gdb: Fix build failure with GCC 7
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2017 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observer.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63 #include "solist.h"
64 #include "event-loop.h"
65 #include "thread-fsm.h"
66 #include "common/enum-flags.h"
67 #include "progspace-and-thread.h"
68 #include "common/gdb_optional.h"
69 #include "arch-utils.h"
70
71 /* Prototypes for local functions */
72
73 static void signals_info (char *, int);
74
75 static void handle_command (char *, int);
76
77 static void sig_print_info (enum gdb_signal);
78
79 static void sig_print_header (void);
80
81 static void resume_cleanups (void *);
82
83 static int hook_stop_stub (void *);
84
85 static int restore_selected_frame (void *);
86
87 static int follow_fork (void);
88
89 static int follow_fork_inferior (int follow_child, int detach_fork);
90
91 static void follow_inferior_reset_breakpoints (void);
92
93 static void set_schedlock_func (char *args, int from_tty,
94 struct cmd_list_element *c);
95
96 static int currently_stepping (struct thread_info *tp);
97
98 void _initialize_infrun (void);
99
100 void nullify_last_target_wait_ptid (void);
101
102 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
103
104 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
105
106 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
107
108 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
109
110 /* Asynchronous signal handler registered as event loop source for
111 when we have pending events ready to be passed to the core. */
112 static struct async_event_handler *infrun_async_inferior_event_token;
113
114 /* Stores whether infrun_async was previously enabled or disabled.
115 Starts off as -1, indicating "never enabled/disabled". */
116 static int infrun_is_async = -1;
117
118 /* See infrun.h. */
119
120 void
121 infrun_async (int enable)
122 {
123 if (infrun_is_async != enable)
124 {
125 infrun_is_async = enable;
126
127 if (debug_infrun)
128 fprintf_unfiltered (gdb_stdlog,
129 "infrun: infrun_async(%d)\n",
130 enable);
131
132 if (enable)
133 mark_async_event_handler (infrun_async_inferior_event_token);
134 else
135 clear_async_event_handler (infrun_async_inferior_event_token);
136 }
137 }
138
139 /* See infrun.h. */
140
141 void
142 mark_infrun_async_event_handler (void)
143 {
144 mark_async_event_handler (infrun_async_inferior_event_token);
145 }
146
147 /* When set, stop the 'step' command if we enter a function which has
148 no line number information. The normal behavior is that we step
149 over such function. */
150 int step_stop_if_no_debug = 0;
151 static void
152 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
153 struct cmd_list_element *c, const char *value)
154 {
155 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
156 }
157
158 /* proceed and normal_stop use this to notify the user when the
159 inferior stopped in a different thread than it had been running
160 in. */
161
162 static ptid_t previous_inferior_ptid;
163
164 /* If set (default for legacy reasons), when following a fork, GDB
165 will detach from one of the fork branches, child or parent.
166 Exactly which branch is detached depends on 'set follow-fork-mode'
167 setting. */
168
169 static int detach_fork = 1;
170
171 int debug_displaced = 0;
172 static void
173 show_debug_displaced (struct ui_file *file, int from_tty,
174 struct cmd_list_element *c, const char *value)
175 {
176 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
177 }
178
179 unsigned int debug_infrun = 0;
180 static void
181 show_debug_infrun (struct ui_file *file, int from_tty,
182 struct cmd_list_element *c, const char *value)
183 {
184 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
185 }
186
187
188 /* Support for disabling address space randomization. */
189
190 int disable_randomization = 1;
191
192 static void
193 show_disable_randomization (struct ui_file *file, int from_tty,
194 struct cmd_list_element *c, const char *value)
195 {
196 if (target_supports_disable_randomization ())
197 fprintf_filtered (file,
198 _("Disabling randomization of debuggee's "
199 "virtual address space is %s.\n"),
200 value);
201 else
202 fputs_filtered (_("Disabling randomization of debuggee's "
203 "virtual address space is unsupported on\n"
204 "this platform.\n"), file);
205 }
206
207 static void
208 set_disable_randomization (char *args, int from_tty,
209 struct cmd_list_element *c)
210 {
211 if (!target_supports_disable_randomization ())
212 error (_("Disabling randomization of debuggee's "
213 "virtual address space is unsupported on\n"
214 "this platform."));
215 }
216
217 /* User interface for non-stop mode. */
218
219 int non_stop = 0;
220 static int non_stop_1 = 0;
221
222 static void
223 set_non_stop (char *args, int from_tty,
224 struct cmd_list_element *c)
225 {
226 if (target_has_execution)
227 {
228 non_stop_1 = non_stop;
229 error (_("Cannot change this setting while the inferior is running."));
230 }
231
232 non_stop = non_stop_1;
233 }
234
235 static void
236 show_non_stop (struct ui_file *file, int from_tty,
237 struct cmd_list_element *c, const char *value)
238 {
239 fprintf_filtered (file,
240 _("Controlling the inferior in non-stop mode is %s.\n"),
241 value);
242 }
243
244 /* "Observer mode" is somewhat like a more extreme version of
245 non-stop, in which all GDB operations that might affect the
246 target's execution have been disabled. */
247
248 int observer_mode = 0;
249 static int observer_mode_1 = 0;
250
251 static void
252 set_observer_mode (char *args, int from_tty,
253 struct cmd_list_element *c)
254 {
255 if (target_has_execution)
256 {
257 observer_mode_1 = observer_mode;
258 error (_("Cannot change this setting while the inferior is running."));
259 }
260
261 observer_mode = observer_mode_1;
262
263 may_write_registers = !observer_mode;
264 may_write_memory = !observer_mode;
265 may_insert_breakpoints = !observer_mode;
266 may_insert_tracepoints = !observer_mode;
267 /* We can insert fast tracepoints in or out of observer mode,
268 but enable them if we're going into this mode. */
269 if (observer_mode)
270 may_insert_fast_tracepoints = 1;
271 may_stop = !observer_mode;
272 update_target_permissions ();
273
274 /* Going *into* observer mode we must force non-stop, then
275 going out we leave it that way. */
276 if (observer_mode)
277 {
278 pagination_enabled = 0;
279 non_stop = non_stop_1 = 1;
280 }
281
282 if (from_tty)
283 printf_filtered (_("Observer mode is now %s.\n"),
284 (observer_mode ? "on" : "off"));
285 }
286
287 static void
288 show_observer_mode (struct ui_file *file, int from_tty,
289 struct cmd_list_element *c, const char *value)
290 {
291 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
292 }
293
294 /* This updates the value of observer mode based on changes in
295 permissions. Note that we are deliberately ignoring the values of
296 may-write-registers and may-write-memory, since the user may have
297 reason to enable these during a session, for instance to turn on a
298 debugging-related global. */
299
300 void
301 update_observer_mode (void)
302 {
303 int newval;
304
305 newval = (!may_insert_breakpoints
306 && !may_insert_tracepoints
307 && may_insert_fast_tracepoints
308 && !may_stop
309 && non_stop);
310
311 /* Let the user know if things change. */
312 if (newval != observer_mode)
313 printf_filtered (_("Observer mode is now %s.\n"),
314 (newval ? "on" : "off"));
315
316 observer_mode = observer_mode_1 = newval;
317 }
318
319 /* Tables of how to react to signals; the user sets them. */
320
321 static unsigned char *signal_stop;
322 static unsigned char *signal_print;
323 static unsigned char *signal_program;
324
325 /* Table of signals that are registered with "catch signal". A
326 non-zero entry indicates that the signal is caught by some "catch
327 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
328 signals. */
329 static unsigned char *signal_catch;
330
331 /* Table of signals that the target may silently handle.
332 This is automatically determined from the flags above,
333 and simply cached here. */
334 static unsigned char *signal_pass;
335
336 #define SET_SIGS(nsigs,sigs,flags) \
337 do { \
338 int signum = (nsigs); \
339 while (signum-- > 0) \
340 if ((sigs)[signum]) \
341 (flags)[signum] = 1; \
342 } while (0)
343
344 #define UNSET_SIGS(nsigs,sigs,flags) \
345 do { \
346 int signum = (nsigs); \
347 while (signum-- > 0) \
348 if ((sigs)[signum]) \
349 (flags)[signum] = 0; \
350 } while (0)
351
352 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
353 this function is to avoid exporting `signal_program'. */
354
355 void
356 update_signals_program_target (void)
357 {
358 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
359 }
360
361 /* Value to pass to target_resume() to cause all threads to resume. */
362
363 #define RESUME_ALL minus_one_ptid
364
365 /* Command list pointer for the "stop" placeholder. */
366
367 static struct cmd_list_element *stop_command;
368
369 /* Nonzero if we want to give control to the user when we're notified
370 of shared library events by the dynamic linker. */
371 int stop_on_solib_events;
372
373 /* Enable or disable optional shared library event breakpoints
374 as appropriate when the above flag is changed. */
375
376 static void
377 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
378 {
379 update_solib_breakpoints ();
380 }
381
382 static void
383 show_stop_on_solib_events (struct ui_file *file, int from_tty,
384 struct cmd_list_element *c, const char *value)
385 {
386 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
387 value);
388 }
389
390 /* Nonzero after stop if current stack frame should be printed. */
391
392 static int stop_print_frame;
393
394 /* This is a cached copy of the pid/waitstatus of the last event
395 returned by target_wait()/deprecated_target_wait_hook(). This
396 information is returned by get_last_target_status(). */
397 static ptid_t target_last_wait_ptid;
398 static struct target_waitstatus target_last_waitstatus;
399
400 static void context_switch (ptid_t ptid);
401
402 void init_thread_stepping_state (struct thread_info *tss);
403
404 static const char follow_fork_mode_child[] = "child";
405 static const char follow_fork_mode_parent[] = "parent";
406
407 static const char *const follow_fork_mode_kind_names[] = {
408 follow_fork_mode_child,
409 follow_fork_mode_parent,
410 NULL
411 };
412
413 static const char *follow_fork_mode_string = follow_fork_mode_parent;
414 static void
415 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
416 struct cmd_list_element *c, const char *value)
417 {
418 fprintf_filtered (file,
419 _("Debugger response to a program "
420 "call of fork or vfork is \"%s\".\n"),
421 value);
422 }
423 \f
424
425 /* Handle changes to the inferior list based on the type of fork,
426 which process is being followed, and whether the other process
427 should be detached. On entry inferior_ptid must be the ptid of
428 the fork parent. At return inferior_ptid is the ptid of the
429 followed inferior. */
430
431 static int
432 follow_fork_inferior (int follow_child, int detach_fork)
433 {
434 int has_vforked;
435 ptid_t parent_ptid, child_ptid;
436
437 has_vforked = (inferior_thread ()->pending_follow.kind
438 == TARGET_WAITKIND_VFORKED);
439 parent_ptid = inferior_ptid;
440 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
441
442 if (has_vforked
443 && !non_stop /* Non-stop always resumes both branches. */
444 && current_ui->prompt_state == PROMPT_BLOCKED
445 && !(follow_child || detach_fork || sched_multi))
446 {
447 /* The parent stays blocked inside the vfork syscall until the
448 child execs or exits. If we don't let the child run, then
449 the parent stays blocked. If we're telling the parent to run
450 in the foreground, the user will not be able to ctrl-c to get
451 back the terminal, effectively hanging the debug session. */
452 fprintf_filtered (gdb_stderr, _("\
453 Can not resume the parent process over vfork in the foreground while\n\
454 holding the child stopped. Try \"set detach-on-fork\" or \
455 \"set schedule-multiple\".\n"));
456 /* FIXME output string > 80 columns. */
457 return 1;
458 }
459
460 if (!follow_child)
461 {
462 /* Detach new forked process? */
463 if (detach_fork)
464 {
465 /* Before detaching from the child, remove all breakpoints
466 from it. If we forked, then this has already been taken
467 care of by infrun.c. If we vforked however, any
468 breakpoint inserted in the parent is visible in the
469 child, even those added while stopped in a vfork
470 catchpoint. This will remove the breakpoints from the
471 parent also, but they'll be reinserted below. */
472 if (has_vforked)
473 {
474 /* Keep breakpoints list in sync. */
475 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
476 }
477
478 if (info_verbose || debug_infrun)
479 {
480 /* Ensure that we have a process ptid. */
481 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
482
483 target_terminal_ours_for_output ();
484 fprintf_filtered (gdb_stdlog,
485 _("Detaching after %s from child %s.\n"),
486 has_vforked ? "vfork" : "fork",
487 target_pid_to_str (process_ptid));
488 }
489 }
490 else
491 {
492 struct inferior *parent_inf, *child_inf;
493
494 /* Add process to GDB's tables. */
495 child_inf = add_inferior (ptid_get_pid (child_ptid));
496
497 parent_inf = current_inferior ();
498 child_inf->attach_flag = parent_inf->attach_flag;
499 copy_terminal_info (child_inf, parent_inf);
500 child_inf->gdbarch = parent_inf->gdbarch;
501 copy_inferior_target_desc_info (child_inf, parent_inf);
502
503 scoped_restore_current_pspace_and_thread restore_pspace_thread;
504
505 inferior_ptid = child_ptid;
506 add_thread (inferior_ptid);
507 set_current_inferior (child_inf);
508 child_inf->symfile_flags = SYMFILE_NO_READ;
509
510 /* If this is a vfork child, then the address-space is
511 shared with the parent. */
512 if (has_vforked)
513 {
514 child_inf->pspace = parent_inf->pspace;
515 child_inf->aspace = parent_inf->aspace;
516
517 /* The parent will be frozen until the child is done
518 with the shared region. Keep track of the
519 parent. */
520 child_inf->vfork_parent = parent_inf;
521 child_inf->pending_detach = 0;
522 parent_inf->vfork_child = child_inf;
523 parent_inf->pending_detach = 0;
524 }
525 else
526 {
527 child_inf->aspace = new_address_space ();
528 child_inf->pspace = add_program_space (child_inf->aspace);
529 child_inf->removable = 1;
530 set_current_program_space (child_inf->pspace);
531 clone_program_space (child_inf->pspace, parent_inf->pspace);
532
533 /* Let the shared library layer (e.g., solib-svr4) learn
534 about this new process, relocate the cloned exec, pull
535 in shared libraries, and install the solib event
536 breakpoint. If a "cloned-VM" event was propagated
537 better throughout the core, this wouldn't be
538 required. */
539 solib_create_inferior_hook (0);
540 }
541 }
542
543 if (has_vforked)
544 {
545 struct inferior *parent_inf;
546
547 parent_inf = current_inferior ();
548
549 /* If we detached from the child, then we have to be careful
550 to not insert breakpoints in the parent until the child
551 is done with the shared memory region. However, if we're
552 staying attached to the child, then we can and should
553 insert breakpoints, so that we can debug it. A
554 subsequent child exec or exit is enough to know when does
555 the child stops using the parent's address space. */
556 parent_inf->waiting_for_vfork_done = detach_fork;
557 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
558 }
559 }
560 else
561 {
562 /* Follow the child. */
563 struct inferior *parent_inf, *child_inf;
564 struct program_space *parent_pspace;
565
566 if (info_verbose || debug_infrun)
567 {
568 target_terminal_ours_for_output ();
569 fprintf_filtered (gdb_stdlog,
570 _("Attaching after %s %s to child %s.\n"),
571 target_pid_to_str (parent_ptid),
572 has_vforked ? "vfork" : "fork",
573 target_pid_to_str (child_ptid));
574 }
575
576 /* Add the new inferior first, so that the target_detach below
577 doesn't unpush the target. */
578
579 child_inf = add_inferior (ptid_get_pid (child_ptid));
580
581 parent_inf = current_inferior ();
582 child_inf->attach_flag = parent_inf->attach_flag;
583 copy_terminal_info (child_inf, parent_inf);
584 child_inf->gdbarch = parent_inf->gdbarch;
585 copy_inferior_target_desc_info (child_inf, parent_inf);
586
587 parent_pspace = parent_inf->pspace;
588
589 /* If we're vforking, we want to hold on to the parent until the
590 child exits or execs. At child exec or exit time we can
591 remove the old breakpoints from the parent and detach or
592 resume debugging it. Otherwise, detach the parent now; we'll
593 want to reuse it's program/address spaces, but we can't set
594 them to the child before removing breakpoints from the
595 parent, otherwise, the breakpoints module could decide to
596 remove breakpoints from the wrong process (since they'd be
597 assigned to the same address space). */
598
599 if (has_vforked)
600 {
601 gdb_assert (child_inf->vfork_parent == NULL);
602 gdb_assert (parent_inf->vfork_child == NULL);
603 child_inf->vfork_parent = parent_inf;
604 child_inf->pending_detach = 0;
605 parent_inf->vfork_child = child_inf;
606 parent_inf->pending_detach = detach_fork;
607 parent_inf->waiting_for_vfork_done = 0;
608 }
609 else if (detach_fork)
610 {
611 if (info_verbose || debug_infrun)
612 {
613 /* Ensure that we have a process ptid. */
614 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
615
616 target_terminal_ours_for_output ();
617 fprintf_filtered (gdb_stdlog,
618 _("Detaching after fork from "
619 "child %s.\n"),
620 target_pid_to_str (process_ptid));
621 }
622
623 target_detach (NULL, 0);
624 }
625
626 /* Note that the detach above makes PARENT_INF dangling. */
627
628 /* Add the child thread to the appropriate lists, and switch to
629 this new thread, before cloning the program space, and
630 informing the solib layer about this new process. */
631
632 inferior_ptid = child_ptid;
633 add_thread (inferior_ptid);
634 set_current_inferior (child_inf);
635
636 /* If this is a vfork child, then the address-space is shared
637 with the parent. If we detached from the parent, then we can
638 reuse the parent's program/address spaces. */
639 if (has_vforked || detach_fork)
640 {
641 child_inf->pspace = parent_pspace;
642 child_inf->aspace = child_inf->pspace->aspace;
643 }
644 else
645 {
646 child_inf->aspace = new_address_space ();
647 child_inf->pspace = add_program_space (child_inf->aspace);
648 child_inf->removable = 1;
649 child_inf->symfile_flags = SYMFILE_NO_READ;
650 set_current_program_space (child_inf->pspace);
651 clone_program_space (child_inf->pspace, parent_pspace);
652
653 /* Let the shared library layer (e.g., solib-svr4) learn
654 about this new process, relocate the cloned exec, pull in
655 shared libraries, and install the solib event breakpoint.
656 If a "cloned-VM" event was propagated better throughout
657 the core, this wouldn't be required. */
658 solib_create_inferior_hook (0);
659 }
660 }
661
662 return target_follow_fork (follow_child, detach_fork);
663 }
664
665 /* Tell the target to follow the fork we're stopped at. Returns true
666 if the inferior should be resumed; false, if the target for some
667 reason decided it's best not to resume. */
668
669 static int
670 follow_fork (void)
671 {
672 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
673 int should_resume = 1;
674 struct thread_info *tp;
675
676 /* Copy user stepping state to the new inferior thread. FIXME: the
677 followed fork child thread should have a copy of most of the
678 parent thread structure's run control related fields, not just these.
679 Initialized to avoid "may be used uninitialized" warnings from gcc. */
680 struct breakpoint *step_resume_breakpoint = NULL;
681 struct breakpoint *exception_resume_breakpoint = NULL;
682 CORE_ADDR step_range_start = 0;
683 CORE_ADDR step_range_end = 0;
684 struct frame_id step_frame_id = { 0 };
685 struct thread_fsm *thread_fsm = NULL;
686
687 if (!non_stop)
688 {
689 ptid_t wait_ptid;
690 struct target_waitstatus wait_status;
691
692 /* Get the last target status returned by target_wait(). */
693 get_last_target_status (&wait_ptid, &wait_status);
694
695 /* If not stopped at a fork event, then there's nothing else to
696 do. */
697 if (wait_status.kind != TARGET_WAITKIND_FORKED
698 && wait_status.kind != TARGET_WAITKIND_VFORKED)
699 return 1;
700
701 /* Check if we switched over from WAIT_PTID, since the event was
702 reported. */
703 if (!ptid_equal (wait_ptid, minus_one_ptid)
704 && !ptid_equal (inferior_ptid, wait_ptid))
705 {
706 /* We did. Switch back to WAIT_PTID thread, to tell the
707 target to follow it (in either direction). We'll
708 afterwards refuse to resume, and inform the user what
709 happened. */
710 switch_to_thread (wait_ptid);
711 should_resume = 0;
712 }
713 }
714
715 tp = inferior_thread ();
716
717 /* If there were any forks/vforks that were caught and are now to be
718 followed, then do so now. */
719 switch (tp->pending_follow.kind)
720 {
721 case TARGET_WAITKIND_FORKED:
722 case TARGET_WAITKIND_VFORKED:
723 {
724 ptid_t parent, child;
725
726 /* If the user did a next/step, etc, over a fork call,
727 preserve the stepping state in the fork child. */
728 if (follow_child && should_resume)
729 {
730 step_resume_breakpoint = clone_momentary_breakpoint
731 (tp->control.step_resume_breakpoint);
732 step_range_start = tp->control.step_range_start;
733 step_range_end = tp->control.step_range_end;
734 step_frame_id = tp->control.step_frame_id;
735 exception_resume_breakpoint
736 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
737 thread_fsm = tp->thread_fsm;
738
739 /* For now, delete the parent's sr breakpoint, otherwise,
740 parent/child sr breakpoints are considered duplicates,
741 and the child version will not be installed. Remove
742 this when the breakpoints module becomes aware of
743 inferiors and address spaces. */
744 delete_step_resume_breakpoint (tp);
745 tp->control.step_range_start = 0;
746 tp->control.step_range_end = 0;
747 tp->control.step_frame_id = null_frame_id;
748 delete_exception_resume_breakpoint (tp);
749 tp->thread_fsm = NULL;
750 }
751
752 parent = inferior_ptid;
753 child = tp->pending_follow.value.related_pid;
754
755 /* Set up inferior(s) as specified by the caller, and tell the
756 target to do whatever is necessary to follow either parent
757 or child. */
758 if (follow_fork_inferior (follow_child, detach_fork))
759 {
760 /* Target refused to follow, or there's some other reason
761 we shouldn't resume. */
762 should_resume = 0;
763 }
764 else
765 {
766 /* This pending follow fork event is now handled, one way
767 or another. The previous selected thread may be gone
768 from the lists by now, but if it is still around, need
769 to clear the pending follow request. */
770 tp = find_thread_ptid (parent);
771 if (tp)
772 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
773
774 /* This makes sure we don't try to apply the "Switched
775 over from WAIT_PID" logic above. */
776 nullify_last_target_wait_ptid ();
777
778 /* If we followed the child, switch to it... */
779 if (follow_child)
780 {
781 switch_to_thread (child);
782
783 /* ... and preserve the stepping state, in case the
784 user was stepping over the fork call. */
785 if (should_resume)
786 {
787 tp = inferior_thread ();
788 tp->control.step_resume_breakpoint
789 = step_resume_breakpoint;
790 tp->control.step_range_start = step_range_start;
791 tp->control.step_range_end = step_range_end;
792 tp->control.step_frame_id = step_frame_id;
793 tp->control.exception_resume_breakpoint
794 = exception_resume_breakpoint;
795 tp->thread_fsm = thread_fsm;
796 }
797 else
798 {
799 /* If we get here, it was because we're trying to
800 resume from a fork catchpoint, but, the user
801 has switched threads away from the thread that
802 forked. In that case, the resume command
803 issued is most likely not applicable to the
804 child, so just warn, and refuse to resume. */
805 warning (_("Not resuming: switched threads "
806 "before following fork child."));
807 }
808
809 /* Reset breakpoints in the child as appropriate. */
810 follow_inferior_reset_breakpoints ();
811 }
812 else
813 switch_to_thread (parent);
814 }
815 }
816 break;
817 case TARGET_WAITKIND_SPURIOUS:
818 /* Nothing to follow. */
819 break;
820 default:
821 internal_error (__FILE__, __LINE__,
822 "Unexpected pending_follow.kind %d\n",
823 tp->pending_follow.kind);
824 break;
825 }
826
827 return should_resume;
828 }
829
830 static void
831 follow_inferior_reset_breakpoints (void)
832 {
833 struct thread_info *tp = inferior_thread ();
834
835 /* Was there a step_resume breakpoint? (There was if the user
836 did a "next" at the fork() call.) If so, explicitly reset its
837 thread number. Cloned step_resume breakpoints are disabled on
838 creation, so enable it here now that it is associated with the
839 correct thread.
840
841 step_resumes are a form of bp that are made to be per-thread.
842 Since we created the step_resume bp when the parent process
843 was being debugged, and now are switching to the child process,
844 from the breakpoint package's viewpoint, that's a switch of
845 "threads". We must update the bp's notion of which thread
846 it is for, or it'll be ignored when it triggers. */
847
848 if (tp->control.step_resume_breakpoint)
849 {
850 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
851 tp->control.step_resume_breakpoint->loc->enabled = 1;
852 }
853
854 /* Treat exception_resume breakpoints like step_resume breakpoints. */
855 if (tp->control.exception_resume_breakpoint)
856 {
857 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
858 tp->control.exception_resume_breakpoint->loc->enabled = 1;
859 }
860
861 /* Reinsert all breakpoints in the child. The user may have set
862 breakpoints after catching the fork, in which case those
863 were never set in the child, but only in the parent. This makes
864 sure the inserted breakpoints match the breakpoint list. */
865
866 breakpoint_re_set ();
867 insert_breakpoints ();
868 }
869
870 /* The child has exited or execed: resume threads of the parent the
871 user wanted to be executing. */
872
873 static int
874 proceed_after_vfork_done (struct thread_info *thread,
875 void *arg)
876 {
877 int pid = * (int *) arg;
878
879 if (ptid_get_pid (thread->ptid) == pid
880 && is_running (thread->ptid)
881 && !is_executing (thread->ptid)
882 && !thread->stop_requested
883 && thread->suspend.stop_signal == GDB_SIGNAL_0)
884 {
885 if (debug_infrun)
886 fprintf_unfiltered (gdb_stdlog,
887 "infrun: resuming vfork parent thread %s\n",
888 target_pid_to_str (thread->ptid));
889
890 switch_to_thread (thread->ptid);
891 clear_proceed_status (0);
892 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
893 }
894
895 return 0;
896 }
897
898 /* Save/restore inferior_ptid, current program space and current
899 inferior. Only use this if the current context points at an exited
900 inferior (and therefore there's no current thread to save). */
901 class scoped_restore_exited_inferior
902 {
903 public:
904 scoped_restore_exited_inferior ()
905 : m_saved_ptid (&inferior_ptid)
906 {}
907
908 private:
909 scoped_restore_tmpl<ptid_t> m_saved_ptid;
910 scoped_restore_current_program_space m_pspace;
911 scoped_restore_current_inferior m_inferior;
912 };
913
914 /* Called whenever we notice an exec or exit event, to handle
915 detaching or resuming a vfork parent. */
916
917 static void
918 handle_vfork_child_exec_or_exit (int exec)
919 {
920 struct inferior *inf = current_inferior ();
921
922 if (inf->vfork_parent)
923 {
924 int resume_parent = -1;
925
926 /* This exec or exit marks the end of the shared memory region
927 between the parent and the child. If the user wanted to
928 detach from the parent, now is the time. */
929
930 if (inf->vfork_parent->pending_detach)
931 {
932 struct thread_info *tp;
933 struct program_space *pspace;
934 struct address_space *aspace;
935
936 /* follow-fork child, detach-on-fork on. */
937
938 inf->vfork_parent->pending_detach = 0;
939
940 gdb::optional<scoped_restore_exited_inferior>
941 maybe_restore_inferior;
942 gdb::optional<scoped_restore_current_pspace_and_thread>
943 maybe_restore_thread;
944
945 /* If we're handling a child exit, then inferior_ptid points
946 at the inferior's pid, not to a thread. */
947 if (!exec)
948 maybe_restore_inferior.emplace ();
949 else
950 maybe_restore_thread.emplace ();
951
952 /* We're letting loose of the parent. */
953 tp = any_live_thread_of_process (inf->vfork_parent->pid);
954 switch_to_thread (tp->ptid);
955
956 /* We're about to detach from the parent, which implicitly
957 removes breakpoints from its address space. There's a
958 catch here: we want to reuse the spaces for the child,
959 but, parent/child are still sharing the pspace at this
960 point, although the exec in reality makes the kernel give
961 the child a fresh set of new pages. The problem here is
962 that the breakpoints module being unaware of this, would
963 likely chose the child process to write to the parent
964 address space. Swapping the child temporarily away from
965 the spaces has the desired effect. Yes, this is "sort
966 of" a hack. */
967
968 pspace = inf->pspace;
969 aspace = inf->aspace;
970 inf->aspace = NULL;
971 inf->pspace = NULL;
972
973 if (debug_infrun || info_verbose)
974 {
975 target_terminal_ours_for_output ();
976
977 if (exec)
978 {
979 fprintf_filtered (gdb_stdlog,
980 _("Detaching vfork parent process "
981 "%d after child exec.\n"),
982 inf->vfork_parent->pid);
983 }
984 else
985 {
986 fprintf_filtered (gdb_stdlog,
987 _("Detaching vfork parent process "
988 "%d after child exit.\n"),
989 inf->vfork_parent->pid);
990 }
991 }
992
993 target_detach (NULL, 0);
994
995 /* Put it back. */
996 inf->pspace = pspace;
997 inf->aspace = aspace;
998 }
999 else if (exec)
1000 {
1001 /* We're staying attached to the parent, so, really give the
1002 child a new address space. */
1003 inf->pspace = add_program_space (maybe_new_address_space ());
1004 inf->aspace = inf->pspace->aspace;
1005 inf->removable = 1;
1006 set_current_program_space (inf->pspace);
1007
1008 resume_parent = inf->vfork_parent->pid;
1009
1010 /* Break the bonds. */
1011 inf->vfork_parent->vfork_child = NULL;
1012 }
1013 else
1014 {
1015 struct program_space *pspace;
1016
1017 /* If this is a vfork child exiting, then the pspace and
1018 aspaces were shared with the parent. Since we're
1019 reporting the process exit, we'll be mourning all that is
1020 found in the address space, and switching to null_ptid,
1021 preparing to start a new inferior. But, since we don't
1022 want to clobber the parent's address/program spaces, we
1023 go ahead and create a new one for this exiting
1024 inferior. */
1025
1026 /* Switch to null_ptid while running clone_program_space, so
1027 that clone_program_space doesn't want to read the
1028 selected frame of a dead process. */
1029 scoped_restore restore_ptid
1030 = make_scoped_restore (&inferior_ptid, null_ptid);
1031
1032 /* This inferior is dead, so avoid giving the breakpoints
1033 module the option to write through to it (cloning a
1034 program space resets breakpoints). */
1035 inf->aspace = NULL;
1036 inf->pspace = NULL;
1037 pspace = add_program_space (maybe_new_address_space ());
1038 set_current_program_space (pspace);
1039 inf->removable = 1;
1040 inf->symfile_flags = SYMFILE_NO_READ;
1041 clone_program_space (pspace, inf->vfork_parent->pspace);
1042 inf->pspace = pspace;
1043 inf->aspace = pspace->aspace;
1044
1045 resume_parent = inf->vfork_parent->pid;
1046 /* Break the bonds. */
1047 inf->vfork_parent->vfork_child = NULL;
1048 }
1049
1050 inf->vfork_parent = NULL;
1051
1052 gdb_assert (current_program_space == inf->pspace);
1053
1054 if (non_stop && resume_parent != -1)
1055 {
1056 /* If the user wanted the parent to be running, let it go
1057 free now. */
1058 scoped_restore_current_thread restore_thread;
1059
1060 if (debug_infrun)
1061 fprintf_unfiltered (gdb_stdlog,
1062 "infrun: resuming vfork parent process %d\n",
1063 resume_parent);
1064
1065 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1066 }
1067 }
1068 }
1069
1070 /* Enum strings for "set|show follow-exec-mode". */
1071
1072 static const char follow_exec_mode_new[] = "new";
1073 static const char follow_exec_mode_same[] = "same";
1074 static const char *const follow_exec_mode_names[] =
1075 {
1076 follow_exec_mode_new,
1077 follow_exec_mode_same,
1078 NULL,
1079 };
1080
1081 static const char *follow_exec_mode_string = follow_exec_mode_same;
1082 static void
1083 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1084 struct cmd_list_element *c, const char *value)
1085 {
1086 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1087 }
1088
1089 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1090
1091 static void
1092 follow_exec (ptid_t ptid, char *exec_file_target)
1093 {
1094 struct thread_info *th, *tmp;
1095 struct inferior *inf = current_inferior ();
1096 int pid = ptid_get_pid (ptid);
1097 ptid_t process_ptid;
1098 char *exec_file_host;
1099 struct cleanup *old_chain;
1100
1101 /* This is an exec event that we actually wish to pay attention to.
1102 Refresh our symbol table to the newly exec'd program, remove any
1103 momentary bp's, etc.
1104
1105 If there are breakpoints, they aren't really inserted now,
1106 since the exec() transformed our inferior into a fresh set
1107 of instructions.
1108
1109 We want to preserve symbolic breakpoints on the list, since
1110 we have hopes that they can be reset after the new a.out's
1111 symbol table is read.
1112
1113 However, any "raw" breakpoints must be removed from the list
1114 (e.g., the solib bp's), since their address is probably invalid
1115 now.
1116
1117 And, we DON'T want to call delete_breakpoints() here, since
1118 that may write the bp's "shadow contents" (the instruction
1119 value that was overwritten witha TRAP instruction). Since
1120 we now have a new a.out, those shadow contents aren't valid. */
1121
1122 mark_breakpoints_out ();
1123
1124 /* The target reports the exec event to the main thread, even if
1125 some other thread does the exec, and even if the main thread was
1126 stopped or already gone. We may still have non-leader threads of
1127 the process on our list. E.g., on targets that don't have thread
1128 exit events (like remote); or on native Linux in non-stop mode if
1129 there were only two threads in the inferior and the non-leader
1130 one is the one that execs (and nothing forces an update of the
1131 thread list up to here). When debugging remotely, it's best to
1132 avoid extra traffic, when possible, so avoid syncing the thread
1133 list with the target, and instead go ahead and delete all threads
1134 of the process but one that reported the event. Note this must
1135 be done before calling update_breakpoints_after_exec, as
1136 otherwise clearing the threads' resources would reference stale
1137 thread breakpoints -- it may have been one of these threads that
1138 stepped across the exec. We could just clear their stepping
1139 states, but as long as we're iterating, might as well delete
1140 them. Deleting them now rather than at the next user-visible
1141 stop provides a nicer sequence of events for user and MI
1142 notifications. */
1143 ALL_THREADS_SAFE (th, tmp)
1144 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1145 delete_thread (th->ptid);
1146
1147 /* We also need to clear any left over stale state for the
1148 leader/event thread. E.g., if there was any step-resume
1149 breakpoint or similar, it's gone now. We cannot truly
1150 step-to-next statement through an exec(). */
1151 th = inferior_thread ();
1152 th->control.step_resume_breakpoint = NULL;
1153 th->control.exception_resume_breakpoint = NULL;
1154 th->control.single_step_breakpoints = NULL;
1155 th->control.step_range_start = 0;
1156 th->control.step_range_end = 0;
1157
1158 /* The user may have had the main thread held stopped in the
1159 previous image (e.g., schedlock on, or non-stop). Release
1160 it now. */
1161 th->stop_requested = 0;
1162
1163 update_breakpoints_after_exec ();
1164
1165 /* What is this a.out's name? */
1166 process_ptid = pid_to_ptid (pid);
1167 printf_unfiltered (_("%s is executing new program: %s\n"),
1168 target_pid_to_str (process_ptid),
1169 exec_file_target);
1170
1171 /* We've followed the inferior through an exec. Therefore, the
1172 inferior has essentially been killed & reborn. */
1173
1174 gdb_flush (gdb_stdout);
1175
1176 breakpoint_init_inferior (inf_execd);
1177
1178 exec_file_host = exec_file_find (exec_file_target, NULL);
1179 old_chain = make_cleanup (xfree, exec_file_host);
1180
1181 /* If we were unable to map the executable target pathname onto a host
1182 pathname, tell the user that. Otherwise GDB's subsequent behavior
1183 is confusing. Maybe it would even be better to stop at this point
1184 so that the user can specify a file manually before continuing. */
1185 if (exec_file_host == NULL)
1186 warning (_("Could not load symbols for executable %s.\n"
1187 "Do you need \"set sysroot\"?"),
1188 exec_file_target);
1189
1190 /* Reset the shared library package. This ensures that we get a
1191 shlib event when the child reaches "_start", at which point the
1192 dld will have had a chance to initialize the child. */
1193 /* Also, loading a symbol file below may trigger symbol lookups, and
1194 we don't want those to be satisfied by the libraries of the
1195 previous incarnation of this process. */
1196 no_shared_libraries (NULL, 0);
1197
1198 if (follow_exec_mode_string == follow_exec_mode_new)
1199 {
1200 /* The user wants to keep the old inferior and program spaces
1201 around. Create a new fresh one, and switch to it. */
1202
1203 /* Do exit processing for the original inferior before adding
1204 the new inferior so we don't have two active inferiors with
1205 the same ptid, which can confuse find_inferior_ptid. */
1206 exit_inferior_num_silent (current_inferior ()->num);
1207
1208 inf = add_inferior_with_spaces ();
1209 inf->pid = pid;
1210 target_follow_exec (inf, exec_file_target);
1211
1212 set_current_inferior (inf);
1213 set_current_program_space (inf->pspace);
1214 add_thread (ptid);
1215 }
1216 else
1217 {
1218 /* The old description may no longer be fit for the new image.
