stdout);
823
824 breakpoint_init_inferior (inf_execd);
825
826 if (gdb_sysroot && *gdb_sysroot)
827 {
828 char *name = alloca (strlen (gdb_sysroot)
829 + strlen (execd_pathname)
830 + 1);
831
832 strcpy (name, gdb_sysroot);
833 strcat (name, execd_pathname);
834 execd_pathname = name;
835 }
836
837 /* Reset the shared library package. This ensures that we get a
838 shlib event when the child reaches "_start", at which point the
839 dld will have had a chance to initialize the child. */
840 /* Also, loading a symbol file below may trigger symbol lookups, and
841 we don't want those to be satisfied by the libraries of the
842 previous incarnation of this process. */
843 no_shared_libraries (NULL, 0);
844
845 if (follow_exec_mode_string == follow_exec_mode_new)
846 {
847 struct program_space *pspace;
848
849 /* The user wants to keep the old inferior and program spaces
850 around. Create a new fresh one, and switch to it. */
851
852 inf = add_inferior (current_inferior ()->pid);
853 pspace = add_program_space (maybe_new_address_space ());
854 inf->pspace = pspace;
855 inf->aspace = pspace->aspace;
856
857 exit_inferior_num_silent (current_inferior ()->num);
858
859 set_current_inferior (inf);
860 set_current_program_space (pspace);
861 }
862
863 gdb_assert (current_program_space == inf->pspace);
864
865 /* That a.out is now the one to use. */
866 exec_file_attach (execd_pathname, 0);
867
868 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
869 (Position Independent Executable) main symbol file will get applied by
870 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
871 the breakpoints with the zero displacement. */
872
873 symbol_file_add (execd_pathname, SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET,
874 NULL, 0);
875
876 set_initial_language ();
877
878 #ifdef SOLIB_CREATE_INFERIOR_HOOK
879 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
880 #else
881 solib_create_inferior_hook (0);
882 #endif
883
884 jit_inferior_created_hook ();
885
886 breakpoint_re_set ();
887
888 /* Reinsert all breakpoints. (Those which were symbolic have
889 been reset to the proper address in the new a.out, thanks
890 to symbol_file_command...). */
891 insert_breakpoints ();
892
893 /* The next resume of this inferior should bring it to the shlib
894 startup breakpoints. (If the user had also set bp's on
895 "main" from the old (parent) process, then they'll auto-
896 matically get reset there in the new process.). */
897 }
898
899 /* Non-zero if we just simulating a single-step. This is needed
900 because we cannot remove the breakpoints in the inferior process
901 until after the `wait' in `wait_for_inferior'. */
902 static int singlestep_breakpoints_inserted_p = 0;
903
904 /* The thread we inserted single-step breakpoints for. */
905 static ptid_t singlestep_ptid;
906
907 /* PC when we started this single-step. */
908 static CORE_ADDR singlestep_pc;
909
910 /* If another thread hit the singlestep breakpoint, we save the original
911 thread here so that we can resume single-stepping it later. */
912 static ptid_t saved_singlestep_ptid;
913 static int stepping_past_singlestep_breakpoint;
914
915 /* If not equal to null_ptid, this means that after stepping over breakpoint
916 is finished, we need to switch to deferred_step_ptid, and step it.
917
918 The use case is when one thread has hit a breakpoint, and then the user
919 has switched to another thread and issued 'step'. We need to step over
920 breakpoint in the thread which hit the breakpoint, but then continue
921 stepping the thread user has selected. */
922 static ptid_t deferred_step_ptid;
923 \f
924 /* Displaced stepping. */
925
926 /* In non-stop debugging mode, we must take special care to manage
927 breakpoints properly; in particular, the traditional strategy for
928 stepping a thread past a breakpoint it has hit is unsuitable.
929 'Displaced stepping' is a tactic for stepping one thread past a
930 breakpoint it has hit while ensuring that other threads running
931 concurrently will hit the breakpoint as they should.
932
933 The traditional way to step a thread T off a breakpoint in a
934 multi-threaded program in all-stop mode is as follows:
935
936 a0) Initially, all threads are stopped, and breakpoints are not
937 inserted.
938 a1) We single-step T, leaving breakpoints uninserted.
939 a2) We insert breakpoints, and resume all threads.
940
941 In non-stop debugging, however, this strategy is unsuitable: we
942 don't want to have to stop all threads in the system in order to
943 continue or step T past a breakpoint. Instead, we use displaced
944 stepping:
945
946 n0) Initially, T is stopped, other threads are running, and
947 breakpoints are inserted.
948 n1) We copy the instruction "under" the breakpoint to a separate
949 location, outside the main code stream, making any adjustments
950 to the instruction, register, and memory state as directed by
951 T's architecture.
952 n2) We single-step T over the instruction at its new location.
953 n3) We adjust the resulting register and memory state as directed
954 by T's architecture. This includes resetting T's PC to point
955 back into the main instruction stream.
956 n4) We resume T.
957
958 This approach depends on the following gdbarch methods:
959
960 - gdbarch_max_insn_length and gdbarch_displaced_step_location
961 indicate where to copy the instruction, and how much space must
962 be reserved there. We use these in step n1.
963
964 - gdbarch_displaced_step_copy_insn copies a instruction to a new
965 address, and makes any necessary adjustments to the instruction,
966 register contents, and memory. We use this in step n1.
967
968 - gdbarch_displaced_step_fixup adjusts registers and memory after
969 we have successfuly single-stepped the instruction, to yield the
970 same effect the instruction would have had if we had executed it
971 at its original address. We use this in step n3.
972
973 - gdbarch_displaced_step_free_closure provides cleanup.
974
975 The gdbarch_displaced_step_copy_insn and
976 gdbarch_displaced_step_fixup functions must be written so that
977 copying an instruction with gdbarch_displaced_step_copy_insn,
978 single-stepping across the copied instruction, and then applying
979 gdbarch_displaced_insn_fixup should have the same effects on the
980 thread's memory and registers as stepping the instruction in place
981 would have. Exactly which responsibilities fall to the copy and
982 which fall to the fixup is up to the author of those functions.
983
984 See the comments in gdbarch.sh for details.
985
986 Note that displaced stepping and software single-step cannot
987 currently be used in combination, although with some care I think
988 they could be made to. Software single-step works by placing
989 breakpoints on all possible subsequent instructions; if the
990 displaced instruction is a PC-relative jump, those breakpoints
991 could fall in very strange places --- on pages that aren't
992 executable, or at addresses that are not proper instruction
993 boundaries. (We do generally let other threads run while we wait
994 to hit the software single-step breakpoint, and they might
995 encounter such a corrupted instruction.) One way to work around
996 this would be to have gdbarch_displaced_step_copy_insn fully
997 simulate the effect of PC-relative instructions (and return NULL)
998 on architectures that use software single-stepping.
999
1000 In non-stop mode, we can have independent and simultaneous step
1001 requests, so more than one thread may need to simultaneously step
1002 over a breakpoint. The current implementation assumes there is
1003 only one scratch space per process. In this case, we have to
1004 serialize access to the scratch space. If thread A wants to step
1005 over a breakpoint, but we are currently waiting for some other
1006 thread to complete a displaced step, we leave thread A stopped and
1007 place it in the displaced_step_request_queue. Whenever a displaced
1008 step finishes, we pick the next thread in the queue and start a new
1009 displaced step operation on it. See displaced_step_prepare and
1010 displaced_step_fixup for details. */
1011
1012 struct displaced_step_request
1013 {
1014 ptid_t ptid;
1015 struct displaced_step_request *next;
1016 };
1017
1018 /* Per-inferior displaced stepping state. */
1019 struct displaced_step_inferior_state
1020 {
1021 /* Pointer to next in linked list. */
1022 struct displaced_step_inferior_state *next;
1023
1024 /* The process this displaced step state refers to. */
1025 int pid;
1026
1027 /* A queue of pending displaced stepping requests. One entry per
1028 thread that needs to do a displaced step. */
1029 struct displaced_step_request *step_request_queue;
1030
1031 /* If this is not null_ptid, this is the thread carrying out a
1032 displaced single-step in process PID. This thread's state will
1033 require fixing up once it has completed its step. */
1034 ptid_t step_ptid;
1035
1036 /* The architecture the thread had when we stepped it. */
1037 struct gdbarch *step_gdbarch;
1038
1039 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1040 for post-step cleanup. */
1041 struct displaced_step_closure *step_closure;
1042
1043 /* The address of the original instruction, and the copy we
1044 made. */
1045 CORE_ADDR step_original, step_copy;
1046
1047 /* Saved contents of copy area. */
1048 gdb_byte *step_saved_copy;
1049 };
1050
1051 /* The list of states of processes involved in displaced stepping
1052 presently. */
1053 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1054
1055 /* Get the displaced stepping state of process PID. */
1056
1057 static struct displaced_step_inferior_state *
1058 get_displaced_stepping_state (int pid)
1059 {
1060 struct displaced_step_inferior_state *state;
1061
1062 for (state = displaced_step_inferior_states;
1063 state != NULL;
1064 state = state->next)
1065 if (state->pid == pid)
1066 return state;
1067
1068 return NULL;
1069 }
1070
1071 /* Add a new displaced stepping state for process PID to the displaced
1072 stepping state list, or return a pointer to an already existing
1073 entry, if it already exists. Never returns NULL. */
1074
1075 static struct displaced_step_inferior_state *
1076 add_displaced_stepping_state (int pid)
1077 {
1078 struct displaced_step_inferior_state *state;
1079
1080 for (state = displaced_step_inferior_states;
1081 state != NULL;
1082 state = state->next)
1083 if (state->pid == pid)
1084 return state;
1085
1086 state = xcalloc (1, sizeof (*state));
1087 state->pid = pid;
1088 state->next = displaced_step_inferior_states;
1089 displaced_step_inferior_states = state;
1090
1091 return state;
1092 }
1093
1094 /* If inferior is in displaced stepping, and ADDR equals to starting address
1095 of copy area, return corresponding displaced_step_closure. Otherwise,
1096 return NULL. */
1097
1098 struct displaced_step_closure*
1099 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1100 {
1101 struct displaced_step_inferior_state *displaced
1102 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1103
1104 /* If checking the mode of displaced instruction in copy area. */
1105 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1106 && (displaced->step_copy == addr))
1107 return displaced->step_closure;
1108
1109 return NULL;
1110 }
1111
1112 /* Remove the displaced stepping state of process PID. */
1113
1114 static void
1115 remove_displaced_stepping_state (int pid)
1116 {
1117 struct displaced_step_inferior_state *it, **prev_next_p;
1118
1119 gdb_assert (pid != 0);
1120
1121 it = displaced_step_inferior_states;
1122 prev_next_p = &displaced_step_inferior_states;
1123 while (it)
1124 {
1125 if (it->pid == pid)
1126 {
1127 *prev_next_p = it->next;
1128 xfree (it);
1129 return;
1130 }
1131
1132 prev_next_p = &it->next;
1133 it = *prev_next_p;
1134 }
1135 }
1136
1137 static void
1138 infrun_inferior_exit (struct inferior *inf)
1139 {
1140 remove_displaced_stepping_state (inf->pid);
1141 }
1142
1143 /* Enum strings for "set|show displaced-stepping". */
1144
1145 static const char can_use_displaced_stepping_auto[] = "auto";
1146 static const char can_use_displaced_stepping_on[] = "on";
1147 static const char can_use_displaced_stepping_off[] = "off";
1148 static const char *can_use_displaced_stepping_enum[] =
1149 {
1150 can_use_displaced_stepping_auto,
1151 can_use_displaced_stepping_on,
1152 can_use_displaced_stepping_off,
1153 NULL,
1154 };
1155
1156 /* If ON, and the architecture supports it, GDB will use displaced
1157 stepping to step over breakpoints. If OFF, or if the architecture
1158 doesn't support it, GDB will instead use the traditional
1159 hold-and-step approach. If AUTO (which is the default), GDB will
1160 decide which technique to use to step over breakpoints depending on
1161 which of all-stop or non-stop mode is active --- displaced stepping
1162 in non-stop mode; hold-and-step in all-stop mode. */
1163
1164 static const char *can_use_displaced_stepping =
1165 can_use_displaced_stepping_auto;
1166
1167 static void
1168 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1169 struct cmd_list_element *c,
1170 const char *value)
1171 {
1172 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
1173 fprintf_filtered (file,
1174 _("Debugger's willingness to use displaced stepping "
1175 "to step over breakpoints is %s (currently %s).\n"),
1176 value, non_stop ? "on" : "off");
1177 else
1178 fprintf_filtered (file,
1179 _("Debugger's willingness to use displaced stepping "
1180 "to step over breakpoints is %s.\n"), value);
1181 }
1182
1183 /* Return non-zero if displaced stepping can/should be used to step
1184 over breakpoints. */
1185
1186 static int
1187 use_displaced_stepping (struct gdbarch *gdbarch)
1188 {
1189 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
1190 && non_stop)
1191 || can_use_displaced_stepping == can_use_displaced_stepping_on)
1192 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1193 && !RECORD_IS_USED);
1194 }
1195
1196 /* Clean out any stray displaced stepping state. */
1197 static void
1198 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1199 {
1200 /* Indicate that there is no cleanup pending. */
1201 displaced->step_ptid = null_ptid;
1202
1203 if (displaced->step_closure)
1204 {
1205 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1206 displaced->step_closure);
1207 displaced->step_closure = NULL;
1208 }
1209 }
1210
1211 static void
1212 displaced_step_clear_cleanup (void *arg)
1213 {
1214 struct displaced_step_inferior_state *state = arg;
1215
1216 displaced_step_clear (state);
1217 }
1218
1219 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1220 void
1221 displaced_step_dump_bytes (struct ui_file *file,
1222 const gdb_byte *buf,
1223 size_t len)
1224 {
1225 int i;
1226
1227 for (i = 0; i < len; i++)
1228 fprintf_unfiltered (file, "%02x ", buf[i]);
1229 fputs_unfiltered ("\n", file);
1230 }
1231
1232 /* Prepare to single-step, using displaced stepping.
1233
1234 Note that we cannot use displaced stepping when we have a signal to
1235 deliver. If we have a signal to deliver and an instruction to step
1236 over, then after the step, there will be no indication from the
1237 target whether the thread entered a signal handler or ignored the
1238 signal and stepped over the instruction successfully --- both cases
1239 result in a simple SIGTRAP. In the first case we mustn't do a
1240 fixup, and in the second case we must --- but we can't tell which.
1241 Comments in the code for 'random signals' in handle_inferior_event
1242 explain how we handle this case instead.
1243
1244 Returns 1 if preparing was successful -- this thread is going to be
1245 stepped now; or 0 if displaced stepping this thread got queued. */
1246 static int
1247 displaced_step_prepare (ptid_t ptid)
1248 {
1249 struct cleanup *old_cleanups, *ignore_cleanups;
1250 struct regcache *regcache = get_thread_regcache (ptid);
1251 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1252 CORE_ADDR original, copy;
1253 ULONGEST len;
1254 struct displaced_step_closure *closure;
1255 struct displaced_step_inferior_state *displaced;
1256
1257 /* We should never reach this function if the architecture does not
1258 support displaced stepping. */
1259 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1260
1261 /* We have to displaced step one thread at a time, as we only have
1262 access to a single scratch space per inferior. */
1263
1264 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1265
1266 if (!ptid_equal (displaced->step_ptid, null_ptid))
1267 {
1268 /* Already waiting for a displaced step to finish. Defer this
1269 request and place in queue. */
1270 struct displaced_step_request *req, *new_req;
1271
1272 if (debug_displaced)
1273 fprintf_unfiltered (gdb_stdlog,
1274 "displaced: defering step of %s\n",
1275 target_pid_to_str (ptid));
1276
1277 new_req = xmalloc (sizeof (*new_req));
1278 new_req->ptid = ptid;
1279 new_req->next = NULL;
1280
1281 if (displaced->step_request_queue)
1282 {
1283 for (req = displaced->step_request_queue;
1284 req && req->next;
1285 req = req->next)
1286 ;
1287 req->next = new_req;
1288 }
1289 else
1290 displaced->step_request_queue = new_req;
1291
1292 return 0;
1293 }
1294 else
1295 {
1296 if (debug_displaced)
1297 fprintf_unfiltered (gdb_stdlog,
1298 "displaced: stepping %s now\n",
1299 target_pid_to_str (ptid));
1300 }
1301
1302 displaced_step_clear (displaced);
1303
1304 old_cleanups = save_inferior_ptid ();
1305 inferior_ptid = ptid;
1306
1307 original = regcache_read_pc (regcache);
1308
1309 copy = gdbarch_displaced_step_location (gdbarch);
1310 len = gdbarch_max_insn_length (gdbarch);
1311
1312 /* Save the original contents of the copy area. */
1313 displaced->step_saved_copy = xmalloc (len);
1314 ignore_cleanups = make_cleanup (free_current_contents,
1315 &displaced->step_saved_copy);
1316 read_memory (copy, displaced->step_saved_copy, len);
1317 if (debug_displaced)
1318 {
1319 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1320 paddress (gdbarch, copy));
1321 displaced_step_dump_bytes (gdb_stdlog,
1322 displaced->step_saved_copy,
1323 len);
1324 };
1325
1326 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1327 original, copy, regcache);
1328
1329 /* We don't support the fully-simulated case at present. */
1330 gdb_assert (closure);
1331
1332 /* Save the information we need to fix things up if the step
1333 succeeds. */
1334 displaced->step_ptid = ptid;
1335 displaced->step_gdbarch = gdbarch;
1336 displaced->step_closure = closure;
1337 displaced->step_original = original;
1338 displaced->step_copy = copy;
1339
1340 make_cleanup (displaced_step_clear_cleanup, displaced);
1341
1342 /* Resume execution at the copy. */
1343 regcache_write_pc (regcache, copy);
1344
1345 discard_cleanups (ignore_cleanups);
1346
1347 do_cleanups (old_cleanups);
1348
1349 if (debug_displaced)
1350 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1351 paddress (gdbarch, copy));
1352
1353 return 1;
1354 }
1355
1356 static void
1357 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1358 const gdb_byte *myaddr, int len)
1359 {
1360 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1361
1362 inferior_ptid = ptid;
1363 write_memory (memaddr, myaddr, len);
1364 do_cleanups (ptid_cleanup);
1365 }
1366
1367 static void
1368 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
1369 {
1370 struct cleanup *old_cleanups;
1371 struct displaced_step_inferior_state *displaced
1372 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1373
1374 /* Was any thread of this process doing a displaced step? */
1375 if (displaced == NULL)
1376 return;
1377
1378 /* Was this event for the pid we displaced? */
1379 if (ptid_equal (displaced->step_ptid, null_ptid)
1380 || ! ptid_equal (displaced->step_ptid, event_ptid))
1381 return;
1382
1383 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1384
1385 /* Restore the contents of the copy area. */
1386 {
1387 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1388
1389 write_memory_ptid (displaced->step_ptid, displaced->step_copy,
1390 displaced->step_saved_copy, len);
1391 if (debug_displaced)
1392 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s\n",
1393 paddress (displaced->step_gdbarch,
1394 displaced->step_copy));
1395 }
1396
1397 /* Did the instruction complete successfully? */
1398 if (signal == TARGET_SIGNAL_TRAP)
1399 {
1400 /* Fix up the resulting state. */
1401 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1402 displaced->step_closure,
1403 displaced->step_original,
1404 displaced->step_copy,
1405 get_thread_regcache (displaced->step_ptid));
1406 }
1407 else
1408 {
1409 /* Since the instruction didn't complete, all we can do is
1410 relocate the PC. */
1411 struct regcache *regcache = get_thread_regcache (event_ptid);
1412 CORE_ADDR pc = regcache_read_pc (regcache);
1413
1414 pc = displaced->step_original + (pc - displaced->step_copy);
1415 regcache_write_pc (regcache, pc);
1416 }
1417
1418 do_cleanups (old_cleanups);
1419
1420 displaced->step_ptid = null_ptid;
1421
1422 /* Are there any pending displaced stepping requests? If so, run
1423 one now. Leave the state object around, since we're likely to
1424 need it again soon. */
1425 while (displaced->step_request_queue)
1426 {
1427 struct displaced_step_request *head;
1428 ptid_t ptid;
1429 struct regcache *regcache;
1430 struct gdbarch *gdbarch;
1431 CORE_ADDR actual_pc;
1432 struct address_space *aspace;
1433
1434 head = displaced->step_request_queue;
1435 ptid = head->ptid;
1436 displaced->step_request_queue = head->next;
1437 xfree (head);
1438
1439 context_switch (ptid);
1440
1441 regcache = get_thread_regcache (ptid);
1442 actual_pc = regcache_read_pc (regcache);
1443 aspace = get_regcache_aspace (regcache);
1444
1445 if (breakpoint_here_p (aspace, actual_pc))
1446 {
1447 if (debug_displaced)
1448 fprintf_unfiltered (gdb_stdlog,
1449 "displaced: stepping queued %s now\n",
1450 target_pid_to_str (ptid));
1451
1452 displaced_step_prepare (ptid);
1453
1454 gdbarch = get_regcache_arch (regcache);
1455
1456 if (debug_displaced)
1457 {
1458 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1459 gdb_byte buf[4];
1460
1461 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1462 paddress (gdbarch, actual_pc));
1463 read_memory (actual_pc, buf, sizeof (buf));
1464 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1465 }
1466
1467 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1468 displaced->step_closure))
1469 target_resume (ptid, 1, TARGET_SIGNAL_0);
1470 else
1471 target_resume (ptid, 0, TARGET_SIGNAL_0);
1472
1473 /* Done, we're stepping a thread. */
1474 break;
1475 }
1476 else
1477 {
1478 int step;
1479 struct thread_info *tp = inferior_thread ();
1480
1481 /* The breakpoint we were sitting under has since been
1482 removed. */
1483 tp->control.trap_expected = 0;
1484
1485 /* Go back to what we were trying to do. */
1486 step = currently_stepping (tp);
1487
1488 if (debug_displaced)
1489 fprintf_unfiltered (gdb_stdlog,
1490 "breakpoint is gone %s: step(%d)\n",
1491 target_pid_to_str (tp->ptid), step);
1492
1493 target_resume (ptid, step, TARGET_SIGNAL_0);
1494 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1495
1496 /* This request was discarded. See if there's any other
1497 thread waiting for its turn. */
1498 }
1499 }
1500 }
1501
1502 /* Update global variables holding ptids to hold NEW_PTID if they were
1503 holding OLD_PTID. */
1504 static void
1505 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1506 {
1507 struct displaced_step_request *it;
1508 struct displaced_step_inferior_state *displaced;
1509
1510 if (ptid_equal (inferior_ptid, old_ptid))
1511 inferior_ptid = new_ptid;
1512
1513 if (ptid_equal (singlestep_ptid, old_ptid))
1514 singlestep_ptid = new_ptid;
1515
1516 if (ptid_equal (deferred_step_ptid, old_ptid))
1517 deferred_step_ptid = new_ptid;
1518
1519 for (displaced = displaced_step_inferior_states;
1520 displaced;
1521 displaced = displaced->next)
1522 {
1523 if (ptid_equal (displaced->step_ptid, old_ptid))
1524 displaced->step_ptid = new_ptid;
1525
1526 for (it = displaced->step_request_queue; it; it = it->next)
1527 if (ptid_equal (it->ptid, old_ptid))
1528 it->ptid = new_ptid;
1529 }
1530 }
1531
1532 \f
1533 /* Resuming. */
1534
1535 /* Things to clean up if we QUIT out of resume (). */
1536 static void
1537 resume_cleanups (void *ignore)
1538 {
1539 normal_stop ();
1540 }
1541
1542 static const char schedlock_off[] = "off";
1543 static const char schedlock_on[] = "on";
1544 static const char schedlock_step[] = "step";
1545 static const char *scheduler_enums[] = {
1546 schedlock_off,
1547 schedlock_on,
1548 schedlock_step,
1549 NULL
1550 };
1551 static const char *scheduler_mode = schedlock_off;
1552 static void
1553 show_scheduler_mode (struct ui_file *file, int from_tty,
1554 struct cmd_list_element *c, const char *value)
1555 {
1556 fprintf_filtered (file,
1557 _("Mode for locking scheduler "
1558 "during execution is \"%s\".\n"),
1559 value);
1560 }
1561
1562 static void
1563 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1564 {
1565 if (!target_can_lock_scheduler)
1566 {
1567 scheduler_mode = schedlock_off;
1568 error (_("Target '%s' cannot support this command."), target_shortname);
1569 }
1570 }
1571
1572 /* True if execution commands resume all threads of all processes by
1573 default; otherwise, resume only threads of the current inferior
1574 process. */
1575 int sched_multi = 0;
1576
1577 /* Try to setup for software single stepping over the specified location.
1578 Return 1 if target_resume() should use hardware single step.
1579
1580 GDBARCH the current gdbarch.
1581 PC the location to step over. */
1582
1583 static int
1584 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1585 {
1586 int hw_step = 1;
1587
1588 if (execution_direction == EXEC_FORWARD
1589 && gdbarch_software_single_step_p (gdbarch)
1590 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1591 {
1592 hw_step = 0;
1593 /* Do not pull these breakpoints until after a `wait' in
1594 `wait_for_inferior'. */
1595 singlestep_breakpoints_inserted_p = 1;
1596 singlestep_ptid = inferior_ptid;
1597 singlestep_pc = pc;
1598 }
1599 return hw_step;
1600 }
1601
1602 /* Return a ptid representing the set of threads that we will proceed,
1603 in the perspective of the user/frontend. We may actually resume
1604 fewer threads at first, e.g., if a thread is stopped at a
1605 breakpoint that needs stepping-off, but that should not be visible
1606 to the user/frontend, and neither should the frontend/user be
1607 allowed to proceed any of the threads that happen to be stopped for
1608 internal run control handling, if a previous command wanted them
1609 resumed. */
1610
1611 ptid_t
1612 user_visible_resume_ptid (int step)
1613 {
1614 /* By default, resume all threads of all processes. */
1615 ptid_t resume_ptid = RESUME_ALL;
1616
1617 /* Maybe resume only all threads of the current process. */
1618 if (!sched_multi && target_supports_multi_process ())
1619 {
1620 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1621 }
1622
1623 /* Maybe resume a single thread after all. */
1624 if (non_stop)
1625 {
1626 /* With non-stop mode on, threads are always handled
1627 individually. */
1628 resume_ptid = inferior_ptid;
1629 }
1630 else if ((scheduler_mode == schedlock_on)
1631 || (scheduler_mode == schedlock_step
1632 && (step || singlestep_breakpoints_inserted_p)))
1633 {
1634 /* User-settable 'scheduler' mode requires solo thread resume. */
1635 resume_ptid = inferior_ptid;
1636 }
1637
1638 return resume_ptid;
1639 }
1640
1641 /* Resume the inferior, but allow a QUIT. This is useful if the user
1642 wants to interrupt some lengthy single-stepping operation
1643 (for child processes, the SIGINT goes to the inferior, and so
1644 we get a SIGINT random_signal, but for remote debugging and perhaps
1645 other targets, that's not true).
