* dummy-frame.c (dummy_frame): Replace regcache member with
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008, 2009 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48 #include "gdb_assert.h"
49 #include "mi/mi-common.h"
50 #include "event-top.h"
51
52 /* Prototypes for local functions */
53
54 static void signals_info (char *, int);
55
56 static void handle_command (char *, int);
57
58 static void sig_print_info (enum target_signal);
59
60 static void sig_print_header (void);
61
62 static void resume_cleanups (void *);
63
64 static int hook_stop_stub (void *);
65
66 static int restore_selected_frame (void *);
67
68 static void build_infrun (void);
69
70 static int follow_fork (void);
71
72 static void set_schedlock_func (char *args, int from_tty,
73 struct cmd_list_element *c);
74
75 static int currently_stepping (struct thread_info *tp);
76
77 static int currently_stepping_callback (struct thread_info *tp, void *data);
78
79 static void xdb_handle_command (char *args, int from_tty);
80
81 static int prepare_to_proceed (int);
82
83 void _initialize_infrun (void);
84
85 /* When set, stop the 'step' command if we enter a function which has
86 no line number information. The normal behavior is that we step
87 over such function. */
88 int step_stop_if_no_debug = 0;
89 static void
90 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
91 struct cmd_list_element *c, const char *value)
92 {
93 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
94 }
95
96 /* In asynchronous mode, but simulating synchronous execution. */
97
98 int sync_execution = 0;
99
100 /* wait_for_inferior and normal_stop use this to notify the user
101 when the inferior stopped in a different thread than it had been
102 running in. */
103
104 static ptid_t previous_inferior_ptid;
105
106 int debug_displaced = 0;
107 static void
108 show_debug_displaced (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110 {
111 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
112 }
113
114 static int debug_infrun = 0;
115 static void
116 show_debug_infrun (struct ui_file *file, int from_tty,
117 struct cmd_list_element *c, const char *value)
118 {
119 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
120 }
121
122 /* If the program uses ELF-style shared libraries, then calls to
123 functions in shared libraries go through stubs, which live in a
124 table called the PLT (Procedure Linkage Table). The first time the
125 function is called, the stub sends control to the dynamic linker,
126 which looks up the function's real address, patches the stub so
127 that future calls will go directly to the function, and then passes
128 control to the function.
129
130 If we are stepping at the source level, we don't want to see any of
131 this --- we just want to skip over the stub and the dynamic linker.
132 The simple approach is to single-step until control leaves the
133 dynamic linker.
134
135 However, on some systems (e.g., Red Hat's 5.2 distribution) the
136 dynamic linker calls functions in the shared C library, so you
137 can't tell from the PC alone whether the dynamic linker is still
138 running. In this case, we use a step-resume breakpoint to get us
139 past the dynamic linker, as if we were using "next" to step over a
140 function call.
141
142 in_solib_dynsym_resolve_code() says whether we're in the dynamic
143 linker code or not. Normally, this means we single-step. However,
144 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
145 address where we can place a step-resume breakpoint to get past the
146 linker's symbol resolution function.
147
148 in_solib_dynsym_resolve_code() can generally be implemented in a
149 pretty portable way, by comparing the PC against the address ranges
150 of the dynamic linker's sections.
151
152 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
153 it depends on internal details of the dynamic linker. It's usually
154 not too hard to figure out where to put a breakpoint, but it
155 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
156 sanity checking. If it can't figure things out, returning zero and
157 getting the (possibly confusing) stepping behavior is better than
158 signalling an error, which will obscure the change in the
159 inferior's state. */
160
161 /* This function returns TRUE if pc is the address of an instruction
162 that lies within the dynamic linker (such as the event hook, or the
163 dld itself).
164
165 This function must be used only when a dynamic linker event has
166 been caught, and the inferior is being stepped out of the hook, or
167 undefined results are guaranteed. */
168
169 #ifndef SOLIB_IN_DYNAMIC_LINKER
170 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
171 #endif
172
173
174 /* Convert the #defines into values. This is temporary until wfi control
175 flow is completely sorted out. */
176
177 #ifndef CANNOT_STEP_HW_WATCHPOINTS
178 #define CANNOT_STEP_HW_WATCHPOINTS 0
179 #else
180 #undef CANNOT_STEP_HW_WATCHPOINTS
181 #define CANNOT_STEP_HW_WATCHPOINTS 1
182 #endif
183
184 /* Tables of how to react to signals; the user sets them. */
185
186 static unsigned char *signal_stop;
187 static unsigned char *signal_print;
188 static unsigned char *signal_program;
189
190 #define SET_SIGS(nsigs,sigs,flags) \
191 do { \
192 int signum = (nsigs); \
193 while (signum-- > 0) \
194 if ((sigs)[signum]) \
195 (flags)[signum] = 1; \
196 } while (0)
197
198 #define UNSET_SIGS(nsigs,sigs,flags) \
199 do { \
200 int signum = (nsigs); \
201 while (signum-- > 0) \
202 if ((sigs)[signum]) \
203 (flags)[signum] = 0; \
204 } while (0)
205
206 /* Value to pass to target_resume() to cause all threads to resume */
207
208 #define RESUME_ALL (pid_to_ptid (-1))
209
210 /* Command list pointer for the "stop" placeholder. */
211
212 static struct cmd_list_element *stop_command;
213
214 /* Function inferior was in as of last step command. */
215
216 static struct symbol *step_start_function;
217
218 /* Nonzero if we want to give control to the user when we're notified
219 of shared library events by the dynamic linker. */
220 static int stop_on_solib_events;
221 static void
222 show_stop_on_solib_events (struct ui_file *file, int from_tty,
223 struct cmd_list_element *c, const char *value)
224 {
225 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
226 value);
227 }
228
229 /* Nonzero means expecting a trace trap
230 and should stop the inferior and return silently when it happens. */
231
232 int stop_after_trap;
233
234 /* Save register contents here when executing a "finish" command or are
235 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
236 Thus this contains the return value from the called function (assuming
237 values are returned in a register). */
238
239 struct regcache *stop_registers;
240
241 /* Nonzero after stop if current stack frame should be printed. */
242
243 static int stop_print_frame;
244
245 /* This is a cached copy of the pid/waitstatus of the last event
246 returned by target_wait()/deprecated_target_wait_hook(). This
247 information is returned by get_last_target_status(). */
248 static ptid_t target_last_wait_ptid;
249 static struct target_waitstatus target_last_waitstatus;
250
251 static void context_switch (ptid_t ptid);
252
253 void init_thread_stepping_state (struct thread_info *tss);
254
255 void init_infwait_state (void);
256
257 /* This is used to remember when a fork, vfork or exec event
258 was caught by a catchpoint, and thus the event is to be
259 followed at the next resume of the inferior, and not
260 immediately. */
261 static struct
262 {
263 enum target_waitkind kind;
264 struct
265 {
266 ptid_t parent_pid;
267 ptid_t child_pid;
268 }
269 fork_event;
270 char *execd_pathname;
271 }
272 pending_follow;
273
274 static const char follow_fork_mode_child[] = "child";
275 static const char follow_fork_mode_parent[] = "parent";
276
277 static const char *follow_fork_mode_kind_names[] = {
278 follow_fork_mode_child,
279 follow_fork_mode_parent,
280 NULL
281 };
282
283 static const char *follow_fork_mode_string = follow_fork_mode_parent;
284 static void
285 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
286 struct cmd_list_element *c, const char *value)
287 {
288 fprintf_filtered (file, _("\
289 Debugger response to a program call of fork or vfork is \"%s\".\n"),
290 value);
291 }
292 \f
293
294 static int
295 follow_fork (void)
296 {
297 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
298
299 return target_follow_fork (follow_child);
300 }
301
302 void
303 follow_inferior_reset_breakpoints (void)
304 {
305 struct thread_info *tp = inferior_thread ();
306
307 /* Was there a step_resume breakpoint? (There was if the user
308 did a "next" at the fork() call.) If so, explicitly reset its
309 thread number.
310
311 step_resumes are a form of bp that are made to be per-thread.
312 Since we created the step_resume bp when the parent process
313 was being debugged, and now are switching to the child process,
314 from the breakpoint package's viewpoint, that's a switch of
315 "threads". We must update the bp's notion of which thread
316 it is for, or it'll be ignored when it triggers. */
317
318 if (tp->step_resume_breakpoint)
319 breakpoint_re_set_thread (tp->step_resume_breakpoint);
320
321 /* Reinsert all breakpoints in the child. The user may have set
322 breakpoints after catching the fork, in which case those
323 were never set in the child, but only in the parent. This makes
324 sure the inserted breakpoints match the breakpoint list. */
325
326 breakpoint_re_set ();
327 insert_breakpoints ();
328 }
329
330 /* EXECD_PATHNAME is assumed to be non-NULL. */
331
332 static void
333 follow_exec (ptid_t pid, char *execd_pathname)
334 {
335 struct target_ops *tgt;
336 struct thread_info *th = inferior_thread ();
337
338 /* This is an exec event that we actually wish to pay attention to.
339 Refresh our symbol table to the newly exec'd program, remove any
340 momentary bp's, etc.
341
342 If there are breakpoints, they aren't really inserted now,
343 since the exec() transformed our inferior into a fresh set
344 of instructions.
345
346 We want to preserve symbolic breakpoints on the list, since
347 we have hopes that they can be reset after the new a.out's
348 symbol table is read.
349
350 However, any "raw" breakpoints must be removed from the list
351 (e.g., the solib bp's), since their address is probably invalid
352 now.
353
354 And, we DON'T want to call delete_breakpoints() here, since
355 that may write the bp's "shadow contents" (the instruction
356 value that was overwritten witha TRAP instruction). Since
357 we now have a new a.out, those shadow contents aren't valid. */
358 update_breakpoints_after_exec ();
359
360 /* If there was one, it's gone now. We cannot truly step-to-next
361 statement through an exec(). */
362 th->step_resume_breakpoint = NULL;
363 th->step_range_start = 0;
364 th->step_range_end = 0;
365
366 /* What is this a.out's name? */
367 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
368
369 /* We've followed the inferior through an exec. Therefore, the
370 inferior has essentially been killed & reborn. */
371
372 gdb_flush (gdb_stdout);
373
374 breakpoint_init_inferior (inf_execd);
375
376 if (gdb_sysroot && *gdb_sysroot)
377 {
378 char *name = alloca (strlen (gdb_sysroot)
379 + strlen (execd_pathname)
380 + 1);
381 strcpy (name, gdb_sysroot);
382 strcat (name, execd_pathname);
383 execd_pathname = name;
384 }
385
386 /* That a.out is now the one to use. */
387 exec_file_attach (execd_pathname, 0);
388
389 /* Reset the shared library package. This ensures that we get a
390 shlib event when the child reaches "_start", at which point the
391 dld will have had a chance to initialize the child. */
392 /* Also, loading a symbol file below may trigger symbol lookups, and
393 we don't want those to be satisfied by the libraries of the
394 previous incarnation of this process. */
395 no_shared_libraries (NULL, 0);
396
397 /* Load the main file's symbols. */
398 symbol_file_add_main (execd_pathname, 0);
399
400 #ifdef SOLIB_CREATE_INFERIOR_HOOK
401 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
402 #else
403 solib_create_inferior_hook ();
404 #endif
405
406 /* Reinsert all breakpoints. (Those which were symbolic have
407 been reset to the proper address in the new a.out, thanks
408 to symbol_file_command...) */
409 insert_breakpoints ();
410
411 /* The next resume of this inferior should bring it to the shlib
412 startup breakpoints. (If the user had also set bp's on
413 "main" from the old (parent) process, then they'll auto-
414 matically get reset there in the new process.) */
415 }
416
417 /* Non-zero if we just simulating a single-step. This is needed
418 because we cannot remove the breakpoints in the inferior process
419 until after the `wait' in `wait_for_inferior'. */
420 static int singlestep_breakpoints_inserted_p = 0;
421
422 /* The thread we inserted single-step breakpoints for. */
423 static ptid_t singlestep_ptid;
424
425 /* PC when we started this single-step. */
426 static CORE_ADDR singlestep_pc;
427
428 /* If another thread hit the singlestep breakpoint, we save the original
429 thread here so that we can resume single-stepping it later. */
430 static ptid_t saved_singlestep_ptid;
431 static int stepping_past_singlestep_breakpoint;
432
433 /* If not equal to null_ptid, this means that after stepping over breakpoint
434 is finished, we need to switch to deferred_step_ptid, and step it.
435
436 The use case is when one thread has hit a breakpoint, and then the user
437 has switched to another thread and issued 'step'. We need to step over
438 breakpoint in the thread which hit the breakpoint, but then continue
439 stepping the thread user has selected. */
440 static ptid_t deferred_step_ptid;
441 \f
442 /* Displaced stepping. */
443
444 /* In non-stop debugging mode, we must take special care to manage
445 breakpoints properly; in particular, the traditional strategy for
446 stepping a thread past a breakpoint it has hit is unsuitable.
447 'Displaced stepping' is a tactic for stepping one thread past a
448 breakpoint it has hit while ensuring that other threads running
449 concurrently will hit the breakpoint as they should.
450
451 The traditional way to step a thread T off a breakpoint in a
452 multi-threaded program in all-stop mode is as follows:
453
454 a0) Initially, all threads are stopped, and breakpoints are not
455 inserted.
456 a1) We single-step T, leaving breakpoints uninserted.
457 a2) We insert breakpoints, and resume all threads.
458
459 In non-stop debugging, however, this strategy is unsuitable: we
460 don't want to have to stop all threads in the system in order to
461 continue or step T past a breakpoint. Instead, we use displaced
462 stepping:
463
464 n0) Initially, T is stopped, other threads are running, and
465 breakpoints are inserted.
466 n1) We copy the instruction "under" the breakpoint to a separate
467 location, outside the main code stream, making any adjustments
468 to the instruction, register, and memory state as directed by
469 T's architecture.
470 n2) We single-step T over the instruction at its new location.
471 n3) We adjust the resulting register and memory state as directed
472 by T's architecture. This includes resetting T's PC to point
473 back into the main instruction stream.
474 n4) We resume T.
475
476 This approach depends on the following gdbarch methods:
477
478 - gdbarch_max_insn_length and gdbarch_displaced_step_location
479 indicate where to copy the instruction, and how much space must
480 be reserved there. We use these in step n1.
481
482 - gdbarch_displaced_step_copy_insn copies a instruction to a new
483 address, and makes any necessary adjustments to the instruction,
484 register contents, and memory. We use this in step n1.
485
486 - gdbarch_displaced_step_fixup adjusts registers and memory after
487 we have successfuly single-stepped the instruction, to yield the
488 same effect the instruction would have had if we had executed it
489 at its original address. We use this in step n3.
490
491 - gdbarch_displaced_step_free_closure provides cleanup.
492
493 The gdbarch_displaced_step_copy_insn and
494 gdbarch_displaced_step_fixup functions must be written so that
495 copying an instruction with gdbarch_displaced_step_copy_insn,
496 single-stepping across the copied instruction, and then applying
497 gdbarch_displaced_insn_fixup should have the same effects on the
498 thread's memory and registers as stepping the instruction in place
499 would have. Exactly which responsibilities fall to the copy and
500 which fall to the fixup is up to the author of those functions.
501
502 See the comments in gdbarch.sh for details.
503
504 Note that displaced stepping and software single-step cannot
505 currently be used in combination, although with some care I think
506 they could be made to. Software single-step works by placing
507 breakpoints on all possible subsequent instructions; if the
508 displaced instruction is a PC-relative jump, those breakpoints
509 could fall in very strange places --- on pages that aren't
510 executable, or at addresses that are not proper instruction
511 boundaries. (We do generally let other threads run while we wait
512 to hit the software single-step breakpoint, and they might
513 encounter such a corrupted instruction.) One way to work around
514 this would be to have gdbarch_displaced_step_copy_insn fully
515 simulate the effect of PC-relative instructions (and return NULL)
516 on architectures that use software single-stepping.
517
518 In non-stop mode, we can have independent and simultaneous step
519 requests, so more than one thread may need to simultaneously step
520 over a breakpoint. The current implementation assumes there is
521 only one scratch space per process. In this case, we have to
522 serialize access to the scratch space. If thread A wants to step
523 over a breakpoint, but we are currently waiting for some other
524 thread to complete a displaced step, we leave thread A stopped and
525 place it in the displaced_step_request_queue. Whenever a displaced
526 step finishes, we pick the next thread in the queue and start a new
527 displaced step operation on it. See displaced_step_prepare and
528 displaced_step_fixup for details. */
529
530 /* If this is not null_ptid, this is the thread carrying out a
531 displaced single-step. This thread's state will require fixing up
532 once it has completed its step. */
533 static ptid_t displaced_step_ptid;
534
535 struct displaced_step_request
536 {
537 ptid_t ptid;
538 struct displaced_step_request *next;
539 };
540
541 /* A queue of pending displaced stepping requests. */
542 struct displaced_step_request *displaced_step_request_queue;
543
544 /* The architecture the thread had when we stepped it. */
545 static struct gdbarch *displaced_step_gdbarch;
546
547 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
548 for post-step cleanup. */
549 static struct displaced_step_closure *displaced_step_closure;
550
551 /* The address of the original instruction, and the copy we made. */
552 static CORE_ADDR displaced_step_original, displaced_step_copy;
553
554 /* Saved contents of copy area. */
555 static gdb_byte *displaced_step_saved_copy;
556
557 /* Enum strings for "set|show displaced-stepping". */
558
559 static const char can_use_displaced_stepping_auto[] = "auto";
560 static const char can_use_displaced_stepping_on[] = "on";
561 static const char can_use_displaced_stepping_off[] = "off";
562 static const char *can_use_displaced_stepping_enum[] =
563 {
564 can_use_displaced_stepping_auto,
565 can_use_displaced_stepping_on,
566 can_use_displaced_stepping_off,
567 NULL,
568 };
569
570 /* If ON, and the architecture supports it, GDB will use displaced
571 stepping to step over breakpoints. If OFF, or if the architecture
572 doesn't support it, GDB will instead use the traditional
573 hold-and-step approach. If AUTO (which is the default), GDB will
574 decide which technique to use to step over breakpoints depending on
575 which of all-stop or non-stop mode is active --- displaced stepping
576 in non-stop mode; hold-and-step in all-stop mode. */
577
578 static const char *can_use_displaced_stepping =
579 can_use_displaced_stepping_auto;
580
581 static void
582 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
583 struct cmd_list_element *c,
584 const char *value)
585 {
586 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
587 fprintf_filtered (file, _("\
588 Debugger's willingness to use displaced stepping to step over \
589 breakpoints is %s (currently %s).\n"),
590 value, non_stop ? "on" : "off");
591 else
592 fprintf_filtered (file, _("\
593 Debugger's willingness to use displaced stepping to step over \
594 breakpoints is %s.\n"), value);
595 }
596
597 /* Return non-zero if displaced stepping can/should be used to step
598 over breakpoints. */
599
600 static int
601 use_displaced_stepping (struct gdbarch *gdbarch)
602 {
603 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
604 && non_stop)
605 || can_use_displaced_stepping == can_use_displaced_stepping_on)
606 && gdbarch_displaced_step_copy_insn_p (gdbarch));
607 }
608
609 /* Clean out any stray displaced stepping state. */
610 static void
611 displaced_step_clear (void)
612 {
613 /* Indicate that there is no cleanup pending. */
614 displaced_step_ptid = null_ptid;
615
616 if (displaced_step_closure)
617 {
618 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
619 displaced_step_closure);
620 displaced_step_closure = NULL;
621 }
622 }
623
624 static void
625 cleanup_displaced_step_closure (void *ptr)
626 {
627 struct displaced_step_closure *closure = ptr;
628
629 gdbarch_displaced_step_free_closure (current_gdbarch, closure);
630 }
631
632 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
633 void
634 displaced_step_dump_bytes (struct ui_file *file,
635 const gdb_byte *buf,
636 size_t len)
637 {
638 int i;
639
640 for (i = 0; i < len; i++)
641 fprintf_unfiltered (file, "%02x ", buf[i]);
642 fputs_unfiltered ("\n", file);
643 }
644
645 /* Prepare to single-step, using displaced stepping.
646
647 Note that we cannot use displaced stepping when we have a signal to
648 deliver. If we have a signal to deliver and an instruction to step
649 over, then after the step, there will be no indication from the
650 target whether the thread entered a signal handler or ignored the
651 signal and stepped over the instruction successfully --- both cases
652 result in a simple SIGTRAP. In the first case we mustn't do a
653 fixup, and in the second case we must --- but we can't tell which.
654 Comments in the code for 'random signals' in handle_inferior_event
655 explain how we handle this case instead.
