Rename some functions, index -> gdb_index
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2018 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observable.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63 #include "solist.h"
64 #include "event-loop.h"
65 #include "thread-fsm.h"
66 #include "common/enum-flags.h"
67 #include "progspace-and-thread.h"
68 #include "common/gdb_optional.h"
69 #include "arch-utils.h"
70
71 /* Prototypes for local functions */
72
73 static void sig_print_info (enum gdb_signal);
74
75 static void sig_print_header (void);
76
77 static int follow_fork (void);
78
79 static int follow_fork_inferior (int follow_child, int detach_fork);
80
81 static void follow_inferior_reset_breakpoints (void);
82
83 static int currently_stepping (struct thread_info *tp);
84
85 void nullify_last_target_wait_ptid (void);
86
87 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
88
89 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
90
91 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
92
93 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
94
95 /* Asynchronous signal handler registered as event loop source for
96 when we have pending events ready to be passed to the core. */
97 static struct async_event_handler *infrun_async_inferior_event_token;
98
99 /* Stores whether infrun_async was previously enabled or disabled.
100 Starts off as -1, indicating "never enabled/disabled". */
101 static int infrun_is_async = -1;
102
103 /* See infrun.h. */
104
105 void
106 infrun_async (int enable)
107 {
108 if (infrun_is_async != enable)
109 {
110 infrun_is_async = enable;
111
112 if (debug_infrun)
113 fprintf_unfiltered (gdb_stdlog,
114 "infrun: infrun_async(%d)\n",
115 enable);
116
117 if (enable)
118 mark_async_event_handler (infrun_async_inferior_event_token);
119 else
120 clear_async_event_handler (infrun_async_inferior_event_token);
121 }
122 }
123
124 /* See infrun.h. */
125
126 void
127 mark_infrun_async_event_handler (void)
128 {
129 mark_async_event_handler (infrun_async_inferior_event_token);
130 }
131
132 /* When set, stop the 'step' command if we enter a function which has
133 no line number information. The normal behavior is that we step
134 over such function. */
135 int step_stop_if_no_debug = 0;
136 static void
137 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
138 struct cmd_list_element *c, const char *value)
139 {
140 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
141 }
142
143 /* proceed and normal_stop use this to notify the user when the
144 inferior stopped in a different thread than it had been running
145 in. */
146
147 static ptid_t previous_inferior_ptid;
148
149 /* If set (default for legacy reasons), when following a fork, GDB
150 will detach from one of the fork branches, child or parent.
151 Exactly which branch is detached depends on 'set follow-fork-mode'
152 setting. */
153
154 static int detach_fork = 1;
155
156 int debug_displaced = 0;
157 static void
158 show_debug_displaced (struct ui_file *file, int from_tty,
159 struct cmd_list_element *c, const char *value)
160 {
161 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
162 }
163
164 unsigned int debug_infrun = 0;
165 static void
166 show_debug_infrun (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168 {
169 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
170 }
171
172
173 /* Support for disabling address space randomization. */
174
175 int disable_randomization = 1;
176
177 static void
178 show_disable_randomization (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180 {
181 if (target_supports_disable_randomization ())
182 fprintf_filtered (file,
183 _("Disabling randomization of debuggee's "
184 "virtual address space is %s.\n"),
185 value);
186 else
187 fputs_filtered (_("Disabling randomization of debuggee's "
188 "virtual address space is unsupported on\n"
189 "this platform.\n"), file);
190 }
191
192 static void
193 set_disable_randomization (const char *args, int from_tty,
194 struct cmd_list_element *c)
195 {
196 if (!target_supports_disable_randomization ())
197 error (_("Disabling randomization of debuggee's "
198 "virtual address space is unsupported on\n"
199 "this platform."));
200 }
201
202 /* User interface for non-stop mode. */
203
204 int non_stop = 0;
205 static int non_stop_1 = 0;
206
207 static void
208 set_non_stop (const char *args, int from_tty,
209 struct cmd_list_element *c)
210 {
211 if (target_has_execution)
212 {
213 non_stop_1 = non_stop;
214 error (_("Cannot change this setting while the inferior is running."));
215 }
216
217 non_stop = non_stop_1;
218 }
219
220 static void
221 show_non_stop (struct ui_file *file, int from_tty,
222 struct cmd_list_element *c, const char *value)
223 {
224 fprintf_filtered (file,
225 _("Controlling the inferior in non-stop mode is %s.\n"),
226 value);
227 }
228
229 /* "Observer mode" is somewhat like a more extreme version of
230 non-stop, in which all GDB operations that might affect the
231 target's execution have been disabled. */
232
233 int observer_mode = 0;
234 static int observer_mode_1 = 0;
235
236 static void
237 set_observer_mode (const char *args, int from_tty,
238 struct cmd_list_element *c)
239 {
240 if (target_has_execution)
241 {
242 observer_mode_1 = observer_mode;
243 error (_("Cannot change this setting while the inferior is running."));
244 }
245
246 observer_mode = observer_mode_1;
247
248 may_write_registers = !observer_mode;
249 may_write_memory = !observer_mode;
250 may_insert_breakpoints = !observer_mode;
251 may_insert_tracepoints = !observer_mode;
252 /* We can insert fast tracepoints in or out of observer mode,
253 but enable them if we're going into this mode. */
254 if (observer_mode)
255 may_insert_fast_tracepoints = 1;
256 may_stop = !observer_mode;
257 update_target_permissions ();
258
259 /* Going *into* observer mode we must force non-stop, then
260 going out we leave it that way. */
261 if (observer_mode)
262 {
263 pagination_enabled = 0;
264 non_stop = non_stop_1 = 1;
265 }
266
267 if (from_tty)
268 printf_filtered (_("Observer mode is now %s.\n"),
269 (observer_mode ? "on" : "off"));
270 }
271
272 static void
273 show_observer_mode (struct ui_file *file, int from_tty,
274 struct cmd_list_element *c, const char *value)
275 {
276 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
277 }
278
279 /* This updates the value of observer mode based on changes in
280 permissions. Note that we are deliberately ignoring the values of
281 may-write-registers and may-write-memory, since the user may have
282 reason to enable these during a session, for instance to turn on a
283 debugging-related global. */
284
285 void
286 update_observer_mode (void)
287 {
288 int newval;
289
290 newval = (!may_insert_breakpoints
291 && !may_insert_tracepoints
292 && may_insert_fast_tracepoints
293 && !may_stop
294 && non_stop);
295
296 /* Let the user know if things change. */
297 if (newval != observer_mode)
298 printf_filtered (_("Observer mode is now %s.\n"),
299 (newval ? "on" : "off"));
300
301 observer_mode = observer_mode_1 = newval;
302 }
303
304 /* Tables of how to react to signals; the user sets them. */
305
306 static unsigned char *signal_stop;
307 static unsigned char *signal_print;
308 static unsigned char *signal_program;
309
310 /* Table of signals that are registered with "catch signal". A
311 non-zero entry indicates that the signal is caught by some "catch
312 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
313 signals. */
314 static unsigned char *signal_catch;
315
316 /* Table of signals that the target may silently handle.