1646
1647 STEP nonzero if we should step (zero to continue instead).
1648 SIG is the signal to give the inferior (zero for none). */
1649 void
1650 resume (int step, enum target_signal sig)
1651 {
1652 int should_resume = 1;
1653 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1654 struct regcache *regcache = get_current_regcache ();
1655 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1656 struct thread_info *tp = inferior_thread ();
1657 CORE_ADDR pc = regcache_read_pc (regcache);
1658 struct address_space *aspace = get_regcache_aspace (regcache);
1659
1660 QUIT;
1661
1662 if (current_inferior ()->waiting_for_vfork_done)
1663 {
1664 /* Don't try to single-step a vfork parent that is waiting for
1665 the child to get out of the shared memory region (by exec'ing
1666 or exiting). This is particularly important on software
1667 single-step archs, as the child process would trip on the
1668 software single step breakpoint inserted for the parent
1669 process. Since the parent will not actually execute any
1670 instruction until the child is out of the shared region (such
1671 are vfork's semantics), it is safe to simply continue it.
1672 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1673 the parent, and tell it to `keep_going', which automatically
1674 re-sets it stepping. */
1675 if (debug_infrun)
1676 fprintf_unfiltered (gdb_stdlog,
1677 "infrun: resume : clear step\n");
1678 step = 0;
1679 }
1680
1681 if (debug_infrun)
1682 fprintf_unfiltered (gdb_stdlog,
1683 "infrun: resume (step=%d, signal=%d), "
1684 "trap_expected=%d, current thread [%s] at %s\n",
1685 step, sig, tp->control.trap_expected,
1686 target_pid_to_str (inferior_ptid),
1687 paddress (gdbarch, pc));
1688
1689 /* Normally, by the time we reach `resume', the breakpoints are either
1690 removed or inserted, as appropriate. The exception is if we're sitting
1691 at a permanent breakpoint; we need to step over it, but permanent
1692 breakpoints can't be removed. So we have to test for it here. */
1693 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1694 {
1695 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1696 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1697 else
1698 error (_("\
1699 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1700 how to step past a permanent breakpoint on this architecture. Try using\n\
1701 a command like `return' or `jump' to continue execution."));
1702 }
1703
1704 /* If enabled, step over breakpoints by executing a copy of the
1705 instruction at a different address.
1706
1707 We can't use displaced stepping when we have a signal to deliver;
1708 the comments for displaced_step_prepare explain why. The
1709 comments in the handle_inferior event for dealing with 'random
1710 signals' explain what we do instead.
1711
1712 We can't use displaced stepping when we are waiting for vfork_done
1713 event, displaced stepping breaks the vfork child similarly as single
1714 step software breakpoint. */
1715 if (use_displaced_stepping (gdbarch)
1716 && (tp->control.trap_expected
1717 || (step && gdbarch_software_single_step_p (gdbarch)))
1718 && sig == TARGET_SIGNAL_0
1719 && !current_inferior ()->waiting_for_vfork_done)
1720 {
1721 struct displaced_step_inferior_state *displaced;
1722
1723 if (!displaced_step_prepare (inferior_ptid))
1724 {
1725 /* Got placed in displaced stepping queue. Will be resumed
1726 later when all the currently queued displaced stepping
1727 requests finish. The thread is not executing at this point,
1728 and the call to set_executing will be made later. But we
1729 need to call set_running here, since from frontend point of view,
1730 the thread is running. */
1731 set_running (inferior_ptid, 1);
1732 discard_cleanups (old_cleanups);
1733 return;
1734 }
1735
1736 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1737 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1738 displaced->step_closure);
1739 }
1740
1741 /* Do we need to do it the hard way, w/temp breakpoints? */
1742 else if (step)
1743 step = maybe_software_singlestep (gdbarch, pc);
1744
1745 /* Currently, our software single-step implementation leads to different
1746 results than hardware single-stepping in one situation: when stepping
1747 into delivering a signal which has an associated signal handler,
1748 hardware single-step will stop at the first instruction of the handler,
1749 while software single-step will simply skip execution of the handler.
1750
1751 For now, this difference in behavior is accepted since there is no
1752 easy way to actually implement single-stepping into a signal handler
1753 without kernel support.
1754
1755 However, there is one scenario where this difference leads to follow-on
1756 problems: if we're stepping off a breakpoint by removing all breakpoints
1757 and then single-stepping. In this case, the software single-step
1758 behavior means that even if there is a *breakpoint* in the signal
1759 handler, GDB still would not stop.
1760
1761 Fortunately, we can at least fix this particular issue. We detect
1762 here the case where we are about to deliver a signal while software
1763 single-stepping with breakpoints removed. In this situation, we
1764 revert the decisions to remove all breakpoints and insert single-
1765 step breakpoints, and instead we install a step-resume breakpoint
1766 at the current address, deliver the signal without stepping, and
1767 once we arrive back at the step-resume breakpoint, actually step
1768 over the breakpoint we originally wanted to step over. */
1769 if (singlestep_breakpoints_inserted_p
1770 && tp->control.trap_expected && sig != TARGET_SIGNAL_0)
1771 {
1772 /* If we have nested signals or a pending signal is delivered
1773 immediately after a handler returns, might might already have
1774 a step-resume breakpoint set on the earlier handler. We cannot
1775 set another step-resume breakpoint; just continue on until the
1776 original breakpoint is hit. */
1777 if (tp->control.step_resume_breakpoint == NULL)
1778 {
1779 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
1780 tp->step_after_step_resume_breakpoint = 1;
1781 }
1782
1783 remove_single_step_breakpoints ();
1784 singlestep_breakpoints_inserted_p = 0;
1785
1786 insert_breakpoints ();
1787 tp->control.trap_expected = 0;
1788 }
1789
1790 if (should_resume)
1791 {
1792 ptid_t resume_ptid;
1793
1794 /* If STEP is set, it's a request to use hardware stepping
1795 facilities. But in that case, we should never
1796 use singlestep breakpoint. */
1797 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1798
1799 /* Decide the set of threads to ask the target to resume. Start
1800 by assuming everything will be resumed, than narrow the set
1801 by applying increasingly restricting conditions. */
1802 resume_ptid = user_visible_resume_ptid (step);
1803
1804 /* Maybe resume a single thread after all. */
1805 if (singlestep_breakpoints_inserted_p
1806 && stepping_past_singlestep_breakpoint)
1807 {
1808 /* The situation here is as follows. In thread T1 we wanted to
1809 single-step. Lacking hardware single-stepping we've
1810 set breakpoint at the PC of the next instruction -- call it
1811 P. After resuming, we've hit that breakpoint in thread T2.
1812 Now we've removed original breakpoint, inserted breakpoint
1813 at P+1, and try to step to advance T2 past breakpoint.
1814 We need to step only T2, as if T1 is allowed to freely run,
1815 it can run past P, and if other threads are allowed to run,
1816 they can hit breakpoint at P+1, and nested hits of single-step
1817 breakpoints is not something we'd want -- that's complicated
1818 to support, and has no value. */
1819 resume_ptid = inferior_ptid;
1820 }
1821 else if ((step || singlestep_breakpoints_inserted_p)
1822 && tp->control.trap_expected)
1823 {
1824 /* We're allowing a thread to run past a breakpoint it has
1825 hit, by single-stepping the thread with the breakpoint
1826 removed. In which case, we need to single-step only this
1827 thread, and keep others stopped, as they can miss this
1828 breakpoint if allowed to run.
1829
1830 The current code actually removes all breakpoints when
1831 doing this, not just the one being stepped over, so if we
1832 let other threads run, we can actually miss any
1833 breakpoint, not just the one at PC. */
1834 resume_ptid = inferior_ptid;
1835 }
1836
1837 if (gdbarch_cannot_step_breakpoint (gdbarch))
1838 {
1839 /* Most targets can step a breakpoint instruction, thus
1840 executing it normally. But if this one cannot, just
1841 continue and we will hit it anyway. */
1842 if (step && breakpoint_inserted_here_p (aspace, pc))
1843 step = 0;
1844 }
1845
1846 if (debug_displaced
1847 && use_displaced_stepping (gdbarch)
1848 && tp->control.trap_expected)
1849 {
1850 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1851 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1852 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1853 gdb_byte buf[4];
1854
1855 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1856 paddress (resume_gdbarch, actual_pc));
1857 read_memory (actual_pc, buf, sizeof (buf));
1858 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1859 }
1860
1861 /* Install inferior's terminal modes. */
1862 target_terminal_inferior ();
1863
1864 /* Avoid confusing the next resume, if the next stop/resume
1865 happens to apply to another thread. */
1866 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1867
1868 /* Advise target which signals may be handled silently. If we have
1869 removed breakpoints because we are stepping over one (which can
1870 happen only if we are not using displaced stepping), we need to
1871 receive all signals to avoid accidentally skipping a breakpoint
1872 during execution of a signal handler. */
1873 if ((step || singlestep_breakpoints_inserted_p)
1874 && tp->control.trap_expected
1875 && !use_displaced_stepping (gdbarch))
1876 target_pass_signals (0, NULL);
1877 else
1878 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
1879
1880 target_resume (resume_ptid, step, sig);
1881 }
1882
1883 discard_cleanups (old_cleanups);
1884 }
1885 \f
1886 /* Proceeding. */
1887
1888 /* Clear out all variables saying what to do when inferior is continued.
1889 First do this, then set the ones you want, then call `proceed'. */
1890
1891 static void
1892 clear_proceed_status_thread (struct thread_info *tp)
1893 {
1894 if (debug_infrun)
1895 fprintf_unfiltered (gdb_stdlog,
1896 "infrun: clear_proceed_status_thread (%s)\n",
1897 target_pid_to_str (tp->ptid));
1898
1899 tp->control.trap_expected = 0;
1900 tp->control.step_range_start = 0;
1901 tp->control.step_range_end = 0;
1902 tp->control.step_frame_id = null_frame_id;
1903 tp->control.step_stack_frame_id = null_frame_id;
1904 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
1905 tp->stop_requested = 0;
1906
1907 tp->control.stop_step = 0;
1908
1909 tp->control.proceed_to_finish = 0;
1910
1911 /* Discard any remaining commands or status from previous stop. */
1912 bpstat_clear (&tp->control.stop_bpstat);
1913 }
1914
1915 static int
1916 clear_proceed_status_callback (struct thread_info *tp, void *data)
1917 {
1918 if (is_exited (tp->ptid))
1919 return 0;
1920
1921 clear_proceed_status_thread (tp);
1922 return 0;
1923 }
1924
1925 void
1926 clear_proceed_status (void)
1927 {
1928 if (!non_stop)
1929 {
1930 /* In all-stop mode, delete the per-thread status of all
1931 threads, even if inferior_ptid is null_ptid, there may be
1932 threads on the list. E.g., we may be launching a new
1933 process, while selecting the executable. */
1934 iterate_over_threads (clear_proceed_status_callback, NULL);
1935 }
1936
1937 if (!ptid_equal (inferior_ptid, null_ptid))
1938 {
1939 struct inferior *inferior;
1940
1941 if (non_stop)
1942 {
1943 /* If in non-stop mode, only delete the per-thread status of
1944 the current thread. */
1945 clear_proceed_status_thread (inferior_thread ());
1946 }
1947
1948 inferior = current_inferior ();
1949 inferior->control.stop_soon = NO_STOP_QUIETLY;
1950 }
1951
1952 stop_after_trap = 0;
1953
1954 observer_notify_about_to_proceed ();
1955
1956 if (stop_registers)
1957 {
1958 regcache_xfree (stop_registers);
1959 stop_registers = NULL;
1960 }
1961 }
1962
1963 /* Check the current thread against the thread that reported the most recent
1964 event. If a step-over is required return TRUE and set the current thread
1965 to the old thread. Otherwise return FALSE.
1966
1967 This should be suitable for any targets that support threads. */
1968
1969 static int
1970 prepare_to_proceed (int step)
1971 {
1972 ptid_t wait_ptid;
1973 struct target_waitstatus wait_status;
1974 int schedlock_enabled;
1975
1976 /* With non-stop mode on, threads are always handled individually. */
1977 gdb_assert (! non_stop);
1978
1979 /* Get the last target status returned by target_wait(). */
1980 get_last_target_status (&wait_ptid, &wait_status);
1981
1982 /* Make sure we were stopped at a breakpoint. */
1983 if (wait_status.kind != TARGET_WAITKIND_STOPPED
1984 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
1985 && wait_status.value.sig != TARGET_SIGNAL_ILL
1986 && wait_status.value.sig != TARGET_SIGNAL_SEGV
1987 && wait_status.value.sig != TARGET_SIGNAL_EMT))
1988 {
1989 return 0;
1990 }
1991
1992 schedlock_enabled = (scheduler_mode == schedlock_on
1993 || (scheduler_mode == schedlock_step
1994 && step));
1995
1996 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
1997 if (schedlock_enabled)
1998 return 0;
1999
2000 /* Don't switch over if we're about to resume some other process
2001 other than WAIT_PTID's, and schedule-multiple is off. */
2002 if (!sched_multi
2003 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2004 return 0;
2005
2006 /* Switched over from WAIT_PID. */
2007 if (!ptid_equal (wait_ptid, minus_one_ptid)
2008 && !ptid_equal (inferior_ptid, wait_ptid))
2009 {
2010 struct regcache *regcache = get_thread_regcache (wait_ptid);
2011
2012 if (breakpoint_here_p (get_regcache_aspace (regcache),
2013 regcache_read_pc (regcache)))
2014 {
2015 /* If stepping, remember current thread to switch back to. */
2016 if (step)
2017 deferred_step_ptid = inferior_ptid;
2018
2019 /* Switch back to WAIT_PID thread. */
2020 switch_to_thread (wait_ptid);
2021
2022 if (debug_infrun)
2023 fprintf_unfiltered (gdb_stdlog,
2024 "infrun: prepare_to_proceed (step=%d), "
2025 "switched to [%s]\n",
2026 step, target_pid_to_str (inferior_ptid));
2027
2028 /* We return 1 to indicate that there is a breakpoint here,
2029 so we need to step over it before continuing to avoid
2030 hitting it straight away. */
2031 return 1;
2032 }
2033 }
2034
2035 return 0;
2036 }
2037
2038 /* Basic routine for continuing the program in various fashions.
2039
2040 ADDR is the address to resume at, or -1 for resume where stopped.
2041 SIGGNAL is the signal to give it, or 0 for none,
2042 or -1 for act according to how it stopped.
2043 STEP is nonzero if should trap after one instruction.
2044 -1 means return after that and print nothing.
2045 You should probably set various step_... variables
2046 before calling here, if you are stepping.
2047
2048 You should call clear_proceed_status before calling proceed. */
2049
2050 void
2051 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
2052 {
2053 struct regcache *regcache;
2054 struct gdbarch *gdbarch;
2055 struct thread_info *tp;
2056 CORE_ADDR pc;
2057 struct address_space *aspace;
2058 int oneproc = 0;
2059
2060 /* If we're stopped at a fork/vfork, follow the branch set by the
2061 "set follow-fork-mode" command; otherwise, we'll just proceed
2062 resuming the current thread. */
2063 if (!follow_fork ())
2064 {
2065 /* The target for some reason decided not to resume. */
2066 normal_stop ();
2067 if (target_can_async_p ())
2068 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2069 return;
2070 }
2071
2072 /* We'll update this if & when we switch to a new thread. */
2073 previous_inferior_ptid = inferior_ptid;
2074
2075 regcache = get_current_regcache ();
2076 gdbarch = get_regcache_arch (regcache);
2077 aspace = get_regcache_aspace (regcache);
2078 pc = regcache_read_pc (regcache);
2079
2080 if (step > 0)
2081 step_start_function = find_pc_function (pc);
2082 if (step < 0)
2083 stop_after_trap = 1;
2084
2085 if (addr == (CORE_ADDR) -1)
2086 {
2087 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
2088 && execution_direction != EXEC_REVERSE)
2089 /* There is a breakpoint at the address we will resume at,
2090 step one instruction before inserting breakpoints so that
2091 we do not stop right away (and report a second hit at this
2092 breakpoint).
2093
2094 Note, we don't do this in reverse, because we won't
2095 actually be executing the breakpoint insn anyway.
2096 We'll be (un-)executing the previous instruction. */
2097
2098 oneproc = 1;
2099 else if (gdbarch_single_step_through_delay_p (gdbarch)
2100 && gdbarch_single_step_through_delay (gdbarch,
2101 get_current_frame ()))
2102 /* We stepped onto an instruction that needs to be stepped
2103 again before re-inserting the breakpoint, do so. */
2104 oneproc = 1;
2105 }
2106 else
2107 {
2108 regcache_write_pc (regcache, addr);
2109 }
2110
2111 if (debug_infrun)
2112 fprintf_unfiltered (gdb_stdlog,
2113 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2114 paddress (gdbarch, addr), siggnal, step);
2115
2116 if (non_stop)
2117 /* In non-stop, each thread is handled individually. The context
2118 must already be set to the right thread here. */
2119 ;
2120 else
2121 {
2122 /* In a multi-threaded task we may select another thread and
2123 then continue or step.
2124
2125 But if the old thread was stopped at a breakpoint, it will
2126 immediately cause another breakpoint stop without any
2127 execution (i.e. it will report a breakpoint hit incorrectly).
2128 So we must step over it first.
2129
2130 prepare_to_proceed checks the current thread against the
2131 thread that reported the most recent event. If a step-over
2132 is required it returns TRUE and sets the current thread to
2133 the old thread. */
2134 if (prepare_to_proceed (step))
2135 oneproc = 1;
2136 }
2137
2138 /* prepare_to_proceed may change the current thread. */
2139 tp = inferior_thread ();
2140
2141 if (oneproc)
2142 {
2143 tp->control.trap_expected = 1;
2144 /* If displaced stepping is enabled, we can step over the
2145 breakpoint without hitting it, so leave all breakpoints
2146 inserted. Otherwise we need to disable all breakpoints, step
2147 one instruction, and then re-add them when that step is
2148 finished. */
2149 if (!use_displaced_stepping (gdbarch))
2150 remove_breakpoints ();
2151 }
2152
2153 /* We can insert breakpoints if we're not trying to step over one,
2154 or if we are stepping over one but we're using displaced stepping
2155 to do so. */
2156 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2157 insert_breakpoints ();
2158
2159 if (!non_stop)
2160 {
2161 /* Pass the last stop signal to the thread we're resuming,
2162 irrespective of whether the current thread is the thread that
2163 got the last event or not. This was historically GDB's
2164 behaviour before keeping a stop_signal per thread. */
2165
2166 struct thread_info *last_thread;
2167 ptid_t last_ptid;
2168 struct target_waitstatus last_status;
2169
2170 get_last_target_status (&last_ptid, &last_status);
2171 if (!ptid_equal (inferior_ptid, last_ptid)
2172 && !ptid_equal (last_ptid, null_ptid)
2173 && !ptid_equal (last_ptid, minus_one_ptid))
2174 {
2175 last_thread = find_thread_ptid (last_ptid);
2176 if (last_thread)
2177 {
2178 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2179 last_thread->suspend.stop_signal = TARGET_SIGNAL_0;
2180 }
2181 }
2182 }
2183
2184 if (siggnal != TARGET_SIGNAL_DEFAULT)
2185 tp->suspend.stop_signal = siggnal;
2186 /* If this signal should not be seen by program,
2187 give it zero. Used for debugging signals. */
2188 else if (!signal_program[tp->suspend.stop_signal])
2189 tp->suspend.stop_signal = TARGET_SIGNAL_0;
2190
2191 annotate_starting ();
2192
2193 /* Make sure that output from GDB appears before output from the
2194 inferior. */
2195 gdb_flush (gdb_stdout);
2196
2197 /* Refresh prev_pc value just prior to resuming. This used to be
2198 done in stop_stepping, however, setting prev_pc there did not handle
2199 scenarios such as inferior function calls or returning from
2200 a function via the return command. In those cases, the prev_pc
2201 value was not set properly for subsequent commands. The prev_pc value
2202 is used to initialize the starting line number in the ecs. With an
2203 invalid value, the gdb next command ends up stopping at the position
2204 represented by the next line table entry past our start position.
2205 On platforms that generate one line table entry per line, this
2206 is not a problem. However, on the ia64, the compiler generates
2207 extraneous line table entries that do not increase the line number.
2208 When we issue the gdb next command on the ia64 after an inferior call
2209 or a return command, we often end up a few instructions forward, still
2210 within the original line we started.
2211
2212 An attempt was made to refresh the prev_pc at the same time the
2213 execution_control_state is initialized (for instance, just before
2214 waiting for an inferior event). But this approach did not work
2215 because of platforms that use ptrace, where the pc register cannot
2216 be read unless the inferior is stopped. At that point, we are not
2217 guaranteed the inferior is stopped and so the regcache_read_pc() call
2218 can fail. Setting the prev_pc value here ensures the value is updated
2219 correctly when the inferior is stopped. */
2220 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2221
2222 /* Fill in with reasonable starting values. */
2223 init_thread_stepping_state (tp);
2224
2225 /* Reset to normal state. */
2226 init_infwait_state ();
2227
2228 /* Resume inferior. */
2229 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
2230
2231 /* Wait for it to stop (if not standalone)
2232 and in any case decode why it stopped, and act accordingly. */
2233 /* Do this only if we are not using the event loop, or if the target
2234 does not support asynchronous execution. */
2235 if (!target_can_async_p ())
2236 {
2237 wait_for_inferior ();
2238 normal_stop ();
2239 }
2240 }
2241 \f
2242
2243 /* Start remote-debugging of a machine over a serial link. */
2244
2245 void
2246 start_remote (int from_tty)
2247 {
2248 struct inferior *inferior;
2249
2250 inferior = current_inferior ();
2251 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2252
2253 /* Always go on waiting for the target, regardless of the mode. */
2254 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2255 indicate to wait_for_inferior that a target should timeout if
2256 nothing is returned (instead of just blocking). Because of this,
2257 targets expecting an immediate response need to, internally, set
2258 things up so that the target_wait() is forced to eventually
2259 timeout. */
2260 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2261 differentiate to its caller what the state of the target is after
2262 the initial open has been performed. Here we're assuming that
2263 the target has stopped. It should be possible to eventually have
2264 target_open() return to the caller an indication that the target
2265 is currently running and GDB state should be set to the same as
2266 for an async run. */
2267 wait_for_inferior ();
2268
2269 /* Now that the inferior has stopped, do any bookkeeping like
2270 loading shared libraries. We want to do this before normal_stop,
2271 so that the displayed frame is up to date. */
2272 post_create_inferior (&current_target, from_tty);
2273
2274 normal_stop ();
2275 }
2276
2277 /* Initialize static vars when a new inferior begins. */
2278
2279 void
2280 init_wait_for_inferior (void)
2281 {
2282 /* These are meaningless until the first time through wait_for_inferior. */
2283
2284 breakpoint_init_inferior (inf_starting);
2285
2286 clear_proceed_status ();
2287
2288 stepping_past_singlestep_breakpoint = 0;
2289 deferred_step_ptid = null_ptid;
2290
2291 target_last_wait_ptid = minus_one_ptid;
2292
2293 previous_inferior_ptid = inferior_ptid;
2294 init_infwait_state ();
2295
2296 /* Discard any skipped inlined frames. */
2297 clear_inline_frame_state (minus_one_ptid);
2298 }
2299
2300 \f
2301 /* This enum encodes possible reasons for doing a target_wait, so that
2302 wfi can call target_wait in one place. (Ultimately the call will be
2303 moved out of the infinite loop entirely.) */
2304
2305 enum infwait_states
2306 {
2307 infwait_normal_state,
2308 infwait_thread_hop_state,
2309 infwait_step_watch_state,
2310 infwait_nonstep_watch_state
2311 };
2312
2313 /* The PTID we'll do a target_wait on.*/
2314 ptid_t waiton_ptid;
2315
2316 /* Current inferior wait state. */
2317 enum infwait_states infwait_state;
2318
2319 /* Data to be passed around while handling an event. This data is
2320 discarded between events. */
2321 struct execution_control_state
2322 {
2323 ptid_t ptid;
2324 /* The thread that got the event, if this was a thread event; NULL
2325 otherwise. */
2326 struct thread_info *event_thread;
2327
2328 struct target_waitstatus ws;
2329 int random_signal;
2330 int stop_func_filled_in;
2331 CORE_ADDR stop_func_start;
2332 CORE_ADDR stop_func_end;
2333 char *stop_func_name;
2334 int new_thread_event;
2335 int wait_some_more;
2336 };
2337
2338 static void handle_inferior_event (struct execution_control_state *ecs);
2339
2340 static void handle_step_into_function (struct gdbarch *gdbarch,
2341 struct execution_control_state *ecs);
2342 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2343 struct execution_control_state *ecs);
2344 static void check_exception_resume (struct execution_control_state *,
2345 struct frame_info *, struct symbol *);
2346
2347 static void stop_stepping (struct execution_control_state *ecs);
2348 static void prepare_to_wait (struct execution_control_state *ecs);
2349 static void keep_going (struct execution_control_state *ecs);
2350
2351 /* Callback for iterate over threads. If the thread is stopped, but
2352 the user/frontend doesn't know about that yet, go through
2353 normal_stop, as if the thread had just stopped now. ARG points at
2354 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2355 ptid_is_pid(PTID) is true, applies to all threads of the process
2356 pointed at by PTID. Otherwise, apply only to the thread pointed by
2357 PTID. */
2358
2359 static int
2360 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2361 {
2362 ptid_t ptid = * (ptid_t *) arg;
2363
2364 if ((ptid_equal (info->ptid, ptid)
2365 || ptid_equal (minus_one_ptid, ptid)
2366 || (ptid_is_pid (ptid)
2367 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2368 && is_running (info->ptid)
2369 && !is_executing (info->ptid))
2370 {
2371 struct cleanup *old_chain;
2372 struct execution_control_state ecss;
2373 struct execution_control_state *ecs = &ecss;
2374
2375 memset (ecs, 0, sizeof (*ecs));
2376
2377 old_chain = make_cleanup_restore_current_thread ();
2378
2379 switch_to_thread (info->ptid);
2380
2381 /* Go through handle_inferior_event/normal_stop, so we always
2382 have consistent output as if the stop event had been
2383 reported. */
2384 ecs->ptid = info->ptid;
2385 ecs->event_thread = find_thread_ptid (info->ptid);
2386 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2387 ecs->ws.value.sig = TARGET_SIGNAL_0;
2388
2389 handle_inferior_event (ecs);
2390
2391 if (!ecs->wait_some_more)
2392 {
2393 struct thread_info *tp;
2394
2395 normal_stop ();
2396
2397 /* Finish off the continuations. */
2398 tp = inferior_thread ();
2399 do_all_intermediate_continuations_thread (tp, 1);
2400 do_all_continuations_thread (tp, 1);
2401 }
2402
2403 do_cleanups (old_chain);
2404 }
2405
2406 return 0;
2407 }
2408
2409 /* This function is attached as a "thread_stop_requested" observer.