656
657 Returns 1 if preparing was successful -- this thread is going to be
658 stepped now; or 0 if displaced stepping this thread got queued. */
659 static int
660 displaced_step_prepare (ptid_t ptid)
661 {
662 struct cleanup *old_cleanups, *ignore_cleanups;
663 struct regcache *regcache = get_thread_regcache (ptid);
664 struct gdbarch *gdbarch = get_regcache_arch (regcache);
665 CORE_ADDR original, copy;
666 ULONGEST len;
667 struct displaced_step_closure *closure;
668
669 /* We should never reach this function if the architecture does not
670 support displaced stepping. */
671 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
672
673 /* For the first cut, we're displaced stepping one thread at a
674 time. */
675
676 if (!ptid_equal (displaced_step_ptid, null_ptid))
677 {
678 /* Already waiting for a displaced step to finish. Defer this
679 request and place in queue. */
680 struct displaced_step_request *req, *new_req;
681
682 if (debug_displaced)
683 fprintf_unfiltered (gdb_stdlog,
684 "displaced: defering step of %s\n",
685 target_pid_to_str (ptid));
686
687 new_req = xmalloc (sizeof (*new_req));
688 new_req->ptid = ptid;
689 new_req->next = NULL;
690
691 if (displaced_step_request_queue)
692 {
693 for (req = displaced_step_request_queue;
694 req && req->next;
695 req = req->next)
696 ;
697 req->next = new_req;
698 }
699 else
700 displaced_step_request_queue = new_req;
701
702 return 0;
703 }
704 else
705 {
706 if (debug_displaced)
707 fprintf_unfiltered (gdb_stdlog,
708 "displaced: stepping %s now\n",
709 target_pid_to_str (ptid));
710 }
711
712 displaced_step_clear ();
713
714 old_cleanups = save_inferior_ptid ();
715 inferior_ptid = ptid;
716
717 original = regcache_read_pc (regcache);
718
719 copy = gdbarch_displaced_step_location (gdbarch);
720 len = gdbarch_max_insn_length (gdbarch);
721
722 /* Save the original contents of the copy area. */
723 displaced_step_saved_copy = xmalloc (len);
724 ignore_cleanups = make_cleanup (free_current_contents,
725 &displaced_step_saved_copy);
726 read_memory (copy, displaced_step_saved_copy, len);
727 if (debug_displaced)
728 {
729 fprintf_unfiltered (gdb_stdlog, "displaced: saved 0x%s: ",
730 paddr_nz (copy));
731 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
732 };
733
734 closure = gdbarch_displaced_step_copy_insn (gdbarch,
735 original, copy, regcache);
736
737 /* We don't support the fully-simulated case at present. */
738 gdb_assert (closure);
739
740 make_cleanup (cleanup_displaced_step_closure, closure);
741
742 /* Resume execution at the copy. */
743 regcache_write_pc (regcache, copy);
744
745 discard_cleanups (ignore_cleanups);
746
747 do_cleanups (old_cleanups);
748
749 if (debug_displaced)
750 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to 0x%s\n",
751 paddr_nz (copy));
752
753 /* Save the information we need to fix things up if the step
754 succeeds. */
755 displaced_step_ptid = ptid;
756 displaced_step_gdbarch = gdbarch;
757 displaced_step_closure = closure;
758 displaced_step_original = original;
759 displaced_step_copy = copy;
760 return 1;
761 }
762
763 static void
764 displaced_step_clear_cleanup (void *ignore)
765 {
766 displaced_step_clear ();
767 }
768
769 static void
770 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
771 {
772 struct cleanup *ptid_cleanup = save_inferior_ptid ();
773 inferior_ptid = ptid;
774 write_memory (memaddr, myaddr, len);
775 do_cleanups (ptid_cleanup);
776 }
777
778 static void
779 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
780 {
781 struct cleanup *old_cleanups;
782
783 /* Was this event for the pid we displaced? */
784 if (ptid_equal (displaced_step_ptid, null_ptid)
785 || ! ptid_equal (displaced_step_ptid, event_ptid))
786 return;
787
788 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
789
790 /* Restore the contents of the copy area. */
791 {
792 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
793 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
794 displaced_step_saved_copy, len);
795 if (debug_displaced)
796 fprintf_unfiltered (gdb_stdlog, "displaced: restored 0x%s\n",
797 paddr_nz (displaced_step_copy));
798 }
799
800 /* Did the instruction complete successfully? */
801 if (signal == TARGET_SIGNAL_TRAP)
802 {
803 /* Fix up the resulting state. */
804 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
805 displaced_step_closure,
806 displaced_step_original,
807 displaced_step_copy,
808 get_thread_regcache (displaced_step_ptid));
809 }
810 else
811 {
812 /* Since the instruction didn't complete, all we can do is
813 relocate the PC. */
814 struct regcache *regcache = get_thread_regcache (event_ptid);
815 CORE_ADDR pc = regcache_read_pc (regcache);
816 pc = displaced_step_original + (pc - displaced_step_copy);
817 regcache_write_pc (regcache, pc);
818 }
819
820 do_cleanups (old_cleanups);
821
822 displaced_step_ptid = null_ptid;
823
824 /* Are there any pending displaced stepping requests? If so, run
825 one now. */
826 while (displaced_step_request_queue)
827 {
828 struct displaced_step_request *head;
829 ptid_t ptid;
830 CORE_ADDR actual_pc;
831
832 head = displaced_step_request_queue;
833 ptid = head->ptid;
834 displaced_step_request_queue = head->next;
835 xfree (head);
836
837 context_switch (ptid);
838
839 actual_pc = read_pc ();
840
841 if (breakpoint_here_p (actual_pc))
842 {
843 if (debug_displaced)
844 fprintf_unfiltered (gdb_stdlog,
845 "displaced: stepping queued %s now\n",
846 target_pid_to_str (ptid));
847
848 displaced_step_prepare (ptid);
849
850 if (debug_displaced)
851 {
852 gdb_byte buf[4];
853
854 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
855 paddr_nz (actual_pc));
856 read_memory (actual_pc, buf, sizeof (buf));
857 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
858 }
859
860 target_resume (ptid, 1, TARGET_SIGNAL_0);
861
862 /* Done, we're stepping a thread. */
863 break;
864 }
865 else
866 {
867 int step;
868 struct thread_info *tp = inferior_thread ();
869
870 /* The breakpoint we were sitting under has since been
871 removed. */
872 tp->trap_expected = 0;
873
874 /* Go back to what we were trying to do. */
875 step = currently_stepping (tp);
876
877 if (debug_displaced)
878 fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n",
879 target_pid_to_str (tp->ptid), step);
880
881 target_resume (ptid, step, TARGET_SIGNAL_0);
882 tp->stop_signal = TARGET_SIGNAL_0;
883
884 /* This request was discarded. See if there's any other
885 thread waiting for its turn. */
886 }
887 }
888 }
889
890 /* Update global variables holding ptids to hold NEW_PTID if they were
891 holding OLD_PTID. */
892 static void
893 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
894 {
895 struct displaced_step_request *it;
896
897 if (ptid_equal (inferior_ptid, old_ptid))
898 inferior_ptid = new_ptid;
899
900 if (ptid_equal (singlestep_ptid, old_ptid))
901 singlestep_ptid = new_ptid;
902
903 if (ptid_equal (displaced_step_ptid, old_ptid))
904 displaced_step_ptid = new_ptid;
905
906 if (ptid_equal (deferred_step_ptid, old_ptid))
907 deferred_step_ptid = new_ptid;
908
909 for (it = displaced_step_request_queue; it; it = it->next)
910 if (ptid_equal (it->ptid, old_ptid))
911 it->ptid = new_ptid;
912 }
913
914 \f
915 /* Resuming. */
916
917 /* Things to clean up if we QUIT out of resume (). */
918 static void
919 resume_cleanups (void *ignore)
920 {
921 normal_stop ();
922 }
923
924 static const char schedlock_off[] = "off";
925 static const char schedlock_on[] = "on";
926 static const char schedlock_step[] = "step";
927 static const char *scheduler_enums[] = {
928 schedlock_off,
929 schedlock_on,
930 schedlock_step,
931 NULL
932 };
933 static const char *scheduler_mode = schedlock_off;
934 static void
935 show_scheduler_mode (struct ui_file *file, int from_tty,
936 struct cmd_list_element *c, const char *value)
937 {
938 fprintf_filtered (file, _("\
939 Mode for locking scheduler during execution is \"%s\".\n"),
940 value);
941 }
942
943 static void
944 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
945 {
946 if (!target_can_lock_scheduler)
947 {
948 scheduler_mode = schedlock_off;
949 error (_("Target '%s' cannot support this command."), target_shortname);
950 }
951 }
952
953
954 /* Resume the inferior, but allow a QUIT. This is useful if the user
955 wants to interrupt some lengthy single-stepping operation
956 (for child processes, the SIGINT goes to the inferior, and so
957 we get a SIGINT random_signal, but for remote debugging and perhaps
958 other targets, that's not true).
959
960 STEP nonzero if we should step (zero to continue instead).
961 SIG is the signal to give the inferior (zero for none). */
962 void
963 resume (int step, enum target_signal sig)
964 {
965 int should_resume = 1;
966 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
967
968 /* Note that these must be reset if we follow a fork below. */
969 struct regcache *regcache = get_current_regcache ();
970 struct gdbarch *gdbarch = get_regcache_arch (regcache);
971 struct thread_info *tp = inferior_thread ();
972 CORE_ADDR pc = regcache_read_pc (regcache);
973
974 QUIT;
975
976 if (debug_infrun)
977 fprintf_unfiltered (gdb_stdlog,
978 "infrun: resume (step=%d, signal=%d), "
979 "trap_expected=%d\n",
980 step, sig, tp->trap_expected);
981
982 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
983 over an instruction that causes a page fault without triggering
984 a hardware watchpoint. The kernel properly notices that it shouldn't
985 stop, because the hardware watchpoint is not triggered, but it forgets
986 the step request and continues the program normally.
987 Work around the problem by removing hardware watchpoints if a step is
988 requested, GDB will check for a hardware watchpoint trigger after the
989 step anyway. */
990 if (CANNOT_STEP_HW_WATCHPOINTS && step)
991 remove_hw_watchpoints ();
992
993
994 /* Normally, by the time we reach `resume', the breakpoints are either
995 removed or inserted, as appropriate. The exception is if we're sitting
996 at a permanent breakpoint; we need to step over it, but permanent
997 breakpoints can't be removed. So we have to test for it here. */
998 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
999 {
1000 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1001 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1002 else
1003 error (_("\
1004 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1005 how to step past a permanent breakpoint on this architecture. Try using\n\
1006 a command like `return' or `jump' to continue execution."));
1007 }
1008
1009 /* If enabled, step over breakpoints by executing a copy of the
1010 instruction at a different address.
1011
1012 We can't use displaced stepping when we have a signal to deliver;
1013 the comments for displaced_step_prepare explain why. The
1014 comments in the handle_inferior event for dealing with 'random
1015 signals' explain what we do instead. */
1016 if (use_displaced_stepping (gdbarch)
1017 && tp->trap_expected
1018 && sig == TARGET_SIGNAL_0)
1019 {
1020 if (!displaced_step_prepare (inferior_ptid))
1021 {
1022 /* Got placed in displaced stepping queue. Will be resumed
1023 later when all the currently queued displaced stepping
1024 requests finish. The thread is not executing at this point,
1025 and the call to set_executing will be made later. But we
1026 need to call set_running here, since from frontend point of view,
1027 the thread is running. */
1028 set_running (inferior_ptid, 1);
1029 discard_cleanups (old_cleanups);
1030 return;
1031 }
1032 }
1033
1034 if (step && gdbarch_software_single_step_p (gdbarch))
1035 {
1036 /* Do it the hard way, w/temp breakpoints */
1037 if (gdbarch_software_single_step (gdbarch, get_current_frame ()))
1038 {
1039 /* ...and don't ask hardware to do it. */
1040 step = 0;
1041 /* and do not pull these breakpoints until after a `wait' in
1042 `wait_for_inferior' */
1043 singlestep_breakpoints_inserted_p = 1;
1044 singlestep_ptid = inferior_ptid;
1045 singlestep_pc = pc;
1046 }
1047 }
1048
1049 /* If there were any forks/vforks/execs that were caught and are
1050 now to be followed, then do so. */
1051 switch (pending_follow.kind)
1052 {
1053 case TARGET_WAITKIND_FORKED:
1054 case TARGET_WAITKIND_VFORKED:
1055 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
1056 if (follow_fork ())
1057 should_resume = 0;
1058
1059 /* Following a child fork will change our notion of current
1060 thread. */
1061 tp = inferior_thread ();
1062 regcache = get_current_regcache ();
1063 gdbarch = get_regcache_arch (regcache);
1064 pc = regcache_read_pc (regcache);
1065 break;
1066
1067 case TARGET_WAITKIND_EXECD:
1068 /* follow_exec is called as soon as the exec event is seen. */
1069 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
1070 break;
1071
1072 default:
1073 break;
1074 }
1075
1076 /* Install inferior's terminal modes. */
1077 target_terminal_inferior ();
1078
1079 if (should_resume)
1080 {
1081 ptid_t resume_ptid;
1082
1083 resume_ptid = RESUME_ALL; /* Default */
1084
1085 /* If STEP is set, it's a request to use hardware stepping
1086 facilities. But in that case, we should never
1087 use singlestep breakpoint. */
1088 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1089
1090 if (singlestep_breakpoints_inserted_p
1091 && stepping_past_singlestep_breakpoint)
1092 {
1093 /* The situation here is as follows. In thread T1 we wanted to
1094 single-step. Lacking hardware single-stepping we've
1095 set breakpoint at the PC of the next instruction -- call it
1096 P. After resuming, we've hit that breakpoint in thread T2.
1097 Now we've removed original breakpoint, inserted breakpoint
1098 at P+1, and try to step to advance T2 past breakpoint.
1099 We need to step only T2, as if T1 is allowed to freely run,
1100 it can run past P, and if other threads are allowed to run,
1101 they can hit breakpoint at P+1, and nested hits of single-step
1102 breakpoints is not something we'd want -- that's complicated
1103 to support, and has no value. */
1104 resume_ptid = inferior_ptid;
1105 }
1106
1107 if ((step || singlestep_breakpoints_inserted_p)
1108 && tp->trap_expected)
1109 {
1110 /* We're allowing a thread to run past a breakpoint it has
1111 hit, by single-stepping the thread with the breakpoint
1112 removed. In which case, we need to single-step only this
1113 thread, and keep others stopped, as they can miss this
1114 breakpoint if allowed to run.
1115
1116 The current code actually removes all breakpoints when
1117 doing this, not just the one being stepped over, so if we
1118 let other threads run, we can actually miss any
1119 breakpoint, not just the one at PC. */
1120 resume_ptid = inferior_ptid;
1121 }
1122
1123 if (non_stop)
1124 {
1125 /* With non-stop mode on, threads are always handled
1126 individually. */
1127 resume_ptid = inferior_ptid;
1128 }
1129 else if ((scheduler_mode == schedlock_on)
1130 || (scheduler_mode == schedlock_step
1131 && (step || singlestep_breakpoints_inserted_p)))
1132 {
1133 /* User-settable 'scheduler' mode requires solo thread resume. */
1134 resume_ptid = inferior_ptid;
1135 }
1136
1137 if (gdbarch_cannot_step_breakpoint (gdbarch))
1138 {
1139 /* Most targets can step a breakpoint instruction, thus
1140 executing it normally. But if this one cannot, just
1141 continue and we will hit it anyway. */
1142 if (step && breakpoint_inserted_here_p (pc))
1143 step = 0;
1144 }
1145
1146 if (debug_displaced
1147 && use_displaced_stepping (gdbarch)
1148 && tp->trap_expected)
1149 {
1150 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1151 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1152 gdb_byte buf[4];
1153
1154 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
1155 paddr_nz (actual_pc));
1156 read_memory (actual_pc, buf, sizeof (buf));
1157 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1158 }
1159
1160 /* Avoid confusing the next resume, if the next stop/resume
1161 happens to apply to another thread. */
1162 tp->stop_signal = TARGET_SIGNAL_0;
1163
1164 target_resume (resume_ptid, step, sig);
1165 }
1166
1167 discard_cleanups (old_cleanups);
1168 }
1169 \f
1170 /* Proceeding. */
1171
1172 /* Clear out all variables saying what to do when inferior is continued.
1173 First do this, then set the ones you want, then call `proceed'. */
1174
1175 static void
1176 clear_proceed_status_thread (struct thread_info *tp)
1177 {
1178 if (debug_infrun)
1179 fprintf_unfiltered (gdb_stdlog,
1180 "infrun: clear_proceed_status_thread (%s)\n",
1181 target_pid_to_str (tp->ptid));
1182
1183 tp->trap_expected = 0;
1184 tp->step_range_start = 0;
1185 tp->step_range_end = 0;
1186 tp->step_frame_id = null_frame_id;
1187 tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
1188 tp->stop_requested = 0;
1189
1190 tp->stop_step = 0;
1191
1192 tp->proceed_to_finish = 0;
1193
1194 /* Discard any remaining commands or status from previous stop. */
1195 bpstat_clear (&tp->stop_bpstat);
1196 }
1197
1198 static int
1199 clear_proceed_status_callback (struct thread_info *tp, void *data)
1200 {
1201 if (is_exited (tp->ptid))
1202 return 0;
1203
1204 clear_proceed_status_thread (tp);
1205 return 0;
1206 }
1207
1208 void
1209 clear_proceed_status (void)
1210 {
1211 if (!ptid_equal (inferior_ptid, null_ptid))
1212 {
1213 struct inferior *inferior;
1214
1215 if (non_stop)
1216 {
1217 /* If in non-stop mode, only delete the per-thread status
1218 of the current thread. */
1219 clear_proceed_status_thread (inferior_thread ());
1220 }
1221 else
1222 {
1223 /* In all-stop mode, delete the per-thread status of
1224 *all* threads. */
1225 iterate_over_threads (clear_proceed_status_callback, NULL);
1226 }
1227
1228 inferior = current_inferior ();
1229 inferior->stop_soon = NO_STOP_QUIETLY;
1230 }
1231
1232 stop_after_trap = 0;
1233 breakpoint_proceeded = 1; /* We're about to proceed... */
1234
1235 if (stop_registers)
1236 {
1237 regcache_xfree (stop_registers);
1238 stop_registers = NULL;
1239 }
1240 }
1241
1242 /* This should be suitable for any targets that support threads. */
1243
1244 static int
1245 prepare_to_proceed (int step)
1246 {
1247 ptid_t wait_ptid;
1248 struct target_waitstatus wait_status;
1249
1250 /* Get the last target status returned by target_wait(). */
1251 get_last_target_status (&wait_ptid, &wait_status);
1252
1253 /* Make sure we were stopped at a breakpoint. */
1254 if (wait_status.kind != TARGET_WAITKIND_STOPPED
1255 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
1256 {
1257 return 0;
1258 }
1259
1260 /* Switched over from WAIT_PID. */
1261 if (!ptid_equal (wait_ptid, minus_one_ptid)
1262 && !ptid_equal (inferior_ptid, wait_ptid))
1263 {
1264 struct regcache *regcache = get_thread_regcache (wait_ptid);
1265
1266 if (breakpoint_here_p (regcache_read_pc (regcache)))
1267 {
1268 /* If stepping, remember current thread to switch back to. */
1269 if (step)
1270 deferred_step_ptid = inferior_ptid;
1271
1272 /* Switch back to WAIT_PID thread. */
1273 switch_to_thread (wait_ptid);
1274
1275 /* We return 1 to indicate that there is a breakpoint here,
1276 so we need to step over it before continuing to avoid
1277 hitting it straight away. */
1278 return 1;
1279 }
1280 }
1281
1282 return 0;
1283 }
1284
1285 /* Basic routine for continuing the program in various fashions.
1286
1287 ADDR is the address to resume at, or -1 for resume where stopped.
1288 SIGGNAL is the signal to give it, or 0 for none,
1289 or -1 for act according to how it stopped.
1290 STEP is nonzero if should trap after one instruction.
1291 -1 means return after that and print nothing.
1292 You should probably set various step_... variables
1293 before calling here, if you are stepping.
1294
1295 You should call clear_proceed_status before calling proceed. */
1296
1297 void
1298 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
1299 {
1300 struct regcache *regcache = get_current_regcache ();
1301 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1302 struct thread_info *tp;
1303 CORE_ADDR pc = regcache_read_pc (regcache);
1304 int oneproc = 0;
1305
1306 if (step > 0)
1307 step_start_function = find_pc_function (pc);
1308 if (step < 0)
1309 stop_after_trap = 1;
1310
1311 if (addr == (CORE_ADDR) -1)
1312 {
1313 if (pc == stop_pc && breakpoint_here_p (pc)
1314 && execution_direction != EXEC_REVERSE)
1315 /* There is a breakpoint at the address we will resume at,
1316 step one instruction before inserting breakpoints so that
1317 we do not stop right away (and report a second hit at this
1318 breakpoint).
1319
1320 Note, we don't do this in reverse, because we won't
1321 actually be executing the breakpoint insn anyway.
1322 We'll be (un-)executing the previous instruction. */
1323
1324 oneproc = 1;
1325 else if (gdbarch_single_step_through_delay_p (gdbarch)
1326 && gdbarch_single_step_through_delay (gdbarch,
1327 get_current_frame ()))
1328 /* We stepped onto an instruction that needs to be stepped
1329 again before re-inserting the breakpoint, do so. */
1330 oneproc = 1;
1331 }
1332 else
1333 {
1334 regcache_write_pc (regcache, addr);
1335 }
1336
1337 if (debug_infrun)
1338 fprintf_unfiltered (gdb_stdlog,
1339 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
1340 paddr_nz (addr), siggnal, step);
1341
1342 if (non_stop)
1343 /* In non-stop, each thread is handled individually. The context
1344 must already be set to the right thread here. */
1345 ;
1346 else
1347 {
1348 /* In a multi-threaded task we may select another thread and
1349 then continue or step.
1350
1351 But if the old thread was stopped at a breakpoint, it will
1352 immediately cause another breakpoint stop without any
1353 execution (i.e. it will report a breakpoint hit incorrectly).
1354 So we must step over it first.
1355
1356 prepare_to_proceed checks the current thread against the
1357 thread that reported the most recent event. If a step-over
1358 is required it returns TRUE and sets the current thread to
1359 the old thread. */
1360 if (prepare_to_proceed (step))
1361 oneproc = 1;
1362 }
1363
1364 /* prepare_to_proceed may change the current thread. */
1365 tp = inferior_thread ();
1366
1367 if (oneproc)
1368 {
1369 tp->trap_expected = 1;
1370 /* If displaced stepping is enabled, we can step over the
1371 breakpoint without hitting it, so leave all breakpoints
1372 inserted. Otherwise we need to disable all breakpoints, step
1373 one instruction, and then re-add them when that step is
1374 finished. */
1375 if (!use_displaced_stepping (gdbarch))
1376 remove_breakpoints ();
1377 }
1378
1379 /* We can insert breakpoints if we're not trying to step over one,
1380 or if we are stepping over one but we're using displaced stepping
1381 to do so. */
1382 if (! tp->trap_expected || use_displaced_stepping (gdbarch))
1383 insert_breakpoints ();
1384
1385 if (!non_stop)
1386 {
1387 /* Pass the last stop signal to the thread we're resuming,
1388 irrespective of whether the current thread is the thread that
1389 got the last event or not. This was historically GDB's
1390 behaviour before keeping a stop_signal per thread. */
1391
1392 struct thread_info *last_thread;
1393 ptid_t last_ptid;
1394 struct target_waitstatus last_status;
1395
1396 get_last_target_status (&last_ptid, &last_status);
1397 if (!ptid_equal (inferior_ptid, last_ptid)
1398 && !ptid_equal (last_ptid, null_ptid)
1399 && !ptid_equal (last_ptid, minus_one_ptid))
1400 {
1401 last_thread = find_thread_pid (last_ptid);
1402 if (last_thread)
1403 {
1404 tp->stop_signal = last_thread->stop_signal;
1405 last_thread->stop_signal = TARGET_SIGNAL_0;
1406 }
1407 }
1408 }
1409
1410 if (siggnal != TARGET_SIGNAL_DEFAULT)
1411 tp->stop_signal = siggnal;
1412 /* If this signal should not be seen by program,
1413 give it zero. Used for debugging signals. */
1414 else if (!signal_program[tp->stop_signal])
1415 tp->stop_signal = TARGET_SIGNAL_0;
1416
1417 annotate_starting ();
1418
1419 /* Make sure that output from GDB appears before output from the
1420 inferior. */
1421 gdb_flush (gdb_stdout);
1422
1423 /* Refresh prev_pc value just prior to resuming. This used to be
1424 done in stop_stepping, however, setting prev_pc there did not handle
1425 scenarios such as inferior function calls or returning from
1426 a function via the return command. In those cases, the prev_pc
1427 value was not set properly for subsequent commands. The prev_pc value
1428 is used to initialize the starting line number in the ecs. With an
1429 invalid value, the gdb next command ends up stopping at the position
1430 represented by the next line table entry past our start position.