1219 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1220 old description; we'll read a new one below. No need to do
1221 this on "follow-exec-mode new", as the old inferior stays
1222 around (its description is later cleared/refetched on
1223 restart). */
1224 target_clear_description ();
1225 }
1226
1227 gdb_assert (current_program_space == inf->pspace);
1228
1229 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1230 because the proper displacement for a PIE (Position Independent
1231 Executable) main symbol file will only be computed by
1232 solib_create_inferior_hook below. breakpoint_re_set would fail
1233 to insert the breakpoints with the zero displacement. */
1234 try_open_exec_file (exec_file_host, inf, SYMFILE_DEFER_BP_RESET);
1235
1236 do_cleanups (old_chain);
1237
1238 /* If the target can specify a description, read it. Must do this
1239 after flipping to the new executable (because the target supplied
1240 description must be compatible with the executable's
1241 architecture, and the old executable may e.g., be 32-bit, while
1242 the new one 64-bit), and before anything involving memory or
1243 registers. */
1244 target_find_description ();
1245
1246 solib_create_inferior_hook (0);
1247
1248 jit_inferior_created_hook ();
1249
1250 breakpoint_re_set ();
1251
1252 /* Reinsert all breakpoints. (Those which were symbolic have
1253 been reset to the proper address in the new a.out, thanks
1254 to symbol_file_command...). */
1255 insert_breakpoints ();
1256
1257 /* The next resume of this inferior should bring it to the shlib
1258 startup breakpoints. (If the user had also set bp's on
1259 "main" from the old (parent) process, then they'll auto-
1260 matically get reset there in the new process.). */
1261 }
1262
1263 /* The queue of threads that need to do a step-over operation to get
1264 past e.g., a breakpoint. What technique is used to step over the
1265 breakpoint/watchpoint does not matter -- all threads end up in the
1266 same queue, to maintain rough temporal order of execution, in order
1267 to avoid starvation, otherwise, we could e.g., find ourselves
1268 constantly stepping the same couple threads past their breakpoints
1269 over and over, if the single-step finish fast enough. */
1270 struct thread_info *step_over_queue_head;
1271
1272 /* Bit flags indicating what the thread needs to step over. */
1273
1274 enum step_over_what_flag
1275 {
1276 /* Step over a breakpoint. */
1277 STEP_OVER_BREAKPOINT = 1,
1278
1279 /* Step past a non-continuable watchpoint, in order to let the
1280 instruction execute so we can evaluate the watchpoint
1281 expression. */
1282 STEP_OVER_WATCHPOINT = 2
1283 };
1284 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1285
1286 /* Info about an instruction that is being stepped over. */
1287
1288 struct step_over_info
1289 {
1290 /* If we're stepping past a breakpoint, this is the address space
1291 and address of the instruction the breakpoint is set at. We'll
1292 skip inserting all breakpoints here. Valid iff ASPACE is
1293 non-NULL. */
1294 struct address_space *aspace;
1295 CORE_ADDR address;
1296
1297 /* The instruction being stepped over triggers a nonsteppable
1298 watchpoint. If true, we'll skip inserting watchpoints. */
1299 int nonsteppable_watchpoint_p;
1300
1301 /* The thread's global number. */
1302 int thread;
1303 };
1304
1305 /* The step-over info of the location that is being stepped over.
1306
1307 Note that with async/breakpoint always-inserted mode, a user might
1308 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1309 being stepped over. As setting a new breakpoint inserts all
1310 breakpoints, we need to make sure the breakpoint being stepped over
1311 isn't inserted then. We do that by only clearing the step-over
1312 info when the step-over is actually finished (or aborted).
1313
1314 Presently GDB can only step over one breakpoint at any given time.
1315 Given threads that can't run code in the same address space as the
1316 breakpoint's can't really miss the breakpoint, GDB could be taught
1317 to step-over at most one breakpoint per address space (so this info
1318 could move to the address space object if/when GDB is extended).
1319 The set of breakpoints being stepped over will normally be much
1320 smaller than the set of all breakpoints, so a flag in the
1321 breakpoint location structure would be wasteful. A separate list
1322 also saves complexity and run-time, as otherwise we'd have to go
1323 through all breakpoint locations clearing their flag whenever we
1324 start a new sequence. Similar considerations weigh against storing
1325 this info in the thread object. Plus, not all step overs actually
1326 have breakpoint locations -- e.g., stepping past a single-step
1327 breakpoint, or stepping to complete a non-continuable
1328 watchpoint. */
1329 static struct step_over_info step_over_info;
1330
1331 /* Record the address of the breakpoint/instruction we're currently
1332 stepping over.
1333 N.B. We record the aspace and address now, instead of say just the thread,
1334 because when we need the info later the thread may be running. */
1335
1336 static void
1337 set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1338 int nonsteppable_watchpoint_p,
1339 int thread)
1340 {
1341 step_over_info.aspace = aspace;
1342 step_over_info.address = address;
1343 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1344 step_over_info.thread = thread;
1345 }
1346
1347 /* Called when we're not longer stepping over a breakpoint / an
1348 instruction, so all breakpoints are free to be (re)inserted. */
1349
1350 static void
1351 clear_step_over_info (void)
1352 {
1353 if (debug_infrun)
1354 fprintf_unfiltered (gdb_stdlog,
1355 "infrun: clear_step_over_info\n");
1356 step_over_info.aspace = NULL;
1357 step_over_info.address = 0;
1358 step_over_info.nonsteppable_watchpoint_p = 0;
1359 step_over_info.thread = -1;
1360 }
1361
1362 /* See infrun.h. */
1363
1364 int
1365 stepping_past_instruction_at (struct address_space *aspace,
1366 CORE_ADDR address)
1367 {
1368 return (step_over_info.aspace != NULL
1369 && breakpoint_address_match (aspace, address,
1370 step_over_info.aspace,
1371 step_over_info.address));
1372 }
1373
1374 /* See infrun.h. */
1375
1376 int
1377 thread_is_stepping_over_breakpoint (int thread)
1378 {
1379 return (step_over_info.thread != -1
1380 && thread == step_over_info.thread);
1381 }
1382
1383 /* See infrun.h. */
1384
1385 int
1386 stepping_past_nonsteppable_watchpoint (void)
1387 {
1388 return step_over_info.nonsteppable_watchpoint_p;
1389 }
1390
1391 /* Returns true if step-over info is valid. */
1392
1393 static int
1394 step_over_info_valid_p (void)
1395 {
1396 return (step_over_info.aspace != NULL
1397 || stepping_past_nonsteppable_watchpoint ());
1398 }
1399
1400 \f
1401 /* Displaced stepping. */
1402
1403 /* In non-stop debugging mode, we must take special care to manage
1404 breakpoints properly; in particular, the traditional strategy for
1405 stepping a thread past a breakpoint it has hit is unsuitable.
1406 'Displaced stepping' is a tactic for stepping one thread past a
1407 breakpoint it has hit while ensuring that other threads running
1408 concurrently will hit the breakpoint as they should.
1409
1410 The traditional way to step a thread T off a breakpoint in a
1411 multi-threaded program in all-stop mode is as follows:
1412
1413 a0) Initially, all threads are stopped, and breakpoints are not
1414 inserted.
1415 a1) We single-step T, leaving breakpoints uninserted.
1416 a2) We insert breakpoints, and resume all threads.
1417
1418 In non-stop debugging, however, this strategy is unsuitable: we
1419 don't want to have to stop all threads in the system in order to
1420 continue or step T past a breakpoint. Instead, we use displaced
1421 stepping:
1422
1423 n0) Initially, T is stopped, other threads are running, and
1424 breakpoints are inserted.
1425 n1) We copy the instruction "under" the breakpoint to a separate
1426 location, outside the main code stream, making any adjustments
1427 to the instruction, register, and memory state as directed by
1428 T's architecture.
1429 n2) We single-step T over the instruction at its new location.
1430 n3) We adjust the resulting register and memory state as directed
1431 by T's architecture. This includes resetting T's PC to point
1432 back into the main instruction stream.
1433 n4) We resume T.
1434
1435 This approach depends on the following gdbarch methods:
1436
1437 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1438 indicate where to copy the instruction, and how much space must
1439 be reserved there. We use these in step n1.
1440
1441 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1442 address, and makes any necessary adjustments to the instruction,
1443 register contents, and memory. We use this in step n1.
1444
1445 - gdbarch_displaced_step_fixup adjusts registers and memory after
1446 we have successfuly single-stepped the instruction, to yield the
1447 same effect the instruction would have had if we had executed it
1448 at its original address. We use this in step n3.
1449
1450 - gdbarch_displaced_step_free_closure provides cleanup.
1451
1452 The gdbarch_displaced_step_copy_insn and
1453 gdbarch_displaced_step_fixup functions must be written so that
1454 copying an instruction with gdbarch_displaced_step_copy_insn,
1455 single-stepping across the copied instruction, and then applying
1456 gdbarch_displaced_insn_fixup should have the same effects on the
1457 thread's memory and registers as stepping the instruction in place
1458 would have. Exactly which responsibilities fall to the copy and
1459 which fall to the fixup is up to the author of those functions.
1460
1461 See the comments in gdbarch.sh for details.
1462
1463 Note that displaced stepping and software single-step cannot
1464 currently be used in combination, although with some care I think
1465 they could be made to. Software single-step works by placing
1466 breakpoints on all possible subsequent instructions; if the
1467 displaced instruction is a PC-relative jump, those breakpoints
1468 could fall in very strange places --- on pages that aren't
1469 executable, or at addresses that are not proper instruction
1470 boundaries. (We do generally let other threads run while we wait
1471 to hit the software single-step breakpoint, and they might
1472 encounter such a corrupted instruction.) One way to work around
1473 this would be to have gdbarch_displaced_step_copy_insn fully
1474 simulate the effect of PC-relative instructions (and return NULL)
1475 on architectures that use software single-stepping.
1476
1477 In non-stop mode, we can have independent and simultaneous step
1478 requests, so more than one thread may need to simultaneously step
1479 over a breakpoint. The current implementation assumes there is
1480 only one scratch space per process. In this case, we have to
1481 serialize access to the scratch space. If thread A wants to step
1482 over a breakpoint, but we are currently waiting for some other
1483 thread to complete a displaced step, we leave thread A stopped and
1484 place it in the displaced_step_request_queue. Whenever a displaced
1485 step finishes, we pick the next thread in the queue and start a new
1486 displaced step operation on it. See displaced_step_prepare and
1487 displaced_step_fixup for details. */
1488
1489 /* Per-inferior displaced stepping state. */
1490 struct displaced_step_inferior_state
1491 {
1492 /* Pointer to next in linked list. */
1493 struct displaced_step_inferior_state *next;
1494
1495 /* The process this displaced step state refers to. */
1496 int pid;
1497
1498 /* True if preparing a displaced step ever failed. If so, we won't
1499 try displaced stepping for this inferior again. */
1500 int failed_before;
1501
1502 /* If this is not null_ptid, this is the thread carrying out a
1503 displaced single-step in process PID. This thread's state will
1504 require fixing up once it has completed its step. */
1505 ptid_t step_ptid;
1506
1507 /* The architecture the thread had when we stepped it. */
1508 struct gdbarch *step_gdbarch;
1509
1510 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1511 for post-step cleanup. */
1512 struct displaced_step_closure *step_closure;
1513
1514 /* The address of the original instruction, and the copy we
1515 made. */
1516 CORE_ADDR step_original, step_copy;
1517
1518 /* Saved contents of copy area. */
1519 gdb_byte *step_saved_copy;
1520 };
1521
1522 /* The list of states of processes involved in displaced stepping
1523 presently. */
1524 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1525
1526 /* Get the displaced stepping state of process PID. */
1527
1528 static struct displaced_step_inferior_state *
1529 get_displaced_stepping_state (int pid)
1530 {
1531 struct displaced_step_inferior_state *state;
1532
1533 for (state = displaced_step_inferior_states;
1534 state != NULL;
1535 state = state->next)
1536 if (state->pid == pid)
1537 return state;
1538
1539 return NULL;
1540 }
1541
1542 /* Returns true if any inferior has a thread doing a displaced
1543 step. */
1544
1545 static int
1546 displaced_step_in_progress_any_inferior (void)
1547 {
1548 struct displaced_step_inferior_state *state;
1549
1550 for (state = displaced_step_inferior_states;
1551 state != NULL;
1552 state = state->next)
1553 if (!ptid_equal (state->step_ptid, null_ptid))
1554 return 1;
1555
1556 return 0;
1557 }
1558
1559 /* Return true if thread represented by PTID is doing a displaced
1560 step. */
1561
1562 static int
1563 displaced_step_in_progress_thread (ptid_t ptid)
1564 {
1565 struct displaced_step_inferior_state *displaced;
1566
1567 gdb_assert (!ptid_equal (ptid, null_ptid));
1568
1569 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1570
1571 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1572 }
1573
1574 /* Return true if process PID has a thread doing a displaced step. */
1575
1576 static int
1577 displaced_step_in_progress (int pid)
1578 {
1579 struct displaced_step_inferior_state *displaced;
1580
1581 displaced = get_displaced_stepping_state (pid);
1582 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1583 return 1;
1584
1585 return 0;
1586 }
1587
1588 /* Add a new displaced stepping state for process PID to the displaced
1589 stepping state list, or return a pointer to an already existing
1590 entry, if it already exists. Never returns NULL. */
1591
1592 static struct displaced_step_inferior_state *
1593 add_displaced_stepping_state (int pid)
1594 {
1595 struct displaced_step_inferior_state *state;
1596
1597 for (state = displaced_step_inferior_states;
1598 state != NULL;
1599 state = state->next)
1600 if (state->pid == pid)
1601 return state;
1602
1603 state = XCNEW (struct displaced_step_inferior_state);
1604 state->pid = pid;
1605 state->next = displaced_step_inferior_states;
1606 displaced_step_inferior_states = state;
1607
1608 return state;
1609 }
1610
1611 /* If inferior is in displaced stepping, and ADDR equals to starting address
1612 of copy area, return corresponding displaced_step_closure. Otherwise,
1613 return NULL. */
1614
1615 struct displaced_step_closure*
1616 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1617 {
1618 struct displaced_step_inferior_state *displaced
1619 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1620
1621 /* If checking the mode of displaced instruction in copy area. */
1622 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1623 && (displaced->step_copy == addr))
1624 return displaced->step_closure;
1625
1626 return NULL;
1627 }
1628
1629 /* Remove the displaced stepping state of process PID. */
1630
1631 static void
1632 remove_displaced_stepping_state (int pid)
1633 {
1634 struct displaced_step_inferior_state *it, **prev_next_p;
1635
1636 gdb_assert (pid != 0);
1637
1638 it = displaced_step_inferior_states;
1639 prev_next_p = &displaced_step_inferior_states;
1640 while (it)
1641 {
1642 if (it->pid == pid)
1643 {
1644 *prev_next_p = it->next;
1645 xfree (it);
1646 return;
1647 }
1648
1649 prev_next_p = &it->next;
1650 it = *prev_next_p;
1651 }
1652 }
1653
1654 static void
1655 infrun_inferior_exit (struct inferior *inf)
1656 {
1657 remove_displaced_stepping_state (inf->pid);
1658 }
1659
1660 /* If ON, and the architecture supports it, GDB will use displaced
1661 stepping to step over breakpoints. If OFF, or if the architecture
1662 doesn't support it, GDB will instead use the traditional
1663 hold-and-step approach. If AUTO (which is the default), GDB will
1664 decide which technique to use to step over breakpoints depending on
1665 which of all-stop or non-stop mode is active --- displaced stepping
1666 in non-stop mode; hold-and-step in all-stop mode. */
1667
1668 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1669
1670 static void
1671 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1672 struct cmd_list_element *c,
1673 const char *value)
1674 {
1675 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1676 fprintf_filtered (file,
1677 _("Debugger's willingness to use displaced stepping "
1678 "to step over breakpoints is %s (currently %s).\n"),
1679 value, target_is_non_stop_p () ? "on" : "off");
1680 else
1681 fprintf_filtered (file,
1682 _("Debugger's willingness to use displaced stepping "
1683 "to step over breakpoints is %s.\n"), value);
1684 }
1685
1686 /* Return non-zero if displaced stepping can/should be used to step
1687 over breakpoints of thread TP. */
1688
1689 static int
1690 use_displaced_stepping (struct thread_info *tp)
1691 {
1692 struct regcache *regcache = get_thread_regcache (tp->ptid);
1693 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1694 struct displaced_step_inferior_state *displaced_state;
1695
1696 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1697
1698 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1699 && target_is_non_stop_p ())
1700 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1701 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1702 && find_record_target () == NULL
1703 && (displaced_state == NULL
1704 || !displaced_state->failed_before));
1705 }
1706
1707 /* Clean out any stray displaced stepping state. */
1708 static void
1709 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1710 {
1711 /* Indicate that there is no cleanup pending. */
1712 displaced->step_ptid = null_ptid;
1713
1714 xfree (displaced->step_closure);
1715 displaced->step_closure = NULL;
1716 }
1717
1718 static void
1719 displaced_step_clear_cleanup (void *arg)
1720 {
1721 struct displaced_step_inferior_state *state
1722 = (struct displaced_step_inferior_state *) arg;
1723
1724 displaced_step_clear (state);
1725 }
1726
1727 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1728 void
1729 displaced_step_dump_bytes (struct ui_file *file,
1730 const gdb_byte *buf,
1731 size_t len)
1732 {
1733 int i;
1734
1735 for (i = 0; i < len; i++)
1736 fprintf_unfiltered (file, "%02x ", buf[i]);
1737 fputs_unfiltered ("\n", file);
1738 }
1739
1740 /* Prepare to single-step, using displaced stepping.
1741
1742 Note that we cannot use displaced stepping when we have a signal to
1743 deliver. If we have a signal to deliver and an instruction to step
1744 over, then after the step, there will be no indication from the
1745 target whether the thread entered a signal handler or ignored the
1746 signal and stepped over the instruction successfully --- both cases
1747 result in a simple SIGTRAP. In the first case we mustn't do a
1748 fixup, and in the second case we must --- but we can't tell which.
1749 Comments in the code for 'random signals' in handle_inferior_event
1750 explain how we handle this case instead.
1751
1752 Returns 1 if preparing was successful -- this thread is going to be
1753 stepped now; 0 if displaced stepping this thread got queued; or -1
1754 if this instruction can't be displaced stepped. */
1755
1756 static int
1757 displaced_step_prepare_throw (ptid_t ptid)
1758 {
1759 struct cleanup *old_cleanups, *ignore_cleanups;
1760 struct thread_info *tp = find_thread_ptid (ptid);
1761 struct regcache *regcache = get_thread_regcache (ptid);
1762 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1763 struct address_space *aspace = get_regcache_aspace (regcache);
1764 CORE_ADDR original, copy;
1765 ULONGEST len;
1766 struct displaced_step_closure *closure;
1767 struct displaced_step_inferior_state *displaced;
1768 int status;
1769
1770 /* We should never reach this function if the architecture does not
1771 support displaced stepping. */
1772 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1773
1774 /* Nor if the thread isn't meant to step over a breakpoint. */
1775 gdb_assert (tp->control.trap_expected);
1776
1777 /* Disable range stepping while executing in the scratch pad. We
1778 want a single-step even if executing the displaced instruction in
1779 the scratch buffer lands within the stepping range (e.g., a
1780 jump/branch). */
1781 tp->control.may_range_step = 0;
1782
1783 /* We have to displaced step one thread at a time, as we only have
1784 access to a single scratch space per inferior. */
1785
1786 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1787
1788 if (!ptid_equal (displaced->step_ptid, null_ptid))
1789 {
1790 /* Already waiting for a displaced step to finish. Defer this
1791 request and place in queue. */
1792
1793 if (debug_displaced)
1794 fprintf_unfiltered (gdb_stdlog,
1795 "displaced: deferring step of %s\n",
1796 target_pid_to_str (ptid));
1797
1798 thread_step_over_chain_enqueue (tp);
1799 return 0;
1800 }
1801 else
1802 {
1803 if (debug_displaced)
1804 fprintf_unfiltered (gdb_stdlog,
1805 "displaced: stepping %s now\n",
1806 target_pid_to_str (ptid));
1807 }
1808
1809 displaced_step_clear (displaced);
1810
1811 old_cleanups = save_inferior_ptid ();
1812 inferior_ptid = ptid;
1813
1814 original = regcache_read_pc (regcache);
1815
1816 copy = gdbarch_displaced_step_location (gdbarch);
1817 len = gdbarch_max_insn_length (gdbarch);
1818
1819 if (breakpoint_in_range_p (aspace, copy, len))
1820 {
1821 /* There's a breakpoint set in the scratch pad location range
1822 (which is usually around the entry point). We'd either
1823 install it before resuming, which would overwrite/corrupt the
1824 scratch pad, or if it was already inserted, this displaced
1825 step would overwrite it. The latter is OK in the sense that
1826 we already assume that no thread is going to execute the code
1827 in the scratch pad range (after initial startup) anyway, but
1828 the former is unacceptable. Simply punt and fallback to
1829 stepping over this breakpoint in-line. */
1830 if (debug_displaced)
1831 {
1832 fprintf_unfiltered (gdb_stdlog,
1833 "displaced: breakpoint set in scratch pad. "
1834 "Stepping over breakpoint in-line instead.\n");
1835 }
1836
1837 do_cleanups (old_cleanups);
1838 return -1;
1839 }
1840
1841 /* Save the original contents of the copy area. */
1842 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
1843 ignore_cleanups = make_cleanup (free_current_contents,
1844 &displaced->step_saved_copy);
1845 status = target_read_memory (copy, displaced->step_saved_copy, len);
1846 if (status != 0)
1847 throw_error (MEMORY_ERROR,
1848 _("Error accessing memory address %s (%s) for "
1849 "displaced-stepping scratch space."),
1850 paddress (gdbarch, copy), safe_strerror (status));
1851 if (debug_displaced)
1852 {
1853 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1854 paddress (gdbarch, copy));
1855 displaced_step_dump_bytes (gdb_stdlog,
1856 displaced->step_saved_copy,
1857 len);
1858 };
1859
1860 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1861 original, copy, regcache);
1862 if (closure == NULL)
1863 {
1864 /* The architecture doesn't know how or want to displaced step
1865 this instruction or instruction sequence. Fallback to
1866 stepping over the breakpoint in-line. */
1867 do_cleanups (old_cleanups);
1868 return -1;
1869 }
1870
1871 /* Save the information we need to fix things up if the step
1872 succeeds. */
1873 displaced->step_ptid = ptid;
1874 displaced->step_gdbarch = gdbarch;
1875 displaced->step_closure = closure;
1876 displaced->step_original = original;
1877 displaced->step_copy = copy;
1878
1879 make_cleanup (displaced_step_clear_cleanup, displaced);
1880
1881 /* Resume execution at the copy. */
1882 regcache_write_pc (regcache, copy);
1883
1884 discard_cleanups (ignore_cleanups);
1885
1886 do_cleanups (old_cleanups);
1887
1888 if (debug_displaced)
1889 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1890 paddress (gdbarch, copy));
1891
1892 return 1;
1893 }
1894
1895 /* Wrapper for displaced_step_prepare_throw that disabled further
1896 attempts at displaced stepping if we get a memory error. */
1897
1898 static int
1899 displaced_step_prepare (ptid_t ptid)
1900 {
1901 int prepared = -1;
1902
1903 TRY
1904 {
1905 prepared = displaced_step_prepare_throw (ptid);
1906 }
1907 CATCH (ex, RETURN_MASK_ERROR)
1908 {
1909 struct displaced_step_inferior_state *displaced_state;
1910
1911 if (ex.error != MEMORY_ERROR
1912 && ex.error != NOT_SUPPORTED_ERROR)
1913 throw_exception (ex);
1914
1915 if (debug_infrun)
1916 {
1917 fprintf_unfiltered (gdb_stdlog,
1918 "infrun: disabling displaced stepping: %s\n",
1919 ex.message);
1920 }
1921
1922 /* Be verbose if "set displaced-stepping" is "on", silent if
1923 "auto". */
1924 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1925 {
1926 warning (_("disabling displaced stepping: %s"),
1927 ex.message);
1928 }
1929
1930 /* Disable further displaced stepping attempts. */
1931 displaced_state
1932 = get_displaced_stepping_state (ptid_get_pid (ptid));
1933 displaced_state->failed_before = 1;
1934 }
1935 END_CATCH
1936
1937 return prepared;
1938 }
1939
1940 static void
1941 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1942 const gdb_byte *myaddr, int len)
1943 {
1944 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1945
1946 inferior_ptid = ptid;
1947 write_memory (memaddr, myaddr, len);
1948 do_cleanups (ptid_cleanup);
1949 }
1950
1951 /* Restore the contents of the copy area for thread PTID. */
1952
1953 static void
1954 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1955 ptid_t ptid)
1956 {
1957 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1958
1959 write_memory_ptid (ptid, displaced->step_copy,
1960 displaced->step_saved_copy, len);
1961 if (debug_displaced)
1962 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1963 target_pid_to_str (ptid),
1964 paddress (displaced->step_gdbarch,
1965 displaced->step_copy));
1966 }
1967
1968 /* If we displaced stepped an instruction successfully, adjust
1969 registers and memory to yield the same effect the instruction would
1970 have had if we had executed it at its original address, and return
1971 1. If the instruction didn't complete, relocate the PC and return
1972 -1. If the thread wasn't displaced stepping, return 0. */
1973
1974 static int
1975 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1976 {
1977 struct cleanup *old_cleanups;
1978 struct displaced_step_inferior_state *displaced
1979 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1980 int ret;
1981
1982 /* Was any thread of this process doing a displaced step? */
1983 if (displaced == NULL)
1984 return 0;
1985
1986 /* Was this event for the pid we displaced? */
1987 if (ptid_equal (displaced->step_ptid, null_ptid)
1988 || ! ptid_equal (displaced->step_ptid, event_ptid))
1989 return 0;
1990
1991 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1992
1993 displaced_step_restore (displaced, displaced->step_ptid);
1994
1995 /* Fixup may need to read memory/registers. Switch to the thread
1996 that we're fixing up. Also, target_stopped_by_watchpoint checks
1997 the current thread. */
1998 switch_to_thread (event_ptid);
1999
2000 /* Did the instruction complete successfully? */
2001 if (signal == GDB_SIGNAL_TRAP
2002 && !(target_stopped_by_watchpoint ()
2003 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
2004 || target_have_steppable_watchpoint)))
2005 {
2006 /* Fix up the resulting state. */
2007 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
2008 displaced->step_closure,
2009 displaced->step_original,
2010 displaced->step_copy,
2011 get_thread_regcache (displaced->step_ptid));
2012 ret = 1;
2013 }
2014 else
2015 {
2016 /* Since the instruction didn't complete, all we can do is
2017 relocate the PC. */
2018 struct regcache *regcache = get_thread_regcache (event_ptid);
2019 CORE_ADDR pc = regcache_read_pc (regcache);
2020
2021 pc = displaced->step_original + (pc - displaced->step_copy);
2022 regcache_write_pc (regcache, pc);
2023 ret = -1;
2024 }
2025
2026 do_cleanups (old_cleanups);
2027
2028 displaced->step_ptid = null_ptid;
2029
2030 return ret;
2031 }
2032
2033 /* Data to be passed around while handling an event. This data is
2034 discarded between events. */
2035 struct execution_control_state
2036 {
2037 ptid_t ptid;
2038 /* The thread that got the event, if this was a thread event; NULL
2039 otherwise. */
2040 struct thread_info *event_thread;
2041
2042 struct target_waitstatus ws;
2043 int stop_func_filled_in;
2044 CORE_ADDR stop_func_start;
2045 CORE_ADDR stop_func_end;
2046 const char *stop_func_name;
2047 int wait_some_more;
2048
2049 /* True if the event thread hit the single-step breakpoint of
2050 another thread. Thus the event doesn't cause a stop, the thread
2051 needs to be single-stepped past the single-step breakpoint before
2052 we can switch back to the original stepping thread. */
2053 int hit_singlestep_breakpoint;
2054 };
2055
2056 /* Clear ECS and set it to point at TP. */
2057
2058 static void
2059 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2060 {
2061 memset (ecs, 0, sizeof (*ecs));
2062 ecs->event_thread = tp;
2063 ecs->ptid = tp->ptid;
2064 }
2065
2066 static void keep_going_pass_signal (struct execution_control_state *ecs);
2067 static void prepare_to_wait (struct execution_control_state *ecs);
2068 static int keep_going_stepped_thread (struct thread_info *tp);
2069 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
2070
2071 /* Are there any pending step-over requests? If so, run all we can
2072 now and return true. Otherwise, return false. */
2073
2074 static int
2075 start_step_over (void)
2076 {
2077 struct thread_info *tp, *next;
2078
2079 /* Don't start a new step-over if we already have an in-line
2080 step-over operation ongoing. */
2081 if (step_over_info_valid_p ())
2082 return 0;
2083
2084 for (tp = step_over_queue_head; tp != NULL; tp = next)
2085 {
2086 struct execution_control_state ecss;
2087 struct execution_control_state *ecs = &ecss;
2088 step_over_what step_what;
2089 int must_be_in_line;
2090
2091 gdb_assert (!tp->stop_requested);
2092
2093 next = thread_step_over_chain_next (tp);
2094
2095 /* If this inferior already has a displaced step in process,
2096 don't start a new one. */
2097 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2098 continue;
2099
2100 step_what = thread_still_needs_step_over (tp);
2101 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2102 || ((step_what & STEP_OVER_BREAKPOINT)
2103 && !use_displaced_stepping (tp)));
2104
2105 /* We currently stop all threads of all processes to step-over
2106 in-line. If we need to start a new in-line step-over, let
2107 any pending displaced steps finish first. */
2108 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2109 return 0;
2110
2111 thread_step_over_chain_remove (tp);
2112
2113 if (step_over_queue_head == NULL)
2114 {
2115 if (debug_infrun)
2116 fprintf_unfiltered (gdb_stdlog,
2117 "infrun: step-over queue now empty\n");
2118 }
2119
2120 if (tp->control.trap_expected
2121 || tp->resumed
2122 || tp->executing)
2123 {
2124 internal_error (__FILE__, __LINE__,
2125 "[%s] has inconsistent state: "
2126 "trap_expected=%d, resumed=%d, executing=%d\n",
2127 target_pid_to_str (tp->ptid),
2128 tp->control.trap_expected,
2129 tp->resumed,
2130 tp->executing);
2131 }
2132
2133 if (debug_infrun)
2134 fprintf_unfiltered (gdb_stdlog,
2135 "infrun: resuming [%s] for step-over\n",
2136 target_pid_to_str (tp->ptid));
2137
2138 /* keep_going_pass_signal skips the step-over if the breakpoint
2139 is no longer inserted. In all-stop, we want to keep looking
2140 for a thread that needs a step-over instead of resuming TP,
2141 because we wouldn't be able to resume anything else until the
2142 target stops again. In non-stop, the resume always resumes
2143 only TP, so it's OK to let the thread resume freely. */
2144 if (!target_is_non_stop_p () && !step_what)
2145 continue;
2146
2147 switch_to_thread (tp->ptid);
2148 reset_ecs (ecs, tp);
2149 keep_going_pass_signal (ecs);
2150
2151 if (!ecs->wait_some_more)
2152 error (_("Command aborted."));
2153
2154 gdb_assert (tp->resumed);
2155
2156 /* If we started a new in-line step-over, we're done. */
2157 if (step_over_info_valid_p ())
2158 {
2159 gdb_assert (tp->control.trap_expected);
2160 return 1;
2161 }
2162
2163 if (!target_is_non_stop_p ())
2164 {
2165 /* On all-stop, shouldn't have resumed unless we needed a
2166 step over. */
2167 gdb_assert (tp->control.trap_expected
2168 || tp->step_after_step_resume_breakpoint);
2169
2170 /* With remote targets (at least), in all-stop, we can't
2171 issue any further remote commands until the program stops
2172 again. */
2173 return 1;
2174 }
2175
2176 /* Either the thread no longer needed a step-over, or a new
2177 displaced stepping sequence started. Even in the latter
2178 case, continue looking. Maybe we can also start another
2179 displaced step on a thread of other process. */
2180 }
2181
2182 return 0;
2183 }
2184
2185 /* Update global variables holding ptids to hold NEW_PTID if they were
2186 holding OLD_PTID. */
2187 static void
2188 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2189 {
2190 struct displaced_step_inferior_state *displaced;
2191
2192 if (ptid_equal (inferior_ptid, old_ptid))
2193 inferior_ptid = new_ptid;
2194
2195 for (displaced = displaced_step_inferior_states;
2196 displaced;
2197 displaced = displaced->next)
2198 {
2199 if (ptid_equal (displaced->step_ptid, old_ptid))
2200 displaced->step_ptid = new_ptid;
2201 }
2202 }
2203
2204 \f
2205 /* Resuming. */
2206
2207 /* Things to clean up if we QUIT out of resume (). */
2208 static void
2209 resume_cleanups (void *ignore)
2210 {
2211 if (!ptid_equal (inferior_ptid, null_ptid))
2212 delete_single_step_breakpoints (inferior_thread ());
2213
2214 normal_stop ();
2215 }
2216
2217 static const char schedlock_off[] = "off";
2218 static const char schedlock_on[] = "on";
2219 static const char schedlock_step[] = "step";
2220 static const char schedlock_replay[] = "replay";
2221 static const char *const scheduler_enums[] = {
2222 schedlock_off,
2223 schedlock_on,
2224 schedlock_step,
2225 schedlock_replay,
2226 NULL
2227 };
2228 static const char *scheduler_mode = schedlock_replay;
2229 static void
2230 show_scheduler_mode (struct ui_file *file, int from_tty,
2231 struct cmd_list_element *c, const char *value)
2232 {
2233 fprintf_filtered (file,
2234 _("Mode for locking scheduler "
2235 "during execution is \"%s\".\n"),
2236 value);
2237 }
2238
2239 static void
2240 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
2241 {
2242 if (!target_can_lock_scheduler)
2243 {
2244 scheduler_mode = schedlock_off;
2245 error (_("Target '%s' cannot support this command."), target_shortname);
2246 }
2247 }
2248
2249 /* True if execution commands resume all threads of all processes by
2250 default; otherwise, resume only threads of the current inferior
2251 process. */
2252 int sched_multi = 0;
2253
2254 /* Try to setup for software single stepping over the specified location.
2255 Return 1 if target_resume() should use hardware single step.
2256
2257 GDBARCH the current gdbarch.
2258 PC the location to step over. */
2259
2260 static int
2261 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2262 {
2263 int hw_step = 1;
2264
2265 if (execution_direction == EXEC_FORWARD
2266 && gdbarch_software_single_step_p (gdbarch))
2267 hw_step = !insert_single_step_breakpoints (gdbarch);
2268
2269 return hw_step;
2270 }
2271
2272 /* See infrun.h. */
2273
2274 ptid_t
2275 user_visible_resume_ptid (int step)
2276 {
2277 ptid_t resume_ptid;
2278
2279 if (non_stop)
2280 {
2281 /* With non-stop mode on, threads are always handled
2282 individually. */
2283 resume_ptid = inferior_ptid;
2284 }
2285 else if ((scheduler_mode == schedlock_on)
2286 || (scheduler_mode == schedlock_step && step))
2287 {
2288 /* User-settable 'scheduler' mode requires solo thread
2289 resume. */
2290 resume_ptid = inferior_ptid;
2291 }
2292 else if ((scheduler_mode == schedlock_replay)
2293 && target_record_will_replay (minus_one_ptid, execution_direction))
2294 {
2295 /* User-settable 'scheduler' mode requires solo thread resume in replay
2296 mode. */
2297 resume_ptid = inferior_ptid;
2298 }
2299 else if (!sched_multi && target_supports_multi_process ())
2300 {
2301 /* Resume all threads of the current process (and none of other
2302 processes). */
2303 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2304 }
2305 else
2306 {
2307 /* Resume all threads of all processes. */
2308 resume_ptid = RESUME_ALL;
2309 }
2310
2311 return resume_ptid;
2312 }
2313
2314 /* Return a ptid representing the set of threads that we will resume,
2315 in the perspective of the target, assuming run control handling
2316 does not require leaving some threads stopped (e.g., stepping past
2317 breakpoint). USER_STEP indicates whether we're about to start the
2318 target for a stepping command. */
2319
2320 static ptid_t
2321 internal_resume_ptid (int user_step)
2322 {
2323 /* In non-stop, we always control threads individually. Note that
2324 the target may always work in non-stop mode even with "set
2325 non-stop off", in which case user_visible_resume_ptid could
2326 return a wildcard ptid. */
2327 if (target_is_non_stop_p ())
2328 return inferior_ptid;
2329 else
2330 return user_visible_resume_ptid (user_step);
2331 }
2332
2333 /* Wrapper for target_resume, that handles infrun-specific
2334 bookkeeping. */
2335
2336 static void
2337 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2338 {
2339 struct thread_info *tp = inferior_thread ();
2340
2341 gdb_assert (!tp->stop_requested);
2342
2343 /* Install inferior's terminal modes. */
2344 target_terminal_inferior ();
2345
2346 /* Avoid confusing the next resume, if the next stop/resume
2347 happens to apply to another thread. */
2348 tp->suspend.stop_signal = GDB_SIGNAL_0;
2349
2350 /* Advise target which signals may be handled silently.
2351
2352 If we have removed breakpoints because we are stepping over one
2353 in-line (in any thread), we need to receive all signals to avoid
2354 accidentally skipping a breakpoint during execution of a signal
2355 handler.
2356
2357 Likewise if we're displaced stepping, otherwise a trap for a
2358 breakpoint in a signal handler might be confused with the
2359 displaced step finishing. We don't make the displaced_step_fixup
2360 step distinguish the cases instead, because:
2361
2362 - a backtrace while stopped in the signal handler would show the
2363 scratch pad as frame older than the signal handler, instead of
2364 the real mainline code.
2365
2366 - when the thread is later resumed, the signal handler would
2367 return to the scratch pad area, which would no longer be
2368 valid. */
2369 if (step_over_info_valid_p ()
2370 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2371 target_pass_signals (0, NULL);
2372 else
2373 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2374
2375 target_resume (resume_ptid, step, sig);
2376
2377 target_commit_resume ();
2378 }
2379
2380 /* Resume the inferior, but allow a QUIT. This is useful if the user
2381 wants to interrupt some lengthy single-stepping operation
2382 (for child processes, the SIGINT goes to the inferior, and so
2383 we get a SIGINT random_signal, but for remote debugging and perhaps
2384 other targets, that's not true).
2385
2386 SIG is the signal to give the inferior (zero for none). */
2387 void
2388 resume (enum gdb_signal sig)
2389 {
2390 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
2391 struct regcache *regcache = get_current_regcache ();
2392 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2393 struct thread_info *tp = inferior_thread ();
2394 CORE_ADDR pc = regcache_read_pc (regcache);
2395 struct address_space *aspace = get_regcache_aspace (regcache);
2396 ptid_t resume_ptid;
2397 /* This represents the user's step vs continue request. When
2398 deciding whether "set scheduler-locking step" applies, it's the
2399 user's intention that counts. */
2400 const int user_step = tp->control.stepping_command;
2401 /* This represents what we'll actually request the target to do.