2410 Cleanup local state that assumed the PTID was to be resumed, and
2411 report the stop to the frontend. */
2412
2413 static void
2414 infrun_thread_stop_requested (ptid_t ptid)
2415 {
2416 struct displaced_step_inferior_state *displaced;
2417
2418 /* PTID was requested to stop. Remove it from the displaced
2419 stepping queue, so we don't try to resume it automatically. */
2420
2421 for (displaced = displaced_step_inferior_states;
2422 displaced;
2423 displaced = displaced->next)
2424 {
2425 struct displaced_step_request *it, **prev_next_p;
2426
2427 it = displaced->step_request_queue;
2428 prev_next_p = &displaced->step_request_queue;
2429 while (it)
2430 {
2431 if (ptid_match (it->ptid, ptid))
2432 {
2433 *prev_next_p = it->next;
2434 it->next = NULL;
2435 xfree (it);
2436 }
2437 else
2438 {
2439 prev_next_p = &it->next;
2440 }
2441
2442 it = *prev_next_p;
2443 }
2444 }
2445
2446 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2447 }
2448
2449 static void
2450 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2451 {
2452 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2453 nullify_last_target_wait_ptid ();
2454 }
2455
2456 /* Callback for iterate_over_threads. */
2457
2458 static int
2459 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2460 {
2461 if (is_exited (info->ptid))
2462 return 0;
2463
2464 delete_step_resume_breakpoint (info);
2465 delete_exception_resume_breakpoint (info);
2466 return 0;
2467 }
2468
2469 /* In all-stop, delete the step resume breakpoint of any thread that
2470 had one. In non-stop, delete the step resume breakpoint of the
2471 thread that just stopped. */
2472
2473 static void
2474 delete_step_thread_step_resume_breakpoint (void)
2475 {
2476 if (!target_has_execution
2477 || ptid_equal (inferior_ptid, null_ptid))
2478 /* If the inferior has exited, we have already deleted the step
2479 resume breakpoints out of GDB's lists. */
2480 return;
2481
2482 if (non_stop)
2483 {
2484 /* If in non-stop mode, only delete the step-resume or
2485 longjmp-resume breakpoint of the thread that just stopped
2486 stepping. */
2487 struct thread_info *tp = inferior_thread ();
2488
2489 delete_step_resume_breakpoint (tp);
2490 delete_exception_resume_breakpoint (tp);
2491 }
2492 else
2493 /* In all-stop mode, delete all step-resume and longjmp-resume
2494 breakpoints of any thread that had them. */
2495 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2496 }
2497
2498 /* A cleanup wrapper. */
2499
2500 static void
2501 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2502 {
2503 delete_step_thread_step_resume_breakpoint ();
2504 }
2505
2506 /* Pretty print the results of target_wait, for debugging purposes. */
2507
2508 static void
2509 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2510 const struct target_waitstatus *ws)
2511 {
2512 char *status_string = target_waitstatus_to_string (ws);
2513 struct ui_file *tmp_stream = mem_fileopen ();
2514 char *text;
2515
2516 /* The text is split over several lines because it was getting too long.
2517 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2518 output as a unit; we want only one timestamp printed if debug_timestamp
2519 is set. */
2520
2521 fprintf_unfiltered (tmp_stream,
2522 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2523 if (PIDGET (waiton_ptid) != -1)
2524 fprintf_unfiltered (tmp_stream,
2525 " [%s]", target_pid_to_str (waiton_ptid));
2526 fprintf_unfiltered (tmp_stream, ", status) =\n");
2527 fprintf_unfiltered (tmp_stream,
2528 "infrun: %d [%s],\n",
2529 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2530 fprintf_unfiltered (tmp_stream,
2531 "infrun: %s\n",
2532 status_string);
2533
2534 text = ui_file_xstrdup (tmp_stream, NULL);
2535
2536 /* This uses %s in part to handle %'s in the text, but also to avoid
2537 a gcc error: the format attribute requires a string literal. */
2538 fprintf_unfiltered (gdb_stdlog, "%s", text);
2539
2540 xfree (status_string);
2541 xfree (text);
2542 ui_file_delete (tmp_stream);
2543 }
2544
2545 /* Prepare and stabilize the inferior for detaching it. E.g.,
2546 detaching while a thread is displaced stepping is a recipe for
2547 crashing it, as nothing would readjust the PC out of the scratch
2548 pad. */
2549
2550 void
2551 prepare_for_detach (void)
2552 {
2553 struct inferior *inf = current_inferior ();
2554 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2555 struct cleanup *old_chain_1;
2556 struct displaced_step_inferior_state *displaced;
2557
2558 displaced = get_displaced_stepping_state (inf->pid);
2559
2560 /* Is any thread of this process displaced stepping? If not,
2561 there's nothing else to do. */
2562 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2563 return;
2564
2565 if (debug_infrun)
2566 fprintf_unfiltered (gdb_stdlog,
2567 "displaced-stepping in-process while detaching");
2568
2569 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2570 inf->detaching = 1;
2571
2572 while (!ptid_equal (displaced->step_ptid, null_ptid))
2573 {
2574 struct cleanup *old_chain_2;
2575 struct execution_control_state ecss;
2576 struct execution_control_state *ecs;
2577
2578 ecs = &ecss;
2579 memset (ecs, 0, sizeof (*ecs));
2580
2581 overlay_cache_invalid = 1;
2582
2583 /* We have to invalidate the registers BEFORE calling
2584 target_wait because they can be loaded from the target while
2585 in target_wait. This makes remote debugging a bit more
2586 efficient for those targets that provide critical registers
2587 as part of their normal status mechanism. */
2588
2589 registers_changed ();
2590
2591 if (deprecated_target_wait_hook)
2592 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2593 else
2594 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2595
2596 if (debug_infrun)
2597 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2598
2599 /* If an error happens while handling the event, propagate GDB's
2600 knowledge of the executing state to the frontend/user running
2601 state. */
2602 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2603 &minus_one_ptid);
2604
2605 /* In non-stop mode, each thread is handled individually.
2606 Switch early, so the global state is set correctly for this
2607 thread. */
2608 if (non_stop
2609 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2610 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2611 context_switch (ecs->ptid);
2612
2613 /* Now figure out what to do with the result of the result. */
2614 handle_inferior_event (ecs);
2615
2616 /* No error, don't finish the state yet. */
2617 discard_cleanups (old_chain_2);
2618
2619 /* Breakpoints and watchpoints are not installed on the target
2620 at this point, and signals are passed directly to the
2621 inferior, so this must mean the process is gone. */
2622 if (!ecs->wait_some_more)
2623 {
2624 discard_cleanups (old_chain_1);
2625 error (_("Program exited while detaching"));
2626 }
2627 }
2628
2629 discard_cleanups (old_chain_1);
2630 }
2631
2632 /* Wait for control to return from inferior to debugger.
2633
2634 If inferior gets a signal, we may decide to start it up again
2635 instead of returning. That is why there is a loop in this function.
2636 When this function actually returns it means the inferior
2637 should be left stopped and GDB should read more commands. */
2638
2639 void
2640 wait_for_inferior (void)
2641 {
2642 struct cleanup *old_cleanups;
2643 struct execution_control_state ecss;
2644 struct execution_control_state *ecs;
2645
2646 if (debug_infrun)
2647 fprintf_unfiltered
2648 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
2649
2650 old_cleanups =
2651 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2652
2653 ecs = &ecss;
2654 memset (ecs, 0, sizeof (*ecs));
2655
2656 while (1)
2657 {
2658 struct cleanup *old_chain;
2659
2660 /* We have to invalidate the registers BEFORE calling target_wait
2661 because they can be loaded from the target while in target_wait.
2662 This makes remote debugging a bit more efficient for those
2663 targets that provide critical registers as part of their normal
2664 status mechanism. */
2665
2666 overlay_cache_invalid = 1;
2667 registers_changed ();
2668
2669 if (deprecated_target_wait_hook)
2670 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2671 else
2672 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2673
2674 if (debug_infrun)
2675 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2676
2677 /* If an error happens while handling the event, propagate GDB's
2678 knowledge of the executing state to the frontend/user running
2679 state. */
2680 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2681
2682 if (ecs->ws.kind == TARGET_WAITKIND_SYSCALL_ENTRY
2683 || ecs->ws.kind == TARGET_WAITKIND_SYSCALL_RETURN)
2684 ecs->ws.value.syscall_number = UNKNOWN_SYSCALL;
2685
2686 /* Now figure out what to do with the result of the result. */
2687 handle_inferior_event (ecs);
2688
2689 /* No error, don't finish the state yet. */
2690 discard_cleanups (old_chain);
2691
2692 if (!ecs->wait_some_more)
2693 break;
2694 }
2695
2696 do_cleanups (old_cleanups);
2697 }
2698
2699 /* Asynchronous version of wait_for_inferior. It is called by the
2700 event loop whenever a change of state is detected on the file
2701 descriptor corresponding to the target. It can be called more than
2702 once to complete a single execution command. In such cases we need
2703 to keep the state in a global variable ECSS. If it is the last time
2704 that this function is called for a single execution command, then
2705 report to the user that the inferior has stopped, and do the
2706 necessary cleanups. */
2707
2708 void
2709 fetch_inferior_event (void *client_data)
2710 {
2711 struct execution_control_state ecss;
2712 struct execution_control_state *ecs = &ecss;
2713 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2714 struct cleanup *ts_old_chain;
2715 int was_sync = sync_execution;
2716 int cmd_done = 0;
2717
2718 memset (ecs, 0, sizeof (*ecs));
2719
2720 /* We're handling a live event, so make sure we're doing live
2721 debugging. If we're looking at traceframes while the target is
2722 running, we're going to need to get back to that mode after
2723 handling the event. */
2724 if (non_stop)
2725 {
2726 make_cleanup_restore_current_traceframe ();
2727 set_current_traceframe (-1);
2728 }
2729
2730 if (non_stop)
2731 /* In non-stop mode, the user/frontend should not notice a thread
2732 switch due to internal events. Make sure we reverse to the
2733 user selected thread and frame after handling the event and
2734 running any breakpoint commands. */
2735 make_cleanup_restore_current_thread ();
2736
2737 /* We have to invalidate the registers BEFORE calling target_wait
2738 because they can be loaded from the target while in target_wait.
2739 This makes remote debugging a bit more efficient for those
2740 targets that provide critical registers as part of their normal
2741 status mechanism. */
2742
2743 overlay_cache_invalid = 1;
2744
2745 /* But don't do it if the current thread is already stopped (hence
2746 this is either a delayed event that will result in
2747 TARGET_WAITKIND_IGNORE, or it's an event for another thread (and
2748 we always clear the register and frame caches when the user
2749 switches threads anyway). If we didn't do this, a spurious
2750 delayed event in all-stop mode would make the user lose the
2751 selected frame. */
2752 if (non_stop
2753 || (!ptid_equal (inferior_ptid, null_ptid)
2754 && is_executing (inferior_ptid)))
2755 registers_changed ();
2756
2757 make_cleanup_restore_integer (&execution_direction);
2758 execution_direction = target_execution_direction ();
2759
2760 if (deprecated_target_wait_hook)
2761 ecs->ptid =
2762 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2763 else
2764 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2765
2766 if (debug_infrun)
2767 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2768
2769 if (non_stop
2770 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2771 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2772 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2773 /* In non-stop mode, each thread is handled individually. Switch
2774 early, so the global state is set correctly for this
2775 thread. */
2776 context_switch (ecs->ptid);
2777
2778 /* If an error happens while handling the event, propagate GDB's
2779 knowledge of the executing state to the frontend/user running
2780 state. */
2781 if (!non_stop)
2782 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2783 else
2784 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2785
2786 /* Get executed before make_cleanup_restore_current_thread above to apply
2787 still for the thread which has thrown the exception. */
2788 make_bpstat_clear_actions_cleanup ();
2789
2790 /* Now figure out what to do with the result of the result. */
2791 handle_inferior_event (ecs);
2792
2793 if (!ecs->wait_some_more)
2794 {
2795 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2796
2797 delete_step_thread_step_resume_breakpoint ();
2798
2799 /* We may not find an inferior if this was a process exit. */
2800 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
2801 normal_stop ();
2802
2803 if (target_has_execution
2804 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2805 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2806 && ecs->event_thread->step_multi
2807 && ecs->event_thread->control.stop_step)
2808 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2809 else
2810 {
2811 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2812 cmd_done = 1;
2813 }
2814 }
2815
2816 /* No error, don't finish the thread states yet. */
2817 discard_cleanups (ts_old_chain);
2818
2819 /* Revert thread and frame. */
2820 do_cleanups (old_chain);
2821
2822 /* If the inferior was in sync execution mode, and now isn't,
2823 restore the prompt (a synchronous execution command has finished,
2824 and we're ready for input). */
2825 if (interpreter_async && was_sync && !sync_execution)
2826 display_gdb_prompt (0);
2827
2828 if (cmd_done
2829 && !was_sync
2830 && exec_done_display_p
2831 && (ptid_equal (inferior_ptid, null_ptid)
2832 || !is_running (inferior_ptid)))
2833 printf_unfiltered (_("completed.\n"));
2834 }
2835
2836 /* Record the frame and location we're currently stepping through. */
2837 void
2838 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2839 {
2840 struct thread_info *tp = inferior_thread ();
2841
2842 tp->control.step_frame_id = get_frame_id (frame);
2843 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
2844
2845 tp->current_symtab = sal.symtab;
2846 tp->current_line = sal.line;
2847 }
2848
2849 /* Clear context switchable stepping state. */
2850
2851 void
2852 init_thread_stepping_state (struct thread_info *tss)
2853 {
2854 tss->stepping_over_breakpoint = 0;
2855 tss->step_after_step_resume_breakpoint = 0;
2856 tss->stepping_through_solib_after_catch = 0;
2857 tss->stepping_through_solib_catchpoints = NULL;
2858 }
2859
2860 /* Return the cached copy of the last pid/waitstatus returned by
2861 target_wait()/deprecated_target_wait_hook(). The data is actually
2862 cached by handle_inferior_event(), which gets called immediately
2863 after target_wait()/deprecated_target_wait_hook(). */
2864
2865 void
2866 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2867 {
2868 *ptidp = target_last_wait_ptid;
2869 *status = target_last_waitstatus;
2870 }
2871
2872 void
2873 nullify_last_target_wait_ptid (void)
2874 {
2875 target_last_wait_ptid = minus_one_ptid;
2876 }
2877
2878 /* Switch thread contexts. */
2879
2880 static void
2881 context_switch (ptid_t ptid)
2882 {
2883 if (debug_infrun)
2884 {
2885 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2886 target_pid_to_str (inferior_ptid));
2887 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2888 target_pid_to_str (ptid));
2889 }
2890
2891 switch_to_thread (ptid);
2892 }
2893
2894 static void
2895 adjust_pc_after_break (struct execution_control_state *ecs)
2896 {
2897 struct regcache *regcache;
2898 struct gdbarch *gdbarch;
2899 struct address_space *aspace;
2900 CORE_ADDR breakpoint_pc;
2901
2902 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2903 we aren't, just return.
2904
2905 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2906 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2907 implemented by software breakpoints should be handled through the normal
2908 breakpoint layer.
2909
2910 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2911 different signals (SIGILL or SIGEMT for instance), but it is less
2912 clear where the PC is pointing afterwards. It may not match
2913 gdbarch_decr_pc_after_break. I don't know any specific target that
2914 generates these signals at breakpoints (the code has been in GDB since at
2915 least 1992) so I can not guess how to handle them here.
2916
2917 In earlier versions of GDB, a target with
2918 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2919 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2920 target with both of these set in GDB history, and it seems unlikely to be
2921 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2922
2923 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2924 return;
2925
2926 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2927 return;
2928
2929 /* In reverse execution, when a breakpoint is hit, the instruction
2930 under it has already been de-executed. The reported PC always
2931 points at the breakpoint address, so adjusting it further would
2932 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2933 architecture:
2934
2935 B1 0x08000000 : INSN1
2936 B2 0x08000001 : INSN2
2937 0x08000002 : INSN3
2938 PC -> 0x08000003 : INSN4
2939
2940 Say you're stopped at 0x08000003 as above. Reverse continuing
2941 from that point should hit B2 as below. Reading the PC when the
2942 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2943 been de-executed already.
2944
2945 B1 0x08000000 : INSN1
2946 B2 PC -> 0x08000001 : INSN2
2947 0x08000002 : INSN3
2948 0x08000003 : INSN4
2949
2950 We can't apply the same logic as for forward execution, because
2951 we would wrongly adjust the PC to 0x08000000, since there's a
2952 breakpoint at PC - 1. We'd then report a hit on B1, although
2953 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2954 behaviour. */
2955 if (execution_direction == EXEC_REVERSE)
2956 return;
2957
2958 /* If this target does not decrement the PC after breakpoints, then
2959 we have nothing to do. */
2960 regcache = get_thread_regcache (ecs->ptid);
2961 gdbarch = get_regcache_arch (regcache);
2962 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2963 return;
2964
2965 aspace = get_regcache_aspace (regcache);
2966
2967 /* Find the location where (if we've hit a breakpoint) the
2968 breakpoint would be. */
2969 breakpoint_pc = regcache_read_pc (regcache)
2970 - gdbarch_decr_pc_after_break (gdbarch);
2971
2972 /* Check whether there actually is a software breakpoint inserted at
2973 that location.
2974
2975 If in non-stop mode, a race condition is possible where we've
2976 removed a breakpoint, but stop events for that breakpoint were
2977 already queued and arrive later. To suppress those spurious
2978 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2979 and retire them after a number of stop events are reported. */
2980 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2981 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
2982 {
2983 struct cleanup *old_cleanups = NULL;
2984
2985 if (RECORD_IS_USED)
2986 old_cleanups = record_gdb_operation_disable_set ();
2987
2988 /* When using hardware single-step, a SIGTRAP is reported for both
2989 a completed single-step and a software breakpoint. Need to
2990 differentiate between the two, as the latter needs adjusting
2991 but the former does not.
2992
2993 The SIGTRAP can be due to a completed hardware single-step only if
2994 - we didn't insert software single-step breakpoints
2995 - the thread to be examined is still the current thread
2996 - this thread is currently being stepped
2997
2998 If any of these events did not occur, we must have stopped due
2999 to hitting a software breakpoint, and have to back up to the
3000 breakpoint address.
3001
3002 As a special case, we could have hardware single-stepped a
3003 software breakpoint. In this case (prev_pc == breakpoint_pc),
3004 we also need to back up to the breakpoint address. */
3005
3006 if (singlestep_breakpoints_inserted_p
3007 || !ptid_equal (ecs->ptid, inferior_ptid)
3008 || !currently_stepping (ecs->event_thread)
3009 || ecs->event_thread->prev_pc == breakpoint_pc)
3010 regcache_write_pc (regcache, breakpoint_pc);
3011
3012 if (RECORD_IS_USED)
3013 do_cleanups (old_cleanups);
3014 }
3015 }
3016
3017 void
3018 init_infwait_state (void)
3019 {
3020 waiton_ptid = pid_to_ptid (-1);
3021 infwait_state = infwait_normal_state;
3022 }
3023
3024 void
3025 error_is_running (void)
3026 {
3027 error (_("Cannot execute this command while "
3028 "the selected thread is running."));
3029 }
3030
3031 void
3032 ensure_not_running (void)
3033 {
3034 if (is_running (inferior_ptid))
3035 error_is_running ();
3036 }
3037
3038 static int
3039 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3040 {
3041 for (frame = get_prev_frame (frame);
3042 frame != NULL;
3043 frame = get_prev_frame (frame))
3044 {
3045 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3046 return 1;
3047 if (get_frame_type (frame) != INLINE_FRAME)
3048 break;
3049 }
3050
3051 return 0;
3052 }
3053
3054 /* Auxiliary function that handles syscall entry/return events.
3055 It returns 1 if the inferior should keep going (and GDB
3056 should ignore the event), or 0 if the event deserves to be
3057 processed. */
3058
3059 static int
3060 handle_syscall_event (struct execution_control_state *ecs)
3061 {
3062 struct regcache *regcache;
3063 struct gdbarch *gdbarch;
3064 int syscall_number;
3065
3066 if (!ptid_equal (ecs->ptid, inferior_ptid))
3067 context_switch (ecs->ptid);
3068
3069 regcache = get_thread_regcache (ecs->ptid);
3070 gdbarch = get_regcache_arch (regcache);
3071 syscall_number = gdbarch_get_syscall_number (gdbarch, ecs->ptid);
3072 stop_pc = regcache_read_pc (regcache);
3073
3074 target_last_waitstatus.value.syscall_number = syscall_number;
3075
3076 if (catch_syscall_enabled () > 0
3077 && catching_syscall_number (syscall_number) > 0)
3078 {
3079 if (debug_infrun)
3080 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3081 syscall_number);
3082
3083 ecs->event_thread->control.stop_bpstat
3084 = bpstat_stop_status (get_regcache_aspace (regcache),
3085 stop_pc, ecs->ptid);
3086 ecs->random_signal
3087 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3088
3089 if (!ecs->random_signal)
3090 {
3091 /* Catchpoint hit. */
3092 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3093 return 0;
3094 }
3095 }
3096
3097 /* If no catchpoint triggered for this, then keep going. */
3098 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3099 keep_going (ecs);
3100 return 1;
3101 }
3102
3103 /* Clear the supplied execution_control_state's stop_func_* fields. */
3104
3105 static void
3106 clear_stop_func (struct execution_control_state *ecs)
3107 {
3108 ecs->stop_func_filled_in = 0;
3109 ecs->stop_func_start = 0;
3110 ecs->stop_func_end = 0;
3111 ecs->stop_func_name = NULL;
3112 }
3113
3114 /* Lazily fill in the execution_control_state's stop_func_* fields. */
3115
3116 static void
3117 fill_in_stop_func (struct gdbarch *gdbarch,
3118 struct execution_control_state *ecs)
3119 {
3120 if (!ecs->stop_func_filled_in)
3121 {
3122 /* Don't care about return value; stop_func_start and stop_func_name
3123 will both be 0 if it doesn't work. */
3124 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3125 &ecs->stop_func_start, &ecs->stop_func_end);
3126 ecs->stop_func_start
3127 += gdbarch_deprecated_function_start_offset (gdbarch);
3128
3129 ecs->stop_func_filled_in = 1;
3130 }
3131 }
3132
3133 /* Given an execution control state that has been freshly filled in
3134 by an event from the inferior, figure out what it means and take
3135 appropriate action. */
3136
3137 static void
3138 handle_inferior_event (struct execution_control_state *ecs)
3139 {
3140 struct frame_info *frame;
3141 struct gdbarch *gdbarch;
3142 int stopped_by_watchpoint;
3143 int stepped_after_stopped_by_watchpoint = 0;
3144 struct symtab_and_line stop_pc_sal;
3145 enum stop_kind stop_soon;
3146
3147 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3148 {
3149 /* We had an event in the inferior, but we are not interested in
3150 handling it at this level. The lower layers have already
3151 done what needs to be done, if anything.