1431 On platforms that generate one line table entry per line, this
1432 is not a problem. However, on the ia64, the compiler generates
1433 extraneous line table entries that do not increase the line number.
1434 When we issue the gdb next command on the ia64 after an inferior call
1435 or a return command, we often end up a few instructions forward, still
1436 within the original line we started.
1437
1438 An attempt was made to have init_execution_control_state () refresh
1439 the prev_pc value before calculating the line number. This approach
1440 did not work because on platforms that use ptrace, the pc register
1441 cannot be read unless the inferior is stopped. At that point, we
1442 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
1443 call can fail. Setting the prev_pc value here ensures the value is
1444 updated correctly when the inferior is stopped. */
1445 tp->prev_pc = regcache_read_pc (get_current_regcache ());
1446
1447 /* Fill in with reasonable starting values. */
1448 init_thread_stepping_state (tp);
1449
1450 /* Reset to normal state. */
1451 init_infwait_state ();
1452
1453 /* Resume inferior. */
1454 resume (oneproc || step || bpstat_should_step (), tp->stop_signal);
1455
1456 /* Wait for it to stop (if not standalone)
1457 and in any case decode why it stopped, and act accordingly. */
1458 /* Do this only if we are not using the event loop, or if the target
1459 does not support asynchronous execution. */
1460 if (!target_can_async_p ())
1461 {
1462 wait_for_inferior (0);
1463 normal_stop ();
1464 }
1465 }
1466 \f
1467
1468 /* Start remote-debugging of a machine over a serial link. */
1469
1470 void
1471 start_remote (int from_tty)
1472 {
1473 struct inferior *inferior;
1474 init_wait_for_inferior ();
1475
1476 inferior = current_inferior ();
1477 inferior->stop_soon = STOP_QUIETLY_REMOTE;
1478
1479 /* Always go on waiting for the target, regardless of the mode. */
1480 /* FIXME: cagney/1999-09-23: At present it isn't possible to
1481 indicate to wait_for_inferior that a target should timeout if
1482 nothing is returned (instead of just blocking). Because of this,
1483 targets expecting an immediate response need to, internally, set
1484 things up so that the target_wait() is forced to eventually
1485 timeout. */
1486 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1487 differentiate to its caller what the state of the target is after
1488 the initial open has been performed. Here we're assuming that
1489 the target has stopped. It should be possible to eventually have
1490 target_open() return to the caller an indication that the target
1491 is currently running and GDB state should be set to the same as
1492 for an async run. */
1493 wait_for_inferior (0);
1494
1495 /* Now that the inferior has stopped, do any bookkeeping like
1496 loading shared libraries. We want to do this before normal_stop,
1497 so that the displayed frame is up to date. */
1498 post_create_inferior (&current_target, from_tty);
1499
1500 normal_stop ();
1501 }
1502
1503 /* Initialize static vars when a new inferior begins. */
1504
1505 void
1506 init_wait_for_inferior (void)
1507 {
1508 /* These are meaningless until the first time through wait_for_inferior. */
1509
1510 breakpoint_init_inferior (inf_starting);
1511
1512 /* The first resume is not following a fork/vfork/exec. */
1513 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
1514
1515 clear_proceed_status ();
1516
1517 stepping_past_singlestep_breakpoint = 0;
1518 deferred_step_ptid = null_ptid;
1519
1520 target_last_wait_ptid = minus_one_ptid;
1521
1522 previous_inferior_ptid = null_ptid;
1523 init_infwait_state ();
1524
1525 displaced_step_clear ();
1526 }
1527
1528 \f
1529 /* This enum encodes possible reasons for doing a target_wait, so that
1530 wfi can call target_wait in one place. (Ultimately the call will be
1531 moved out of the infinite loop entirely.) */
1532
1533 enum infwait_states
1534 {
1535 infwait_normal_state,
1536 infwait_thread_hop_state,
1537 infwait_step_watch_state,
1538 infwait_nonstep_watch_state
1539 };
1540
1541 /* Why did the inferior stop? Used to print the appropriate messages
1542 to the interface from within handle_inferior_event(). */
1543 enum inferior_stop_reason
1544 {
1545 /* Step, next, nexti, stepi finished. */
1546 END_STEPPING_RANGE,
1547 /* Inferior terminated by signal. */
1548 SIGNAL_EXITED,
1549 /* Inferior exited. */
1550 EXITED,
1551 /* Inferior received signal, and user asked to be notified. */
1552 SIGNAL_RECEIVED,
1553 /* Reverse execution -- target ran out of history info. */
1554 NO_HISTORY
1555 };
1556
1557 /* The PTID we'll do a target_wait on.*/
1558 ptid_t waiton_ptid;
1559
1560 /* Current inferior wait state. */
1561 enum infwait_states infwait_state;
1562
1563 /* Data to be passed around while handling an event. This data is
1564 discarded between events. */
1565 struct execution_control_state
1566 {
1567 ptid_t ptid;
1568 /* The thread that got the event, if this was a thread event; NULL
1569 otherwise. */
1570 struct thread_info *event_thread;
1571
1572 struct target_waitstatus ws;
1573 int random_signal;
1574 CORE_ADDR stop_func_start;
1575 CORE_ADDR stop_func_end;
1576 char *stop_func_name;
1577 int new_thread_event;
1578 int wait_some_more;
1579 };
1580
1581 void init_execution_control_state (struct execution_control_state *ecs);
1582
1583 void handle_inferior_event (struct execution_control_state *ecs);
1584
1585 static void handle_step_into_function (struct execution_control_state *ecs);
1586 static void handle_step_into_function_backward (struct execution_control_state *ecs);
1587 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
1588 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
1589 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
1590 struct frame_id sr_id);
1591 static void insert_longjmp_resume_breakpoint (CORE_ADDR);
1592
1593 static void stop_stepping (struct execution_control_state *ecs);
1594 static void prepare_to_wait (struct execution_control_state *ecs);
1595 static void keep_going (struct execution_control_state *ecs);
1596 static void print_stop_reason (enum inferior_stop_reason stop_reason,
1597 int stop_info);
1598
1599 /* Callback for iterate over threads. If the thread is stopped, but
1600 the user/frontend doesn't know about that yet, go through
1601 normal_stop, as if the thread had just stopped now. ARG points at
1602 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
1603 ptid_is_pid(PTID) is true, applies to all threads of the process
1604 pointed at by PTID. Otherwise, apply only to the thread pointed by
1605 PTID. */
1606
1607 static int
1608 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
1609 {
1610 ptid_t ptid = * (ptid_t *) arg;
1611
1612 if ((ptid_equal (info->ptid, ptid)
1613 || ptid_equal (minus_one_ptid, ptid)
1614 || (ptid_is_pid (ptid)
1615 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
1616 && is_running (info->ptid)
1617 && !is_executing (info->ptid))
1618 {
1619 struct cleanup *old_chain;
1620 struct execution_control_state ecss;
1621 struct execution_control_state *ecs = &ecss;
1622
1623 memset (ecs, 0, sizeof (*ecs));
1624
1625 old_chain = make_cleanup_restore_current_thread ();
1626
1627 switch_to_thread (info->ptid);
1628
1629 /* Go through handle_inferior_event/normal_stop, so we always
1630 have consistent output as if the stop event had been
1631 reported. */
1632 ecs->ptid = info->ptid;
1633 ecs->event_thread = find_thread_pid (info->ptid);
1634 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1635 ecs->ws.value.sig = TARGET_SIGNAL_0;
1636
1637 handle_inferior_event (ecs);
1638
1639 if (!ecs->wait_some_more)
1640 {
1641 struct thread_info *tp;
1642
1643 normal_stop ();
1644
1645 /* Finish off the continuations. The continations
1646 themselves are responsible for realising the thread
1647 didn't finish what it was supposed to do. */
1648 tp = inferior_thread ();
1649 do_all_intermediate_continuations_thread (tp);
1650 do_all_continuations_thread (tp);
1651 }
1652
1653 do_cleanups (old_chain);
1654 }
1655
1656 return 0;
1657 }
1658
1659 /* This function is attached as a "thread_stop_requested" observer.
1660 Cleanup local state that assumed the PTID was to be resumed, and
1661 report the stop to the frontend. */
1662
1663 void
1664 infrun_thread_stop_requested (ptid_t ptid)
1665 {
1666 struct displaced_step_request *it, *next, *prev = NULL;
1667
1668 /* PTID was requested to stop. Remove it from the displaced
1669 stepping queue, so we don't try to resume it automatically. */
1670 for (it = displaced_step_request_queue; it; it = next)
1671 {
1672 next = it->next;
1673
1674 if (ptid_equal (it->ptid, ptid)
1675 || ptid_equal (minus_one_ptid, ptid)
1676 || (ptid_is_pid (ptid)
1677 && ptid_get_pid (ptid) == ptid_get_pid (it->ptid)))
1678 {
1679 if (displaced_step_request_queue == it)
1680 displaced_step_request_queue = it->next;
1681 else
1682 prev->next = it->next;
1683
1684 xfree (it);
1685 }
1686 else
1687 prev = it;
1688 }
1689
1690 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
1691 }
1692
1693 /* Callback for iterate_over_threads. */
1694
1695 static int
1696 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
1697 {
1698 if (is_exited (info->ptid))
1699 return 0;
1700
1701 delete_step_resume_breakpoint (info);
1702 return 0;
1703 }
1704
1705 /* In all-stop, delete the step resume breakpoint of any thread that
1706 had one. In non-stop, delete the step resume breakpoint of the
1707 thread that just stopped. */
1708
1709 static void
1710 delete_step_thread_step_resume_breakpoint (void)
1711 {
1712 if (!target_has_execution
1713 || ptid_equal (inferior_ptid, null_ptid))
1714 /* If the inferior has exited, we have already deleted the step
1715 resume breakpoints out of GDB's lists. */
1716 return;
1717
1718 if (non_stop)
1719 {
1720 /* If in non-stop mode, only delete the step-resume or
1721 longjmp-resume breakpoint of the thread that just stopped
1722 stepping. */
1723 struct thread_info *tp = inferior_thread ();
1724 delete_step_resume_breakpoint (tp);
1725 }
1726 else
1727 /* In all-stop mode, delete all step-resume and longjmp-resume
1728 breakpoints of any thread that had them. */
1729 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
1730 }
1731
1732 /* A cleanup wrapper. */
1733
1734 static void
1735 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
1736 {
1737 delete_step_thread_step_resume_breakpoint ();
1738 }
1739
1740 /* Wait for control to return from inferior to debugger.
1741
1742 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1743 as if they were SIGTRAP signals. This can be useful during
1744 the startup sequence on some targets such as HP/UX, where
1745 we receive an EXEC event instead of the expected SIGTRAP.
1746
1747 If inferior gets a signal, we may decide to start it up again
1748 instead of returning. That is why there is a loop in this function.
1749 When this function actually returns it means the inferior
1750 should be left stopped and GDB should read more commands. */
1751
1752 void
1753 wait_for_inferior (int treat_exec_as_sigtrap)
1754 {
1755 struct cleanup *old_cleanups;
1756 struct execution_control_state ecss;
1757 struct execution_control_state *ecs;
1758
1759 if (debug_infrun)
1760 fprintf_unfiltered
1761 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1762 treat_exec_as_sigtrap);
1763
1764 old_cleanups =
1765 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
1766
1767 ecs = &ecss;
1768 memset (ecs, 0, sizeof (*ecs));
1769
1770 overlay_cache_invalid = 1;
1771
1772 /* We'll update this if & when we switch to a new thread. */
1773 previous_inferior_ptid = inferior_ptid;
1774
1775 /* We have to invalidate the registers BEFORE calling target_wait
1776 because they can be loaded from the target while in target_wait.
1777 This makes remote debugging a bit more efficient for those
1778 targets that provide critical registers as part of their normal
1779 status mechanism. */
1780
1781 registers_changed ();
1782
1783 while (1)
1784 {
1785 struct cleanup *old_chain;
1786
1787 if (deprecated_target_wait_hook)
1788 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
1789 else
1790 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
1791
1792 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1793 {
1794 xfree (ecs->ws.value.execd_pathname);
1795 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1796 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1797 }
1798
1799 /* If an error happens while handling the event, propagate GDB's
1800 knowledge of the executing state to the frontend/user running
1801 state. */
1802 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
1803
1804 /* Now figure out what to do with the result of the result. */
1805 handle_inferior_event (ecs);
1806
1807 /* No error, don't finish the state yet. */
1808 discard_cleanups (old_chain);
1809
1810 if (!ecs->wait_some_more)
1811 break;
1812 }
1813
1814 do_cleanups (old_cleanups);
1815 }
1816
1817 /* Asynchronous version of wait_for_inferior. It is called by the
1818 event loop whenever a change of state is detected on the file
1819 descriptor corresponding to the target. It can be called more than
1820 once to complete a single execution command. In such cases we need
1821 to keep the state in a global variable ECSS. If it is the last time
1822 that this function is called for a single execution command, then
1823 report to the user that the inferior has stopped, and do the
1824 necessary cleanups. */
1825
1826 void
1827 fetch_inferior_event (void *client_data)
1828 {
1829 struct execution_control_state ecss;
1830 struct execution_control_state *ecs = &ecss;
1831 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
1832 struct cleanup *ts_old_chain;
1833 int was_sync = sync_execution;
1834
1835 memset (ecs, 0, sizeof (*ecs));
1836
1837 overlay_cache_invalid = 1;
1838
1839 /* We can only rely on wait_for_more being correct before handling
1840 the event in all-stop, but previous_inferior_ptid isn't used in
1841 non-stop. */
1842 if (!ecs->wait_some_more)
1843 /* We'll update this if & when we switch to a new thread. */
1844 previous_inferior_ptid = inferior_ptid;
1845
1846 if (non_stop)
1847 /* In non-stop mode, the user/frontend should not notice a thread
1848 switch due to internal events. Make sure we reverse to the
1849 user selected thread and frame after handling the event and
1850 running any breakpoint commands. */
1851 make_cleanup_restore_current_thread ();
1852
1853 /* We have to invalidate the registers BEFORE calling target_wait
1854 because they can be loaded from the target while in target_wait.
1855 This makes remote debugging a bit more efficient for those
1856 targets that provide critical registers as part of their normal
1857 status mechanism. */
1858
1859 registers_changed ();
1860
1861 if (deprecated_target_wait_hook)
1862 ecs->ptid =
1863 deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
1864 else
1865 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
1866
1867 if (non_stop
1868 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
1869 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1870 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
1871 /* In non-stop mode, each thread is handled individually. Switch
1872 early, so the global state is set correctly for this
1873 thread. */
1874 context_switch (ecs->ptid);
1875
1876 /* If an error happens while handling the event, propagate GDB's
1877 knowledge of the executing state to the frontend/user running
1878 state. */
1879 if (!non_stop)
1880 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
1881 else
1882 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
1883
1884 /* Now figure out what to do with the result of the result. */
1885 handle_inferior_event (ecs);
1886
1887 if (!ecs->wait_some_more)
1888 {
1889 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
1890
1891 delete_step_thread_step_resume_breakpoint ();
1892
1893 /* We may not find an inferior if this was a process exit. */
1894 if (inf == NULL || inf->stop_soon == NO_STOP_QUIETLY)
1895 normal_stop ();
1896
1897 if (target_has_execution
1898 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1899 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
1900 && ecs->event_thread->step_multi
1901 && ecs->event_thread->stop_step)
1902 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1903 else
1904 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1905 }
1906
1907 /* No error, don't finish the thread states yet. */
1908 discard_cleanups (ts_old_chain);
1909
1910 /* Revert thread and frame. */
1911 do_cleanups (old_chain);
1912
1913 /* If the inferior was in sync execution mode, and now isn't,
1914 restore the prompt. */
1915 if (was_sync && !sync_execution)
1916 display_gdb_prompt (0);
1917 }
1918
1919 /* Prepare an execution control state for looping through a
1920 wait_for_inferior-type loop. */
1921
1922 void
1923 init_execution_control_state (struct execution_control_state *ecs)
1924 {
1925 ecs->random_signal = 0;
1926 }
1927
1928 /* Clear context switchable stepping state. */
1929
1930 void
1931 init_thread_stepping_state (struct thread_info *tss)
1932 {
1933 struct symtab_and_line sal;
1934
1935 tss->stepping_over_breakpoint = 0;
1936 tss->step_after_step_resume_breakpoint = 0;
1937 tss->stepping_through_solib_after_catch = 0;
1938 tss->stepping_through_solib_catchpoints = NULL;
1939
1940 sal = find_pc_line (tss->prev_pc, 0);
1941 tss->current_line = sal.line;
1942 tss->current_symtab = sal.symtab;
1943 }
1944
1945 /* Return the cached copy of the last pid/waitstatus returned by
1946 target_wait()/deprecated_target_wait_hook(). The data is actually
1947 cached by handle_inferior_event(), which gets called immediately
1948 after target_wait()/deprecated_target_wait_hook(). */
1949
1950 void
1951 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1952 {
1953 *ptidp = target_last_wait_ptid;
1954 *status = target_last_waitstatus;
1955 }
1956
1957 void
1958 nullify_last_target_wait_ptid (void)
1959 {
1960 target_last_wait_ptid = minus_one_ptid;
1961 }
1962
1963 /* Switch thread contexts. */
1964
1965 static void
1966 context_switch (ptid_t ptid)
1967 {
1968 if (debug_infrun)
1969 {
1970 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1971 target_pid_to_str (inferior_ptid));
1972 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1973 target_pid_to_str (ptid));
1974 }
1975
1976 switch_to_thread (ptid);
1977 }
1978
1979 static void
1980 adjust_pc_after_break (struct execution_control_state *ecs)
1981 {
1982 struct regcache *regcache;
1983 struct gdbarch *gdbarch;
1984 CORE_ADDR breakpoint_pc;
1985
1986 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1987 we aren't, just return.
1988
1989 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1990 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1991 implemented by software breakpoints should be handled through the normal
1992 breakpoint layer.
1993
1994 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1995 different signals (SIGILL or SIGEMT for instance), but it is less
1996 clear where the PC is pointing afterwards. It may not match
1997 gdbarch_decr_pc_after_break. I don't know any specific target that
1998 generates these signals at breakpoints (the code has been in GDB since at
1999 least 1992) so I can not guess how to handle them here.
2000
2001 In earlier versions of GDB, a target with
2002 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2003 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2004 target with both of these set in GDB history, and it seems unlikely to be
2005 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2006
2007 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2008 return;
2009
2010 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2011 return;
2012
2013 /* In reverse execution, when a breakpoint is hit, the instruction
2014 under it has already been de-executed. The reported PC always
2015 points at the breakpoint address, so adjusting it further would
2016 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2017 architecture:
2018
2019 B1 0x08000000 : INSN1
2020 B2 0x08000001 : INSN2
2021 0x08000002 : INSN3
2022 PC -> 0x08000003 : INSN4
2023
2024 Say you're stopped at 0x08000003 as above. Reverse continuing
2025 from that point should hit B2 as below. Reading the PC when the
2026 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2027 been de-executed already.
2028
2029 B1 0x08000000 : INSN1
2030 B2 PC -> 0x08000001 : INSN2
2031 0x08000002 : INSN3
2032 0x08000003 : INSN4
2033
2034 We can't apply the same logic as for forward execution, because
2035 we would wrongly adjust the PC to 0x08000000, since there's a
2036 breakpoint at PC - 1. We'd then report a hit on B1, although
2037 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2038 behaviour. */
2039 if (execution_direction == EXEC_REVERSE)
2040 return;
2041
2042 /* If this target does not decrement the PC after breakpoints, then
2043 we have nothing to do. */
2044 regcache = get_thread_regcache (ecs->ptid);
2045 gdbarch = get_regcache_arch (regcache);
2046 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2047 return;
2048
2049 /* Find the location where (if we've hit a breakpoint) the
2050 breakpoint would be. */
2051 breakpoint_pc = regcache_read_pc (regcache)
2052 - gdbarch_decr_pc_after_break (gdbarch);
2053
2054 /* Check whether there actually is a software breakpoint inserted at
2055 that location.
2056
2057 If in non-stop mode, a race condition is possible where we've
2058 removed a breakpoint, but stop events for that breakpoint were
2059 already queued and arrive later. To suppress those spurious
2060 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2061 and retire them after a number of stop events are reported. */
2062 if (software_breakpoint_inserted_here_p (breakpoint_pc)
2063 || (non_stop && moribund_breakpoint_here_p (breakpoint_pc)))
2064 {
2065 /* When using hardware single-step, a SIGTRAP is reported for both
2066 a completed single-step and a software breakpoint. Need to
2067 differentiate between the two, as the latter needs adjusting
2068 but the former does not.
2069
2070 The SIGTRAP can be due to a completed hardware single-step only if
2071 - we didn't insert software single-step breakpoints
2072 - the thread to be examined is still the current thread
2073 - this thread is currently being stepped
2074
2075 If any of these events did not occur, we must have stopped due
2076 to hitting a software breakpoint, and have to back up to the
2077 breakpoint address.