2402 This can decay from a step to a continue, if e.g., we need to
2403 implement single-stepping with breakpoints (software
2404 single-step). */
2405 int step;
2406
2407 gdb_assert (!tp->stop_requested);
2408 gdb_assert (!thread_is_in_step_over_chain (tp));
2409
2410 QUIT;
2411
2412 if (tp->suspend.waitstatus_pending_p)
2413 {
2414 if (debug_infrun)
2415 {
2416 char *statstr;
2417
2418 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2419 fprintf_unfiltered (gdb_stdlog,
2420 "infrun: resume: thread %s has pending wait status %s "
2421 "(currently_stepping=%d).\n",
2422 target_pid_to_str (tp->ptid), statstr,
2423 currently_stepping (tp));
2424 xfree (statstr);
2425 }
2426
2427 tp->resumed = 1;
2428
2429 /* FIXME: What should we do if we are supposed to resume this
2430 thread with a signal? Maybe we should maintain a queue of
2431 pending signals to deliver. */
2432 if (sig != GDB_SIGNAL_0)
2433 {
2434 warning (_("Couldn't deliver signal %s to %s."),
2435 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2436 }
2437
2438 tp->suspend.stop_signal = GDB_SIGNAL_0;
2439 discard_cleanups (old_cleanups);
2440
2441 if (target_can_async_p ())
2442 target_async (1);
2443 return;
2444 }
2445
2446 tp->stepped_breakpoint = 0;
2447
2448 /* Depends on stepped_breakpoint. */
2449 step = currently_stepping (tp);
2450
2451 if (current_inferior ()->waiting_for_vfork_done)
2452 {
2453 /* Don't try to single-step a vfork parent that is waiting for
2454 the child to get out of the shared memory region (by exec'ing
2455 or exiting). This is particularly important on software
2456 single-step archs, as the child process would trip on the
2457 software single step breakpoint inserted for the parent
2458 process. Since the parent will not actually execute any
2459 instruction until the child is out of the shared region (such
2460 are vfork's semantics), it is safe to simply continue it.
2461 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2462 the parent, and tell it to `keep_going', which automatically
2463 re-sets it stepping. */
2464 if (debug_infrun)
2465 fprintf_unfiltered (gdb_stdlog,
2466 "infrun: resume : clear step\n");
2467 step = 0;
2468 }
2469
2470 if (debug_infrun)
2471 fprintf_unfiltered (gdb_stdlog,
2472 "infrun: resume (step=%d, signal=%s), "
2473 "trap_expected=%d, current thread [%s] at %s\n",
2474 step, gdb_signal_to_symbol_string (sig),
2475 tp->control.trap_expected,
2476 target_pid_to_str (inferior_ptid),
2477 paddress (gdbarch, pc));
2478
2479 /* Normally, by the time we reach `resume', the breakpoints are either
2480 removed or inserted, as appropriate. The exception is if we're sitting
2481 at a permanent breakpoint; we need to step over it, but permanent
2482 breakpoints can't be removed. So we have to test for it here. */
2483 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2484 {
2485 if (sig != GDB_SIGNAL_0)
2486 {
2487 /* We have a signal to pass to the inferior. The resume
2488 may, or may not take us to the signal handler. If this
2489 is a step, we'll need to stop in the signal handler, if
2490 there's one, (if the target supports stepping into
2491 handlers), or in the next mainline instruction, if
2492 there's no handler. If this is a continue, we need to be
2493 sure to run the handler with all breakpoints inserted.
2494 In all cases, set a breakpoint at the current address
2495 (where the handler returns to), and once that breakpoint
2496 is hit, resume skipping the permanent breakpoint. If
2497 that breakpoint isn't hit, then we've stepped into the
2498 signal handler (or hit some other event). We'll delete
2499 the step-resume breakpoint then. */
2500
2501 if (debug_infrun)
2502 fprintf_unfiltered (gdb_stdlog,
2503 "infrun: resume: skipping permanent breakpoint, "
2504 "deliver signal first\n");
2505
2506 clear_step_over_info ();
2507 tp->control.trap_expected = 0;
2508
2509 if (tp->control.step_resume_breakpoint == NULL)
2510 {
2511 /* Set a "high-priority" step-resume, as we don't want
2512 user breakpoints at PC to trigger (again) when this
2513 hits. */
2514 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2515 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2516
2517 tp->step_after_step_resume_breakpoint = step;
2518 }
2519
2520 insert_breakpoints ();
2521 }
2522 else
2523 {
2524 /* There's no signal to pass, we can go ahead and skip the
2525 permanent breakpoint manually. */
2526 if (debug_infrun)
2527 fprintf_unfiltered (gdb_stdlog,
2528 "infrun: resume: skipping permanent breakpoint\n");
2529 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2530 /* Update pc to reflect the new address from which we will
2531 execute instructions. */
2532 pc = regcache_read_pc (regcache);
2533
2534 if (step)
2535 {
2536 /* We've already advanced the PC, so the stepping part
2537 is done. Now we need to arrange for a trap to be
2538 reported to handle_inferior_event. Set a breakpoint
2539 at the current PC, and run to it. Don't update
2540 prev_pc, because if we end in
2541 switch_back_to_stepped_thread, we want the "expected
2542 thread advanced also" branch to be taken. IOW, we
2543 don't want this thread to step further from PC
2544 (overstep). */
2545 gdb_assert (!step_over_info_valid_p ());
2546 insert_single_step_breakpoint (gdbarch, aspace, pc);
2547 insert_breakpoints ();
2548
2549 resume_ptid = internal_resume_ptid (user_step);
2550 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2551 discard_cleanups (old_cleanups);
2552 tp->resumed = 1;
2553 return;
2554 }
2555 }
2556 }
2557
2558 /* If we have a breakpoint to step over, make sure to do a single
2559 step only. Same if we have software watchpoints. */
2560 if (tp->control.trap_expected || bpstat_should_step ())
2561 tp->control.may_range_step = 0;
2562
2563 /* If enabled, step over breakpoints by executing a copy of the
2564 instruction at a different address.
2565
2566 We can't use displaced stepping when we have a signal to deliver;
2567 the comments for displaced_step_prepare explain why. The
2568 comments in the handle_inferior event for dealing with 'random
2569 signals' explain what we do instead.
2570
2571 We can't use displaced stepping when we are waiting for vfork_done
2572 event, displaced stepping breaks the vfork child similarly as single
2573 step software breakpoint. */
2574 if (tp->control.trap_expected
2575 && use_displaced_stepping (tp)
2576 && !step_over_info_valid_p ()
2577 && sig == GDB_SIGNAL_0
2578 && !current_inferior ()->waiting_for_vfork_done)
2579 {
2580 int prepared = displaced_step_prepare (inferior_ptid);
2581
2582 if (prepared == 0)
2583 {
2584 if (debug_infrun)
2585 fprintf_unfiltered (gdb_stdlog,
2586 "Got placed in step-over queue\n");
2587
2588 tp->control.trap_expected = 0;
2589 discard_cleanups (old_cleanups);
2590 return;
2591 }
2592 else if (prepared < 0)
2593 {
2594 /* Fallback to stepping over the breakpoint in-line. */
2595
2596 if (target_is_non_stop_p ())
2597 stop_all_threads ();
2598
2599 set_step_over_info (get_regcache_aspace (regcache),
2600 regcache_read_pc (regcache), 0, tp->global_num);
2601
2602 step = maybe_software_singlestep (gdbarch, pc);
2603
2604 insert_breakpoints ();
2605 }
2606 else if (prepared > 0)
2607 {
2608 struct displaced_step_inferior_state *displaced;
2609
2610 /* Update pc to reflect the new address from which we will
2611 execute instructions due to displaced stepping. */
2612 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2613
2614 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2615 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2616 displaced->step_closure);
2617 }
2618 }
2619
2620 /* Do we need to do it the hard way, w/temp breakpoints? */
2621 else if (step)
2622 step = maybe_software_singlestep (gdbarch, pc);
2623
2624 /* Currently, our software single-step implementation leads to different
2625 results than hardware single-stepping in one situation: when stepping
2626 into delivering a signal which has an associated signal handler,
2627 hardware single-step will stop at the first instruction of the handler,
2628 while software single-step will simply skip execution of the handler.
2629
2630 For now, this difference in behavior is accepted since there is no
2631 easy way to actually implement single-stepping into a signal handler
2632 without kernel support.
2633
2634 However, there is one scenario where this difference leads to follow-on
2635 problems: if we're stepping off a breakpoint by removing all breakpoints
2636 and then single-stepping. In this case, the software single-step
2637 behavior means that even if there is a *breakpoint* in the signal
2638 handler, GDB still would not stop.
2639
2640 Fortunately, we can at least fix this particular issue. We detect
2641 here the case where we are about to deliver a signal while software
2642 single-stepping with breakpoints removed. In this situation, we
2643 revert the decisions to remove all breakpoints and insert single-
2644 step breakpoints, and instead we install a step-resume breakpoint
2645 at the current address, deliver the signal without stepping, and
2646 once we arrive back at the step-resume breakpoint, actually step
2647 over the breakpoint we originally wanted to step over. */
2648 if (thread_has_single_step_breakpoints_set (tp)
2649 && sig != GDB_SIGNAL_0
2650 && step_over_info_valid_p ())
2651 {
2652 /* If we have nested signals or a pending signal is delivered
2653 immediately after a handler returns, might might already have
2654 a step-resume breakpoint set on the earlier handler. We cannot
2655 set another step-resume breakpoint; just continue on until the
2656 original breakpoint is hit. */
2657 if (tp->control.step_resume_breakpoint == NULL)
2658 {
2659 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2660 tp->step_after_step_resume_breakpoint = 1;
2661 }
2662
2663 delete_single_step_breakpoints (tp);
2664
2665 clear_step_over_info ();
2666 tp->control.trap_expected = 0;
2667
2668 insert_breakpoints ();
2669 }
2670
2671 /* If STEP is set, it's a request to use hardware stepping
2672 facilities. But in that case, we should never
2673 use singlestep breakpoint. */
2674 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2675
2676 /* Decide the set of threads to ask the target to resume. */
2677 if (tp->control.trap_expected)
2678 {
2679 /* We're allowing a thread to run past a breakpoint it has
2680 hit, either by single-stepping the thread with the breakpoint
2681 removed, or by displaced stepping, with the breakpoint inserted.
2682 In the former case, we need to single-step only this thread,
2683 and keep others stopped, as they can miss this breakpoint if
2684 allowed to run. That's not really a problem for displaced
2685 stepping, but, we still keep other threads stopped, in case
2686 another thread is also stopped for a breakpoint waiting for
2687 its turn in the displaced stepping queue. */
2688 resume_ptid = inferior_ptid;
2689 }
2690 else
2691 resume_ptid = internal_resume_ptid (user_step);
2692
2693 if (execution_direction != EXEC_REVERSE
2694 && step && breakpoint_inserted_here_p (aspace, pc))
2695 {
2696 /* There are two cases where we currently need to step a
2697 breakpoint instruction when we have a signal to deliver:
2698
2699 - See handle_signal_stop where we handle random signals that
2700 could take out us out of the stepping range. Normally, in
2701 that case we end up continuing (instead of stepping) over the
2702 signal handler with a breakpoint at PC, but there are cases
2703 where we should _always_ single-step, even if we have a
2704 step-resume breakpoint, like when a software watchpoint is
2705 set. Assuming single-stepping and delivering a signal at the
2706 same time would takes us to the signal handler, then we could
2707 have removed the breakpoint at PC to step over it. However,
2708 some hardware step targets (like e.g., Mac OS) can't step
2709 into signal handlers, and for those, we need to leave the
2710 breakpoint at PC inserted, as otherwise if the handler
2711 recurses and executes PC again, it'll miss the breakpoint.
2712 So we leave the breakpoint inserted anyway, but we need to
2713 record that we tried to step a breakpoint instruction, so
2714 that adjust_pc_after_break doesn't end up confused.
2715
2716 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2717 in one thread after another thread that was stepping had been
2718 momentarily paused for a step-over. When we re-resume the
2719 stepping thread, it may be resumed from that address with a
2720 breakpoint that hasn't trapped yet. Seen with
2721 gdb.threads/non-stop-fair-events.exp, on targets that don't
2722 do displaced stepping. */
2723
2724 if (debug_infrun)
2725 fprintf_unfiltered (gdb_stdlog,
2726 "infrun: resume: [%s] stepped breakpoint\n",
2727 target_pid_to_str (tp->ptid));
2728
2729 tp->stepped_breakpoint = 1;
2730
2731 /* Most targets can step a breakpoint instruction, thus
2732 executing it normally. But if this one cannot, just
2733 continue and we will hit it anyway. */
2734 if (gdbarch_cannot_step_breakpoint (gdbarch))
2735 step = 0;
2736 }
2737
2738 if (debug_displaced
2739 && tp->control.trap_expected
2740 && use_displaced_stepping (tp)
2741 && !step_over_info_valid_p ())
2742 {
2743 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
2744 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2745 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2746 gdb_byte buf[4];
2747
2748 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2749 paddress (resume_gdbarch, actual_pc));
2750 read_memory (actual_pc, buf, sizeof (buf));
2751 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2752 }
2753
2754 if (tp->control.may_range_step)
2755 {
2756 /* If we're resuming a thread with the PC out of the step
2757 range, then we're doing some nested/finer run control
2758 operation, like stepping the thread out of the dynamic
2759 linker or the displaced stepping scratch pad. We
2760 shouldn't have allowed a range step then. */
2761 gdb_assert (pc_in_thread_step_range (pc, tp));
2762 }
2763
2764 do_target_resume (resume_ptid, step, sig);
2765 tp->resumed = 1;
2766 discard_cleanups (old_cleanups);
2767 }
2768 \f
2769 /* Proceeding. */
2770
2771 /* See infrun.h. */
2772
2773 /* Counter that tracks number of user visible stops. This can be used
2774 to tell whether a command has proceeded the inferior past the
2775 current location. This allows e.g., inferior function calls in
2776 breakpoint commands to not interrupt the command list. When the
2777 call finishes successfully, the inferior is standing at the same
2778 breakpoint as if nothing happened (and so we don't call
2779 normal_stop). */
2780 static ULONGEST current_stop_id;
2781
2782 /* See infrun.h. */
2783
2784 ULONGEST
2785 get_stop_id (void)
2786 {
2787 return current_stop_id;
2788 }
2789
2790 /* Called when we report a user visible stop. */
2791
2792 static void
2793 new_stop_id (void)
2794 {
2795 current_stop_id++;
2796 }
2797
2798 /* Clear out all variables saying what to do when inferior is continued.
2799 First do this, then set the ones you want, then call `proceed'. */
2800
2801 static void
2802 clear_proceed_status_thread (struct thread_info *tp)
2803 {
2804 if (debug_infrun)
2805 fprintf_unfiltered (gdb_stdlog,
2806 "infrun: clear_proceed_status_thread (%s)\n",
2807 target_pid_to_str (tp->ptid));
2808
2809 /* If we're starting a new sequence, then the previous finished
2810 single-step is no longer relevant. */
2811 if (tp->suspend.waitstatus_pending_p)
2812 {
2813 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2814 {
2815 if (debug_infrun)
2816 fprintf_unfiltered (gdb_stdlog,
2817 "infrun: clear_proceed_status: pending "
2818 "event of %s was a finished step. "
2819 "Discarding.\n",
2820 target_pid_to_str (tp->ptid));
2821
2822 tp->suspend.waitstatus_pending_p = 0;
2823 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2824 }
2825 else if (debug_infrun)
2826 {
2827 char *statstr;
2828
2829 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2830 fprintf_unfiltered (gdb_stdlog,
2831 "infrun: clear_proceed_status_thread: thread %s "
2832 "has pending wait status %s "
2833 "(currently_stepping=%d).\n",
2834 target_pid_to_str (tp->ptid), statstr,
2835 currently_stepping (tp));
2836 xfree (statstr);
2837 }
2838 }
2839
2840 /* If this signal should not be seen by program, give it zero.
2841 Used for debugging signals. */
2842 if (!signal_pass_state (tp->suspend.stop_signal))
2843 tp->suspend.stop_signal = GDB_SIGNAL_0;
2844
2845 thread_fsm_delete (tp->thread_fsm);
2846 tp->thread_fsm = NULL;
2847
2848 tp->control.trap_expected = 0;
2849 tp->control.step_range_start = 0;
2850 tp->control.step_range_end = 0;
2851 tp->control.may_range_step = 0;
2852 tp->control.step_frame_id = null_frame_id;
2853 tp->control.step_stack_frame_id = null_frame_id;
2854 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2855 tp->control.step_start_function = NULL;
2856 tp->stop_requested = 0;
2857
2858 tp->control.stop_step = 0;
2859
2860 tp->control.proceed_to_finish = 0;
2861
2862 tp->control.stepping_command = 0;
2863
2864 /* Discard any remaining commands or status from previous stop. */
2865 bpstat_clear (&tp->control.stop_bpstat);
2866 }
2867
2868 void
2869 clear_proceed_status (int step)
2870 {
2871 /* With scheduler-locking replay, stop replaying other threads if we're
2872 not replaying the user-visible resume ptid.
2873
2874 This is a convenience feature to not require the user to explicitly
2875 stop replaying the other threads. We're assuming that the user's
2876 intent is to resume tracing the recorded process. */
2877 if (!non_stop && scheduler_mode == schedlock_replay
2878 && target_record_is_replaying (minus_one_ptid)
2879 && !target_record_will_replay (user_visible_resume_ptid (step),
2880 execution_direction))
2881 target_record_stop_replaying ();
2882
2883 if (!non_stop)
2884 {
2885 struct thread_info *tp;
2886 ptid_t resume_ptid;
2887
2888 resume_ptid = user_visible_resume_ptid (step);
2889
2890 /* In all-stop mode, delete the per-thread status of all threads
2891 we're about to resume, implicitly and explicitly. */
2892 ALL_NON_EXITED_THREADS (tp)
2893 {
2894 if (!ptid_match (tp->ptid, resume_ptid))
2895 continue;
2896 clear_proceed_status_thread (tp);
2897 }
2898 }
2899
2900 if (!ptid_equal (inferior_ptid, null_ptid))
2901 {
2902 struct inferior *inferior;
2903
2904 if (non_stop)
2905 {
2906 /* If in non-stop mode, only delete the per-thread status of
2907 the current thread. */
2908 clear_proceed_status_thread (inferior_thread ());
2909 }
2910
2911 inferior = current_inferior ();
2912 inferior->control.stop_soon = NO_STOP_QUIETLY;
2913 }
2914
2915 observer_notify_about_to_proceed ();
2916 }
2917
2918 /* Returns true if TP is still stopped at a breakpoint that needs
2919 stepping-over in order to make progress. If the breakpoint is gone
2920 meanwhile, we can skip the whole step-over dance. */
2921
2922 static int
2923 thread_still_needs_step_over_bp (struct thread_info *tp)
2924 {
2925 if (tp->stepping_over_breakpoint)
2926 {
2927 struct regcache *regcache = get_thread_regcache (tp->ptid);
2928
2929 if (breakpoint_here_p (get_regcache_aspace (regcache),
2930 regcache_read_pc (regcache))
2931 == ordinary_breakpoint_here)
2932 return 1;
2933
2934 tp->stepping_over_breakpoint = 0;
2935 }
2936
2937 return 0;
2938 }
2939
2940 /* Check whether thread TP still needs to start a step-over in order
2941 to make progress when resumed. Returns an bitwise or of enum
2942 step_over_what bits, indicating what needs to be stepped over. */
2943
2944 static step_over_what
2945 thread_still_needs_step_over (struct thread_info *tp)
2946 {
2947 step_over_what what = 0;
2948
2949 if (thread_still_needs_step_over_bp (tp))
2950 what |= STEP_OVER_BREAKPOINT;
2951
2952 if (tp->stepping_over_watchpoint
2953 && !target_have_steppable_watchpoint)
2954 what |= STEP_OVER_WATCHPOINT;
2955
2956 return what;
2957 }
2958
2959 /* Returns true if scheduler locking applies. STEP indicates whether
2960 we're about to do a step/next-like command to a thread. */
2961
2962 static int
2963 schedlock_applies (struct thread_info *tp)
2964 {
2965 return (scheduler_mode == schedlock_on
2966 || (scheduler_mode == schedlock_step
2967 && tp->control.stepping_command)
2968 || (scheduler_mode == schedlock_replay
2969 && target_record_will_replay (minus_one_ptid,
2970 execution_direction)));
2971 }
2972
2973 /* Basic routine for continuing the program in various fashions.
2974
2975 ADDR is the address to resume at, or -1 for resume where stopped.
2976 SIGGNAL is the signal to give it, or 0 for none,
2977 or -1 for act according to how it stopped.
2978 STEP is nonzero if should trap after one instruction.
2979 -1 means return after that and print nothing.
2980 You should probably set various step_... variables
2981 before calling here, if you are stepping.
2982
2983 You should call clear_proceed_status before calling proceed. */
2984
2985 void
2986 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2987 {
2988 struct regcache *regcache;
2989 struct gdbarch *gdbarch;
2990 struct thread_info *tp;
2991 CORE_ADDR pc;
2992 struct address_space *aspace;
2993 ptid_t resume_ptid;
2994 struct execution_control_state ecss;
2995 struct execution_control_state *ecs = &ecss;
2996 struct cleanup *old_chain;
2997 struct cleanup *defer_resume_cleanup;
2998 int started;
2999
3000 /* If we're stopped at a fork/vfork, follow the branch set by the
3001 "set follow-fork-mode" command; otherwise, we'll just proceed
3002 resuming the current thread. */
3003 if (!follow_fork ())
3004 {
3005 /* The target for some reason decided not to resume. */
3006 normal_stop ();
3007 if (target_can_async_p ())
3008 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3009 return;
3010 }
3011
3012 /* We'll update this if & when we switch to a new thread. */
3013 previous_inferior_ptid = inferior_ptid;
3014
3015 regcache = get_current_regcache ();
3016 gdbarch = get_regcache_arch (regcache);
3017 aspace = get_regcache_aspace (regcache);
3018 pc = regcache_read_pc (regcache);
3019 tp = inferior_thread ();
3020
3021 /* Fill in with reasonable starting values. */
3022 init_thread_stepping_state (tp);
3023
3024 gdb_assert (!thread_is_in_step_over_chain (tp));
3025
3026 if (addr == (CORE_ADDR) -1)
3027 {
3028 if (pc == stop_pc
3029 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
3030 && execution_direction != EXEC_REVERSE)
3031 /* There is a breakpoint at the address we will resume at,
3032 step one instruction before inserting breakpoints so that
3033 we do not stop right away (and report a second hit at this
3034 breakpoint).
3035
3036 Note, we don't do this in reverse, because we won't
3037 actually be executing the breakpoint insn anyway.
3038 We'll be (un-)executing the previous instruction. */
3039 tp->stepping_over_breakpoint = 1;
3040 else if (gdbarch_single_step_through_delay_p (gdbarch)
3041 && gdbarch_single_step_through_delay (gdbarch,
3042 get_current_frame ()))
3043 /* We stepped onto an instruction that needs to be stepped
3044 again before re-inserting the breakpoint, do so. */
3045 tp->stepping_over_breakpoint = 1;
3046 }
3047 else
3048 {
3049 regcache_write_pc (regcache, addr);
3050 }
3051
3052 if (siggnal != GDB_SIGNAL_DEFAULT)
3053 tp->suspend.stop_signal = siggnal;
3054
3055 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3056
3057 /* If an exception is thrown from this point on, make sure to
3058 propagate GDB's knowledge of the executing state to the
3059 frontend/user running state. */
3060 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3061
3062 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3063 threads (e.g., we might need to set threads stepping over
3064 breakpoints first), from the user/frontend's point of view, all
3065 threads in RESUME_PTID are now running. Unless we're calling an
3066 inferior function, as in that case we pretend the inferior
3067 doesn't run at all. */
3068 if (!tp->control.in_infcall)
3069 set_running (resume_ptid, 1);
3070
3071 if (debug_infrun)
3072 fprintf_unfiltered (gdb_stdlog,
3073 "infrun: proceed (addr=%s, signal=%s)\n",
3074 paddress (gdbarch, addr),
3075 gdb_signal_to_symbol_string (siggnal));
3076
3077 annotate_starting ();
3078
3079 /* Make sure that output from GDB appears before output from the
3080 inferior. */
3081 gdb_flush (gdb_stdout);
3082
3083 /* In a multi-threaded task we may select another thread and
3084 then continue or step.
3085
3086 But if a thread that we're resuming had stopped at a breakpoint,
3087 it will immediately cause another breakpoint stop without any
3088 execution (i.e. it will report a breakpoint hit incorrectly). So
3089 we must step over it first.
3090
3091 Look for threads other than the current (TP) that reported a
3092 breakpoint hit and haven't been resumed yet since. */
3093
3094 /* If scheduler locking applies, we can avoid iterating over all
3095 threads. */
3096 if (!non_stop && !schedlock_applies (tp))
3097 {
3098 struct thread_info *current = tp;
3099
3100 ALL_NON_EXITED_THREADS (tp)
3101 {
3102 /* Ignore the current thread here. It's handled
3103 afterwards. */
3104 if (tp == current)
3105 continue;
3106
3107 /* Ignore threads of processes we're not resuming. */
3108 if (!ptid_match (tp->ptid, resume_ptid))
3109 continue;
3110
3111 if (!thread_still_needs_step_over (tp))
3112 continue;
3113
3114 gdb_assert (!thread_is_in_step_over_chain (tp));
3115
3116 if (debug_infrun)
3117 fprintf_unfiltered (gdb_stdlog,
3118 "infrun: need to step-over [%s] first\n",
3119 target_pid_to_str (tp->ptid));
3120
3121 thread_step_over_chain_enqueue (tp);
3122 }
3123
3124 tp = current;
3125 }
3126
3127 /* Enqueue the current thread last, so that we move all other
3128 threads over their breakpoints first. */
3129 if (tp->stepping_over_breakpoint)
3130 thread_step_over_chain_enqueue (tp);
3131
3132 /* If the thread isn't started, we'll still need to set its prev_pc,
3133 so that switch_back_to_stepped_thread knows the thread hasn't
3134 advanced. Must do this before resuming any thread, as in
3135 all-stop/remote, once we resume we can't send any other packet
3136 until the target stops again. */
3137 tp->prev_pc = regcache_read_pc (regcache);
3138
3139 defer_resume_cleanup = make_cleanup_defer_target_commit_resume ();
3140
3141 started = start_step_over ();
3142
3143 if (step_over_info_valid_p ())
3144 {
3145 /* Either this thread started a new in-line step over, or some
3146 other thread was already doing one. In either case, don't
3147 resume anything else until the step-over is finished. */
3148 }
3149 else if (started && !target_is_non_stop_p ())
3150 {
3151 /* A new displaced stepping sequence was started. In all-stop,
3152 we can't talk to the target anymore until it next stops. */
3153 }
3154 else if (!non_stop && target_is_non_stop_p ())
3155 {
3156 /* In all-stop, but the target is always in non-stop mode.
3157 Start all other threads that are implicitly resumed too. */
3158 ALL_NON_EXITED_THREADS (tp)
3159 {
3160 /* Ignore threads of processes we're not resuming. */
3161 if (!ptid_match (tp->ptid, resume_ptid))
3162 continue;
3163
3164 if (tp->resumed)
3165 {
3166 if (debug_infrun)
3167 fprintf_unfiltered (gdb_stdlog,
3168 "infrun: proceed: [%s] resumed\n",
3169 target_pid_to_str (tp->ptid));
3170 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3171 continue;
3172 }
3173
3174 if (thread_is_in_step_over_chain (tp))
3175 {
3176 if (debug_infrun)
3177 fprintf_unfiltered (gdb_stdlog,
3178 "infrun: proceed: [%s] needs step-over\n",
3179 target_pid_to_str (tp->ptid));
3180 continue;
3181 }
3182
3183 if (debug_infrun)
3184 fprintf_unfiltered (gdb_stdlog,
3185 "infrun: proceed: resuming %s\n",
3186 target_pid_to_str (tp->ptid));
3187
3188 reset_ecs (ecs, tp);
3189 switch_to_thread (tp->ptid);
3190 keep_going_pass_signal (ecs);
3191 if (!ecs->wait_some_more)
3192 error (_("Command aborted."));
3193 }
3194 }
3195 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3196 {
3197 /* The thread wasn't started, and isn't queued, run it now. */
3198 reset_ecs (ecs, tp);
3199 switch_to_thread (tp->ptid);
3200 keep_going_pass_signal (ecs);
3201 if (!ecs->wait_some_more)
3202 error (_("Command aborted."));
3203 }
3204
3205 do_cleanups (defer_resume_cleanup);
3206 target_commit_resume ();
3207
3208 discard_cleanups (old_chain);
3209
3210 /* Tell the event loop to wait for it to stop. If the target
3211 supports asynchronous execution, it'll do this from within
3212 target_resume. */
3213 if (!target_can_async_p ())
3214 mark_async_event_handler (infrun_async_inferior_event_token);
3215 }
3216 \f
3217
3218 /* Start remote-debugging of a machine over a serial link. */
3219
3220 void
3221 start_remote (int from_tty)
3222 {
3223 struct inferior *inferior;
3224
3225 inferior = current_inferior ();
3226 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3227
3228 /* Always go on waiting for the target, regardless of the mode. */
3229 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3230 indicate to wait_for_inferior that a target should timeout if
3231 nothing is returned (instead of just blocking). Because of this,
3232 targets expecting an immediate response need to, internally, set
3233 things up so that the target_wait() is forced to eventually
3234 timeout. */
3235 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3236 differentiate to its caller what the state of the target is after
3237 the initial open has been performed. Here we're assuming that
3238 the target has stopped. It should be possible to eventually have
3239 target_open() return to the caller an indication that the target
3240 is currently running and GDB state should be set to the same as
3241 for an async run. */
3242 wait_for_inferior ();
3243
3244 /* Now that the inferior has stopped, do any bookkeeping like
3245 loading shared libraries. We want to do this before normal_stop,
3246 so that the displayed frame is up to date. */
3247 post_create_inferior (&current_target, from_tty);
3248
3249 normal_stop ();
3250 }
3251
3252 /* Initialize static vars when a new inferior begins. */
3253
3254 void
3255 init_wait_for_inferior (void)
3256 {
3257 /* These are meaningless until the first time through wait_for_inferior. */
3258
3259 breakpoint_init_inferior (inf_starting);
3260
3261 clear_proceed_status (0);
3262
3263 target_last_wait_ptid = minus_one_ptid;
3264
3265 previous_inferior_ptid = inferior_ptid;
3266
3267 /* Discard any skipped inlined frames. */
3268 clear_inline_frame_state (minus_one_ptid);
3269 }
3270
3271 \f
3272
3273 static void handle_inferior_event (struct execution_control_state *ecs);
3274
3275 static void handle_step_into_function (struct gdbarch *gdbarch,
3276 struct execution_control_state *ecs);
3277 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3278 struct execution_control_state *ecs);
3279 static void handle_signal_stop (struct execution_control_state *ecs);
3280 static void check_exception_resume (struct execution_control_state *,
3281 struct frame_info *);
3282
3283 static void end_stepping_range (struct execution_control_state *ecs);
3284 static void stop_waiting (struct execution_control_state *ecs);
3285 static void keep_going (struct execution_control_state *ecs);
3286 static void process_event_stop_test (struct execution_control_state *ecs);
3287 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3288
3289 /* This function is attached as a "thread_stop_requested" observer.
3290 Cleanup local state that assumed the PTID was to be resumed, and
3291 report the stop to the frontend. */
3292
3293 static void
3294 infrun_thread_stop_requested (ptid_t ptid)
3295 {
3296 struct thread_info *tp;
3297
3298 /* PTID was requested to stop. If the thread was already stopped,
3299 but the user/frontend doesn't know about that yet (e.g., the
3300 thread had been temporarily paused for some step-over), set up
3301 for reporting the stop now. */
3302 ALL_NON_EXITED_THREADS (tp)
3303 if (ptid_match (tp->ptid, ptid))
3304 {
3305 if (tp->state != THREAD_RUNNING)
3306 continue;
3307 if (tp->executing)
3308 continue;
3309
3310 /* Remove matching threads from the step-over queue, so
3311 start_step_over doesn't try to resume them
3312 automatically. */
3313 if (thread_is_in_step_over_chain (tp))
3314 thread_step_over_chain_remove (tp);
3315
3316 /* If the thread is stopped, but the user/frontend doesn't
3317 know about that yet, queue a pending event, as if the
3318 thread had just stopped now. Unless the thread already had
3319 a pending event. */
3320 if (!tp->suspend.waitstatus_pending_p)
3321 {
3322 tp->suspend.waitstatus_pending_p = 1;
3323 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3324 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3325 }
3326
3327 /* Clear the inline-frame state, since we're re-processing the
3328 stop. */
3329 clear_inline_frame_state (tp->ptid);
3330
3331 /* If this thread was paused because some other thread was
3332 doing an inline-step over, let that finish first. Once
3333 that happens, we'll restart all threads and consume pending
3334 stop events then. */
3335 if (step_over_info_valid_p ())
3336 continue;
3337
3338 /* Otherwise we can process the (new) pending event now. Set
3339 it so this pending event is considered by
3340 do_target_wait. */
3341 tp->resumed = 1;
3342 }
3343 }
3344
3345 static void
3346 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3347 {
3348 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3349 nullify_last_target_wait_ptid ();
3350 }
3351
3352 /* Delete the step resume, single-step and longjmp/exception resume
3353 breakpoints of TP. */
3354
3355 static void
3356 delete_thread_infrun_breakpoints (struct thread_info *tp)
3357 {
3358 delete_step_resume_breakpoint (tp);
3359 delete_exception_resume_breakpoint (tp);
3360 delete_single_step_breakpoints (tp);
3361 }
3362
3363 /* If the target still has execution, call FUNC for each thread that
3364 just stopped. In all-stop, that's all the non-exited threads; in
3365 non-stop, that's the current thread, only. */
3366
3367 typedef void (*for_each_just_stopped_thread_callback_func)
3368 (struct thread_info *tp);
3369
3370 static void
3371 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3372 {
3373 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
3374 return;
3375
3376 if (target_is_non_stop_p ())
3377 {
3378 /* If in non-stop mode, only the current thread stopped. */
3379 func (inferior_thread ());
3380 }
3381 else
3382 {
3383 struct thread_info *tp;
3384
3385 /* In all-stop mode, all threads have stopped. */
3386 ALL_NON_EXITED_THREADS (tp)
3387 {
3388 func (tp);
3389 }
3390 }
3391 }
3392
3393 /* Delete the step resume and longjmp/exception resume breakpoints of
3394 the threads that just stopped. */
3395
3396 static void
3397 delete_just_stopped_threads_infrun_breakpoints (void)
3398 {
3399 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3400 }
3401
3402 /* Delete the single-step breakpoints of the threads that just
3403 stopped. */
3404
3405 static void
3406 delete_just_stopped_threads_single_step_breakpoints (void)
3407 {
3408 for_each_just_stopped_thread (delete_single_step_breakpoints);
3409 }
3410
3411 /* A cleanup wrapper. */
3412
3413 static void
3414 delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
3415 {
3416 delete_just_stopped_threads_infrun_breakpoints ();
3417 }
3418
3419 /* See infrun.h. */
3420
3421 void
3422 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3423 const struct target_waitstatus *ws)
3424 {
3425 char *status_string = target_waitstatus_to_string (ws);
3426 string_file stb;
3427
3428 /* The text is split over several lines because it was getting too long.