3152
3153 One of the possible circumstances for this is when the
3154 inferior produces output for the console. The inferior has
3155 not stopped, and we are ignoring the event. Another possible
3156 circumstance is any event which the lower level knows will be
3157 reported multiple times without an intervening resume. */
3158 if (debug_infrun)
3159 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3160 prepare_to_wait (ecs);
3161 return;
3162 }
3163
3164 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3165 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
3166 {
3167 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3168
3169 gdb_assert (inf);
3170 stop_soon = inf->control.stop_soon;
3171 }
3172 else
3173 stop_soon = NO_STOP_QUIETLY;
3174
3175 /* Cache the last pid/waitstatus. */
3176 target_last_wait_ptid = ecs->ptid;
3177 target_last_waitstatus = ecs->ws;
3178
3179 /* Always clear state belonging to the previous time we stopped. */
3180 stop_stack_dummy = STOP_NONE;
3181
3182 /* If it's a new process, add it to the thread database. */
3183
3184 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
3185 && !ptid_equal (ecs->ptid, minus_one_ptid)
3186 && !in_thread_list (ecs->ptid));
3187
3188 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3189 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
3190 add_thread (ecs->ptid);
3191
3192 ecs->event_thread = find_thread_ptid (ecs->ptid);
3193
3194 /* Dependent on valid ECS->EVENT_THREAD. */
3195 adjust_pc_after_break (ecs);
3196
3197 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3198 reinit_frame_cache ();
3199
3200 breakpoint_retire_moribund ();
3201
3202 /* First, distinguish signals caused by the debugger from signals
3203 that have to do with the program's own actions. Note that
3204 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3205 on the operating system version. Here we detect when a SIGILL or
3206 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3207 something similar for SIGSEGV, since a SIGSEGV will be generated
3208 when we're trying to execute a breakpoint instruction on a
3209 non-executable stack. This happens for call dummy breakpoints
3210 for architectures like SPARC that place call dummies on the
3211 stack. */
3212 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3213 && (ecs->ws.value.sig == TARGET_SIGNAL_ILL
3214 || ecs->ws.value.sig == TARGET_SIGNAL_SEGV
3215 || ecs->ws.value.sig == TARGET_SIGNAL_EMT))
3216 {
3217 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3218
3219 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3220 regcache_read_pc (regcache)))
3221 {
3222 if (debug_infrun)
3223 fprintf_unfiltered (gdb_stdlog,
3224 "infrun: Treating signal as SIGTRAP\n");
3225 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
3226 }
3227 }
3228
3229 /* Mark the non-executing threads accordingly. In all-stop, all
3230 threads of all processes are stopped when we get any event
3231 reported. In non-stop mode, only the event thread stops. If
3232 we're handling a process exit in non-stop mode, there's nothing
3233 to do, as threads of the dead process are gone, and threads of
3234 any other process were left running. */
3235 if (!non_stop)
3236 set_executing (minus_one_ptid, 0);
3237 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3238 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3239 set_executing (inferior_ptid, 0);
3240
3241 switch (infwait_state)
3242 {
3243 case infwait_thread_hop_state:
3244 if (debug_infrun)
3245 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
3246 break;
3247
3248 case infwait_normal_state:
3249 if (debug_infrun)
3250 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
3251 break;
3252
3253 case infwait_step_watch_state:
3254 if (debug_infrun)
3255 fprintf_unfiltered (gdb_stdlog,
3256 "infrun: infwait_step_watch_state\n");
3257
3258 stepped_after_stopped_by_watchpoint = 1;
3259 break;
3260
3261 case infwait_nonstep_watch_state:
3262 if (debug_infrun)
3263 fprintf_unfiltered (gdb_stdlog,
3264 "infrun: infwait_nonstep_watch_state\n");
3265 insert_breakpoints ();
3266
3267 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3268 handle things like signals arriving and other things happening
3269 in combination correctly? */
3270 stepped_after_stopped_by_watchpoint = 1;
3271 break;
3272
3273 default:
3274 internal_error (__FILE__, __LINE__, _("bad switch"));
3275 }
3276
3277 infwait_state = infwait_normal_state;
3278 waiton_ptid = pid_to_ptid (-1);
3279
3280 switch (ecs->ws.kind)
3281 {
3282 case TARGET_WAITKIND_LOADED:
3283 if (debug_infrun)
3284 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3285 /* Ignore gracefully during startup of the inferior, as it might
3286 be the shell which has just loaded some objects, otherwise
3287 add the symbols for the newly loaded objects. Also ignore at
3288 the beginning of an attach or remote session; we will query
3289 the full list of libraries once the connection is
3290 established. */
3291 if (stop_soon == NO_STOP_QUIETLY)
3292 {
3293 /* Check for any newly added shared libraries if we're
3294 supposed to be adding them automatically. Switch
3295 terminal for any messages produced by
3296 breakpoint_re_set. */
3297 target_terminal_ours_for_output ();
3298 /* NOTE: cagney/2003-11-25: Make certain that the target
3299 stack's section table is kept up-to-date. Architectures,
3300 (e.g., PPC64), use the section table to perform
3301 operations such as address => section name and hence
3302 require the table to contain all sections (including
3303 those found in shared libraries). */
3304 #ifdef SOLIB_ADD
3305 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
3306 #else
3307 solib_add (NULL, 0, &current_target, auto_solib_add);
3308 #endif
3309 target_terminal_inferior ();
3310
3311 /* If requested, stop when the dynamic linker notifies
3312 gdb of events. This allows the user to get control
3313 and place breakpoints in initializer routines for
3314 dynamically loaded objects (among other things). */
3315 if (stop_on_solib_events)
3316 {
3317 /* Make sure we print "Stopped due to solib-event" in
3318 normal_stop. */
3319 stop_print_frame = 1;
3320
3321 stop_stepping (ecs);
3322 return;
3323 }
3324
3325 /* NOTE drow/2007-05-11: This might be a good place to check
3326 for "catch load". */
3327 }
3328
3329 /* If we are skipping through a shell, or through shared library
3330 loading that we aren't interested in, resume the program. If
3331 we're running the program normally, also resume. But stop if
3332 we're attaching or setting up a remote connection. */
3333 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3334 {
3335 /* Loading of shared libraries might have changed breakpoint
3336 addresses. Make sure new breakpoints are inserted. */
3337 if (stop_soon == NO_STOP_QUIETLY
3338 && !breakpoints_always_inserted_mode ())
3339 insert_breakpoints ();
3340 resume (0, TARGET_SIGNAL_0);
3341 prepare_to_wait (ecs);
3342 return;
3343 }
3344
3345 break;
3346
3347 case TARGET_WAITKIND_SPURIOUS:
3348 if (debug_infrun)
3349 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3350 resume (0, TARGET_SIGNAL_0);
3351 prepare_to_wait (ecs);
3352 return;
3353
3354 case TARGET_WAITKIND_EXITED:
3355 if (debug_infrun)
3356 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
3357 inferior_ptid = ecs->ptid;
3358 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3359 set_current_program_space (current_inferior ()->pspace);
3360 handle_vfork_child_exec_or_exit (0);
3361 target_terminal_ours (); /* Must do this before mourn anyway. */
3362 print_exited_reason (ecs->ws.value.integer);
3363
3364 /* Record the exit code in the convenience variable $_exitcode, so
3365 that the user can inspect this again later. */
3366 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3367 (LONGEST) ecs->ws.value.integer);
3368
3369 /* Also record this in the inferior itself. */
3370 current_inferior ()->has_exit_code = 1;
3371 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3372
3373 gdb_flush (gdb_stdout);
3374 target_mourn_inferior ();
3375 singlestep_breakpoints_inserted_p = 0;
3376 cancel_single_step_breakpoints ();
3377 stop_print_frame = 0;
3378 stop_stepping (ecs);
3379 return;
3380
3381 case TARGET_WAITKIND_SIGNALLED:
3382 if (debug_infrun)
3383 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
3384 inferior_ptid = ecs->ptid;
3385 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3386 set_current_program_space (current_inferior ()->pspace);
3387 handle_vfork_child_exec_or_exit (0);
3388 stop_print_frame = 0;
3389 target_terminal_ours (); /* Must do this before mourn anyway. */
3390
3391 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3392 reach here unless the inferior is dead. However, for years
3393 target_kill() was called here, which hints that fatal signals aren't
3394 really fatal on some systems. If that's true, then some changes
3395 may be needed. */
3396 target_mourn_inferior ();
3397
3398 print_signal_exited_reason (ecs->ws.value.sig);
3399 singlestep_breakpoints_inserted_p = 0;
3400 cancel_single_step_breakpoints ();
3401 stop_stepping (ecs);
3402 return;
3403
3404 /* The following are the only cases in which we keep going;
3405 the above cases end in a continue or goto. */
3406 case TARGET_WAITKIND_FORKED:
3407 case TARGET_WAITKIND_VFORKED:
3408 if (debug_infrun)
3409 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3410
3411 if (!ptid_equal (ecs->ptid, inferior_ptid))
3412 {
3413 context_switch (ecs->ptid);
3414 reinit_frame_cache ();
3415 }
3416
3417 /* Immediately detach breakpoints from the child before there's
3418 any chance of letting the user delete breakpoints from the
3419 breakpoint lists. If we don't do this early, it's easy to
3420 leave left over traps in the child, vis: "break foo; catch
3421 fork; c; <fork>; del; c; <child calls foo>". We only follow
3422 the fork on the last `continue', and by that time the
3423 breakpoint at "foo" is long gone from the breakpoint table.
3424 If we vforked, then we don't need to unpatch here, since both
3425 parent and child are sharing the same memory pages; we'll
3426 need to unpatch at follow/detach time instead to be certain
3427 that new breakpoints added between catchpoint hit time and
3428 vfork follow are detached. */
3429 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3430 {
3431 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
3432
3433 /* This won't actually modify the breakpoint list, but will
3434 physically remove the breakpoints from the child. */
3435 detach_breakpoints (child_pid);
3436 }
3437
3438 if (singlestep_breakpoints_inserted_p)
3439 {
3440 /* Pull the single step breakpoints out of the target. */
3441 remove_single_step_breakpoints ();
3442 singlestep_breakpoints_inserted_p = 0;
3443 }
3444
3445 /* In case the event is caught by a catchpoint, remember that
3446 the event is to be followed at the next resume of the thread,
3447 and not immediately. */
3448 ecs->event_thread->pending_follow = ecs->ws;
3449
3450 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3451
3452 ecs->event_thread->control.stop_bpstat
3453 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3454 stop_pc, ecs->ptid);
3455
3456 /* Note that we're interested in knowing the bpstat actually
3457 causes a stop, not just if it may explain the signal.
3458 Software watchpoints, for example, always appear in the
3459 bpstat. */
3460 ecs->random_signal
3461 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
3462
3463 /* If no catchpoint triggered for this, then keep going. */
3464 if (ecs->random_signal)
3465 {
3466 ptid_t parent;
3467 ptid_t child;
3468 int should_resume;
3469 int follow_child
3470 = (follow_fork_mode_string == follow_fork_mode_child);
3471
3472 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3473
3474 should_resume = follow_fork ();
3475
3476 parent = ecs->ptid;
3477 child = ecs->ws.value.related_pid;
3478
3479 /* In non-stop mode, also resume the other branch. */
3480 if (non_stop && !detach_fork)
3481 {
3482 if (follow_child)
3483 switch_to_thread (parent);
3484 else
3485 switch_to_thread (child);
3486
3487 ecs->event_thread = inferior_thread ();
3488 ecs->ptid = inferior_ptid;
3489 keep_going (ecs);
3490 }
3491
3492 if (follow_child)
3493 switch_to_thread (child);
3494 else
3495 switch_to_thread (parent);
3496
3497 ecs->event_thread = inferior_thread ();
3498 ecs->ptid = inferior_ptid;
3499
3500 if (should_resume)
3501 keep_going (ecs);
3502 else
3503 stop_stepping (ecs);
3504 return;
3505 }
3506 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3507 goto process_event_stop_test;
3508
3509 case TARGET_WAITKIND_VFORK_DONE:
3510 /* Done with the shared memory region. Re-insert breakpoints in
3511 the parent, and keep going. */
3512
3513 if (debug_infrun)
3514 fprintf_unfiltered (gdb_stdlog,
3515 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3516
3517 if (!ptid_equal (ecs->ptid, inferior_ptid))
3518 context_switch (ecs->ptid);
3519
3520 current_inferior ()->waiting_for_vfork_done = 0;
3521 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3522 /* This also takes care of reinserting breakpoints in the
3523 previously locked inferior. */
3524 keep_going (ecs);
3525 return;
3526
3527 case TARGET_WAITKIND_EXECD:
3528 if (debug_infrun)
3529 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3530
3531 if (!ptid_equal (ecs->ptid, inferior_ptid))
3532 {
3533 context_switch (ecs->ptid);
3534 reinit_frame_cache ();
3535 }
3536
3537 singlestep_breakpoints_inserted_p = 0;
3538 cancel_single_step_breakpoints ();
3539
3540 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3541
3542 /* Do whatever is necessary to the parent branch of the vfork. */
3543 handle_vfork_child_exec_or_exit (1);
3544
3545 /* This causes the eventpoints and symbol table to be reset.
3546 Must do this now, before trying to determine whether to
3547 stop. */
3548 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3549
3550 ecs->event_thread->control.stop_bpstat
3551 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3552 stop_pc, ecs->ptid);
3553 ecs->random_signal
3554 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3555
3556 /* Note that this may be referenced from inside
3557 bpstat_stop_status above, through inferior_has_execd. */
3558 xfree (ecs->ws.value.execd_pathname);
3559 ecs->ws.value.execd_pathname = NULL;
3560
3561 /* If no catchpoint triggered for this, then keep going. */
3562 if (ecs->random_signal)
3563 {
3564 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3565 keep_going (ecs);
3566 return;
3567 }
3568 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3569 goto process_event_stop_test;
3570
3571 /* Be careful not to try to gather much state about a thread
3572 that's in a syscall. It's frequently a losing proposition. */
3573 case TARGET_WAITKIND_SYSCALL_ENTRY:
3574 if (debug_infrun)
3575 fprintf_unfiltered (gdb_stdlog,
3576 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3577 /* Getting the current syscall number. */
3578 if (handle_syscall_event (ecs) != 0)
3579 return;
3580 goto process_event_stop_test;
3581
3582 /* Before examining the threads further, step this thread to
3583 get it entirely out of the syscall. (We get notice of the
3584 event when the thread is just on the verge of exiting a
3585 syscall. Stepping one instruction seems to get it back
3586 into user code.) */
3587 case TARGET_WAITKIND_SYSCALL_RETURN:
3588 if (debug_infrun)
3589 fprintf_unfiltered (gdb_stdlog,
3590 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3591 if (handle_syscall_event (ecs) != 0)
3592 return;
3593 goto process_event_stop_test;
3594
3595 case TARGET_WAITKIND_STOPPED:
3596 if (debug_infrun)
3597 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3598 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
3599 break;
3600
3601 case TARGET_WAITKIND_NO_HISTORY:
3602 /* Reverse execution: target ran out of history info. */
3603 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3604 print_no_history_reason ();
3605 stop_stepping (ecs);
3606 return;
3607 }
3608
3609 if (ecs->new_thread_event)
3610 {
3611 if (non_stop)
3612 /* Non-stop assumes that the target handles adding new threads
3613 to the thread list. */
3614 internal_error (__FILE__, __LINE__,
3615 "targets should add new threads to the thread "
3616 "list themselves in non-stop mode.");
3617
3618 /* We may want to consider not doing a resume here in order to
3619 give the user a chance to play with the new thread. It might
3620 be good to make that a user-settable option. */
3621
3622 /* At this point, all threads are stopped (happens automatically
3623 in either the OS or the native code). Therefore we need to
3624 continue all threads in order to make progress. */
3625
3626 if (!ptid_equal (ecs->ptid, inferior_ptid))
3627 context_switch (ecs->ptid);
3628 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
3629 prepare_to_wait (ecs);
3630 return;
3631 }
3632
3633 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
3634 {
3635 /* Do we need to clean up the state of a thread that has
3636 completed a displaced single-step? (Doing so usually affects
3637 the PC, so do it here, before we set stop_pc.) */
3638 displaced_step_fixup (ecs->ptid,
3639 ecs->event_thread->suspend.stop_signal);
3640
3641 /* If we either finished a single-step or hit a breakpoint, but
3642 the user wanted this thread to be stopped, pretend we got a
3643 SIG0 (generic unsignaled stop). */
3644
3645 if (ecs->event_thread->stop_requested
3646 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3647 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3648 }
3649
3650 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3651
3652 if (debug_infrun)
3653 {
3654 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3655 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3656 struct cleanup *old_chain = save_inferior_ptid ();
3657
3658 inferior_ptid = ecs->ptid;
3659
3660 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3661 paddress (gdbarch, stop_pc));
3662 if (target_stopped_by_watchpoint ())
3663 {
3664 CORE_ADDR addr;
3665
3666 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3667
3668 if (target_stopped_data_address (&current_target, &addr))
3669 fprintf_unfiltered (gdb_stdlog,
3670 "infrun: stopped data address = %s\n",
3671 paddress (gdbarch, addr));
3672 else
3673 fprintf_unfiltered (gdb_stdlog,
3674 "infrun: (no data address available)\n");
3675 }
3676
3677 do_cleanups (old_chain);
3678 }
3679
3680 if (stepping_past_singlestep_breakpoint)
3681 {
3682 gdb_assert (singlestep_breakpoints_inserted_p);
3683 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3684 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3685
3686 stepping_past_singlestep_breakpoint = 0;
3687
3688 /* We've either finished single-stepping past the single-step
3689 breakpoint, or stopped for some other reason. It would be nice if
3690 we could tell, but we can't reliably. */
3691 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3692 {
3693 if (debug_infrun)
3694 fprintf_unfiltered (gdb_stdlog,
3695 "infrun: stepping_past_"
3696 "singlestep_breakpoint\n");
3697 /* Pull the single step breakpoints out of the target. */
3698 remove_single_step_breakpoints ();
3699 singlestep_breakpoints_inserted_p = 0;
3700
3701 ecs->random_signal = 0;
3702 ecs->event_thread->control.trap_expected = 0;
3703
3704 context_switch (saved_singlestep_ptid);
3705 if (deprecated_context_hook)
3706 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3707
3708 resume (1, TARGET_SIGNAL_0);
3709 prepare_to_wait (ecs);
3710 return;
3711 }
3712 }
3713
3714 if (!ptid_equal (deferred_step_ptid, null_ptid))
3715 {
3716 /* In non-stop mode, there's never a deferred_step_ptid set. */
3717 gdb_assert (!non_stop);
3718
3719 /* If we stopped for some other reason than single-stepping, ignore
3720 the fact that we were supposed to switch back. */
3721 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3722 {
3723 if (debug_infrun)
3724 fprintf_unfiltered (gdb_stdlog,
3725 "infrun: handling deferred step\n");
3726
3727 /* Pull the single step breakpoints out of the target. */
3728 if (singlestep_breakpoints_inserted_p)
3729 {
3730 remove_single_step_breakpoints ();
3731 singlestep_breakpoints_inserted_p = 0;
3732 }
3733
3734 ecs->event_thread->control.trap_expected = 0;
3735
3736 /* Note: We do not call context_switch at this point, as the
3737 context is already set up for stepping the original thread. */
3738 switch_to_thread (deferred_step_ptid);
3739 deferred_step_ptid = null_ptid;
3740 /* Suppress spurious "Switching to ..." message. */
3741 previous_inferior_ptid = inferior_ptid;
3742
3743 resume (1, TARGET_SIGNAL_0);
3744 prepare_to_wait (ecs);
3745 return;
3746 }
3747
3748 deferred_step_ptid = null_ptid;
3749 }
3750
3751 /* See if a thread hit a thread-specific breakpoint that was meant for
3752 another thread. If so, then step that thread past the breakpoint,
3753 and continue it. */
3754
3755 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3756 {
3757 int thread_hop_needed = 0;
3758 struct address_space *aspace =
3759 get_regcache_aspace (get_thread_regcache (ecs->ptid));
3760
3761 /* Check if a regular breakpoint has been hit before checking
3762 for a potential single step breakpoint. Otherwise, GDB will
3763 not see this breakpoint hit when stepping onto breakpoints. */
3764 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3765 {
3766 ecs->random_signal = 0;
3767 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3768 thread_hop_needed = 1;
3769 }
3770 else if (singlestep_breakpoints_inserted_p)
3771 {
3772 /* We have not context switched yet, so this should be true
3773 no matter which thread hit the singlestep breakpoint. */
3774 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3775 if (debug_infrun)
3776 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3777 "trap for %s\n",
3778 target_pid_to_str (ecs->ptid));
3779
3780 ecs->random_signal = 0;
3781 /* The call to in_thread_list is necessary because PTIDs sometimes
3782 change when we go from single-threaded to multi-threaded. If
3783 the singlestep_ptid is still in the list, assume that it is
3784 really different from ecs->ptid. */
3785 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3786 && in_thread_list (singlestep_ptid))
3787 {
3788 /* If the PC of the thread we were trying to single-step
3789 has changed, discard this event (which we were going
3790 to ignore anyway), and pretend we saw that thread
3791 trap. This prevents us continuously moving the
3792 single-step breakpoint forward, one instruction at a
3793 time. If the PC has changed, then the thread we were
3794 trying to single-step has trapped or been signalled,
3795 but the event has not been reported to GDB yet.
3796
3797 There might be some cases where this loses signal
3798 information, if a signal has arrived at exactly the
3799 same time that the PC changed, but this is the best
3800 we can do with the information available. Perhaps we
3801 should arrange to report all events for all threads
3802 when they stop, or to re-poll the remote looking for
3803 this particular thread (i.e. temporarily enable
3804 schedlock). */
3805
3806 CORE_ADDR new_singlestep_pc
3807 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3808
3809 if (new_singlestep_pc != singlestep_pc)
3810 {
3811 enum target_signal stop_signal;
3812
3813 if (debug_infrun)
3814 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3815 " but expected thread advanced also\n");
3816
3817 /* The current context still belongs to
3818 singlestep_ptid. Don't swap here, since that's
3819 the context we want to use. Just fudge our
3820 state and continue. */
3821 stop_signal = ecs->event_thread->suspend.stop_signal;
3822 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
3823 ecs->ptid = singlestep_ptid;
3824 ecs->event_thread = find_thread_ptid (ecs->ptid);
3825 ecs->event_thread->suspend.stop_signal = stop_signal;
3826 stop_pc = new_singlestep_pc;
3827 }
3828 else
3829 {
3830 if (debug_infrun)
3831 fprintf_unfiltered (gdb_stdlog,
3832 "infrun: unexpected thread\n");
3833
3834 thread_hop_needed = 1;
3835 stepping_past_singlestep_breakpoint = 1;
3836 saved_singlestep_ptid = singlestep_ptid;
3837 }
3838 }
3839 }
3840
3841 if (thread_hop_needed)
3842 {
3843 struct regcache *thread_regcache;
3844 int remove_status = 0;
3845
3846 if (debug_infrun)
3847 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
3848
3849 /* Switch context before touching inferior memory, the
3850 previous thread may have exited. */
3851 if (!ptid_equal (inferior_ptid, ecs->ptid))
3852 context_switch (ecs->ptid);
3853
3854 /* Saw a breakpoint, but it was hit by the wrong thread.
3855 Just continue. */
3856
3857 if (singlestep_breakpoints_inserted_p)
3858 {
3859 /* Pull the single step breakpoints out of the target. */
3860 remove_single_step_breakpoints ();
3861 singlestep_breakpoints_inserted_p = 0;
3862 }
3863
3864 /* If the arch can displace step, don't remove the
3865 breakpoints. */
3866 thread_regcache = get_thread_regcache (ecs->ptid);
3867 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
3868 remove_status = remove_breakpoints ();
3869
3870 /* Did we fail to remove breakpoints? If so, try
3871 to set the PC past the bp. (There's at least
3872 one situation in which we can fail to remove
3873 the bp's: On HP-UX's that use ttrace, we can't
3874 change the address space of a vforking child
3875 process until the child exits (well, okay, not
3876 then either :-) or execs. */
3877 if (remove_status != 0)
3878 error (_("Cannot step over breakpoint hit in wrong thread"));
3879 else
3880 { /* Single step */
3881 if (!non_stop)
3882 {
3883 /* Only need to require the next event from this
3884 thread in all-stop mode. */
3885 waiton_ptid = ecs->ptid;
3886 infwait_state = infwait_thread_hop_state;
3887 }
3888
3889 ecs->event_thread->stepping_over_breakpoint = 1;
3890 keep_going (ecs);
3891 return;
3892 }
3893 }
3894 else if (singlestep_breakpoints_inserted_p)
3895 {
3896 ecs->random_signal = 0;
3897 }
3898 }
3899 else
3900 ecs->random_signal = 1;
3901
3902 /* See if something interesting happened to the non-current thread. If
3903 so, then switch to that thread. */
3904 if (!ptid_equal (ecs->ptid, inferior_ptid))
3905 {
3906 if (debug_infrun)
3907 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
3908
3909 context_switch (ecs->ptid);
3910
3911 if (deprecated_context_hook)
3912 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3913 }
3914
3915 /* At this point, get hold of the now-current thread's frame. */
3916 frame = get_current_frame ();
3917 gdbarch = get_frame_arch (frame);
3918
3919 if (singlestep_breakpoints_inserted_p)
3920 {
3921 /* Pull the single step breakpoints out of the target. */
3922 remove_single_step_breakpoints ();
3923 singlestep_breakpoints_inserted_p = 0;
3924 }
3925
3926 if (stepped_after_stopped_by_watchpoint)
3927 stopped_by_watchpoint = 0;
3928 else
3929 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3930
3931 /* If necessary, step over this watchpoint. We'll be back to display
3932 it in a moment. */
3933 if (stopped_by_watchpoint
3934 && (target_have_steppable_watchpoint
3935 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
3936 {
3937 /* At this point, we are stopped at an instruction which has
3938 attempted to write to a piece of memory under control of
3939 a watchpoint. The instruction hasn't actually executed
3940 yet. If we were to evaluate the watchpoint expression
3941 now, we would get the old value, and therefore no change
3942 would seem to have occurred.
3943
3944 In order to make watchpoints work `right', we really need
3945 to complete the memory write, and then evaluate the
3946 watchpoint expression. We do this by single-stepping the
3947 target.
3948
3949 It may not be necessary to disable the watchpoint to stop over
3950 it. For example, the PA can (with some kernel cooperation)
3951 single step over a watchpoint without disabling the watchpoint.
3952
3953 It is far more common to need to disable a watchpoint to step
3954 the inferior over it. If we have non-steppable watchpoints,
3955 we must disable the current watchpoint; it's simplest to
3956 disable all watchpoints and breakpoints. */
3957 int hw_step = 1;
3958
3959 if (!target_have_steppable_watchpoint)
3960 {
3961 remove_breakpoints ();
3962 /* See comment in resume why we need to stop bypassing signals
3963 while breakpoints have been removed. */
3964 target_pass_signals (0, NULL);
3965 }
3966 /* Single step */
3967 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
3968 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
3969 waiton_ptid = ecs->ptid;
3970 if (target_have_steppable_watchpoint)
3971 infwait_state = infwait_step_watch_state;
3972 else
3973 infwait_state = infwait_nonstep_watch_state;
3974 prepare_to_wait (ecs);
3975 return;
3976 }
3977
3978 clear_stop_func (ecs);
3979 ecs->event_thread->stepping_over_breakpoint = 0;
3980 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
3981 ecs->event_thread->control.stop_step = 0;
3982 stop_print_frame = 1;
3983 ecs->random_signal = 0;
3984 stopped_by_random_signal = 0;
3985
3986 /* Hide inlined functions starting here, unless we just performed stepi or
3987 nexti. After stepi and nexti, always show the innermost frame (not any
3988 inline function call sites). */
3989 if (ecs->event_thread->control.step_range_end != 1)
3990 skip_inline_frames (ecs->ptid);
3991
3992 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
3993 && ecs->event_thread->control.trap_expected
3994 && gdbarch_single_step_through_delay_p (gdbarch)
3995 && currently_stepping (ecs->event_thread))
3996 {
3997 /* We're trying to step off a breakpoint. Turns out that we're
3998 also on an instruction that needs to be stepped multiple
3999 times before it's been fully executing. E.g., architectures
4000 with a delay slot. It needs to be stepped twice, once for
4001 the instruction and once for the delay slot. */
4002 int step_through_delay
4003 = gdbarch_single_step_through_delay (gdbarch, frame);
4004
4005 if (debug_infrun && step_through_delay)
4006 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4007 if (ecs->event_thread->control.step_range_end == 0
4008 && step_through_delay)
4009 {
4010 /* The user issued a continue when stopped at a breakpoint.
4011 Set up for another trap and get out of here. */
4012 ecs->event_thread->stepping_over_breakpoint = 1;
4013 keep_going (ecs);
4014 return;
4015 }
4016 else if (step_through_delay)
4017 {
4018 /* The user issued a step when stopped at a breakpoint.
4019 Maybe we should stop, maybe we should not - the delay
4020 slot *might* correspond to a line of source. In any
4021 case, don't decide that here, just set
4022 ecs->stepping_over_breakpoint, making sure we
4023 single-step again before breakpoints are re-inserted. */
4024 ecs->event_thread->stepping_over_breakpoint = 1;
4025 }
4026 }
4027
4028 /* Look at the cause of the stop, and decide what to do.
4029 The alternatives are:
4030 1) stop_stepping and return; to really stop and return to the debugger,
4031 2) keep_going and return to start up again
4032 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
4033 3) set ecs->random_signal to 1, and the decision between 1 and 2
4034 will be made according to the signal handling tables. */
4035
4036 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4037 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
4038 || stop_soon == STOP_QUIETLY_REMOTE)
4039 {
4040 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4041 && stop_after_trap)
4042 {
4043 if (debug_infrun)
4044 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4045 stop_print_frame = 0;
4046 stop_stepping (ecs);
4047 return;
4048 }
4049
4050 /* This is originated from start_remote(), start_inferior() and
4051 shared libraries hook functions. */
4052 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4053 {
4054 if (debug_infrun)
4055 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4056 stop_stepping (ecs);
4057 return;
4058 }
4059
4060 /* This originates from attach_command(). We need to overwrite
4061 the stop_signal here, because some kernels don't ignore a
4062 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4063 See more comments in inferior.h. On the other hand, if we
4064 get a non-SIGSTOP, report it to the user - assume the backend
4065 will handle the SIGSTOP if it should show up later.