2078
2079 As a special case, we could have hardware single-stepped a
2080 software breakpoint. In this case (prev_pc == breakpoint_pc),
2081 we also need to back up to the breakpoint address. */
2082
2083 if (singlestep_breakpoints_inserted_p
2084 || !ptid_equal (ecs->ptid, inferior_ptid)
2085 || !currently_stepping (ecs->event_thread)
2086 || ecs->event_thread->prev_pc == breakpoint_pc)
2087 regcache_write_pc (regcache, breakpoint_pc);
2088 }
2089 }
2090
2091 void
2092 init_infwait_state (void)
2093 {
2094 waiton_ptid = pid_to_ptid (-1);
2095 infwait_state = infwait_normal_state;
2096 }
2097
2098 void
2099 error_is_running (void)
2100 {
2101 error (_("\
2102 Cannot execute this command while the selected thread is running."));
2103 }
2104
2105 void
2106 ensure_not_running (void)
2107 {
2108 if (is_running (inferior_ptid))
2109 error_is_running ();
2110 }
2111
2112 /* Given an execution control state that has been freshly filled in
2113 by an event from the inferior, figure out what it means and take
2114 appropriate action. */
2115
2116 void
2117 handle_inferior_event (struct execution_control_state *ecs)
2118 {
2119 int sw_single_step_trap_p = 0;
2120 int stopped_by_watchpoint;
2121 int stepped_after_stopped_by_watchpoint = 0;
2122 struct symtab_and_line stop_pc_sal;
2123 enum stop_kind stop_soon;
2124
2125 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2126 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2127 && ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2128 {
2129 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2130 gdb_assert (inf);
2131 stop_soon = inf->stop_soon;
2132 }
2133 else
2134 stop_soon = NO_STOP_QUIETLY;
2135
2136 /* Cache the last pid/waitstatus. */
2137 target_last_wait_ptid = ecs->ptid;
2138 target_last_waitstatus = ecs->ws;
2139
2140 /* Always clear state belonging to the previous time we stopped. */
2141 stop_stack_dummy = 0;
2142
2143 /* If it's a new process, add it to the thread database */
2144
2145 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
2146 && !ptid_equal (ecs->ptid, minus_one_ptid)
2147 && !in_thread_list (ecs->ptid));
2148
2149 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2150 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
2151 add_thread (ecs->ptid);
2152
2153 ecs->event_thread = find_thread_pid (ecs->ptid);
2154
2155 /* Dependent on valid ECS->EVENT_THREAD. */
2156 adjust_pc_after_break (ecs);
2157
2158 /* Dependent on the current PC value modified by adjust_pc_after_break. */
2159 reinit_frame_cache ();
2160
2161 if (ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2162 {
2163 breakpoint_retire_moribund ();
2164
2165 /* Mark the non-executing threads accordingly. In all-stop, all
2166 threads of all processes are stopped when we get any event
2167 reported. In non-stop mode, only the event thread stops. If
2168 we're handling a process exit in non-stop mode, there's
2169 nothing to do, as threads of the dead process are gone, and
2170 threads of any other process were left running. */
2171 if (!non_stop)
2172 set_executing (minus_one_ptid, 0);
2173 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2174 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
2175 set_executing (inferior_ptid, 0);
2176 }
2177
2178 switch (infwait_state)
2179 {
2180 case infwait_thread_hop_state:
2181 if (debug_infrun)
2182 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
2183 /* Cancel the waiton_ptid. */
2184 waiton_ptid = pid_to_ptid (-1);
2185 break;
2186
2187 case infwait_normal_state:
2188 if (debug_infrun)
2189 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
2190 break;
2191
2192 case infwait_step_watch_state:
2193 if (debug_infrun)
2194 fprintf_unfiltered (gdb_stdlog,
2195 "infrun: infwait_step_watch_state\n");
2196
2197 stepped_after_stopped_by_watchpoint = 1;
2198 break;
2199
2200 case infwait_nonstep_watch_state:
2201 if (debug_infrun)
2202 fprintf_unfiltered (gdb_stdlog,
2203 "infrun: infwait_nonstep_watch_state\n");
2204 insert_breakpoints ();
2205
2206 /* FIXME-maybe: is this cleaner than setting a flag? Does it
2207 handle things like signals arriving and other things happening
2208 in combination correctly? */
2209 stepped_after_stopped_by_watchpoint = 1;
2210 break;
2211
2212 default:
2213 internal_error (__FILE__, __LINE__, _("bad switch"));
2214 }
2215 infwait_state = infwait_normal_state;
2216
2217 switch (ecs->ws.kind)
2218 {
2219 case TARGET_WAITKIND_LOADED:
2220 if (debug_infrun)
2221 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
2222 /* Ignore gracefully during startup of the inferior, as it might
2223 be the shell which has just loaded some objects, otherwise
2224 add the symbols for the newly loaded objects. Also ignore at
2225 the beginning of an attach or remote session; we will query
2226 the full list of libraries once the connection is
2227 established. */
2228 if (stop_soon == NO_STOP_QUIETLY)
2229 {
2230 /* Check for any newly added shared libraries if we're
2231 supposed to be adding them automatically. Switch
2232 terminal for any messages produced by
2233 breakpoint_re_set. */
2234 target_terminal_ours_for_output ();
2235 /* NOTE: cagney/2003-11-25: Make certain that the target
2236 stack's section table is kept up-to-date. Architectures,
2237 (e.g., PPC64), use the section table to perform
2238 operations such as address => section name and hence
2239 require the table to contain all sections (including
2240 those found in shared libraries). */
2241 /* NOTE: cagney/2003-11-25: Pass current_target and not
2242 exec_ops to SOLIB_ADD. This is because current GDB is
2243 only tooled to propagate section_table changes out from
2244 the "current_target" (see target_resize_to_sections), and
2245 not up from the exec stratum. This, of course, isn't
2246 right. "infrun.c" should only interact with the
2247 exec/process stratum, instead relying on the target stack
2248 to propagate relevant changes (stop, section table
2249 changed, ...) up to other layers. */
2250 #ifdef SOLIB_ADD
2251 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2252 #else
2253 solib_add (NULL, 0, &current_target, auto_solib_add);
2254 #endif
2255 target_terminal_inferior ();
2256
2257 /* If requested, stop when the dynamic linker notifies
2258 gdb of events. This allows the user to get control
2259 and place breakpoints in initializer routines for
2260 dynamically loaded objects (among other things). */
2261 if (stop_on_solib_events)
2262 {
2263 stop_stepping (ecs);
2264 return;
2265 }
2266
2267 /* NOTE drow/2007-05-11: This might be a good place to check
2268 for "catch load". */
2269 }
2270
2271 /* If we are skipping through a shell, or through shared library
2272 loading that we aren't interested in, resume the program. If
2273 we're running the program normally, also resume. But stop if
2274 we're attaching or setting up a remote connection. */
2275 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
2276 {
2277 /* Loading of shared libraries might have changed breakpoint
2278 addresses. Make sure new breakpoints are inserted. */
2279 if (stop_soon == NO_STOP_QUIETLY
2280 && !breakpoints_always_inserted_mode ())
2281 insert_breakpoints ();
2282 resume (0, TARGET_SIGNAL_0);
2283 prepare_to_wait (ecs);
2284 return;
2285 }
2286
2287 break;
2288
2289 case TARGET_WAITKIND_SPURIOUS:
2290 if (debug_infrun)
2291 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
2292 resume (0, TARGET_SIGNAL_0);
2293 prepare_to_wait (ecs);
2294 return;
2295
2296 case TARGET_WAITKIND_EXITED:
2297 if (debug_infrun)
2298 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
2299 inferior_ptid = ecs->ptid;
2300 target_terminal_ours (); /* Must do this before mourn anyway */
2301 print_stop_reason (EXITED, ecs->ws.value.integer);
2302
2303 /* Record the exit code in the convenience variable $_exitcode, so
2304 that the user can inspect this again later. */
2305 set_internalvar (lookup_internalvar ("_exitcode"),
2306 value_from_longest (builtin_type_int32,
2307 (LONGEST) ecs->ws.value.integer));
2308 gdb_flush (gdb_stdout);
2309 target_mourn_inferior ();
2310 singlestep_breakpoints_inserted_p = 0;
2311 stop_print_frame = 0;
2312 stop_stepping (ecs);
2313 return;
2314
2315 case TARGET_WAITKIND_SIGNALLED:
2316 if (debug_infrun)
2317 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
2318 inferior_ptid = ecs->ptid;
2319 stop_print_frame = 0;
2320 target_terminal_ours (); /* Must do this before mourn anyway */
2321
2322 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2323 reach here unless the inferior is dead. However, for years
2324 target_kill() was called here, which hints that fatal signals aren't
2325 really fatal on some systems. If that's true, then some changes
2326 may be needed. */
2327 target_mourn_inferior ();
2328
2329 print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig);
2330 singlestep_breakpoints_inserted_p = 0;
2331 stop_stepping (ecs);
2332 return;
2333
2334 /* The following are the only cases in which we keep going;
2335 the above cases end in a continue or goto. */
2336 case TARGET_WAITKIND_FORKED:
2337 case TARGET_WAITKIND_VFORKED:
2338 if (debug_infrun)
2339 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
2340 pending_follow.kind = ecs->ws.kind;
2341
2342 pending_follow.fork_event.parent_pid = ecs->ptid;
2343 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
2344
2345 if (!ptid_equal (ecs->ptid, inferior_ptid))
2346 {
2347 context_switch (ecs->ptid);
2348 reinit_frame_cache ();
2349 }
2350
2351 stop_pc = read_pc ();
2352
2353 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2354
2355 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2356
2357 /* If no catchpoint triggered for this, then keep going. */
2358 if (ecs->random_signal)
2359 {
2360 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2361 keep_going (ecs);
2362 return;
2363 }
2364 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2365 goto process_event_stop_test;
2366
2367 case TARGET_WAITKIND_EXECD:
2368 if (debug_infrun)
2369 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
2370 pending_follow.execd_pathname =
2371 savestring (ecs->ws.value.execd_pathname,
2372 strlen (ecs->ws.value.execd_pathname));
2373
2374 if (!ptid_equal (ecs->ptid, inferior_ptid))
2375 {
2376 context_switch (ecs->ptid);
2377 reinit_frame_cache ();
2378 }
2379
2380 stop_pc = read_pc ();
2381
2382 /* This causes the eventpoints and symbol table to be reset.
2383 Must do this now, before trying to determine whether to
2384 stop. */
2385 follow_exec (inferior_ptid, pending_follow.execd_pathname);
2386 xfree (pending_follow.execd_pathname);
2387
2388 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2389 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2390
2391 /* If no catchpoint triggered for this, then keep going. */
2392 if (ecs->random_signal)
2393 {
2394 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2395 keep_going (ecs);
2396 return;
2397 }
2398 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2399 goto process_event_stop_test;
2400
2401 /* Be careful not to try to gather much state about a thread
2402 that's in a syscall. It's frequently a losing proposition. */
2403 case TARGET_WAITKIND_SYSCALL_ENTRY:
2404 if (debug_infrun)
2405 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
2406 resume (0, TARGET_SIGNAL_0);
2407 prepare_to_wait (ecs);
2408 return;
2409
2410 /* Before examining the threads further, step this thread to
2411 get it entirely out of the syscall. (We get notice of the
2412 event when the thread is just on the verge of exiting a
2413 syscall. Stepping one instruction seems to get it back
2414 into user code.) */
2415 case TARGET_WAITKIND_SYSCALL_RETURN:
2416 if (debug_infrun)
2417 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
2418 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
2419 prepare_to_wait (ecs);
2420 return;
2421
2422 case TARGET_WAITKIND_STOPPED:
2423 if (debug_infrun)
2424 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2425 ecs->event_thread->stop_signal = ecs->ws.value.sig;
2426 break;
2427
2428 case TARGET_WAITKIND_NO_HISTORY:
2429 /* Reverse execution: target ran out of history info. */
2430 stop_pc = read_pc ();
2431 print_stop_reason (NO_HISTORY, 0);
2432 stop_stepping (ecs);
2433 return;
2434
2435 /* We had an event in the inferior, but we are not interested
2436 in handling it at this level. The lower layers have already
2437 done what needs to be done, if anything.
2438
2439 One of the possible circumstances for this is when the
2440 inferior produces output for the console. The inferior has
2441 not stopped, and we are ignoring the event. Another possible
2442 circumstance is any event which the lower level knows will be
2443 reported multiple times without an intervening resume. */
2444 case TARGET_WAITKIND_IGNORE:
2445 if (debug_infrun)
2446 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
2447 prepare_to_wait (ecs);
2448 return;
2449 }
2450
2451 if (ecs->new_thread_event)
2452 {
2453 if (non_stop)
2454 /* Non-stop assumes that the target handles adding new threads
2455 to the thread list. */
2456 internal_error (__FILE__, __LINE__, "\
2457 targets should add new threads to the thread list themselves in non-stop mode.");
2458
2459 /* We may want to consider not doing a resume here in order to
2460 give the user a chance to play with the new thread. It might
2461 be good to make that a user-settable option. */
2462
2463 /* At this point, all threads are stopped (happens automatically
2464 in either the OS or the native code). Therefore we need to
2465 continue all threads in order to make progress. */
2466
2467 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2468 prepare_to_wait (ecs);
2469 return;
2470 }
2471
2472 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
2473 {
2474 /* Do we need to clean up the state of a thread that has
2475 completed a displaced single-step? (Doing so usually affects
2476 the PC, so do it here, before we set stop_pc.) */
2477 displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal);
2478
2479 /* If we either finished a single-step or hit a breakpoint, but
2480 the user wanted this thread to be stopped, pretend we got a
2481 SIG0 (generic unsignaled stop). */
2482
2483 if (ecs->event_thread->stop_requested
2484 && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2485 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2486 }
2487
2488 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2489
2490 if (debug_infrun)
2491 {
2492 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n",
2493 paddr_nz (stop_pc));
2494 if (STOPPED_BY_WATCHPOINT (&ecs->ws))
2495 {
2496 CORE_ADDR addr;
2497 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2498
2499 if (target_stopped_data_address (&current_target, &addr))
2500 fprintf_unfiltered (gdb_stdlog,
2501 "infrun: stopped data address = 0x%s\n",
2502 paddr_nz (addr));
2503 else
2504 fprintf_unfiltered (gdb_stdlog,
2505 "infrun: (no data address available)\n");
2506 }
2507 }
2508
2509 if (stepping_past_singlestep_breakpoint)
2510 {
2511 gdb_assert (singlestep_breakpoints_inserted_p);
2512 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2513 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2514
2515 stepping_past_singlestep_breakpoint = 0;
2516
2517 /* We've either finished single-stepping past the single-step
2518 breakpoint, or stopped for some other reason. It would be nice if
2519 we could tell, but we can't reliably. */
2520 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2521 {
2522 if (debug_infrun)
2523 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
2524 /* Pull the single step breakpoints out of the target. */
2525 remove_single_step_breakpoints ();
2526 singlestep_breakpoints_inserted_p = 0;
2527
2528 ecs->random_signal = 0;
2529
2530 context_switch (saved_singlestep_ptid);
2531 if (deprecated_context_hook)
2532 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2533
2534 resume (1, TARGET_SIGNAL_0);
2535 prepare_to_wait (ecs);
2536 return;
2537 }
2538 }
2539
2540 if (!ptid_equal (deferred_step_ptid, null_ptid))
2541 {
2542 /* In non-stop mode, there's never a deferred_step_ptid set. */
2543 gdb_assert (!non_stop);
2544
2545 /* If we stopped for some other reason than single-stepping, ignore
2546 the fact that we were supposed to switch back. */
2547 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2548 {
2549 if (debug_infrun)
2550 fprintf_unfiltered (gdb_stdlog,
2551 "infrun: handling deferred step\n");
2552
2553 /* Pull the single step breakpoints out of the target. */
2554 if (singlestep_breakpoints_inserted_p)
2555 {
2556 remove_single_step_breakpoints ();
2557 singlestep_breakpoints_inserted_p = 0;
2558 }
2559
2560 /* Note: We do not call context_switch at this point, as the
2561 context is already set up for stepping the original thread. */
2562 switch_to_thread (deferred_step_ptid);
2563 deferred_step_ptid = null_ptid;
2564 /* Suppress spurious "Switching to ..." message. */
2565 previous_inferior_ptid = inferior_ptid;
2566
2567 resume (1, TARGET_SIGNAL_0);
2568 prepare_to_wait (ecs);
2569 return;
2570 }
2571
2572 deferred_step_ptid = null_ptid;
2573 }
2574
2575 /* See if a thread hit a thread-specific breakpoint that was meant for
2576 another thread. If so, then step that thread past the breakpoint,
2577 and continue it. */
2578
2579 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2580 {
2581 int thread_hop_needed = 0;
2582
2583 /* Check if a regular breakpoint has been hit before checking
2584 for a potential single step breakpoint. Otherwise, GDB will
2585 not see this breakpoint hit when stepping onto breakpoints. */
2586 if (regular_breakpoint_inserted_here_p (stop_pc))
2587 {
2588 ecs->random_signal = 0;
2589 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
2590 thread_hop_needed = 1;
2591 }
2592 else if (singlestep_breakpoints_inserted_p)
2593 {
2594 /* We have not context switched yet, so this should be true
2595 no matter which thread hit the singlestep breakpoint. */
2596 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2597 if (debug_infrun)
2598 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2599 "trap for %s\n",
2600 target_pid_to_str (ecs->ptid));
2601
2602 ecs->random_signal = 0;
2603 /* The call to in_thread_list is necessary because PTIDs sometimes
2604 change when we go from single-threaded to multi-threaded. If
2605 the singlestep_ptid is still in the list, assume that it is
2606 really different from ecs->ptid. */
2607 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2608 && in_thread_list (singlestep_ptid))
2609 {
2610 /* If the PC of the thread we were trying to single-step
2611 has changed, discard this event (which we were going
2612 to ignore anyway), and pretend we saw that thread
2613 trap. This prevents us continuously moving the
2614 single-step breakpoint forward, one instruction at a
2615 time. If the PC has changed, then the thread we were
2616 trying to single-step has trapped or been signalled,
2617 but the event has not been reported to GDB yet.
2618
2619 There might be some cases where this loses signal
2620 information, if a signal has arrived at exactly the
2621 same time that the PC changed, but this is the best
2622 we can do with the information available. Perhaps we
2623 should arrange to report all events for all threads
2624 when they stop, or to re-poll the remote looking for
2625 this particular thread (i.e. temporarily enable
2626 schedlock). */
2627
2628 CORE_ADDR new_singlestep_pc
2629 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2630
2631 if (new_singlestep_pc != singlestep_pc)
2632 {
2633 enum target_signal stop_signal;
2634
2635 if (debug_infrun)
2636 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2637 " but expected thread advanced also\n");
2638
2639 /* The current context still belongs to
2640 singlestep_ptid. Don't swap here, since that's
2641 the context we want to use. Just fudge our
2642 state and continue. */
2643 stop_signal = ecs->event_thread->stop_signal;
2644 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2645 ecs->ptid = singlestep_ptid;
2646 ecs->event_thread = find_thread_pid (ecs->ptid);
2647 ecs->event_thread->stop_signal = stop_signal;
2648 stop_pc = new_singlestep_pc;
2649 }
2650 else
2651 {
2652 if (debug_infrun)
2653 fprintf_unfiltered (gdb_stdlog,
2654 "infrun: unexpected thread\n");
2655
2656 thread_hop_needed = 1;
2657 stepping_past_singlestep_breakpoint = 1;
2658 saved_singlestep_ptid = singlestep_ptid;
2659 }
2660 }
2661 }
2662
2663 if (thread_hop_needed)
2664 {
2665 int remove_status = 0;
2666
2667 if (debug_infrun)
2668 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
2669
2670 /* Saw a breakpoint, but it was hit by the wrong thread.
2671 Just continue. */
2672
2673 if (singlestep_breakpoints_inserted_p)
2674 {
2675 /* Pull the single step breakpoints out of the target. */
2676 remove_single_step_breakpoints ();
2677 singlestep_breakpoints_inserted_p = 0;
2678 }
2679
2680 /* If the arch can displace step, don't remove the
2681 breakpoints. */
2682 if (!use_displaced_stepping (current_gdbarch))
2683 remove_status = remove_breakpoints ();
2684
2685 /* Did we fail to remove breakpoints? If so, try
2686 to set the PC past the bp. (There's at least
2687 one situation in which we can fail to remove
2688 the bp's: On HP-UX's that use ttrace, we can't
2689 change the address space of a vforking child
2690 process until the child exits (well, okay, not
2691 then either :-) or execs. */
2692 if (remove_status != 0)
2693 error (_("Cannot step over breakpoint hit in wrong thread"));
2694 else
2695 { /* Single step */
2696 if (!ptid_equal (inferior_ptid, ecs->ptid))
2697 context_switch (ecs->ptid);
2698
2699 if (!non_stop)
2700 {
2701 /* Only need to require the next event from this
2702 thread in all-stop mode. */
2703 waiton_ptid = ecs->ptid;
2704 infwait_state = infwait_thread_hop_state;
2705 }
2706
2707 ecs->event_thread->stepping_over_breakpoint = 1;
2708 keep_going (ecs);
2709 registers_changed ();
2710 return;
2711 }
2712 }
2713 else if (singlestep_breakpoints_inserted_p)
2714 {
2715 sw_single_step_trap_p = 1;
2716 ecs->random_signal = 0;
2717 }
2718 }
2719 else
2720 ecs->random_signal = 1;
2721
2722 /* See if something interesting happened to the non-current thread. If
2723 so, then switch to that thread. */
2724 if (!ptid_equal (ecs->ptid, inferior_ptid))
2725 {
2726 if (debug_infrun)
2727 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
2728
2729 context_switch (ecs->ptid);
2730
2731 if (deprecated_context_hook)
2732 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2733 }
2734
2735 if (singlestep_breakpoints_inserted_p)
2736 {
2737 /* Pull the single step breakpoints out of the target. */
2738 remove_single_step_breakpoints ();
2739 singlestep_breakpoints_inserted_p = 0;
2740 }
2741
2742 if (stepped_after_stopped_by_watchpoint)
2743 stopped_by_watchpoint = 0;
2744 else
2745 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
2746
2747 /* If necessary, step over this watchpoint. We'll be back to display
2748 it in a moment. */
2749 if (stopped_by_watchpoint
2750 && (HAVE_STEPPABLE_WATCHPOINT
2751 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
2752 {
2753 /* At this point, we are stopped at an instruction which has
2754 attempted to write to a piece of memory under control of
2755 a watchpoint. The instruction hasn't actually executed
2756 yet. If we were to evaluate the watchpoint expression
2757 now, we would get the old value, and therefore no change
2758 would seem to have occurred.
2759
2760 In order to make watchpoints work `right', we really need
2761 to complete the memory write, and then evaluate the
2762 watchpoint expression. We do this by single-stepping the
2763 target.
2764
2765 It may not be necessary to disable the watchpoint to stop over
2766 it. For example, the PA can (with some kernel cooperation)
2767 single step over a watchpoint without disabling the watchpoint.
2768
2769 It is far more common to need to disable a watchpoint to step
2770 the inferior over it. If we have non-steppable watchpoints,
2771 we must disable the current watchpoint; it's simplest to
2772 disable all watchpoints and breakpoints. */
2773
2774 if (!HAVE_STEPPABLE_WATCHPOINT)
2775 remove_breakpoints ();
2776 registers_changed ();
2777 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
2778 waiton_ptid = ecs->ptid;
2779 if (HAVE_STEPPABLE_WATCHPOINT)
2780 infwait_state = infwait_step_watch_state;
2781 else
2782 infwait_state = infwait_nonstep_watch_state;
2783 prepare_to_wait (ecs);
2784 return;
2785 }
2786
2787 ecs->stop_func_start = 0;
2788 ecs->stop_func_end = 0;
2789 ecs->stop_func_name = 0;
2790 /* Don't care about return value; stop_func_start and stop_func_name
2791 will both be 0 if it doesn't work. */
2792 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2793 &ecs->stop_func_start, &ecs->stop_func_end);
2794 ecs->stop_func_start
2795 += gdbarch_deprecated_function_start_offset (current_gdbarch);
2796 ecs->event_thread->stepping_over_breakpoint = 0;
2797 bpstat_clear (&ecs->event_thread->stop_bpstat);
2798 ecs->event_thread->stop_step = 0;
2799 stop_print_frame = 1;
2800 ecs->random_signal = 0;
2801 stopped_by_random_signal = 0;
2802
2803 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
2804 && ecs->event_thread->trap_expected
2805 && gdbarch_single_step_through_delay_p (current_gdbarch)
2806 && currently_stepping (ecs->event_thread))
2807 {
2808 /* We're trying to step off a breakpoint. Turns out that we're
2809 also on an instruction that needs to be stepped multiple
2810 times before it's been fully executing. E.g., architectures
2811 with a delay slot. It needs to be stepped twice, once for
2812 the instruction and once for the delay slot. */
2813 int step_through_delay
2814 = gdbarch_single_step_through_delay (current_gdbarch,
2815 get_current_frame ());
2816 if (debug_infrun && step_through_delay)
2817 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
2818 if (ecs->event_thread->step_range_end == 0 && step_through_delay)
2819 {
2820 /* The user issued a continue when stopped at a breakpoint.