3429 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3430 output as a unit; we want only one timestamp printed if debug_timestamp
3431 is set. */
3432
3433 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3434 ptid_get_pid (waiton_ptid),
3435 ptid_get_lwp (waiton_ptid),
3436 ptid_get_tid (waiton_ptid));
3437 if (ptid_get_pid (waiton_ptid) != -1)
3438 stb.printf (" [%s]", target_pid_to_str (waiton_ptid));
3439 stb.printf (", status) =\n");
3440 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3441 ptid_get_pid (result_ptid),
3442 ptid_get_lwp (result_ptid),
3443 ptid_get_tid (result_ptid),
3444 target_pid_to_str (result_ptid));
3445 stb.printf ("infrun: %s\n", status_string);
3446
3447 /* This uses %s in part to handle %'s in the text, but also to avoid
3448 a gcc error: the format attribute requires a string literal. */
3449 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3450
3451 xfree (status_string);
3452 }
3453
3454 /* Select a thread at random, out of those which are resumed and have
3455 had events. */
3456
3457 static struct thread_info *
3458 random_pending_event_thread (ptid_t waiton_ptid)
3459 {
3460 struct thread_info *event_tp;
3461 int num_events = 0;
3462 int random_selector;
3463
3464 /* First see how many events we have. Count only resumed threads
3465 that have an event pending. */
3466 ALL_NON_EXITED_THREADS (event_tp)
3467 if (ptid_match (event_tp->ptid, waiton_ptid)
3468 && event_tp->resumed
3469 && event_tp->suspend.waitstatus_pending_p)
3470 num_events++;
3471
3472 if (num_events == 0)
3473 return NULL;
3474
3475 /* Now randomly pick a thread out of those that have had events. */
3476 random_selector = (int)
3477 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3478
3479 if (debug_infrun && num_events > 1)
3480 fprintf_unfiltered (gdb_stdlog,
3481 "infrun: Found %d events, selecting #%d\n",
3482 num_events, random_selector);
3483
3484 /* Select the Nth thread that has had an event. */
3485 ALL_NON_EXITED_THREADS (event_tp)
3486 if (ptid_match (event_tp->ptid, waiton_ptid)
3487 && event_tp->resumed
3488 && event_tp->suspend.waitstatus_pending_p)
3489 if (random_selector-- == 0)
3490 break;
3491
3492 return event_tp;
3493 }
3494
3495 /* Wrapper for target_wait that first checks whether threads have
3496 pending statuses to report before actually asking the target for
3497 more events. */
3498
3499 static ptid_t
3500 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3501 {
3502 ptid_t event_ptid;
3503 struct thread_info *tp;
3504
3505 /* First check if there is a resumed thread with a wait status
3506 pending. */
3507 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3508 {
3509 tp = random_pending_event_thread (ptid);
3510 }
3511 else
3512 {
3513 if (debug_infrun)
3514 fprintf_unfiltered (gdb_stdlog,
3515 "infrun: Waiting for specific thread %s.\n",
3516 target_pid_to_str (ptid));
3517
3518 /* We have a specific thread to check. */
3519 tp = find_thread_ptid (ptid);
3520 gdb_assert (tp != NULL);
3521 if (!tp->suspend.waitstatus_pending_p)
3522 tp = NULL;
3523 }
3524
3525 if (tp != NULL
3526 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3527 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3528 {
3529 struct regcache *regcache = get_thread_regcache (tp->ptid);
3530 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3531 CORE_ADDR pc;
3532 int discard = 0;
3533
3534 pc = regcache_read_pc (regcache);
3535
3536 if (pc != tp->suspend.stop_pc)
3537 {
3538 if (debug_infrun)
3539 fprintf_unfiltered (gdb_stdlog,
3540 "infrun: PC of %s changed. was=%s, now=%s\n",
3541 target_pid_to_str (tp->ptid),
3542 paddress (gdbarch, tp->prev_pc),
3543 paddress (gdbarch, pc));
3544 discard = 1;
3545 }
3546 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3547 {
3548 if (debug_infrun)
3549 fprintf_unfiltered (gdb_stdlog,
3550 "infrun: previous breakpoint of %s, at %s gone\n",
3551 target_pid_to_str (tp->ptid),
3552 paddress (gdbarch, pc));
3553
3554 discard = 1;
3555 }
3556
3557 if (discard)
3558 {
3559 if (debug_infrun)
3560 fprintf_unfiltered (gdb_stdlog,
3561 "infrun: pending event of %s cancelled.\n",
3562 target_pid_to_str (tp->ptid));
3563
3564 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3565 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3566 }
3567 }
3568
3569 if (tp != NULL)
3570 {
3571 if (debug_infrun)
3572 {
3573 char *statstr;
3574
3575 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3576 fprintf_unfiltered (gdb_stdlog,
3577 "infrun: Using pending wait status %s for %s.\n",
3578 statstr,
3579 target_pid_to_str (tp->ptid));
3580 xfree (statstr);
3581 }
3582
3583 /* Now that we've selected our final event LWP, un-adjust its PC
3584 if it was a software breakpoint (and the target doesn't
3585 always adjust the PC itself). */
3586 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3587 && !target_supports_stopped_by_sw_breakpoint ())
3588 {
3589 struct regcache *regcache;
3590 struct gdbarch *gdbarch;
3591 int decr_pc;
3592
3593 regcache = get_thread_regcache (tp->ptid);
3594 gdbarch = get_regcache_arch (regcache);
3595
3596 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3597 if (decr_pc != 0)
3598 {
3599 CORE_ADDR pc;
3600
3601 pc = regcache_read_pc (regcache);
3602 regcache_write_pc (regcache, pc + decr_pc);
3603 }
3604 }
3605
3606 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3607 *status = tp->suspend.waitstatus;
3608 tp->suspend.waitstatus_pending_p = 0;
3609
3610 /* Wake up the event loop again, until all pending events are
3611 processed. */
3612 if (target_is_async_p ())
3613 mark_async_event_handler (infrun_async_inferior_event_token);
3614 return tp->ptid;
3615 }
3616
3617 /* But if we don't find one, we'll have to wait. */
3618
3619 if (deprecated_target_wait_hook)
3620 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3621 else
3622 event_ptid = target_wait (ptid, status, options);
3623
3624 return event_ptid;
3625 }
3626
3627 /* Prepare and stabilize the inferior for detaching it. E.g.,
3628 detaching while a thread is displaced stepping is a recipe for
3629 crashing it, as nothing would readjust the PC out of the scratch
3630 pad. */
3631
3632 void
3633 prepare_for_detach (void)
3634 {
3635 struct inferior *inf = current_inferior ();
3636 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3637 struct displaced_step_inferior_state *displaced;
3638
3639 displaced = get_displaced_stepping_state (inf->pid);
3640
3641 /* Is any thread of this process displaced stepping? If not,
3642 there's nothing else to do. */
3643 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3644 return;
3645
3646 if (debug_infrun)
3647 fprintf_unfiltered (gdb_stdlog,
3648 "displaced-stepping in-process while detaching");
3649
3650 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3651
3652 while (!ptid_equal (displaced->step_ptid, null_ptid))
3653 {
3654 struct cleanup *old_chain_2;
3655 struct execution_control_state ecss;
3656 struct execution_control_state *ecs;
3657
3658 ecs = &ecss;
3659 memset (ecs, 0, sizeof (*ecs));
3660
3661 overlay_cache_invalid = 1;
3662 /* Flush target cache before starting to handle each event.
3663 Target was running and cache could be stale. This is just a
3664 heuristic. Running threads may modify target memory, but we
3665 don't get any event. */
3666 target_dcache_invalidate ();
3667
3668 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3669
3670 if (debug_infrun)
3671 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3672
3673 /* If an error happens while handling the event, propagate GDB's
3674 knowledge of the executing state to the frontend/user running
3675 state. */
3676 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3677 &minus_one_ptid);
3678
3679 /* Now figure out what to do with the result of the result. */
3680 handle_inferior_event (ecs);
3681
3682 /* No error, don't finish the state yet. */
3683 discard_cleanups (old_chain_2);
3684
3685 /* Breakpoints and watchpoints are not installed on the target
3686 at this point, and signals are passed directly to the
3687 inferior, so this must mean the process is gone. */
3688 if (!ecs->wait_some_more)
3689 {
3690 restore_detaching.release ();
3691 error (_("Program exited while detaching"));
3692 }
3693 }
3694
3695 restore_detaching.release ();
3696 }
3697
3698 /* Wait for control to return from inferior to debugger.
3699
3700 If inferior gets a signal, we may decide to start it up again
3701 instead of returning. That is why there is a loop in this function.
3702 When this function actually returns it means the inferior
3703 should be left stopped and GDB should read more commands. */
3704
3705 void
3706 wait_for_inferior (void)
3707 {
3708 struct cleanup *old_cleanups;
3709 struct cleanup *thread_state_chain;
3710
3711 if (debug_infrun)
3712 fprintf_unfiltered
3713 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3714
3715 old_cleanups
3716 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3717 NULL);
3718
3719 /* If an error happens while handling the event, propagate GDB's
3720 knowledge of the executing state to the frontend/user running
3721 state. */
3722 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3723
3724 while (1)
3725 {
3726 struct execution_control_state ecss;
3727 struct execution_control_state *ecs = &ecss;
3728 ptid_t waiton_ptid = minus_one_ptid;
3729
3730 memset (ecs, 0, sizeof (*ecs));
3731
3732 overlay_cache_invalid = 1;
3733
3734 /* Flush target cache before starting to handle each event.
3735 Target was running and cache could be stale. This is just a
3736 heuristic. Running threads may modify target memory, but we
3737 don't get any event. */
3738 target_dcache_invalidate ();
3739
3740 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3741
3742 if (debug_infrun)
3743 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3744
3745 /* Now figure out what to do with the result of the result. */
3746 handle_inferior_event (ecs);
3747
3748 if (!ecs->wait_some_more)
3749 break;
3750 }
3751
3752 /* No error, don't finish the state yet. */
3753 discard_cleanups (thread_state_chain);
3754
3755 do_cleanups (old_cleanups);
3756 }
3757
3758 /* Cleanup that reinstalls the readline callback handler, if the
3759 target is running in the background. If while handling the target
3760 event something triggered a secondary prompt, like e.g., a
3761 pagination prompt, we'll have removed the callback handler (see
3762 gdb_readline_wrapper_line). Need to do this as we go back to the
3763 event loop, ready to process further input. Note this has no
3764 effect if the handler hasn't actually been removed, because calling
3765 rl_callback_handler_install resets the line buffer, thus losing
3766 input. */
3767
3768 static void
3769 reinstall_readline_callback_handler_cleanup (void *arg)
3770 {
3771 struct ui *ui = current_ui;
3772
3773 if (!ui->async)
3774 {
3775 /* We're not going back to the top level event loop yet. Don't
3776 install the readline callback, as it'd prep the terminal,
3777 readline-style (raw, noecho) (e.g., --batch). We'll install
3778 it the next time the prompt is displayed, when we're ready
3779 for input. */
3780 return;
3781 }
3782
3783 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3784 gdb_rl_callback_handler_reinstall ();
3785 }
3786
3787 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3788 that's just the event thread. In all-stop, that's all threads. */
3789
3790 static void
3791 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3792 {
3793 struct thread_info *thr = ecs->event_thread;
3794
3795 if (thr != NULL && thr->thread_fsm != NULL)
3796 thread_fsm_clean_up (thr->thread_fsm, thr);
3797
3798 if (!non_stop)
3799 {
3800 ALL_NON_EXITED_THREADS (thr)
3801 {
3802 if (thr->thread_fsm == NULL)
3803 continue;
3804 if (thr == ecs->event_thread)
3805 continue;
3806
3807 switch_to_thread (thr->ptid);
3808 thread_fsm_clean_up (thr->thread_fsm, thr);
3809 }
3810
3811 if (ecs->event_thread != NULL)
3812 switch_to_thread (ecs->event_thread->ptid);
3813 }
3814 }
3815
3816 /* Helper for all_uis_check_sync_execution_done that works on the
3817 current UI. */
3818
3819 static void
3820 check_curr_ui_sync_execution_done (void)
3821 {
3822 struct ui *ui = current_ui;
3823
3824 if (ui->prompt_state == PROMPT_NEEDED
3825 && ui->async
3826 && !gdb_in_secondary_prompt_p (ui))
3827 {
3828 target_terminal_ours ();
3829 observer_notify_sync_execution_done ();
3830 ui_register_input_event_handler (ui);
3831 }
3832 }
3833
3834 /* See infrun.h. */
3835
3836 void
3837 all_uis_check_sync_execution_done (void)
3838 {
3839 SWITCH_THRU_ALL_UIS ()
3840 {
3841 check_curr_ui_sync_execution_done ();
3842 }
3843 }
3844
3845 /* See infrun.h. */
3846
3847 void
3848 all_uis_on_sync_execution_starting (void)
3849 {
3850 SWITCH_THRU_ALL_UIS ()
3851 {
3852 if (current_ui->prompt_state == PROMPT_NEEDED)
3853 async_disable_stdin ();
3854 }
3855 }
3856
3857 /* Asynchronous version of wait_for_inferior. It is called by the
3858 event loop whenever a change of state is detected on the file
3859 descriptor corresponding to the target. It can be called more than
3860 once to complete a single execution command. In such cases we need
3861 to keep the state in a global variable ECSS. If it is the last time
3862 that this function is called for a single execution command, then
3863 report to the user that the inferior has stopped, and do the
3864 necessary cleanups. */
3865
3866 void
3867 fetch_inferior_event (void *client_data)
3868 {
3869 struct execution_control_state ecss;
3870 struct execution_control_state *ecs = &ecss;
3871 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3872 struct cleanup *ts_old_chain;
3873 int cmd_done = 0;
3874 ptid_t waiton_ptid = minus_one_ptid;
3875
3876 memset (ecs, 0, sizeof (*ecs));
3877
3878 /* Events are always processed with the main UI as current UI. This
3879 way, warnings, debug output, etc. are always consistently sent to
3880 the main console. */
3881 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3882
3883 /* End up with readline processing input, if necessary. */
3884 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3885
3886 /* We're handling a live event, so make sure we're doing live
3887 debugging. If we're looking at traceframes while the target is
3888 running, we're going to need to get back to that mode after
3889 handling the event. */
3890 if (non_stop)
3891 {
3892 make_cleanup_restore_current_traceframe ();
3893 set_current_traceframe (-1);
3894 }
3895
3896 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3897
3898 if (non_stop)
3899 /* In non-stop mode, the user/frontend should not notice a thread
3900 switch due to internal events. Make sure we reverse to the
3901 user selected thread and frame after handling the event and
3902 running any breakpoint commands. */
3903 maybe_restore_thread.emplace ();
3904
3905 overlay_cache_invalid = 1;
3906 /* Flush target cache before starting to handle each event. Target
3907 was running and cache could be stale. This is just a heuristic.
3908 Running threads may modify target memory, but we don't get any
3909 event. */
3910 target_dcache_invalidate ();
3911
3912 scoped_restore save_exec_dir
3913 = make_scoped_restore (&execution_direction, target_execution_direction ());
3914
3915 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3916 target_can_async_p () ? TARGET_WNOHANG : 0);
3917
3918 if (debug_infrun)
3919 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3920
3921 /* If an error happens while handling the event, propagate GDB's
3922 knowledge of the executing state to the frontend/user running
3923 state. */
3924 if (!target_is_non_stop_p ())
3925 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3926 else
3927 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3928
3929 /* Get executed before make_cleanup_restore_current_thread above to apply
3930 still for the thread which has thrown the exception. */
3931 make_bpstat_clear_actions_cleanup ();
3932
3933 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3934
3935 /* Now figure out what to do with the result of the result. */
3936 handle_inferior_event (ecs);
3937
3938 if (!ecs->wait_some_more)
3939 {
3940 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3941 int should_stop = 1;
3942 struct thread_info *thr = ecs->event_thread;
3943 int should_notify_stop = 1;
3944
3945 delete_just_stopped_threads_infrun_breakpoints ();
3946
3947 if (thr != NULL)
3948 {
3949 struct thread_fsm *thread_fsm = thr->thread_fsm;
3950
3951 if (thread_fsm != NULL)
3952 should_stop = thread_fsm_should_stop (thread_fsm, thr);
3953 }
3954
3955 if (!should_stop)
3956 {
3957 keep_going (ecs);
3958 }
3959 else
3960 {
3961 clean_up_just_stopped_threads_fsms (ecs);
3962
3963 if (thr != NULL && thr->thread_fsm != NULL)
3964 {
3965 should_notify_stop
3966 = thread_fsm_should_notify_stop (thr->thread_fsm);
3967 }
3968
3969 if (should_notify_stop)
3970 {
3971 int proceeded = 0;
3972
3973 /* We may not find an inferior if this was a process exit. */
3974 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3975 proceeded = normal_stop ();
3976
3977 if (!proceeded)
3978 {
3979 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3980 cmd_done = 1;
3981 }
3982 }
3983 }
3984 }
3985
3986 /* No error, don't finish the thread states yet. */
3987 discard_cleanups (ts_old_chain);
3988
3989 /* Revert thread and frame. */
3990 do_cleanups (old_chain);
3991
3992 /* If a UI was in sync execution mode, and now isn't, restore its
3993 prompt (a synchronous execution command has finished, and we're
3994 ready for input). */
3995 all_uis_check_sync_execution_done ();
3996
3997 if (cmd_done
3998 && exec_done_display_p
3999 && (ptid_equal (inferior_ptid, null_ptid)
4000 || !is_running (inferior_ptid)))
4001 printf_unfiltered (_("completed.\n"));
4002 }
4003
4004 /* Record the frame and location we're currently stepping through. */
4005 void
4006 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
4007 {
4008 struct thread_info *tp = inferior_thread ();
4009
4010 tp->control.step_frame_id = get_frame_id (frame);
4011 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4012
4013 tp->current_symtab = sal.symtab;
4014 tp->current_line = sal.line;
4015 }
4016
4017 /* Clear context switchable stepping state. */
4018
4019 void
4020 init_thread_stepping_state (struct thread_info *tss)
4021 {
4022 tss->stepped_breakpoint = 0;
4023 tss->stepping_over_breakpoint = 0;
4024 tss->stepping_over_watchpoint = 0;
4025 tss->step_after_step_resume_breakpoint = 0;
4026 }
4027
4028 /* Set the cached copy of the last ptid/waitstatus. */
4029
4030 void
4031 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4032 {
4033 target_last_wait_ptid = ptid;
4034 target_last_waitstatus = status;
4035 }
4036
4037 /* Return the cached copy of the last pid/waitstatus returned by
4038 target_wait()/deprecated_target_wait_hook(). The data is actually
4039 cached by handle_inferior_event(), which gets called immediately
4040 after target_wait()/deprecated_target_wait_hook(). */
4041
4042 void
4043 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
4044 {
4045 *ptidp = target_last_wait_ptid;
4046 *status = target_last_waitstatus;
4047 }
4048
4049 void
4050 nullify_last_target_wait_ptid (void)
4051 {
4052 target_last_wait_ptid = minus_one_ptid;
4053 }
4054
4055 /* Switch thread contexts. */
4056
4057 static void
4058 context_switch (ptid_t ptid)
4059 {
4060 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
4061 {
4062 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4063 target_pid_to_str (inferior_ptid));
4064 fprintf_unfiltered (gdb_stdlog, "to %s\n",
4065 target_pid_to_str (ptid));
4066 }
4067
4068 switch_to_thread (ptid);
4069 }
4070
4071 /* If the target can't tell whether we've hit breakpoints
4072 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4073 check whether that could have been caused by a breakpoint. If so,
4074 adjust the PC, per gdbarch_decr_pc_after_break. */
4075
4076 static void
4077 adjust_pc_after_break (struct thread_info *thread,
4078 struct target_waitstatus *ws)
4079 {
4080 struct regcache *regcache;
4081 struct gdbarch *gdbarch;
4082 struct address_space *aspace;
4083 CORE_ADDR breakpoint_pc, decr_pc;
4084
4085 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4086 we aren't, just return.
4087
4088 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4089 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4090 implemented by software breakpoints should be handled through the normal
4091 breakpoint layer.
4092
4093 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4094 different signals (SIGILL or SIGEMT for instance), but it is less
4095 clear where the PC is pointing afterwards. It may not match
4096 gdbarch_decr_pc_after_break. I don't know any specific target that
4097 generates these signals at breakpoints (the code has been in GDB since at
4098 least 1992) so I can not guess how to handle them here.
4099
4100 In earlier versions of GDB, a target with
4101 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4102 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4103 target with both of these set in GDB history, and it seems unlikely to be
4104 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4105
4106 if (ws->kind != TARGET_WAITKIND_STOPPED)
4107 return;
4108
4109 if (ws->value.sig != GDB_SIGNAL_TRAP)
4110 return;
4111
4112 /* In reverse execution, when a breakpoint is hit, the instruction
4113 under it has already been de-executed. The reported PC always
4114 points at the breakpoint address, so adjusting it further would
4115 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4116 architecture:
4117
4118 B1 0x08000000 : INSN1
4119 B2 0x08000001 : INSN2
4120 0x08000002 : INSN3
4121 PC -> 0x08000003 : INSN4
4122
4123 Say you're stopped at 0x08000003 as above. Reverse continuing
4124 from that point should hit B2 as below. Reading the PC when the
4125 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4126 been de-executed already.
4127
4128 B1 0x08000000 : INSN1
4129 B2 PC -> 0x08000001 : INSN2
4130 0x08000002 : INSN3
4131 0x08000003 : INSN4
4132
4133 We can't apply the same logic as for forward execution, because
4134 we would wrongly adjust the PC to 0x08000000, since there's a
4135 breakpoint at PC - 1. We'd then report a hit on B1, although
4136 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4137 behaviour. */
4138 if (execution_direction == EXEC_REVERSE)
4139 return;
4140
4141 /* If the target can tell whether the thread hit a SW breakpoint,
4142 trust it. Targets that can tell also adjust the PC
4143 themselves. */
4144 if (target_supports_stopped_by_sw_breakpoint ())
4145 return;
4146
4147 /* Note that relying on whether a breakpoint is planted in memory to
4148 determine this can fail. E.g,. the breakpoint could have been
4149 removed since. Or the thread could have been told to step an
4150 instruction the size of a breakpoint instruction, and only
4151 _after_ was a breakpoint inserted at its address. */
4152
4153 /* If this target does not decrement the PC after breakpoints, then
4154 we have nothing to do. */
4155 regcache = get_thread_regcache (thread->ptid);
4156 gdbarch = get_regcache_arch (regcache);
4157
4158 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4159 if (decr_pc == 0)
4160 return;
4161
4162 aspace = get_regcache_aspace (regcache);
4163
4164 /* Find the location where (if we've hit a breakpoint) the
4165 breakpoint would be. */
4166 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4167
4168 /* If the target can't tell whether a software breakpoint triggered,
4169 fallback to figuring it out based on breakpoints we think were
4170 inserted in the target, and on whether the thread was stepped or
4171 continued. */
4172
4173 /* Check whether there actually is a software breakpoint inserted at
4174 that location.
4175
4176 If in non-stop mode, a race condition is possible where we've
4177 removed a breakpoint, but stop events for that breakpoint were
4178 already queued and arrive later. To suppress those spurious
4179 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4180 and retire them after a number of stop events are reported. Note
4181 this is an heuristic and can thus get confused. The real fix is
4182 to get the "stopped by SW BP and needs adjustment" info out of
4183 the target/kernel (and thus never reach here; see above). */
4184 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4185 || (target_is_non_stop_p ()
4186 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4187 {
4188 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
4189
4190 if (record_full_is_used ())
4191 record_full_gdb_operation_disable_set ();
4192
4193 /* When using hardware single-step, a SIGTRAP is reported for both
4194 a completed single-step and a software breakpoint. Need to
4195 differentiate between the two, as the latter needs adjusting
4196 but the former does not.
4197
4198 The SIGTRAP can be due to a completed hardware single-step only if
4199 - we didn't insert software single-step breakpoints
4200 - this thread is currently being stepped
4201
4202 If any of these events did not occur, we must have stopped due
4203 to hitting a software breakpoint, and have to back up to the
4204 breakpoint address.
4205
4206 As a special case, we could have hardware single-stepped a
4207 software breakpoint. In this case (prev_pc == breakpoint_pc),
4208 we also need to back up to the breakpoint address. */
4209
4210 if (thread_has_single_step_breakpoints_set (thread)
4211 || !currently_stepping (thread)
4212 || (thread->stepped_breakpoint
4213 && thread->prev_pc == breakpoint_pc))
4214 regcache_write_pc (regcache, breakpoint_pc);
4215
4216 do_cleanups (old_cleanups);
4217 }
4218 }
4219
4220 static int
4221 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4222 {
4223 for (frame = get_prev_frame (frame);
4224 frame != NULL;
4225 frame = get_prev_frame (frame))
4226 {
4227 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4228 return 1;
4229 if (get_frame_type (frame) != INLINE_FRAME)
4230 break;
4231 }
4232
4233 return 0;
4234 }
4235
4236 /* If the event thread has the stop requested flag set, pretend it
4237 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4238 target_stop). */
4239
4240 static bool
4241 handle_stop_requested (struct execution_control_state *ecs)
4242 {
4243 if (ecs->event_thread->stop_requested)
4244 {
4245 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4246 ecs->ws.value.sig = GDB_SIGNAL_0;
4247 handle_signal_stop (ecs);
4248 return true;
4249 }
4250 return false;
4251 }
4252
4253 /* Auxiliary function that handles syscall entry/return events.
4254 It returns 1 if the inferior should keep going (and GDB
4255 should ignore the event), or 0 if the event deserves to be
4256 processed. */
4257
4258 static int
4259 handle_syscall_event (struct execution_control_state *ecs)
4260 {
4261 struct regcache *regcache;
4262 int syscall_number;
4263
4264 if (!ptid_equal (ecs->ptid, inferior_ptid))
4265 context_switch (ecs->ptid);
4266
4267 regcache = get_thread_regcache (ecs->ptid);
4268 syscall_number = ecs->ws.value.syscall_number;
4269 stop_pc = regcache_read_pc (regcache);
4270
4271 if (catch_syscall_enabled () > 0
4272 && catching_syscall_number (syscall_number) > 0)
4273 {
4274 if (debug_infrun)
4275 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4276 syscall_number);
4277
4278 ecs->event_thread->control.stop_bpstat
4279 = bpstat_stop_status (get_regcache_aspace (regcache),
4280 stop_pc, ecs->ptid, &ecs->ws);
4281
4282 if (handle_stop_requested (ecs))
4283 return 0;
4284
4285 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4286 {
4287 /* Catchpoint hit. */
4288 return 0;
4289 }
4290 }
4291
4292 if (handle_stop_requested (ecs))
4293 return 0;
4294
4295 /* If no catchpoint triggered for this, then keep going. */
4296 keep_going (ecs);
4297 return 1;
4298 }
4299
4300 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4301
4302 static void
4303 fill_in_stop_func (struct gdbarch *gdbarch,
4304 struct execution_control_state *ecs)
4305 {
4306 if (!ecs->stop_func_filled_in)
4307 {
4308 /* Don't care about return value; stop_func_start and stop_func_name
4309 will both be 0 if it doesn't work. */
4310 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4311 &ecs->stop_func_start, &ecs->stop_func_end);
4312 ecs->stop_func_start
4313 += gdbarch_deprecated_function_start_offset (gdbarch);
4314
4315 if (gdbarch_skip_entrypoint_p (gdbarch))
4316 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4317 ecs->stop_func_start);
4318
4319 ecs->stop_func_filled_in = 1;
4320 }
4321 }
4322
4323
4324 /* Return the STOP_SOON field of the inferior pointed at by PTID. */
4325
4326 static enum stop_kind
4327 get_inferior_stop_soon (ptid_t ptid)
4328 {
4329 struct inferior *inf = find_inferior_ptid (ptid);
4330
4331 gdb_assert (inf != NULL);
4332 return inf->control.stop_soon;
4333 }
4334
4335 /* Wait for one event. Store the resulting waitstatus in WS, and
4336 return the event ptid. */
4337
4338 static ptid_t
4339 wait_one (struct target_waitstatus *ws)
4340 {
4341 ptid_t event_ptid;
4342 ptid_t wait_ptid = minus_one_ptid;
4343
4344 overlay_cache_invalid = 1;
4345
4346 /* Flush target cache before starting to handle each event.
4347 Target was running and cache could be stale. This is just a
4348 heuristic. Running threads may modify target memory, but we
4349 don't get any event. */
4350 target_dcache_invalidate ();
4351
4352 if (deprecated_target_wait_hook)
4353 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4354 else
4355 event_ptid = target_wait (wait_ptid, ws, 0);
4356
4357 if (debug_infrun)
4358 print_target_wait_results (wait_ptid, event_ptid, ws);
4359
4360 return event_ptid;
4361 }
4362
4363 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4364 instead of the current thread. */
4365 #define THREAD_STOPPED_BY(REASON) \
4366 static int \
4367 thread_stopped_by_ ## REASON (ptid_t ptid) \
4368 { \
4369 struct cleanup *old_chain; \
4370 int res; \
4371 \
4372 old_chain = save_inferior_ptid (); \
4373 inferior_ptid = ptid; \
4374 \
4375 res = target_stopped_by_ ## REASON (); \
4376 \
4377 do_cleanups (old_chain); \
4378 \
4379 return res; \
4380 }
4381
4382 /* Generate thread_stopped_by_watchpoint. */
4383 THREAD_STOPPED_BY (watchpoint)
4384 /* Generate thread_stopped_by_sw_breakpoint. */
4385 THREAD_STOPPED_BY (sw_breakpoint)
4386 /* Generate thread_stopped_by_hw_breakpoint. */
4387 THREAD_STOPPED_BY (hw_breakpoint)
4388
4389 /* Cleanups that switches to the PTID pointed at by PTID_P. */
4390
4391 static void
4392 switch_to_thread_cleanup (void *ptid_p)
4393 {
4394 ptid_t ptid = *(ptid_t *) ptid_p;
4395
4396 switch_to_thread (ptid);
4397 }
4398
4399 /* Save the thread's event and stop reason to process it later. */
4400
4401 static void
4402 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4403 {
4404 struct regcache *regcache;
4405 struct address_space *aspace;
4406
4407 if (debug_infrun)
4408 {
4409 char *statstr;
4410
4411 statstr = target_waitstatus_to_string (ws);
4412 fprintf_unfiltered (gdb_stdlog,
4413 "infrun: saving status %s for %d.%ld.%ld\n",
4414 statstr,
4415 ptid_get_pid (tp->ptid),
4416 ptid_get_lwp (tp->ptid),
4417 ptid_get_tid (tp->ptid));
4418 xfree (statstr);
4419 }
4420
4421 /* Record for later. */
4422 tp->suspend.waitstatus = *ws;
4423 tp->suspend.waitstatus_pending_p = 1;
4424
4425 regcache = get_thread_regcache (tp->ptid);
4426 aspace = get_regcache_aspace (regcache);
4427
4428 if (ws->kind == TARGET_WAITKIND_STOPPED
4429 && ws->value.sig == GDB_SIGNAL_TRAP)
4430 {
4431 CORE_ADDR pc = regcache_read_pc (regcache);
4432
4433 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4434
4435 if (thread_stopped_by_watchpoint (tp->ptid))
4436 {
4437 tp->suspend.stop_reason
4438 = TARGET_STOPPED_BY_WATCHPOINT;
4439 }
4440 else if (target_supports_stopped_by_sw_breakpoint ()
4441 && thread_stopped_by_sw_breakpoint (tp->ptid))
4442 {
4443 tp->suspend.stop_reason
4444 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4445 }
4446 else if (target_supports_stopped_by_hw_breakpoint ()
4447 && thread_stopped_by_hw_breakpoint (tp->ptid))
4448 {
4449 tp->suspend.stop_reason
4450 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4451 }
4452 else if (!target_supports_stopped_by_hw_breakpoint ()
4453 && hardware_breakpoint_inserted_here_p (aspace,
4454 pc))
4455 {
4456 tp->suspend.stop_reason
4457 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4458 }
4459 else if (!target_supports_stopped_by_sw_breakpoint ()
4460 && software_breakpoint_inserted_here_p (aspace,
4461 pc))
4462 {
4463 tp->suspend.stop_reason
4464 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4465 }
4466 else if (!thread_has_single_step_breakpoints_set (tp)
4467 && currently_stepping (tp))
4468 {
4469 tp->suspend.stop_reason
4470 = TARGET_STOPPED_BY_SINGLE_STEP;
4471 }
4472 }
4473 }
4474
4475 /* A cleanup that disables thread create/exit events. */
4476
4477 static void
4478 disable_thread_events (void *arg)
4479 {
4480 target_thread_events (0);
4481 }
4482
4483 /* See infrun.h. */
4484
4485 void
4486 stop_all_threads (void)
4487 {
4488 /* We may need multiple passes to discover all threads. */
4489 int pass;
4490 int iterations = 0;
4491 ptid_t entry_ptid;
4492 struct cleanup *old_chain;
4493
4494 gdb_assert (target_is_non_stop_p ());
4495
4496 if (debug_infrun)
4497 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4498
4499 entry_ptid = inferior_ptid;
4500 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4501
4502 target_thread_events (1);
4503 make_cleanup (disable_thread_events, NULL);
4504
4505 /* Request threads to stop, and then wait for the stops. Because
4506 threads we already know about can spawn more threads while we're
4507 trying to stop them, and we only learn about new threads when we
4508 update the thread list, do this in a loop, and keep iterating
4509 until two passes find no threads that need to be stopped. */
4510 for (pass = 0; pass < 2; pass++, iterations++)
4511 {
4512 if (debug_infrun)
4513 fprintf_unfiltered (gdb_stdlog,
4514 "infrun: stop_all_threads, pass=%d, "
4515 "iterations=%d\n", pass, iterations);
4516 while (1)
4517 {
4518 ptid_t event_ptid;
4519 struct target_waitstatus ws;
4520 int need_wait = 0;
4521 struct thread_info *t;
4522
4523 update_thread_list ();
4524
4525 /* Go through all threads looking for threads that we need
4526 to tell the target to stop. */
4527 ALL_NON_EXITED_THREADS (t)
4528 {
4529 if (t->executing)
4530 {
4531 /* If already stopping, don't request a stop again.
4532 We just haven't seen the notification yet. */
4533 if (!t->stop_requested)
4534 {
4535 if (debug_infrun)
4536 fprintf_unfiltered (gdb_stdlog,
4537 "infrun: %s executing, "
4538 "need stop\n",
4539 target_pid_to_str (t->ptid));
4540 target_stop (t->ptid);
4541 t->stop_requested = 1;
4542 }
4543 else
4544 {
4545 if (debug_infrun)
4546 fprintf_unfiltered (gdb_stdlog,
4547 "infrun: %s executing, "
4548 "already stopping\n",
4549 target_pid_to_str (t->ptid));
4550 }
4551
4552 if (t->stop_requested)
4553 need_wait = 1;
4554 }
4555 else
4556 {
4557 if (debug_infrun)
4558 fprintf_unfiltered (gdb_stdlog,
4559 "infrun: %s not executing\n",
4560 target_pid_to_str (t->ptid));
4561
4562 /* The thread may be not executing, but still be
4563 resumed with a pending status to process. */
4564 t->resumed = 0;
4565 }
4566 }
4567
4568 if (!need_wait)
4569 break;
4570
4571 /* If we find new threads on the second iteration, restart
4572 over. We want to see two iterations in a row with all
4573 threads stopped. */
4574 if (pass > 0)
4575 pass = -1;
4576
4577 event_ptid = wait_one (&ws);
4578 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4579 {
4580 /* All resumed threads exited. */
4581 }
4582 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4583 || ws.kind == TARGET_WAITKIND_EXITED
4584 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4585 {
4586 if (debug_infrun)
4587 {
4588 ptid_t ptid = pid_to_ptid (ws.value.integer);
4589
4590 fprintf_unfiltered (gdb_stdlog,
4591 "infrun: %s exited while "
4592 "stopping threads\n",
4593 target_pid_to_str (ptid));
4594 }
4595 }
4596 else
4597 {
4598 struct inferior *inf;
4599
4600 t = find_thread_ptid (event_ptid);
4601 if (t == NULL)
4602 t = add_thread (event_ptid);
4603
4604 t->stop_requested = 0;
4605 t->executing = 0;
4606 t->resumed = 0;
4607 t->control.may_range_step = 0;
4608
4609 /* This may be the first time we see the inferior report
4610 a stop. */
4611 inf = find_inferior_ptid (event_ptid);
4612 if (inf->needs_setup)
4613 {
4614 switch_to_thread_no_regs (t);
4615 setup_inferior (0);
4616 }
4617
4618 if (ws.kind == TARGET_WAITKIND_STOPPED
4619 && ws.value.sig == GDB_SIGNAL_0)
4620 {
4621 /* We caught the event that we intended to catch, so
4622 there's no event pending. */
4623 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4624 t->suspend.waitstatus_pending_p = 0;
4625
4626 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4627 {
4628 /* Add it back to the step-over queue. */
4629 if (debug_infrun)
4630 {
4631 fprintf_unfiltered (gdb_stdlog,
4632 "infrun: displaced-step of %s "
4633 "canceled: adding back to the "
4634 "step-over queue\n",
4635 target_pid_to_str (t->ptid));
4636 }
4637 t->control.trap_expected = 0;
4638 thread_step_over_chain_enqueue (t);
4639 }
4640 }
4641 else
4642 {
4643 enum gdb_signal sig;
4644 struct regcache *regcache;
4645
4646 if (debug_infrun)
4647 {
4648 char *statstr;
4649
4650 statstr = target_waitstatus_to_string (&ws);
4651 fprintf_unfiltered (gdb_stdlog,
4652 "infrun: target_wait %s, saving "
4653 "status for %d.%ld.%ld\n",
4654 statstr,
4655 ptid_get_pid (t->ptid),
4656 ptid_get_lwp (t->ptid),
4657 ptid_get_tid (t->ptid));
4658 xfree (statstr);
4659 }
4660
4661 /* Record for later. */
4662 save_waitstatus (t, &ws);
4663
4664 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4665 ? ws.value.sig : GDB_SIGNAL_0);
4666
4667 if (displaced_step_fixup (t->ptid, sig) < 0)
4668 {
4669 /* Add it back to the step-over queue. */
4670 t->control.trap_expected = 0;
4671 thread_step_over_chain_enqueue (t);
4672 }
4673
4674 regcache = get_thread_regcache (t->ptid);
4675 t->suspend.stop_pc = regcache_read_pc (regcache);
4676
4677 if (debug_infrun)
4678 {
4679 fprintf_unfiltered (gdb_stdlog,
4680 "infrun: saved stop_pc=%s for %s "
4681 "(currently_stepping=%d)\n",
4682 paddress (target_gdbarch (),
4683 t->suspend.stop_pc),
4684 target_pid_to_str (t->ptid),
4685 currently_stepping (t));
4686 }
4687 }
4688 }
4689 }
4690 }
4691
4692 do_cleanups (old_chain);
4693
4694 if (debug_infrun)
4695 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4696 }
4697
4698 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4699
4700 static int
4701 handle_no_resumed (struct execution_control_state *ecs)
4702 {
4703 struct inferior *inf;
4704 struct thread_info *thread;
4705
4706 if (target_can_async_p ())
4707 {
4708 struct ui *ui;
4709 int any_sync = 0;
4710
4711 ALL_UIS (ui)
4712 {
4713 if (ui->prompt_state == PROMPT_BLOCKED)
4714 {
4715 any_sync = 1;
4716 break;
4717 }
4718 }
4719 if (!any_sync)
4720 {
4721 /* There were no unwaited-for children left in the target, but,
4722 we're not synchronously waiting for events either. Just
4723 ignore. */
4724
4725 if (debug_infrun)
4726 fprintf_unfiltered (gdb_stdlog,
4727 "infrun: TARGET_WAITKIND_NO_RESUMED "
4728 "(ignoring: bg)\n");
4729 prepare_to_wait (ecs);
4730 return 1;
4731 }
4732 }
4733
4734 /* Otherwise, if we were running a synchronous execution command, we
4735 may need to cancel it and give the user back the terminal.
4736
4737 In non-stop mode, the target can't tell whether we've already
4738 consumed previous stop events, so it can end up sending us a
4739 no-resumed event like so:
4740
4741 #0 - thread 1 is left stopped
4742
4743 #1 - thread 2 is resumed and hits breakpoint
4744 -> TARGET_WAITKIND_STOPPED
4745
4746 #2 - thread 3 is resumed and exits
4747 this is the last resumed thread, so
4748 -> TARGET_WAITKIND_NO_RESUMED
4749
4750 #3 - gdb processes stop for thread 2 and decides to re-resume
4751 it.
4752
4753 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4754 thread 2 is now resumed, so the event should be ignored.
4755
4756 IOW, if the stop for thread 2 doesn't end a foreground command,
4757 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4758 event. But it could be that the event meant that thread 2 itself
4759 (or whatever other thread was the last resumed thread) exited.