4066
4067 Also consider that the attach is complete when we see a
4068 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4069 target extended-remote report it instead of a SIGSTOP
4070 (e.g. gdbserver). We already rely on SIGTRAP being our
4071 signal, so this is no exception.
4072
4073 Also consider that the attach is complete when we see a
4074 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4075 the target to stop all threads of the inferior, in case the
4076 low level attach operation doesn't stop them implicitly. If
4077 they weren't stopped implicitly, then the stub will report a
4078 TARGET_SIGNAL_0, meaning: stopped for no particular reason
4079 other than GDB's request. */
4080 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4081 && (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_STOP
4082 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4083 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_0))
4084 {
4085 stop_stepping (ecs);
4086 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
4087 return;
4088 }
4089
4090 /* See if there is a breakpoint at the current PC. */
4091 ecs->event_thread->control.stop_bpstat
4092 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4093 stop_pc, ecs->ptid);
4094
4095 /* Following in case break condition called a
4096 function. */
4097 stop_print_frame = 1;
4098
4099 /* This is where we handle "moribund" watchpoints. Unlike
4100 software breakpoints traps, hardware watchpoint traps are
4101 always distinguishable from random traps. If no high-level
4102 watchpoint is associated with the reported stop data address
4103 anymore, then the bpstat does not explain the signal ---
4104 simply make sure to ignore it if `stopped_by_watchpoint' is
4105 set. */
4106
4107 if (debug_infrun
4108 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4109 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4110 && stopped_by_watchpoint)
4111 fprintf_unfiltered (gdb_stdlog,
4112 "infrun: no user watchpoint explains "
4113 "watchpoint SIGTRAP, ignoring\n");
4114
4115 /* NOTE: cagney/2003-03-29: These two checks for a random signal
4116 at one stage in the past included checks for an inferior
4117 function call's call dummy's return breakpoint. The original
4118 comment, that went with the test, read:
4119
4120 ``End of a stack dummy. Some systems (e.g. Sony news) give
4121 another signal besides SIGTRAP, so check here as well as
4122 above.''
4123
4124 If someone ever tries to get call dummys on a
4125 non-executable stack to work (where the target would stop
4126 with something like a SIGSEGV), then those tests might need
4127 to be re-instated. Given, however, that the tests were only
4128 enabled when momentary breakpoints were not being used, I
4129 suspect that it won't be the case.
4130
4131 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4132 be necessary for call dummies on a non-executable stack on
4133 SPARC. */
4134
4135 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
4136 ecs->random_signal
4137 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4138 || stopped_by_watchpoint
4139 || ecs->event_thread->control.trap_expected
4140 || (ecs->event_thread->control.step_range_end
4141 && (ecs->event_thread->control.step_resume_breakpoint
4142 == NULL)));
4143 else
4144 {
4145 ecs->random_signal = !bpstat_explains_signal
4146 (ecs->event_thread->control.stop_bpstat);
4147 if (!ecs->random_signal)
4148 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
4149 }
4150 }
4151
4152 /* When we reach this point, we've pretty much decided
4153 that the reason for stopping must've been a random
4154 (unexpected) signal. */
4155
4156 else
4157 ecs->random_signal = 1;
4158
4159 process_event_stop_test:
4160
4161 /* Re-fetch current thread's frame in case we did a
4162 "goto process_event_stop_test" above. */
4163 frame = get_current_frame ();
4164 gdbarch = get_frame_arch (frame);
4165
4166 /* For the program's own signals, act according to
4167 the signal handling tables. */
4168
4169 if (ecs->random_signal)
4170 {
4171 /* Signal not for debugging purposes. */
4172 int printed = 0;
4173 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4174
4175 if (debug_infrun)
4176 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
4177 ecs->event_thread->suspend.stop_signal);
4178
4179 stopped_by_random_signal = 1;
4180
4181 if (signal_print[ecs->event_thread->suspend.stop_signal])
4182 {
4183 printed = 1;
4184 target_terminal_ours_for_output ();
4185 print_signal_received_reason
4186 (ecs->event_thread->suspend.stop_signal);
4187 }
4188 /* Always stop on signals if we're either just gaining control
4189 of the program, or the user explicitly requested this thread
4190 to remain stopped. */
4191 if (stop_soon != NO_STOP_QUIETLY
4192 || ecs->event_thread->stop_requested
4193 || (!inf->detaching
4194 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4195 {
4196 stop_stepping (ecs);
4197 return;
4198 }
4199 /* If not going to stop, give terminal back
4200 if we took it away. */
4201 else if (printed)
4202 target_terminal_inferior ();
4203
4204 /* Clear the signal if it should not be passed. */
4205 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4206 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
4207
4208 if (ecs->event_thread->prev_pc == stop_pc
4209 && ecs->event_thread->control.trap_expected
4210 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4211 {
4212 /* We were just starting a new sequence, attempting to
4213 single-step off of a breakpoint and expecting a SIGTRAP.
4214 Instead this signal arrives. This signal will take us out
4215 of the stepping range so GDB needs to remember to, when
4216 the signal handler returns, resume stepping off that
4217 breakpoint. */
4218 /* To simplify things, "continue" is forced to use the same
4219 code paths as single-step - set a breakpoint at the
4220 signal return address and then, once hit, step off that
4221 breakpoint. */
4222 if (debug_infrun)
4223 fprintf_unfiltered (gdb_stdlog,
4224 "infrun: signal arrived while stepping over "
4225 "breakpoint\n");
4226
4227 insert_hp_step_resume_breakpoint_at_frame (frame);
4228 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4229 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4230 ecs->event_thread->control.trap_expected = 0;
4231 keep_going (ecs);
4232 return;
4233 }
4234
4235 if (ecs->event_thread->control.step_range_end != 0
4236 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_0
4237 && (ecs->event_thread->control.step_range_start <= stop_pc
4238 && stop_pc < ecs->event_thread->control.step_range_end)
4239 && frame_id_eq (get_stack_frame_id (frame),
4240 ecs->event_thread->control.step_stack_frame_id)
4241 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4242 {
4243 /* The inferior is about to take a signal that will take it
4244 out of the single step range. Set a breakpoint at the
4245 current PC (which is presumably where the signal handler
4246 will eventually return) and then allow the inferior to
4247 run free.
4248
4249 Note that this is only needed for a signal delivered
4250 while in the single-step range. Nested signals aren't a
4251 problem as they eventually all return. */
4252 if (debug_infrun)
4253 fprintf_unfiltered (gdb_stdlog,
4254 "infrun: signal may take us out of "
4255 "single-step range\n");
4256
4257 insert_hp_step_resume_breakpoint_at_frame (frame);
4258 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4259 ecs->event_thread->control.trap_expected = 0;
4260 keep_going (ecs);
4261 return;
4262 }
4263
4264 /* Note: step_resume_breakpoint may be non-NULL. This occures
4265 when either there's a nested signal, or when there's a
4266 pending signal enabled just as the signal handler returns
4267 (leaving the inferior at the step-resume-breakpoint without
4268 actually executing it). Either way continue until the
4269 breakpoint is really hit. */
4270 keep_going (ecs);
4271 return;
4272 }
4273
4274 /* Handle cases caused by hitting a breakpoint. */
4275 {
4276 CORE_ADDR jmp_buf_pc;
4277 struct bpstat_what what;
4278
4279 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4280
4281 if (what.call_dummy)
4282 {
4283 stop_stack_dummy = what.call_dummy;
4284 }
4285
4286 /* If we hit an internal event that triggers symbol changes, the
4287 current frame will be invalidated within bpstat_what (e.g., if
4288 we hit an internal solib event). Re-fetch it. */
4289 frame = get_current_frame ();
4290 gdbarch = get_frame_arch (frame);
4291
4292 switch (what.main_action)
4293 {
4294 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4295 /* If we hit the breakpoint at longjmp while stepping, we
4296 install a momentary breakpoint at the target of the
4297 jmp_buf. */
4298
4299 if (debug_infrun)
4300 fprintf_unfiltered (gdb_stdlog,
4301 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4302
4303 ecs->event_thread->stepping_over_breakpoint = 1;
4304
4305 if (what.is_longjmp)
4306 {
4307 if (!gdbarch_get_longjmp_target_p (gdbarch)
4308 || !gdbarch_get_longjmp_target (gdbarch,
4309 frame, &jmp_buf_pc))
4310 {
4311 if (debug_infrun)
4312 fprintf_unfiltered (gdb_stdlog,
4313 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4314 "(!gdbarch_get_longjmp_target)\n");
4315 keep_going (ecs);
4316 return;
4317 }
4318
4319 /* We're going to replace the current step-resume breakpoint
4320 with a longjmp-resume breakpoint. */
4321 delete_step_resume_breakpoint (ecs->event_thread);
4322
4323 /* Insert a breakpoint at resume address. */
4324 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4325 }
4326 else
4327 {
4328 struct symbol *func = get_frame_function (frame);
4329
4330 if (func)
4331 check_exception_resume (ecs, frame, func);
4332 }
4333 keep_going (ecs);
4334 return;
4335
4336 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4337 if (debug_infrun)
4338 fprintf_unfiltered (gdb_stdlog,
4339 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4340
4341 if (what.is_longjmp)
4342 {
4343 gdb_assert (ecs->event_thread->control.step_resume_breakpoint
4344 != NULL);
4345 delete_step_resume_breakpoint (ecs->event_thread);
4346 }
4347 else
4348 {
4349 /* There are several cases to consider.
4350
4351 1. The initiating frame no longer exists. In this case
4352 we must stop, because the exception has gone too far.
4353
4354 2. The initiating frame exists, and is the same as the
4355 current frame. We stop, because the exception has been
4356 caught.
4357
4358 3. The initiating frame exists and is different from
4359 the current frame. This means the exception has been
4360 caught beneath the initiating frame, so keep going. */
4361 struct frame_info *init_frame
4362 = frame_find_by_id (ecs->event_thread->initiating_frame);
4363
4364 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4365 != NULL);
4366 delete_exception_resume_breakpoint (ecs->event_thread);
4367
4368 if (init_frame)
4369 {
4370 struct frame_id current_id
4371 = get_frame_id (get_current_frame ());
4372 if (frame_id_eq (current_id,
4373 ecs->event_thread->initiating_frame))
4374 {
4375 /* Case 2. Fall through. */
4376 }
4377 else
4378 {
4379 /* Case 3. */
4380 keep_going (ecs);
4381 return;
4382 }
4383 }
4384
4385 /* For Cases 1 and 2, remove the step-resume breakpoint,
4386 if it exists. */
4387 delete_step_resume_breakpoint (ecs->event_thread);
4388 }
4389
4390 ecs->event_thread->control.stop_step = 1;
4391 print_end_stepping_range_reason ();
4392 stop_stepping (ecs);
4393 return;
4394
4395 case BPSTAT_WHAT_SINGLE:
4396 if (debug_infrun)
4397 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4398 ecs->event_thread->stepping_over_breakpoint = 1;
4399 /* Still need to check other stuff, at least the case
4400 where we are stepping and step out of the right range. */
4401 break;
4402
4403 case BPSTAT_WHAT_STEP_RESUME:
4404 if (debug_infrun)
4405 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4406
4407 delete_step_resume_breakpoint (ecs->event_thread);
4408 if (ecs->event_thread->control.proceed_to_finish
4409 && execution_direction == EXEC_REVERSE)
4410 {
4411 struct thread_info *tp = ecs->event_thread;
4412
4413 /* We are finishing a function in reverse, and just hit
4414 the step-resume breakpoint at the start address of the
4415 function, and we're almost there -- just need to back
4416 up by one more single-step, which should take us back
4417 to the function call. */
4418 tp->control.step_range_start = tp->control.step_range_end = 1;
4419 keep_going (ecs);
4420 return;
4421 }
4422 fill_in_stop_func (gdbarch, ecs);
4423 if (stop_pc == ecs->stop_func_start
4424 && execution_direction == EXEC_REVERSE)
4425 {
4426 /* We are stepping over a function call in reverse, and
4427 just hit the step-resume breakpoint at the start
4428 address of the function. Go back to single-stepping,
4429 which should take us back to the function call. */
4430 ecs->event_thread->stepping_over_breakpoint = 1;
4431 keep_going (ecs);
4432 return;
4433 }
4434 break;
4435
4436 case BPSTAT_WHAT_STOP_NOISY:
4437 if (debug_infrun)
4438 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4439 stop_print_frame = 1;
4440
4441 /* We are about to nuke the step_resume_breakpointt via the
4442 cleanup chain, so no need to worry about it here. */
4443
4444 stop_stepping (ecs);
4445 return;
4446
4447 case BPSTAT_WHAT_STOP_SILENT:
4448 if (debug_infrun)
4449 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4450 stop_print_frame = 0;
4451
4452 /* We are about to nuke the step_resume_breakpoin via the
4453 cleanup chain, so no need to worry about it here. */
4454
4455 stop_stepping (ecs);
4456 return;
4457
4458 case BPSTAT_WHAT_HP_STEP_RESUME:
4459 if (debug_infrun)
4460 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4461
4462 delete_step_resume_breakpoint (ecs->event_thread);
4463 if (ecs->event_thread->step_after_step_resume_breakpoint)
4464 {
4465 /* Back when the step-resume breakpoint was inserted, we
4466 were trying to single-step off a breakpoint. Go back
4467 to doing that. */
4468 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4469 ecs->event_thread->stepping_over_breakpoint = 1;
4470 keep_going (ecs);
4471 return;
4472 }
4473 break;
4474
4475 case BPSTAT_WHAT_KEEP_CHECKING:
4476 break;
4477 }
4478 }
4479
4480 /* We come here if we hit a breakpoint but should not
4481 stop for it. Possibly we also were stepping
4482 and should stop for that. So fall through and
4483 test for stepping. But, if not stepping,
4484 do not stop. */
4485
4486 /* In all-stop mode, if we're currently stepping but have stopped in
4487 some other thread, we need to switch back to the stepped thread. */
4488 if (!non_stop)
4489 {
4490 struct thread_info *tp;
4491
4492 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
4493 ecs->event_thread);
4494 if (tp)
4495 {
4496 /* However, if the current thread is blocked on some internal
4497 breakpoint, and we simply need to step over that breakpoint
4498 to get it going again, do that first. */
4499 if ((ecs->event_thread->control.trap_expected
4500 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
4501 || ecs->event_thread->stepping_over_breakpoint)
4502 {
4503 keep_going (ecs);
4504 return;
4505 }
4506
4507 /* If the stepping thread exited, then don't try to switch
4508 back and resume it, which could fail in several different
4509 ways depending on the target. Instead, just keep going.
4510
4511 We can find a stepping dead thread in the thread list in
4512 two cases:
4513
4514 - The target supports thread exit events, and when the
4515 target tries to delete the thread from the thread list,
4516 inferior_ptid pointed at the exiting thread. In such
4517 case, calling delete_thread does not really remove the
4518 thread from the list; instead, the thread is left listed,
4519 with 'exited' state.
4520
4521 - The target's debug interface does not support thread
4522 exit events, and so we have no idea whatsoever if the
4523 previously stepping thread is still alive. For that
4524 reason, we need to synchronously query the target
4525 now. */
4526 if (is_exited (tp->ptid)
4527 || !target_thread_alive (tp->ptid))
4528 {
4529 if (debug_infrun)
4530 fprintf_unfiltered (gdb_stdlog,
4531 "infrun: not switching back to "
4532 "stepped thread, it has vanished\n");
4533
4534 delete_thread (tp->ptid);
4535 keep_going (ecs);
4536 return;
4537 }
4538
4539 /* Otherwise, we no longer expect a trap in the current thread.
4540 Clear the trap_expected flag before switching back -- this is
4541 what keep_going would do as well, if we called it. */
4542 ecs->event_thread->control.trap_expected = 0;
4543
4544 if (debug_infrun)
4545 fprintf_unfiltered (gdb_stdlog,
4546 "infrun: switching back to stepped thread\n");
4547
4548 ecs->event_thread = tp;
4549 ecs->ptid = tp->ptid;
4550 context_switch (ecs->ptid);
4551 keep_going (ecs);
4552 return;
4553 }
4554 }
4555
4556 /* Are we stepping to get the inferior out of the dynamic linker's
4557 hook (and possibly the dld itself) after catching a shlib
4558 event? */
4559 if (ecs->event_thread->stepping_through_solib_after_catch)
4560 {
4561 #if defined(SOLIB_ADD)
4562 /* Have we reached our destination? If not, keep going. */
4563 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
4564 {
4565 if (debug_infrun)
4566 fprintf_unfiltered (gdb_stdlog,
4567 "infrun: stepping in dynamic linker\n");
4568 ecs->event_thread->stepping_over_breakpoint = 1;
4569 keep_going (ecs);
4570 return;
4571 }
4572 #endif
4573 if (debug_infrun)
4574 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
4575 /* Else, stop and report the catchpoint(s) whose triggering
4576 caused us to begin stepping. */
4577 ecs->event_thread->stepping_through_solib_after_catch = 0;
4578 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4579 ecs->event_thread->control.stop_bpstat
4580 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
4581 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
4582 stop_print_frame = 1;
4583 stop_stepping (ecs);
4584 return;
4585 }
4586
4587 if (ecs->event_thread->control.step_resume_breakpoint)
4588 {
4589 if (debug_infrun)
4590 fprintf_unfiltered (gdb_stdlog,
4591 "infrun: step-resume breakpoint is inserted\n");
4592
4593 /* Having a step-resume breakpoint overrides anything
4594 else having to do with stepping commands until
4595 that breakpoint is reached. */
4596 keep_going (ecs);
4597 return;
4598 }
4599
4600 if (ecs->event_thread->control.step_range_end == 0)
4601 {
4602 if (debug_infrun)
4603 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4604 /* Likewise if we aren't even stepping. */
4605 keep_going (ecs);
4606 return;
4607 }
4608
4609 /* Re-fetch current thread's frame in case the code above caused
4610 the frame cache to be re-initialized, making our FRAME variable
4611 a dangling pointer. */
4612 frame = get_current_frame ();
4613 gdbarch = get_frame_arch (frame);
4614 fill_in_stop_func (gdbarch, ecs);
4615
4616 /* If stepping through a line, keep going if still within it.
4617
4618 Note that step_range_end is the address of the first instruction
4619 beyond the step range, and NOT the address of the last instruction
4620 within it!
4621
4622 Note also that during reverse execution, we may be stepping
4623 through a function epilogue and therefore must detect when
4624 the current-frame changes in the middle of a line. */
4625
4626 if (stop_pc >= ecs->event_thread->control.step_range_start
4627 && stop_pc < ecs->event_thread->control.step_range_end
4628 && (execution_direction != EXEC_REVERSE
4629 || frame_id_eq (get_frame_id (frame),
4630 ecs->event_thread->control.step_frame_id)))
4631 {
4632 if (debug_infrun)
4633 fprintf_unfiltered
4634 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4635 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4636 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4637
4638 /* When stepping backward, stop at beginning of line range
4639 (unless it's the function entry point, in which case
4640 keep going back to the call point). */
4641 if (stop_pc == ecs->event_thread->control.step_range_start
4642 && stop_pc != ecs->stop_func_start
4643 && execution_direction == EXEC_REVERSE)
4644 {
4645 ecs->event_thread->control.stop_step = 1;
4646 print_end_stepping_range_reason ();
4647 stop_stepping (ecs);
4648 }
4649 else
4650 keep_going (ecs);
4651
4652 return;
4653 }
4654
4655 /* We stepped out of the stepping range. */
4656
4657 /* If we are stepping at the source level and entered the runtime
4658 loader dynamic symbol resolution code...
4659
4660 EXEC_FORWARD: we keep on single stepping until we exit the run
4661 time loader code and reach the callee's address.
4662
4663 EXEC_REVERSE: we've already executed the callee (backward), and
4664 the runtime loader code is handled just like any other
4665 undebuggable function call. Now we need only keep stepping
4666 backward through the trampoline code, and that's handled further
4667 down, so there is nothing for us to do here. */
4668
4669 if (execution_direction != EXEC_REVERSE
4670 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4671 && in_solib_dynsym_resolve_code (stop_pc))
4672 {
4673 CORE_ADDR pc_after_resolver =
4674 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4675
4676 if (debug_infrun)
4677 fprintf_unfiltered (gdb_stdlog,
4678 "infrun: stepped into dynsym resolve code\n");
4679
4680 if (pc_after_resolver)
4681 {
4682 /* Set up a step-resume breakpoint at the address
4683 indicated by SKIP_SOLIB_RESOLVER. */
4684 struct symtab_and_line sr_sal;
4685
4686 init_sal (&sr_sal);
4687 sr_sal.pc = pc_after_resolver;
4688 sr_sal.pspace = get_frame_program_space (frame);
4689
4690 insert_step_resume_breakpoint_at_sal (gdbarch,
4691 sr_sal, null_frame_id);
4692 }
4693
4694 keep_going (ecs);
4695 return;
4696 }
4697
4698 if (ecs->event_thread->control.step_range_end != 1
4699 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4700 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4701 && get_frame_type (frame) == SIGTRAMP_FRAME)
4702 {
4703 if (debug_infrun)
4704 fprintf_unfiltered (gdb_stdlog,
4705 "infrun: stepped into signal trampoline\n");
4706 /* The inferior, while doing a "step" or "next", has ended up in
4707 a signal trampoline (either by a signal being delivered or by
4708 the signal handler returning). Just single-step until the
4709 inferior leaves the trampoline (either by calling the handler
4710 or returning). */
4711 keep_going (ecs);
4712 return;
4713 }
4714
4715 /* Check for subroutine calls. The check for the current frame
4716 equalling the step ID is not necessary - the check of the
4717 previous frame's ID is sufficient - but it is a common case and
4718 cheaper than checking the previous frame's ID.
4719
4720 NOTE: frame_id_eq will never report two invalid frame IDs as
4721 being equal, so to get into this block, both the current and
4722 previous frame must have valid frame IDs. */
4723 /* The outer_frame_id check is a heuristic to detect stepping
4724 through startup code. If we step over an instruction which
4725 sets the stack pointer from an invalid value to a valid value,
4726 we may detect that as a subroutine call from the mythical
4727 "outermost" function. This could be fixed by marking
4728 outermost frames as !stack_p,code_p,special_p. Then the
4729 initial outermost frame, before sp was valid, would
4730 have code_addr == &_start. See the comment in frame_id_eq
4731 for more. */
4732 if (!frame_id_eq (get_stack_frame_id (frame),
4733 ecs->event_thread->control.step_stack_frame_id)
4734 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4735 ecs->event_thread->control.step_stack_frame_id)
4736 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4737 outer_frame_id)
4738 || step_start_function != find_pc_function (stop_pc))))
4739 {
4740 CORE_ADDR real_stop_pc;
4741
4742 if (debug_infrun)
4743 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4744
4745 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4746 || ((ecs->event_thread->control.step_range_end == 1)
4747 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4748 ecs->stop_func_start)))
4749 {
4750 /* I presume that step_over_calls is only 0 when we're
4751 supposed to be stepping at the assembly language level
4752 ("stepi"). Just stop. */
4753 /* Also, maybe we just did a "nexti" inside a prolog, so we
4754 thought it was a subroutine call but it was not. Stop as
4755 well. FENN */
4756 /* And this works the same backward as frontward. MVS */
4757 ecs->event_thread->control.stop_step = 1;
4758 print_end_stepping_range_reason ();
4759 stop_stepping (ecs);
4760 return;
4761 }
4762
4763 /* Reverse stepping through solib trampolines. */
4764
4765 if (execution_direction == EXEC_REVERSE
4766 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
4767 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4768 || (ecs->stop_func_start == 0
4769 && in_solib_dynsym_resolve_code (stop_pc))))
4770 {
4771 /* Any solib trampoline code can be handled in reverse
4772 by simply continuing to single-step. We have already
4773 executed the solib function (backwards), and a few
4774 steps will take us back through the trampoline to the
4775 caller. */
4776 keep_going (ecs);
4777 return;
4778 }
4779
4780 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4781 {
4782 /* We're doing a "next".
4783
4784 Normal (forward) execution: set a breakpoint at the
4785 callee's return address (the address at which the caller
4786 will resume).
4787
4788 Reverse (backward) execution. set the step-resume
4789 breakpoint at the start of the function that we just
4790 stepped into (backwards), and continue to there. When we
4791 get there, we'll need to single-step back to the caller. */
4792
4793 if (execution_direction == EXEC_REVERSE)
4794 {
4795 struct symtab_and_line sr_sal;
4796
4797 /* Normal function call return (static or dynamic). */
4798 init_sal (&sr_sal);
4799 sr_sal.pc = ecs->stop_func_start;
4800 sr_sal.pspace = get_frame_program_space (frame);
4801 insert_step_resume_breakpoint_at_sal (gdbarch,
4802 sr_sal, null_frame_id);
4803 }
4804 else
4805 insert_step_resume_breakpoint_at_caller (frame);
4806
4807 keep_going (ecs);
4808 return;
4809 }
4810
4811 /* If we are in a function call trampoline (a stub between the
4812 calling routine and the real function), locate the real
4813 function. That's what tells us (a) whether we want to step
4814 into it at all, and (b) what prologue we want to run to the
4815 end of, if we do step into it. */
4816 real_stop_pc = skip_language_trampoline (frame, stop_pc);
4817 if (real_stop_pc == 0)
4818 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4819 if (real_stop_pc != 0)
4820 ecs->stop_func_start = real_stop_pc;
4821
4822 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4823 {
4824 struct symtab_and_line sr_sal;
4825
4826 init_sal (&sr_sal);
4827 sr_sal.pc = ecs->stop_func_start;
4828 sr_sal.pspace = get_frame_program_space (frame);
4829
4830 insert_step_resume_breakpoint_at_sal (gdbarch,
4831 sr_sal, null_frame_id);
4832 keep_going (ecs);
4833 return;
4834 }
4835
4836 /* If we have line number information for the function we are
4837 thinking of stepping into, step into it.
4838
4839 If there are several symtabs at that PC (e.g. with include
4840 files), just want to know whether *any* of them have line
4841 numbers. find_pc_line handles this. */
4842 {
4843 struct symtab_and_line tmp_sal;
4844
4845 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4846 if (tmp_sal.line != 0)
4847 {
4848 if (execution_direction == EXEC_REVERSE)
4849 handle_step_into_function_backward (gdbarch, ecs);
4850 else
4851 handle_step_into_function (gdbarch, ecs);
4852 return;
4853 }
4854 }
4855
4856 /* If we have no line number and the step-stop-if-no-debug is
4857 set, we stop the step so that the user has a chance to switch
4858 in assembly mode. */
4859 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4860 && step_stop_if_no_debug)
4861 {
4862 ecs->event_thread->control.stop_step = 1;
4863 print_end_stepping_range_reason ();
4864 stop_stepping (ecs);
4865 return;
4866 }
4867
4868 if (execution_direction == EXEC_REVERSE)
4869 {
4870 /* Set a breakpoint at callee's start address.