2821 Set up for another trap and get out of here. */
2822 ecs->event_thread->stepping_over_breakpoint = 1;
2823 keep_going (ecs);
2824 return;
2825 }
2826 else if (step_through_delay)
2827 {
2828 /* The user issued a step when stopped at a breakpoint.
2829 Maybe we should stop, maybe we should not - the delay
2830 slot *might* correspond to a line of source. In any
2831 case, don't decide that here, just set
2832 ecs->stepping_over_breakpoint, making sure we
2833 single-step again before breakpoints are re-inserted. */
2834 ecs->event_thread->stepping_over_breakpoint = 1;
2835 }
2836 }
2837
2838 /* Look at the cause of the stop, and decide what to do.
2839 The alternatives are:
2840 1) stop_stepping and return; to really stop and return to the debugger,
2841 2) keep_going and return to start up again
2842 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
2843 3) set ecs->random_signal to 1, and the decision between 1 and 2
2844 will be made according to the signal handling tables. */
2845
2846 /* First, distinguish signals caused by the debugger from signals
2847 that have to do with the program's own actions. Note that
2848 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
2849 on the operating system version. Here we detect when a SIGILL or
2850 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
2851 something similar for SIGSEGV, since a SIGSEGV will be generated
2852 when we're trying to execute a breakpoint instruction on a
2853 non-executable stack. This happens for call dummy breakpoints
2854 for architectures like SPARC that place call dummies on the
2855 stack.
2856
2857 If we're doing a displaced step past a breakpoint, then the
2858 breakpoint is always inserted at the original instruction;
2859 non-standard signals can't be explained by the breakpoint. */
2860 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
2861 || (! ecs->event_thread->trap_expected
2862 && breakpoint_inserted_here_p (stop_pc)
2863 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_ILL
2864 || ecs->event_thread->stop_signal == TARGET_SIGNAL_SEGV
2865 || ecs->event_thread->stop_signal == TARGET_SIGNAL_EMT))
2866 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
2867 || stop_soon == STOP_QUIETLY_REMOTE)
2868 {
2869 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
2870 {
2871 if (debug_infrun)
2872 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
2873 stop_print_frame = 0;
2874 stop_stepping (ecs);
2875 return;
2876 }
2877
2878 /* This is originated from start_remote(), start_inferior() and
2879 shared libraries hook functions. */
2880 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
2881 {
2882 if (debug_infrun)
2883 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
2884 stop_stepping (ecs);
2885 return;
2886 }
2887
2888 /* This originates from attach_command(). We need to overwrite
2889 the stop_signal here, because some kernels don't ignore a
2890 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
2891 See more comments in inferior.h. On the other hand, if we
2892 get a non-SIGSTOP, report it to the user - assume the backend
2893 will handle the SIGSTOP if it should show up later.
2894
2895 Also consider that the attach is complete when we see a
2896 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
2897 target extended-remote report it instead of a SIGSTOP
2898 (e.g. gdbserver). We already rely on SIGTRAP being our
2899 signal, so this is no exception.
2900
2901 Also consider that the attach is complete when we see a
2902 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
2903 the target to stop all threads of the inferior, in case the
2904 low level attach operation doesn't stop them implicitly. If
2905 they weren't stopped implicitly, then the stub will report a
2906 TARGET_SIGNAL_0, meaning: stopped for no particular reason
2907 other than GDB's request. */
2908 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2909 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP
2910 || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
2911 || ecs->event_thread->stop_signal == TARGET_SIGNAL_0))
2912 {
2913 stop_stepping (ecs);
2914 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2915 return;
2916 }
2917
2918 /* See if there is a breakpoint at the current PC. */
2919 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2920
2921 /* Following in case break condition called a
2922 function. */
2923 stop_print_frame = 1;
2924
2925 /* NOTE: cagney/2003-03-29: These two checks for a random signal
2926 at one stage in the past included checks for an inferior
2927 function call's call dummy's return breakpoint. The original
2928 comment, that went with the test, read:
2929
2930 ``End of a stack dummy. Some systems (e.g. Sony news) give
2931 another signal besides SIGTRAP, so check here as well as
2932 above.''
2933
2934 If someone ever tries to get call dummys on a
2935 non-executable stack to work (where the target would stop
2936 with something like a SIGSEGV), then those tests might need
2937 to be re-instated. Given, however, that the tests were only
2938 enabled when momentary breakpoints were not being used, I
2939 suspect that it won't be the case.
2940
2941 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2942 be necessary for call dummies on a non-executable stack on
2943 SPARC. */
2944
2945 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2946 ecs->random_signal
2947 = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
2948 || ecs->event_thread->trap_expected
2949 || (ecs->event_thread->step_range_end
2950 && ecs->event_thread->step_resume_breakpoint == NULL));
2951 else
2952 {
2953 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2954 if (!ecs->random_signal)
2955 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2956 }
2957 }
2958
2959 /* When we reach this point, we've pretty much decided
2960 that the reason for stopping must've been a random
2961 (unexpected) signal. */
2962
2963 else
2964 ecs->random_signal = 1;
2965
2966 process_event_stop_test:
2967 /* For the program's own signals, act according to
2968 the signal handling tables. */
2969
2970 if (ecs->random_signal)
2971 {
2972 /* Signal not for debugging purposes. */
2973 int printed = 0;
2974
2975 if (debug_infrun)
2976 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
2977 ecs->event_thread->stop_signal);
2978
2979 stopped_by_random_signal = 1;
2980
2981 if (signal_print[ecs->event_thread->stop_signal])
2982 {
2983 printed = 1;
2984 target_terminal_ours_for_output ();
2985 print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal);
2986 }
2987 /* Always stop on signals if we're either just gaining control
2988 of the program, or the user explicitly requested this thread
2989 to remain stopped. */
2990 if (stop_soon != NO_STOP_QUIETLY
2991 || ecs->event_thread->stop_requested
2992 || signal_stop_state (ecs->event_thread->stop_signal))
2993 {
2994 stop_stepping (ecs);
2995 return;
2996 }
2997 /* If not going to stop, give terminal back
2998 if we took it away. */
2999 else if (printed)
3000 target_terminal_inferior ();
3001
3002 /* Clear the signal if it should not be passed. */
3003 if (signal_program[ecs->event_thread->stop_signal] == 0)
3004 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3005
3006 if (ecs->event_thread->prev_pc == read_pc ()
3007 && ecs->event_thread->trap_expected
3008 && ecs->event_thread->step_resume_breakpoint == NULL)
3009 {
3010 /* We were just starting a new sequence, attempting to
3011 single-step off of a breakpoint and expecting a SIGTRAP.
3012 Instead this signal arrives. This signal will take us out
3013 of the stepping range so GDB needs to remember to, when
3014 the signal handler returns, resume stepping off that
3015 breakpoint. */
3016 /* To simplify things, "continue" is forced to use the same
3017 code paths as single-step - set a breakpoint at the
3018 signal return address and then, once hit, step off that
3019 breakpoint. */
3020 if (debug_infrun)
3021 fprintf_unfiltered (gdb_stdlog,
3022 "infrun: signal arrived while stepping over "
3023 "breakpoint\n");
3024
3025 insert_step_resume_breakpoint_at_frame (get_current_frame ());
3026 ecs->event_thread->step_after_step_resume_breakpoint = 1;
3027 keep_going (ecs);
3028 return;
3029 }
3030
3031 if (ecs->event_thread->step_range_end != 0
3032 && ecs->event_thread->stop_signal != TARGET_SIGNAL_0
3033 && (ecs->event_thread->step_range_start <= stop_pc
3034 && stop_pc < ecs->event_thread->step_range_end)
3035 && frame_id_eq (get_frame_id (get_current_frame ()),
3036 ecs->event_thread->step_frame_id)
3037 && ecs->event_thread->step_resume_breakpoint == NULL)
3038 {
3039 /* The inferior is about to take a signal that will take it
3040 out of the single step range. Set a breakpoint at the
3041 current PC (which is presumably where the signal handler
3042 will eventually return) and then allow the inferior to
3043 run free.
3044
3045 Note that this is only needed for a signal delivered
3046 while in the single-step range. Nested signals aren't a
3047 problem as they eventually all return. */
3048 if (debug_infrun)
3049 fprintf_unfiltered (gdb_stdlog,
3050 "infrun: signal may take us out of "
3051 "single-step range\n");
3052
3053 insert_step_resume_breakpoint_at_frame (get_current_frame ());
3054 keep_going (ecs);
3055 return;
3056 }
3057
3058 /* Note: step_resume_breakpoint may be non-NULL. This occures
3059 when either there's a nested signal, or when there's a
3060 pending signal enabled just as the signal handler returns
3061 (leaving the inferior at the step-resume-breakpoint without
3062 actually executing it). Either way continue until the
3063 breakpoint is really hit. */
3064 keep_going (ecs);
3065 return;
3066 }
3067
3068 /* Handle cases caused by hitting a breakpoint. */
3069 {
3070 CORE_ADDR jmp_buf_pc;
3071 struct bpstat_what what;
3072
3073 what = bpstat_what (ecs->event_thread->stop_bpstat);
3074
3075 if (what.call_dummy)
3076 {
3077 stop_stack_dummy = 1;
3078 }
3079
3080 switch (what.main_action)
3081 {
3082 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
3083 /* If we hit the breakpoint at longjmp while stepping, we
3084 install a momentary breakpoint at the target of the
3085 jmp_buf. */
3086
3087 if (debug_infrun)
3088 fprintf_unfiltered (gdb_stdlog,
3089 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
3090
3091 ecs->event_thread->stepping_over_breakpoint = 1;
3092
3093 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
3094 || !gdbarch_get_longjmp_target (current_gdbarch,
3095 get_current_frame (), &jmp_buf_pc))
3096 {
3097 if (debug_infrun)
3098 fprintf_unfiltered (gdb_stdlog, "\
3099 infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
3100 keep_going (ecs);
3101 return;
3102 }
3103
3104 /* We're going to replace the current step-resume breakpoint
3105 with a longjmp-resume breakpoint. */
3106 delete_step_resume_breakpoint (ecs->event_thread);
3107
3108 /* Insert a breakpoint at resume address. */
3109 insert_longjmp_resume_breakpoint (jmp_buf_pc);
3110
3111 keep_going (ecs);
3112 return;
3113
3114 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
3115 if (debug_infrun)
3116 fprintf_unfiltered (gdb_stdlog,
3117 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
3118
3119 gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
3120 delete_step_resume_breakpoint (ecs->event_thread);
3121
3122 ecs->event_thread->stop_step = 1;
3123 print_stop_reason (END_STEPPING_RANGE, 0);
3124 stop_stepping (ecs);
3125 return;
3126
3127 case BPSTAT_WHAT_SINGLE:
3128 if (debug_infrun)
3129 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
3130 ecs->event_thread->stepping_over_breakpoint = 1;
3131 /* Still need to check other stuff, at least the case
3132 where we are stepping and step out of the right range. */
3133 break;
3134
3135 case BPSTAT_WHAT_STOP_NOISY:
3136 if (debug_infrun)
3137 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
3138 stop_print_frame = 1;
3139
3140 /* We are about to nuke the step_resume_breakpointt via the
3141 cleanup chain, so no need to worry about it here. */
3142
3143 stop_stepping (ecs);
3144 return;
3145
3146 case BPSTAT_WHAT_STOP_SILENT:
3147 if (debug_infrun)
3148 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
3149 stop_print_frame = 0;
3150
3151 /* We are about to nuke the step_resume_breakpoin via the
3152 cleanup chain, so no need to worry about it here. */
3153
3154 stop_stepping (ecs);
3155 return;
3156
3157 case BPSTAT_WHAT_STEP_RESUME:
3158 if (debug_infrun)
3159 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
3160
3161 delete_step_resume_breakpoint (ecs->event_thread);
3162 if (ecs->event_thread->step_after_step_resume_breakpoint)
3163 {
3164 /* Back when the step-resume breakpoint was inserted, we
3165 were trying to single-step off a breakpoint. Go back
3166 to doing that. */
3167 ecs->event_thread->step_after_step_resume_breakpoint = 0;
3168 ecs->event_thread->stepping_over_breakpoint = 1;
3169 keep_going (ecs);
3170 return;
3171 }
3172 if (stop_pc == ecs->stop_func_start
3173 && execution_direction == EXEC_REVERSE)
3174 {
3175 /* We are stepping over a function call in reverse, and
3176 just hit the step-resume breakpoint at the start
3177 address of the function. Go back to single-stepping,
3178 which should take us back to the function call. */
3179 ecs->event_thread->stepping_over_breakpoint = 1;
3180 keep_going (ecs);
3181 return;
3182 }
3183 break;
3184
3185 case BPSTAT_WHAT_CHECK_SHLIBS:
3186 {
3187 if (debug_infrun)
3188 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
3189
3190 /* Check for any newly added shared libraries if we're
3191 supposed to be adding them automatically. Switch
3192 terminal for any messages produced by
3193 breakpoint_re_set. */
3194 target_terminal_ours_for_output ();
3195 /* NOTE: cagney/2003-11-25: Make certain that the target
3196 stack's section table is kept up-to-date. Architectures,
3197 (e.g., PPC64), use the section table to perform
3198 operations such as address => section name and hence
3199 require the table to contain all sections (including
3200 those found in shared libraries). */
3201 /* NOTE: cagney/2003-11-25: Pass current_target and not
3202 exec_ops to SOLIB_ADD. This is because current GDB is
3203 only tooled to propagate section_table changes out from
3204 the "current_target" (see target_resize_to_sections), and
3205 not up from the exec stratum. This, of course, isn't
3206 right. "infrun.c" should only interact with the
3207 exec/process stratum, instead relying on the target stack
3208 to propagate relevant changes (stop, section table
3209 changed, ...) up to other layers. */
3210 #ifdef SOLIB_ADD
3211 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
3212 #else
3213 solib_add (NULL, 0, &current_target, auto_solib_add);
3214 #endif
3215 target_terminal_inferior ();
3216
3217 /* If requested, stop when the dynamic linker notifies
3218 gdb of events. This allows the user to get control
3219 and place breakpoints in initializer routines for
3220 dynamically loaded objects (among other things). */
3221 if (stop_on_solib_events || stop_stack_dummy)
3222 {
3223 stop_stepping (ecs);
3224 return;
3225 }
3226 else
3227 {
3228 /* We want to step over this breakpoint, then keep going. */
3229 ecs->event_thread->stepping_over_breakpoint = 1;
3230 break;
3231 }
3232 }
3233 break;
3234
3235 case BPSTAT_WHAT_LAST:
3236 /* Not a real code, but listed here to shut up gcc -Wall. */
3237
3238 case BPSTAT_WHAT_KEEP_CHECKING:
3239 break;
3240 }
3241 }
3242
3243 /* We come here if we hit a breakpoint but should not
3244 stop for it. Possibly we also were stepping
3245 and should stop for that. So fall through and
3246 test for stepping. But, if not stepping,
3247 do not stop. */
3248
3249 /* In all-stop mode, if we're currently stepping but have stopped in
3250 some other thread, we need to switch back to the stepped thread. */
3251 if (!non_stop)
3252 {
3253 struct thread_info *tp;
3254 tp = iterate_over_threads (currently_stepping_callback,
3255 ecs->event_thread);
3256 if (tp)
3257 {
3258 /* However, if the current thread is blocked on some internal
3259 breakpoint, and we simply need to step over that breakpoint
3260 to get it going again, do that first. */
3261 if ((ecs->event_thread->trap_expected
3262 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
3263 || ecs->event_thread->stepping_over_breakpoint)
3264 {
3265 keep_going (ecs);
3266 return;
3267 }
3268
3269 /* Otherwise, we no longer expect a trap in the current thread.
3270 Clear the trap_expected flag before switching back -- this is
3271 what keep_going would do as well, if we called it. */
3272 ecs->event_thread->trap_expected = 0;
3273
3274 if (debug_infrun)
3275 fprintf_unfiltered (gdb_stdlog,
3276 "infrun: switching back to stepped thread\n");
3277
3278 ecs->event_thread = tp;
3279 ecs->ptid = tp->ptid;
3280 context_switch (ecs->ptid);
3281 keep_going (ecs);
3282 return;
3283 }
3284 }
3285
3286 /* Are we stepping to get the inferior out of the dynamic linker's
3287 hook (and possibly the dld itself) after catching a shlib
3288 event? */
3289 if (ecs->event_thread->stepping_through_solib_after_catch)
3290 {
3291 #if defined(SOLIB_ADD)
3292 /* Have we reached our destination? If not, keep going. */
3293 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
3294 {
3295 if (debug_infrun)
3296 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
3297 ecs->event_thread->stepping_over_breakpoint = 1;
3298 keep_going (ecs);
3299 return;
3300 }
3301 #endif
3302 if (debug_infrun)
3303 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
3304 /* Else, stop and report the catchpoint(s) whose triggering
3305 caused us to begin stepping. */
3306 ecs->event_thread->stepping_through_solib_after_catch = 0;
3307 bpstat_clear (&ecs->event_thread->stop_bpstat);
3308 ecs->event_thread->stop_bpstat
3309 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
3310 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
3311 stop_print_frame = 1;
3312 stop_stepping (ecs);
3313 return;
3314 }
3315
3316 if (ecs->event_thread->step_resume_breakpoint)
3317 {
3318 if (debug_infrun)
3319 fprintf_unfiltered (gdb_stdlog,
3320 "infrun: step-resume breakpoint is inserted\n");
3321
3322 /* Having a step-resume breakpoint overrides anything
3323 else having to do with stepping commands until
3324 that breakpoint is reached. */
3325 keep_going (ecs);
3326 return;
3327 }
3328
3329 if (ecs->event_thread->step_range_end == 0)
3330 {
3331 if (debug_infrun)
3332 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
3333 /* Likewise if we aren't even stepping. */
3334 keep_going (ecs);
3335 return;
3336 }
3337
3338 /* If stepping through a line, keep going if still within it.
3339
3340 Note that step_range_end is the address of the first instruction
3341 beyond the step range, and NOT the address of the last instruction
3342 within it! */
3343 if (stop_pc >= ecs->event_thread->step_range_start
3344 && stop_pc < ecs->event_thread->step_range_end)
3345 {
3346 if (debug_infrun)
3347 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
3348 paddr_nz (ecs->event_thread->step_range_start),
3349 paddr_nz (ecs->event_thread->step_range_end));
3350
3351 /* When stepping backward, stop at beginning of line range
3352 (unless it's the function entry point, in which case
3353 keep going back to the call point). */
3354 if (stop_pc == ecs->event_thread->step_range_start
3355 && stop_pc != ecs->stop_func_start
3356 && execution_direction == EXEC_REVERSE)
3357 {
3358 ecs->event_thread->stop_step = 1;
3359 print_stop_reason (END_STEPPING_RANGE, 0);
3360 stop_stepping (ecs);
3361 }
3362 else
3363 keep_going (ecs);
3364
3365 return;
3366 }
3367
3368 /* We stepped out of the stepping range. */
3369
3370 /* If we are stepping at the source level and entered the runtime
3371 loader dynamic symbol resolution code, we keep on single stepping
3372 until we exit the run time loader code and reach the callee's
3373 address. */
3374 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3375 && in_solib_dynsym_resolve_code (stop_pc))
3376 {
3377 CORE_ADDR pc_after_resolver =
3378 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
3379
3380 if (debug_infrun)
3381 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
3382
3383 if (pc_after_resolver)
3384 {
3385 /* Set up a step-resume breakpoint at the address
3386 indicated by SKIP_SOLIB_RESOLVER. */
3387 struct symtab_and_line sr_sal;
3388 init_sal (&sr_sal);
3389 sr_sal.pc = pc_after_resolver;
3390
3391 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3392 }
3393
3394 keep_going (ecs);
3395 return;
3396 }
3397
3398 if (ecs->event_thread->step_range_end != 1
3399 && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3400 || ecs->event_thread->step_over_calls == STEP_OVER_ALL)
3401 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
3402 {
3403 if (debug_infrun)
3404 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
3405 /* The inferior, while doing a "step" or "next", has ended up in
3406 a signal trampoline (either by a signal being delivered or by
3407 the signal handler returning). Just single-step until the
3408 inferior leaves the trampoline (either by calling the handler
3409 or returning). */
3410 keep_going (ecs);
3411 return;
3412 }
3413
3414 /* Check for subroutine calls. The check for the current frame
3415 equalling the step ID is not necessary - the check of the
3416 previous frame's ID is sufficient - but it is a common case and
3417 cheaper than checking the previous frame's ID.
3418
3419 NOTE: frame_id_eq will never report two invalid frame IDs as
3420 being equal, so to get into this block, both the current and
3421 previous frame must have valid frame IDs. */
3422 if (!frame_id_eq (get_frame_id (get_current_frame ()),
3423 ecs->event_thread->step_frame_id)
3424 && (frame_id_eq (frame_unwind_id (get_current_frame ()),
3425 ecs->event_thread->step_frame_id)
3426 || execution_direction == EXEC_REVERSE))
3427 {
3428 CORE_ADDR real_stop_pc;
3429
3430 if (debug_infrun)
3431 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
3432
3433 if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
3434 || ((ecs->event_thread->step_range_end == 1)
3435 && in_prologue (ecs->event_thread->prev_pc,
3436 ecs->stop_func_start)))
3437 {
3438 /* I presume that step_over_calls is only 0 when we're
3439 supposed to be stepping at the assembly language level
3440 ("stepi"). Just stop. */
3441 /* Also, maybe we just did a "nexti" inside a prolog, so we
3442 thought it was a subroutine call but it was not. Stop as
3443 well. FENN */
3444 ecs->event_thread->stop_step = 1;
3445 print_stop_reason (END_STEPPING_RANGE, 0);
3446 stop_stepping (ecs);
3447 return;
3448 }
3449
3450 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
3451 {
3452 /* We're doing a "next".
3453
3454 Normal (forward) execution: set a breakpoint at the
3455 callee's return address (the address at which the caller
3456 will resume).