4760
4761 To address this we refresh the thread list and check whether we
4762 have resumed threads _now_. In the example above, this removes
4763 thread 3 from the thread list. If thread 2 was re-resumed, we
4764 ignore this event. If we find no thread resumed, then we cancel
4765 the synchronous command show "no unwaited-for " to the user. */
4766 update_thread_list ();
4767
4768 ALL_NON_EXITED_THREADS (thread)
4769 {
4770 if (thread->executing
4771 || thread->suspend.waitstatus_pending_p)
4772 {
4773 /* There were no unwaited-for children left in the target at
4774 some point, but there are now. Just ignore. */
4775 if (debug_infrun)
4776 fprintf_unfiltered (gdb_stdlog,
4777 "infrun: TARGET_WAITKIND_NO_RESUMED "
4778 "(ignoring: found resumed)\n");
4779 prepare_to_wait (ecs);
4780 return 1;
4781 }
4782 }
4783
4784 /* Note however that we may find no resumed thread because the whole
4785 process exited meanwhile (thus updating the thread list results
4786 in an empty thread list). In this case we know we'll be getting
4787 a process exit event shortly. */
4788 ALL_INFERIORS (inf)
4789 {
4790 if (inf->pid == 0)
4791 continue;
4792
4793 thread = any_live_thread_of_process (inf->pid);
4794 if (thread == NULL)
4795 {
4796 if (debug_infrun)
4797 fprintf_unfiltered (gdb_stdlog,
4798 "infrun: TARGET_WAITKIND_NO_RESUMED "
4799 "(expect process exit)\n");
4800 prepare_to_wait (ecs);
4801 return 1;
4802 }
4803 }
4804
4805 /* Go ahead and report the event. */
4806 return 0;
4807 }
4808
4809 /* Given an execution control state that has been freshly filled in by
4810 an event from the inferior, figure out what it means and take
4811 appropriate action.
4812
4813 The alternatives are:
4814
4815 1) stop_waiting and return; to really stop and return to the
4816 debugger.
4817
4818 2) keep_going and return; to wait for the next event (set
4819 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4820 once). */
4821
4822 static void
4823 handle_inferior_event_1 (struct execution_control_state *ecs)
4824 {
4825 enum stop_kind stop_soon;
4826
4827 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4828 {
4829 /* We had an event in the inferior, but we are not interested in
4830 handling it at this level. The lower layers have already
4831 done what needs to be done, if anything.
4832
4833 One of the possible circumstances for this is when the
4834 inferior produces output for the console. The inferior has
4835 not stopped, and we are ignoring the event. Another possible
4836 circumstance is any event which the lower level knows will be
4837 reported multiple times without an intervening resume. */
4838 if (debug_infrun)
4839 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4840 prepare_to_wait (ecs);
4841 return;
4842 }
4843
4844 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4845 {
4846 if (debug_infrun)
4847 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4848 prepare_to_wait (ecs);
4849 return;
4850 }
4851
4852 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4853 && handle_no_resumed (ecs))
4854 return;
4855
4856 /* Cache the last pid/waitstatus. */
4857 set_last_target_status (ecs->ptid, ecs->ws);
4858
4859 /* Always clear state belonging to the previous time we stopped. */
4860 stop_stack_dummy = STOP_NONE;
4861
4862 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4863 {
4864 /* No unwaited-for children left. IOW, all resumed children
4865 have exited. */
4866 if (debug_infrun)
4867 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4868
4869 stop_print_frame = 0;
4870 stop_waiting (ecs);
4871 return;
4872 }
4873
4874 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4875 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4876 {
4877 ecs->event_thread = find_thread_ptid (ecs->ptid);
4878 /* If it's a new thread, add it to the thread database. */
4879 if (ecs->event_thread == NULL)
4880 ecs->event_thread = add_thread (ecs->ptid);
4881
4882 /* Disable range stepping. If the next step request could use a
4883 range, this will be end up re-enabled then. */
4884 ecs->event_thread->control.may_range_step = 0;
4885 }
4886
4887 /* Dependent on valid ECS->EVENT_THREAD. */
4888 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4889
4890 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4891 reinit_frame_cache ();
4892
4893 breakpoint_retire_moribund ();
4894
4895 /* First, distinguish signals caused by the debugger from signals
4896 that have to do with the program's own actions. Note that
4897 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4898 on the operating system version. Here we detect when a SIGILL or
4899 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4900 something similar for SIGSEGV, since a SIGSEGV will be generated
4901 when we're trying to execute a breakpoint instruction on a
4902 non-executable stack. This happens for call dummy breakpoints
4903 for architectures like SPARC that place call dummies on the
4904 stack. */
4905 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4906 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4907 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4908 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4909 {
4910 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4911
4912 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4913 regcache_read_pc (regcache)))
4914 {
4915 if (debug_infrun)
4916 fprintf_unfiltered (gdb_stdlog,
4917 "infrun: Treating signal as SIGTRAP\n");
4918 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4919 }
4920 }
4921
4922 /* Mark the non-executing threads accordingly. In all-stop, all
4923 threads of all processes are stopped when we get any event
4924 reported. In non-stop mode, only the event thread stops. */
4925 {
4926 ptid_t mark_ptid;
4927
4928 if (!target_is_non_stop_p ())
4929 mark_ptid = minus_one_ptid;
4930 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4931 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4932 {
4933 /* If we're handling a process exit in non-stop mode, even
4934 though threads haven't been deleted yet, one would think
4935 that there is nothing to do, as threads of the dead process
4936 will be soon deleted, and threads of any other process were
4937 left running. However, on some targets, threads survive a
4938 process exit event. E.g., for the "checkpoint" command,
4939 when the current checkpoint/fork exits, linux-fork.c
4940 automatically switches to another fork from within
4941 target_mourn_inferior, by associating the same
4942 inferior/thread to another fork. We haven't mourned yet at
4943 this point, but we must mark any threads left in the
4944 process as not-executing so that finish_thread_state marks
4945 them stopped (in the user's perspective) if/when we present
4946 the stop to the user. */
4947 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4948 }
4949 else
4950 mark_ptid = ecs->ptid;
4951
4952 set_executing (mark_ptid, 0);
4953
4954 /* Likewise the resumed flag. */
4955 set_resumed (mark_ptid, 0);
4956 }
4957
4958 switch (ecs->ws.kind)
4959 {
4960 case TARGET_WAITKIND_LOADED:
4961 if (debug_infrun)
4962 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
4963 if (!ptid_equal (ecs->ptid, inferior_ptid))
4964 context_switch (ecs->ptid);
4965 /* Ignore gracefully during startup of the inferior, as it might
4966 be the shell which has just loaded some objects, otherwise
4967 add the symbols for the newly loaded objects. Also ignore at
4968 the beginning of an attach or remote session; we will query
4969 the full list of libraries once the connection is
4970 established. */
4971
4972 stop_soon = get_inferior_stop_soon (ecs->ptid);
4973 if (stop_soon == NO_STOP_QUIETLY)
4974 {
4975 struct regcache *regcache;
4976
4977 regcache = get_thread_regcache (ecs->ptid);
4978
4979 handle_solib_event ();
4980
4981 ecs->event_thread->control.stop_bpstat
4982 = bpstat_stop_status (get_regcache_aspace (regcache),
4983 stop_pc, ecs->ptid, &ecs->ws);
4984
4985 if (handle_stop_requested (ecs))
4986 return;
4987
4988 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4989 {
4990 /* A catchpoint triggered. */
4991 process_event_stop_test (ecs);
4992 return;
4993 }
4994
4995 /* If requested, stop when the dynamic linker notifies
4996 gdb of events. This allows the user to get control
4997 and place breakpoints in initializer routines for
4998 dynamically loaded objects (among other things). */
4999 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5000 if (stop_on_solib_events)
5001 {
5002 /* Make sure we print "Stopped due to solib-event" in
5003 normal_stop. */
5004 stop_print_frame = 1;
5005
5006 stop_waiting (ecs);
5007 return;
5008 }
5009 }
5010
5011 /* If we are skipping through a shell, or through shared library
5012 loading that we aren't interested in, resume the program. If
5013 we're running the program normally, also resume. */
5014 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5015 {
5016 /* Loading of shared libraries might have changed breakpoint
5017 addresses. Make sure new breakpoints are inserted. */
5018 if (stop_soon == NO_STOP_QUIETLY)
5019 insert_breakpoints ();
5020 resume (GDB_SIGNAL_0);
5021 prepare_to_wait (ecs);
5022 return;
5023 }
5024
5025 /* But stop if we're attaching or setting up a remote
5026 connection. */
5027 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5028 || stop_soon == STOP_QUIETLY_REMOTE)
5029 {
5030 if (debug_infrun)
5031 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5032 stop_waiting (ecs);
5033 return;
5034 }
5035
5036 internal_error (__FILE__, __LINE__,
5037 _("unhandled stop_soon: %d"), (int) stop_soon);
5038
5039 case TARGET_WAITKIND_SPURIOUS:
5040 if (debug_infrun)
5041 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
5042 if (handle_stop_requested (ecs))
5043 return;
5044 if (!ptid_equal (ecs->ptid, inferior_ptid))
5045 context_switch (ecs->ptid);
5046 resume (GDB_SIGNAL_0);
5047 prepare_to_wait (ecs);
5048 return;
5049
5050 case TARGET_WAITKIND_THREAD_CREATED:
5051 if (debug_infrun)
5052 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
5053 if (handle_stop_requested (ecs))
5054 return;
5055 if (!ptid_equal (ecs->ptid, inferior_ptid))
5056 context_switch (ecs->ptid);
5057 if (!switch_back_to_stepped_thread (ecs))
5058 keep_going (ecs);
5059 return;
5060
5061 case TARGET_WAITKIND_EXITED:
5062 case TARGET_WAITKIND_SIGNALLED:
5063 if (debug_infrun)
5064 {
5065 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5066 fprintf_unfiltered (gdb_stdlog,
5067 "infrun: TARGET_WAITKIND_EXITED\n");
5068 else
5069 fprintf_unfiltered (gdb_stdlog,
5070 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5071 }
5072
5073 inferior_ptid = ecs->ptid;
5074 set_current_inferior (find_inferior_ptid (ecs->ptid));
5075 set_current_program_space (current_inferior ()->pspace);
5076 handle_vfork_child_exec_or_exit (0);
5077 target_terminal_ours (); /* Must do this before mourn anyway. */
5078
5079 /* Clearing any previous state of convenience variables. */
5080 clear_exit_convenience_vars ();
5081
5082 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5083 {
5084 /* Record the exit code in the convenience variable $_exitcode, so
5085 that the user can inspect this again later. */
5086 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5087 (LONGEST) ecs->ws.value.integer);
5088
5089 /* Also record this in the inferior itself. */
5090 current_inferior ()->has_exit_code = 1;
5091 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5092
5093 /* Support the --return-child-result option. */
5094 return_child_result_value = ecs->ws.value.integer;
5095
5096 observer_notify_exited (ecs->ws.value.integer);
5097 }
5098 else
5099 {
5100 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5101 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5102
5103 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5104 {
5105 /* Set the value of the internal variable $_exitsignal,
5106 which holds the signal uncaught by the inferior. */
5107 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5108 gdbarch_gdb_signal_to_target (gdbarch,
5109 ecs->ws.value.sig));
5110 }
5111 else
5112 {
5113 /* We don't have access to the target's method used for
5114 converting between signal numbers (GDB's internal
5115 representation <-> target's representation).
5116 Therefore, we cannot do a good job at displaying this
5117 information to the user. It's better to just warn
5118 her about it (if infrun debugging is enabled), and
5119 give up. */
5120 if (debug_infrun)
5121 fprintf_filtered (gdb_stdlog, _("\
5122 Cannot fill $_exitsignal with the correct signal number.\n"));
5123 }
5124
5125 observer_notify_signal_exited (ecs->ws.value.sig);
5126 }
5127
5128 gdb_flush (gdb_stdout);
5129 target_mourn_inferior (inferior_ptid);
5130 stop_print_frame = 0;
5131 stop_waiting (ecs);
5132 return;
5133
5134 /* The following are the only cases in which we keep going;
5135 the above cases end in a continue or goto. */
5136 case TARGET_WAITKIND_FORKED:
5137 case TARGET_WAITKIND_VFORKED:
5138 if (debug_infrun)
5139 {
5140 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5141 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5142 else
5143 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5144 }
5145
5146 /* Check whether the inferior is displaced stepping. */
5147 {
5148 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5149 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5150
5151 /* If checking displaced stepping is supported, and thread
5152 ecs->ptid is displaced stepping. */
5153 if (displaced_step_in_progress_thread (ecs->ptid))
5154 {
5155 struct inferior *parent_inf
5156 = find_inferior_ptid (ecs->ptid);
5157 struct regcache *child_regcache;
5158 CORE_ADDR parent_pc;
5159
5160 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5161 indicating that the displaced stepping of syscall instruction
5162 has been done. Perform cleanup for parent process here. Note
5163 that this operation also cleans up the child process for vfork,
5164 because their pages are shared. */
5165 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
5166 /* Start a new step-over in another thread if there's one
5167 that needs it. */
5168 start_step_over ();
5169
5170 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5171 {
5172 struct displaced_step_inferior_state *displaced
5173 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5174
5175 /* Restore scratch pad for child process. */
5176 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5177 }
5178
5179 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5180 the child's PC is also within the scratchpad. Set the child's PC
5181 to the parent's PC value, which has already been fixed up.
5182 FIXME: we use the parent's aspace here, although we're touching
5183 the child, because the child hasn't been added to the inferior
5184 list yet at this point. */
5185
5186 child_regcache
5187 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5188 gdbarch,
5189 parent_inf->aspace);
5190 /* Read PC value of parent process. */
5191 parent_pc = regcache_read_pc (regcache);
5192
5193 if (debug_displaced)
5194 fprintf_unfiltered (gdb_stdlog,
5195 "displaced: write child pc from %s to %s\n",
5196 paddress (gdbarch,
5197 regcache_read_pc (child_regcache)),
5198 paddress (gdbarch, parent_pc));
5199
5200 regcache_write_pc (child_regcache, parent_pc);
5201 }
5202 }
5203
5204 if (!ptid_equal (ecs->ptid, inferior_ptid))
5205 context_switch (ecs->ptid);
5206
5207 /* Immediately detach breakpoints from the child before there's
5208 any chance of letting the user delete breakpoints from the
5209 breakpoint lists. If we don't do this early, it's easy to
5210 leave left over traps in the child, vis: "break foo; catch
5211 fork; c; <fork>; del; c; <child calls foo>". We only follow
5212 the fork on the last `continue', and by that time the
5213 breakpoint at "foo" is long gone from the breakpoint table.
5214 If we vforked, then we don't need to unpatch here, since both
5215 parent and child are sharing the same memory pages; we'll
5216 need to unpatch at follow/detach time instead to be certain
5217 that new breakpoints added between catchpoint hit time and
5218 vfork follow are detached. */
5219 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5220 {
5221 /* This won't actually modify the breakpoint list, but will
5222 physically remove the breakpoints from the child. */
5223 detach_breakpoints (ecs->ws.value.related_pid);
5224 }
5225
5226 delete_just_stopped_threads_single_step_breakpoints ();
5227
5228 /* In case the event is caught by a catchpoint, remember that
5229 the event is to be followed at the next resume of the thread,
5230 and not immediately. */
5231 ecs->event_thread->pending_follow = ecs->ws;
5232
5233 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5234
5235 ecs->event_thread->control.stop_bpstat
5236 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5237 stop_pc, ecs->ptid, &ecs->ws);
5238
5239 if (handle_stop_requested (ecs))
5240 return;
5241
5242 /* If no catchpoint triggered for this, then keep going. Note
5243 that we're interested in knowing the bpstat actually causes a
5244 stop, not just if it may explain the signal. Software
5245 watchpoints, for example, always appear in the bpstat. */
5246 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5247 {
5248 ptid_t parent;
5249 ptid_t child;
5250 int should_resume;
5251 int follow_child
5252 = (follow_fork_mode_string == follow_fork_mode_child);
5253
5254 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5255
5256 should_resume = follow_fork ();
5257
5258 parent = ecs->ptid;
5259 child = ecs->ws.value.related_pid;
5260
5261 /* At this point, the parent is marked running, and the
5262 child is marked stopped. */
5263
5264 /* If not resuming the parent, mark it stopped. */
5265 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5266 set_running (parent, 0);
5267
5268 /* If resuming the child, mark it running. */
5269 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5270 set_running (child, 1);
5271
5272 /* In non-stop mode, also resume the other branch. */
5273 if (!detach_fork && (non_stop
5274 || (sched_multi && target_is_non_stop_p ())))
5275 {
5276 if (follow_child)
5277 switch_to_thread (parent);
5278 else
5279 switch_to_thread (child);
5280
5281 ecs->event_thread = inferior_thread ();
5282 ecs->ptid = inferior_ptid;
5283 keep_going (ecs);
5284 }
5285
5286 if (follow_child)
5287 switch_to_thread (child);
5288 else
5289 switch_to_thread (parent);
5290
5291 ecs->event_thread = inferior_thread ();
5292 ecs->ptid = inferior_ptid;
5293
5294 if (should_resume)
5295 keep_going (ecs);
5296 else
5297 stop_waiting (ecs);
5298 return;
5299 }
5300 process_event_stop_test (ecs);
5301 return;
5302
5303 case TARGET_WAITKIND_VFORK_DONE:
5304 /* Done with the shared memory region. Re-insert breakpoints in
5305 the parent, and keep going. */
5306
5307 if (debug_infrun)
5308 fprintf_unfiltered (gdb_stdlog,
5309 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
5310
5311 if (!ptid_equal (ecs->ptid, inferior_ptid))
5312 context_switch (ecs->ptid);
5313
5314 current_inferior ()->waiting_for_vfork_done = 0;
5315 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5316
5317 if (handle_stop_requested (ecs))
5318 return;
5319
5320 /* This also takes care of reinserting breakpoints in the
5321 previously locked inferior. */
5322 keep_going (ecs);
5323 return;
5324
5325 case TARGET_WAITKIND_EXECD:
5326 if (debug_infrun)
5327 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
5328
5329 if (!ptid_equal (ecs->ptid, inferior_ptid))
5330 context_switch (ecs->ptid);
5331
5332 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5333
5334 /* Do whatever is necessary to the parent branch of the vfork. */
5335 handle_vfork_child_exec_or_exit (1);
5336
5337 /* This causes the eventpoints and symbol table to be reset.
5338 Must do this now, before trying to determine whether to
5339 stop. */
5340 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5341
5342 /* In follow_exec we may have deleted the original thread and
5343 created a new one. Make sure that the event thread is the
5344 execd thread for that case (this is a nop otherwise). */
5345 ecs->event_thread = inferior_thread ();
5346
5347 ecs->event_thread->control.stop_bpstat
5348 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5349 stop_pc, ecs->ptid, &ecs->ws);
5350
5351 /* Note that this may be referenced from inside
5352 bpstat_stop_status above, through inferior_has_execd. */
5353 xfree (ecs->ws.value.execd_pathname);
5354 ecs->ws.value.execd_pathname = NULL;
5355
5356 if (handle_stop_requested (ecs))
5357 return;
5358
5359 /* If no catchpoint triggered for this, then keep going. */
5360 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5361 {
5362 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5363 keep_going (ecs);
5364 return;
5365 }
5366 process_event_stop_test (ecs);
5367 return;
5368
5369 /* Be careful not to try to gather much state about a thread
5370 that's in a syscall. It's frequently a losing proposition. */
5371 case TARGET_WAITKIND_SYSCALL_ENTRY:
5372 if (debug_infrun)
5373 fprintf_unfiltered (gdb_stdlog,
5374 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
5375 /* Getting the current syscall number. */
5376 if (handle_syscall_event (ecs) == 0)
5377 process_event_stop_test (ecs);
5378 return;
5379
5380 /* Before examining the threads further, step this thread to
5381 get it entirely out of the syscall. (We get notice of the
5382 event when the thread is just on the verge of exiting a
5383 syscall. Stepping one instruction seems to get it back
5384 into user code.) */
5385 case TARGET_WAITKIND_SYSCALL_RETURN:
5386 if (debug_infrun)
5387 fprintf_unfiltered (gdb_stdlog,
5388 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
5389 if (handle_syscall_event (ecs) == 0)
5390 process_event_stop_test (ecs);
5391 return;
5392
5393 case TARGET_WAITKIND_STOPPED:
5394 if (debug_infrun)
5395 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
5396 handle_signal_stop (ecs);
5397 return;
5398
5399 case TARGET_WAITKIND_NO_HISTORY:
5400 if (debug_infrun)
5401 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
5402 /* Reverse execution: target ran out of history info. */
5403
5404 /* Switch to the stopped thread. */
5405 if (!ptid_equal (ecs->ptid, inferior_ptid))
5406 context_switch (ecs->ptid);
5407 if (debug_infrun)
5408 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5409
5410 delete_just_stopped_threads_single_step_breakpoints ();
5411 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
5412
5413 if (handle_stop_requested (ecs))
5414 return;
5415
5416 observer_notify_no_history ();
5417 stop_waiting (ecs);
5418 return;
5419 }
5420 }
5421
5422 /* A wrapper around handle_inferior_event_1, which also makes sure
5423 that all temporary struct value objects that were created during
5424 the handling of the event get deleted at the end. */
5425
5426 static void
5427 handle_inferior_event (struct execution_control_state *ecs)
5428 {
5429 struct value *mark = value_mark ();
5430
5431 handle_inferior_event_1 (ecs);
5432 /* Purge all temporary values created during the event handling,
5433 as it could be a long time before we return to the command level
5434 where such values would otherwise be purged. */
5435 value_free_to_mark (mark);
5436 }
5437
5438 /* Restart threads back to what they were trying to do back when we
5439 paused them for an in-line step-over. The EVENT_THREAD thread is
5440 ignored. */
5441
5442 static void
5443 restart_threads (struct thread_info *event_thread)
5444 {
5445 struct thread_info *tp;
5446
5447 /* In case the instruction just stepped spawned a new thread. */
5448 update_thread_list ();
5449
5450 ALL_NON_EXITED_THREADS (tp)
5451 {
5452 if (tp == event_thread)
5453 {
5454 if (debug_infrun)
5455 fprintf_unfiltered (gdb_stdlog,
5456 "infrun: restart threads: "
5457 "[%s] is event thread\n",
5458 target_pid_to_str (tp->ptid));
5459 continue;
5460 }
5461
5462 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5463 {
5464 if (debug_infrun)
5465 fprintf_unfiltered (gdb_stdlog,
5466 "infrun: restart threads: "
5467 "[%s] not meant to be running\n",
5468 target_pid_to_str (tp->ptid));
5469 continue;
5470 }
5471
5472 if (tp->resumed)
5473 {
5474 if (debug_infrun)
5475 fprintf_unfiltered (gdb_stdlog,
5476 "infrun: restart threads: [%s] resumed\n",
5477 target_pid_to_str (tp->ptid));
5478 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5479 continue;
5480 }
5481
5482 if (thread_is_in_step_over_chain (tp))
5483 {
5484 if (debug_infrun)
5485 fprintf_unfiltered (gdb_stdlog,
5486 "infrun: restart threads: "
5487 "[%s] needs step-over\n",
5488 target_pid_to_str (tp->ptid));
5489 gdb_assert (!tp->resumed);
5490 continue;
5491 }
5492
5493
5494 if (tp->suspend.waitstatus_pending_p)
5495 {
5496 if (debug_infrun)
5497 fprintf_unfiltered (gdb_stdlog,
5498 "infrun: restart threads: "
5499 "[%s] has pending status\n",
5500 target_pid_to_str (tp->ptid));
5501 tp->resumed = 1;
5502 continue;
5503 }
5504
5505 gdb_assert (!tp->stop_requested);
5506
5507 /* If some thread needs to start a step-over at this point, it
5508 should still be in the step-over queue, and thus skipped
5509 above. */
5510 if (thread_still_needs_step_over (tp))
5511 {
5512 internal_error (__FILE__, __LINE__,
5513 "thread [%s] needs a step-over, but not in "
5514 "step-over queue\n",
5515 target_pid_to_str (tp->ptid));
5516 }
5517
5518 if (currently_stepping (tp))
5519 {
5520 if (debug_infrun)
5521 fprintf_unfiltered (gdb_stdlog,
5522 "infrun: restart threads: [%s] was stepping\n",
5523 target_pid_to_str (tp->ptid));
5524 keep_going_stepped_thread (tp);
5525 }
5526 else
5527 {
5528 struct execution_control_state ecss;
5529 struct execution_control_state *ecs = &ecss;
5530
5531 if (debug_infrun)
5532 fprintf_unfiltered (gdb_stdlog,
5533 "infrun: restart threads: [%s] continuing\n",
5534 target_pid_to_str (tp->ptid));
5535 reset_ecs (ecs, tp);
5536 switch_to_thread (tp->ptid);
5537 keep_going_pass_signal (ecs);
5538 }
5539 }
5540 }
5541
5542 /* Callback for iterate_over_threads. Find a resumed thread that has
5543 a pending waitstatus. */
5544
5545 static int
5546 resumed_thread_with_pending_status (struct thread_info *tp,
5547 void *arg)
5548 {
5549 return (tp->resumed
5550 && tp->suspend.waitstatus_pending_p);
5551 }
5552
5553 /* Called when we get an event that may finish an in-line or
5554 out-of-line (displaced stepping) step-over started previously.
5555 Return true if the event is processed and we should go back to the
5556 event loop; false if the caller should continue processing the
5557 event. */
5558
5559 static int
5560 finish_step_over (struct execution_control_state *ecs)
5561 {
5562 int had_step_over_info;
5563
5564 displaced_step_fixup (ecs->ptid,
5565 ecs->event_thread->suspend.stop_signal);
5566
5567 had_step_over_info = step_over_info_valid_p ();
5568
5569 if (had_step_over_info)
5570 {
5571 /* If we're stepping over a breakpoint with all threads locked,
5572 then only the thread that was stepped should be reporting
5573 back an event. */
5574 gdb_assert (ecs->event_thread->control.trap_expected);
5575
5576 clear_step_over_info ();
5577 }
5578
5579 if (!target_is_non_stop_p ())
5580 return 0;
5581
5582 /* Start a new step-over in another thread if there's one that
5583 needs it. */
5584 start_step_over ();
5585
5586 /* If we were stepping over a breakpoint before, and haven't started
5587 a new in-line step-over sequence, then restart all other threads
5588 (except the event thread). We can't do this in all-stop, as then
5589 e.g., we wouldn't be able to issue any other remote packet until
5590 these other threads stop. */
5591 if (had_step_over_info && !step_over_info_valid_p ())
5592 {
5593 struct thread_info *pending;
5594
5595 /* If we only have threads with pending statuses, the restart
5596 below won't restart any thread and so nothing re-inserts the
5597 breakpoint we just stepped over. But we need it inserted
5598 when we later process the pending events, otherwise if
5599 another thread has a pending event for this breakpoint too,
5600 we'd discard its event (because the breakpoint that
5601 originally caused the event was no longer inserted). */
5602 context_switch (ecs->ptid);
5603 insert_breakpoints ();
5604
5605 restart_threads (ecs->event_thread);
5606
5607 /* If we have events pending, go through handle_inferior_event
5608 again, picking up a pending event at random. This avoids
5609 thread starvation. */
5610
5611 /* But not if we just stepped over a watchpoint in order to let
5612 the instruction execute so we can evaluate its expression.
5613 The set of watchpoints that triggered is recorded in the
5614 breakpoint objects themselves (see bp->watchpoint_triggered).
5615 If we processed another event first, that other event could
5616 clobber this info. */
5617 if (ecs->event_thread->stepping_over_watchpoint)
5618 return 0;
5619
5620 pending = iterate_over_threads (resumed_thread_with_pending_status,
5621 NULL);
5622 if (pending != NULL)
5623 {
5624 struct thread_info *tp = ecs->event_thread;
5625 struct regcache *regcache;
5626
5627 if (debug_infrun)
5628 {
5629 fprintf_unfiltered (gdb_stdlog,
5630 "infrun: found resumed threads with "
5631 "pending events, saving status\n");
5632 }
5633
5634 gdb_assert (pending != tp);
5635
5636 /* Record the event thread's event for later. */
5637 save_waitstatus (tp, &ecs->ws);
5638 /* This was cleared early, by handle_inferior_event. Set it
5639 so this pending event is considered by
5640 do_target_wait. */
5641 tp->resumed = 1;
5642
5643 gdb_assert (!tp->executing);
5644
5645 regcache = get_thread_regcache (tp->ptid);
5646 tp->suspend.stop_pc = regcache_read_pc (regcache);
5647
5648 if (debug_infrun)
5649 {
5650 fprintf_unfiltered (gdb_stdlog,
5651 "infrun: saved stop_pc=%s for %s "
5652 "(currently_stepping=%d)\n",
5653 paddress (target_gdbarch (),
5654 tp->suspend.stop_pc),
5655 target_pid_to_str (tp->ptid),
5656 currently_stepping (tp));
5657 }
5658
5659 /* This in-line step-over finished; clear this so we won't
5660 start a new one. This is what handle_signal_stop would
5661 do, if we returned false. */
5662 tp->stepping_over_breakpoint = 0;
5663
5664 /* Wake up the event loop again. */
5665 mark_async_event_handler (infrun_async_inferior_event_token);
5666
5667 prepare_to_wait (ecs);
5668 return 1;
5669 }
5670 }
5671
5672 return 0;
5673 }
5674
5675 /* Come here when the program has stopped with a signal. */
5676
5677 static void
5678 handle_signal_stop (struct execution_control_state *ecs)
5679 {
5680 struct frame_info *frame;
5681 struct gdbarch *gdbarch;
5682 int stopped_by_watchpoint;
5683 enum stop_kind stop_soon;
5684 int random_signal;
5685
5686 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5687
5688 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5689
5690 /* Do we need to clean up the state of a thread that has
5691 completed a displaced single-step? (Doing so usually affects
5692 the PC, so do it here, before we set stop_pc.) */
5693 if (finish_step_over (ecs))
5694 return;
5695
5696 /* If we either finished a single-step or hit a breakpoint, but
5697 the user wanted this thread to be stopped, pretend we got a
5698 SIG0 (generic unsignaled stop). */
5699 if (ecs->event_thread->stop_requested
5700 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5701 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5702
5703 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5704
5705 if (debug_infrun)
5706 {
5707 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5708 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5709 struct cleanup *old_chain = save_inferior_ptid ();
5710
5711 inferior_ptid = ecs->ptid;
5712
5713 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5714 paddress (gdbarch, stop_pc));
5715 if (target_stopped_by_watchpoint ())
5716 {
5717 CORE_ADDR addr;
5718
5719 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5720
5721 if (target_stopped_data_address (&current_target, &addr))
5722 fprintf_unfiltered (gdb_stdlog,
5723 "infrun: stopped data address = %s\n",
5724 paddress (gdbarch, addr));
5725 else
5726 fprintf_unfiltered (gdb_stdlog,
5727 "infrun: (no data address available)\n");
5728 }
5729
5730 do_cleanups (old_chain);
5731 }
5732
5733 /* This is originated from start_remote(), start_inferior() and
5734 shared libraries hook functions. */
5735 stop_soon = get_inferior_stop_soon (ecs->ptid);
5736 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5737 {
5738 if (!ptid_equal (ecs->ptid, inferior_ptid))
5739 context_switch (ecs->ptid);
5740 if (debug_infrun)
5741 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5742 stop_print_frame = 1;
5743 stop_waiting (ecs);
5744 return;
5745 }
5746
5747 /* This originates from attach_command(). We need to overwrite
5748 the stop_signal here, because some kernels don't ignore a
5749 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5750 See more comments in inferior.h. On the other hand, if we
5751 get a non-SIGSTOP, report it to the user - assume the backend
5752 will handle the SIGSTOP if it should show up later.
5753
5754 Also consider that the attach is complete when we see a
5755 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5756 target extended-remote report it instead of a SIGSTOP
5757 (e.g. gdbserver). We already rely on SIGTRAP being our
5758 signal, so this is no exception.
5759
5760 Also consider that the attach is complete when we see a
5761 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5762 the target to stop all threads of the inferior, in case the
5763 low level attach operation doesn't stop them implicitly. If
5764 they weren't stopped implicitly, then the stub will report a
5765 GDB_SIGNAL_0, meaning: stopped for no particular reason
5766 other than GDB's request. */
5767 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5768 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5769 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5770 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5771 {
5772 stop_print_frame = 1;
5773 stop_waiting (ecs);
5774 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5775 return;
5776 }
5777
5778 /* See if something interesting happened to the non-current thread. If
5779 so, then switch to that thread. */
5780 if (!ptid_equal (ecs->ptid, inferior_ptid))
5781 {
5782 if (debug_infrun)
5783 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5784
5785 context_switch (ecs->ptid);
5786
5787 if (deprecated_context_hook)
5788 deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid));
5789 }
5790
5791 /* At this point, get hold of the now-current thread's frame. */
5792 frame = get_current_frame ();
5793 gdbarch = get_frame_arch (frame);
5794
5795 /* Pull the single step breakpoints out of the target. */
5796 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5797 {
5798 struct regcache *regcache;
5799 struct address_space *aspace;
5800 CORE_ADDR pc;
5801
5802 regcache = get_thread_regcache (ecs->ptid);
5803 aspace = get_regcache_aspace (regcache);
5804 pc = regcache_read_pc (regcache);
5805
5806 /* However, before doing so, if this single-step breakpoint was
5807 actually for another thread, set this thread up for moving
5808 past it. */
5809 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5810 aspace, pc))
5811 {
5812 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5813 {
5814 if (debug_infrun)
5815 {
5816 fprintf_unfiltered (gdb_stdlog,
5817 "infrun: [%s] hit another thread's "
5818 "single-step breakpoint\n",
5819 target_pid_to_str (ecs->ptid));
5820 }
5821 ecs->hit_singlestep_breakpoint = 1;
5822 }
5823 }
5824 else
5825 {
5826 if (debug_infrun)
5827 {
5828 fprintf_unfiltered (gdb_stdlog,
5829 "infrun: [%s] hit its "
5830 "single-step breakpoint\n",
5831 target_pid_to_str (ecs->ptid));
5832 }
5833 }
5834 }
5835 delete_just_stopped_threads_single_step_breakpoints ();
5836
5837 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5838 && ecs->event_thread->control.trap_expected
5839 && ecs->event_thread->stepping_over_watchpoint)
5840 stopped_by_watchpoint = 0;
5841 else
5842 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5843
5844 /* If necessary, step over this watchpoint. We'll be back to display
5845 it in a moment. */
5846 if (stopped_by_watchpoint
5847 && (target_have_steppable_watchpoint
5848 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5849 {
5850 /* At this point, we are stopped at an instruction which has
5851 attempted to write to a piece of memory under control of
5852 a watchpoint. The instruction hasn't actually executed
5853 yet. If we were to evaluate the watchpoint expression
5854 now, we would get the old value, and therefore no change
5855 would seem to have occurred.
5856
5857 In order to make watchpoints work `right', we really need
5858 to complete the memory write, and then evaluate the
5859 watchpoint expression. We do this by single-stepping the
5860 target.
5861
5862 It may not be necessary to disable the watchpoint to step over
5863 it. For example, the PA can (with some kernel cooperation)
5864 single step over a watchpoint without disabling the watchpoint.
5865
5866 It is far more common to need to disable a watchpoint to step
5867 the inferior over it. If we have non-steppable watchpoints,
5868 we must disable the current watchpoint; it's simplest to
5869 disable all watchpoints.
5870
5871 Any breakpoint at PC must also be stepped over -- if there's
5872 one, it will have already triggered before the watchpoint
5873 triggered, and we either already reported it to the user, or
5874 it didn't cause a stop and we called keep_going. In either
5875 case, if there was a breakpoint at PC, we must be trying to
5876 step past it. */
5877 ecs->event_thread->stepping_over_watchpoint = 1;
5878 keep_going (ecs);
5879 return;
5880 }
5881
5882 ecs->event_thread->stepping_over_breakpoint = 0;
5883 ecs->event_thread->stepping_over_watchpoint = 0;
5884 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5885 ecs->event_thread->control.stop_step = 0;
5886 stop_print_frame = 1;
5887 stopped_by_random_signal = 0;
5888
5889 /* Hide inlined functions starting here, unless we just performed stepi or
5890 nexti. After stepi and nexti, always show the innermost frame (not any
5891 inline function call sites). */
5892 if (ecs->event_thread->control.step_range_end != 1)
5893 {
5894 struct address_space *aspace =
5895 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5896
5897 /* skip_inline_frames is expensive, so we avoid it if we can
5898 determine that the address is one where functions cannot have
5899 been inlined. This improves performance with inferiors that
5900 load a lot of shared libraries, because the solib event
5901 breakpoint is defined as the address of a function (i.e. not
5902 inline). Note that we have to check the previous PC as well
5903 as the current one to catch cases when we have just
5904 single-stepped off a breakpoint prior to reinstating it.
5905 Note that we're assuming that the code we single-step to is
5906 not inline, but that's not definitive: there's nothing
5907 preventing the event breakpoint function from containing
5908 inlined code, and the single-step ending up there. If the
5909 user had set a breakpoint on that inlined code, the missing
5910 skip_inline_frames call would break things. Fortunately
5911 that's an extremely unlikely scenario. */
5912 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
5913 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5914 && ecs->event_thread->control.trap_expected
5915 && pc_at_non_inline_function (aspace,
5916 ecs->event_thread->prev_pc,
5917 &ecs->ws)))
5918 {
5919 skip_inline_frames (ecs->ptid);
5920
5921 /* Re-fetch current thread's frame in case that invalidated
5922 the frame cache. */
5923 frame = get_current_frame ();
5924 gdbarch = get_frame_arch (frame);
5925 }
5926 }
5927
5928 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5929 && ecs->event_thread->control.trap_expected
5930 && gdbarch_single_step_through_delay_p (gdbarch)
5931 && currently_stepping (ecs->event_thread))
5932 {
5933 /* We're trying to step off a breakpoint. Turns out that we're
5934 also on an instruction that needs to be stepped multiple
5935 times before it's been fully executing. E.g., architectures
5936 with a delay slot. It needs to be stepped twice, once for
5937 the instruction and once for the delay slot. */
5938 int step_through_delay
5939 = gdbarch_single_step_through_delay (gdbarch, frame);
5940
5941 if (debug_infrun && step_through_delay)
5942 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5943 if (ecs->event_thread->control.step_range_end == 0
5944 && step_through_delay)
5945 {
5946 /* The user issued a continue when stopped at a breakpoint.
5947 Set up for another trap and get out of here. */
5948 ecs->event_thread->stepping_over_breakpoint = 1;
5949 keep_going (ecs);
5950 return;
5951 }
5952 else if (step_through_delay)
5953 {
5954 /* The user issued a step when stopped at a breakpoint.