317 This is automatically determined from the flags above,
318 and simply cached here. */
319 static unsigned char *signal_pass;
320
321 #define SET_SIGS(nsigs,sigs,flags) \
322 do { \
323 int signum = (nsigs); \
324 while (signum-- > 0) \
325 if ((sigs)[signum]) \
326 (flags)[signum] = 1; \
327 } while (0)
328
329 #define UNSET_SIGS(nsigs,sigs,flags) \
330 do { \
331 int signum = (nsigs); \
332 while (signum-- > 0) \
333 if ((sigs)[signum]) \
334 (flags)[signum] = 0; \
335 } while (0)
336
337 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
338 this function is to avoid exporting `signal_program'. */
339
340 void
341 update_signals_program_target (void)
342 {
343 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
344 }
345
346 /* Value to pass to target_resume() to cause all threads to resume. */
347
348 #define RESUME_ALL minus_one_ptid
349
350 /* Command list pointer for the "stop" placeholder. */
351
352 static struct cmd_list_element *stop_command;
353
354 /* Nonzero if we want to give control to the user when we're notified
355 of shared library events by the dynamic linker. */
356 int stop_on_solib_events;
357
358 /* Enable or disable optional shared library event breakpoints
359 as appropriate when the above flag is changed. */
360
361 static void
362 set_stop_on_solib_events (const char *args,
363 int from_tty, struct cmd_list_element *c)
364 {
365 update_solib_breakpoints ();
366 }
367
368 static void
369 show_stop_on_solib_events (struct ui_file *file, int from_tty,
370 struct cmd_list_element *c, const char *value)
371 {
372 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
373 value);
374 }
375
376 /* Nonzero after stop if current stack frame should be printed. */
377
378 static int stop_print_frame;
379
380 /* This is a cached copy of the pid/waitstatus of the last event
381 returned by target_wait()/deprecated_target_wait_hook(). This
382 information is returned by get_last_target_status(). */
383 static ptid_t target_last_wait_ptid;
384 static struct target_waitstatus target_last_waitstatus;
385
386 static void context_switch (ptid_t ptid);
387
388 void init_thread_stepping_state (struct thread_info *tss);
389
390 static const char follow_fork_mode_child[] = "child";
391 static const char follow_fork_mode_parent[] = "parent";
392
393 static const char *const follow_fork_mode_kind_names[] = {
394 follow_fork_mode_child,
395 follow_fork_mode_parent,
396 NULL
397 };
398
399 static const char *follow_fork_mode_string = follow_fork_mode_parent;
400 static void
401 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
402 struct cmd_list_element *c, const char *value)
403 {
404 fprintf_filtered (file,
405 _("Debugger response to a program "
406 "call of fork or vfork is \"%s\".\n"),
407 value);
408 }
409 \f
410
411 /* Handle changes to the inferior list based on the type of fork,
412 which process is being followed, and whether the other process
413 should be detached. On entry inferior_ptid must be the ptid of
414 the fork parent. At return inferior_ptid is the ptid of the
415 followed inferior. */
416
417 static int
418 follow_fork_inferior (int follow_child, int detach_fork)
419 {
420 int has_vforked;
421 ptid_t parent_ptid, child_ptid;
422
423 has_vforked = (inferior_thread ()->pending_follow.kind
424 == TARGET_WAITKIND_VFORKED);
425 parent_ptid = inferior_ptid;
426 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
427
428 if (has_vforked
429 && !non_stop /* Non-stop always resumes both branches. */
430 && current_ui->prompt_state == PROMPT_BLOCKED
431 && !(follow_child || detach_fork || sched_multi))
432 {
433 /* The parent stays blocked inside the vfork syscall until the
434 child execs or exits. If we don't let the child run, then
435 the parent stays blocked. If we're telling the parent to run
436 in the foreground, the user will not be able to ctrl-c to get
437 back the terminal, effectively hanging the debug session. */
438 fprintf_filtered (gdb_stderr, _("\
439 Can not resume the parent process over vfork in the foreground while\n\
440 holding the child stopped. Try \"set detach-on-fork\" or \
441 \"set schedule-multiple\".\n"));
442 /* FIXME output string > 80 columns. */
443 return 1;
444 }
445
446 if (!follow_child)
447 {
448 /* Detach new forked process? */
449 if (detach_fork)
450 {
451 /* Before detaching from the child, remove all breakpoints
452 from it. If we forked, then this has already been taken
453 care of by infrun.c. If we vforked however, any
454 breakpoint inserted in the parent is visible in the
455 child, even those added while stopped in a vfork
456 catchpoint. This will remove the breakpoints from the
457 parent also, but they'll be reinserted below. */
458 if (has_vforked)
459 {
460 /* Keep breakpoints list in sync. */
461 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
462 }
463
464 if (print_inferior_events)
465 {
466 /* Ensure that we have a process ptid. */
467 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
468
469 target_terminal::ours_for_output ();
470 fprintf_filtered (gdb_stdlog,
471 _("[Detaching after %s from child %s]\n"),
472 has_vforked ? "vfork" : "fork",
473 target_pid_to_str (process_ptid));
474 }
475 }
476 else
477 {
478 struct inferior *parent_inf, *child_inf;
479
480 /* Add process to GDB's tables. */
481 child_inf = add_inferior (ptid_get_pid (child_ptid));
482
483 parent_inf = current_inferior ();
484 child_inf->attach_flag = parent_inf->attach_flag;
485 copy_terminal_info (child_inf, parent_inf);
486 child_inf->gdbarch = parent_inf->gdbarch;
487 copy_inferior_target_desc_info (child_inf, parent_inf);
488
489 scoped_restore_current_pspace_and_thread restore_pspace_thread;
490
491 inferior_ptid = child_ptid;
492 add_thread_silent (inferior_ptid);
493 set_current_inferior (child_inf);
494 child_inf->symfile_flags = SYMFILE_NO_READ;
495
496 /* If this is a vfork child, then the address-space is
497 shared with the parent. */
498 if (has_vforked)
499 {
500 child_inf->pspace = parent_inf->pspace;
501 child_inf->aspace = parent_inf->aspace;
502
503 /* The parent will be frozen until the child is done
504 with the shared region. Keep track of the
505 parent. */
506 child_inf->vfork_parent = parent_inf;
507 child_inf->pending_detach = 0;
508 parent_inf->vfork_child = child_inf;
509 parent_inf->pending_detach = 0;
510 }
511 else
512 {
513 child_inf->aspace = new_address_space ();
514 child_inf->pspace = new program_space (child_inf->aspace);
515 child_inf->removable = 1;
516 set_current_program_space (child_inf->pspace);
517 clone_program_space (child_inf->pspace, parent_inf->pspace);
518
519 /* Let the shared library layer (e.g., solib-svr4) learn
520 about this new process, relocate the cloned exec, pull
521 in shared libraries, and install the solib event
522 breakpoint. If a "cloned-VM" event was propagated
523 better throughout the core, this wouldn't be
524 required. */
525 solib_create_inferior_hook (0);
526 }
527 }
528
529 if (has_vforked)
530 {
531 struct inferior *parent_inf;
532
533 parent_inf = current_inferior ();
534
535 /* If we detached from the child, then we have to be careful
536 to not insert breakpoints in the parent until the child
537 is done with the shared memory region. However, if we're
538 staying attached to the child, then we can and should
539 insert breakpoints, so that we can debug it. A
540 subsequent child exec or exit is enough to know when does
541 the child stops using the parent's address space. */
542 parent_inf->waiting_for_vfork_done = detach_fork;
543 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
544 }
545 }
546 else
547 {
548 /* Follow the child. */
549 struct inferior *parent_inf, *child_inf;
550 struct program_space *parent_pspace;
551
552 if (print_inferior_events)
553 {
554 std::string parent_pid = target_pid_to_str (parent_ptid);
555 std::string child_pid = target_pid_to_str (child_ptid);
556
557 target_terminal::ours_for_output ();
558 fprintf_filtered (gdb_stdlog,
559 _("[Attaching after %s %s to child %s]\n"),
560 parent_pid.c_str (),
561 has_vforked ? "vfork" : "fork",
562 child_pid.c_str ());
563 }
564
565 /* Add the new inferior first, so that the target_detach below
566 doesn't unpush the target. */
567
568 child_inf = add_inferior (ptid_get_pid (child_ptid));
569
570 parent_inf = current_inferior ();
571 child_inf->attach_flag = parent_inf->attach_flag;
572 copy_terminal_info (child_inf, parent_inf);
573 child_inf->gdbarch = parent_inf->gdbarch;
574 copy_inferior_target_desc_info (child_inf, parent_inf);
575
576 parent_pspace = parent_inf->pspace;
577
578 /* If we're vforking, we want to hold on to the parent until the
579 child exits or execs. At child exec or exit time we can
580 remove the old breakpoints from the parent and detach or
581 resume debugging it. Otherwise, detach the parent now; we'll
582 want to reuse it's program/address spaces, but we can't set
583 them to the child before removing breakpoints from the
584 parent, otherwise, the breakpoints module could decide to
585 remove breakpoints from the wrong process (since they'd be
586 assigned to the same address space). */
587
588 if (has_vforked)
589 {
590 gdb_assert (child_inf->vfork_parent == NULL);
591 gdb_assert (parent_inf->vfork_child == NULL);
592 child_inf->vfork_parent = parent_inf;
593 child_inf->pending_detach = 0;
594 parent_inf->vfork_child = child_inf;
595 parent_inf->pending_detach = detach_fork;
596 parent_inf->waiting_for_vfork_done = 0;
597 }
598 else if (detach_fork)
599 {
600 if (print_inferior_events)
601 {
602 /* Ensure that we have a process ptid. */
603 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (parent_ptid));
604
605 target_terminal::ours_for_output ();
606 fprintf_filtered (gdb_stdlog,
607 _("[Detaching after fork from "
608 "parent %s]\n"),
609 target_pid_to_str (process_ptid));
610 }
611
612 target_detach (parent_inf, 0);
613 }
614
615 /* Note that the detach above makes PARENT_INF dangling. */
616
617 /* Add the child thread to the appropriate lists, and switch to
618 this new thread, before cloning the program space, and
619 informing the solib layer about this new process. */
620
621 inferior_ptid = child_ptid;
622 add_thread_silent (inferior_ptid);
623 set_current_inferior (child_inf);
624
625 /* If this is a vfork child, then the address-space is shared
626 with the parent. If we detached from the parent, then we can
627 reuse the parent's program/address spaces. */
628 if (has_vforked || detach_fork)
629 {
630 child_inf->pspace = parent_pspace;
631 child_inf->aspace = child_inf->pspace->aspace;
632 }
633 else
634 {
635 child_inf->aspace = new_address_space ();
636 child_inf->pspace = new program_space (child_inf->aspace);
637 child_inf->removable = 1;
638 child_inf->symfile_flags = SYMFILE_NO_READ;
639 set_current_program_space (child_inf->pspace);
640 clone_program_space (child_inf->pspace, parent_pspace);
641
642 /* Let the shared library layer (e.g., solib-svr4) learn
643 about this new process, relocate the cloned exec, pull in
644 shared libraries, and install the solib event breakpoint.