3457
3458 Reverse (backward) execution. set the step-resume
3459 breakpoint at the start of the function that we just
3460 stepped into (backwards), and continue to there. When we
3461 get there, we'll need to single-step back to the caller. */
3462
3463 if (execution_direction == EXEC_REVERSE)
3464 {
3465 struct symtab_and_line sr_sal;
3466
3467 if (ecs->stop_func_start == 0
3468 && in_solib_dynsym_resolve_code (stop_pc))
3469 {
3470 /* Stepped into runtime loader dynamic symbol
3471 resolution code. Since we're in reverse,
3472 we have already backed up through the runtime
3473 loader and the dynamic function. This is just
3474 the trampoline (jump table).
3475
3476 Just keep stepping, we'll soon be home.
3477 */
3478 keep_going (ecs);
3479 return;
3480 }
3481 /* Normal (staticly linked) function call return. */
3482 init_sal (&sr_sal);
3483 sr_sal.pc = ecs->stop_func_start;
3484 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3485 }
3486 else
3487 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3488
3489 keep_going (ecs);
3490 return;
3491 }
3492
3493 /* If we are in a function call trampoline (a stub between the
3494 calling routine and the real function), locate the real
3495 function. That's what tells us (a) whether we want to step
3496 into it at all, and (b) what prologue we want to run to the
3497 end of, if we do step into it. */
3498 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
3499 if (real_stop_pc == 0)
3500 real_stop_pc = gdbarch_skip_trampoline_code
3501 (current_gdbarch, get_current_frame (), stop_pc);
3502 if (real_stop_pc != 0)
3503 ecs->stop_func_start = real_stop_pc;
3504
3505 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
3506 {
3507 struct symtab_and_line sr_sal;
3508 init_sal (&sr_sal);
3509 sr_sal.pc = ecs->stop_func_start;
3510
3511 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3512 keep_going (ecs);
3513 return;
3514 }
3515
3516 /* If we have line number information for the function we are
3517 thinking of stepping into, step into it.
3518
3519 If there are several symtabs at that PC (e.g. with include
3520 files), just want to know whether *any* of them have line
3521 numbers. find_pc_line handles this. */
3522 {
3523 struct symtab_and_line tmp_sal;
3524
3525 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
3526 if (tmp_sal.line != 0)
3527 {
3528 if (execution_direction == EXEC_REVERSE)
3529 handle_step_into_function_backward (ecs);
3530 else
3531 handle_step_into_function (ecs);
3532 return;
3533 }
3534 }
3535
3536 /* If we have no line number and the step-stop-if-no-debug is
3537 set, we stop the step so that the user has a chance to switch
3538 in assembly mode. */
3539 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3540 && step_stop_if_no_debug)
3541 {
3542 ecs->event_thread->stop_step = 1;
3543 print_stop_reason (END_STEPPING_RANGE, 0);
3544 stop_stepping (ecs);
3545 return;
3546 }
3547
3548 if (execution_direction == EXEC_REVERSE)
3549 {
3550 /* Set a breakpoint at callee's start address.
3551 From there we can step once and be back in the caller. */
3552 struct symtab_and_line sr_sal;
3553 init_sal (&sr_sal);
3554 sr_sal.pc = ecs->stop_func_start;
3555 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3556 }
3557 else
3558 /* Set a breakpoint at callee's return address (the address
3559 at which the caller will resume). */
3560 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3561
3562 keep_going (ecs);
3563 return;
3564 }
3565
3566 /* If we're in the return path from a shared library trampoline,
3567 we want to proceed through the trampoline when stepping. */
3568 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
3569 stop_pc, ecs->stop_func_name))
3570 {
3571 /* Determine where this trampoline returns. */
3572 CORE_ADDR real_stop_pc;
3573 real_stop_pc = gdbarch_skip_trampoline_code
3574 (current_gdbarch, get_current_frame (), stop_pc);
3575
3576 if (debug_infrun)
3577 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
3578
3579 /* Only proceed through if we know where it's going. */
3580 if (real_stop_pc)
3581 {
3582 /* And put the step-breakpoint there and go until there. */
3583 struct symtab_and_line sr_sal;
3584
3585 init_sal (&sr_sal); /* initialize to zeroes */
3586 sr_sal.pc = real_stop_pc;
3587 sr_sal.section = find_pc_overlay (sr_sal.pc);
3588
3589 /* Do not specify what the fp should be when we stop since
3590 on some machines the prologue is where the new fp value
3591 is established. */
3592 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3593
3594 /* Restart without fiddling with the step ranges or
3595 other state. */
3596 keep_going (ecs);
3597 return;
3598 }
3599 }
3600
3601 stop_pc_sal = find_pc_line (stop_pc, 0);
3602
3603 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3604 the trampoline processing logic, however, there are some trampolines
3605 that have no names, so we should do trampoline handling first. */
3606 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3607 && ecs->stop_func_name == NULL
3608 && stop_pc_sal.line == 0)
3609 {
3610 if (debug_infrun)
3611 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
3612
3613 /* The inferior just stepped into, or returned to, an
3614 undebuggable function (where there is no debugging information
3615 and no line number corresponding to the address where the
3616 inferior stopped). Since we want to skip this kind of code,
3617 we keep going until the inferior returns from this
3618 function - unless the user has asked us not to (via
3619 set step-mode) or we no longer know how to get back
3620 to the call site. */
3621 if (step_stop_if_no_debug
3622 || !frame_id_p (frame_unwind_id (get_current_frame ())))
3623 {
3624 /* If we have no line number and the step-stop-if-no-debug
3625 is set, we stop the step so that the user has a chance to
3626 switch in assembly mode. */
3627 ecs->event_thread->stop_step = 1;
3628 print_stop_reason (END_STEPPING_RANGE, 0);
3629 stop_stepping (ecs);
3630 return;
3631 }
3632 else
3633 {
3634 /* Set a breakpoint at callee's return address (the address
3635 at which the caller will resume). */
3636 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3637 keep_going (ecs);
3638 return;
3639 }
3640 }
3641
3642 if (ecs->event_thread->step_range_end == 1)
3643 {
3644 /* It is stepi or nexti. We always want to stop stepping after
3645 one instruction. */
3646 if (debug_infrun)
3647 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
3648 ecs->event_thread->stop_step = 1;
3649 print_stop_reason (END_STEPPING_RANGE, 0);
3650 stop_stepping (ecs);
3651 return;
3652 }
3653
3654 if (stop_pc_sal.line == 0)
3655 {
3656 /* We have no line number information. That means to stop
3657 stepping (does this always happen right after one instruction,
3658 when we do "s" in a function with no line numbers,
3659 or can this happen as a result of a return or longjmp?). */
3660 if (debug_infrun)
3661 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
3662 ecs->event_thread->stop_step = 1;
3663 print_stop_reason (END_STEPPING_RANGE, 0);
3664 stop_stepping (ecs);
3665 return;
3666 }
3667
3668 if ((stop_pc == stop_pc_sal.pc)
3669 && (ecs->event_thread->current_line != stop_pc_sal.line
3670 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
3671 {
3672 /* We are at the start of a different line. So stop. Note that
3673 we don't stop if we step into the middle of a different line.
3674 That is said to make things like for (;;) statements work
3675 better. */
3676 if (debug_infrun)
3677 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
3678 ecs->event_thread->stop_step = 1;
3679 print_stop_reason (END_STEPPING_RANGE, 0);
3680 stop_stepping (ecs);
3681 return;
3682 }
3683
3684 /* We aren't done stepping.
3685
3686 Optimize by setting the stepping range to the line.
3687 (We might not be in the original line, but if we entered a
3688 new line in mid-statement, we continue stepping. This makes
3689 things like for(;;) statements work better.) */
3690
3691 ecs->event_thread->step_range_start = stop_pc_sal.pc;
3692 ecs->event_thread->step_range_end = stop_pc_sal.end;
3693 ecs->event_thread->step_frame_id = get_frame_id (get_current_frame ());
3694 ecs->event_thread->current_line = stop_pc_sal.line;
3695 ecs->event_thread->current_symtab = stop_pc_sal.symtab;
3696
3697 if (debug_infrun)
3698 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
3699 keep_going (ecs);
3700 }
3701
3702 /* Are we in the middle of stepping? */
3703
3704 static int
3705 currently_stepping_thread (struct thread_info *tp)
3706 {
3707 return (tp->step_range_end && tp->step_resume_breakpoint == NULL)
3708 || tp->trap_expected
3709 || tp->stepping_through_solib_after_catch;
3710 }
3711
3712 static int
3713 currently_stepping_callback (struct thread_info *tp, void *data)
3714 {
3715 /* Return true if any thread *but* the one passed in "data" is
3716 in the middle of stepping. */
3717 return tp != data && currently_stepping_thread (tp);
3718 }
3719
3720 static int
3721 currently_stepping (struct thread_info *tp)
3722 {
3723 return currently_stepping_thread (tp) || bpstat_should_step ();
3724 }
3725
3726 /* Inferior has stepped into a subroutine call with source code that
3727 we should not step over. Do step to the first line of code in
3728 it. */
3729
3730 static void
3731 handle_step_into_function (struct execution_control_state *ecs)
3732 {
3733 struct symtab *s;
3734 struct symtab_and_line stop_func_sal, sr_sal;
3735
3736 s = find_pc_symtab (stop_pc);
3737 if (s && s->language != language_asm)
3738 ecs->stop_func_start = gdbarch_skip_prologue (current_gdbarch,
3739 ecs->stop_func_start);
3740
3741 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
3742 /* Use the step_resume_break to step until the end of the prologue,
3743 even if that involves jumps (as it seems to on the vax under
3744 4.2). */
3745 /* If the prologue ends in the middle of a source line, continue to
3746 the end of that source line (if it is still within the function).
3747 Otherwise, just go to end of prologue. */
3748 if (stop_func_sal.end
3749 && stop_func_sal.pc != ecs->stop_func_start
3750 && stop_func_sal.end < ecs->stop_func_end)
3751 ecs->stop_func_start = stop_func_sal.end;
3752
3753 /* Architectures which require breakpoint adjustment might not be able
3754 to place a breakpoint at the computed address. If so, the test
3755 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
3756 ecs->stop_func_start to an address at which a breakpoint may be
3757 legitimately placed.
3758
3759 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
3760 made, GDB will enter an infinite loop when stepping through
3761 optimized code consisting of VLIW instructions which contain
3762 subinstructions corresponding to different source lines. On
3763 FR-V, it's not permitted to place a breakpoint on any but the
3764 first subinstruction of a VLIW instruction. When a breakpoint is
3765 set, GDB will adjust the breakpoint address to the beginning of
3766 the VLIW instruction. Thus, we need to make the corresponding
3767 adjustment here when computing the stop address. */
3768
3769 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
3770 {
3771 ecs->stop_func_start
3772 = gdbarch_adjust_breakpoint_address (current_gdbarch,
3773 ecs->stop_func_start);
3774 }
3775
3776 if (ecs->stop_func_start == stop_pc)
3777 {
3778 /* We are already there: stop now. */
3779 ecs->event_thread->stop_step = 1;
3780 print_stop_reason (END_STEPPING_RANGE, 0);
3781 stop_stepping (ecs);
3782 return;
3783 }
3784 else
3785 {
3786 /* Put the step-breakpoint there and go until there. */
3787 init_sal (&sr_sal); /* initialize to zeroes */
3788 sr_sal.pc = ecs->stop_func_start;
3789 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
3790
3791 /* Do not specify what the fp should be when we stop since on
3792 some machines the prologue is where the new fp value is
3793 established. */
3794 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3795
3796 /* And make sure stepping stops right away then. */
3797 ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
3798 }
3799 keep_going (ecs);
3800 }
3801
3802 /* Inferior has stepped backward into a subroutine call with source
3803 code that we should not step over. Do step to the beginning of the
3804 last line of code in it. */
3805
3806 static void
3807 handle_step_into_function_backward (struct execution_control_state *ecs)
3808 {
3809 struct symtab *s;
3810 struct symtab_and_line stop_func_sal, sr_sal;
3811
3812 s = find_pc_symtab (stop_pc);
3813 if (s && s->language != language_asm)
3814 ecs->stop_func_start = gdbarch_skip_prologue (current_gdbarch,
3815 ecs->stop_func_start);
3816
3817 stop_func_sal = find_pc_line (stop_pc, 0);
3818
3819 /* OK, we're just going to keep stepping here. */
3820 if (stop_func_sal.pc == stop_pc)
3821 {
3822 /* We're there already. Just stop stepping now. */
3823 ecs->event_thread->stop_step = 1;
3824 print_stop_reason (END_STEPPING_RANGE, 0);
3825 stop_stepping (ecs);
3826 }
3827 else
3828 {
3829 /* Else just reset the step range and keep going.
3830 No step-resume breakpoint, they don't work for
3831 epilogues, which can have multiple entry paths. */
3832 ecs->event_thread->step_range_start = stop_func_sal.pc;
3833 ecs->event_thread->step_range_end = stop_func_sal.end;
3834 keep_going (ecs);
3835 }
3836 return;
3837 }
3838
3839 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
3840 This is used to both functions and to skip over code. */
3841
3842 static void
3843 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
3844 struct frame_id sr_id)
3845 {
3846 /* There should never be more than one step-resume or longjmp-resume
3847 breakpoint per thread, so we should never be setting a new
3848 step_resume_breakpoint when one is already active. */
3849 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
3850
3851 if (debug_infrun)
3852 fprintf_unfiltered (gdb_stdlog,
3853 "infrun: inserting step-resume breakpoint at 0x%s\n",
3854 paddr_nz (sr_sal.pc));
3855
3856 inferior_thread ()->step_resume_breakpoint
3857 = set_momentary_breakpoint (sr_sal, sr_id, bp_step_resume);
3858 }
3859
3860 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
3861 to skip a potential signal handler.
3862
3863 This is called with the interrupted function's frame. The signal
3864 handler, when it returns, will resume the interrupted function at
3865 RETURN_FRAME.pc. */
3866
3867 static void
3868 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
3869 {
3870 struct symtab_and_line sr_sal;
3871
3872 gdb_assert (return_frame != NULL);
3873 init_sal (&sr_sal); /* initialize to zeros */
3874
3875 sr_sal.pc = gdbarch_addr_bits_remove
3876 (current_gdbarch, get_frame_pc (return_frame));
3877 sr_sal.section = find_pc_overlay (sr_sal.pc);
3878
3879 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
3880 }
3881
3882 /* Similar to insert_step_resume_breakpoint_at_frame, except
3883 but a breakpoint at the previous frame's PC. This is used to
3884 skip a function after stepping into it (for "next" or if the called
3885 function has no debugging information).
3886
3887 The current function has almost always been reached by single
3888 stepping a call or return instruction. NEXT_FRAME belongs to the
3889 current function, and the breakpoint will be set at the caller's
3890 resume address.
3891
3892 This is a separate function rather than reusing
3893 insert_step_resume_breakpoint_at_frame in order to avoid
3894 get_prev_frame, which may stop prematurely (see the implementation
3895 of frame_unwind_id for an example). */
3896
3897 static void
3898 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
3899 {
3900 struct symtab_and_line sr_sal;
3901
3902 /* We shouldn't have gotten here if we don't know where the call site
3903 is. */
3904 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
3905
3906 init_sal (&sr_sal); /* initialize to zeros */
3907
3908 sr_sal.pc = gdbarch_addr_bits_remove
3909 (current_gdbarch, frame_pc_unwind (next_frame));
3910 sr_sal.section = find_pc_overlay (sr_sal.pc);
3911
3912 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
3913 }
3914
3915 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
3916 new breakpoint at the target of a jmp_buf. The handling of
3917 longjmp-resume uses the same mechanisms used for handling
3918 "step-resume" breakpoints. */
3919
3920 static void
3921 insert_longjmp_resume_breakpoint (CORE_ADDR pc)
3922 {
3923 /* There should never be more than one step-resume or longjmp-resume
3924 breakpoint per thread, so we should never be setting a new
3925 longjmp_resume_breakpoint when one is already active. */
3926 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
3927
3928 if (debug_infrun)
3929 fprintf_unfiltered (gdb_stdlog,
3930 "infrun: inserting longjmp-resume breakpoint at 0x%s\n",
3931 paddr_nz (pc));
3932
3933 inferior_thread ()->step_resume_breakpoint =
3934 set_momentary_breakpoint_at_pc (pc, bp_longjmp_resume);
3935 }
3936
3937 static void
3938 stop_stepping (struct execution_control_state *ecs)
3939 {
3940 if (debug_infrun)
3941 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
3942
3943 /* Let callers know we don't want to wait for the inferior anymore. */
3944 ecs->wait_some_more = 0;
3945 }
3946
3947 /* This function handles various cases where we need to continue
3948 waiting for the inferior. */
3949 /* (Used to be the keep_going: label in the old wait_for_inferior) */
3950
3951 static void
3952 keep_going (struct execution_control_state *ecs)
3953 {
3954 /* Save the pc before execution, to compare with pc after stop. */
3955 ecs->event_thread->prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
3956
3957 /* If we did not do break;, it means we should keep running the
3958 inferior and not return to debugger. */
3959
3960 if (ecs->event_thread->trap_expected
3961 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
3962 {
3963 /* We took a signal (which we are supposed to pass through to
3964 the inferior, else we'd not get here) and we haven't yet
3965 gotten our trap. Simply continue. */
3966 resume (currently_stepping (ecs->event_thread),
3967 ecs->event_thread->stop_signal);
3968 }
3969 else
3970 {
3971 /* Either the trap was not expected, but we are continuing
3972 anyway (the user asked that this signal be passed to the
3973 child)
3974 -- or --
3975 The signal was SIGTRAP, e.g. it was our signal, but we
3976 decided we should resume from it.
3977
3978 We're going to run this baby now!
3979
3980 Note that insert_breakpoints won't try to re-insert
3981 already inserted breakpoints. Therefore, we don't
3982 care if breakpoints were already inserted, or not. */
3983
3984 if (ecs->event_thread->stepping_over_breakpoint)
3985 {
3986 if (! use_displaced_stepping (current_gdbarch))
3987 /* Since we can't do a displaced step, we have to remove
3988 the breakpoint while we step it. To keep things
3989 simple, we remove them all. */
3990 remove_breakpoints ();
3991 }
3992 else
3993 {
3994 struct gdb_exception e;
3995 /* Stop stepping when inserting breakpoints
3996 has failed. */
3997 TRY_CATCH (e, RETURN_MASK_ERROR)
3998 {
3999 insert_breakpoints ();
4000 }
4001 if (e.reason < 0)
4002 {
4003 stop_stepping (ecs);
4004 return;
4005 }
4006 }
4007
4008 ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
4009
4010 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
4011 specifies that such a signal should be delivered to the
4012 target program).
4013
4014 Typically, this would occure when a user is debugging a
4015 target monitor on a simulator: the target monitor sets a
4016 breakpoint; the simulator encounters this break-point and
4017 halts the simulation handing control to GDB; GDB, noteing
4018 that the break-point isn't valid, returns control back to the
4019 simulator; the simulator then delivers the hardware
4020 equivalent of a SIGNAL_TRAP to the program being debugged. */
4021
4022 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4023 && !signal_program[ecs->event_thread->stop_signal])
4024 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
4025
4026 resume (currently_stepping (ecs->event_thread),
4027 ecs->event_thread->stop_signal);
4028 }
4029
4030 prepare_to_wait (ecs);
4031 }
4032
4033 /* This function normally comes after a resume, before
4034 handle_inferior_event exits. It takes care of any last bits of
4035 housekeeping, and sets the all-important wait_some_more flag. */
4036
4037 static void
4038 prepare_to_wait (struct execution_control_state *ecs)
4039 {
4040 if (debug_infrun)
4041 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
4042 if (infwait_state == infwait_normal_state)
4043 {
4044 overlay_cache_invalid = 1;
4045
4046 /* We have to invalidate the registers BEFORE calling
4047 target_wait because they can be loaded from the target while
4048 in target_wait. This makes remote debugging a bit more
4049 efficient for those targets that provide critical registers
4050 as part of their normal status mechanism. */
4051
4052 registers_changed ();
4053 waiton_ptid = pid_to_ptid (-1);
4054 }
4055 /* This is the old end of the while loop. Let everybody know we
4056 want to wait for the inferior some more and get called again
4057 soon. */
4058 ecs->wait_some_more = 1;
4059 }
4060
4061 /* Print why the inferior has stopped. We always print something when
4062 the inferior exits, or receives a signal. The rest of the cases are
4063 dealt with later on in normal_stop() and print_it_typical(). Ideally
4064 there should be a call to this function from handle_inferior_event()
4065 each time stop_stepping() is called.*/
4066 static void
4067 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
4068 {
4069 switch (stop_reason)
4070 {
4071 case END_STEPPING_RANGE:
4072 /* We are done with a step/next/si/ni command. */
4073 /* For now print nothing. */
4074 /* Print a message only if not in the middle of doing a "step n"
4075 operation for n > 1 */
4076 if (!inferior_thread ()->step_multi
4077 || !inferior_thread ()->stop_step)
4078 if (ui_out_is_mi_like_p (uiout))
4079 ui_out_field_string
4080 (uiout, "reason",
4081 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
4082 break;
4083 case SIGNAL_EXITED:
4084 /* The inferior was terminated by a signal. */
4085 annotate_signalled ();
4086 if (ui_out_is_mi_like_p (uiout))
4087 ui_out_field_string
4088 (uiout, "reason",
4089 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
4090 ui_out_text (uiout, "\nProgram terminated with signal ");
4091 annotate_signal_name ();
4092 ui_out_field_string (uiout, "signal-name",
4093 target_signal_to_name (stop_info));
4094 annotate_signal_name_end ();
4095 ui_out_text (uiout, ", ");
4096 annotate_signal_string ();
4097 ui_out_field_string (uiout, "signal-meaning",
4098 target_signal_to_string (stop_info));
4099 annotate_signal_string_end ();
4100 ui_out_text (uiout, ".\n");
4101 ui_out_text (uiout, "The program no longer exists.\n");
4102 break;
4103 case EXITED:
4104 /* The inferior program is finished. */
4105 annotate_exited (stop_info);
4106 if (stop_info)
4107 {
4108 if (ui_out_is_mi_like_p (uiout))
4109 ui_out_field_string (uiout, "reason",
4110 async_reason_lookup (EXEC_ASYNC_EXITED));
4111 ui_out_text (uiout, "\nProgram exited with code ");
4112 ui_out_field_fmt (uiout, "exit-code", "0%o",
4113 (unsigned int) stop_info);
4114 ui_out_text (uiout, ".\n");
4115 }
4116 else
4117 {
4118 if (ui_out_is_mi_like_p (uiout))
4119 ui_out_field_string
4120 (uiout, "reason",
4121 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
4122 ui_out_text (uiout, "\nProgram exited normally.\n");
4123 }
4124 /* Support the --return-child-result option. */
4125 return_child_result_value = stop_info;
4126 break;
4127 case SIGNAL_RECEIVED:
4128 /* Signal received. The signal table tells us to print about
4129 it. */
4130 annotate_signal ();
4131
4132 if (stop_info == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
4133 {
4134 struct thread_info *t = inferior_thread ();
4135
4136 ui_out_text (uiout, "\n[");
4137 ui_out_field_string (uiout, "thread-name",
4138 target_pid_to_str (t->ptid));
4139 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
4140 ui_out_text (uiout, " stopped");
4141 }
4142 else
4143 {
4144 ui_out_text (uiout, "\nProgram received signal ");
4145 annotate_signal_name ();
4146 if (ui_out_is_mi_like_p (uiout))
4147 ui_out_field_string
4148 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
4149 ui_out_field_string (uiout, "signal-name",
4150 target_signal_to_name (stop_info));
4151 annotate_signal_name_end ();
4152 ui_out_text (uiout, ", ");
4153 annotate_signal_string ();
4154 ui_out_field_string (uiout, "signal-meaning",
4155 target_signal_to_string (stop_info));
4156 annotate_signal_string_end ();
4157 }
4158 ui_out_text (uiout, ".\n");
4159 break;
4160 case NO_HISTORY:
4161 /* Reverse execution: target ran out of history info. */
4162 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
4163 break;
4164 default:
4165 internal_error (__FILE__, __LINE__,
4166 _("print_stop_reason: unrecognized enum value"));
4167 break;
4168 }
4169 }
4170 \f
4171
4172 /* Here to return control to GDB when the inferior stops for real.