5955 Maybe we should stop, maybe we should not - the delay
5956 slot *might* correspond to a line of source. In any
5957 case, don't decide that here, just set
5958 ecs->stepping_over_breakpoint, making sure we
5959 single-step again before breakpoints are re-inserted. */
5960 ecs->event_thread->stepping_over_breakpoint = 1;
5961 }
5962 }
5963
5964 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5965 handles this event. */
5966 ecs->event_thread->control.stop_bpstat
5967 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5968 stop_pc, ecs->ptid, &ecs->ws);
5969
5970 /* Following in case break condition called a
5971 function. */
5972 stop_print_frame = 1;
5973
5974 /* This is where we handle "moribund" watchpoints. Unlike
5975 software breakpoints traps, hardware watchpoint traps are
5976 always distinguishable from random traps. If no high-level
5977 watchpoint is associated with the reported stop data address
5978 anymore, then the bpstat does not explain the signal ---
5979 simply make sure to ignore it if `stopped_by_watchpoint' is
5980 set. */
5981
5982 if (debug_infrun
5983 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5984 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5985 GDB_SIGNAL_TRAP)
5986 && stopped_by_watchpoint)
5987 fprintf_unfiltered (gdb_stdlog,
5988 "infrun: no user watchpoint explains "
5989 "watchpoint SIGTRAP, ignoring\n");
5990
5991 /* NOTE: cagney/2003-03-29: These checks for a random signal
5992 at one stage in the past included checks for an inferior
5993 function call's call dummy's return breakpoint. The original
5994 comment, that went with the test, read:
5995
5996 ``End of a stack dummy. Some systems (e.g. Sony news) give
5997 another signal besides SIGTRAP, so check here as well as
5998 above.''
5999
6000 If someone ever tries to get call dummys on a
6001 non-executable stack to work (where the target would stop
6002 with something like a SIGSEGV), then those tests might need
6003 to be re-instated. Given, however, that the tests were only
6004 enabled when momentary breakpoints were not being used, I
6005 suspect that it won't be the case.
6006
6007 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6008 be necessary for call dummies on a non-executable stack on
6009 SPARC. */
6010
6011 /* See if the breakpoints module can explain the signal. */
6012 random_signal
6013 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6014 ecs->event_thread->suspend.stop_signal);
6015
6016 /* Maybe this was a trap for a software breakpoint that has since
6017 been removed. */
6018 if (random_signal && target_stopped_by_sw_breakpoint ())
6019 {
6020 if (program_breakpoint_here_p (gdbarch, stop_pc))
6021 {
6022 struct regcache *regcache;
6023 int decr_pc;
6024
6025 /* Re-adjust PC to what the program would see if GDB was not
6026 debugging it. */
6027 regcache = get_thread_regcache (ecs->event_thread->ptid);
6028 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6029 if (decr_pc != 0)
6030 {
6031 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
6032
6033 if (record_full_is_used ())
6034 record_full_gdb_operation_disable_set ();
6035
6036 regcache_write_pc (regcache, stop_pc + decr_pc);
6037
6038 do_cleanups (old_cleanups);
6039 }
6040 }
6041 else
6042 {
6043 /* A delayed software breakpoint event. Ignore the trap. */
6044 if (debug_infrun)
6045 fprintf_unfiltered (gdb_stdlog,
6046 "infrun: delayed software breakpoint "
6047 "trap, ignoring\n");
6048 random_signal = 0;
6049 }
6050 }
6051
6052 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6053 has since been removed. */
6054 if (random_signal && target_stopped_by_hw_breakpoint ())
6055 {
6056 /* A delayed hardware breakpoint event. Ignore the trap. */
6057 if (debug_infrun)
6058 fprintf_unfiltered (gdb_stdlog,
6059 "infrun: delayed hardware breakpoint/watchpoint "
6060 "trap, ignoring\n");
6061 random_signal = 0;
6062 }
6063
6064 /* If not, perhaps stepping/nexting can. */
6065 if (random_signal)
6066 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6067 && currently_stepping (ecs->event_thread));
6068
6069 /* Perhaps the thread hit a single-step breakpoint of _another_
6070 thread. Single-step breakpoints are transparent to the
6071 breakpoints module. */
6072 if (random_signal)
6073 random_signal = !ecs->hit_singlestep_breakpoint;
6074
6075 /* No? Perhaps we got a moribund watchpoint. */
6076 if (random_signal)
6077 random_signal = !stopped_by_watchpoint;
6078
6079 /* Always stop if the user explicitly requested this thread to
6080 remain stopped. */
6081 if (ecs->event_thread->stop_requested)
6082 {
6083 random_signal = 1;
6084 if (debug_infrun)
6085 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6086 }
6087
6088 /* For the program's own signals, act according to
6089 the signal handling tables. */
6090
6091 if (random_signal)
6092 {
6093 /* Signal not for debugging purposes. */
6094 struct inferior *inf = find_inferior_ptid (ecs->ptid);
6095 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6096
6097 if (debug_infrun)
6098 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6099 gdb_signal_to_symbol_string (stop_signal));
6100
6101 stopped_by_random_signal = 1;
6102
6103 /* Always stop on signals if we're either just gaining control
6104 of the program, or the user explicitly requested this thread
6105 to remain stopped. */
6106 if (stop_soon != NO_STOP_QUIETLY
6107 || ecs->event_thread->stop_requested
6108 || (!inf->detaching
6109 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6110 {
6111 stop_waiting (ecs);
6112 return;
6113 }
6114
6115 /* Notify observers the signal has "handle print" set. Note we
6116 returned early above if stopping; normal_stop handles the
6117 printing in that case. */
6118 if (signal_print[ecs->event_thread->suspend.stop_signal])
6119 {
6120 /* The signal table tells us to print about this signal. */
6121 target_terminal_ours_for_output ();
6122 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
6123 target_terminal_inferior ();
6124 }
6125
6126 /* Clear the signal if it should not be passed. */
6127 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6128 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6129
6130 if (ecs->event_thread->prev_pc == stop_pc
6131 && ecs->event_thread->control.trap_expected
6132 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6133 {
6134 /* We were just starting a new sequence, attempting to
6135 single-step off of a breakpoint and expecting a SIGTRAP.
6136 Instead this signal arrives. This signal will take us out
6137 of the stepping range so GDB needs to remember to, when
6138 the signal handler returns, resume stepping off that
6139 breakpoint. */
6140 /* To simplify things, "continue" is forced to use the same
6141 code paths as single-step - set a breakpoint at the
6142 signal return address and then, once hit, step off that
6143 breakpoint. */
6144 if (debug_infrun)
6145 fprintf_unfiltered (gdb_stdlog,
6146 "infrun: signal arrived while stepping over "
6147 "breakpoint\n");
6148
6149 insert_hp_step_resume_breakpoint_at_frame (frame);
6150 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6151 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6152 ecs->event_thread->control.trap_expected = 0;
6153
6154 /* If we were nexting/stepping some other thread, switch to
6155 it, so that we don't continue it, losing control. */
6156 if (!switch_back_to_stepped_thread (ecs))
6157 keep_going (ecs);
6158 return;
6159 }
6160
6161 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6162 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6163 || ecs->event_thread->control.step_range_end == 1)
6164 && frame_id_eq (get_stack_frame_id (frame),
6165 ecs->event_thread->control.step_stack_frame_id)
6166 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6167 {
6168 /* The inferior is about to take a signal that will take it
6169 out of the single step range. Set a breakpoint at the
6170 current PC (which is presumably where the signal handler
6171 will eventually return) and then allow the inferior to
6172 run free.
6173
6174 Note that this is only needed for a signal delivered
6175 while in the single-step range. Nested signals aren't a
6176 problem as they eventually all return. */
6177 if (debug_infrun)
6178 fprintf_unfiltered (gdb_stdlog,
6179 "infrun: signal may take us out of "
6180 "single-step range\n");
6181
6182 clear_step_over_info ();
6183 insert_hp_step_resume_breakpoint_at_frame (frame);
6184 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6185 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6186 ecs->event_thread->control.trap_expected = 0;
6187 keep_going (ecs);
6188 return;
6189 }
6190
6191 /* Note: step_resume_breakpoint may be non-NULL. This occures
6192 when either there's a nested signal, or when there's a
6193 pending signal enabled just as the signal handler returns
6194 (leaving the inferior at the step-resume-breakpoint without
6195 actually executing it). Either way continue until the
6196 breakpoint is really hit. */
6197
6198 if (!switch_back_to_stepped_thread (ecs))
6199 {
6200 if (debug_infrun)
6201 fprintf_unfiltered (gdb_stdlog,
6202 "infrun: random signal, keep going\n");
6203
6204 keep_going (ecs);
6205 }
6206 return;
6207 }
6208
6209 process_event_stop_test (ecs);
6210 }
6211
6212 /* Come here when we've got some debug event / signal we can explain
6213 (IOW, not a random signal), and test whether it should cause a
6214 stop, or whether we should resume the inferior (transparently).
6215 E.g., could be a breakpoint whose condition evaluates false; we
6216 could be still stepping within the line; etc. */
6217
6218 static void
6219 process_event_stop_test (struct execution_control_state *ecs)
6220 {
6221 struct symtab_and_line stop_pc_sal;
6222 struct frame_info *frame;
6223 struct gdbarch *gdbarch;
6224 CORE_ADDR jmp_buf_pc;
6225 struct bpstat_what what;
6226
6227 /* Handle cases caused by hitting a breakpoint. */
6228
6229 frame = get_current_frame ();
6230 gdbarch = get_frame_arch (frame);
6231
6232 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6233
6234 if (what.call_dummy)
6235 {
6236 stop_stack_dummy = what.call_dummy;
6237 }
6238
6239 /* A few breakpoint types have callbacks associated (e.g.,
6240 bp_jit_event). Run them now. */
6241 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6242
6243 /* If we hit an internal event that triggers symbol changes, the
6244 current frame will be invalidated within bpstat_what (e.g., if we
6245 hit an internal solib event). Re-fetch it. */
6246 frame = get_current_frame ();
6247 gdbarch = get_frame_arch (frame);
6248
6249 switch (what.main_action)
6250 {
6251 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6252 /* If we hit the breakpoint at longjmp while stepping, we
6253 install a momentary breakpoint at the target of the
6254 jmp_buf. */
6255
6256 if (debug_infrun)
6257 fprintf_unfiltered (gdb_stdlog,
6258 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6259
6260 ecs->event_thread->stepping_over_breakpoint = 1;
6261
6262 if (what.is_longjmp)
6263 {
6264 struct value *arg_value;
6265
6266 /* If we set the longjmp breakpoint via a SystemTap probe,
6267 then use it to extract the arguments. The destination PC
6268 is the third argument to the probe. */
6269 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6270 if (arg_value)
6271 {
6272 jmp_buf_pc = value_as_address (arg_value);
6273 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6274 }
6275 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6276 || !gdbarch_get_longjmp_target (gdbarch,
6277 frame, &jmp_buf_pc))
6278 {
6279 if (debug_infrun)
6280 fprintf_unfiltered (gdb_stdlog,
6281 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6282 "(!gdbarch_get_longjmp_target)\n");
6283 keep_going (ecs);
6284 return;
6285 }
6286
6287 /* Insert a breakpoint at resume address. */
6288 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6289 }
6290 else
6291 check_exception_resume (ecs, frame);
6292 keep_going (ecs);
6293 return;
6294
6295 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6296 {
6297 struct frame_info *init_frame;
6298
6299 /* There are several cases to consider.
6300
6301 1. The initiating frame no longer exists. In this case we
6302 must stop, because the exception or longjmp has gone too
6303 far.
6304
6305 2. The initiating frame exists, and is the same as the
6306 current frame. We stop, because the exception or longjmp
6307 has been caught.
6308
6309 3. The initiating frame exists and is different from the
6310 current frame. This means the exception or longjmp has
6311 been caught beneath the initiating frame, so keep going.
6312
6313 4. longjmp breakpoint has been placed just to protect
6314 against stale dummy frames and user is not interested in
6315 stopping around longjmps. */
6316
6317 if (debug_infrun)
6318 fprintf_unfiltered (gdb_stdlog,
6319 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6320
6321 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6322 != NULL);
6323 delete_exception_resume_breakpoint (ecs->event_thread);
6324
6325 if (what.is_longjmp)
6326 {
6327 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6328
6329 if (!frame_id_p (ecs->event_thread->initiating_frame))
6330 {
6331 /* Case 4. */
6332 keep_going (ecs);
6333 return;
6334 }
6335 }
6336
6337 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6338
6339 if (init_frame)
6340 {
6341 struct frame_id current_id
6342 = get_frame_id (get_current_frame ());
6343 if (frame_id_eq (current_id,
6344 ecs->event_thread->initiating_frame))
6345 {
6346 /* Case 2. Fall through. */
6347 }
6348 else
6349 {
6350 /* Case 3. */
6351 keep_going (ecs);
6352 return;
6353 }
6354 }
6355
6356 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6357 exists. */
6358 delete_step_resume_breakpoint (ecs->event_thread);
6359
6360 end_stepping_range (ecs);
6361 }
6362 return;
6363
6364 case BPSTAT_WHAT_SINGLE:
6365 if (debug_infrun)
6366 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6367 ecs->event_thread->stepping_over_breakpoint = 1;
6368 /* Still need to check other stuff, at least the case where we
6369 are stepping and step out of the right range. */
6370 break;
6371
6372 case BPSTAT_WHAT_STEP_RESUME:
6373 if (debug_infrun)
6374 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6375
6376 delete_step_resume_breakpoint (ecs->event_thread);
6377 if (ecs->event_thread->control.proceed_to_finish
6378 && execution_direction == EXEC_REVERSE)
6379 {
6380 struct thread_info *tp = ecs->event_thread;
6381
6382 /* We are finishing a function in reverse, and just hit the
6383 step-resume breakpoint at the start address of the
6384 function, and we're almost there -- just need to back up
6385 by one more single-step, which should take us back to the
6386 function call. */
6387 tp->control.step_range_start = tp->control.step_range_end = 1;
6388 keep_going (ecs);
6389 return;
6390 }
6391 fill_in_stop_func (gdbarch, ecs);
6392 if (stop_pc == ecs->stop_func_start
6393 && execution_direction == EXEC_REVERSE)
6394 {
6395 /* We are stepping over a function call in reverse, and just
6396 hit the step-resume breakpoint at the start address of
6397 the function. Go back to single-stepping, which should
6398 take us back to the function call. */
6399 ecs->event_thread->stepping_over_breakpoint = 1;
6400 keep_going (ecs);
6401 return;
6402 }
6403 break;
6404
6405 case BPSTAT_WHAT_STOP_NOISY:
6406 if (debug_infrun)
6407 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6408 stop_print_frame = 1;
6409
6410 /* Assume the thread stopped for a breapoint. We'll still check
6411 whether a/the breakpoint is there when the thread is next
6412 resumed. */
6413 ecs->event_thread->stepping_over_breakpoint = 1;
6414
6415 stop_waiting (ecs);
6416 return;
6417
6418 case BPSTAT_WHAT_STOP_SILENT:
6419 if (debug_infrun)
6420 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6421 stop_print_frame = 0;
6422
6423 /* Assume the thread stopped for a breapoint. We'll still check
6424 whether a/the breakpoint is there when the thread is next
6425 resumed. */
6426 ecs->event_thread->stepping_over_breakpoint = 1;
6427 stop_waiting (ecs);
6428 return;
6429
6430 case BPSTAT_WHAT_HP_STEP_RESUME:
6431 if (debug_infrun)
6432 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6433
6434 delete_step_resume_breakpoint (ecs->event_thread);
6435 if (ecs->event_thread->step_after_step_resume_breakpoint)
6436 {
6437 /* Back when the step-resume breakpoint was inserted, we
6438 were trying to single-step off a breakpoint. Go back to
6439 doing that. */
6440 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6441 ecs->event_thread->stepping_over_breakpoint = 1;
6442 keep_going (ecs);
6443 return;
6444 }
6445 break;
6446
6447 case BPSTAT_WHAT_KEEP_CHECKING:
6448 break;
6449 }
6450
6451 /* If we stepped a permanent breakpoint and we had a high priority
6452 step-resume breakpoint for the address we stepped, but we didn't
6453 hit it, then we must have stepped into the signal handler. The
6454 step-resume was only necessary to catch the case of _not_
6455 stepping into the handler, so delete it, and fall through to
6456 checking whether the step finished. */
6457 if (ecs->event_thread->stepped_breakpoint)
6458 {
6459 struct breakpoint *sr_bp
6460 = ecs->event_thread->control.step_resume_breakpoint;
6461
6462 if (sr_bp != NULL
6463 && sr_bp->loc->permanent
6464 && sr_bp->type == bp_hp_step_resume
6465 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6466 {
6467 if (debug_infrun)
6468 fprintf_unfiltered (gdb_stdlog,
6469 "infrun: stepped permanent breakpoint, stopped in "
6470 "handler\n");
6471 delete_step_resume_breakpoint (ecs->event_thread);
6472 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6473 }
6474 }
6475
6476 /* We come here if we hit a breakpoint but should not stop for it.
6477 Possibly we also were stepping and should stop for that. So fall
6478 through and test for stepping. But, if not stepping, do not
6479 stop. */
6480
6481 /* In all-stop mode, if we're currently stepping but have stopped in
6482 some other thread, we need to switch back to the stepped thread. */
6483 if (switch_back_to_stepped_thread (ecs))
6484 return;
6485
6486 if (ecs->event_thread->control.step_resume_breakpoint)
6487 {
6488 if (debug_infrun)
6489 fprintf_unfiltered (gdb_stdlog,
6490 "infrun: step-resume breakpoint is inserted\n");
6491
6492 /* Having a step-resume breakpoint overrides anything
6493 else having to do with stepping commands until
6494 that breakpoint is reached. */
6495 keep_going (ecs);
6496 return;
6497 }
6498
6499 if (ecs->event_thread->control.step_range_end == 0)
6500 {
6501 if (debug_infrun)
6502 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6503 /* Likewise if we aren't even stepping. */
6504 keep_going (ecs);
6505 return;
6506 }
6507
6508 /* Re-fetch current thread's frame in case the code above caused
6509 the frame cache to be re-initialized, making our FRAME variable
6510 a dangling pointer. */
6511 frame = get_current_frame ();
6512 gdbarch = get_frame_arch (frame);
6513 fill_in_stop_func (gdbarch, ecs);
6514
6515 /* If stepping through a line, keep going if still within it.
6516
6517 Note that step_range_end is the address of the first instruction
6518 beyond the step range, and NOT the address of the last instruction
6519 within it!
6520
6521 Note also that during reverse execution, we may be stepping
6522 through a function epilogue and therefore must detect when
6523 the current-frame changes in the middle of a line. */
6524
6525 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6526 && (execution_direction != EXEC_REVERSE
6527 || frame_id_eq (get_frame_id (frame),
6528 ecs->event_thread->control.step_frame_id)))
6529 {
6530 if (debug_infrun)
6531 fprintf_unfiltered
6532 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6533 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6534 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6535
6536 /* Tentatively re-enable range stepping; `resume' disables it if
6537 necessary (e.g., if we're stepping over a breakpoint or we
6538 have software watchpoints). */
6539 ecs->event_thread->control.may_range_step = 1;
6540
6541 /* When stepping backward, stop at beginning of line range
6542 (unless it's the function entry point, in which case
6543 keep going back to the call point). */
6544 if (stop_pc == ecs->event_thread->control.step_range_start
6545 && stop_pc != ecs->stop_func_start
6546 && execution_direction == EXEC_REVERSE)
6547 end_stepping_range (ecs);
6548 else
6549 keep_going (ecs);
6550
6551 return;
6552 }
6553
6554 /* We stepped out of the stepping range. */
6555
6556 /* If we are stepping at the source level and entered the runtime
6557 loader dynamic symbol resolution code...
6558
6559 EXEC_FORWARD: we keep on single stepping until we exit the run
6560 time loader code and reach the callee's address.
6561
6562 EXEC_REVERSE: we've already executed the callee (backward), and
6563 the runtime loader code is handled just like any other
6564 undebuggable function call. Now we need only keep stepping
6565 backward through the trampoline code, and that's handled further
6566 down, so there is nothing for us to do here. */
6567
6568 if (execution_direction != EXEC_REVERSE
6569 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6570 && in_solib_dynsym_resolve_code (stop_pc))
6571 {
6572 CORE_ADDR pc_after_resolver =
6573 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
6574
6575 if (debug_infrun)
6576 fprintf_unfiltered (gdb_stdlog,
6577 "infrun: stepped into dynsym resolve code\n");
6578
6579 if (pc_after_resolver)
6580 {
6581 /* Set up a step-resume breakpoint at the address
6582 indicated by SKIP_SOLIB_RESOLVER. */
6583 struct symtab_and_line sr_sal;
6584
6585 init_sal (&sr_sal);
6586 sr_sal.pc = pc_after_resolver;
6587 sr_sal.pspace = get_frame_program_space (frame);
6588
6589 insert_step_resume_breakpoint_at_sal (gdbarch,
6590 sr_sal, null_frame_id);
6591 }
6592
6593 keep_going (ecs);
6594 return;
6595 }
6596
6597 if (ecs->event_thread->control.step_range_end != 1
6598 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6599 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6600 && get_frame_type (frame) == SIGTRAMP_FRAME)
6601 {
6602 if (debug_infrun)
6603 fprintf_unfiltered (gdb_stdlog,
6604 "infrun: stepped into signal trampoline\n");
6605 /* The inferior, while doing a "step" or "next", has ended up in
6606 a signal trampoline (either by a signal being delivered or by
6607 the signal handler returning). Just single-step until the
6608 inferior leaves the trampoline (either by calling the handler
6609 or returning). */
6610 keep_going (ecs);
6611 return;
6612 }
6613
6614 /* If we're in the return path from a shared library trampoline,
6615 we want to proceed through the trampoline when stepping. */
6616 /* macro/2012-04-25: This needs to come before the subroutine
6617 call check below as on some targets return trampolines look
6618 like subroutine calls (MIPS16 return thunks). */
6619 if (gdbarch_in_solib_return_trampoline (gdbarch,
6620 stop_pc, ecs->stop_func_name)
6621 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6622 {
6623 /* Determine where this trampoline returns. */
6624 CORE_ADDR real_stop_pc;
6625
6626 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6627
6628 if (debug_infrun)
6629 fprintf_unfiltered (gdb_stdlog,
6630 "infrun: stepped into solib return tramp\n");
6631
6632 /* Only proceed through if we know where it's going. */
6633 if (real_stop_pc)
6634 {
6635 /* And put the step-breakpoint there and go until there. */
6636 struct symtab_and_line sr_sal;
6637
6638 init_sal (&sr_sal); /* initialize to zeroes */
6639 sr_sal.pc = real_stop_pc;
6640 sr_sal.section = find_pc_overlay (sr_sal.pc);
6641 sr_sal.pspace = get_frame_program_space (frame);
6642
6643 /* Do not specify what the fp should be when we stop since
6644 on some machines the prologue is where the new fp value
6645 is established. */
6646 insert_step_resume_breakpoint_at_sal (gdbarch,
6647 sr_sal, null_frame_id);
6648
6649 /* Restart without fiddling with the step ranges or
6650 other state. */
6651 keep_going (ecs);
6652 return;
6653 }
6654 }
6655
6656 /* Check for subroutine calls. The check for the current frame
6657 equalling the step ID is not necessary - the check of the
6658 previous frame's ID is sufficient - but it is a common case and
6659 cheaper than checking the previous frame's ID.
6660
6661 NOTE: frame_id_eq will never report two invalid frame IDs as
6662 being equal, so to get into this block, both the current and
6663 previous frame must have valid frame IDs. */
6664 /* The outer_frame_id check is a heuristic to detect stepping
6665 through startup code. If we step over an instruction which
6666 sets the stack pointer from an invalid value to a valid value,
6667 we may detect that as a subroutine call from the mythical
6668 "outermost" function. This could be fixed by marking
6669 outermost frames as !stack_p,code_p,special_p. Then the
6670 initial outermost frame, before sp was valid, would
6671 have code_addr == &_start. See the comment in frame_id_eq
6672 for more. */
6673 if (!frame_id_eq (get_stack_frame_id (frame),
6674 ecs->event_thread->control.step_stack_frame_id)
6675 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6676 ecs->event_thread->control.step_stack_frame_id)
6677 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6678 outer_frame_id)
6679 || (ecs->event_thread->control.step_start_function
6680 != find_pc_function (stop_pc)))))
6681 {
6682 CORE_ADDR real_stop_pc;
6683
6684 if (debug_infrun)
6685 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6686
6687 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6688 {
6689 /* I presume that step_over_calls is only 0 when we're
6690 supposed to be stepping at the assembly language level
6691 ("stepi"). Just stop. */
6692 /* And this works the same backward as frontward. MVS */
6693 end_stepping_range (ecs);
6694 return;
6695 }
6696
6697 /* Reverse stepping through solib trampolines. */
6698
6699 if (execution_direction == EXEC_REVERSE
6700 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6701 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6702 || (ecs->stop_func_start == 0
6703 && in_solib_dynsym_resolve_code (stop_pc))))
6704 {
6705 /* Any solib trampoline code can be handled in reverse
6706 by simply continuing to single-step. We have already
6707 executed the solib function (backwards), and a few
6708 steps will take us back through the trampoline to the
6709 caller. */
6710 keep_going (ecs);
6711 return;
6712 }
6713
6714 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6715 {
6716 /* We're doing a "next".
6717
6718 Normal (forward) execution: set a breakpoint at the
6719 callee's return address (the address at which the caller
6720 will resume).
6721
6722 Reverse (backward) execution. set the step-resume
6723 breakpoint at the start of the function that we just
6724 stepped into (backwards), and continue to there. When we
6725 get there, we'll need to single-step back to the caller. */
6726
6727 if (execution_direction == EXEC_REVERSE)
6728 {
6729 /* If we're already at the start of the function, we've either
6730 just stepped backward into a single instruction function,
6731 or stepped back out of a signal handler to the first instruction
6732 of the function. Just keep going, which will single-step back
6733 to the caller. */
6734 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6735 {
6736 struct symtab_and_line sr_sal;
6737
6738 /* Normal function call return (static or dynamic). */
6739 init_sal (&sr_sal);
6740 sr_sal.pc = ecs->stop_func_start;
6741 sr_sal.pspace = get_frame_program_space (frame);
6742 insert_step_resume_breakpoint_at_sal (gdbarch,
6743 sr_sal, null_frame_id);
6744 }
6745 }
6746 else
6747 insert_step_resume_breakpoint_at_caller (frame);
6748
6749 keep_going (ecs);
6750 return;
6751 }
6752
6753 /* If we are in a function call trampoline (a stub between the
6754 calling routine and the real function), locate the real
6755 function. That's what tells us (a) whether we want to step
6756 into it at all, and (b) what prologue we want to run to the
6757 end of, if we do step into it. */
6758 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6759 if (real_stop_pc == 0)
6760 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6761 if (real_stop_pc != 0)
6762 ecs->stop_func_start = real_stop_pc;
6763
6764 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6765 {
6766 struct symtab_and_line sr_sal;
6767
6768 init_sal (&sr_sal);
6769 sr_sal.pc = ecs->stop_func_start;
6770 sr_sal.pspace = get_frame_program_space (frame);
6771
6772 insert_step_resume_breakpoint_at_sal (gdbarch,
6773 sr_sal, null_frame_id);
6774 keep_going (ecs);
6775 return;
6776 }
6777
6778 /* If we have line number information for the function we are
6779 thinking of stepping into and the function isn't on the skip
6780 list, step into it.
6781
6782 If there are several symtabs at that PC (e.g. with include
6783 files), just want to know whether *any* of them have line
6784 numbers. find_pc_line handles this. */
6785 {
6786 struct symtab_and_line tmp_sal;
6787
6788 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6789 if (tmp_sal.line != 0
6790 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6791 &tmp_sal))
6792 {
6793 if (execution_direction == EXEC_REVERSE)
6794 handle_step_into_function_backward (gdbarch, ecs);
6795 else
6796 handle_step_into_function (gdbarch, ecs);
6797 return;
6798 }
6799 }
6800
6801 /* If we have no line number and the step-stop-if-no-debug is
6802 set, we stop the step so that the user has a chance to switch
6803 in assembly mode. */
6804 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6805 && step_stop_if_no_debug)
6806 {
6807 end_stepping_range (ecs);
6808 return;
6809 }
6810
6811 if (execution_direction == EXEC_REVERSE)
6812 {
6813 /* If we're already at the start of the function, we've either just
6814 stepped backward into a single instruction function without line
6815 number info, or stepped back out of a signal handler to the first
6816 instruction of the function without line number info. Just keep
6817 going, which will single-step back to the caller. */
6818 if (ecs->stop_func_start != stop_pc)
6819 {
6820 /* Set a breakpoint at callee's start address.
6821 From there we can step once and be back in the caller. */
6822 struct symtab_and_line sr_sal;
6823
6824 init_sal (&sr_sal);
6825 sr_sal.pc = ecs->stop_func_start;
6826 sr_sal.pspace = get_frame_program_space (frame);
6827 insert_step_resume_breakpoint_at_sal (gdbarch,
6828 sr_sal, null_frame_id);
6829 }
6830 }
6831 else
6832 /* Set a breakpoint at callee's return address (the address
6833 at which the caller will resume). */
6834 insert_step_resume_breakpoint_at_caller (frame);
6835
6836 keep_going (ecs);
6837 return;
6838 }
6839
6840 /* Reverse stepping through solib trampolines. */
6841
6842 if (execution_direction == EXEC_REVERSE
6843 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6844 {
6845 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6846 || (ecs->stop_func_start == 0
6847 && in_solib_dynsym_resolve_code (stop_pc)))
6848 {
6849 /* Any solib trampoline code can be handled in reverse
6850 by simply continuing to single-step. We have already
6851 executed the solib function (backwards), and a few
6852 steps will take us back through the trampoline to the
6853 caller. */
6854 keep_going (ecs);
6855 return;
6856 }
6857 else if (in_solib_dynsym_resolve_code (stop_pc))
6858 {
6859 /* Stepped backward into the solib dynsym resolver.
6860 Set a breakpoint at its start and continue, then
6861 one more step will take us out. */
6862 struct symtab_and_line sr_sal;
6863
6864 init_sal (&sr_sal);
6865 sr_sal.pc = ecs->stop_func_start;
6866 sr_sal.pspace = get_frame_program_space (frame);
6867 insert_step_resume_breakpoint_at_sal (gdbarch,
6868 sr_sal, null_frame_id);
6869 keep_going (ecs);
6870 return;
6871 }
6872 }
6873
6874 stop_pc_sal = find_pc_line (stop_pc, 0);
6875
6876 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6877 the trampoline processing logic, however, there are some trampolines
6878 that have no names, so we should do trampoline handling first. */
6879 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6880 && ecs->stop_func_name == NULL
6881 && stop_pc_sal.line == 0)
6882 {
6883 if (debug_infrun)
6884 fprintf_unfiltered (gdb_stdlog,
6885 "infrun: stepped into undebuggable function\n");
6886
6887 /* The inferior just stepped into, or returned to, an
6888 undebuggable function (where there is no debugging information
6889 and no line number corresponding to the address where the
6890 inferior stopped). Since we want to skip this kind of code,
6891 we keep going until the inferior returns from this
6892 function - unless the user has asked us not to (via
6893 set step-mode) or we no longer know how to get back
6894 to the call site. */
6895 if (step_stop_if_no_debug
6896 || !frame_id_p (frame_unwind_caller_id (frame)))
6897 {
6898 /* If we have no line number and the step-stop-if-no-debug
6899 is set, we stop the step so that the user has a chance to
6900 switch in assembly mode. */
6901 end_stepping_range (ecs);
6902 return;
6903 }
6904 else
6905 {
6906 /* Set a breakpoint at callee's return address (the address
6907 at which the caller will resume). */
6908 insert_step_resume_breakpoint_at_caller (frame);
6909 keep_going (ecs);
6910 return;
6911 }
6912 }
6913
6914 if (ecs->event_thread->control.step_range_end == 1)
6915 {
6916 /* It is stepi or nexti. We always want to stop stepping after
6917 one instruction. */
6918 if (debug_infrun)
6919 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6920 end_stepping_range (ecs);
6921 return;
6922 }
6923
6924 if (stop_pc_sal.line == 0)
6925 {
6926 /* We have no line number information. That means to stop
6927 stepping (does this always happen right after one instruction,
6928 when we do "s" in a function with no line numbers,
6929 or can this happen as a result of a return or longjmp?). */
6930 if (debug_infrun)
6931 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6932 end_stepping_range (ecs);
6933 return;
6934 }
6935
6936 /* Look for "calls" to inlined functions, part one. If the inline
6937 frame machinery detected some skipped call sites, we have entered
6938 a new inline function. */
6939
6940 if (frame_id_eq (get_frame_id (get_current_frame ()),
6941 ecs->event_thread->control.step_frame_id)
6942 && inline_skipped_frames (ecs->ptid))
6943 {
6944 struct symtab_and_line call_sal;
6945
6946 if (debug_infrun)
6947 fprintf_unfiltered (gdb_stdlog,
6948 "infrun: stepped into inlined function\n");
6949
6950 find_frame_sal (get_current_frame (), &call_sal);
6951
6952 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6953 {
6954 /* For "step", we're going to stop. But if the call site
6955 for this inlined function is on the same source line as
6956 we were previously stepping, go down into the function
6957 first. Otherwise stop at the call site. */
6958
6959 if (call_sal.line == ecs->event_thread->current_line
6960 && call_sal.symtab == ecs->event_thread->current_symtab)
6961 step_into_inline_frame (ecs->ptid);
6962
6963 end_stepping_range (ecs);
6964 return;
6965 }
6966 else
6967 {
6968 /* For "next", we should stop at the call site if it is on a
6969 different source line. Otherwise continue through the
6970 inlined function. */
6971 if (call_sal.line == ecs->event_thread->current_line
6972 && call_sal.symtab == ecs->event_thread->current_symtab)
6973 keep_going (ecs);
6974 else
6975 end_stepping_range (ecs);
6976 return;
6977 }
6978 }
6979
6980 /* Look for "calls" to inlined functions, part two. If we are still
6981 in the same real function we were stepping through, but we have
6982 to go further up to find the exact frame ID, we are stepping
6983 through a more inlined call beyond its call site. */
6984
6985 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6986 && !frame_id_eq (get_frame_id (get_current_frame ()),
6987 ecs->event_thread->control.step_frame_id)
6988 && stepped_in_from (get_current_frame (),
6989 ecs->event_thread->control.step_frame_id))
6990 {
6991 if (debug_infrun)
6992 fprintf_unfiltered (gdb_stdlog,
6993 "infrun: stepping through inlined function\n");
6994
6995 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6996 keep_going (ecs);
6997 else
6998 end_stepping_range (ecs);
6999 return;
7000 }
7001
7002 if ((stop_pc == stop_pc_sal.pc)
7003 && (ecs->event_thread->current_line != stop_pc_sal.line
7004 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
7005 {
7006 /* We are at the start of a different line. So stop. Note that
7007 we don't stop if we step into the middle of a different line.
7008 That is said to make things like for (;;) statements work
7009 better. */
7010 if (debug_infrun)
7011 fprintf_unfiltered (gdb_stdlog,
7012 "infrun: stepped to a different line\n");
7013 end_stepping_range (ecs);
7014 return;
7015 }
7016
7017 /* We aren't done stepping.
7018
7019 Optimize by setting the stepping range to the line.
7020 (We might not be in the original line, but if we entered a
7021 new line in mid-statement, we continue stepping. This makes
7022 things like for(;;) statements work better.) */
7023
7024 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7025 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7026 ecs->event_thread->control.may_range_step = 1;
7027 set_step_info (frame, stop_pc_sal);
7028
7029 if (debug_infrun)
7030 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
7031 keep_going (ecs);
7032 }
7033
7034 /* In all-stop mode, if we're currently stepping but have stopped in
7035 some other thread, we may need to switch back to the stepped
7036 thread. Returns true we set the inferior running, false if we left
7037 it stopped (and the event needs further processing). */
7038
7039 static int
7040 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7041 {
7042 if (!target_is_non_stop_p ())
7043 {
7044 struct thread_info *tp;
7045 struct thread_info *stepping_thread;
7046
7047 /* If any thread is blocked on some internal breakpoint, and we
7048 simply need to step over that breakpoint to get it going
7049 again, do that first. */
7050
7051 /* However, if we see an event for the stepping thread, then we
7052 know all other threads have been moved past their breakpoints
7053 already. Let the caller check whether the step is finished,
7054 etc., before deciding to move it past a breakpoint. */
7055 if (ecs->event_thread->control.step_range_end != 0)
7056 return 0;
7057
7058 /* Check if the current thread is blocked on an incomplete
7059 step-over, interrupted by a random signal. */
7060 if (ecs->event_thread->control.trap_expected
7061 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7062 {
7063 if (debug_infrun)
7064 {
7065 fprintf_unfiltered (gdb_stdlog,
7066 "infrun: need to finish step-over of [%s]\n",
7067 target_pid_to_str (ecs->event_thread->ptid));
7068 }
7069 keep_going (ecs);
7070 return 1;
7071 }
7072
7073 /* Check if the current thread is blocked by a single-step
7074 breakpoint of another thread. */
7075 if (ecs->hit_singlestep_breakpoint)
7076 {
7077 if (debug_infrun)
7078 {
7079 fprintf_unfiltered (gdb_stdlog,
7080 "infrun: need to step [%s] over single-step "
7081 "breakpoint\n",
7082 target_pid_to_str (ecs->ptid));
7083 }
7084 keep_going (ecs);
7085 return 1;
7086 }
7087
7088 /* If this thread needs yet another step-over (e.g., stepping
7089 through a delay slot), do it first before moving on to
7090 another thread. */
7091 if (thread_still_needs_step_over (ecs->event_thread))
7092 {
7093 if (debug_infrun)
7094 {
7095 fprintf_unfiltered (gdb_stdlog,
7096 "infrun: thread [%s] still needs step-over\n",
7097 target_pid_to_str (ecs->event_thread->ptid));
7098 }
7099 keep_going (ecs);
7100 return 1;
7101 }
7102
7103 /* If scheduler locking applies even if not stepping, there's no
7104 need to walk over threads. Above we've checked whether the
7105 current thread is stepping. If some other thread not the
7106 event thread is stepping, then it must be that scheduler
7107 locking is not in effect. */
7108 if (schedlock_applies (ecs->event_thread))
7109 return 0;
7110
7111 /* Otherwise, we no longer expect a trap in the current thread.
7112 Clear the trap_expected flag before switching back -- this is
7113 what keep_going does as well, if we call it. */
7114 ecs->event_thread->control.trap_expected = 0;
7115
7116 /* Likewise, clear the signal if it should not be passed. */
7117 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7118 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7119
7120 /* Do all pending step-overs before actually proceeding with
7121 step/next/etc. */
7122 if (start_step_over ())
7123 {
7124 prepare_to_wait (ecs);
7125 return 1;
7126 }
7127
7128 /* Look for the stepping/nexting thread. */
7129 stepping_thread = NULL;
7130
7131 ALL_NON_EXITED_THREADS (tp)
7132 {
7133 /* Ignore threads of processes the caller is not
7134 resuming. */
7135 if (!sched_multi
7136 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
7137 continue;
7138
7139 /* When stepping over a breakpoint, we lock all threads
7140 except the one that needs to move past the breakpoint.