645 If a "cloned-VM" event was propagated better throughout
646 the core, this wouldn't be required. */
647 solib_create_inferior_hook (0);
648 }
649 }
650
651 return target_follow_fork (follow_child, detach_fork);
652 }
653
654 /* Tell the target to follow the fork we're stopped at. Returns true
655 if the inferior should be resumed; false, if the target for some
656 reason decided it's best not to resume. */
657
658 static int
659 follow_fork (void)
660 {
661 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
662 int should_resume = 1;
663 struct thread_info *tp;
664
665 /* Copy user stepping state to the new inferior thread. FIXME: the
666 followed fork child thread should have a copy of most of the
667 parent thread structure's run control related fields, not just these.
668 Initialized to avoid "may be used uninitialized" warnings from gcc. */
669 struct breakpoint *step_resume_breakpoint = NULL;
670 struct breakpoint *exception_resume_breakpoint = NULL;
671 CORE_ADDR step_range_start = 0;
672 CORE_ADDR step_range_end = 0;
673 struct frame_id step_frame_id = { 0 };
674 struct thread_fsm *thread_fsm = NULL;
675
676 if (!non_stop)
677 {
678 ptid_t wait_ptid;
679 struct target_waitstatus wait_status;
680
681 /* Get the last target status returned by target_wait(). */
682 get_last_target_status (&wait_ptid, &wait_status);
683
684 /* If not stopped at a fork event, then there's nothing else to
685 do. */
686 if (wait_status.kind != TARGET_WAITKIND_FORKED
687 && wait_status.kind != TARGET_WAITKIND_VFORKED)
688 return 1;
689
690 /* Check if we switched over from WAIT_PTID, since the event was
691 reported. */
692 if (!ptid_equal (wait_ptid, minus_one_ptid)
693 && !ptid_equal (inferior_ptid, wait_ptid))
694 {
695 /* We did. Switch back to WAIT_PTID thread, to tell the
696 target to follow it (in either direction). We'll
697 afterwards refuse to resume, and inform the user what
698 happened. */
699 switch_to_thread (wait_ptid);
700 should_resume = 0;
701 }
702 }
703
704 tp = inferior_thread ();
705
706 /* If there were any forks/vforks that were caught and are now to be
707 followed, then do so now. */
708 switch (tp->pending_follow.kind)
709 {
710 case TARGET_WAITKIND_FORKED:
711 case TARGET_WAITKIND_VFORKED:
712 {
713 ptid_t parent, child;
714
715 /* If the user did a next/step, etc, over a fork call,
716 preserve the stepping state in the fork child. */
717 if (follow_child && should_resume)
718 {
719 step_resume_breakpoint = clone_momentary_breakpoint
720 (tp->control.step_resume_breakpoint);
721 step_range_start = tp->control.step_range_start;
722 step_range_end = tp->control.step_range_end;
723 step_frame_id = tp->control.step_frame_id;
724 exception_resume_breakpoint
725 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
726 thread_fsm = tp->thread_fsm;
727
728 /* For now, delete the parent's sr breakpoint, otherwise,
729 parent/child sr breakpoints are considered duplicates,
730 and the child version will not be installed. Remove
731 this when the breakpoints module becomes aware of
732 inferiors and address spaces. */
733 delete_step_resume_breakpoint (tp);
734 tp->control.step_range_start = 0;
735 tp->control.step_range_end = 0;
736 tp->control.step_frame_id = null_frame_id;
737 delete_exception_resume_breakpoint (tp);
738 tp->thread_fsm = NULL;
739 }
740
741 parent = inferior_ptid;
742 child = tp->pending_follow.value.related_pid;
743
744 /* Set up inferior(s) as specified by the caller, and tell the
745 target to do whatever is necessary to follow either parent
746 or child. */
747 if (follow_fork_inferior (follow_child, detach_fork))
748 {
749 /* Target refused to follow, or there's some other reason
750 we shouldn't resume. */
751 should_resume = 0;
752 }
753 else
754 {
755 /* This pending follow fork event is now handled, one way
756 or another. The previous selected thread may be gone
757 from the lists by now, but if it is still around, need
758 to clear the pending follow request. */
759 tp = find_thread_ptid (parent);
760 if (tp)
761 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
762
763 /* This makes sure we don't try to apply the "Switched
764 over from WAIT_PID" logic above. */
765 nullify_last_target_wait_ptid ();
766
767 /* If we followed the child, switch to it... */
768 if (follow_child)
769 {
770 switch_to_thread (child);
771
772 /* ... and preserve the stepping state, in case the
773 user was stepping over the fork call. */
774 if (should_resume)
775 {
776 tp = inferior_thread ();
777 tp->control.step_resume_breakpoint
778 = step_resume_breakpoint;
779 tp->control.step_range_start = step_range_start;
780 tp->control.step_range_end = step_range_end;
781 tp->control.step_frame_id = step_frame_id;
782 tp->control.exception_resume_breakpoint
783 = exception_resume_breakpoint;
784 tp->thread_fsm = thread_fsm;
785 }
786 else
787 {
788 /* If we get here, it was because we're trying to
789 resume from a fork catchpoint, but, the user
790 has switched threads away from the thread that
791 forked. In that case, the resume command
792 issued is most likely not applicable to the
793 child, so just warn, and refuse to resume. */
794 warning (_("Not resuming: switched threads "
795 "before following fork child."));
796 }
797
798 /* Reset breakpoints in the child as appropriate. */
799 follow_inferior_reset_breakpoints ();
800 }
801 else
802 switch_to_thread (parent);
803 }
804 }
805 break;
806 case TARGET_WAITKIND_SPURIOUS:
807 /* Nothing to follow. */
808 break;
809 default:
810 internal_error (__FILE__, __LINE__,
811 "Unexpected pending_follow.kind %d\n",
812 tp->pending_follow.kind);
813 break;
814 }
815
816 return should_resume;
817 }
818
819 static void
820 follow_inferior_reset_breakpoints (void)
821 {
822 struct thread_info *tp = inferior_thread ();
823
824 /* Was there a step_resume breakpoint? (There was if the user
825 did a "next" at the fork() call.) If so, explicitly reset its
826 thread number. Cloned step_resume breakpoints are disabled on
827 creation, so enable it here now that it is associated with the
828 correct thread.
829
830 step_resumes are a form of bp that are made to be per-thread.