4871 From there we can step once and be back in the caller. */
4872 struct symtab_and_line sr_sal;
4873
4874 init_sal (&sr_sal);
4875 sr_sal.pc = ecs->stop_func_start;
4876 sr_sal.pspace = get_frame_program_space (frame);
4877 insert_step_resume_breakpoint_at_sal (gdbarch,
4878 sr_sal, null_frame_id);
4879 }
4880 else
4881 /* Set a breakpoint at callee's return address (the address
4882 at which the caller will resume). */
4883 insert_step_resume_breakpoint_at_caller (frame);
4884
4885 keep_going (ecs);
4886 return;
4887 }
4888
4889 /* Reverse stepping through solib trampolines. */
4890
4891 if (execution_direction == EXEC_REVERSE
4892 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4893 {
4894 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4895 || (ecs->stop_func_start == 0
4896 && in_solib_dynsym_resolve_code (stop_pc)))
4897 {
4898 /* Any solib trampoline code can be handled in reverse
4899 by simply continuing to single-step. We have already
4900 executed the solib function (backwards), and a few
4901 steps will take us back through the trampoline to the
4902 caller. */
4903 keep_going (ecs);
4904 return;
4905 }
4906 else if (in_solib_dynsym_resolve_code (stop_pc))
4907 {
4908 /* Stepped backward into the solib dynsym resolver.
4909 Set a breakpoint at its start and continue, then
4910 one more step will take us out. */
4911 struct symtab_and_line sr_sal;
4912
4913 init_sal (&sr_sal);
4914 sr_sal.pc = ecs->stop_func_start;
4915 sr_sal.pspace = get_frame_program_space (frame);
4916 insert_step_resume_breakpoint_at_sal (gdbarch,
4917 sr_sal, null_frame_id);
4918 keep_going (ecs);
4919 return;
4920 }
4921 }
4922
4923 /* If we're in the return path from a shared library trampoline,
4924 we want to proceed through the trampoline when stepping. */
4925 if (gdbarch_in_solib_return_trampoline (gdbarch,
4926 stop_pc, ecs->stop_func_name))
4927 {
4928 /* Determine where this trampoline returns. */
4929 CORE_ADDR real_stop_pc;
4930
4931 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4932
4933 if (debug_infrun)
4934 fprintf_unfiltered (gdb_stdlog,
4935 "infrun: stepped into solib return tramp\n");
4936
4937 /* Only proceed through if we know where it's going. */
4938 if (real_stop_pc)
4939 {
4940 /* And put the step-breakpoint there and go until there. */
4941 struct symtab_and_line sr_sal;
4942
4943 init_sal (&sr_sal); /* initialize to zeroes */
4944 sr_sal.pc = real_stop_pc;
4945 sr_sal.section = find_pc_overlay (sr_sal.pc);
4946 sr_sal.pspace = get_frame_program_space (frame);
4947
4948 /* Do not specify what the fp should be when we stop since
4949 on some machines the prologue is where the new fp value
4950 is established. */
4951 insert_step_resume_breakpoint_at_sal (gdbarch,
4952 sr_sal, null_frame_id);
4953
4954 /* Restart without fiddling with the step ranges or
4955 other state. */
4956 keep_going (ecs);
4957 return;
4958 }
4959 }
4960
4961 stop_pc_sal = find_pc_line (stop_pc, 0);
4962
4963 /* NOTE: tausq/2004-05-24: This if block used to be done before all
4964 the trampoline processing logic, however, there are some trampolines
4965 that have no names, so we should do trampoline handling first. */
4966 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4967 && ecs->stop_func_name == NULL
4968 && stop_pc_sal.line == 0)
4969 {
4970 if (debug_infrun)
4971 fprintf_unfiltered (gdb_stdlog,
4972 "infrun: stepped into undebuggable function\n");
4973
4974 /* The inferior just stepped into, or returned to, an
4975 undebuggable function (where there is no debugging information
4976 and no line number corresponding to the address where the
4977 inferior stopped). Since we want to skip this kind of code,
4978 we keep going until the inferior returns from this
4979 function - unless the user has asked us not to (via
4980 set step-mode) or we no longer know how to get back
4981 to the call site. */
4982 if (step_stop_if_no_debug
4983 || !frame_id_p (frame_unwind_caller_id (frame)))
4984 {
4985 /* If we have no line number and the step-stop-if-no-debug
4986 is set, we stop the step so that the user has a chance to
4987 switch in assembly mode. */
4988 ecs->event_thread->control.stop_step = 1;
4989 print_end_stepping_range_reason ();
4990 stop_stepping (ecs);
4991 return;
4992 }
4993 else
4994 {
4995 /* Set a breakpoint at callee's return address (the address
4996 at which the caller will resume). */
4997 insert_step_resume_breakpoint_at_caller (frame);
4998 keep_going (ecs);
4999 return;
5000 }
5001 }
5002
5003 if (ecs->event_thread->control.step_range_end == 1)
5004 {
5005 /* It is stepi or nexti. We always want to stop stepping after
5006 one instruction. */
5007 if (debug_infrun)
5008 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
5009 ecs->event_thread->control.stop_step = 1;
5010 print_end_stepping_range_reason ();
5011 stop_stepping (ecs);
5012 return;
5013 }
5014
5015 if (stop_pc_sal.line == 0)
5016 {
5017 /* We have no line number information. That means to stop
5018 stepping (does this always happen right after one instruction,
5019 when we do "s" in a function with no line numbers,
5020 or can this happen as a result of a return or longjmp?). */
5021 if (debug_infrun)
5022 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
5023 ecs->event_thread->control.stop_step = 1;
5024 print_end_stepping_range_reason ();
5025 stop_stepping (ecs);
5026 return;
5027 }
5028
5029 /* Look for "calls" to inlined functions, part one. If the inline
5030 frame machinery detected some skipped call sites, we have entered
5031 a new inline function. */
5032
5033 if (frame_id_eq (get_frame_id (get_current_frame ()),
5034 ecs->event_thread->control.step_frame_id)
5035 && inline_skipped_frames (ecs->ptid))
5036 {
5037 struct symtab_and_line call_sal;
5038
5039 if (debug_infrun)
5040 fprintf_unfiltered (gdb_stdlog,
5041 "infrun: stepped into inlined function\n");
5042
5043 find_frame_sal (get_current_frame (), &call_sal);
5044
5045 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5046 {
5047 /* For "step", we're going to stop. But if the call site
5048 for this inlined function is on the same source line as
5049 we were previously stepping, go down into the function
5050 first. Otherwise stop at the call site. */
5051
5052 if (call_sal.line == ecs->event_thread->current_line
5053 && call_sal.symtab == ecs->event_thread->current_symtab)
5054 step_into_inline_frame (ecs->ptid);
5055
5056 ecs->event_thread->control.stop_step = 1;
5057 print_end_stepping_range_reason ();
5058 stop_stepping (ecs);
5059 return;
5060 }
5061 else
5062 {
5063 /* For "next", we should stop at the call site if it is on a
5064 different source line. Otherwise continue through the
5065 inlined function. */
5066 if (call_sal.line == ecs->event_thread->current_line
5067 && call_sal.symtab == ecs->event_thread->current_symtab)
5068 keep_going (ecs);
5069 else
5070 {
5071 ecs->event_thread->control.stop_step = 1;
5072 print_end_stepping_range_reason ();
5073 stop_stepping (ecs);
5074 }
5075 return;
5076 }
5077 }
5078
5079 /* Look for "calls" to inlined functions, part two. If we are still
5080 in the same real function we were stepping through, but we have
5081 to go further up to find the exact frame ID, we are stepping
5082 through a more inlined call beyond its call site. */
5083
5084 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5085 && !frame_id_eq (get_frame_id (get_current_frame ()),
5086 ecs->event_thread->control.step_frame_id)
5087 && stepped_in_from (get_current_frame (),
5088 ecs->event_thread->control.step_frame_id))
5089 {
5090 if (debug_infrun)
5091 fprintf_unfiltered (gdb_stdlog,
5092 "infrun: stepping through inlined function\n");
5093
5094 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5095 keep_going (ecs);
5096 else
5097 {
5098 ecs->event_thread->control.stop_step = 1;
5099 print_end_stepping_range_reason ();
5100 stop_stepping (ecs);
5101 }
5102 return;
5103 }
5104
5105 if ((stop_pc == stop_pc_sal.pc)
5106 && (ecs->event_thread->current_line != stop_pc_sal.line
5107 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5108 {
5109 /* We are at the start of a different line. So stop. Note that
5110 we don't stop if we step into the middle of a different line.
5111 That is said to make things like for (;;) statements work
5112 better. */
5113 if (debug_infrun)
5114 fprintf_unfiltered (gdb_stdlog,
5115 "infrun: stepped to a different line\n");
5116 ecs->event_thread->control.stop_step = 1;
5117 print_end_stepping_range_reason ();
5118 stop_stepping (ecs);
5119 return;
5120 }
5121
5122 /* We aren't done stepping.
5123
5124 Optimize by setting the stepping range to the line.
5125 (We might not be in the original line, but if we entered a
5126 new line in mid-statement, we continue stepping. This makes
5127 things like for(;;) statements work better.) */
5128
5129 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5130 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5131 set_step_info (frame, stop_pc_sal);
5132
5133 if (debug_infrun)
5134 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5135 keep_going (ecs);
5136 }
5137
5138 /* Is thread TP in the middle of single-stepping? */
5139
5140 static int
5141 currently_stepping (struct thread_info *tp)
5142 {
5143 return ((tp->control.step_range_end
5144 && tp->control.step_resume_breakpoint == NULL)
5145 || tp->control.trap_expected
5146 || tp->stepping_through_solib_after_catch
5147 || bpstat_should_step ());
5148 }
5149
5150 /* Returns true if any thread *but* the one passed in "data" is in the
5151 middle of stepping or of handling a "next". */
5152
5153 static int
5154 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
5155 {
5156 if (tp == data)
5157 return 0;
5158
5159 return (tp->control.step_range_end
5160 || tp->control.trap_expected
5161 || tp->stepping_through_solib_after_catch);
5162 }
5163
5164 /* Inferior has stepped into a subroutine call with source code that
5165 we should not step over. Do step to the first line of code in
5166 it. */
5167
5168 static void
5169 handle_step_into_function (struct gdbarch *gdbarch,
5170 struct execution_control_state *ecs)
5171 {
5172 struct symtab *s;
5173 struct symtab_and_line stop_func_sal, sr_sal;
5174
5175 fill_in_stop_func (gdbarch, ecs);
5176
5177 s = find_pc_symtab (stop_pc);
5178 if (s && s->language != language_asm)
5179 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5180 ecs->stop_func_start);
5181
5182 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5183 /* Use the step_resume_break to step until the end of the prologue,
5184 even if that involves jumps (as it seems to on the vax under
5185 4.2). */
5186 /* If the prologue ends in the middle of a source line, continue to
5187 the end of that source line (if it is still within the function).
5188 Otherwise, just go to end of prologue. */
5189 if (stop_func_sal.end
5190 && stop_func_sal.pc != ecs->stop_func_start
5191 && stop_func_sal.end < ecs->stop_func_end)
5192 ecs->stop_func_start = stop_func_sal.end;
5193
5194 /* Architectures which require breakpoint adjustment might not be able
5195 to place a breakpoint at the computed address. If so, the test
5196 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5197 ecs->stop_func_start to an address at which a breakpoint may be
5198 legitimately placed.
5199
5200 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5201 made, GDB will enter an infinite loop when stepping through
5202 optimized code consisting of VLIW instructions which contain
5203 subinstructions corresponding to different source lines. On
5204 FR-V, it's not permitted to place a breakpoint on any but the
5205 first subinstruction of a VLIW instruction. When a breakpoint is
5206 set, GDB will adjust the breakpoint address to the beginning of
5207 the VLIW instruction. Thus, we need to make the corresponding
5208 adjustment here when computing the stop address. */
5209
5210 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5211 {
5212 ecs->stop_func_start
5213 = gdbarch_adjust_breakpoint_address (gdbarch,
5214 ecs->stop_func_start);
5215 }
5216
5217 if (ecs->stop_func_start == stop_pc)
5218 {
5219 /* We are already there: stop now. */
5220 ecs->event_thread->control.stop_step = 1;
5221 print_end_stepping_range_reason ();
5222 stop_stepping (ecs);
5223 return;
5224 }
5225 else
5226 {
5227 /* Put the step-breakpoint there and go until there. */
5228 init_sal (&sr_sal); /* initialize to zeroes */
5229 sr_sal.pc = ecs->stop_func_start;
5230 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5231 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5232
5233 /* Do not specify what the fp should be when we stop since on
5234 some machines the prologue is where the new fp value is
5235 established. */
5236 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5237
5238 /* And make sure stepping stops right away then. */
5239 ecs->event_thread->control.step_range_end
5240 = ecs->event_thread->control.step_range_start;
5241 }
5242 keep_going (ecs);
5243 }
5244
5245 /* Inferior has stepped backward into a subroutine call with source
5246 code that we should not step over. Do step to the beginning of the
5247 last line of code in it. */
5248
5249 static void
5250 handle_step_into_function_backward (struct gdbarch *gdbarch,
5251 struct execution_control_state *ecs)
5252 {
5253 struct symtab *s;
5254 struct symtab_and_line stop_func_sal;
5255
5256 fill_in_stop_func (gdbarch, ecs);
5257
5258 s = find_pc_symtab (stop_pc);
5259 if (s && s->language != language_asm)
5260 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5261 ecs->stop_func_start);
5262
5263 stop_func_sal = find_pc_line (stop_pc, 0);
5264
5265 /* OK, we're just going to keep stepping here. */
5266 if (stop_func_sal.pc == stop_pc)
5267 {
5268 /* We're there already. Just stop stepping now. */
5269 ecs->event_thread->control.stop_step = 1;
5270 print_end_stepping_range_reason ();
5271 stop_stepping (ecs);
5272 }
5273 else
5274 {
5275 /* Else just reset the step range and keep going.
5276 No step-resume breakpoint, they don't work for
5277 epilogues, which can have multiple entry paths. */
5278 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5279 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5280 keep_going (ecs);
5281 }
5282 return;
5283 }
5284
5285 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5286 This is used to both functions and to skip over code. */
5287
5288 static void
5289 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5290 struct symtab_and_line sr_sal,
5291 struct frame_id sr_id,
5292 enum bptype sr_type)
5293 {
5294 /* There should never be more than one step-resume or longjmp-resume
5295 breakpoint per thread, so we should never be setting a new
5296 step_resume_breakpoint when one is already active. */
5297 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5298 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5299
5300 if (debug_infrun)
5301 fprintf_unfiltered (gdb_stdlog,
5302 "infrun: inserting step-resume breakpoint at %s\n",
5303 paddress (gdbarch, sr_sal.pc));
5304
5305 inferior_thread ()->control.step_resume_breakpoint
5306 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5307 }
5308
5309 void
5310 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5311 struct symtab_and_line sr_sal,
5312 struct frame_id sr_id)
5313 {
5314 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5315 sr_sal, sr_id,
5316 bp_step_resume);
5317 }
5318
5319 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5320 This is used to skip a potential signal handler.
5321
5322 This is called with the interrupted function's frame. The signal
5323 handler, when it returns, will resume the interrupted function at
5324 RETURN_FRAME.pc. */
5325
5326 static void
5327 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5328 {
5329 struct symtab_and_line sr_sal;
5330 struct gdbarch *gdbarch;
5331
5332 gdb_assert (return_frame != NULL);
5333 init_sal (&sr_sal); /* initialize to zeros */
5334
5335 gdbarch = get_frame_arch (return_frame);
5336 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5337 sr_sal.section = find_pc_overlay (sr_sal.pc);
5338 sr_sal.pspace = get_frame_program_space (return_frame);
5339
5340 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5341 get_stack_frame_id (return_frame),
5342 bp_hp_step_resume);
5343 }
5344
5345 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
5346 is used to skip a function after stepping into it (for "next" or if
5347 the called function has no debugging information).
5348
5349 The current function has almost always been reached by single
5350 stepping a call or return instruction. NEXT_FRAME belongs to the
5351 current function, and the breakpoint will be set at the caller's
5352 resume address.
5353
5354 This is a separate function rather than reusing
5355 insert_hp_step_resume_breakpoint_at_frame in order to avoid
5356 get_prev_frame, which may stop prematurely (see the implementation
5357 of frame_unwind_caller_id for an example). */
5358
5359 static void
5360 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5361 {
5362 struct symtab_and_line sr_sal;
5363 struct gdbarch *gdbarch;
5364
5365 /* We shouldn't have gotten here if we don't know where the call site
5366 is. */
5367 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5368
5369 init_sal (&sr_sal); /* initialize to zeros */
5370
5371 gdbarch = frame_unwind_caller_arch (next_frame);
5372 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5373 frame_unwind_caller_pc (next_frame));
5374 sr_sal.section = find_pc_overlay (sr_sal.pc);
5375 sr_sal.pspace = frame_unwind_program_space (next_frame);
5376
5377 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5378 frame_unwind_caller_id (next_frame));
5379 }
5380
5381 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5382 new breakpoint at the target of a jmp_buf. The handling of
5383 longjmp-resume uses the same mechanisms used for handling
5384 "step-resume" breakpoints. */
5385
5386 static void
5387 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5388 {
5389 /* There should never be more than one step-resume or longjmp-resume
5390 breakpoint per thread, so we should never be setting a new
5391 longjmp_resume_breakpoint when one is already active. */
5392 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5393
5394 if (debug_infrun)
5395 fprintf_unfiltered (gdb_stdlog,
5396 "infrun: inserting longjmp-resume breakpoint at %s\n",
5397 paddress (gdbarch, pc));
5398
5399 inferior_thread ()->control.step_resume_breakpoint =
5400 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5401 }
5402
5403 /* Insert an exception resume breakpoint. TP is the thread throwing
5404 the exception. The block B is the block of the unwinder debug hook
5405 function. FRAME is the frame corresponding to the call to this
5406 function. SYM is the symbol of the function argument holding the
5407 target PC of the exception. */
5408
5409 static void
5410 insert_exception_resume_breakpoint (struct thread_info *tp,
5411 struct block *b,
5412 struct frame_info *frame,
5413 struct symbol *sym)
5414 {
5415 struct gdb_exception e;
5416
5417 /* We want to ignore errors here. */
5418 TRY_CATCH (e, RETURN_MASK_ERROR)
5419 {
5420 struct symbol *vsym;
5421 struct value *value;
5422 CORE_ADDR handler;
5423 struct breakpoint *bp;
5424
5425 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5426 value = read_var_value (vsym, frame);
5427 /* If the value was optimized out, revert to the old behavior. */
5428 if (! value_optimized_out (value))
5429 {
5430 handler = value_as_address (value);
5431
5432 if (debug_infrun)
5433 fprintf_unfiltered (gdb_stdlog,
5434 "infrun: exception resume at %lx\n",
5435 (unsigned long) handler);
5436
5437 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5438 handler, bp_exception_resume);
5439 bp->thread = tp->num;
5440 inferior_thread ()->control.exception_resume_breakpoint = bp;
5441 }
5442 }
5443 }
5444
5445 /* This is called when an exception has been intercepted. Check to
5446 see whether the exception's destination is of interest, and if so,
5447 set an exception resume breakpoint there. */
5448
5449 static void
5450 check_exception_resume (struct execution_control_state *ecs,
5451 struct frame_info *frame, struct symbol *func)
5452 {
5453 struct gdb_exception e;
5454
5455 TRY_CATCH (e, RETURN_MASK_ERROR)
5456 {
5457 struct block *b;
5458 struct dict_iterator iter;
5459 struct symbol *sym;
5460 int argno = 0;
5461
5462 /* The exception breakpoint is a thread-specific breakpoint on
5463 the unwinder's debug hook, declared as:
5464
5465 void _Unwind_DebugHook (void *cfa, void *handler);
5466
5467 The CFA argument indicates the frame to which control is
5468 about to be transferred. HANDLER is the destination PC.
5469
5470 We ignore the CFA and set a temporary breakpoint at HANDLER.
5471 This is not extremely efficient but it avoids issues in gdb
5472 with computing the DWARF CFA, and it also works even in weird
5473 cases such as throwing an exception from inside a signal
5474 handler. */
5475
5476 b = SYMBOL_BLOCK_VALUE (func);
5477 ALL_BLOCK_SYMBOLS (b, iter, sym)
5478 {
5479 if (!SYMBOL_IS_ARGUMENT (sym))
5480 continue;
5481
5482 if (argno == 0)
5483 ++argno;
5484 else
5485 {
5486 insert_exception_resume_breakpoint (ecs->event_thread,
5487 b, frame, sym);
5488 break;
5489 }
5490 }
5491 }
5492 }
5493
5494 static void
5495 stop_stepping (struct execution_control_state *ecs)
5496 {
5497 if (debug_infrun)
5498 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
5499
5500 /* Let callers know we don't want to wait for the inferior anymore. */
5501 ecs->wait_some_more = 0;
5502 }
5503
5504 /* This function handles various cases where we need to continue
5505 waiting for the inferior. */
5506 /* (Used to be the keep_going: label in the old wait_for_inferior). */
5507
5508 static void
5509 keep_going (struct execution_control_state *ecs)
5510 {
5511 /* Make sure normal_stop is called if we get a QUIT handled before
5512 reaching resume. */
5513 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5514
5515 /* Save the pc before execution, to compare with pc after stop. */
5516 ecs->event_thread->prev_pc
5517 = regcache_read_pc (get_thread_regcache (ecs->ptid));
5518
5519 /* If we did not do break;, it means we should keep running the
5520 inferior and not return to debugger. */
5521
5522 if (ecs->event_thread->control.trap_expected
5523 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
5524 {
5525 /* We took a signal (which we are supposed to pass through to
5526 the inferior, else we'd not get here) and we haven't yet
5527 gotten our trap. Simply continue. */
5528
5529 discard_cleanups (old_cleanups);
5530 resume (currently_stepping (ecs->event_thread),
5531 ecs->event_thread->suspend.stop_signal);
5532 }
5533 else
5534 {
5535 /* Either the trap was not expected, but we are continuing
5536 anyway (the user asked that this signal be passed to the
5537 child)
5538 -- or --
5539 The signal was SIGTRAP, e.g. it was our signal, but we
5540 decided we should resume from it.
5541
5542 We're going to run this baby now!
5543
5544 Note that insert_breakpoints won't try to re-insert
5545 already inserted breakpoints. Therefore, we don't
5546 care if breakpoints were already inserted, or not. */
5547
5548 if (ecs->event_thread->stepping_over_breakpoint)
5549 {
5550 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
5551
5552 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
5553 /* Since we can't do a displaced step, we have to remove
5554 the breakpoint while we step it. To keep things
5555 simple, we remove them all. */
5556 remove_breakpoints ();
5557 }
5558 else
5559 {
5560 struct gdb_exception e;
5561
5562 /* Stop stepping when inserting breakpoints
5563 has failed. */
5564 TRY_CATCH (e, RETURN_MASK_ERROR)
5565 {
5566 insert_breakpoints ();
5567 }
5568 if (e.reason < 0)
5569 {
5570 exception_print (gdb_stderr, e);
5571 stop_stepping (ecs);
5572 return;
5573 }
5574 }
5575
5576 ecs->event_thread->control.trap_expected
5577 = ecs->event_thread->stepping_over_breakpoint;
5578
5579 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
5580 specifies that such a signal should be delivered to the
5581 target program).
5582
5583 Typically, this would occure when a user is debugging a
5584 target monitor on a simulator: the target monitor sets a
5585 breakpoint; the simulator encounters this break-point and
5586 halts the simulation handing control to GDB; GDB, noteing
5587 that the break-point isn't valid, returns control back to the
5588 simulator; the simulator then delivers the hardware
5589 equivalent of a SIGNAL_TRAP to the program being debugged. */
5590
5591 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
5592 && !signal_program[ecs->event_thread->suspend.stop_signal])
5593 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
5594
5595 discard_cleanups (old_cleanups);
5596 resume (currently_stepping (ecs->event_thread),
5597 ecs->event_thread->suspend.stop_signal);
5598 }
5599
5600 prepare_to_wait (ecs);
5601 }
5602
5603 /* This function normally comes after a resume, before
5604 handle_inferior_event exits. It takes care of any last bits of
5605 housekeeping, and sets the all-important wait_some_more flag. */
5606
5607 static void
5608 prepare_to_wait (struct execution_control_state *ecs)
5609 {
5610 if (debug_infrun)
5611 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
5612
5613 /* This is the old end of the while loop. Let everybody know we
5614 want to wait for the inferior some more and get called again
5615 soon. */
5616 ecs->wait_some_more = 1;
5617 }
5618
5619 /* Several print_*_reason functions to print why the inferior has stopped.
5620 We always print something when the inferior exits, or receives a signal.
5621 The rest of the cases are dealt with later on in normal_stop and
5622 print_it_typical. Ideally there should be a call to one of these
5623 print_*_reason functions functions from handle_inferior_event each time
5624 stop_stepping is called. */
5625
5626 /* Print why the inferior has stopped.