7141 If a non-event thread has this set, the "incomplete
7142 step-over" check above should have caught it earlier. */
7143 if (tp->control.trap_expected)
7144 {
7145 internal_error (__FILE__, __LINE__,
7146 "[%s] has inconsistent state: "
7147 "trap_expected=%d\n",
7148 target_pid_to_str (tp->ptid),
7149 tp->control.trap_expected);
7150 }
7151
7152 /* Did we find the stepping thread? */
7153 if (tp->control.step_range_end)
7154 {
7155 /* Yep. There should only one though. */
7156 gdb_assert (stepping_thread == NULL);
7157
7158 /* The event thread is handled at the top, before we
7159 enter this loop. */
7160 gdb_assert (tp != ecs->event_thread);
7161
7162 /* If some thread other than the event thread is
7163 stepping, then scheduler locking can't be in effect,
7164 otherwise we wouldn't have resumed the current event
7165 thread in the first place. */
7166 gdb_assert (!schedlock_applies (tp));
7167
7168 stepping_thread = tp;
7169 }
7170 }
7171
7172 if (stepping_thread != NULL)
7173 {
7174 if (debug_infrun)
7175 fprintf_unfiltered (gdb_stdlog,
7176 "infrun: switching back to stepped thread\n");
7177
7178 if (keep_going_stepped_thread (stepping_thread))
7179 {
7180 prepare_to_wait (ecs);
7181 return 1;
7182 }
7183 }
7184 }
7185
7186 return 0;
7187 }
7188
7189 /* Set a previously stepped thread back to stepping. Returns true on
7190 success, false if the resume is not possible (e.g., the thread
7191 vanished). */
7192
7193 static int
7194 keep_going_stepped_thread (struct thread_info *tp)
7195 {
7196 struct frame_info *frame;
7197 struct execution_control_state ecss;
7198 struct execution_control_state *ecs = &ecss;
7199
7200 /* If the stepping thread exited, then don't try to switch back and
7201 resume it, which could fail in several different ways depending
7202 on the target. Instead, just keep going.
7203
7204 We can find a stepping dead thread in the thread list in two
7205 cases:
7206
7207 - The target supports thread exit events, and when the target
7208 tries to delete the thread from the thread list, inferior_ptid
7209 pointed at the exiting thread. In such case, calling
7210 delete_thread does not really remove the thread from the list;
7211 instead, the thread is left listed, with 'exited' state.
7212
7213 - The target's debug interface does not support thread exit
7214 events, and so we have no idea whatsoever if the previously
7215 stepping thread is still alive. For that reason, we need to
7216 synchronously query the target now. */
7217
7218 if (is_exited (tp->ptid)
7219 || !target_thread_alive (tp->ptid))
7220 {
7221 if (debug_infrun)
7222 fprintf_unfiltered (gdb_stdlog,
7223 "infrun: not resuming previously "
7224 "stepped thread, it has vanished\n");
7225
7226 delete_thread (tp->ptid);
7227 return 0;
7228 }
7229
7230 if (debug_infrun)
7231 fprintf_unfiltered (gdb_stdlog,
7232 "infrun: resuming previously stepped thread\n");
7233
7234 reset_ecs (ecs, tp);
7235 switch_to_thread (tp->ptid);
7236
7237 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7238 frame = get_current_frame ();
7239
7240 /* If the PC of the thread we were trying to single-step has
7241 changed, then that thread has trapped or been signaled, but the
7242 event has not been reported to GDB yet. Re-poll the target
7243 looking for this particular thread's event (i.e. temporarily
7244 enable schedlock) by:
7245
7246 - setting a break at the current PC
7247 - resuming that particular thread, only (by setting trap
7248 expected)
7249
7250 This prevents us continuously moving the single-step breakpoint
7251 forward, one instruction at a time, overstepping. */
7252
7253 if (stop_pc != tp->prev_pc)
7254 {
7255 ptid_t resume_ptid;
7256
7257 if (debug_infrun)
7258 fprintf_unfiltered (gdb_stdlog,
7259 "infrun: expected thread advanced also (%s -> %s)\n",
7260 paddress (target_gdbarch (), tp->prev_pc),
7261 paddress (target_gdbarch (), stop_pc));
7262
7263 /* Clear the info of the previous step-over, as it's no longer
7264 valid (if the thread was trying to step over a breakpoint, it
7265 has already succeeded). It's what keep_going would do too,
7266 if we called it. Do this before trying to insert the sss
7267 breakpoint, otherwise if we were previously trying to step
7268 over this exact address in another thread, the breakpoint is
7269 skipped. */
7270 clear_step_over_info ();
7271 tp->control.trap_expected = 0;
7272
7273 insert_single_step_breakpoint (get_frame_arch (frame),
7274 get_frame_address_space (frame),
7275 stop_pc);
7276
7277 tp->resumed = 1;
7278 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7279 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7280 }
7281 else
7282 {
7283 if (debug_infrun)
7284 fprintf_unfiltered (gdb_stdlog,
7285 "infrun: expected thread still hasn't advanced\n");
7286
7287 keep_going_pass_signal (ecs);
7288 }
7289 return 1;
7290 }
7291
7292 /* Is thread TP in the middle of (software or hardware)
7293 single-stepping? (Note the result of this function must never be
7294 passed directly as target_resume's STEP parameter.) */
7295
7296 static int
7297 currently_stepping (struct thread_info *tp)
7298 {
7299 return ((tp->control.step_range_end
7300 && tp->control.step_resume_breakpoint == NULL)
7301 || tp->control.trap_expected
7302 || tp->stepped_breakpoint
7303 || bpstat_should_step ());
7304 }
7305
7306 /* Inferior has stepped into a subroutine call with source code that
7307 we should not step over. Do step to the first line of code in
7308 it. */
7309
7310 static void
7311 handle_step_into_function (struct gdbarch *gdbarch,
7312 struct execution_control_state *ecs)
7313 {
7314 struct compunit_symtab *cust;
7315 struct symtab_and_line stop_func_sal, sr_sal;
7316
7317 fill_in_stop_func (gdbarch, ecs);
7318
7319 cust = find_pc_compunit_symtab (stop_pc);
7320 if (cust != NULL && compunit_language (cust) != language_asm)
7321 ecs->stop_func_start
7322 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7323
7324 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7325 /* Use the step_resume_break to step until the end of the prologue,
7326 even if that involves jumps (as it seems to on the vax under
7327 4.2). */
7328 /* If the prologue ends in the middle of a source line, continue to
7329 the end of that source line (if it is still within the function).
7330 Otherwise, just go to end of prologue. */
7331 if (stop_func_sal.end
7332 && stop_func_sal.pc != ecs->stop_func_start
7333 && stop_func_sal.end < ecs->stop_func_end)
7334 ecs->stop_func_start = stop_func_sal.end;
7335
7336 /* Architectures which require breakpoint adjustment might not be able
7337 to place a breakpoint at the computed address. If so, the test
7338 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7339 ecs->stop_func_start to an address at which a breakpoint may be
7340 legitimately placed.
7341
7342 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7343 made, GDB will enter an infinite loop when stepping through
7344 optimized code consisting of VLIW instructions which contain
7345 subinstructions corresponding to different source lines. On
7346 FR-V, it's not permitted to place a breakpoint on any but the
7347 first subinstruction of a VLIW instruction. When a breakpoint is
7348 set, GDB will adjust the breakpoint address to the beginning of
7349 the VLIW instruction. Thus, we need to make the corresponding
7350 adjustment here when computing the stop address. */
7351
7352 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7353 {
7354 ecs->stop_func_start
7355 = gdbarch_adjust_breakpoint_address (gdbarch,
7356 ecs->stop_func_start);
7357 }
7358
7359 if (ecs->stop_func_start == stop_pc)
7360 {
7361 /* We are already there: stop now. */
7362 end_stepping_range (ecs);
7363 return;
7364 }
7365 else
7366 {
7367 /* Put the step-breakpoint there and go until there. */
7368 init_sal (&sr_sal); /* initialize to zeroes */
7369 sr_sal.pc = ecs->stop_func_start;
7370 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7371 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7372
7373 /* Do not specify what the fp should be when we stop since on
7374 some machines the prologue is where the new fp value is
7375 established. */
7376 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7377
7378 /* And make sure stepping stops right away then. */
7379 ecs->event_thread->control.step_range_end
7380 = ecs->event_thread->control.step_range_start;
7381 }
7382 keep_going (ecs);
7383 }
7384
7385 /* Inferior has stepped backward into a subroutine call with source
7386 code that we should not step over. Do step to the beginning of the
7387 last line of code in it. */
7388
7389 static void
7390 handle_step_into_function_backward (struct gdbarch *gdbarch,
7391 struct execution_control_state *ecs)
7392 {
7393 struct compunit_symtab *cust;
7394 struct symtab_and_line stop_func_sal;
7395
7396 fill_in_stop_func (gdbarch, ecs);
7397
7398 cust = find_pc_compunit_symtab (stop_pc);
7399 if (cust != NULL && compunit_language (cust) != language_asm)
7400 ecs->stop_func_start
7401 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7402
7403 stop_func_sal = find_pc_line (stop_pc, 0);
7404
7405 /* OK, we're just going to keep stepping here. */
7406 if (stop_func_sal.pc == stop_pc)
7407 {
7408 /* We're there already. Just stop stepping now. */
7409 end_stepping_range (ecs);
7410 }
7411 else
7412 {
7413 /* Else just reset the step range and keep going.
7414 No step-resume breakpoint, they don't work for
7415 epilogues, which can have multiple entry paths. */
7416 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7417 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7418 keep_going (ecs);
7419 }
7420 return;
7421 }
7422
7423 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7424 This is used to both functions and to skip over code. */
7425
7426 static void
7427 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7428 struct symtab_and_line sr_sal,
7429 struct frame_id sr_id,
7430 enum bptype sr_type)
7431 {
7432 /* There should never be more than one step-resume or longjmp-resume
7433 breakpoint per thread, so we should never be setting a new
7434 step_resume_breakpoint when one is already active. */
7435 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7436 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7437
7438 if (debug_infrun)
7439 fprintf_unfiltered (gdb_stdlog,
7440 "infrun: inserting step-resume breakpoint at %s\n",
7441 paddress (gdbarch, sr_sal.pc));
7442
7443 inferior_thread ()->control.step_resume_breakpoint
7444 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7445 }
7446
7447 void
7448 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7449 struct symtab_and_line sr_sal,
7450 struct frame_id sr_id)
7451 {
7452 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7453 sr_sal, sr_id,
7454 bp_step_resume);
7455 }
7456
7457 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7458 This is used to skip a potential signal handler.
7459
7460 This is called with the interrupted function's frame. The signal
7461 handler, when it returns, will resume the interrupted function at
7462 RETURN_FRAME.pc. */
7463
7464 static void
7465 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7466 {
7467 struct symtab_and_line sr_sal;
7468 struct gdbarch *gdbarch;
7469
7470 gdb_assert (return_frame != NULL);
7471 init_sal (&sr_sal); /* initialize to zeros */
7472
7473 gdbarch = get_frame_arch (return_frame);
7474 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7475 sr_sal.section = find_pc_overlay (sr_sal.pc);
7476 sr_sal.pspace = get_frame_program_space (return_frame);
7477
7478 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7479 get_stack_frame_id (return_frame),
7480 bp_hp_step_resume);
7481 }
7482
7483 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7484 is used to skip a function after stepping into it (for "next" or if
7485 the called function has no debugging information).
7486
7487 The current function has almost always been reached by single
7488 stepping a call or return instruction. NEXT_FRAME belongs to the
7489 current function, and the breakpoint will be set at the caller's
7490 resume address.
7491
7492 This is a separate function rather than reusing
7493 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7494 get_prev_frame, which may stop prematurely (see the implementation
7495 of frame_unwind_caller_id for an example). */
7496
7497 static void
7498 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7499 {
7500 struct symtab_and_line sr_sal;
7501 struct gdbarch *gdbarch;
7502
7503 /* We shouldn't have gotten here if we don't know where the call site
7504 is. */
7505 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7506
7507 init_sal (&sr_sal); /* initialize to zeros */
7508
7509 gdbarch = frame_unwind_caller_arch (next_frame);
7510 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7511 frame_unwind_caller_pc (next_frame));
7512 sr_sal.section = find_pc_overlay (sr_sal.pc);
7513 sr_sal.pspace = frame_unwind_program_space (next_frame);
7514
7515 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7516 frame_unwind_caller_id (next_frame));
7517 }
7518
7519 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7520 new breakpoint at the target of a jmp_buf. The handling of
7521 longjmp-resume uses the same mechanisms used for handling
7522 "step-resume" breakpoints. */
7523
7524 static void
7525 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7526 {
7527 /* There should never be more than one longjmp-resume breakpoint per
7528 thread, so we should never be setting a new
7529 longjmp_resume_breakpoint when one is already active. */
7530 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7531
7532 if (debug_infrun)
7533 fprintf_unfiltered (gdb_stdlog,
7534 "infrun: inserting longjmp-resume breakpoint at %s\n",
7535 paddress (gdbarch, pc));
7536
7537 inferior_thread ()->control.exception_resume_breakpoint =
7538 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
7539 }
7540
7541 /* Insert an exception resume breakpoint. TP is the thread throwing
7542 the exception. The block B is the block of the unwinder debug hook
7543 function. FRAME is the frame corresponding to the call to this
7544 function. SYM is the symbol of the function argument holding the
7545 target PC of the exception. */
7546
7547 static void
7548 insert_exception_resume_breakpoint (struct thread_info *tp,
7549 const struct block *b,
7550 struct frame_info *frame,
7551 struct symbol *sym)
7552 {
7553 TRY
7554 {
7555 struct block_symbol vsym;
7556 struct value *value;
7557 CORE_ADDR handler;
7558 struct breakpoint *bp;
7559
7560 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7561 value = read_var_value (vsym.symbol, vsym.block, frame);
7562 /* If the value was optimized out, revert to the old behavior. */
7563 if (! value_optimized_out (value))
7564 {
7565 handler = value_as_address (value);
7566
7567 if (debug_infrun)
7568 fprintf_unfiltered (gdb_stdlog,
7569 "infrun: exception resume at %lx\n",
7570 (unsigned long) handler);
7571
7572 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7573 handler, bp_exception_resume);
7574
7575 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7576 frame = NULL;
7577
7578 bp->thread = tp->global_num;
7579 inferior_thread ()->control.exception_resume_breakpoint = bp;
7580 }
7581 }
7582 CATCH (e, RETURN_MASK_ERROR)
7583 {
7584 /* We want to ignore errors here. */
7585 }
7586 END_CATCH
7587 }
7588
7589 /* A helper for check_exception_resume that sets an
7590 exception-breakpoint based on a SystemTap probe. */
7591
7592 static void
7593 insert_exception_resume_from_probe (struct thread_info *tp,
7594 const struct bound_probe *probe,
7595 struct frame_info *frame)
7596 {
7597 struct value *arg_value;
7598 CORE_ADDR handler;
7599 struct breakpoint *bp;
7600
7601 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7602 if (!arg_value)
7603 return;
7604
7605 handler = value_as_address (arg_value);
7606
7607 if (debug_infrun)
7608 fprintf_unfiltered (gdb_stdlog,
7609 "infrun: exception resume at %s\n",
7610 paddress (get_objfile_arch (probe->objfile),
7611 handler));
7612
7613 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7614 handler, bp_exception_resume);
7615 bp->thread = tp->global_num;
7616 inferior_thread ()->control.exception_resume_breakpoint = bp;
7617 }
7618
7619 /* This is called when an exception has been intercepted. Check to
7620 see whether the exception's destination is of interest, and if so,
7621 set an exception resume breakpoint there. */
7622
7623 static void
7624 check_exception_resume (struct execution_control_state *ecs,
7625 struct frame_info *frame)
7626 {
7627 struct bound_probe probe;
7628 struct symbol *func;
7629
7630 /* First see if this exception unwinding breakpoint was set via a
7631 SystemTap probe point. If so, the probe has two arguments: the
7632 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7633 set a breakpoint there. */
7634 probe = find_probe_by_pc (get_frame_pc (frame));
7635 if (probe.probe)
7636 {
7637 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7638 return;
7639 }
7640
7641 func = get_frame_function (frame);
7642 if (!func)
7643 return;
7644
7645 TRY
7646 {
7647 const struct block *b;
7648 struct block_iterator iter;
7649 struct symbol *sym;
7650 int argno = 0;
7651
7652 /* The exception breakpoint is a thread-specific breakpoint on
7653 the unwinder's debug hook, declared as:
7654
7655 void _Unwind_DebugHook (void *cfa, void *handler);
7656
7657 The CFA argument indicates the frame to which control is
7658 about to be transferred. HANDLER is the destination PC.
7659
7660 We ignore the CFA and set a temporary breakpoint at HANDLER.
7661 This is not extremely efficient but it avoids issues in gdb
7662 with computing the DWARF CFA, and it also works even in weird
7663 cases such as throwing an exception from inside a signal
7664 handler. */
7665
7666 b = SYMBOL_BLOCK_VALUE (func);
7667 ALL_BLOCK_SYMBOLS (b, iter, sym)
7668 {
7669 if (!SYMBOL_IS_ARGUMENT (sym))
7670 continue;
7671
7672 if (argno == 0)
7673 ++argno;
7674 else
7675 {
7676 insert_exception_resume_breakpoint (ecs->event_thread,
7677 b, frame, sym);
7678 break;
7679 }
7680 }
7681 }
7682 CATCH (e, RETURN_MASK_ERROR)
7683 {
7684 }
7685 END_CATCH
7686 }
7687
7688 static void
7689 stop_waiting (struct execution_control_state *ecs)
7690 {
7691 if (debug_infrun)
7692 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7693
7694 /* Let callers know we don't want to wait for the inferior anymore. */
7695 ecs->wait_some_more = 0;
7696
7697 /* If all-stop, but the target is always in non-stop mode, stop all
7698 threads now that we're presenting the stop to the user. */
7699 if (!non_stop && target_is_non_stop_p ())
7700 stop_all_threads ();
7701 }
7702
7703 /* Like keep_going, but passes the signal to the inferior, even if the
7704 signal is set to nopass. */
7705
7706 static void
7707 keep_going_pass_signal (struct execution_control_state *ecs)
7708 {
7709 /* Make sure normal_stop is called if we get a QUIT handled before
7710 reaching resume. */
7711 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7712
7713 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
7714 gdb_assert (!ecs->event_thread->resumed);
7715
7716 /* Save the pc before execution, to compare with pc after stop. */
7717 ecs->event_thread->prev_pc
7718 = regcache_read_pc (get_thread_regcache (ecs->ptid));
7719
7720 if (ecs->event_thread->control.trap_expected)
7721 {
7722 struct thread_info *tp = ecs->event_thread;
7723
7724 if (debug_infrun)
7725 fprintf_unfiltered (gdb_stdlog,
7726 "infrun: %s has trap_expected set, "
7727 "resuming to collect trap\n",
7728 target_pid_to_str (tp->ptid));
7729
7730 /* We haven't yet gotten our trap, and either: intercepted a
7731 non-signal event (e.g., a fork); or took a signal which we
7732 are supposed to pass through to the inferior. Simply
7733 continue. */
7734 discard_cleanups (old_cleanups);
7735 resume (ecs->event_thread->suspend.stop_signal);
7736 }
7737 else if (step_over_info_valid_p ())
7738 {
7739 /* Another thread is stepping over a breakpoint in-line. If
7740 this thread needs a step-over too, queue the request. In
7741 either case, this resume must be deferred for later. */
7742 struct thread_info *tp = ecs->event_thread;
7743
7744 if (ecs->hit_singlestep_breakpoint
7745 || thread_still_needs_step_over (tp))
7746 {
7747 if (debug_infrun)
7748 fprintf_unfiltered (gdb_stdlog,
7749 "infrun: step-over already in progress: "
7750 "step-over for %s deferred\n",
7751 target_pid_to_str (tp->ptid));
7752 thread_step_over_chain_enqueue (tp);
7753 }
7754 else
7755 {
7756 if (debug_infrun)
7757 fprintf_unfiltered (gdb_stdlog,
7758 "infrun: step-over in progress: "
7759 "resume of %s deferred\n",
7760 target_pid_to_str (tp->ptid));
7761 }
7762
7763 discard_cleanups (old_cleanups);
7764 }
7765 else
7766 {
7767 struct regcache *regcache = get_current_regcache ();
7768 int remove_bp;
7769 int remove_wps;
7770 step_over_what step_what;
7771
7772 /* Either the trap was not expected, but we are continuing
7773 anyway (if we got a signal, the user asked it be passed to
7774 the child)
7775 -- or --
7776 We got our expected trap, but decided we should resume from
7777 it.
7778
7779 We're going to run this baby now!
7780
7781 Note that insert_breakpoints won't try to re-insert
7782 already inserted breakpoints. Therefore, we don't
7783 care if breakpoints were already inserted, or not. */
7784
7785 /* If we need to step over a breakpoint, and we're not using
7786 displaced stepping to do so, insert all breakpoints
7787 (watchpoints, etc.) but the one we're stepping over, step one
7788 instruction, and then re-insert the breakpoint when that step
7789 is finished. */
7790
7791 step_what = thread_still_needs_step_over (ecs->event_thread);
7792
7793 remove_bp = (ecs->hit_singlestep_breakpoint
7794 || (step_what & STEP_OVER_BREAKPOINT));
7795 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7796
7797 /* We can't use displaced stepping if we need to step past a
7798 watchpoint. The instruction copied to the scratch pad would
7799 still trigger the watchpoint. */
7800 if (remove_bp
7801 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7802 {
7803 set_step_over_info (get_regcache_aspace (regcache),
7804 regcache_read_pc (regcache), remove_wps,
7805 ecs->event_thread->global_num);
7806 }
7807 else if (remove_wps)
7808 set_step_over_info (NULL, 0, remove_wps, -1);
7809
7810 /* If we now need to do an in-line step-over, we need to stop
7811 all other threads. Note this must be done before
7812 insert_breakpoints below, because that removes the breakpoint
7813 we're about to step over, otherwise other threads could miss
7814 it. */
7815 if (step_over_info_valid_p () && target_is_non_stop_p ())
7816 stop_all_threads ();
7817
7818 /* Stop stepping if inserting breakpoints fails. */
7819 TRY
7820 {
7821 insert_breakpoints ();
7822 }
7823 CATCH (e, RETURN_MASK_ERROR)
7824 {
7825 exception_print (gdb_stderr, e);
7826 stop_waiting (ecs);
7827 discard_cleanups (old_cleanups);
7828 return;
7829 }
7830 END_CATCH
7831
7832 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7833
7834 discard_cleanups (old_cleanups);
7835 resume (ecs->event_thread->suspend.stop_signal);
7836 }
7837
7838 prepare_to_wait (ecs);
7839 }
7840
7841 /* Called when we should continue running the inferior, because the
7842 current event doesn't cause a user visible stop. This does the
7843 resuming part; waiting for the next event is done elsewhere. */
7844
7845 static void
7846 keep_going (struct execution_control_state *ecs)
7847 {
7848 if (ecs->event_thread->control.trap_expected
7849 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7850 ecs->event_thread->control.trap_expected = 0;
7851
7852 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7853 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7854 keep_going_pass_signal (ecs);
7855 }
7856
7857 /* This function normally comes after a resume, before
7858 handle_inferior_event exits. It takes care of any last bits of
7859 housekeeping, and sets the all-important wait_some_more flag. */
7860
7861 static void
7862 prepare_to_wait (struct execution_control_state *ecs)
7863 {
7864 if (debug_infrun)
7865 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7866
7867 ecs->wait_some_more = 1;
7868
7869 if (!target_is_async_p ())
7870 mark_infrun_async_event_handler ();
7871 }
7872
7873 /* We are done with the step range of a step/next/si/ni command.
7874 Called once for each n of a "step n" operation. */
7875
7876 static void
7877 end_stepping_range (struct execution_control_state *ecs)
7878 {
7879 ecs->event_thread->control.stop_step = 1;
7880 stop_waiting (ecs);
7881 }
7882
7883 /* Several print_*_reason functions to print why the inferior has stopped.
7884 We always print something when the inferior exits, or receives a signal.
7885 The rest of the cases are dealt with later on in normal_stop and
7886 print_it_typical. Ideally there should be a call to one of these
7887 print_*_reason functions functions from handle_inferior_event each time
7888 stop_waiting is called.
7889
7890 Note that we don't call these directly, instead we delegate that to
7891 the interpreters, through observers. Interpreters then call these
7892 with whatever uiout is right. */
7893
7894 void
7895 print_end_stepping_range_reason (struct ui_out *uiout)
7896 {
7897 /* For CLI-like interpreters, print nothing. */
7898
7899 if (uiout->is_mi_like_p ())
7900 {
7901 uiout->field_string ("reason",
7902 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7903 }
7904 }
7905
7906 void
7907 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7908 {
7909 annotate_signalled ();
7910 if (uiout->is_mi_like_p ())
7911 uiout->field_string
7912 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7913 uiout->text ("\nProgram terminated with signal ");
7914 annotate_signal_name ();
7915 uiout->field_string ("signal-name",
7916 gdb_signal_to_name (siggnal));
7917 annotate_signal_name_end ();
7918 uiout->text (", ");
7919 annotate_signal_string ();
7920 uiout->field_string ("signal-meaning",
7921 gdb_signal_to_string (siggnal));
7922 annotate_signal_string_end ();
7923 uiout->text (".\n");
7924 uiout->text ("The program no longer exists.\n");
7925 }
7926
7927 void
7928 print_exited_reason (struct ui_out *uiout, int exitstatus)
7929 {
7930 struct inferior *inf = current_inferior ();
7931 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7932
7933 annotate_exited (exitstatus);
7934 if (exitstatus)
7935 {
7936 if (uiout->is_mi_like_p ())
7937 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7938 uiout->text ("[Inferior ");
7939 uiout->text (plongest (inf->num));
7940 uiout->text (" (");
7941 uiout->text (pidstr);
7942 uiout->text (") exited with code ");
7943 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7944 uiout->text ("]\n");
7945 }
7946 else
7947 {
7948 if (uiout->is_mi_like_p ())
7949 uiout->field_string
7950 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7951 uiout->text ("[Inferior ");
7952 uiout->text (plongest (inf->num));
7953 uiout->text (" (");
7954 uiout->text (pidstr);
7955 uiout->text (") exited normally]\n");
7956 }
7957 }
7958
7959 /* Some targets/architectures can do extra processing/display of
7960 segmentation faults. E.g., Intel MPX boundary faults.
7961 Call the architecture dependent function to handle the fault. */
7962
7963 static void
7964 handle_segmentation_fault (struct ui_out *uiout)
7965 {
7966 struct regcache *regcache = get_current_regcache ();
7967 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7968
7969 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7970 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7971 }
7972
7973 void
7974 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7975 {
7976 struct thread_info *thr = inferior_thread ();
7977
7978 annotate_signal ();
7979
7980 if (uiout->is_mi_like_p ())
7981 ;
7982 else if (show_thread_that_caused_stop ())
7983 {
7984 const char *name;
7985
7986 uiout->text ("\nThread ");
7987 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
7988
7989 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7990 if (name != NULL)
7991 {
7992 uiout->text (" \"");
7993 uiout->field_fmt ("name", "%s", name);
7994 uiout->text ("\"");
7995 }
7996 }
7997 else
7998 uiout->text ("\nProgram");
7999
8000 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8001 uiout->text (" stopped");
8002 else
8003 {
8004 uiout->text (" received signal ");
8005 annotate_signal_name ();
8006 if (uiout->is_mi_like_p ())
8007 uiout->field_string
8008 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8009 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8010 annotate_signal_name_end ();
8011 uiout->text (", ");
8012 annotate_signal_string ();
8013 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
8014
8015 if (siggnal == GDB_SIGNAL_SEGV)
8016 handle_segmentation_fault (uiout);
8017
8018 annotate_signal_string_end ();
8019 }
8020 uiout->text (".\n");
8021 }
8022
8023 void
8024 print_no_history_reason (struct ui_out *uiout)
8025 {
8026 uiout->text ("\nNo more reverse-execution history.\n");
8027 }
8028
8029 /* Print current location without a level number, if we have changed
8030 functions or hit a breakpoint. Print source line if we have one.
8031 bpstat_print contains the logic deciding in detail what to print,
8032 based on the event(s) that just occurred. */
8033
8034 static void
8035 print_stop_location (struct target_waitstatus *ws)
8036 {
8037 int bpstat_ret;
8038 enum print_what source_flag;
8039 int do_frame_printing = 1;
8040 struct thread_info *tp = inferior_thread ();
8041
8042 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8043 switch (bpstat_ret)
8044 {
8045 case PRINT_UNKNOWN:
8046 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8047 should) carry around the function and does (or should) use
8048 that when doing a frame comparison. */
8049 if (tp->control.stop_step
8050 && frame_id_eq (tp->control.step_frame_id,
8051 get_frame_id (get_current_frame ()))
8052 && tp->control.step_start_function == find_pc_function (stop_pc))
8053 {
8054 /* Finished step, just print source line. */
8055 source_flag = SRC_LINE;
8056 }
8057 else
8058 {
8059 /* Print location and source line. */
8060 source_flag = SRC_AND_LOC;
8061 }
8062 break;
8063 case PRINT_SRC_AND_LOC:
8064 /* Print location and source line. */
8065 source_flag = SRC_AND_LOC;
8066 break;
8067 case PRINT_SRC_ONLY:
8068 source_flag = SRC_LINE;
8069 break;
8070 case PRINT_NOTHING:
8071 /* Something bogus. */
8072 source_flag = SRC_LINE;
8073 do_frame_printing = 0;
8074 break;
8075 default:
8076 internal_error (__FILE__, __LINE__, _("Unknown value."));
8077 }
8078
8079 /* The behavior of this routine with respect to the source
8080 flag is:
8081 SRC_LINE: Print only source line
8082 LOCATION: Print only location
8083 SRC_AND_LOC: Print location and source line. */
8084 if (do_frame_printing)
8085 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8086 }
8087
8088 /* See infrun.h. */
8089
8090 void
8091 print_stop_event (struct ui_out *uiout)
8092 {
8093 struct target_waitstatus last;
8094 ptid_t last_ptid;
8095 struct thread_info *tp;
8096
8097 get_last_target_status (&last_ptid, &last);
8098
8099 {
8100 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8101
8102 print_stop_location (&last);
8103
8104 /* Display the auto-display expressions. */
8105 do_displays ();
8106 }
8107
8108 tp = inferior_thread ();
8109 if (tp->thread_fsm != NULL
8110 && thread_fsm_finished_p (tp->thread_fsm))
8111 {
8112 struct return_value_info *rv;
8113
8114 rv = thread_fsm_return_value (tp->thread_fsm);
8115 if (rv != NULL)
8116 print_return_value (uiout, rv);
8117 }
8118 }
8119
8120 /* See infrun.h. */
8121
8122 void
8123 maybe_remove_breakpoints (void)
8124 {
8125 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8126 {
8127 if (remove_breakpoints ())
8128 {
8129 target_terminal_ours_for_output ();
8130 printf_filtered (_("Cannot remove breakpoints because "
8131 "program is no longer writable.\nFurther "
8132 "execution is probably impossible.\n"));
8133 }
8134 }
8135 }
8136
8137 /* The execution context that just caused a normal stop. */
8138
8139 struct stop_context
8140 {
8141 /* The stop ID. */
8142 ULONGEST stop_id;
8143
8144 /* The event PTID. */
8145
8146 ptid_t ptid;
8147
8148 /* If stopp for a thread event, this is the thread that caused the
8149 stop. */
8150 struct thread_info *thread;
8151
8152 /* The inferior that caused the stop. */
8153 int inf_num;
8154 };
8155
8156 /* Returns a new stop context. If stopped for a thread event, this
8157 takes a strong reference to the thread. */
8158
8159 static struct stop_context *
8160 save_stop_context (void)
8161 {
8162 struct stop_context *sc = XNEW (struct stop_context);
8163
8164 sc->stop_id = get_stop_id ();
8165 sc->ptid = inferior_ptid;
8166 sc->inf_num = current_inferior ()->num;
8167
8168 if (!ptid_equal (inferior_ptid, null_ptid))
8169 {
8170 /* Take a strong reference so that the thread can't be deleted
8171 yet. */
8172 sc->thread = inferior_thread ();
8173 sc->thread->incref ();
8174 }
8175 else
8176 sc->thread = NULL;
8177
8178 return sc;
8179 }
8180
8181 /* Release a stop context previously created with save_stop_context.
8182 Releases the strong reference to the thread as well. */
8183
8184 static void
8185 release_stop_context_cleanup (void *arg)
8186 {
8187 struct stop_context *sc = (struct stop_context *) arg;
8188
8189 if (sc->thread != NULL)
8190 sc->thread->decref ();
8191 xfree (sc);
8192 }
8193
8194 /* Return true if the current context no longer matches the saved stop
8195 context. */
8196
8197 static int
8198 stop_context_changed (struct stop_context *prev)
8199 {
8200 if (!ptid_equal (prev->ptid, inferior_ptid))
8201 return 1;
8202 if (prev->inf_num != current_inferior ()->num)
8203 return 1;
8204 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8205 return 1;
8206 if (get_stop_id () != prev->stop_id)
8207 return 1;
8208 return 0;
8209 }
8210
8211 /* See infrun.h. */
8212
8213 int
8214 normal_stop (void)
8215 {
8216 struct target_waitstatus last;
8217 ptid_t last_ptid;
8218 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
8219 ptid_t pid_ptid;
8220
8221 get_last_target_status (&last_ptid, &last);
8222
8223 new_stop_id ();
8224
8225 /* If an exception is thrown from this point on, make sure to
8226 propagate GDB's knowledge of the executing state to the
8227 frontend/user running state. A QUIT is an easy exception to see
8228 here, so do this before any filtered output. */
8229 if (!non_stop)
8230 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
8231 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8232 || last.kind == TARGET_WAITKIND_EXITED)
8233 {
8234 /* On some targets, we may still have live threads in the
8235 inferior when we get a process exit event. E.g., for
8236 "checkpoint", when the current checkpoint/fork exits,
8237 linux-fork.c automatically switches to another fork from
8238 within target_mourn_inferior. */
8239 if (!ptid_equal (inferior_ptid, null_ptid))
8240 {
8241 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8242 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8243 }
8244 }
8245 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8246 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
8247
8248 /* As we're presenting a stop, and potentially removing breakpoints,
8249 update the thread list so we can tell whether there are threads
8250 running on the target. With target remote, for example, we can
8251 only learn about new threads when we explicitly update the thread
8252 list. Do this before notifying the interpreters about signal
8253 stops, end of stepping ranges, etc., so that the "new thread"
8254 output is emitted before e.g., "Program received signal FOO",
8255 instead of after. */
8256 update_thread_list ();
8257
8258 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8259 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8260
8261 /* As with the notification of thread events, we want to delay
8262 notifying the user that we've switched thread context until
8263 the inferior actually stops.
8264
8265 There's no point in saying anything if the inferior has exited.
8266 Note that SIGNALLED here means "exited with a signal", not
8267 "received a signal".
8268
8269 Also skip saying anything in non-stop mode. In that mode, as we
8270 don't want GDB to switch threads behind the user's back, to avoid
8271 races where the user is typing a command to apply to thread x,
8272 but GDB switches to thread y before the user finishes entering
8273 the command, fetch_inferior_event installs a cleanup to restore
8274 the current thread back to the thread the user had selected right
8275 after this event is handled, so we're not really switching, only
8276 informing of a stop. */
8277 if (!non_stop
8278 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
8279 && target_has_execution
8280 && last.kind != TARGET_WAITKIND_SIGNALLED
8281 && last.kind != TARGET_WAITKIND_EXITED
8282 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8283 {
8284 SWITCH_THRU_ALL_UIS ()
8285 {
8286 target_terminal_ours_for_output ();
8287 printf_filtered (_("[Switching to %s]\n"),
8288 target_pid_to_str (inferior_ptid));
8289 annotate_thread_changed ();
8290 }
8291 previous_inferior_ptid = inferior_ptid;
8292 }
8293
8294 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8295 {
8296 SWITCH_THRU_ALL_UIS ()
8297 if (current_ui->prompt_state == PROMPT_BLOCKED)
8298 {
8299 target_terminal_ours_for_output ();
8300 printf_filtered (_("No unwaited-for children left.\n"));
8301 }
8302 }
8303
8304 /* Note: this depends on the update_thread_list call above. */
8305 maybe_remove_breakpoints ();
8306
8307 /* If an auto-display called a function and that got a signal,
8308 delete that auto-display to avoid an infinite recursion. */
8309
8310 if (stopped_by_random_signal)
8311 disable_current_display ();
8312
8313 SWITCH_THRU_ALL_UIS ()
8314 {
8315 async_enable_stdin ();
8316 }
8317
8318 /* Let the user/frontend see the threads as stopped. */
8319 do_cleanups (old_chain);
8320
8321 /* Select innermost stack frame - i.e., current frame is frame 0,
8322 and current location is based on that. Handle the case where the
8323 dummy call is returning after being stopped. E.g. the dummy call
8324 previously hit a breakpoint. (If the dummy call returns
8325 normally, we won't reach here.) Do this before the stop hook is
8326 run, so that it doesn't get to see the temporary dummy frame,
8327 which is not where we'll present the stop. */
8328 if (has_stack_frames ())
8329 {
8330 if (stop_stack_dummy == STOP_STACK_DUMMY)
8331 {
8332 /* Pop the empty frame that contains the stack dummy. This
8333 also restores inferior state prior to the call (struct
8334 infcall_suspend_state). */
8335 struct frame_info *frame = get_current_frame ();
8336
8337 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8338 frame_pop (frame);
8339 /* frame_pop calls reinit_frame_cache as the last thing it
8340 does which means there's now no selected frame. */
8341 }
8342
8343 select_frame (get_current_frame ());
8344
8345 /* Set the current source location. */
8346 set_current_sal_from_frame (get_current_frame ());
8347 }
8348
8349 /* Look up the hook_stop and run it (CLI internally handles problem
8350 of stop_command's pre-hook not existing). */
8351 if (stop_command != NULL)
8352 {
8353 struct stop_context *saved_context = save_stop_context ();
8354 struct cleanup *old_chain
8355 = make_cleanup (release_stop_context_cleanup, saved_context);
8356
8357 catch_errors (hook_stop_stub, stop_command,
8358 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8359
8360 /* If the stop hook resumes the target, then there's no point in
8361 trying to notify about the previous stop; its context is
8362 gone. Likewise if the command switches thread or inferior --
8363 the observers would print a stop for the wrong
8364 thread/inferior. */
8365 if (stop_context_changed (saved_context))
8366 {
8367 do_cleanups (old_chain);
8368 return 1;
8369 }
8370 do_cleanups (old_chain);
8371 }
8372
8373 /* Notify observers about the stop. This is where the interpreters
8374 print the stop event. */
8375 if (!ptid_equal (inferior_ptid, null_ptid))
8376 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8377 stop_print_frame);
8378 else
8379 observer_notify_normal_stop (NULL, stop_print_frame);
8380
8381 annotate_stopped ();
8382
8383 if (target_has_execution)
8384 {
8385 if (last.kind != TARGET_WAITKIND_SIGNALLED
8386 && last.kind != TARGET_WAITKIND_EXITED)
8387 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8388 Delete any breakpoint that is to be deleted at the next stop. */
8389 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8390 }
8391
8392 /* Try to get rid of automatically added inferiors that are no
8393 longer needed. Keeping those around slows down things linearly.