831 Since we created the step_resume bp when the parent process
832 was being debugged, and now are switching to the child process,
833 from the breakpoint package's viewpoint, that's a switch of
834 "threads". We must update the bp's notion of which thread
835 it is for, or it'll be ignored when it triggers. */
836
837 if (tp->control.step_resume_breakpoint)
838 {
839 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
840 tp->control.step_resume_breakpoint->loc->enabled = 1;
841 }
842
843 /* Treat exception_resume breakpoints like step_resume breakpoints. */
844 if (tp->control.exception_resume_breakpoint)
845 {
846 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
847 tp->control.exception_resume_breakpoint->loc->enabled = 1;
848 }
849
850 /* Reinsert all breakpoints in the child. The user may have set
851 breakpoints after catching the fork, in which case those
852 were never set in the child, but only in the parent. This makes
853 sure the inserted breakpoints match the breakpoint list. */
854
855 breakpoint_re_set ();
856 insert_breakpoints ();
857 }
858
859 /* The child has exited or execed: resume threads of the parent the
860 user wanted to be executing. */
861
862 static int
863 proceed_after_vfork_done (struct thread_info *thread,
864 void *arg)
865 {
866 int pid = * (int *) arg;
867
868 if (ptid_get_pid (thread->ptid) == pid
869 && is_running (thread->ptid)
870 && !is_executing (thread->ptid)
871 && !thread->stop_requested
872 && thread->suspend.stop_signal == GDB_SIGNAL_0)
873 {
874 if (debug_infrun)
875 fprintf_unfiltered (gdb_stdlog,
876 "infrun: resuming vfork parent thread %s\n",
877 target_pid_to_str (thread->ptid));
878
879 switch_to_thread (thread->ptid);
880 clear_proceed_status (0);
881 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
882 }
883
884 return 0;
885 }
886
887 /* Save/restore inferior_ptid, current program space and current
888 inferior. Only use this if the current context points at an exited
889 inferior (and therefore there's no current thread to save). */
890 class scoped_restore_exited_inferior
891 {
892 public:
893 scoped_restore_exited_inferior ()
894 : m_saved_ptid (&inferior_ptid)
895 {}
896
897 private:
898 scoped_restore_tmpl<ptid_t> m_saved_ptid;
899 scoped_restore_current_program_space m_pspace;
900 scoped_restore_current_inferior m_inferior;
901 };
902
903 /* Called whenever we notice an exec or exit event, to handle
904 detaching or resuming a vfork parent. */
905
906 static void
907 handle_vfork_child_exec_or_exit (int exec)
908 {
909 struct inferior *inf = current_inferior ();
910
911 if (inf->vfork_parent)
912 {
913 int resume_parent = -1;
914
915 /* This exec or exit marks the end of the shared memory region
916 between the parent and the child. If the user wanted to
917 detach from the parent, now is the time. */
918
919 if (inf->vfork_parent->pending_detach)
920 {
921 struct thread_info *tp;
922 struct program_space *pspace;
923 struct address_space *aspace;
924
925 /* follow-fork child, detach-on-fork on. */
926
927 inf->vfork_parent->pending_detach = 0;
928
929 gdb::optional<scoped_restore_exited_inferior>
930 maybe_restore_inferior;
931 gdb::optional<scoped_restore_current_pspace_and_thread>
932 maybe_restore_thread;
933
934 /* If we're handling a child exit, then inferior_ptid points
935 at the inferior's pid, not to a thread. */
936 if (!exec)
937 maybe_restore_inferior.emplace ();
938 else
939 maybe_restore_thread.emplace ();
940
941 /* We're letting loose of the parent. */
942 tp = any_live_thread_of_process (inf->vfork_parent->pid);
943 switch_to_thread (tp->ptid);
944
945 /* We're about to detach from the parent, which implicitly
946 removes breakpoints from its address space. There's a
947 catch here: we want to reuse the spaces for the child,
948 but, parent/child are still sharing the pspace at this
949 point, although the exec in reality makes the kernel give
950 the child a fresh set of new pages. The problem here is
951 that the breakpoints module being unaware of this, would
952 likely chose the child process to write to the parent
953 address space. Swapping the child temporarily away from
954 the spaces has the desired effect. Yes, this is "sort
955 of" a hack. */
956
957 pspace = inf->pspace;
958 aspace = inf->aspace;
959 inf->aspace = NULL;
960 inf->pspace = NULL;
961
962 if (print_inferior_events)
963 {
964 const char *pidstr
965 = target_pid_to_str (pid_to_ptid (inf->vfork_parent->pid));
966
967 target_terminal::ours_for_output ();
968
969 if (exec)
970 {
971 fprintf_filtered (gdb_stdlog,
972 _("[Detaching vfork parent %s "
973 "after child exec]\n"), pidstr);
974 }
975 else
976 {
977 fprintf_filtered (gdb_stdlog,
978 _("[Detaching vfork parent %s "
979 "after child exit]\n"), pidstr);
980 }
981 }
982
983 target_detach (inf->vfork_parent, 0);
984
985 /* Put it back. */
986 inf->pspace = pspace;
987 inf->aspace = aspace;
988 }
989 else if (exec)
990 {
991 /* We're staying attached to the parent, so, really give the
992 child a new address space. */
993 inf->pspace = new program_space (maybe_new_address_space ());
994 inf->aspace = inf->pspace->aspace;
995 inf->removable = 1;
996 set_current_program_space (inf->pspace);
997
998 resume_parent = inf->vfork_parent->pid;
999
1000 /* Break the bonds. */
1001 inf->vfork_parent->vfork_child = NULL;
1002 }
1003 else
1004 {
1005 struct program_space *pspace;
1006
1007 /* If this is a vfork child exiting, then the pspace and
1008 aspaces were shared with the parent. Since we're
1009 reporting the process exit, we'll be mourning all that is
1010 found in the address space, and switching to null_ptid,
1011 preparing to start a new inferior. But, since we don't
1012 want to clobber the parent's address/program spaces, we
1013 go ahead and create a new one for this exiting
1014 inferior. */
1015
1016 /* Switch to null_ptid while running clone_program_space, so
1017 that clone_program_space doesn't want to read the
1018 selected frame of a dead process. */
1019 scoped_restore restore_ptid
1020 = make_scoped_restore (&inferior_ptid, null_ptid);
1021
1022 /* This inferior is dead, so avoid giving the breakpoints
1023 module the option to write through to it (cloning a
1024 program space resets breakpoints). */
1025 inf->aspace = NULL;
1026 inf->pspace = NULL;
1027 pspace = new program_space (maybe_new_address_space ());
1028 set_current_program_space (pspace);
1029 inf->removable = 1;
1030 inf->symfile_flags = SYMFILE_NO_READ;
1031 clone_program_space (pspace, inf->vfork_parent->pspace);
1032 inf->pspace = pspace;
1033 inf->aspace = pspace->aspace;
1034
1035 resume_parent = inf->vfork_parent->pid;
1036 /* Break the bonds. */
1037 inf->vfork_parent->vfork_child = NULL;
1038 }
1039
1040 inf->vfork_parent = NULL;
1041
1042 gdb_assert (current_program_space == inf->pspace);
1043
1044 if (non_stop && resume_parent != -1)
1045 {
1046 /* If the user wanted the parent to be running, let it go
1047 free now. */
1048 scoped_restore_current_thread restore_thread;
1049
1050 if (debug_infrun)
1051 fprintf_unfiltered (gdb_stdlog,
1052 "infrun: resuming vfork parent process %d\n",
1053 resume_parent);
1054
1055 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1056 }
1057 }
1058 }
1059
1060 /* Enum strings for "set|show follow-exec-mode". */
1061
1062 static const char follow_exec_mode_new[] = "new";
1063 static const char follow_exec_mode_same[] = "same";
1064 static const char *const follow_exec_mode_names[] =
1065 {
1066 follow_exec_mode_new,
1067 follow_exec_mode_same,
1068 NULL,
1069 };
1070
1071 static const char *follow_exec_mode_string = follow_exec_mode_same;
1072 static void
1073 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1074 struct cmd_list_element *c, const char *value)
1075 {
1076 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1077 }
1078
1079 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1080
1081 static void
1082 follow_exec (ptid_t ptid, char *exec_file_target)
1083 {
1084 struct thread_info *th, *tmp;
1085 struct inferior *inf = current_inferior ();
1086 int pid = ptid_get_pid (ptid);
1087 ptid_t process_ptid;
1088
1089 /* This is an exec event that we actually wish to pay attention to.
1090 Refresh our symbol table to the newly exec'd program, remove any
1091 momentary bp's, etc.
1092
1093 If there are breakpoints, they aren't really inserted now,
1094 since the exec() transformed our inferior into a fresh set
1095 of instructions.
1096
1097 We want to preserve symbolic breakpoints on the list, since
1098 we have hopes that they can be reset after the new a.out's
1099 symbol table is read.
1100
1101 However, any "raw" breakpoints must be removed from the list
1102 (e.g., the solib bp's), since their address is probably invalid
1103 now.
1104
1105 And, we DON'T want to call delete_breakpoints() here, since
1106 that may write the bp's "shadow contents" (the instruction
1107 value that was overwritten witha TRAP instruction). Since
1108 we now have a new a.out, those shadow contents aren't valid. */
1109
1110 mark_breakpoints_out ();
1111
1112 /* The target reports the exec event to the main thread, even if
1113 some other thread does the exec, and even if the main thread was
1114 stopped or already gone. We may still have non-leader threads of
1115 the process on our list. E.g., on targets that don't have thread
1116 exit events (like remote); or on native Linux in non-stop mode if
1117 there were only two threads in the inferior and the non-leader
1118 one is the one that execs (and nothing forces an update of the
1119 thread list up to here). When debugging remotely, it's best to
1120 avoid extra traffic, when possible, so avoid syncing the thread
1121 list with the target, and instead go ahead and delete all threads
1122 of the process but one that reported the event. Note this must
1123 be done before calling update_breakpoints_after_exec, as
1124 otherwise clearing the threads' resources would reference stale
1125 thread breakpoints -- it may have been one of these threads that
1126 stepped across the exec. We could just clear their stepping
1127 states, but as long as we're iterating, might as well delete
1128 them. Deleting them now rather than at the next user-visible
1129 stop provides a nicer sequence of events for user and MI
1130 notifications. */
1131 ALL_THREADS_SAFE (th, tmp)
1132 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1133 delete_thread (th->ptid);
1134
1135 /* We also need to clear any left over stale state for the
1136 leader/event thread. E.g., if there was any step-resume
1137 breakpoint or similar, it's gone now. We cannot truly
1138 step-to-next statement through an exec(). */
1139 th = inferior_thread ();
1140 th->control.step_resume_breakpoint = NULL;
1141 th->control.exception_resume_breakpoint = NULL;
1142 th->control.single_step_breakpoints = NULL;
1143 th->control.step_range_start = 0;
1144 th->control.step_range_end = 0;
1145
1146 /* The user may have had the main thread held stopped in the
1147 previous image (e.g., schedlock on, or non-stop). Release
1148 it now. */
1149 th->stop_requested = 0;
1150
1151 update_breakpoints_after_exec ();
1152
1153 /* What is this a.out's name? */
1154 process_ptid = pid_to_ptid (pid);
1155 printf_unfiltered (_("%s is executing new program: %s\n"),
1156 target_pid_to_str (process_ptid),
1157 exec_file_target);
1158
1159 /* We've followed the inferior through an exec. Therefore, the
1160 inferior has essentially been killed & reborn. */
1161
1162 gdb_flush (gdb_stdout);
1163
1164 breakpoint_init_inferior (inf_execd);
1165
1166 gdb::unique_xmalloc_ptr<char> exec_file_host
1167 = exec_file_find (exec_file_target, NULL);
1168
1169 /* If we were unable to map the executable target pathname onto a host
1170 pathname, tell the user that. Otherwise GDB's subsequent behavior
1171 is confusing. Maybe it would even be better to stop at this point
1172 so that the user can specify a file manually before continuing. */
1173 if (exec_file_host == NULL)
1174 warning (_("Could not load symbols for executable %s.\n"
1175 "Do you need \"set sysroot\"?"),
1176 exec_file_target);
1177
1178 /* Reset the shared library package. This ensures that we get a
1179 shlib event when the child reaches "_start", at which point the
1180 dld will have had a chance to initialize the child. */
1181 /* Also, loading a symbol file below may trigger symbol lookups, and
1182 we don't want those to be satisfied by the libraries of the
1183 previous incarnation of this process. */
1184 no_shared_libraries (NULL, 0);
1185
1186 if (follow_exec_mode_string == follow_exec_mode_new)
1187 {
1188 /* The user wants to keep the old inferior and program spaces
1189 around. Create a new fresh one, and switch to it. */
1190
1191 /* Do exit processing for the original inferior before adding
1192 the new inferior so we don't have two active inferiors with
1193 the same ptid, which can confuse find_inferior_ptid. */
1194 exit_inferior_num_silent (current_inferior ()->num);
1195
1196 inf = add_inferior_with_spaces ();
1197 inf->pid = pid;
1198 target_follow_exec (inf, exec_file_target);
1199
1200 set_current_inferior (inf);
1201 set_current_program_space (inf->pspace);
1202 }
1203 else
1204 {
1205 /* The old description may no longer be fit for the new image.