4173 Print appropriate messages, remove breakpoints, give terminal our modes.
4174
4175 STOP_PRINT_FRAME nonzero means print the executing frame
4176 (pc, function, args, file, line number and line text).
4177 BREAKPOINTS_FAILED nonzero means stop was due to error
4178 attempting to insert breakpoints. */
4179
4180 void
4181 normal_stop (void)
4182 {
4183 struct target_waitstatus last;
4184 ptid_t last_ptid;
4185 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
4186
4187 get_last_target_status (&last_ptid, &last);
4188
4189 /* If an exception is thrown from this point on, make sure to
4190 propagate GDB's knowledge of the executing state to the
4191 frontend/user running state. A QUIT is an easy exception to see
4192 here, so do this before any filtered output. */
4193 if (target_has_execution)
4194 {
4195 if (!non_stop)
4196 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
4197 else if (last.kind != TARGET_WAITKIND_SIGNALLED
4198 && last.kind != TARGET_WAITKIND_EXITED)
4199 old_chain = make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
4200 }
4201
4202 /* In non-stop mode, we don't want GDB to switch threads behind the
4203 user's back, to avoid races where the user is typing a command to
4204 apply to thread x, but GDB switches to thread y before the user
4205 finishes entering the command. */
4206
4207 /* As with the notification of thread events, we want to delay
4208 notifying the user that we've switched thread context until
4209 the inferior actually stops.
4210
4211 There's no point in saying anything if the inferior has exited.
4212 Note that SIGNALLED here means "exited with a signal", not
4213 "received a signal". */
4214 if (!non_stop
4215 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
4216 && target_has_execution
4217 && last.kind != TARGET_WAITKIND_SIGNALLED
4218 && last.kind != TARGET_WAITKIND_EXITED)
4219 {
4220 target_terminal_ours_for_output ();
4221 printf_filtered (_("[Switching to %s]\n"),
4222 target_pid_to_str (inferior_ptid));
4223 annotate_thread_changed ();
4224 previous_inferior_ptid = inferior_ptid;
4225 }
4226
4227 /* NOTE drow/2004-01-17: Is this still necessary? */
4228 /* Make sure that the current_frame's pc is correct. This
4229 is a correction for setting up the frame info before doing
4230 gdbarch_decr_pc_after_break */
4231 if (target_has_execution)
4232 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
4233 gdbarch_decr_pc_after_break, the program counter can change. Ask the
4234 frame code to check for this and sort out any resultant mess.
4235 gdbarch_decr_pc_after_break needs to just go away. */
4236 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
4237
4238 if (!breakpoints_always_inserted_mode () && target_has_execution)
4239 {
4240 if (remove_breakpoints ())
4241 {
4242 target_terminal_ours_for_output ();
4243 printf_filtered (_("\
4244 Cannot remove breakpoints because program is no longer writable.\n\
4245 Further execution is probably impossible.\n"));
4246 }
4247 }
4248
4249 /* If an auto-display called a function and that got a signal,
4250 delete that auto-display to avoid an infinite recursion. */
4251
4252 if (stopped_by_random_signal)
4253 disable_current_display ();
4254
4255 /* Don't print a message if in the middle of doing a "step n"
4256 operation for n > 1 */
4257 if (target_has_execution
4258 && last.kind != TARGET_WAITKIND_SIGNALLED
4259 && last.kind != TARGET_WAITKIND_EXITED
4260 && inferior_thread ()->step_multi
4261 && inferior_thread ()->stop_step)
4262 goto done;
4263
4264 target_terminal_ours ();
4265
4266 /* Set the current source location. This will also happen if we
4267 display the frame below, but the current SAL will be incorrect
4268 during a user hook-stop function. */
4269 if (target_has_stack && !stop_stack_dummy)
4270 set_current_sal_from_frame (get_current_frame (), 1);
4271
4272 if (!target_has_stack)
4273 goto done;
4274
4275 if (last.kind == TARGET_WAITKIND_SIGNALLED
4276 || last.kind == TARGET_WAITKIND_EXITED)
4277 goto done;
4278
4279 /* Select innermost stack frame - i.e., current frame is frame 0,
4280 and current location is based on that.
4281 Don't do this on return from a stack dummy routine,
4282 or if the program has exited. */
4283
4284 if (!stop_stack_dummy)
4285 {
4286 select_frame (get_current_frame ());
4287
4288 /* Print current location without a level number, if
4289 we have changed functions or hit a breakpoint.
4290 Print source line if we have one.
4291 bpstat_print() contains the logic deciding in detail
4292 what to print, based on the event(s) that just occurred. */
4293
4294 /* If --batch-silent is enabled then there's no need to print the current
4295 source location, and to try risks causing an error message about
4296 missing source files. */
4297 if (stop_print_frame && !batch_silent)
4298 {
4299 int bpstat_ret;
4300 int source_flag;
4301 int do_frame_printing = 1;
4302 struct thread_info *tp = inferior_thread ();
4303
4304 bpstat_ret = bpstat_print (tp->stop_bpstat);
4305 switch (bpstat_ret)
4306 {
4307 case PRINT_UNKNOWN:
4308 /* If we had hit a shared library event breakpoint,
4309 bpstat_print would print out this message. If we hit
4310 an OS-level shared library event, do the same
4311 thing. */
4312 if (last.kind == TARGET_WAITKIND_LOADED)
4313 {
4314 printf_filtered (_("Stopped due to shared library event\n"));
4315 source_flag = SRC_LINE; /* something bogus */
4316 do_frame_printing = 0;
4317 break;
4318 }
4319
4320 /* FIXME: cagney/2002-12-01: Given that a frame ID does
4321 (or should) carry around the function and does (or
4322 should) use that when doing a frame comparison. */
4323 if (tp->stop_step
4324 && frame_id_eq (tp->step_frame_id,
4325 get_frame_id (get_current_frame ()))
4326 && step_start_function == find_pc_function (stop_pc))
4327 source_flag = SRC_LINE; /* finished step, just print source line */
4328 else
4329 source_flag = SRC_AND_LOC; /* print location and source line */
4330 break;
4331 case PRINT_SRC_AND_LOC:
4332 source_flag = SRC_AND_LOC; /* print location and source line */
4333 break;
4334 case PRINT_SRC_ONLY:
4335 source_flag = SRC_LINE;
4336 break;
4337 case PRINT_NOTHING:
4338 source_flag = SRC_LINE; /* something bogus */
4339 do_frame_printing = 0;
4340 break;
4341 default:
4342 internal_error (__FILE__, __LINE__, _("Unknown value."));
4343 }
4344
4345 if (ui_out_is_mi_like_p (uiout))
4346 {
4347
4348 ui_out_field_int (uiout, "thread-id",
4349 pid_to_thread_id (inferior_ptid));
4350 if (non_stop)
4351 {
4352 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end
4353 (uiout, "stopped-threads");
4354 ui_out_field_int (uiout, NULL,
4355 pid_to_thread_id (inferior_ptid));
4356 do_cleanups (back_to);
4357 }
4358 else
4359 ui_out_field_string (uiout, "stopped-threads", "all");
4360 }
4361 /* The behavior of this routine with respect to the source
4362 flag is:
4363 SRC_LINE: Print only source line
4364 LOCATION: Print only location
4365 SRC_AND_LOC: Print location and source line */
4366 if (do_frame_printing)
4367 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
4368
4369 /* Display the auto-display expressions. */
4370 do_displays ();
4371 }
4372 }
4373
4374 /* Save the function value return registers, if we care.
4375 We might be about to restore their previous contents. */
4376 if (inferior_thread ()->proceed_to_finish)
4377 {
4378 /* This should not be necessary. */
4379 if (stop_registers)
4380 regcache_xfree (stop_registers);
4381
4382 /* NB: The copy goes through to the target picking up the value of
4383 all the registers. */
4384 stop_registers = regcache_dup (get_current_regcache ());
4385 }
4386
4387 if (stop_stack_dummy)
4388 {
4389 /* Pop the empty frame that contains the stack dummy.
4390 This also restores inferior state prior to the call
4391 (struct inferior_thread_state). */
4392 struct frame_info *frame = get_current_frame ();
4393 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
4394 frame_pop (frame);
4395 /* frame_pop() calls reinit_frame_cache as the last thing it does
4396 which means there's currently no selected frame. We don't need
4397 to re-establish a selected frame if the dummy call returns normally,
4398 that will be done by restore_inferior_status. However, we do have
4399 to handle the case where the dummy call is returning after being
4400 stopped (e.g. the dummy call previously hit a breakpoint). We
4401 can't know which case we have so just always re-establish a
4402 selected frame here. */
4403 select_frame (get_current_frame ());
4404 }
4405
4406 done:
4407 annotate_stopped ();
4408 if (!suppress_stop_observer
4409 && !(target_has_execution
4410 && last.kind != TARGET_WAITKIND_SIGNALLED
4411 && last.kind != TARGET_WAITKIND_EXITED
4412 && inferior_thread ()->step_multi))
4413 {
4414 if (!ptid_equal (inferior_ptid, null_ptid))
4415 observer_notify_normal_stop (inferior_thread ()->stop_bpstat);
4416 else
4417 observer_notify_normal_stop (NULL);
4418 }
4419
4420 if (target_has_execution)
4421 {
4422 if (last.kind != TARGET_WAITKIND_SIGNALLED
4423 && last.kind != TARGET_WAITKIND_EXITED)
4424 /* Delete the breakpoint we stopped at, if it wants to be deleted.
4425 Delete any breakpoint that is to be deleted at the next stop. */
4426 breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
4427 }
4428
4429 /* Tell the frontend about the new thread states. */
4430 do_cleanups (old_chain);
4431
4432 /* Look up the hook_stop and run it (CLI internally handles problem
4433 of stop_command's pre-hook not existing). */
4434 if (stop_command)
4435 catch_errors (hook_stop_stub, stop_command,
4436 "Error while running hook_stop:\n", RETURN_MASK_ALL);
4437
4438 }
4439
4440 static int
4441 hook_stop_stub (void *cmd)
4442 {
4443 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
4444 return (0);
4445 }
4446 \f
4447 int
4448 signal_stop_state (int signo)
4449 {
4450 return signal_stop[signo];
4451 }
4452
4453 int
4454 signal_print_state (int signo)
4455 {
4456 return signal_print[signo];
4457 }
4458
4459 int
4460 signal_pass_state (int signo)
4461 {
4462 return signal_program[signo];
4463 }
4464
4465 int
4466 signal_stop_update (int signo, int state)
4467 {
4468 int ret = signal_stop[signo];
4469 signal_stop[signo] = state;
4470 return ret;
4471 }
4472
4473 int
4474 signal_print_update (int signo, int state)
4475 {
4476 int ret = signal_print[signo];
4477 signal_print[signo] = state;
4478 return ret;
4479 }
4480
4481 int
4482 signal_pass_update (int signo, int state)
4483 {
4484 int ret = signal_program[signo];
4485 signal_program[signo] = state;
4486 return ret;
4487 }
4488
4489 static void
4490 sig_print_header (void)
4491 {
4492 printf_filtered (_("\
4493 Signal Stop\tPrint\tPass to program\tDescription\n"));
4494 }
4495
4496 static void
4497 sig_print_info (enum target_signal oursig)
4498 {
4499 const char *name = target_signal_to_name (oursig);
4500 int name_padding = 13 - strlen (name);
4501
4502 if (name_padding <= 0)
4503 name_padding = 0;
4504
4505 printf_filtered ("%s", name);
4506 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
4507 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
4508 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
4509 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
4510 printf_filtered ("%s\n", target_signal_to_string (oursig));
4511 }
4512
4513 /* Specify how various signals in the inferior should be handled. */
4514
4515 static void
4516 handle_command (char *args, int from_tty)
4517 {
4518 char **argv;
4519 int digits, wordlen;
4520 int sigfirst, signum, siglast;
4521 enum target_signal oursig;
4522 int allsigs;
4523 int nsigs;
4524 unsigned char *sigs;
4525 struct cleanup *old_chain;
4526
4527 if (args == NULL)
4528 {
4529 error_no_arg (_("signal to handle"));
4530 }
4531
4532 /* Allocate and zero an array of flags for which signals to handle. */
4533
4534 nsigs = (int) TARGET_SIGNAL_LAST;
4535 sigs = (unsigned char *) alloca (nsigs);
4536 memset (sigs, 0, nsigs);
4537
4538 /* Break the command line up into args. */
4539
4540 argv = gdb_buildargv (args);
4541 old_chain = make_cleanup_freeargv (argv);
4542
4543 /* Walk through the args, looking for signal oursigs, signal names, and
4544 actions. Signal numbers and signal names may be interspersed with
4545 actions, with the actions being performed for all signals cumulatively
4546 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
4547
4548 while (*argv != NULL)
4549 {
4550 wordlen = strlen (*argv);
4551 for (digits = 0; isdigit ((*argv)[digits]); digits++)
4552 {;
4553 }
4554 allsigs = 0;
4555 sigfirst = siglast = -1;
4556
4557 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
4558 {
4559 /* Apply action to all signals except those used by the
4560 debugger. Silently skip those. */
4561 allsigs = 1;
4562 sigfirst = 0;
4563 siglast = nsigs - 1;
4564 }
4565 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
4566 {
4567 SET_SIGS (nsigs, sigs, signal_stop);
4568 SET_SIGS (nsigs, sigs, signal_print);
4569 }
4570 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
4571 {
4572 UNSET_SIGS (nsigs, sigs, signal_program);
4573 }
4574 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
4575 {
4576 SET_SIGS (nsigs, sigs, signal_print);
4577 }
4578 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
4579 {
4580 SET_SIGS (nsigs, sigs, signal_program);
4581 }
4582 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
4583 {
4584 UNSET_SIGS (nsigs, sigs, signal_stop);
4585 }
4586 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
4587 {
4588 SET_SIGS (nsigs, sigs, signal_program);
4589 }
4590 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
4591 {
4592 UNSET_SIGS (nsigs, sigs, signal_print);
4593 UNSET_SIGS (nsigs, sigs, signal_stop);
4594 }
4595 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
4596 {
4597 UNSET_SIGS (nsigs, sigs, signal_program);
4598 }
4599 else if (digits > 0)
4600 {
4601 /* It is numeric. The numeric signal refers to our own
4602 internal signal numbering from target.h, not to host/target
4603 signal number. This is a feature; users really should be
4604 using symbolic names anyway, and the common ones like
4605 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
4606
4607 sigfirst = siglast = (int)
4608 target_signal_from_command (atoi (*argv));
4609 if ((*argv)[digits] == '-')
4610 {
4611 siglast = (int)
4612 target_signal_from_command (atoi ((*argv) + digits + 1));
4613 }
4614 if (sigfirst > siglast)
4615 {
4616 /* Bet he didn't figure we'd think of this case... */
4617 signum = sigfirst;
4618 sigfirst = siglast;
4619 siglast = signum;
4620 }
4621 }
4622 else
4623 {
4624 oursig = target_signal_from_name (*argv);
4625 if (oursig != TARGET_SIGNAL_UNKNOWN)
4626 {
4627 sigfirst = siglast = (int) oursig;
4628 }
4629 else
4630 {
4631 /* Not a number and not a recognized flag word => complain. */
4632 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
4633 }
4634 }
4635
4636 /* If any signal numbers or symbol names were found, set flags for
4637 which signals to apply actions to. */
4638
4639 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
4640 {
4641 switch ((enum target_signal) signum)
4642 {
4643 case TARGET_SIGNAL_TRAP:
4644 case TARGET_SIGNAL_INT:
4645 if (!allsigs && !sigs[signum])
4646 {
4647 if (query ("%s is used by the debugger.\n\
4648 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
4649 {
4650 sigs[signum] = 1;
4651 }
4652 else
4653 {
4654 printf_unfiltered (_("Not confirmed, unchanged.\n"));
4655 gdb_flush (gdb_stdout);
4656 }
4657 }
4658 break;
4659 case TARGET_SIGNAL_0:
4660 case TARGET_SIGNAL_DEFAULT:
4661 case TARGET_SIGNAL_UNKNOWN:
4662 /* Make sure that "all" doesn't print these. */
4663 break;
4664 default:
4665 sigs[signum] = 1;
4666 break;
4667 }
4668 }
4669
4670 argv++;
4671 }
4672
4673 for (signum = 0; signum < nsigs; signum++)
4674 if (sigs[signum])
4675 {
4676 target_notice_signals (inferior_ptid);
4677
4678 if (from_tty)
4679 {
4680 /* Show the results. */
4681 sig_print_header ();
4682 for (; signum < nsigs; signum++)
4683 if (sigs[signum])
4684 sig_print_info (signum);
4685 }
4686
4687 break;
4688 }
4689
4690 do_cleanups (old_chain);
4691 }
4692
4693 static void
4694 xdb_handle_command (char *args, int from_tty)
4695 {
4696 char **argv;
4697 struct cleanup *old_chain;
4698
4699 if (args == NULL)
4700 error_no_arg (_("xdb command"));
4701
4702 /* Break the command line up into args. */
4703
4704 argv = gdb_buildargv (args);
4705 old_chain = make_cleanup_freeargv (argv);
4706 if (argv[1] != (char *) NULL)
4707 {
4708 char *argBuf;
4709 int bufLen;
4710
4711 bufLen = strlen (argv[0]) + 20;
4712 argBuf = (char *) xmalloc (bufLen);
4713 if (argBuf)
4714 {
4715 int validFlag = 1;
4716 enum target_signal oursig;
4717
4718 oursig = target_signal_from_name (argv[0]);
4719 memset (argBuf, 0, bufLen);
4720 if (strcmp (argv[1], "Q") == 0)
4721 sprintf (argBuf, "%s %s", argv[0], "noprint");
4722 else
4723 {
4724 if (strcmp (argv[1], "s") == 0)
4725 {
4726 if (!signal_stop[oursig])
4727 sprintf (argBuf, "%s %s", argv[0], "stop");
4728 else
4729 sprintf (argBuf, "%s %s", argv[0], "nostop");
4730 }
4731 else if (strcmp (argv[1], "i") == 0)
4732 {
4733 if (!signal_program[oursig])
4734 sprintf (argBuf, "%s %s", argv[0], "pass");
4735 else
4736 sprintf (argBuf, "%s %s", argv[0], "nopass");
4737 }
4738 else if (strcmp (argv[1], "r") == 0)
4739 {
4740 if (!signal_print[oursig])
4741 sprintf (argBuf, "%s %s", argv[0], "print");
4742 else
4743 sprintf (argBuf, "%s %s", argv[0], "noprint");
4744 }
4745 else
4746 validFlag = 0;
4747 }
4748 if (validFlag)
4749 handle_command (argBuf, from_tty);
4750 else
4751 printf_filtered (_("Invalid signal handling flag.\n"));
4752 if (argBuf)
4753 xfree (argBuf);
4754 }
4755 }
4756 do_cleanups (old_chain);
4757 }
4758
4759 /* Print current contents of the tables set by the handle command.
4760 It is possible we should just be printing signals actually used
4761 by the current target (but for things to work right when switching
4762 targets, all signals should be in the signal tables). */
4763
4764 static void
4765 signals_info (char *signum_exp, int from_tty)
4766 {
4767 enum target_signal oursig;
4768 sig_print_header ();
4769
4770 if (signum_exp)
4771 {
4772 /* First see if this is a symbol name. */
4773 oursig = target_signal_from_name (signum_exp);
4774 if (oursig == TARGET_SIGNAL_UNKNOWN)
4775 {
4776 /* No, try numeric. */
4777 oursig =
4778 target_signal_from_command (parse_and_eval_long (signum_exp));
4779 }
4780 sig_print_info (oursig);
4781 return;
4782 }
4783
4784 printf_filtered ("\n");
4785 /* These ugly casts brought to you by the native VAX compiler. */
4786 for (oursig = TARGET_SIGNAL_FIRST;
4787 (int) oursig < (int) TARGET_SIGNAL_LAST;
4788 oursig = (enum target_signal) ((int) oursig + 1))
4789 {
4790 QUIT;
4791
4792 if (oursig != TARGET_SIGNAL_UNKNOWN
4793 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
4794 sig_print_info (oursig);
4795 }
4796
4797 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
4798 }
4799 \f
4800 /* Inferior thread state.
4801 These are details related to the inferior itself, and don't include
4802 things like what frame the user had selected or what gdb was doing
4803 with the target at the time.