5627 We are done with a step/next/si/ni command, print why the inferior has
5628 stopped. For now print nothing. Print a message only if not in the middle
5629 of doing a "step n" operation for n > 1. */
5630
5631 static void
5632 print_end_stepping_range_reason (void)
5633 {
5634 if ((!inferior_thread ()->step_multi
5635 || !inferior_thread ()->control.stop_step)
5636 && ui_out_is_mi_like_p (current_uiout))
5637 ui_out_field_string (current_uiout, "reason",
5638 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5639 }
5640
5641 /* The inferior was terminated by a signal, print why it stopped. */
5642
5643 static void
5644 print_signal_exited_reason (enum target_signal siggnal)
5645 {
5646 struct ui_out *uiout = current_uiout;
5647
5648 annotate_signalled ();
5649 if (ui_out_is_mi_like_p (uiout))
5650 ui_out_field_string
5651 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5652 ui_out_text (uiout, "\nProgram terminated with signal ");
5653 annotate_signal_name ();
5654 ui_out_field_string (uiout, "signal-name",
5655 target_signal_to_name (siggnal));
5656 annotate_signal_name_end ();
5657 ui_out_text (uiout, ", ");
5658 annotate_signal_string ();
5659 ui_out_field_string (uiout, "signal-meaning",
5660 target_signal_to_string (siggnal));
5661 annotate_signal_string_end ();
5662 ui_out_text (uiout, ".\n");
5663 ui_out_text (uiout, "The program no longer exists.\n");
5664 }
5665
5666 /* The inferior program is finished, print why it stopped. */
5667
5668 static void
5669 print_exited_reason (int exitstatus)
5670 {
5671 struct inferior *inf = current_inferior ();
5672 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5673 struct ui_out *uiout = current_uiout;
5674
5675 annotate_exited (exitstatus);
5676 if (exitstatus)
5677 {
5678 if (ui_out_is_mi_like_p (uiout))
5679 ui_out_field_string (uiout, "reason",
5680 async_reason_lookup (EXEC_ASYNC_EXITED));
5681 ui_out_text (uiout, "[Inferior ");
5682 ui_out_text (uiout, plongest (inf->num));
5683 ui_out_text (uiout, " (");
5684 ui_out_text (uiout, pidstr);
5685 ui_out_text (uiout, ") exited with code ");
5686 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
5687 ui_out_text (uiout, "]\n");
5688 }
5689 else
5690 {
5691 if (ui_out_is_mi_like_p (uiout))
5692 ui_out_field_string
5693 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5694 ui_out_text (uiout, "[Inferior ");
5695 ui_out_text (uiout, plongest (inf->num));
5696 ui_out_text (uiout, " (");
5697 ui_out_text (uiout, pidstr);
5698 ui_out_text (uiout, ") exited normally]\n");
5699 }
5700 /* Support the --return-child-result option. */
5701 return_child_result_value = exitstatus;
5702 }
5703
5704 /* Signal received, print why the inferior has stopped. The signal table
5705 tells us to print about it. */
5706
5707 static void
5708 print_signal_received_reason (enum target_signal siggnal)
5709 {
5710 struct ui_out *uiout = current_uiout;
5711
5712 annotate_signal ();
5713
5714 if (siggnal == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5715 {
5716 struct thread_info *t = inferior_thread ();
5717
5718 ui_out_text (uiout, "\n[");
5719 ui_out_field_string (uiout, "thread-name",
5720 target_pid_to_str (t->ptid));
5721 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5722 ui_out_text (uiout, " stopped");
5723 }
5724 else
5725 {
5726 ui_out_text (uiout, "\nProgram received signal ");
5727 annotate_signal_name ();
5728 if (ui_out_is_mi_like_p (uiout))
5729 ui_out_field_string
5730 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5731 ui_out_field_string (uiout, "signal-name",
5732 target_signal_to_name (siggnal));
5733 annotate_signal_name_end ();
5734 ui_out_text (uiout, ", ");
5735 annotate_signal_string ();
5736 ui_out_field_string (uiout, "signal-meaning",
5737 target_signal_to_string (siggnal));
5738 annotate_signal_string_end ();
5739 }
5740 ui_out_text (uiout, ".\n");
5741 }
5742
5743 /* Reverse execution: target ran out of history info, print why the inferior
5744 has stopped. */
5745
5746 static void
5747 print_no_history_reason (void)
5748 {
5749 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
5750 }
5751
5752 /* Here to return control to GDB when the inferior stops for real.
5753 Print appropriate messages, remove breakpoints, give terminal our modes.
5754
5755 STOP_PRINT_FRAME nonzero means print the executing frame
5756 (pc, function, args, file, line number and line text).
5757 BREAKPOINTS_FAILED nonzero means stop was due to error
5758 attempting to insert breakpoints. */
5759
5760 void
5761 normal_stop (void)
5762 {
5763 struct target_waitstatus last;
5764 ptid_t last_ptid;
5765 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5766
5767 get_last_target_status (&last_ptid, &last);
5768
5769 /* If an exception is thrown from this point on, make sure to
5770 propagate GDB's knowledge of the executing state to the
5771 frontend/user running state. A QUIT is an easy exception to see
5772 here, so do this before any filtered output. */
5773 if (!non_stop)
5774 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5775 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5776 && last.kind != TARGET_WAITKIND_EXITED)
5777 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
5778
5779 /* In non-stop mode, we don't want GDB to switch threads behind the
5780 user's back, to avoid races where the user is typing a command to
5781 apply to thread x, but GDB switches to thread y before the user
5782 finishes entering the command. */
5783
5784 /* As with the notification of thread events, we want to delay
5785 notifying the user that we've switched thread context until
5786 the inferior actually stops.
5787
5788 There's no point in saying anything if the inferior has exited.
5789 Note that SIGNALLED here means "exited with a signal", not
5790 "received a signal". */
5791 if (!non_stop
5792 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
5793 && target_has_execution
5794 && last.kind != TARGET_WAITKIND_SIGNALLED
5795 && last.kind != TARGET_WAITKIND_EXITED)
5796 {
5797 target_terminal_ours_for_output ();
5798 printf_filtered (_("[Switching to %s]\n"),
5799 target_pid_to_str (inferior_ptid));
5800 annotate_thread_changed ();
5801 previous_inferior_ptid = inferior_ptid;
5802 }
5803
5804 if (!breakpoints_always_inserted_mode () && target_has_execution)
5805 {
5806 if (remove_breakpoints ())
5807 {
5808 target_terminal_ours_for_output ();
5809 printf_filtered (_("Cannot remove breakpoints because "
5810 "program is no longer writable.\nFurther "
5811 "execution is probably impossible.\n"));
5812 }
5813 }
5814
5815 /* If an auto-display called a function and that got a signal,
5816 delete that auto-display to avoid an infinite recursion. */
5817
5818 if (stopped_by_random_signal)
5819 disable_current_display ();
5820
5821 /* Don't print a message if in the middle of doing a "step n"
5822 operation for n > 1 */
5823 if (target_has_execution
5824 && last.kind != TARGET_WAITKIND_SIGNALLED
5825 && last.kind != TARGET_WAITKIND_EXITED
5826 && inferior_thread ()->step_multi
5827 && inferior_thread ()->control.stop_step)
5828 goto done;
5829
5830 target_terminal_ours ();
5831 async_enable_stdin ();
5832
5833 /* Set the current source location. This will also happen if we
5834 display the frame below, but the current SAL will be incorrect
5835 during a user hook-stop function. */
5836 if (has_stack_frames () && !stop_stack_dummy)
5837 set_current_sal_from_frame (get_current_frame (), 1);
5838
5839 /* Let the user/frontend see the threads as stopped. */
5840 do_cleanups (old_chain);
5841
5842 /* Look up the hook_stop and run it (CLI internally handles problem
5843 of stop_command's pre-hook not existing). */
5844 if (stop_command)
5845 catch_errors (hook_stop_stub, stop_command,
5846 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5847
5848 if (!has_stack_frames ())
5849 goto done;
5850
5851 if (last.kind == TARGET_WAITKIND_SIGNALLED
5852 || last.kind == TARGET_WAITKIND_EXITED)
5853 goto done;
5854
5855 /* Select innermost stack frame - i.e., current frame is frame 0,
5856 and current location is based on that.
5857 Don't do this on return from a stack dummy routine,
5858 or if the program has exited. */
5859
5860 if (!stop_stack_dummy)
5861 {
5862 select_frame (get_current_frame ());
5863
5864 /* Print current location without a level number, if
5865 we have changed functions or hit a breakpoint.
5866 Print source line if we have one.
5867 bpstat_print() contains the logic deciding in detail
5868 what to print, based on the event(s) that just occurred. */
5869
5870 /* If --batch-silent is enabled then there's no need to print the current
5871 source location, and to try risks causing an error message about
5872 missing source files. */
5873 if (stop_print_frame && !batch_silent)
5874 {
5875 int bpstat_ret;
5876 int source_flag;
5877 int do_frame_printing = 1;
5878 struct thread_info *tp = inferior_thread ();
5879
5880 bpstat_ret = bpstat_print (tp->control.stop_bpstat);
5881 switch (bpstat_ret)
5882 {
5883 case PRINT_UNKNOWN:
5884 /* If we had hit a shared library event breakpoint,
5885 bpstat_print would print out this message. If we hit
5886 an OS-level shared library event, do the same
5887 thing. */
5888 if (last.kind == TARGET_WAITKIND_LOADED)
5889 {
5890 printf_filtered (_("Stopped due to shared library event\n"));
5891 source_flag = SRC_LINE; /* something bogus */
5892 do_frame_printing = 0;
5893 break;
5894 }
5895
5896 /* FIXME: cagney/2002-12-01: Given that a frame ID does
5897 (or should) carry around the function and does (or
5898 should) use that when doing a frame comparison. */
5899 if (tp->control.stop_step
5900 && frame_id_eq (tp->control.step_frame_id,
5901 get_frame_id (get_current_frame ()))
5902 && step_start_function == find_pc_function (stop_pc))
5903 source_flag = SRC_LINE; /* Finished step, just
5904 print source line. */
5905 else
5906 source_flag = SRC_AND_LOC; /* Print location and
5907 source line. */
5908 break;
5909 case PRINT_SRC_AND_LOC:
5910 source_flag = SRC_AND_LOC; /* Print location and
5911 source line. */
5912 break;
5913 case PRINT_SRC_ONLY:
5914 source_flag = SRC_LINE;
5915 break;
5916 case PRINT_NOTHING:
5917 source_flag = SRC_LINE; /* something bogus */
5918 do_frame_printing = 0;
5919 break;
5920 default:
5921 internal_error (__FILE__, __LINE__, _("Unknown value."));
5922 }
5923
5924 /* The behavior of this routine with respect to the source
5925 flag is:
5926 SRC_LINE: Print only source line
5927 LOCATION: Print only location
5928 SRC_AND_LOC: Print location and source line. */
5929 if (do_frame_printing)
5930 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
5931
5932 /* Display the auto-display expressions. */
5933 do_displays ();
5934 }
5935 }
5936
5937 /* Save the function value return registers, if we care.
5938 We might be about to restore their previous contents. */
5939 if (inferior_thread ()->control.proceed_to_finish
5940 && execution_direction != EXEC_REVERSE)
5941 {
5942 /* This should not be necessary. */
5943 if (stop_registers)
5944 regcache_xfree (stop_registers);
5945
5946 /* NB: The copy goes through to the target picking up the value of
5947 all the registers. */
5948 stop_registers = regcache_dup (get_current_regcache ());
5949 }
5950
5951 if (stop_stack_dummy == STOP_STACK_DUMMY)
5952 {
5953 /* Pop the empty frame that contains the stack dummy.
5954 This also restores inferior state prior to the call
5955 (struct infcall_suspend_state). */
5956 struct frame_info *frame = get_current_frame ();
5957
5958 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
5959 frame_pop (frame);
5960 /* frame_pop() calls reinit_frame_cache as the last thing it
5961 does which means there's currently no selected frame. We
5962 don't need to re-establish a selected frame if the dummy call
5963 returns normally, that will be done by
5964 restore_infcall_control_state. However, we do have to handle
5965 the case where the dummy call is returning after being
5966 stopped (e.g. the dummy call previously hit a breakpoint).
5967 We can't know which case we have so just always re-establish
5968 a selected frame here. */
5969 select_frame (get_current_frame ());
5970 }
5971
5972 done:
5973 annotate_stopped ();
5974
5975 /* Suppress the stop observer if we're in the middle of:
5976
5977 - a step n (n > 1), as there still more steps to be done.
5978
5979 - a "finish" command, as the observer will be called in
5980 finish_command_continuation, so it can include the inferior
5981 function's return value.
5982
5983 - calling an inferior function, as we pretend we inferior didn't
5984 run at all. The return value of the call is handled by the
5985 expression evaluator, through call_function_by_hand. */
5986
5987 if (!target_has_execution
5988 || last.kind == TARGET_WAITKIND_SIGNALLED
5989 || last.kind == TARGET_WAITKIND_EXITED
5990 || (!inferior_thread ()->step_multi
5991 && !(inferior_thread ()->control.stop_bpstat
5992 && inferior_thread ()->control.proceed_to_finish)
5993 && !inferior_thread ()->control.in_infcall))
5994 {
5995 if (!ptid_equal (inferior_ptid, null_ptid))
5996 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
5997 stop_print_frame);
5998 else
5999 observer_notify_normal_stop (NULL, stop_print_frame);
6000 }
6001
6002 if (target_has_execution)
6003 {
6004 if (last.kind != TARGET_WAITKIND_SIGNALLED
6005 && last.kind != TARGET_WAITKIND_EXITED)
6006 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6007 Delete any breakpoint that is to be deleted at the next stop. */
6008 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
6009 }
6010
6011 /* Try to get rid of automatically added inferiors that are no
6012 longer needed. Keeping those around slows down things linearly.
6013 Note that this never removes the current inferior. */
6014 prune_inferiors ();
6015 }
6016
6017 static int
6018 hook_stop_stub (void *cmd)
6019 {
6020 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
6021 return (0);
6022 }
6023 \f
6024 int
6025 signal_stop_state (int signo)
6026 {
6027 return signal_stop[signo];
6028 }
6029
6030 int
6031 signal_print_state (int signo)
6032 {
6033 return signal_print[signo];
6034 }
6035
6036 int
6037 signal_pass_state (int signo)
6038 {
6039 return signal_program[signo];
6040 }
6041
6042 static void
6043 signal_cache_update (int signo)
6044 {
6045 if (signo == -1)
6046 {
6047 for (signo = 0; signo < (int) TARGET_SIGNAL_LAST; signo++)
6048 signal_cache_update (signo);
6049
6050 return;
6051 }
6052
6053 signal_pass[signo] = (signal_stop[signo] == 0
6054 && signal_print[signo] == 0
6055 && signal_program[signo] == 1);
6056 }
6057
6058 int
6059 signal_stop_update (int signo, int state)
6060 {
6061 int ret = signal_stop[signo];
6062
6063 signal_stop[signo] = state;
6064 signal_cache_update (signo);
6065 return ret;
6066 }
6067
6068 int
6069 signal_print_update (int signo, int state)
6070 {
6071 int ret = signal_print[signo];
6072
6073 signal_print[signo] = state;
6074 signal_cache_update (signo);
6075 return ret;
6076 }
6077
6078 int
6079 signal_pass_update (int signo, int state)
6080 {
6081 int ret = signal_program[signo];
6082
6083 signal_program[signo] = state;
6084 signal_cache_update (signo);
6085 return ret;
6086 }
6087
6088 static void
6089 sig_print_header (void)
6090 {
6091 printf_filtered (_("Signal Stop\tPrint\tPass "
6092 "to program\tDescription\n"));
6093 }
6094
6095 static void
6096 sig_print_info (enum target_signal oursig)
6097 {
6098 const char *name = target_signal_to_name (oursig);
6099 int name_padding = 13 - strlen (name);
6100
6101 if (name_padding <= 0)
6102 name_padding = 0;
6103
6104 printf_filtered ("%s", name);
6105 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6106 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6107 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6108 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6109 printf_filtered ("%s\n", target_signal_to_string (oursig));
6110 }
6111
6112 /* Specify how various signals in the inferior should be handled. */
6113
6114 static void
6115 handle_command (char *args, int from_tty)
6116 {
6117 char **argv;
6118 int digits, wordlen;
6119 int sigfirst, signum, siglast;
6120 enum target_signal oursig;
6121 int allsigs;
6122 int nsigs;
6123 unsigned char *sigs;
6124 struct cleanup *old_chain;
6125
6126 if (args == NULL)
6127 {
6128 error_no_arg (_("signal to handle"));
6129 }
6130
6131 /* Allocate and zero an array of flags for which signals to handle. */
6132
6133 nsigs = (int) TARGET_SIGNAL_LAST;
6134 sigs = (unsigned char *) alloca (nsigs);
6135 memset (sigs, 0, nsigs);
6136
6137 /* Break the command line up into args. */
6138
6139 argv = gdb_buildargv (args);
6140 old_chain = make_cleanup_freeargv (argv);
6141
6142 /* Walk through the args, looking for signal oursigs, signal names, and
6143 actions. Signal numbers and signal names may be interspersed with
6144 actions, with the actions being performed for all signals cumulatively
6145 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6146
6147 while (*argv != NULL)
6148 {
6149 wordlen = strlen (*argv);
6150 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6151 {;
6152 }
6153 allsigs = 0;
6154 sigfirst = siglast = -1;
6155
6156 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6157 {
6158 /* Apply action to all signals except those used by the
6159 debugger. Silently skip those. */
6160 allsigs = 1;
6161 sigfirst = 0;
6162 siglast = nsigs - 1;
6163 }
6164 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6165 {
6166 SET_SIGS (nsigs, sigs, signal_stop);
6167 SET_SIGS (nsigs, sigs, signal_print);
6168 }
6169 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6170 {
6171 UNSET_SIGS (nsigs, sigs, signal_program);
6172 }
6173 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6174 {
6175 SET_SIGS (nsigs, sigs, signal_print);
6176 }
6177 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6178 {
6179 SET_SIGS (nsigs, sigs, signal_program);
6180 }
6181 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6182 {
6183 UNSET_SIGS (nsigs, sigs, signal_stop);
6184 }
6185 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6186 {
6187 SET_SIGS (nsigs, sigs, signal_program);
6188 }
6189 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6190 {
6191 UNSET_SIGS (nsigs, sigs, signal_print);
6192 UNSET_SIGS (nsigs, sigs, signal_stop);
6193 }
6194 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6195 {
6196 UNSET_SIGS (nsigs, sigs, signal_program);
6197 }
6198 else if (digits > 0)
6199 {
6200 /* It is numeric. The numeric signal refers to our own
6201 internal signal numbering from target.h, not to host/target
6202 signal number. This is a feature; users really should be
6203 using symbolic names anyway, and the common ones like
6204 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6205
6206 sigfirst = siglast = (int)
6207 target_signal_from_command (atoi (*argv));
6208 if ((*argv)[digits] == '-')
6209 {
6210 siglast = (int)
6211 target_signal_from_command (atoi ((*argv) + digits + 1));
6212 }
6213 if (sigfirst > siglast)
6214 {
6215 /* Bet he didn't figure we'd think of this case... */
6216 signum = sigfirst;
6217 sigfirst = siglast;
6218 siglast = signum;
6219 }
6220 }
6221 else
6222 {
6223 oursig = target_signal_from_name (*argv);
6224 if (oursig != TARGET_SIGNAL_UNKNOWN)
6225 {
6226 sigfirst = siglast = (int) oursig;
6227 }
6228 else
6229 {
6230 /* Not a number and not a recognized flag word => complain. */
6231 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6232 }
6233 }
6234
6235 /* If any signal numbers or symbol names were found, set flags for
6236 which signals to apply actions to. */
6237
6238 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6239 {
6240 switch ((enum target_signal) signum)
6241 {
6242 case TARGET_SIGNAL_TRAP:
6243 case TARGET_SIGNAL_INT:
6244 if (!allsigs && !sigs[signum])
6245 {
6246 if (query (_("%s is used by the debugger.\n\
6247 Are you sure you want to change it? "),
6248 target_signal_to_name ((enum target_signal) signum)))
6249 {
6250 sigs[signum] = 1;
6251 }
6252 else
6253 {
6254 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6255 gdb_flush (gdb_stdout);
6256 }
6257 }
6258 break;
6259 case TARGET_SIGNAL_0:
6260 case TARGET_SIGNAL_DEFAULT:
6261 case TARGET_SIGNAL_UNKNOWN:
6262 /* Make sure that "all" doesn't print these. */
6263 break;
6264 default:
6265 sigs[signum] = 1;
6266 break;
6267 }
6268 }
6269
6270 argv++;
6271 }
6272
6273 for (signum = 0; signum < nsigs; signum++)
6274 if (sigs[signum])
6275 {
6276 signal_cache_update (-1);
6277 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
6278
6279 if (from_tty)
6280 {
6281 /* Show the results. */
6282 sig_print_header ();
6283 for (; signum < nsigs; signum++)
6284 if (sigs[signum])
6285 sig_print_info (signum);
6286 }
6287
6288 break;
6289 }
6290
6291 do_cleanups (old_chain);
6292 }
6293
6294 static void
6295 xdb_handle_command (char *args, int from_tty)
6296 {
6297 char **argv;
6298 struct cleanup *old_chain;
6299
6300 if (args == NULL)
6301 error_no_arg (_("xdb command"));
6302
6303 /* Break the command line up into args. */
6304
6305 argv = gdb_buildargv (args);
6306 old_chain = make_cleanup_freeargv (argv);
6307 if (argv[1] != (char *) NULL)
6308 {
6309 char *argBuf;
6310 int bufLen;
6311
6312 bufLen = strlen (argv[0]) + 20;
6313 argBuf = (char *) xmalloc (bufLen);
6314 if (argBuf)
6315 {
6316 int validFlag = 1;
6317 enum target_signal oursig;
6318
6319 oursig = target_signal_from_name (argv[0]);
6320 memset (argBuf, 0, bufLen);
6321 if (strcmp (argv[1], "Q") == 0)
6322 sprintf (argBuf, "%s %s", argv[0], "noprint");
6323 else
6324 {
6325 if (strcmp (argv[1], "s") == 0)
6326 {
6327 if (!signal_stop[oursig])
6328 sprintf (argBuf, "%s %s", argv[0], "stop");
6329 else
6330 sprintf (argBuf, "%s %s", argv[0], "nostop");
6331 }
6332 else if (strcmp (argv[1], "i") == 0)
6333 {
6334 if (!signal_program[oursig])
6335 sprintf (argBuf, "%s %s", argv[0], "pass");
6336 else
6337 sprintf (argBuf, "%s %s", argv[0], "nopass");
6338 }
6339 else if (strcmp (argv[1], "r") == 0)
6340 {
6341 if (!signal_print[oursig])
6342 sprintf (argBuf, "%s %s", argv[0], "print");
6343 else
6344 sprintf (argBuf, "%s %s", argv[0], "noprint");
6345 }
6346 else
6347 validFlag = 0;
6348 }
6349 if (validFlag)
6350 handle_command (argBuf, from_tty);
6351 else
6352 printf_filtered (_("Invalid signal handling flag.\n"));
6353 if (argBuf)
6354 xfree (argBuf);
6355 }
6356 }
6357 do_cleanups (old_chain);
6358 }
6359
6360 /* Print current contents of the tables set by the handle command.
6361 It is possible we should just be printing signals actually used
6362 by the current target (but for things to work right when switching
6363 targets, all signals should be in the signal tables). */
6364
6365 static void
6366 signals_info (char *signum_exp, int from_tty)
6367 {
6368 enum target_signal oursig;
6369
6370 sig_print_header ();
6371
6372 if (signum_exp)
6373 {
6374 /* First see if this is a symbol name. */
6375 oursig = target_signal_from_name (signum_exp);
6376 if (oursig == TARGET_SIGNAL_UNKNOWN)
6377 {
6378 /* No, try numeric. */
6379 oursig =
6380 target_signal_from_command (parse_and_eval_long (signum_exp));
6381 }
6382 sig_print_info (oursig);
6383 return;
6384 }
6385
6386 printf_filtered ("\n");
6387 /* These ugly casts brought to you by the native VAX compiler. */
6388 for (oursig = TARGET_SIGNAL_FIRST;
6389 (int) oursig < (int) TARGET_SIGNAL_LAST;
6390 oursig = (enum target_signal) ((int) oursig + 1))
6391 {
6392 QUIT;
6393
6394 if (oursig != TARGET_SIGNAL_UNKNOWN
6395 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
6396 sig_print_info (oursig);
6397 }
6398
6399 printf_filtered (_("\nUse the \"handle\" command "
6400 "to change these tables.\n"));
6401 }
6402
6403 /* Check if it makes sense to read $_siginfo from the current thread
6404 at this point. If not, throw an error. */
6405
6406 static void
6407 validate_siginfo_access (void)
6408 {
6409 /* No current inferior, no siginfo. */
6410 if (ptid_equal (inferior_ptid, null_ptid))
6411 error (_("No thread selected."));
6412
6413 /* Don't try to read from a dead thread. */
6414 if (is_exited (inferior_ptid))
6415 error (_("The current thread has terminated"));
6416
6417 /* ... or from a spinning thread. */
6418 if (is_running (inferior_ptid))
6419 error (_("Selected thread is running."));
6420 }
6421
6422 /* The $_siginfo convenience variable is a bit special. We don't know
6423 for sure the type of the value until we actually have a chance to
6424 fetch the data. The type can change depending on gdbarch, so it is
6425 also dependent on which thread you have selected.
6426
6427 1. making $_siginfo be an internalvar that creates a new value on
6428 access.
6429
6430 2. making the value of $_siginfo be an lval_computed value. */
6431
6432 /* This function implements the lval_computed support for reading a
6433 $_siginfo value. */
6434
6435 static void
6436 siginfo_value_read (struct value *v)
6437 {
6438 LONGEST transferred;
6439
6440 validate_siginfo_access ();
6441
6442 transferred =
6443 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6444 NULL,
6445 value_contents_all_raw (v),
6446 value_offset (v),
6447 TYPE_LENGTH (value_type (v)));
6448
6449 if (transferred != TYPE_LENGTH (value_type (v)))
6450 error (_("Unable to read siginfo"));
6451 }
6452
6453 /* This function implements the lval_computed support for writing a
6454 $_siginfo value. */
6455
6456 static void
6457 siginfo_value_write (struct value *v, struct value *fromval)
6458 {
6459 LONGEST transferred;
6460
6461 validate_siginfo_access ();
6462
6463 transferred = target_write (&current_target,
6464 TARGET_OBJECT_SIGNAL_INFO,
6465 NULL,
6466 value_contents_all_raw (fromval),
6467 value_offset (v),
6468 TYPE_LENGTH (value_type (fromval)));
6469
6470 if (transferred != TYPE_LENGTH (value_type (fromval)))
6471 error (_("Unable to write siginfo"));
6472 }
6473
6474 static const struct lval_funcs siginfo_value_funcs =
6475 {
6476 siginfo_value_read,
6477 siginfo_value_write
6478 };
6479
6480 /* Return a new value with the correct type for the siginfo object of
6481 the current thread using architecture GDBARCH. Return a void value
6482 if there's no object available. */
6483
6484 static struct value *
6485 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
6486 {
6487 if (target_has_stack
6488 && !ptid_equal (inferior_ptid, null_ptid)
6489 && gdbarch_get_siginfo_type_p (gdbarch))
6490 {
6491 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6492
6493 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
6494 }
6495
6496 return allocate_value (builtin_type (gdbarch)->builtin_void);
6497 }
6498
6499 \f
6500 /* infcall_suspend_state contains state about the program itself like its
6501 registers and any signal it received when it last stopped.