1206 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1207 old description; we'll read a new one below. No need to do
1208 this on "follow-exec-mode new", as the old inferior stays
1209 around (its description is later cleared/refetched on
1210 restart). */
1211 target_clear_description ();
1212 }
1213
1214 gdb_assert (current_program_space == inf->pspace);
1215
1216 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1217 because the proper displacement for a PIE (Position Independent
1218 Executable) main symbol file will only be computed by
1219 solib_create_inferior_hook below. breakpoint_re_set would fail
1220 to insert the breakpoints with the zero displacement. */
1221 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1222
1223 /* If the target can specify a description, read it. Must do this
1224 after flipping to the new executable (because the target supplied
1225 description must be compatible with the executable's
1226 architecture, and the old executable may e.g., be 32-bit, while
1227 the new one 64-bit), and before anything involving memory or
1228 registers. */
1229 target_find_description ();
1230
1231 /* The add_thread call ends up reading registers, so do it after updating the
1232 target description. */
1233 if (follow_exec_mode_string == follow_exec_mode_new)
1234 add_thread (ptid);
1235
1236 solib_create_inferior_hook (0);
1237
1238 jit_inferior_created_hook ();
1239
1240 breakpoint_re_set ();
1241
1242 /* Reinsert all breakpoints. (Those which were symbolic have
1243 been reset to the proper address in the new a.out, thanks
1244 to symbol_file_command...). */
1245 insert_breakpoints ();
1246
1247 /* The next resume of this inferior should bring it to the shlib
1248 startup breakpoints. (If the user had also set bp's on
1249 "main" from the old (parent) process, then they'll auto-
1250 matically get reset there in the new process.). */
1251 }
1252
1253 /* The queue of threads that need to do a step-over operation to get
1254 past e.g., a breakpoint. What technique is used to step over the
1255 breakpoint/watchpoint does not matter -- all threads end up in the
1256 same queue, to maintain rough temporal order of execution, in order
1257 to avoid starvation, otherwise, we could e.g., find ourselves
1258 constantly stepping the same couple threads past their breakpoints
1259 over and over, if the single-step finish fast enough. */
1260 struct thread_info *step_over_queue_head;
1261
1262 /* Bit flags indicating what the thread needs to step over. */
1263
1264 enum step_over_what_flag
1265 {
1266 /* Step over a breakpoint. */
1267 STEP_OVER_BREAKPOINT = 1,
1268
1269 /* Step past a non-continuable watchpoint, in order to let the
1270 instruction execute so we can evaluate the watchpoint
1271 expression. */
1272 STEP_OVER_WATCHPOINT = 2
1273 };
1274 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1275
1276 /* Info about an instruction that is being stepped over. */
1277
1278 struct step_over_info
1279 {
1280 /* If we're stepping past a breakpoint, this is the address space
1281 and address of the instruction the breakpoint is set at. We'll
1282 skip inserting all breakpoints here. Valid iff ASPACE is
1283 non-NULL. */
1284 const address_space *aspace;
1285 CORE_ADDR address;
1286
1287 /* The instruction being stepped over triggers a nonsteppable
1288 watchpoint. If true, we'll skip inserting watchpoints. */
1289 int nonsteppable_watchpoint_p;
1290
1291 /* The thread's global number. */
1292 int thread;
1293 };
1294
1295 /* The step-over info of the location that is being stepped over.
1296
1297 Note that with async/breakpoint always-inserted mode, a user might
1298 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1299 being stepped over. As setting a new breakpoint inserts all
1300 breakpoints, we need to make sure the breakpoint being stepped over
1301 isn't inserted then. We do that by only clearing the step-over
1302 info when the step-over is actually finished (or aborted).
1303
1304 Presently GDB can only step over one breakpoint at any given time.
1305 Given threads that can't run code in the same address space as the
1306 breakpoint's can't really miss the breakpoint, GDB could be taught
1307 to step-over at most one breakpoint per address space (so this info
1308 could move to the address space object if/when GDB is extended).
1309 The set of breakpoints being stepped over will normally be much
1310 smaller than the set of all breakpoints, so a flag in the
1311 breakpoint location structure would be wasteful. A separate list
1312 also saves complexity and run-time, as otherwise we'd have to go
1313 through all breakpoint locations clearing their flag whenever we
1314 start a new sequence. Similar considerations weigh against storing
1315 this info in the thread object. Plus, not all step overs actually
1316 have breakpoint locations -- e.g., stepping past a single-step
1317 breakpoint, or stepping to complete a non-continuable
1318 watchpoint. */
1319 static struct step_over_info step_over_info;
1320
1321 /* Record the address of the breakpoint/instruction we're currently
1322 stepping over.
1323 N.B. We record the aspace and address now, instead of say just the thread,
1324 because when we need the info later the thread may be running. */
1325
1326 static void
1327 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1328 int nonsteppable_watchpoint_p,
1329 int thread)
1330 {
1331 step_over_info.aspace = aspace;
1332 step_over_info.address = address;
1333 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1334 step_over_info.thread = thread;
1335 }
1336
1337 /* Called when we're not longer stepping over a breakpoint / an
1338 instruction, so all breakpoints are free to be (re)inserted. */
1339
1340 static void
1341 clear_step_over_info (void)
1342 {
1343 if (debug_infrun)
1344 fprintf_unfiltered (gdb_stdlog,
1345 "infrun: clear_step_over_info\n");
1346 step_over_info.aspace = NULL;
1347 step_over_info.address = 0;
1348 step_over_info.nonsteppable_watchpoint_p = 0;
1349 step_over_info.thread = -1;
1350 }
1351
1352 /* See infrun.h. */
1353
1354 int
1355 stepping_past_instruction_at (struct address_space *aspace,
1356 CORE_ADDR address)
1357 {
1358 return (step_over_info.aspace != NULL
1359 && breakpoint_address_match (aspace, address,
1360 step_over_info.aspace,
1361 step_over_info.address));
1362 }
1363
1364 /* See infrun.h. */
1365
1366 int
1367 thread_is_stepping_over_breakpoint (int thread)
1368 {
1369 return (step_over_info.thread != -1
1370 && thread == step_over_info.thread);
1371 }
1372
1373 /* See infrun.h. */
1374
1375 int
1376 stepping_past_nonsteppable_watchpoint (void)
1377 {
1378 return step_over_info.nonsteppable_watchpoint_p;
1379 }
1380
1381 /* Returns true if step-over info is valid. */
1382
1383 static int
1384 step_over_info_valid_p (void)
1385 {
1386 return (step_over_info.aspace != NULL
1387 || stepping_past_nonsteppable_watchpoint ());
1388 }
1389
1390 \f
1391 /* Displaced stepping. */
1392
1393 /* In non-stop debugging mode, we must take special care to manage
1394 breakpoints properly; in particular, the traditional strategy for
1395 stepping a thread past a breakpoint it has hit is unsuitable.
1396 'Displaced stepping' is a tactic for stepping one thread past a
1397 breakpoint it has hit while ensuring that other threads running
1398 concurrently will hit the breakpoint as they should.
1399
1400 The traditional way to step a thread T off a breakpoint in a
1401 multi-threaded program in all-stop mode is as follows:
1402
1403 a0) Initially, all threads are stopped, and breakpoints are not
1404 inserted.
1405 a1) We single-step T, leaving breakpoints uninserted.
1406 a2) We insert breakpoints, and resume all threads.