4804 For inferior function calls these are things we want to restore
4805 regardless of whether the function call successfully completes
4806 or the dummy frame has to be manually popped. */
4807
4808 struct inferior_thread_state
4809 {
4810 enum target_signal stop_signal;
4811 CORE_ADDR stop_pc;
4812 struct regcache *registers;
4813 };
4814
4815 struct inferior_thread_state *
4816 save_inferior_thread_state (void)
4817 {
4818 struct inferior_thread_state *inf_state = XMALLOC (struct inferior_thread_state);
4819 struct thread_info *tp = inferior_thread ();
4820
4821 inf_state->stop_signal = tp->stop_signal;
4822 inf_state->stop_pc = stop_pc;
4823
4824 inf_state->registers = regcache_dup (get_current_regcache ());
4825
4826 return inf_state;
4827 }
4828
4829 /* Restore inferior session state to INF_STATE. */
4830
4831 void
4832 restore_inferior_thread_state (struct inferior_thread_state *inf_state)
4833 {
4834 struct thread_info *tp = inferior_thread ();
4835
4836 tp->stop_signal = inf_state->stop_signal;
4837 stop_pc = inf_state->stop_pc;
4838
4839 /* The inferior can be gone if the user types "print exit(0)"
4840 (and perhaps other times). */
4841 if (target_has_execution)
4842 /* NB: The register write goes through to the target. */
4843 regcache_cpy (get_current_regcache (), inf_state->registers);
4844 regcache_xfree (inf_state->registers);
4845 xfree (inf_state);
4846 }
4847
4848 static void
4849 do_restore_inferior_thread_state_cleanup (void *state)
4850 {
4851 restore_inferior_thread_state (state);
4852 }
4853
4854 struct cleanup *
4855 make_cleanup_restore_inferior_thread_state (struct inferior_thread_state *inf_state)
4856 {
4857 return make_cleanup (do_restore_inferior_thread_state_cleanup, inf_state);
4858 }
4859
4860 void
4861 discard_inferior_thread_state (struct inferior_thread_state *inf_state)
4862 {
4863 regcache_xfree (inf_state->registers);
4864 xfree (inf_state);
4865 }
4866
4867 struct regcache *
4868 get_inferior_thread_state_regcache (struct inferior_thread_state *inf_state)
4869 {
4870 return inf_state->registers;
4871 }
4872
4873 /* Session related state for inferior function calls.
4874 These are the additional bits of state that need to be restored
4875 when an inferior function call successfully completes. */
4876
4877 struct inferior_status
4878 {
4879 bpstat stop_bpstat;
4880 int stop_step;
4881 int stop_stack_dummy;
4882 int stopped_by_random_signal;
4883 int stepping_over_breakpoint;
4884 CORE_ADDR step_range_start;
4885 CORE_ADDR step_range_end;
4886 struct frame_id step_frame_id;
4887 enum step_over_calls_kind step_over_calls;
4888 CORE_ADDR step_resume_break_address;
4889 int stop_after_trap;
4890 int stop_soon;
4891
4892 /* ID if the selected frame when the inferior function call was made. */
4893 struct frame_id selected_frame_id;
4894
4895 int breakpoint_proceeded;
4896 int proceed_to_finish;
4897 };
4898
4899 /* Save all of the information associated with the inferior<==>gdb
4900 connection. */
4901
4902 struct inferior_status *
4903 save_inferior_status (void)
4904 {
4905 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
4906 struct thread_info *tp = inferior_thread ();
4907 struct inferior *inf = current_inferior ();
4908
4909 inf_status->stop_step = tp->stop_step;
4910 inf_status->stop_stack_dummy = stop_stack_dummy;
4911 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4912 inf_status->stepping_over_breakpoint = tp->trap_expected;
4913 inf_status->step_range_start = tp->step_range_start;
4914 inf_status->step_range_end = tp->step_range_end;
4915 inf_status->step_frame_id = tp->step_frame_id;
4916 inf_status->step_over_calls = tp->step_over_calls;
4917 inf_status->stop_after_trap = stop_after_trap;
4918 inf_status->stop_soon = inf->stop_soon;
4919 /* Save original bpstat chain here; replace it with copy of chain.
4920 If caller's caller is walking the chain, they'll be happier if we
4921 hand them back the original chain when restore_inferior_status is
4922 called. */
4923 inf_status->stop_bpstat = tp->stop_bpstat;
4924 tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
4925 inf_status->breakpoint_proceeded = breakpoint_proceeded;
4926 inf_status->proceed_to_finish = tp->proceed_to_finish;
4927
4928 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
4929
4930 return inf_status;
4931 }
4932
4933 static int
4934 restore_selected_frame (void *args)
4935 {
4936 struct frame_id *fid = (struct frame_id *) args;
4937 struct frame_info *frame;
4938
4939 frame = frame_find_by_id (*fid);
4940
4941 /* If inf_status->selected_frame_id is NULL, there was no previously
4942 selected frame. */
4943 if (frame == NULL)
4944 {
4945 warning (_("Unable to restore previously selected frame."));
4946 return 0;
4947 }
4948
4949 select_frame (frame);
4950
4951 return (1);
4952 }
4953
4954 /* Restore inferior session state to INF_STATUS. */
4955
4956 void
4957 restore_inferior_status (struct inferior_status *inf_status)
4958 {
4959 struct thread_info *tp = inferior_thread ();
4960 struct inferior *inf = current_inferior ();
4961
4962 tp->stop_step = inf_status->stop_step;
4963 stop_stack_dummy = inf_status->stop_stack_dummy;
4964 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4965 tp->trap_expected = inf_status->stepping_over_breakpoint;
4966 tp->step_range_start = inf_status->step_range_start;
4967 tp->step_range_end = inf_status->step_range_end;
4968 tp->step_frame_id = inf_status->step_frame_id;
4969 tp->step_over_calls = inf_status->step_over_calls;
4970 stop_after_trap = inf_status->stop_after_trap;
4971 inf->stop_soon = inf_status->stop_soon;
4972 bpstat_clear (&tp->stop_bpstat);
4973 tp->stop_bpstat = inf_status->stop_bpstat;
4974 inf_status->stop_bpstat = NULL;
4975 breakpoint_proceeded = inf_status->breakpoint_proceeded;
4976 tp->proceed_to_finish = inf_status->proceed_to_finish;
4977
4978 if (target_has_stack)
4979 {
4980 /* The point of catch_errors is that if the stack is clobbered,
4981 walking the stack might encounter a garbage pointer and
4982 error() trying to dereference it. */
4983 if (catch_errors
4984 (restore_selected_frame, &inf_status->selected_frame_id,
4985 "Unable to restore previously selected frame:\n",
4986 RETURN_MASK_ERROR) == 0)
4987 /* Error in restoring the selected frame. Select the innermost
4988 frame. */
4989 select_frame (get_current_frame ());
4990 }
4991
4992 xfree (inf_status);
4993 }
4994
4995 static void
4996 do_restore_inferior_status_cleanup (void *sts)
4997 {
4998 restore_inferior_status (sts);
4999 }
5000
5001 struct cleanup *
5002 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
5003 {
5004 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
5005 }
5006
5007 void
5008 discard_inferior_status (struct inferior_status *inf_status)
5009 {
5010 /* See save_inferior_status for info on stop_bpstat. */
5011 bpstat_clear (&inf_status->stop_bpstat);
5012 xfree (inf_status);
5013 }
5014 \f
5015 int
5016 inferior_has_forked (ptid_t pid, ptid_t *child_pid)
5017 {
5018 struct target_waitstatus last;
5019 ptid_t last_ptid;
5020
5021 get_last_target_status (&last_ptid, &last);
5022
5023 if (last.kind != TARGET_WAITKIND_FORKED)
5024 return 0;
5025
5026 if (!ptid_equal (last_ptid, pid))
5027 return 0;
5028
5029 *child_pid = last.value.related_pid;
5030 return 1;
5031 }
5032
5033 int
5034 inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
5035 {
5036 struct target_waitstatus last;
5037 ptid_t last_ptid;
5038
5039 get_last_target_status (&last_ptid, &last);
5040
5041 if (last.kind != TARGET_WAITKIND_VFORKED)
5042 return 0;
5043
5044 if (!ptid_equal (last_ptid, pid))
5045 return 0;
5046
5047 *child_pid = last.value.related_pid;
5048 return 1;
5049 }
5050
5051 int
5052 inferior_has_execd (ptid_t pid, char **execd_pathname)
5053 {
5054 struct target_waitstatus last;
5055 ptid_t last_ptid;
5056
5057 get_last_target_status (&last_ptid, &last);
5058
5059 if (last.kind != TARGET_WAITKIND_EXECD)
5060 return 0;
5061
5062 if (!ptid_equal (last_ptid, pid))
5063 return 0;
5064
5065 *execd_pathname = xstrdup (last.value.execd_pathname);
5066 return 1;
5067 }
5068
5069 /* Oft used ptids */
5070 ptid_t null_ptid;
5071 ptid_t minus_one_ptid;
5072
5073 /* Create a ptid given the necessary PID, LWP, and TID components. */
5074
5075 ptid_t
5076 ptid_build (int pid, long lwp, long tid)
5077 {
5078 ptid_t ptid;
5079
5080 ptid.pid = pid;
5081 ptid.lwp = lwp;
5082 ptid.tid = tid;
5083 return ptid;
5084 }
5085
5086 /* Create a ptid from just a pid. */
5087
5088 ptid_t
5089 pid_to_ptid (int pid)
5090 {
5091 return ptid_build (pid, 0, 0);
5092 }
5093
5094 /* Fetch the pid (process id) component from a ptid. */
5095
5096 int
5097 ptid_get_pid (ptid_t ptid)
5098 {
5099 return ptid.pid;
5100 }
5101
5102 /* Fetch the lwp (lightweight process) component from a ptid. */
5103
5104 long
5105 ptid_get_lwp (ptid_t ptid)
5106 {
5107 return ptid.lwp;
5108 }
5109
5110 /* Fetch the tid (thread id) component from a ptid. */
5111
5112 long
5113 ptid_get_tid (ptid_t ptid)
5114 {
5115 return ptid.tid;
5116 }
5117
5118 /* ptid_equal() is used to test equality of two ptids. */
5119
5120 int
5121 ptid_equal (ptid_t ptid1, ptid_t ptid2)
5122 {
5123 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
5124 && ptid1.tid == ptid2.tid);
5125 }
5126
5127 /* Returns true if PTID represents a process. */
5128
5129 int
5130 ptid_is_pid (ptid_t ptid)
5131 {
5132 if (ptid_equal (minus_one_ptid, ptid))
5133 return 0;
5134 if (ptid_equal (null_ptid, ptid))
5135 return 0;
5136
5137 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
5138 }
5139
5140 /* restore_inferior_ptid() will be used by the cleanup machinery
5141 to restore the inferior_ptid value saved in a call to
5142 save_inferior_ptid(). */
5143
5144 static void
5145 restore_inferior_ptid (void *arg)
5146 {
5147 ptid_t *saved_ptid_ptr = arg;
5148 inferior_ptid = *saved_ptid_ptr;
5149 xfree (arg);
5150 }
5151
5152 /* Save the value of inferior_ptid so that it may be restored by a
5153 later call to do_cleanups(). Returns the struct cleanup pointer
5154 needed for later doing the cleanup. */
5155
5156 struct cleanup *
5157 save_inferior_ptid (void)
5158 {
5159 ptid_t *saved_ptid_ptr;
5160
5161 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
5162 *saved_ptid_ptr = inferior_ptid;
5163 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
5164 }
5165 \f
5166
5167 /* User interface for reverse debugging:
5168 Set exec-direction / show exec-direction commands
5169 (returns error unless target implements to_set_exec_direction method). */
5170
5171 enum exec_direction_kind execution_direction = EXEC_FORWARD;
5172 static const char exec_forward[] = "forward";
5173 static const char exec_reverse[] = "reverse";
5174 static const char *exec_direction = exec_forward;
5175 static const char *exec_direction_names[] = {
5176 exec_forward,
5177 exec_reverse,
5178 NULL
5179 };
5180
5181 static void
5182 set_exec_direction_func (char *args, int from_tty,
5183 struct cmd_list_element *cmd)
5184 {
5185 if (target_can_execute_reverse)
5186 {
5187 if (!strcmp (exec_direction, exec_forward))
5188 execution_direction = EXEC_FORWARD;
5189 else if (!strcmp (exec_direction, exec_reverse))
5190 execution_direction = EXEC_REVERSE;
5191 }
5192 }
5193
5194 static void
5195 show_exec_direction_func (struct ui_file *out, int from_tty,
5196 struct cmd_list_element *cmd, const char *value)
5197 {
5198 switch (execution_direction) {
5199 case EXEC_FORWARD:
5200 fprintf_filtered (out, _("Forward.\n"));
5201 break;
5202 case EXEC_REVERSE:
5203 fprintf_filtered (out, _("Reverse.\n"));
5204 break;
5205 case EXEC_ERROR:
5206 default:
5207 fprintf_filtered (out,
5208 _("Forward (target `%s' does not support exec-direction).\n"),
5209 target_shortname);
5210 break;
5211 }
5212 }
5213
5214 /* User interface for non-stop mode. */
5215
5216 int non_stop = 0;
5217 static int non_stop_1 = 0;
5218
5219 static void
5220 set_non_stop (char *args, int from_tty,
5221 struct cmd_list_element *c)
5222 {
5223 if (target_has_execution)
5224 {
5225 non_stop_1 = non_stop;
5226 error (_("Cannot change this setting while the inferior is running."));
5227 }
5228
5229 non_stop = non_stop_1;
5230 }
5231
5232 static void
5233 show_non_stop (struct ui_file *file, int from_tty,
5234 struct cmd_list_element *c, const char *value)
5235 {
5236 fprintf_filtered (file,
5237 _("Controlling the inferior in non-stop mode is %s.\n"),
5238 value);
5239 }
5240
5241
5242 void
5243 _initialize_infrun (void)
5244 {
5245 int i;
5246 int numsigs;
5247 struct cmd_list_element *c;
5248
5249 add_info ("signals", signals_info, _("\
5250 What debugger does when program gets various signals.\n\
5251 Specify a signal as argument to print info on that signal only."));
5252 add_info_alias ("handle", "signals", 0);
5253
5254 add_com ("handle", class_run, handle_command, _("\
5255 Specify how to handle a signal.\n\
5256 Args are signals and actions to apply to those signals.\n\
5257 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5258 from 1-15 are allowed for compatibility with old versions of GDB.\n\
5259 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5260 The special arg \"all\" is recognized to mean all signals except those\n\
5261 used by the debugger, typically SIGTRAP and SIGINT.\n\
5262 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
5263 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
5264 Stop means reenter debugger if this signal happens (implies print).\n\
5265 Print means print a message if this signal happens.\n\
5266 Pass means let program see this signal; otherwise program doesn't know.\n\
5267 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
5268 Pass and Stop may be combined."));
5269 if (xdb_commands)
5270 {
5271 add_com ("lz", class_info, signals_info, _("\
5272 What debugger does when program gets various signals.\n\
5273 Specify a signal as argument to print info on that signal only."));
5274 add_com ("z", class_run, xdb_handle_command, _("\
5275 Specify how to handle a signal.\n\
5276 Args are signals and actions to apply to those signals.\n\
5277 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5278 from 1-15 are allowed for compatibility with old versions of GDB.\n\
5279 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5280 The special arg \"all\" is recognized to mean all signals except those\n\
5281 used by the debugger, typically SIGTRAP and SIGINT.\n\
5282 Recognized actions include \"s\" (toggles between stop and nostop), \n\
5283 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
5284 nopass), \"Q\" (noprint)\n\
5285 Stop means reenter debugger if this signal happens (implies print).\n\
5286 Print means print a message if this signal happens.\n\
5287 Pass means let program see this signal; otherwise program doesn't know.\n\
5288 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
5289 Pass and Stop may be combined."));
5290 }
5291
5292 if (!dbx_commands)
5293 stop_command = add_cmd ("stop", class_obscure,
5294 not_just_help_class_command, _("\
5295 There is no `stop' command, but you can set a hook on `stop'.\n\
5296 This allows you to set a list of commands to be run each time execution\n\
5297 of the program stops."), &cmdlist);
5298
5299 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
5300 Set inferior debugging."), _("\
5301 Show inferior debugging."), _("\
5302 When non-zero, inferior specific debugging is enabled."),
5303 NULL,
5304 show_debug_infrun,
5305 &setdebuglist, &showdebuglist);
5306
5307 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
5308 Set displaced stepping debugging."), _("\
5309 Show displaced stepping debugging."), _("\
5310 When non-zero, displaced stepping specific debugging is enabled."),
5311 NULL,
5312 show_debug_displaced,
5313 &setdebuglist, &showdebuglist);
5314
5315 add_setshow_boolean_cmd ("non-stop", no_class,
5316 &non_stop_1, _("\
5317 Set whether gdb controls the inferior in non-stop mode."), _("\
5318 Show whether gdb controls the inferior in non-stop mode."), _("\
5319 When debugging a multi-threaded program and this setting is\n\
5320 off (the default, also called all-stop mode), when one thread stops\n\
5321 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
5322 all other threads in the program while you interact with the thread of\n\
5323 interest. When you continue or step a thread, you can allow the other\n\
5324 threads to run, or have them remain stopped, but while you inspect any\n\
5325 thread's state, all threads stop.\n\
5326 \n\
5327 In non-stop mode, when one thread stops, other threads can continue\n\
5328 to run freely. You'll be able to step each thread independently,\n\
5329 leave it stopped or free to run as needed."),
5330 set_non_stop,
5331 show_non_stop,
5332 &setlist,
5333 &showlist);
5334
5335 numsigs = (int) TARGET_SIGNAL_LAST;
5336 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
5337 signal_print = (unsigned char *)
5338 xmalloc (sizeof (signal_print[0]) * numsigs);
5339 signal_program = (unsigned char *)
5340 xmalloc (sizeof (signal_program[0]) * numsigs);
5341 for (i = 0; i < numsigs; i++)
5342 {
5343 signal_stop[i] = 1;
5344 signal_print[i] = 1;
5345 signal_program[i] = 1;
5346 }
5347
5348 /* Signals caused by debugger's own actions
5349 should not be given to the program afterwards. */
5350 signal_program[TARGET_SIGNAL_TRAP] = 0;
5351 signal_program[TARGET_SIGNAL_INT] = 0;
5352
5353 /* Signals that are not errors should not normally enter the debugger. */
5354 signal_stop[TARGET_SIGNAL_ALRM] = 0;
5355 signal_print[TARGET_SIGNAL_ALRM] = 0;
5356 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
5357 signal_print[TARGET_SIGNAL_VTALRM] = 0;
5358 signal_stop[TARGET_SIGNAL_PROF] = 0;
5359 signal_print[TARGET_SIGNAL_PROF] = 0;
5360 signal_stop[TARGET_SIGNAL_CHLD] = 0;
5361 signal_print[TARGET_SIGNAL_CHLD] = 0;
5362 signal_stop[TARGET_SIGNAL_IO] = 0;
5363 signal_print[TARGET_SIGNAL_IO] = 0;
5364 signal_stop[TARGET_SIGNAL_POLL] = 0;
5365 signal_print[TARGET_SIGNAL_POLL] = 0;
5366 signal_stop[TARGET_SIGNAL_URG] = 0;
5367 signal_print[TARGET_SIGNAL_URG] = 0;
5368 signal_stop[TARGET_SIGNAL_WINCH] = 0;
5369 signal_print[TARGET_SIGNAL_WINCH] = 0;
5370
5371 /* These signals are used internally by user-level thread
5372 implementations. (See signal(5) on Solaris.) Like the above
5373 signals, a healthy program receives and handles them as part of
5374 its normal operation. */
5375 signal_stop[TARGET_SIGNAL_LWP] = 0;
5376 signal_print[TARGET_SIGNAL_LWP] = 0;
5377 signal_stop[TARGET_SIGNAL_WAITING] = 0;
5378 signal_print[TARGET_SIGNAL_WAITING] = 0;
5379 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
5380 signal_print[TARGET_SIGNAL_CANCEL] = 0;
5381
5382 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
5383 &stop_on_solib_events, _("\
5384 Set stopping for shared library events."), _("\
5385 Show stopping for shared library events."), _("\
5386 If nonzero, gdb will give control to the user when the dynamic linker\n\
5387 notifies gdb of shared library events. The most common event of interest\n\
5388 to the user would be loading/unloading of a new library."),
5389 NULL,
5390 show_stop_on_solib_events,
5391 &setlist, &showlist);
5392
5393 add_setshow_enum_cmd ("follow-fork-mode", class_run,
5394 follow_fork_mode_kind_names,
5395 &follow_fork_mode_string, _("\
5396 Set debugger response to a program call of fork or vfork."), _("\
5397 Show debugger response to a program call of fork or vfork."), _("\
5398 A fork or vfork creates a new process. follow-fork-mode can be:\n\
5399 parent - the original process is debugged after a fork\n\
5400 child - the new process is debugged after a fork\n\
5401 The unfollowed process will continue to run.\n\
5402 By default, the debugger will follow the parent process."),
5403 NULL,
5404 show_follow_fork_mode_string,
5405 &setlist, &showlist);
5406
5407 add_setshow_enum_cmd ("scheduler-locking", class_run,
5408 scheduler_enums, &scheduler_mode, _("\
5409 Set mode for locking scheduler during execution."), _("\
5410 Show mode for locking scheduler during execution."), _("\
5411 off == no locking (threads may preempt at any time)\n\
5412 on == full locking (no thread except the current thread may run)\n\
5413 step == scheduler locked during every single-step operation.\n\
5414 In this mode, no other thread may run during a step command.\n\
5415 Other threads may run while stepping over a function call ('next')."),
5416 set_schedlock_func, /* traps on target vector */
5417 show_scheduler_mode,
5418 &setlist, &showlist);
5419
5420 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
5421 Set mode of the step operation."), _("\
5422 Show mode of the step operation."), _("\
5423 When set, doing a step over a function without debug line information\n\
5424 will stop at the first instruction of that function. Otherwise, the\n\
5425 function is skipped and the step command stops at a different source line."),
5426 NULL,
5427 show_step_stop_if_no_debug,
5428 &setlist, &showlist);
5429
5430 add_setshow_enum_cmd ("displaced-stepping", class_run,
5431 can_use_displaced_stepping_enum,
5432 &can_use_displaced_stepping, _("\
5433 Set debugger's willingness to use displaced stepping."), _("\
5434 Show debugger's willingness to use displaced stepping."), _("\
5435 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
5436 supported by the target architecture. If off, gdb will not use displaced\n\
5437 stepping to step over breakpoints, even if such is supported by the target\n\
5438 architecture. If auto (which is the default), gdb will use displaced stepping\n\
5439 if the target architecture supports it and non-stop mode is active, but will not\n\
5440 use it in all-stop mode (see help set non-stop)."),
5441 NULL,
5442 show_can_use_displaced_stepping,
5443 &setlist, &showlist);
5444
5445 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
5446 &exec_direction, _("Set direction of execution.\n\
5447 Options are 'forward' or 'reverse'."),
5448 _("Show direction of execution (forward/reverse)."),
5449 _("Tells gdb whether to execute forward or backward."),
5450 set_exec_direction_func, show_exec_direction_func,
5451 &setlist, &showlist);
5452
5453 /* ptid initializations */
5454 null_ptid = ptid_build (0, 0, 0);
5455 minus_one_ptid = ptid_build (-1, 0, 0);
5456 inferior_ptid = null_ptid;
5457 target_last_wait_ptid = minus_one_ptid;
5458 displaced_step_ptid = null_ptid;
5459
5460 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
5461 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
5462 }
This page took 0.16134 seconds and 4 git commands to generate.