6502 This state must be restored regardless of how the inferior function call
6503 ends (either successfully, or after it hits a breakpoint or signal)
6504 if the program is to properly continue where it left off. */
6505
6506 struct infcall_suspend_state
6507 {
6508 struct thread_suspend_state thread_suspend;
6509 struct inferior_suspend_state inferior_suspend;
6510
6511 /* Other fields: */
6512 CORE_ADDR stop_pc;
6513 struct regcache *registers;
6514
6515 /* Format of SIGINFO_DATA or NULL if it is not present. */
6516 struct gdbarch *siginfo_gdbarch;
6517
6518 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6519 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6520 content would be invalid. */
6521 gdb_byte *siginfo_data;
6522 };
6523
6524 struct infcall_suspend_state *
6525 save_infcall_suspend_state (void)
6526 {
6527 struct infcall_suspend_state *inf_state;
6528 struct thread_info *tp = inferior_thread ();
6529 struct inferior *inf = current_inferior ();
6530 struct regcache *regcache = get_current_regcache ();
6531 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6532 gdb_byte *siginfo_data = NULL;
6533
6534 if (gdbarch_get_siginfo_type_p (gdbarch))
6535 {
6536 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6537 size_t len = TYPE_LENGTH (type);
6538 struct cleanup *back_to;
6539
6540 siginfo_data = xmalloc (len);
6541 back_to = make_cleanup (xfree, siginfo_data);
6542
6543 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6544 siginfo_data, 0, len) == len)
6545 discard_cleanups (back_to);
6546 else
6547 {
6548 /* Errors ignored. */
6549 do_cleanups (back_to);
6550 siginfo_data = NULL;
6551 }
6552 }
6553
6554 inf_state = XZALLOC (struct infcall_suspend_state);
6555
6556 if (siginfo_data)
6557 {
6558 inf_state->siginfo_gdbarch = gdbarch;
6559 inf_state->siginfo_data = siginfo_data;
6560 }
6561
6562 inf_state->thread_suspend = tp->suspend;
6563 inf_state->inferior_suspend = inf->suspend;
6564
6565 /* run_inferior_call will not use the signal due to its `proceed' call with
6566 TARGET_SIGNAL_0 anyway. */
6567 tp->suspend.stop_signal = TARGET_SIGNAL_0;
6568
6569 inf_state->stop_pc = stop_pc;
6570
6571 inf_state->registers = regcache_dup (regcache);
6572
6573 return inf_state;
6574 }
6575
6576 /* Restore inferior session state to INF_STATE. */
6577
6578 void
6579 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6580 {
6581 struct thread_info *tp = inferior_thread ();
6582 struct inferior *inf = current_inferior ();
6583 struct regcache *regcache = get_current_regcache ();
6584 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6585
6586 tp->suspend = inf_state->thread_suspend;
6587 inf->suspend = inf_state->inferior_suspend;
6588
6589 stop_pc = inf_state->stop_pc;
6590
6591 if (inf_state->siginfo_gdbarch == gdbarch)
6592 {
6593 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6594 size_t len = TYPE_LENGTH (type);
6595
6596 /* Errors ignored. */
6597 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6598 inf_state->siginfo_data, 0, len);
6599 }
6600
6601 /* The inferior can be gone if the user types "print exit(0)"
6602 (and perhaps other times). */
6603 if (target_has_execution)
6604 /* NB: The register write goes through to the target. */
6605 regcache_cpy (regcache, inf_state->registers);
6606
6607 discard_infcall_suspend_state (inf_state);
6608 }
6609
6610 static void
6611 do_restore_infcall_suspend_state_cleanup (void *state)
6612 {
6613 restore_infcall_suspend_state (state);
6614 }
6615
6616 struct cleanup *
6617 make_cleanup_restore_infcall_suspend_state
6618 (struct infcall_suspend_state *inf_state)
6619 {
6620 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
6621 }
6622
6623 void
6624 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6625 {
6626 regcache_xfree (inf_state->registers);
6627 xfree (inf_state->siginfo_data);
6628 xfree (inf_state);
6629 }
6630
6631 struct regcache *
6632 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
6633 {
6634 return inf_state->registers;
6635 }
6636
6637 /* infcall_control_state contains state regarding gdb's control of the
6638 inferior itself like stepping control. It also contains session state like
6639 the user's currently selected frame. */
6640
6641 struct infcall_control_state
6642 {
6643 struct thread_control_state thread_control;
6644 struct inferior_control_state inferior_control;
6645
6646 /* Other fields: */
6647 enum stop_stack_kind stop_stack_dummy;
6648 int stopped_by_random_signal;
6649 int stop_after_trap;
6650
6651 /* ID if the selected frame when the inferior function call was made. */
6652 struct frame_id selected_frame_id;
6653 };
6654
6655 /* Save all of the information associated with the inferior<==>gdb
6656 connection. */
6657
6658 struct infcall_control_state *
6659 save_infcall_control_state (void)
6660 {
6661 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
6662 struct thread_info *tp = inferior_thread ();
6663 struct inferior *inf = current_inferior ();
6664
6665 inf_status->thread_control = tp->control;
6666 inf_status->inferior_control = inf->control;
6667
6668 tp->control.step_resume_breakpoint = NULL;
6669 tp->control.exception_resume_breakpoint = NULL;
6670
6671 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6672 chain. If caller's caller is walking the chain, they'll be happier if we
6673 hand them back the original chain when restore_infcall_control_state is
6674 called. */
6675 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
6676
6677 /* Other fields: */
6678 inf_status->stop_stack_dummy = stop_stack_dummy;
6679 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6680 inf_status->stop_after_trap = stop_after_trap;
6681
6682 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
6683
6684 return inf_status;
6685 }
6686
6687 static int
6688 restore_selected_frame (void *args)
6689 {
6690 struct frame_id *fid = (struct frame_id *) args;
6691 struct frame_info *frame;
6692
6693 frame = frame_find_by_id (*fid);
6694
6695 /* If inf_status->selected_frame_id is NULL, there was no previously
6696 selected frame. */
6697 if (frame == NULL)
6698 {
6699 warning (_("Unable to restore previously selected frame."));
6700 return 0;
6701 }
6702
6703 select_frame (frame);
6704
6705 return (1);
6706 }
6707
6708 /* Restore inferior session state to INF_STATUS. */
6709
6710 void
6711 restore_infcall_control_state (struct infcall_control_state *inf_status)
6712 {
6713 struct thread_info *tp = inferior_thread ();
6714 struct inferior *inf = current_inferior ();
6715
6716 if (tp->control.step_resume_breakpoint)
6717 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6718
6719 if (tp->control.exception_resume_breakpoint)
6720 tp->control.exception_resume_breakpoint->disposition
6721 = disp_del_at_next_stop;
6722
6723 /* Handle the bpstat_copy of the chain. */
6724 bpstat_clear (&tp->control.stop_bpstat);
6725
6726 tp->control = inf_status->thread_control;
6727 inf->control = inf_status->inferior_control;
6728
6729 /* Other fields: */
6730 stop_stack_dummy = inf_status->stop_stack_dummy;
6731 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6732 stop_after_trap = inf_status->stop_after_trap;
6733
6734 if (target_has_stack)
6735 {
6736 /* The point of catch_errors is that if the stack is clobbered,
6737 walking the stack might encounter a garbage pointer and
6738 error() trying to dereference it. */
6739 if (catch_errors
6740 (restore_selected_frame, &inf_status->selected_frame_id,
6741 "Unable to restore previously selected frame:\n",
6742 RETURN_MASK_ERROR) == 0)
6743 /* Error in restoring the selected frame. Select the innermost
6744 frame. */
6745 select_frame (get_current_frame ());
6746 }
6747
6748 xfree (inf_status);
6749 }
6750
6751 static void
6752 do_restore_infcall_control_state_cleanup (void *sts)
6753 {
6754 restore_infcall_control_state (sts);
6755 }
6756
6757 struct cleanup *
6758 make_cleanup_restore_infcall_control_state
6759 (struct infcall_control_state *inf_status)
6760 {
6761 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
6762 }
6763
6764 void
6765 discard_infcall_control_state (struct infcall_control_state *inf_status)
6766 {
6767 if (inf_status->thread_control.step_resume_breakpoint)
6768 inf_status->thread_control.step_resume_breakpoint->disposition
6769 = disp_del_at_next_stop;
6770
6771 if (inf_status->thread_control.exception_resume_breakpoint)
6772 inf_status->thread_control.exception_resume_breakpoint->disposition
6773 = disp_del_at_next_stop;
6774
6775 /* See save_infcall_control_state for info on stop_bpstat. */
6776 bpstat_clear (&inf_status->thread_control.stop_bpstat);
6777
6778 xfree (inf_status);
6779 }
6780 \f
6781 int
6782 inferior_has_forked (ptid_t pid, ptid_t *child_pid)
6783 {
6784 struct target_waitstatus last;
6785 ptid_t last_ptid;
6786
6787 get_last_target_status (&last_ptid, &last);
6788
6789 if (last.kind != TARGET_WAITKIND_FORKED)
6790 return 0;
6791
6792 if (!ptid_equal (last_ptid, pid))
6793 return 0;
6794
6795 *child_pid = last.value.related_pid;
6796 return 1;
6797 }
6798
6799 int
6800 inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
6801 {
6802 struct target_waitstatus last;
6803 ptid_t last_ptid;
6804
6805 get_last_target_status (&last_ptid, &last);
6806
6807 if (last.kind != TARGET_WAITKIND_VFORKED)
6808 return 0;
6809
6810 if (!ptid_equal (last_ptid, pid))
6811 return 0;
6812
6813 *child_pid = last.value.related_pid;
6814 return 1;
6815 }
6816
6817 int
6818 inferior_has_execd (ptid_t pid, char **execd_pathname)
6819 {
6820 struct target_waitstatus last;
6821 ptid_t last_ptid;
6822
6823 get_last_target_status (&last_ptid, &last);
6824
6825 if (last.kind != TARGET_WAITKIND_EXECD)
6826 return 0;
6827
6828 if (!ptid_equal (last_ptid, pid))
6829 return 0;
6830
6831 *execd_pathname = xstrdup (last.value.execd_pathname);
6832 return 1;
6833 }
6834
6835 int
6836 inferior_has_called_syscall (ptid_t pid, int *syscall_number)
6837 {
6838 struct target_waitstatus last;
6839 ptid_t last_ptid;
6840
6841 get_last_target_status (&last_ptid, &last);
6842
6843 if (last.kind != TARGET_WAITKIND_SYSCALL_ENTRY &&
6844 last.kind != TARGET_WAITKIND_SYSCALL_RETURN)
6845 return 0;
6846
6847 if (!ptid_equal (last_ptid, pid))
6848 return 0;
6849
6850 *syscall_number = last.value.syscall_number;
6851 return 1;
6852 }
6853
6854 int
6855 ptid_match (ptid_t ptid, ptid_t filter)
6856 {
6857 if (ptid_equal (filter, minus_one_ptid))
6858 return 1;
6859 if (ptid_is_pid (filter)
6860 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6861 return 1;
6862 else if (ptid_equal (ptid, filter))
6863 return 1;
6864
6865 return 0;
6866 }
6867
6868 /* restore_inferior_ptid() will be used by the cleanup machinery
6869 to restore the inferior_ptid value saved in a call to
6870 save_inferior_ptid(). */
6871
6872 static void
6873 restore_inferior_ptid (void *arg)
6874 {
6875 ptid_t *saved_ptid_ptr = arg;
6876
6877 inferior_ptid = *saved_ptid_ptr;
6878 xfree (arg);
6879 }
6880
6881 /* Save the value of inferior_ptid so that it may be restored by a
6882 later call to do_cleanups(). Returns the struct cleanup pointer
6883 needed for later doing the cleanup. */
6884
6885 struct cleanup *
6886 save_inferior_ptid (void)
6887 {
6888 ptid_t *saved_ptid_ptr;
6889
6890 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6891 *saved_ptid_ptr = inferior_ptid;
6892 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6893 }
6894 \f
6895
6896 /* User interface for reverse debugging:
6897 Set exec-direction / show exec-direction commands
6898 (returns error unless target implements to_set_exec_direction method). */
6899
6900 int execution_direction = EXEC_FORWARD;
6901 static const char exec_forward[] = "forward";
6902 static const char exec_reverse[] = "reverse";
6903 static const char *exec_direction = exec_forward;
6904 static const char *exec_direction_names[] = {
6905 exec_forward,
6906 exec_reverse,
6907 NULL
6908 };
6909
6910 static void
6911 set_exec_direction_func (char *args, int from_tty,
6912 struct cmd_list_element *cmd)
6913 {
6914 if (target_can_execute_reverse)
6915 {
6916 if (!strcmp (exec_direction, exec_forward))
6917 execution_direction = EXEC_FORWARD;
6918 else if (!strcmp (exec_direction, exec_reverse))
6919 execution_direction = EXEC_REVERSE;
6920 }
6921 else
6922 {
6923 exec_direction = exec_forward;
6924 error (_("Target does not support this operation."));
6925 }
6926 }
6927
6928 static void
6929 show_exec_direction_func (struct ui_file *out, int from_tty,
6930 struct cmd_list_element *cmd, const char *value)
6931 {
6932 switch (execution_direction) {
6933 case EXEC_FORWARD:
6934 fprintf_filtered (out, _("Forward.\n"));
6935 break;
6936 case EXEC_REVERSE:
6937 fprintf_filtered (out, _("Reverse.\n"));
6938 break;
6939 default:
6940 internal_error (__FILE__, __LINE__,
6941 _("bogus execution_direction value: %d"),
6942 (int) execution_direction);
6943 }
6944 }
6945
6946 /* User interface for non-stop mode. */
6947
6948 int non_stop = 0;
6949
6950 static void
6951 set_non_stop (char *args, int from_tty,
6952 struct cmd_list_element *c)
6953 {
6954 if (target_has_execution)
6955 {
6956 non_stop_1 = non_stop;
6957 error (_("Cannot change this setting while the inferior is running."));
6958 }
6959
6960 non_stop = non_stop_1;
6961 }
6962
6963 static void
6964 show_non_stop (struct ui_file *file, int from_tty,
6965 struct cmd_list_element *c, const char *value)
6966 {
6967 fprintf_filtered (file,
6968 _("Controlling the inferior in non-stop mode is %s.\n"),
6969 value);
6970 }
6971
6972 static void
6973 show_schedule_multiple (struct ui_file *file, int from_tty,
6974 struct cmd_list_element *c, const char *value)
6975 {
6976 fprintf_filtered (file, _("Resuming the execution of threads "
6977 "of all processes is %s.\n"), value);
6978 }
6979
6980 void
6981 _initialize_infrun (void)
6982 {
6983 int i;
6984 int numsigs;
6985
6986 add_info ("signals", signals_info, _("\
6987 What debugger does when program gets various signals.\n\
6988 Specify a signal as argument to print info on that signal only."));
6989 add_info_alias ("handle", "signals", 0);
6990
6991 add_com ("handle", class_run, handle_command, _("\
6992 Specify how to handle a signal.\n\
6993 Args are signals and actions to apply to those signals.\n\
6994 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
6995 from 1-15 are allowed for compatibility with old versions of GDB.\n\
6996 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
6997 The special arg \"all\" is recognized to mean all signals except those\n\
6998 used by the debugger, typically SIGTRAP and SIGINT.\n\
6999 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
7000 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7001 Stop means reenter debugger if this signal happens (implies print).\n\
7002 Print means print a message if this signal happens.\n\
7003 Pass means let program see this signal; otherwise program doesn't know.\n\
7004 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7005 Pass and Stop may be combined."));
7006 if (xdb_commands)
7007 {
7008 add_com ("lz", class_info, signals_info, _("\
7009 What debugger does when program gets various signals.\n\
7010 Specify a signal as argument to print info on that signal only."));
7011 add_com ("z", class_run, xdb_handle_command, _("\
7012 Specify how to handle a signal.\n\
7013 Args are signals and actions to apply to those signals.\n\
7014 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7015 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7016 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7017 The special arg \"all\" is recognized to mean all signals except those\n\
7018 used by the debugger, typically SIGTRAP and SIGINT.\n\
7019 Recognized actions include \"s\" (toggles between stop and nostop),\n\
7020 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7021 nopass), \"Q\" (noprint)\n\
7022 Stop means reenter debugger if this signal happens (implies print).\n\
7023 Print means print a message if this signal happens.\n\
7024 Pass means let program see this signal; otherwise program doesn't know.\n\
7025 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7026 Pass and Stop may be combined."));
7027 }
7028
7029 if (!dbx_commands)
7030 stop_command = add_cmd ("stop", class_obscure,
7031 not_just_help_class_command, _("\
7032 There is no `stop' command, but you can set a hook on `stop'.\n\
7033 This allows you to set a list of commands to be run each time execution\n\
7034 of the program stops."), &cmdlist);
7035
7036 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7037 Set inferior debugging."), _("\
7038 Show inferior debugging."), _("\
7039 When non-zero, inferior specific debugging is enabled."),
7040 NULL,
7041 show_debug_infrun,
7042 &setdebuglist, &showdebuglist);
7043
7044 add_setshow_boolean_cmd ("displaced", class_maintenance,
7045 &debug_displaced, _("\
7046 Set displaced stepping debugging."), _("\
7047 Show displaced stepping debugging."), _("\
7048 When non-zero, displaced stepping specific debugging is enabled."),
7049 NULL,
7050 show_debug_displaced,
7051 &setdebuglist, &showdebuglist);
7052
7053 add_setshow_boolean_cmd ("non-stop", no_class,
7054 &non_stop_1, _("\
7055 Set whether gdb controls the inferior in non-stop mode."), _("\
7056 Show whether gdb controls the inferior in non-stop mode."), _("\
7057 When debugging a multi-threaded program and this setting is\n\
7058 off (the default, also called all-stop mode), when one thread stops\n\
7059 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7060 all other threads in the program while you interact with the thread of\n\
7061 interest. When you continue or step a thread, you can allow the other\n\
7062 threads to run, or have them remain stopped, but while you inspect any\n\
7063 thread's state, all threads stop.\n\
7064 \n\
7065 In non-stop mode, when one thread stops, other threads can continue\n\
7066 to run freely. You'll be able to step each thread independently,\n\
7067 leave it stopped or free to run as needed."),
7068 set_non_stop,
7069 show_non_stop,
7070 &setlist,
7071 &showlist);
7072
7073 numsigs = (int) TARGET_SIGNAL_LAST;
7074 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7075 signal_print = (unsigned char *)
7076 xmalloc (sizeof (signal_print[0]) * numsigs);
7077 signal_program = (unsigned char *)
7078 xmalloc (sizeof (signal_program[0]) * numsigs);
7079 signal_pass = (unsigned char *)
7080 xmalloc (sizeof (signal_program[0]) * numsigs);
7081 for (i = 0; i < numsigs; i++)
7082 {
7083 signal_stop[i] = 1;
7084 signal_print[i] = 1;
7085 signal_program[i] = 1;
7086 }
7087
7088 /* Signals caused by debugger's own actions
7089 should not be given to the program afterwards. */
7090 signal_program[TARGET_SIGNAL_TRAP] = 0;
7091 signal_program[TARGET_SIGNAL_INT] = 0;
7092
7093 /* Signals that are not errors should not normally enter the debugger. */
7094 signal_stop[TARGET_SIGNAL_ALRM] = 0;
7095 signal_print[TARGET_SIGNAL_ALRM] = 0;
7096 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
7097 signal_print[TARGET_SIGNAL_VTALRM] = 0;
7098 signal_stop[TARGET_SIGNAL_PROF] = 0;
7099 signal_print[TARGET_SIGNAL_PROF] = 0;
7100 signal_stop[TARGET_SIGNAL_CHLD] = 0;
7101 signal_print[TARGET_SIGNAL_CHLD] = 0;
7102 signal_stop[TARGET_SIGNAL_IO] = 0;
7103 signal_print[TARGET_SIGNAL_IO] = 0;
7104 signal_stop[TARGET_SIGNAL_POLL] = 0;
7105 signal_print[TARGET_SIGNAL_POLL] = 0;
7106 signal_stop[TARGET_SIGNAL_URG] = 0;
7107 signal_print[TARGET_SIGNAL_URG] = 0;
7108 signal_stop[TARGET_SIGNAL_WINCH] = 0;
7109 signal_print[TARGET_SIGNAL_WINCH] = 0;
7110 signal_stop[TARGET_SIGNAL_PRIO] = 0;
7111 signal_print[TARGET_SIGNAL_PRIO] = 0;
7112
7113 /* These signals are used internally by user-level thread
7114 implementations. (See signal(5) on Solaris.) Like the above
7115 signals, a healthy program receives and handles them as part of
7116 its normal operation. */
7117 signal_stop[TARGET_SIGNAL_LWP] = 0;
7118 signal_print[TARGET_SIGNAL_LWP] = 0;
7119 signal_stop[TARGET_SIGNAL_WAITING] = 0;
7120 signal_print[TARGET_SIGNAL_WAITING] = 0;
7121 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
7122 signal_print[TARGET_SIGNAL_CANCEL] = 0;
7123
7124 /* Update cached state. */
7125 signal_cache_update (-1);
7126
7127 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7128 &stop_on_solib_events, _("\
7129 Set stopping for shared library events."), _("\
7130 Show stopping for shared library events."), _("\
7131 If nonzero, gdb will give control to the user when the dynamic linker\n\
7132 notifies gdb of shared library events. The most common event of interest\n\
7133 to the user would be loading/unloading of a new library."),
7134 NULL,
7135 show_stop_on_solib_events,
7136 &setlist, &showlist);
7137
7138 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7139 follow_fork_mode_kind_names,
7140 &follow_fork_mode_string, _("\
7141 Set debugger response to a program call of fork or vfork."), _("\
7142 Show debugger response to a program call of fork or vfork."), _("\
7143 A fork or vfork creates a new process. follow-fork-mode can be:\n\
7144 parent - the original process is debugged after a fork\n\
7145 child - the new process is debugged after a fork\n\
7146 The unfollowed process will continue to run.\n\
7147 By default, the debugger will follow the parent process."),
7148 NULL,
7149 show_follow_fork_mode_string,
7150 &setlist, &showlist);
7151
7152 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7153 follow_exec_mode_names,
7154 &follow_exec_mode_string, _("\
7155 Set debugger response to a program call of exec."), _("\
7156 Show debugger response to a program call of exec."), _("\
7157 An exec call replaces the program image of a process.\n\
7158 \n\
7159 follow-exec-mode can be:\n\
7160 \n\
7161 new - the debugger creates a new inferior and rebinds the process\n\
7162 to this new inferior. The program the process was running before\n\
7163 the exec call can be restarted afterwards by restarting the original\n\
7164 inferior.\n\
7165 \n\
7166 same - the debugger keeps the process bound to the same inferior.\n\
7167 The new executable image replaces the previous executable loaded in\n\
7168 the inferior. Restarting the inferior after the exec call restarts\n\
7169 the executable the process was running after the exec call.\n\
7170 \n\
7171 By default, the debugger will use the same inferior."),
7172 NULL,
7173 show_follow_exec_mode_string,
7174 &setlist, &showlist);
7175
7176 add_setshow_enum_cmd ("scheduler-locking", class_run,
7177 scheduler_enums, &scheduler_mode, _("\
7178 Set mode for locking scheduler during execution."), _("\
7179 Show mode for locking scheduler during execution."), _("\
7180 off == no locking (threads may preempt at any time)\n\
7181 on == full locking (no thread except the current thread may run)\n\
7182 step == scheduler locked during every single-step operation.\n\
7183 In this mode, no other thread may run during a step command.\n\
7184 Other threads may run while stepping over a function call ('next')."),
7185 set_schedlock_func, /* traps on target vector */
7186 show_scheduler_mode,
7187 &setlist, &showlist);
7188
7189 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7190 Set mode for resuming threads of all processes."), _("\
7191 Show mode for resuming threads of all processes."), _("\
7192 When on, execution commands (such as 'continue' or 'next') resume all\n\
7193 threads of all processes. When off (which is the default), execution\n\
7194 commands only resume the threads of the current process. The set of\n\
7195 threads that are resumed is further refined by the scheduler-locking\n\
7196 mode (see help set scheduler-locking)."),
7197 NULL,
7198 show_schedule_multiple,
7199 &setlist, &showlist);
7200
7201 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7202 Set mode of the step operation."), _("\
7203 Show mode of the step operation."), _("\
7204 When set, doing a step over a function without debug line information\n\
7205 will stop at the first instruction of that function. Otherwise, the\n\
7206 function is skipped and the step command stops at a different source line."),
7207 NULL,
7208 show_step_stop_if_no_debug,
7209 &setlist, &showlist);
7210
7211 add_setshow_enum_cmd ("displaced-stepping", class_run,
7212 can_use_displaced_stepping_enum,
7213 &can_use_displaced_stepping, _("\
7214 Set debugger's willingness to use displaced stepping."), _("\
7215 Show debugger's willingness to use displaced stepping."), _("\
7216 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7217 supported by the target architecture. If off, gdb will not use displaced\n\
7218 stepping to step over breakpoints, even if such is supported by the target\n\
7219 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7220 if the target architecture supports it and non-stop mode is active, but will not\n\
7221 use it in all-stop mode (see help set non-stop)."),
7222 NULL,
7223 show_can_use_displaced_stepping,
7224 &setlist, &showlist);
7225
7226 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7227 &exec_direction, _("Set direction of execution.\n\
7228 Options are 'forward' or 'reverse'."),
7229 _("Show direction of execution (forward/reverse)."),
7230 _("Tells gdb whether to execute forward or backward."),
7231 set_exec_direction_func, show_exec_direction_func,
7232 &setlist, &showlist);
7233
7234 /* Set/show detach-on-fork: user-settable mode. */
7235
7236 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7237 Set whether gdb will detach the child of a fork."), _("\
7238 Show whether gdb will detach the child of a fork."), _("\
7239 Tells gdb whether to detach the child of a fork."),
7240 NULL, NULL, &setlist, &showlist);
7241
7242 /* ptid initializations */
7243 inferior_ptid = null_ptid;
7244 target_last_wait_ptid = minus_one_ptid;
7245
7246 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7247 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7248 observer_attach_thread_exit (infrun_thread_thread_exit);
7249 observer_attach_inferior_exit (infrun_inferior_exit);
7250
7251 /* Explicitly create without lookup, since that tries to create a
7252 value with a void typed value, and when we get here, gdbarch
7253 isn't initialized yet. At this point, we're quite sure there
7254 isn't another convenience variable of the same name. */
7255 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
7256
7257 add_setshow_boolean_cmd ("observer", no_class,
7258 &observer_mode_1, _("\
7259 Set whether gdb controls the inferior in observer mode."), _("\
7260 Show whether gdb controls the inferior in observer mode."), _("\
7261 In observer mode, GDB can get data from the inferior, but not\n\
7262 affect its execution. Registers and memory may not be changed,\n\
7263 breakpoints may not be set, and the program cannot be interrupted\n\
7264 or signalled."),
7265 set_observer_mode,
7266 show_observer_mode,
7267 &setlist,
7268 &showlist);
7269 }
This page took 0.228354 seconds and 4 git commands to generate.