1407
1408 In non-stop debugging, however, this strategy is unsuitable: we
1409 don't want to have to stop all threads in the system in order to
1410 continue or step T past a breakpoint. Instead, we use displaced
1411 stepping:
1412
1413 n0) Initially, T is stopped, other threads are running, and
1414 breakpoints are inserted.
1415 n1) We copy the instruction "under" the breakpoint to a separate
1416 location, outside the main code stream, making any adjustments
1417 to the instruction, register, and memory state as directed by
1418 T's architecture.
1419 n2) We single-step T over the instruction at its new location.
1420 n3) We adjust the resulting register and memory state as directed
1421 by T's architecture. This includes resetting T's PC to point
1422 back into the main instruction stream.
1423 n4) We resume T.
1424
1425 This approach depends on the following gdbarch methods:
1426
1427 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1428 indicate where to copy the instruction, and how much space must
1429 be reserved there. We use these in step n1.
1430
1431 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1432 address, and makes any necessary adjustments to the instruction,
1433 register contents, and memory. We use this in step n1.
1434
1435 - gdbarch_displaced_step_fixup adjusts registers and memory after
1436 we have successfuly single-stepped the instruction, to yield the
1437 same effect the instruction would have had if we had executed it
1438 at its original address. We use this in step n3.
1439
1440 The gdbarch_displaced_step_copy_insn and
1441 gdbarch_displaced_step_fixup functions must be written so that
1442 copying an instruction with gdbarch_displaced_step_copy_insn,
1443 single-stepping across the copied instruction, and then applying
1444 gdbarch_displaced_insn_fixup should have the same effects on the
1445 thread's memory and registers as stepping the instruction in place
1446 would have. Exactly which responsibilities fall to the copy and
1447 which fall to the fixup is up to the author of those functions.
1448
1449 See the comments in gdbarch.sh for details.
1450
1451 Note that displaced stepping and software single-step cannot
1452 currently be used in combination, although with some care I think
1453 they could be made to. Software single-step works by placing
1454 breakpoints on all possible subsequent instructions; if the
1455 displaced instruction is a PC-relative jump, those breakpoints
1456 could fall in very strange places --- on pages that aren't
1457 executable, or at addresses that are not proper instruction
1458 boundaries. (We do generally let other threads run while we wait
1459 to hit the software single-step breakpoint, and they might
1460 encounter such a corrupted instruction.) One way to work around
1461 this would be to have gdbarch_displaced_step_copy_insn fully
1462 simulate the effect of PC-relative instructions (and return NULL)
1463 on architectures that use software single-stepping.
1464
1465 In non-stop mode, we can have independent and simultaneous step
1466 requests, so more than one thread may need to simultaneously step
1467 over a breakpoint. The current implementation assumes there is
1468 only one scratch space per process. In this case, we have to
1469 serialize access to the scratch space. If thread A wants to step
1470 over a breakpoint, but we are currently waiting for some other
1471 thread to complete a displaced step, we leave thread A stopped and
1472 place it in the displaced_step_request_queue. Whenever a displaced
1473 step finishes, we pick the next thread in the queue and start a new
1474 displaced step operation on it. See displaced_step_prepare and
1475 displaced_step_fixup for details. */
1476
1477 /* Default destructor for displaced_step_closure. */
1478
1479 displaced_step_closure::~displaced_step_closure () = default;
1480
1481 /* Per-inferior displaced stepping state. */
1482 struct displaced_step_inferior_state
1483 {
1484 /* Pointer to next in linked list. */
1485 struct displaced_step_inferior_state *next;
1486
1487 /* The process this displaced step state refers to. */
1488 int pid;
1489
1490 /* True if preparing a displaced step ever failed. If so, we won't
1491 try displaced stepping for this inferior again. */
1492 int failed_before;
1493
1494 /* If this is not null_ptid, this is the thread carrying out a
1495 displaced single-step in process PID. This thread's state will
1496 require fixing up once it has completed its step. */
1497 ptid_t step_ptid;
1498
1499 /* The architecture the thread had when we stepped it. */
1500 struct gdbarch *step_gdbarch;
1501
1502 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1503 for post-step cleanup. */
1504 struct displaced_step_closure *step_closure;
1505
1506 /* The address of the original instruction, and the copy we
1507 made. */
1508 CORE_ADDR step_original, step_copy;
1509
1510 /* Saved contents of copy area. */
1511 gdb_byte *step_saved_copy;
1512 };
1513
1514 /* The list of states of processes involved in displaced stepping
1515 presently. */
1516 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1517
1518 /* Get the displaced stepping state of process PID. */
1519
1520 static struct displaced_step_inferior_state *
1521 get_displaced_stepping_state (int pid)
1522 {
1523 struct displaced_step_inferior_state *state;
1524
1525 for (state = displaced_step_inferior_states;
1526 state != NULL;
1527 state = state->next)
1528 if (state->pid == pid)
1529 return state;
1530
1531 return NULL;
1532 }
1533
1534 /* Returns true if any inferior has a thread doing a displaced
1535 step. */
1536
1537 static int
1538 displaced_step_in_progress_any_inferior (void)
1539 {
1540 struct displaced_step_inferior_state *state;
1541
1542 for (state = displaced_step_inferior_states;
1543 state != NULL;
1544 state = state->next)
1545 if (!ptid_equal (state->step_ptid, null_ptid))
1546 return 1;
1547
1548 return 0;
1549 }
1550
1551 /* Return true if thread represented by PTID is doing a displaced
1552 step. */
1553
1554 static int
1555 displaced_step_in_progress_thread (ptid_t ptid)
1556 {
1557 struct displaced_step_inferior_state *displaced;
1558
1559 gdb_assert (!ptid_equal (ptid, null_ptid));
1560
1561 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1562
1563 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1564 }
1565
1566 /* Return true if process PID has a thread doing a displaced step. */
1567
1568 static int
1569 displaced_step_in_progress (int pid)
1570 {
1571 struct displaced_step_inferior_state *displaced;
1572
1573 displaced = get_displaced_stepping_state (pid);
1574 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1575 return 1;
1576
1577 return 0;
1578 }
1579
1580 /* Add a new displaced stepping state for process PID to the displaced
1581 stepping state list, or return a pointer to an already existing
1582 entry, if it already exists. Never returns NULL. */
1583
1584 static struct displaced_step_inferior_state *
1585 add_displaced_stepping_state (int pid)
1586 {
1587 struct displaced_step_inferior_state *state;
1588
1589 for (state = displaced_step_inferior_states;
1590 state != NULL;
1591 state = state->next)
1592 if (state->pid == pid)
1593 return state;
1594
1595 state = XCNEW (struct displaced_step_inferior_state);
1596 state->pid = pid;
1597 state->next = displaced_step_inferior_states;
1598 displaced_step_inferior_states = state;
1599
1600 return state;
1601 }
1602
1603 /* If inferior is in displaced stepping, and ADDR equals to starting address
1604 of copy area, return corresponding displaced_step_closure. Otherwise,
1605 return NULL. */
1606
1607 struct displaced_step_closure*
1608 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1609 {
1610 struct displaced_step_inferior_state *displaced
1611 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1612
1613 /* If checking the mode of displaced instruction in copy area. */
1614 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1615 && (displaced->step_copy == addr))
1616 return displaced->step_closure;
1617
1618 return NULL;
1619 }
1620
1621 /* Remove the displaced stepping state of process PID. */
1622
1623 static void
1624 remove_displaced_stepping_state (int pid)
1625 {
1626 struct displaced_step_inferior_state *it, **prev_next_p;
1627
1628 gdb_assert (pid != 0);
1629
1630 it = displaced_step_inferior_states;
1631 prev_next_p = &displaced_step_inferior_states;
1632 while (it)
1633 {
1634 if (it->pid == pid)
1635 {
1636 *prev_next_p = it->next;
1637 xfree (it);
1638 return;
1639 }
1640
1641 prev_next_p = &it->next;
1642 it = *prev_next_p;
1643 }
1644 }
1645
1646 static void
1647 infrun_inferior_exit (struct inferior *inf)
1648 {
1649 remove_displaced_stepping_state (inf->pid);
1650 }
1651
1652 /* If ON, and the architecture supports it, GDB will use displaced
1653 stepping to step over breakpoints. If OFF, or if the architecture
1654 doesn't support it, GDB will instead use the traditional
1655 hold-and-step approach. If AUTO (which is the default), GDB will
1656 decide which technique to use to step over breakpoints depending on
1657 which of all-stop or non-stop mode is active --- displaced stepping
1658 in non-stop mode; hold-and-step in all-stop mode. */
1659
1660 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1661
1662 static void
1663 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1664 struct cmd_list_element *c,
1665 const char *value)
1666 {
1667 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1668 fprintf_filtered (file,
1669 _("Debugger's willingness to use displaced stepping "
1670 "to step over breakpoints is %s (currently %s).\n"),
1671 value, target_is_non_stop_p () ? "on" : "off");
1672 else
1673 fprintf_filtered (file,
1674 _("Debugger's willingness to use displaced stepping "
1675 "to step over breakpoints is %s.\n"), value);
1676 }
1677
1678 /* Return non-zero if displaced stepping can/should be used to step
1679 over breakpoints of thread TP. */
1680
1681 static int
1682 use_displaced_stepping (struct thread_info *tp)
1683 {
1684 struct regcache *regcache = get_thread_regcache (tp->ptid);
1685 struct gdbarch *gdbarch = regcache->arch ();
1686 struct displaced_step_inferior_state *displaced_state;
1687
1688 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1689
1690 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1691 && target_is_non_stop_p ())
1692 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1693 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1694 && find_record_target () == NULL
1695 && (displaced_state == NULL
1696 || !displaced_state->failed_before));
1697 }
1698
1699 /* Clean out any stray displaced stepping state. */
1700 static void
1701 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1702 {
1703 /* Indicate that there is no cleanup pending. */
1704 displaced->step_ptid = null_ptid;
1705
1706 delete displaced->step_closure;
1707 displaced->step_closure = NULL;
1708 }
1709
1710 static void
1711 displaced_step_clear_cleanup (void *arg)
1712 {
1713 struct displaced_step_inferior_state *state
1714 = (struct displaced_step_inferior_state *) arg;
1715
1716 displaced_step_clear (state);
1717 }
1718
1719 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1720 void
1721 displaced_step_dump_bytes (struct ui_file *file,
1722 const gdb_byte *buf,
1723 size_t len)
1724 {
1725 int i;
1726
1727 for (i = 0; i < len; i++)
1728 fprintf_unfiltered (file, "%02x ", buf[i]);
1729 fputs_unfiltered ("\n", file);
1730 }
1731
1732 /* Prepare to single-step, using displaced stepping.