8394 Note that this never removes the current inferior. */
8395 prune_inferiors ();
8396
8397 return 0;
8398 }
8399
8400 static int
8401 hook_stop_stub (void *cmd)
8402 {
8403 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
8404 return (0);
8405 }
8406 \f
8407 int
8408 signal_stop_state (int signo)
8409 {
8410 return signal_stop[signo];
8411 }
8412
8413 int
8414 signal_print_state (int signo)
8415 {
8416 return signal_print[signo];
8417 }
8418
8419 int
8420 signal_pass_state (int signo)
8421 {
8422 return signal_program[signo];
8423 }
8424
8425 static void
8426 signal_cache_update (int signo)
8427 {
8428 if (signo == -1)
8429 {
8430 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8431 signal_cache_update (signo);
8432
8433 return;
8434 }
8435
8436 signal_pass[signo] = (signal_stop[signo] == 0
8437 && signal_print[signo] == 0
8438 && signal_program[signo] == 1
8439 && signal_catch[signo] == 0);
8440 }
8441
8442 int
8443 signal_stop_update (int signo, int state)
8444 {
8445 int ret = signal_stop[signo];
8446
8447 signal_stop[signo] = state;
8448 signal_cache_update (signo);
8449 return ret;
8450 }
8451
8452 int
8453 signal_print_update (int signo, int state)
8454 {
8455 int ret = signal_print[signo];
8456
8457 signal_print[signo] = state;
8458 signal_cache_update (signo);
8459 return ret;
8460 }
8461
8462 int
8463 signal_pass_update (int signo, int state)
8464 {
8465 int ret = signal_program[signo];
8466
8467 signal_program[signo] = state;
8468 signal_cache_update (signo);
8469 return ret;
8470 }
8471
8472 /* Update the global 'signal_catch' from INFO and notify the
8473 target. */
8474
8475 void
8476 signal_catch_update (const unsigned int *info)
8477 {
8478 int i;
8479
8480 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8481 signal_catch[i] = info[i] > 0;
8482 signal_cache_update (-1);
8483 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8484 }
8485
8486 static void
8487 sig_print_header (void)
8488 {
8489 printf_filtered (_("Signal Stop\tPrint\tPass "
8490 "to program\tDescription\n"));
8491 }
8492
8493 static void
8494 sig_print_info (enum gdb_signal oursig)
8495 {
8496 const char *name = gdb_signal_to_name (oursig);
8497 int name_padding = 13 - strlen (name);
8498
8499 if (name_padding <= 0)
8500 name_padding = 0;
8501
8502 printf_filtered ("%s", name);
8503 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8504 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8505 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8506 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8507 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8508 }
8509
8510 /* Specify how various signals in the inferior should be handled. */
8511
8512 static void
8513 handle_command (char *args, int from_tty)
8514 {
8515 int digits, wordlen;
8516 int sigfirst, signum, siglast;
8517 enum gdb_signal oursig;
8518 int allsigs;
8519 int nsigs;
8520 unsigned char *sigs;
8521
8522 if (args == NULL)
8523 {
8524 error_no_arg (_("signal to handle"));
8525 }
8526
8527 /* Allocate and zero an array of flags for which signals to handle. */
8528
8529 nsigs = (int) GDB_SIGNAL_LAST;
8530 sigs = (unsigned char *) alloca (nsigs);
8531 memset (sigs, 0, nsigs);
8532
8533 /* Break the command line up into args. */
8534
8535 gdb_argv built_argv (args);
8536
8537 /* Walk through the args, looking for signal oursigs, signal names, and
8538 actions. Signal numbers and signal names may be interspersed with
8539 actions, with the actions being performed for all signals cumulatively
8540 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8541
8542 for (char *arg : built_argv)
8543 {
8544 wordlen = strlen (arg);
8545 for (digits = 0; isdigit (arg[digits]); digits++)
8546 {;
8547 }
8548 allsigs = 0;
8549 sigfirst = siglast = -1;
8550
8551 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8552 {
8553 /* Apply action to all signals except those used by the
8554 debugger. Silently skip those. */
8555 allsigs = 1;
8556 sigfirst = 0;
8557 siglast = nsigs - 1;
8558 }
8559 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8560 {
8561 SET_SIGS (nsigs, sigs, signal_stop);
8562 SET_SIGS (nsigs, sigs, signal_print);
8563 }
8564 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8565 {
8566 UNSET_SIGS (nsigs, sigs, signal_program);
8567 }
8568 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8569 {
8570 SET_SIGS (nsigs, sigs, signal_print);
8571 }
8572 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8573 {
8574 SET_SIGS (nsigs, sigs, signal_program);
8575 }
8576 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8577 {
8578 UNSET_SIGS (nsigs, sigs, signal_stop);
8579 }
8580 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8581 {
8582 SET_SIGS (nsigs, sigs, signal_program);
8583 }
8584 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8585 {
8586 UNSET_SIGS (nsigs, sigs, signal_print);
8587 UNSET_SIGS (nsigs, sigs, signal_stop);
8588 }
8589 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8590 {
8591 UNSET_SIGS (nsigs, sigs, signal_program);
8592 }
8593 else if (digits > 0)
8594 {
8595 /* It is numeric. The numeric signal refers to our own
8596 internal signal numbering from target.h, not to host/target
8597 signal number. This is a feature; users really should be
8598 using symbolic names anyway, and the common ones like
8599 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8600
8601 sigfirst = siglast = (int)
8602 gdb_signal_from_command (atoi (arg));
8603 if (arg[digits] == '-')
8604 {
8605 siglast = (int)
8606 gdb_signal_from_command (atoi (arg + digits + 1));
8607 }
8608 if (sigfirst > siglast)
8609 {
8610 /* Bet he didn't figure we'd think of this case... */
8611 signum = sigfirst;
8612 sigfirst = siglast;
8613 siglast = signum;
8614 }
8615 }
8616 else
8617 {
8618 oursig = gdb_signal_from_name (arg);
8619 if (oursig != GDB_SIGNAL_UNKNOWN)
8620 {
8621 sigfirst = siglast = (int) oursig;
8622 }
8623 else
8624 {
8625 /* Not a number and not a recognized flag word => complain. */
8626 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8627 }
8628 }
8629
8630 /* If any signal numbers or symbol names were found, set flags for
8631 which signals to apply actions to. */
8632
8633 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8634 {
8635 switch ((enum gdb_signal) signum)
8636 {
8637 case GDB_SIGNAL_TRAP:
8638 case GDB_SIGNAL_INT:
8639 if (!allsigs && !sigs[signum])
8640 {
8641 if (query (_("%s is used by the debugger.\n\
8642 Are you sure you want to change it? "),
8643 gdb_signal_to_name ((enum gdb_signal) signum)))
8644 {
8645 sigs[signum] = 1;
8646 }
8647 else
8648 {
8649 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8650 gdb_flush (gdb_stdout);
8651 }
8652 }
8653 break;
8654 case GDB_SIGNAL_0:
8655 case GDB_SIGNAL_DEFAULT:
8656 case GDB_SIGNAL_UNKNOWN:
8657 /* Make sure that "all" doesn't print these. */
8658 break;
8659 default:
8660 sigs[signum] = 1;
8661 break;
8662 }
8663 }
8664 }
8665
8666 for (signum = 0; signum < nsigs; signum++)
8667 if (sigs[signum])
8668 {
8669 signal_cache_update (-1);
8670 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8671 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
8672
8673 if (from_tty)
8674 {
8675 /* Show the results. */
8676 sig_print_header ();
8677 for (; signum < nsigs; signum++)
8678 if (sigs[signum])
8679 sig_print_info ((enum gdb_signal) signum);
8680 }
8681
8682 break;
8683 }
8684 }
8685
8686 /* Complete the "handle" command. */
8687
8688 static void
8689 handle_completer (struct cmd_list_element *ignore,
8690 completion_tracker &tracker,
8691 const char *text, const char *word)
8692 {
8693 static const char * const keywords[] =
8694 {
8695 "all",
8696 "stop",
8697 "ignore",
8698 "print",
8699 "pass",
8700 "nostop",
8701 "noignore",
8702 "noprint",
8703 "nopass",
8704 NULL,
8705 };
8706
8707 signal_completer (ignore, tracker, text, word);
8708 complete_on_enum (tracker, keywords, word, word);
8709 }
8710
8711 enum gdb_signal
8712 gdb_signal_from_command (int num)
8713 {
8714 if (num >= 1 && num <= 15)
8715 return (enum gdb_signal) num;
8716 error (_("Only signals 1-15 are valid as numeric signals.\n\
8717 Use \"info signals\" for a list of symbolic signals."));
8718 }
8719
8720 /* Print current contents of the tables set by the handle command.
8721 It is possible we should just be printing signals actually used
8722 by the current target (but for things to work right when switching
8723 targets, all signals should be in the signal tables). */
8724
8725 static void
8726 signals_info (char *signum_exp, int from_tty)
8727 {
8728 enum gdb_signal oursig;
8729
8730 sig_print_header ();
8731
8732 if (signum_exp)
8733 {
8734 /* First see if this is a symbol name. */
8735 oursig = gdb_signal_from_name (signum_exp);
8736 if (oursig == GDB_SIGNAL_UNKNOWN)
8737 {
8738 /* No, try numeric. */
8739 oursig =
8740 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8741 }
8742 sig_print_info (oursig);
8743 return;
8744 }
8745
8746 printf_filtered ("\n");
8747 /* These ugly casts brought to you by the native VAX compiler. */
8748 for (oursig = GDB_SIGNAL_FIRST;
8749 (int) oursig < (int) GDB_SIGNAL_LAST;
8750 oursig = (enum gdb_signal) ((int) oursig + 1))
8751 {
8752 QUIT;
8753
8754 if (oursig != GDB_SIGNAL_UNKNOWN
8755 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8756 sig_print_info (oursig);
8757 }
8758
8759 printf_filtered (_("\nUse the \"handle\" command "
8760 "to change these tables.\n"));
8761 }
8762
8763 /* The $_siginfo convenience variable is a bit special. We don't know
8764 for sure the type of the value until we actually have a chance to
8765 fetch the data. The type can change depending on gdbarch, so it is
8766 also dependent on which thread you have selected.
8767
8768 1. making $_siginfo be an internalvar that creates a new value on
8769 access.
8770
8771 2. making the value of $_siginfo be an lval_computed value. */
8772
8773 /* This function implements the lval_computed support for reading a
8774 $_siginfo value. */
8775
8776 static void
8777 siginfo_value_read (struct value *v)
8778 {
8779 LONGEST transferred;
8780
8781 /* If we can access registers, so can we access $_siginfo. Likewise
8782 vice versa. */
8783 validate_registers_access ();
8784
8785 transferred =
8786 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8787 NULL,
8788 value_contents_all_raw (v),
8789 value_offset (v),
8790 TYPE_LENGTH (value_type (v)));
8791
8792 if (transferred != TYPE_LENGTH (value_type (v)))
8793 error (_("Unable to read siginfo"));
8794 }
8795
8796 /* This function implements the lval_computed support for writing a
8797 $_siginfo value. */
8798
8799 static void
8800 siginfo_value_write (struct value *v, struct value *fromval)
8801 {
8802 LONGEST transferred;
8803
8804 /* If we can access registers, so can we access $_siginfo. Likewise
8805 vice versa. */
8806 validate_registers_access ();
8807
8808 transferred = target_write (&current_target,
8809 TARGET_OBJECT_SIGNAL_INFO,
8810 NULL,
8811 value_contents_all_raw (fromval),
8812 value_offset (v),
8813 TYPE_LENGTH (value_type (fromval)));
8814
8815 if (transferred != TYPE_LENGTH (value_type (fromval)))
8816 error (_("Unable to write siginfo"));
8817 }
8818
8819 static const struct lval_funcs siginfo_value_funcs =
8820 {
8821 siginfo_value_read,
8822 siginfo_value_write
8823 };
8824
8825 /* Return a new value with the correct type for the siginfo object of
8826 the current thread using architecture GDBARCH. Return a void value
8827 if there's no object available. */
8828
8829 static struct value *
8830 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8831 void *ignore)
8832 {
8833 if (target_has_stack
8834 && !ptid_equal (inferior_ptid, null_ptid)
8835 && gdbarch_get_siginfo_type_p (gdbarch))
8836 {
8837 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8838
8839 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8840 }
8841
8842 return allocate_value (builtin_type (gdbarch)->builtin_void);
8843 }
8844
8845 \f
8846 /* infcall_suspend_state contains state about the program itself like its
8847 registers and any signal it received when it last stopped.
8848 This state must be restored regardless of how the inferior function call
8849 ends (either successfully, or after it hits a breakpoint or signal)
8850 if the program is to properly continue where it left off. */
8851
8852 struct infcall_suspend_state
8853 {
8854 struct thread_suspend_state thread_suspend;
8855
8856 /* Other fields: */
8857 CORE_ADDR stop_pc;
8858 struct regcache *registers;
8859
8860 /* Format of SIGINFO_DATA or NULL if it is not present. */
8861 struct gdbarch *siginfo_gdbarch;
8862
8863 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8864 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8865 content would be invalid. */
8866 gdb_byte *siginfo_data;
8867 };
8868
8869 struct infcall_suspend_state *
8870 save_infcall_suspend_state (void)
8871 {
8872 struct infcall_suspend_state *inf_state;
8873 struct thread_info *tp = inferior_thread ();
8874 struct regcache *regcache = get_current_regcache ();
8875 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8876 gdb_byte *siginfo_data = NULL;
8877
8878 if (gdbarch_get_siginfo_type_p (gdbarch))
8879 {
8880 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8881 size_t len = TYPE_LENGTH (type);
8882 struct cleanup *back_to;
8883
8884 siginfo_data = (gdb_byte *) xmalloc (len);
8885 back_to = make_cleanup (xfree, siginfo_data);
8886
8887 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8888 siginfo_data, 0, len) == len)
8889 discard_cleanups (back_to);
8890 else
8891 {
8892 /* Errors ignored. */
8893 do_cleanups (back_to);
8894 siginfo_data = NULL;
8895 }
8896 }
8897
8898 inf_state = XCNEW (struct infcall_suspend_state);
8899
8900 if (siginfo_data)
8901 {
8902 inf_state->siginfo_gdbarch = gdbarch;
8903 inf_state->siginfo_data = siginfo_data;
8904 }
8905
8906 inf_state->thread_suspend = tp->suspend;
8907
8908 /* run_inferior_call will not use the signal due to its `proceed' call with
8909 GDB_SIGNAL_0 anyway. */
8910 tp->suspend.stop_signal = GDB_SIGNAL_0;
8911
8912 inf_state->stop_pc = stop_pc;
8913
8914 inf_state->registers = regcache_dup (regcache);
8915
8916 return inf_state;
8917 }
8918
8919 /* Restore inferior session state to INF_STATE. */
8920
8921 void
8922 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8923 {
8924 struct thread_info *tp = inferior_thread ();
8925 struct regcache *regcache = get_current_regcache ();
8926 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8927
8928 tp->suspend = inf_state->thread_suspend;
8929
8930 stop_pc = inf_state->stop_pc;
8931
8932 if (inf_state->siginfo_gdbarch == gdbarch)
8933 {
8934 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8935
8936 /* Errors ignored. */
8937 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8938 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
8939 }
8940
8941 /* The inferior can be gone if the user types "print exit(0)"
8942 (and perhaps other times). */
8943 if (target_has_execution)
8944 /* NB: The register write goes through to the target. */
8945 regcache_cpy (regcache, inf_state->registers);
8946
8947 discard_infcall_suspend_state (inf_state);
8948 }
8949
8950 static void
8951 do_restore_infcall_suspend_state_cleanup (void *state)
8952 {
8953 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
8954 }
8955
8956 struct cleanup *
8957 make_cleanup_restore_infcall_suspend_state
8958 (struct infcall_suspend_state *inf_state)
8959 {
8960 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
8961 }
8962
8963 void
8964 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8965 {
8966 regcache_xfree (inf_state->registers);
8967 xfree (inf_state->siginfo_data);
8968 xfree (inf_state);
8969 }
8970
8971 struct regcache *
8972 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8973 {
8974 return inf_state->registers;
8975 }
8976
8977 /* infcall_control_state contains state regarding gdb's control of the
8978 inferior itself like stepping control. It also contains session state like
8979 the user's currently selected frame. */
8980
8981 struct infcall_control_state
8982 {
8983 struct thread_control_state thread_control;
8984 struct inferior_control_state inferior_control;
8985
8986 /* Other fields: */
8987 enum stop_stack_kind stop_stack_dummy;
8988 int stopped_by_random_signal;
8989
8990 /* ID if the selected frame when the inferior function call was made. */
8991 struct frame_id selected_frame_id;
8992 };
8993
8994 /* Save all of the information associated with the inferior<==>gdb
8995 connection. */
8996
8997 struct infcall_control_state *
8998 save_infcall_control_state (void)
8999 {
9000 struct infcall_control_state *inf_status =
9001 XNEW (struct infcall_control_state);
9002 struct thread_info *tp = inferior_thread ();
9003 struct inferior *inf = current_inferior ();
9004
9005 inf_status->thread_control = tp->control;
9006 inf_status->inferior_control = inf->control;
9007
9008 tp->control.step_resume_breakpoint = NULL;
9009 tp->control.exception_resume_breakpoint = NULL;
9010
9011 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9012 chain. If caller's caller is walking the chain, they'll be happier if we
9013 hand them back the original chain when restore_infcall_control_state is
9014 called. */
9015 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9016
9017 /* Other fields: */
9018 inf_status->stop_stack_dummy = stop_stack_dummy;
9019 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9020
9021 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
9022
9023 return inf_status;
9024 }
9025
9026 static int
9027 restore_selected_frame (void *args)
9028 {
9029 struct frame_id *fid = (struct frame_id *) args;
9030 struct frame_info *frame;
9031
9032 frame = frame_find_by_id (*fid);
9033
9034 /* If inf_status->selected_frame_id is NULL, there was no previously
9035 selected frame. */
9036 if (frame == NULL)
9037 {
9038 warning (_("Unable to restore previously selected frame."));
9039 return 0;
9040 }
9041
9042 select_frame (frame);
9043
9044 return (1);
9045 }
9046
9047 /* Restore inferior session state to INF_STATUS. */
9048
9049 void
9050 restore_infcall_control_state (struct infcall_control_state *inf_status)
9051 {
9052 struct thread_info *tp = inferior_thread ();
9053 struct inferior *inf = current_inferior ();
9054
9055 if (tp->control.step_resume_breakpoint)
9056 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9057
9058 if (tp->control.exception_resume_breakpoint)
9059 tp->control.exception_resume_breakpoint->disposition
9060 = disp_del_at_next_stop;
9061
9062 /* Handle the bpstat_copy of the chain. */
9063 bpstat_clear (&tp->control.stop_bpstat);
9064
9065 tp->control = inf_status->thread_control;
9066 inf->control = inf_status->inferior_control;
9067
9068 /* Other fields: */
9069 stop_stack_dummy = inf_status->stop_stack_dummy;
9070 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9071
9072 if (target_has_stack)
9073 {
9074 /* The point of catch_errors is that if the stack is clobbered,
9075 walking the stack might encounter a garbage pointer and
9076 error() trying to dereference it. */
9077 if (catch_errors
9078 (restore_selected_frame, &inf_status->selected_frame_id,
9079 "Unable to restore previously selected frame:\n",
9080 RETURN_MASK_ERROR) == 0)
9081 /* Error in restoring the selected frame. Select the innermost
9082 frame. */
9083 select_frame (get_current_frame ());
9084 }
9085
9086 xfree (inf_status);
9087 }
9088
9089 static void
9090 do_restore_infcall_control_state_cleanup (void *sts)
9091 {
9092 restore_infcall_control_state ((struct infcall_control_state *) sts);
9093 }
9094
9095 struct cleanup *
9096 make_cleanup_restore_infcall_control_state
9097 (struct infcall_control_state *inf_status)
9098 {
9099 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
9100 }
9101
9102 void
9103 discard_infcall_control_state (struct infcall_control_state *inf_status)
9104 {
9105 if (inf_status->thread_control.step_resume_breakpoint)
9106 inf_status->thread_control.step_resume_breakpoint->disposition
9107 = disp_del_at_next_stop;
9108
9109 if (inf_status->thread_control.exception_resume_breakpoint)
9110 inf_status->thread_control.exception_resume_breakpoint->disposition
9111 = disp_del_at_next_stop;
9112
9113 /* See save_infcall_control_state for info on stop_bpstat. */
9114 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9115
9116 xfree (inf_status);
9117 }
9118 \f
9119 /* restore_inferior_ptid() will be used by the cleanup machinery
9120 to restore the inferior_ptid value saved in a call to
9121 save_inferior_ptid(). */
9122
9123 static void
9124 restore_inferior_ptid (void *arg)
9125 {
9126 ptid_t *saved_ptid_ptr = (ptid_t *) arg;
9127
9128 inferior_ptid = *saved_ptid_ptr;
9129 xfree (arg);
9130 }
9131
9132 /* Save the value of inferior_ptid so that it may be restored by a
9133 later call to do_cleanups(). Returns the struct cleanup pointer
9134 needed for later doing the cleanup. */
9135
9136 struct cleanup *
9137 save_inferior_ptid (void)
9138 {
9139 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
9140
9141 *saved_ptid_ptr = inferior_ptid;
9142 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
9143 }
9144
9145 /* See infrun.h. */
9146
9147 void
9148 clear_exit_convenience_vars (void)
9149 {
9150 clear_internalvar (lookup_internalvar ("_exitsignal"));
9151 clear_internalvar (lookup_internalvar ("_exitcode"));
9152 }
9153 \f
9154
9155 /* User interface for reverse debugging:
9156 Set exec-direction / show exec-direction commands
9157 (returns error unless target implements to_set_exec_direction method). */
9158
9159 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9160 static const char exec_forward[] = "forward";
9161 static const char exec_reverse[] = "reverse";
9162 static const char *exec_direction = exec_forward;
9163 static const char *const exec_direction_names[] = {
9164 exec_forward,
9165 exec_reverse,
9166 NULL
9167 };
9168
9169 static void
9170 set_exec_direction_func (char *args, int from_tty,
9171 struct cmd_list_element *cmd)
9172 {
9173 if (target_can_execute_reverse)
9174 {
9175 if (!strcmp (exec_direction, exec_forward))
9176 execution_direction = EXEC_FORWARD;
9177 else if (!strcmp (exec_direction, exec_reverse))
9178 execution_direction = EXEC_REVERSE;
9179 }
9180 else
9181 {
9182 exec_direction = exec_forward;
9183 error (_("Target does not support this operation."));
9184 }
9185 }
9186
9187 static void
9188 show_exec_direction_func (struct ui_file *out, int from_tty,
9189 struct cmd_list_element *cmd, const char *value)
9190 {
9191 switch (execution_direction) {
9192 case EXEC_FORWARD:
9193 fprintf_filtered (out, _("Forward.\n"));
9194 break;
9195 case EXEC_REVERSE:
9196 fprintf_filtered (out, _("Reverse.\n"));
9197 break;
9198 default:
9199 internal_error (__FILE__, __LINE__,
9200 _("bogus execution_direction value: %d"),
9201 (int) execution_direction);
9202 }
9203 }
9204
9205 static void
9206 show_schedule_multiple (struct ui_file *file, int from_tty,
9207 struct cmd_list_element *c, const char *value)
9208 {
9209 fprintf_filtered (file, _("Resuming the execution of threads "
9210 "of all processes is %s.\n"), value);
9211 }
9212
9213 /* Implementation of `siginfo' variable. */
9214
9215 static const struct internalvar_funcs siginfo_funcs =
9216 {
9217 siginfo_make_value,
9218 NULL,
9219 NULL
9220 };
9221
9222 /* Callback for infrun's target events source. This is marked when a
9223 thread has a pending status to process. */
9224
9225 static void
9226 infrun_async_inferior_event_handler (gdb_client_data data)
9227 {
9228 inferior_event_handler (INF_REG_EVENT, NULL);
9229 }
9230
9231 void
9232 _initialize_infrun (void)
9233 {
9234 int i;
9235 int numsigs;
9236 struct cmd_list_element *c;
9237
9238 /* Register extra event sources in the event loop. */
9239 infrun_async_inferior_event_token
9240 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9241
9242 add_info ("signals", signals_info, _("\
9243 What debugger does when program gets various signals.\n\
9244 Specify a signal as argument to print info on that signal only."));
9245 add_info_alias ("handle", "signals", 0);
9246
9247 c = add_com ("handle", class_run, handle_command, _("\
9248 Specify how to handle signals.\n\
9249 Usage: handle SIGNAL [ACTIONS]\n\
9250 Args are signals and actions to apply to those signals.\n\
9251 If no actions are specified, the current settings for the specified signals\n\
9252 will be displayed instead.\n\
9253 \n\
9254 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9255 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9256 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9257 The special arg \"all\" is recognized to mean all signals except those\n\
9258 used by the debugger, typically SIGTRAP and SIGINT.\n\
9259 \n\
9260 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9261 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9262 Stop means reenter debugger if this signal happens (implies print).\n\
9263 Print means print a message if this signal happens.\n\
9264 Pass means let program see this signal; otherwise program doesn't know.\n\
9265 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9266 Pass and Stop may be combined.\n\
9267 \n\
9268 Multiple signals may be specified. Signal numbers and signal names\n\
9269 may be interspersed with actions, with the actions being performed for\n\
9270 all signals cumulatively specified."));
9271 set_cmd_completer (c, handle_completer);
9272
9273 if (!dbx_commands)
9274 stop_command = add_cmd ("stop", class_obscure,
9275 not_just_help_class_command, _("\
9276 There is no `stop' command, but you can set a hook on `stop'.\n\
9277 This allows you to set a list of commands to be run each time execution\n\
9278 of the program stops."), &cmdlist);
9279
9280 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9281 Set inferior debugging."), _("\
9282 Show inferior debugging."), _("\
9283 When non-zero, inferior specific debugging is enabled."),
9284 NULL,
9285 show_debug_infrun,
9286 &setdebuglist, &showdebuglist);
9287
9288 add_setshow_boolean_cmd ("displaced", class_maintenance,
9289 &debug_displaced, _("\
9290 Set displaced stepping debugging."), _("\
9291 Show displaced stepping debugging."), _("\
9292 When non-zero, displaced stepping specific debugging is enabled."),
9293 NULL,
9294 show_debug_displaced,
9295 &setdebuglist, &showdebuglist);
9296
9297 add_setshow_boolean_cmd ("non-stop", no_class,
9298 &non_stop_1, _("\
9299 Set whether gdb controls the inferior in non-stop mode."), _("\
9300 Show whether gdb controls the inferior in non-stop mode."), _("\
9301 When debugging a multi-threaded program and this setting is\n\
9302 off (the default, also called all-stop mode), when one thread stops\n\
9303 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9304 all other threads in the program while you interact with the thread of\n\
9305 interest. When you continue or step a thread, you can allow the other\n\
9306 threads to run, or have them remain stopped, but while you inspect any\n\
9307 thread's state, all threads stop.\n\
9308 \n\
9309 In non-stop mode, when one thread stops, other threads can continue\n\
9310 to run freely. You'll be able to step each thread independently,\n\
9311 leave it stopped or free to run as needed."),
9312 set_non_stop,
9313 show_non_stop,
9314 &setlist,
9315 &showlist);
9316
9317 numsigs = (int) GDB_SIGNAL_LAST;
9318 signal_stop = XNEWVEC (unsigned char, numsigs);
9319 signal_print = XNEWVEC (unsigned char, numsigs);
9320 signal_program = XNEWVEC (unsigned char, numsigs);
9321 signal_catch = XNEWVEC (unsigned char, numsigs);
9322 signal_pass = XNEWVEC (unsigned char, numsigs);
9323 for (i = 0; i < numsigs; i++)
9324 {
9325 signal_stop[i] = 1;
9326 signal_print[i] = 1;
9327 signal_program[i] = 1;
9328 signal_catch[i] = 0;
9329 }
9330
9331 /* Signals caused by debugger's own actions should not be given to
9332 the program afterwards.
9333
9334 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9335 explicitly specifies that it should be delivered to the target
9336 program. Typically, that would occur when a user is debugging a
9337 target monitor on a simulator: the target monitor sets a
9338 breakpoint; the simulator encounters this breakpoint and halts
9339 the simulation handing control to GDB; GDB, noting that the stop
9340 address doesn't map to any known breakpoint, returns control back
9341 to the simulator; the simulator then delivers the hardware
9342 equivalent of a GDB_SIGNAL_TRAP to the program being
9343 debugged. */
9344 signal_program[GDB_SIGNAL_TRAP] = 0;
9345 signal_program[GDB_SIGNAL_INT] = 0;
9346
9347 /* Signals that are not errors should not normally enter the debugger. */
9348 signal_stop[GDB_SIGNAL_ALRM] = 0;
9349 signal_print[GDB_SIGNAL_ALRM] = 0;
9350 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9351 signal_print[GDB_SIGNAL_VTALRM] = 0;
9352 signal_stop[GDB_SIGNAL_PROF] = 0;
9353 signal_print[GDB_SIGNAL_PROF] = 0;
9354 signal_stop[GDB_SIGNAL_CHLD] = 0;
9355 signal_print[GDB_SIGNAL_CHLD] = 0;
9356 signal_stop[GDB_SIGNAL_IO] = 0;
9357 signal_print[GDB_SIGNAL_IO] = 0;
9358 signal_stop[GDB_SIGNAL_POLL] = 0;
9359 signal_print[GDB_SIGNAL_POLL] = 0;
9360 signal_stop[GDB_SIGNAL_URG] = 0;
9361 signal_print[GDB_SIGNAL_URG] = 0;
9362 signal_stop[GDB_SIGNAL_WINCH] = 0;
9363 signal_print[GDB_SIGNAL_WINCH] = 0;
9364 signal_stop[GDB_SIGNAL_PRIO] = 0;
9365 signal_print[GDB_SIGNAL_PRIO] = 0;
9366
9367 /* These signals are used internally by user-level thread
9368 implementations. (See signal(5) on Solaris.) Like the above
9369 signals, a healthy program receives and handles them as part of
9370 its normal operation. */
9371 signal_stop[GDB_SIGNAL_LWP] = 0;
9372 signal_print[GDB_SIGNAL_LWP] = 0;
9373 signal_stop[GDB_SIGNAL_WAITING] = 0;
9374 signal_print[GDB_SIGNAL_WAITING] = 0;
9375 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9376 signal_print[GDB_SIGNAL_CANCEL] = 0;
9377 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9378 signal_print[GDB_SIGNAL_LIBRT] = 0;
9379
9380 /* Update cached state. */
9381 signal_cache_update (-1);
9382
9383 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9384 &stop_on_solib_events, _("\
9385 Set stopping for shared library events."), _("\
9386 Show stopping for shared library events."), _("\
9387 If nonzero, gdb will give control to the user when the dynamic linker\n\
9388 notifies gdb of shared library events. The most common event of interest\n\
9389 to the user would be loading/unloading of a new library."),
9390 set_stop_on_solib_events,
9391 show_stop_on_solib_events,
9392 &setlist, &showlist);
9393
9394 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9395 follow_fork_mode_kind_names,
9396 &follow_fork_mode_string, _("\
9397 Set debugger response to a program call of fork or vfork."), _("\
9398 Show debugger response to a program call of fork or vfork."), _("\
9399 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9400 parent - the original process is debugged after a fork\n\
9401 child - the new process is debugged after a fork\n\
9402 The unfollowed process will continue to run.\n\
9403 By default, the debugger will follow the parent process."),
9404 NULL,
9405 show_follow_fork_mode_string,
9406 &setlist, &showlist);
9407
9408 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9409 follow_exec_mode_names,
9410 &follow_exec_mode_string, _("\
9411 Set debugger response to a program call of exec."), _("\
9412 Show debugger response to a program call of exec."), _("\
9413 An exec call replaces the program image of a process.\n\
9414 \n\
9415 follow-exec-mode can be:\n\
9416 \n\
9417 new - the debugger creates a new inferior and rebinds the process\n\
9418 to this new inferior. The program the process was running before\n\
9419 the exec call can be restarted afterwards by restarting the original\n\
9420 inferior.\n\
9421 \n\
9422 same - the debugger keeps the process bound to the same inferior.\n\
9423 The new executable image replaces the previous executable loaded in\n\
9424 the inferior. Restarting the inferior after the exec call restarts\n\
9425 the executable the process was running after the exec call.\n\
9426 \n\
9427 By default, the debugger will use the same inferior."),
9428 NULL,
9429 show_follow_exec_mode_string,
9430 &setlist, &showlist);
9431
9432 add_setshow_enum_cmd ("scheduler-locking", class_run,
9433 scheduler_enums, &scheduler_mode, _("\
9434 Set mode for locking scheduler during execution."), _("\
9435 Show mode for locking scheduler during execution."), _("\
9436 off == no locking (threads may preempt at any time)\n\
9437 on == full locking (no thread except the current thread may run)\n\
9438 This applies to both normal execution and replay mode.\n\
9439 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9440 In this mode, other threads may run during other commands.\n\
9441 This applies to both normal execution and replay mode.\n\
9442 replay == scheduler locked in replay mode and unlocked during normal execution."),
9443 set_schedlock_func, /* traps on target vector */
9444 show_scheduler_mode,
9445 &setlist, &showlist);
9446
9447 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9448 Set mode for resuming threads of all processes."), _("\
9449 Show mode for resuming threads of all processes."), _("\
9450 When on, execution commands (such as 'continue' or 'next') resume all\n\
9451 threads of all processes. When off (which is the default), execution\n\
9452 commands only resume the threads of the current process. The set of\n\
9453 threads that are resumed is further refined by the scheduler-locking\n\
9454 mode (see help set scheduler-locking)."),
9455 NULL,
9456 show_schedule_multiple,
9457 &setlist, &showlist);
9458
9459 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9460 Set mode of the step operation."), _("\
9461 Show mode of the step operation."), _("\
9462 When set, doing a step over a function without debug line information\n\
9463 will stop at the first instruction of that function. Otherwise, the\n\
9464 function is skipped and the step command stops at a different source line."),
9465 NULL,
9466 show_step_stop_if_no_debug,
9467 &setlist, &showlist);
9468
9469 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9470 &can_use_displaced_stepping, _("\
9471 Set debugger's willingness to use displaced stepping."), _("\
9472 Show debugger's willingness to use displaced stepping."), _("\
9473 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9474 supported by the target architecture. If off, gdb will not use displaced\n\
9475 stepping to step over breakpoints, even if such is supported by the target\n\
9476 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9477 if the target architecture supports it and non-stop mode is active, but will not\n\
9478 use it in all-stop mode (see help set non-stop)."),
9479 NULL,
9480 show_can_use_displaced_stepping,
9481 &setlist, &showlist);
9482
9483 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9484 &exec_direction, _("Set direction of execution.\n\
9485 Options are 'forward' or 'reverse'."),
9486 _("Show direction of execution (forward/reverse)."),
9487 _("Tells gdb whether to execute forward or backward."),
9488 set_exec_direction_func, show_exec_direction_func,
9489 &setlist, &showlist);
9490
9491 /* Set/show detach-on-fork: user-settable mode. */
9492
9493 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9494 Set whether gdb will detach the child of a fork."), _("\
9495 Show whether gdb will detach the child of a fork."), _("\
9496 Tells gdb whether to detach the child of a fork."),
9497 NULL, NULL, &setlist, &showlist);
9498
9499 /* Set/show disable address space randomization mode. */
9500
9501 add_setshow_boolean_cmd ("disable-randomization", class_support,
9502 &disable_randomization, _("\
9503 Set disabling of debuggee's virtual address space randomization."), _("\
9504 Show disabling of debuggee's virtual address space randomization."), _("\
9505 When this mode is on (which is the default), randomization of the virtual\n\
9506 address space is disabled. Standalone programs run with the randomization\n\
9507 enabled by default on some platforms."),
9508 &set_disable_randomization,
9509 &show_disable_randomization,
9510 &setlist, &showlist);
9511
9512 /* ptid initializations */
9513 inferior_ptid = null_ptid;
9514 target_last_wait_ptid = minus_one_ptid;
9515
9516 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
9517 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
9518 observer_attach_thread_exit (infrun_thread_thread_exit);
9519 observer_attach_inferior_exit (infrun_inferior_exit);
9520
9521 /* Explicitly create without lookup, since that tries to create a
9522 value with a void typed value, and when we get here, gdbarch
9523 isn't initialized yet. At this point, we're quite sure there
9524 isn't another convenience variable of the same name. */
9525 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9526
9527 add_setshow_boolean_cmd ("observer", no_class,
9528 &observer_mode_1, _("\
9529 Set whether gdb controls the inferior in observer mode."), _("\
9530 Show whether gdb controls the inferior in observer mode."), _("\
9531 In observer mode, GDB can get data from the inferior, but not\n\
9532 affect its execution. Registers and memory may not be changed,\n\
9533 breakpoints may not be set, and the program cannot be interrupted\n\
9534 or signalled."),
9535 set_observer_mode,
9536 show_observer_mode,
9537 &setlist,
9538 &showlist);
9539 }
This page took 0.224082 seconds and 4 git commands to generate.