1733
1734 Note that we cannot use displaced stepping when we have a signal to
1735 deliver. If we have a signal to deliver and an instruction to step
1736 over, then after the step, there will be no indication from the
1737 target whether the thread entered a signal handler or ignored the
1738 signal and stepped over the instruction successfully --- both cases
1739 result in a simple SIGTRAP. In the first case we mustn't do a
1740 fixup, and in the second case we must --- but we can't tell which.
1741 Comments in the code for 'random signals' in handle_inferior_event
1742 explain how we handle this case instead.
1743
1744 Returns 1 if preparing was successful -- this thread is going to be
1745 stepped now; 0 if displaced stepping this thread got queued; or -1
1746 if this instruction can't be displaced stepped. */
1747
1748 static int
1749 displaced_step_prepare_throw (ptid_t ptid)
1750 {
1751 struct cleanup *ignore_cleanups;
1752 struct thread_info *tp = find_thread_ptid (ptid);
1753 struct regcache *regcache = get_thread_regcache (ptid);
1754 struct gdbarch *gdbarch = regcache->arch ();
1755 const address_space *aspace = regcache->aspace ();
1756 CORE_ADDR original, copy;
1757 ULONGEST len;
1758 struct displaced_step_closure *closure;
1759 struct displaced_step_inferior_state *displaced;
1760 int status;
1761
1762 /* We should never reach this function if the architecture does not
1763 support displaced stepping. */
1764 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1765
1766 /* Nor if the thread isn't meant to step over a breakpoint. */
1767 gdb_assert (tp->control.trap_expected);
1768
1769 /* Disable range stepping while executing in the scratch pad. We
1770 want a single-step even if executing the displaced instruction in
1771 the scratch buffer lands within the stepping range (e.g., a
1772 jump/branch). */
1773 tp->control.may_range_step = 0;
1774
1775 /* We have to displaced step one thread at a time, as we only have
1776 access to a single scratch space per inferior. */
1777
1778 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1779
1780 if (!ptid_equal (displaced->step_ptid, null_ptid))
1781 {
1782 /* Already waiting for a displaced step to finish. Defer this
1783 request and place in queue. */
1784
1785 if (debug_displaced)
1786 fprintf_unfiltered (gdb_stdlog,
1787 "displaced: deferring step of %s\n",
1788 target_pid_to_str (ptid));
1789
1790 thread_step_over_chain_enqueue (tp);
1791 return 0;
1792 }
1793 else
1794 {
1795 if (debug_displaced)
1796 fprintf_unfiltered (gdb_stdlog,
1797 "displaced: stepping %s now\n",
1798 target_pid_to_str (ptid));
1799 }
1800
1801 displaced_step_clear (displaced);
1802
1803 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1804 inferior_ptid = ptid;
1805
1806 original = regcache_read_pc (regcache);
1807
1808 copy = gdbarch_displaced_step_location (gdbarch);
1809 len = gdbarch_max_insn_length (gdbarch);
1810
1811 if (breakpoint_in_range_p (aspace, copy, len))
1812 {
1813 /* There's a breakpoint set in the scratch pad location range
1814 (which is usually around the entry point). We'd either
1815 install it before resuming, which would overwrite/corrupt the
1816 scratch pad, or if it was already inserted, this displaced
1817 step would overwrite it. The latter is OK in the sense that
1818 we already assume that no thread is going to execute the code
1819 in the scratch pad range (after initial startup) anyway, but
1820 the former is unacceptable. Simply punt and fallback to
1821 stepping over this breakpoint in-line. */
1822 if (debug_displaced)
1823 {
1824 fprintf_unfiltered (gdb_stdlog,
1825 "displaced: breakpoint set in scratch pad. "
1826 "Stepping over breakpoint in-line instead.\n");
1827 }
1828
1829 return -1;
1830 }
1831
1832 /* Save the original contents of the copy area. */
1833 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
1834 ignore_cleanups = make_cleanup (free_current_contents,
1835 &displaced->step_saved_copy);
1836 status = target_read_memory (copy, displaced->step_saved_copy, len);
1837 if (status != 0)
1838 throw_error (MEMORY_ERROR,
1839 _("Error accessing memory address %s (%s) for "
1840 "displaced-stepping scratch space."),
1841 paddress (gdbarch, copy), safe_strerror (status));
1842 if (debug_displaced)
1843 {
1844 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1845 paddress (gdbarch, copy));
1846 displaced_step_dump_bytes (gdb_stdlog,
1847 displaced->step_saved_copy,
1848 len);
1849 };
1850
1851 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1852 original, copy, regcache);
1853 if (closure == NULL)
1854 {
1855 /* The architecture doesn't know how or want to displaced step
1856 this instruction or instruction sequence. Fallback to
1857 stepping over the breakpoint in-line. */
1858 do_cleanups (ignore_cleanups);
1859 return -1;
1860 }
1861
1862 /* Save the information we need to fix things up if the step
1863 succeeds. */
1864 displaced->step_ptid = ptid;
1865 displaced->step_gdbarch = gdbarch;
1866 displaced->step_closure = closure;
1867 displaced->step_original = original;
1868 displaced->step_copy = copy;
1869
1870 make_cleanup (displaced_step_clear_cleanup, displaced);
1871
1872 /* Resume execution at the copy. */
1873 regcache_write_pc (regcache, copy);
1874
1875 discard_cleanups (ignore_cleanups);
1876
1877 if (debug_displaced)
1878 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1879 paddress (gdbarch, copy));
1880
1881 return 1;
1882 }
1883
1884 /* Wrapper for displaced_step_prepare_throw that disabled further
1885 attempts at displaced stepping if we get a memory error. */
1886
1887 static int
1888 displaced_step_prepare (ptid_t ptid)
1889 {
1890 int prepared = -1;
1891
1892 TRY
1893 {
1894 prepared = displaced_step_prepare_throw (ptid);
1895 }
1896 CATCH (ex, RETURN_MASK_ERROR)
1897 {
1898 struct displaced_step_inferior_state *displaced_state;
1899
1900 if (ex.error != MEMORY_ERROR
1901 && ex.error != NOT_SUPPORTED_ERROR)
1902 throw_exception (ex);
1903
1904 if (debug_infrun)
1905 {
1906 fprintf_unfiltered (gdb_stdlog,
1907 "infrun: disabling displaced stepping: %s\n",
1908 ex.message);
1909 }
1910
1911 /* Be verbose if "set displaced-stepping" is "on", silent if
1912 "auto". */
1913 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1914 {
1915 warning (_("disabling displaced stepping: %s"),
1916 ex.message);
1917 }
1918
1919 /* Disable further displaced stepping attempts. */
1920 displaced_state
1921 = get_displaced_stepping_state (ptid_get_pid (ptid));
1922 displaced_state->failed_before = 1;
1923 }
1924 END_CATCH
1925
1926 return prepared;
1927 }
1928
1929 static void
1930 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1931 const gdb_byte *myaddr, int len)
1932 {
1933 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1934
1935 inferior_ptid = ptid;
1936 write_memory (memaddr, myaddr, len);
1937 }
1938
1939 /* Restore the contents of the copy area for thread PTID. */
1940
1941 static void
1942 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1943 ptid_t ptid)
1944 {
1945 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1946
1947 write_memory_ptid (ptid, displaced->step_copy,
1948 displaced->step_saved_copy, len);
1949 if (debug_displaced)
1950 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1951 target_pid_to_str (ptid),
1952 paddress (displaced->step_gdbarch,
1953 displaced->step_copy));
1954 }
1955
1956 /* If we displaced stepped an instruction successfully, adjust
1957 registers and memory to yield the same effect the instruction would
1958 have had if we had executed it at its original address, and return
1959 1. If the instruction didn't complete, relocate the PC and return
1960 -1. If the thread wasn't displaced stepping, return 0. */
1961
1962 static int
1963 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1964 {
1965 struct cleanup *old_cleanups;
1966 struct displaced_step_inferior_state *displaced
1967 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1968 int ret;
1969
1970 /* Was any thread of this process doing a displaced step? */
1971 if (displaced == NULL)
1972 return 0;
1973
1974 /* Was this event for the pid we displaced? */
1975 if (ptid_equal (displaced->step_ptid, null_ptid)
1976 || ! ptid_equal (displaced->step_ptid, event_ptid))
1977 return 0;
1978
1979 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1980
1981 displaced_step_restore (displaced, displaced->step_ptid);
1982
1983 /* Fixup may need to read memory/registers. Switch to the thread
1984 that we're fixing up. Also, target_stopped_by_watchpoint checks
1985 the current thread. */
1986 switch_to_thread (event_ptid);
1987
1988 /* Did the instruction complete successfully? */
1989 if (signal == GDB_SIGNAL_TRAP
1990 && !(target_stopped_by_watchpoint ()
1991 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1992 || target_have_steppable_watchpoint)))
1993 {
1994 /* Fix up the resulting state. */
1995 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1996 displaced->step_closure,
1997 displaced->step_original,
1998 displaced->step_copy,
1999 get_thread_regcache (displaced->step_ptid));
2000 ret = 1;
2001 }
2002 else
2003 {
2004 /* Since the instruction didn't complete, all we can do is
2005 relocate the PC. */
2006 struct regcache *regcache = get_thread_regcache (event_ptid);
2007 CORE_ADDR pc = regcache_read_pc (regcache);
2008
2009 pc = displaced->step_original + (pc - displaced->step_copy);
2010 regcache_write_pc (regcache, pc);
2011 ret = -1;
2012 }
2013
2014 do_cleanups (old_cleanups);
2015
2016 displaced->step_ptid = null_ptid;
2017
2018 return ret;
2019 }
2020
2021 /* Data to be passed around while handling an event. This data is
2022 discarded between events. */
2023 struct execution_control_state
2024 {
2025 ptid_t ptid;
2026 /* The thread that got the event, if this was a thread event; NULL
2027 otherwise. */
2028 struct thread_info *event_thread;
2029
2030 struct target_waitstatus ws;
2031 int stop_func_filled_in;
2032 CORE_ADDR stop_func_start;
2033 CORE_ADDR stop_func_end;
2034 const char *stop_func_name;
2035 int wait_some_more;
2036
2037 /* True if the event thread hit the single-step breakpoint of
2038 another thread. Thus the event doesn't cause a stop, the thread
2039 needs to be single-stepped past the single-step breakpoint before
2040 we can switch back to the original stepping thread. */
2041 int hit_singlestep_breakpoint;
2042 };
2043
2044 /* Clear ECS and set it to point at TP. */
2045
2046 static void
2047 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2048 {
2049 memset (ecs, 0, sizeof (*ecs));
2050 ecs->event_thread = tp;
2051 ecs->ptid = tp->ptid;
2052 }
2053
2054 static void keep_going_pass_signal (struct execution_control_state *ecs);
2055 static void prepare_to_wait (struct execution_control_state *ecs);
2056 static int keep_going_stepped_thread (struct thread_info *tp);
2057 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
2058
2059 /* Are there any pending step-over requests? If so, run all we can
2060 now and return true. Otherwise, return false. */
2061
2062 static int
2063 start_step_over (void)
2064 {
2065 struct thread_info *tp, *next;
2066
2067 /* Don't start a new step-over if we already have an in-line
2068 step-over operation ongoing. */
2069 if (step_over_info_valid_p ())
2070 return 0;
2071
2072 for (tp = step_over_queue_head; tp != NULL; tp = next)
2073 {
2074 struct execution_control_state ecss;
2075 struct execution_control_state *ecs = &ecss;
2076 step_over_what step_what;
2077 int must_be_in_line;
2078
2079 gdb_assert (!tp->stop_requested);
2080
2081 next = thread_step_over_chain_next (tp);
2082
2083 /* If this inferior already has a displaced step in process,
2084 don't start a new one. */
2085 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2086 continue;
2087
2088 step_what = thread_still_needs_step_over (tp);
2089 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2090 || ((step_what & STEP_OVER_BREAKPOINT)
2091 && !use_displaced_stepping (tp)));
2092
2093 /* We currently stop all threads of all processes to step-over
2094 in-line. If we need to start a new in-line step-over, let
2095 any pending displaced steps finish first. */
2096 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2097 return 0;
2098
2099 thread_step_over_chain_remove (tp);
2100
2101 if (step_over_queue_head == NULL)
2102 {
2103 if (debug_infrun)
2104 fprintf_unfiltered (gdb_stdlog,
2105 "infrun: step-over queue now empty\n");
2106 }
2107
2108 if (tp->control.trap_expected
2109 || tp->resumed
2110 || tp->executing)
2111 {
2112 internal_error (__FILE__, __LINE__,
2113 "[%s] has inconsistent state: "
2114 "trap_expected=%d, resumed=%d, executing=%d\n",
2115 target_pid_to_str (tp->ptid),
2116 tp->control.trap_expected,
2117 tp->resumed,
2118 tp->executing);
2119 }
2120
2121 if (debug_infrun)
2122 fprintf_unfiltered (gdb_stdlog,
2123 "infrun: resuming [%s] for step-over\n",
2124 target_pid_to_str (tp->ptid));
2125
2126 /* keep_going_pass_signal skips the step-over if the breakpoint
2127 is no longer inserted. In all-stop, we want to keep looking
2128 for a thread that needs a step-over instead of resuming TP,
2129 because we wouldn't be able to resume anything else until the
2130 target stops again. In non-stop, the resume always resumes
2131 only TP, so it's OK to let the thread resume freely. */
2132 if (!target_is_non_stop_p () && !step_what)
2133 continue;
2134
2135 switch_to_thread (tp->ptid);
2136 reset_ecs (ecs, tp);
2137 keep_going_pass_signal (ecs);
2138
2139 if (!ecs->wait_some_more)
2140 error (_("Command aborted."));
2141
2142 gdb_assert (tp->resumed);
2143
2144 /* If we started a new in-line step-over, we're done. */
2145 if (step_over_info_valid_p ())
2146 {
2147 gdb_assert (tp->control.trap_expected);
2148 return 1;
2149 }
2150
2151 if (!target_is_non_stop_p ())
2152 {
2153 /* On all-stop, shouldn't have resumed unless we needed a
2154 step over. */
2155 gdb_assert (tp->control.trap_expected
2156 || tp->step_after_step_resume_breakpoint);
2157
2158 /* With remote targets (at least), in all-stop, we can't
2159 issue any further remote commands until the program stops
2160 again. */
2161 return 1;
2162 }
2163
2164 /* Either the thread no longer needed a step-over, or a new
2165 displaced stepping sequence started. Even in the latter
2166 case, continue looking. Maybe we can also start another
2167 displaced step on a thread of other process. */
2168 }
2169
2170 return 0;
2171 }
2172
2173 /* Update global variables holding ptids to hold NEW_PTID if they were
2174 holding OLD_PTID. */
2175 static void
2176 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2177 {
2178 struct displaced_step_inferior_state *displaced;
2179
2180 if (ptid_equal (inferior_ptid, old_ptid))
2181 inferior_ptid = new_ptid;
2182
2183 for (displaced = displaced_step_inferior_states;
2184 displaced;
2185 displaced = displaced->next)
2186 {
2187 if (ptid_equal (displaced->step_ptid, old_ptid))
2188 displaced->step_ptid = new_ptid;
2189 }
2190 }
2191
2192 \f
2193
2194 static const char schedlock_off[] = "off";
2195 static const char schedlock_on[] = "on";
2196 static const char schedlock_step[] = "step";
2197 static const char schedlock_replay[] = "replay";
2198 static const char *const scheduler_enums[] = {
2199 schedlock_off,
2200 schedlock_on,
2201 schedlock_step,
2202 schedlock_replay,
2203 NULL
2204 };
2205 static const char *scheduler_mode = schedlock_replay;
2206 static void
2207 show_scheduler_mode (struct ui_file *file, int from_tty,
2208 struct cmd_list_element *c, const char *value)
2209 {
2210 fprintf_filtered (file,
2211 _("Mode for locking scheduler "
2212 "during execution is \"%s\".\n"),
2213 value);
2214 }
2215
2216 static void
2217 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2218 {
2219 if (!target_can_lock_scheduler)
2220 {
2221 scheduler_mode = schedlock_off;
2222 error (_("Target '%s' cannot support this command."), target_shortname);
2223 }
2224 }
2225
2226 /* True if execution commands resume all threads of all processes by
2227 default; otherwise, resume only threads of the current inferior
2228 process. */
2229 int sched_multi = 0;
2230
2231 /* Try to setup for software single stepping over the specified location.
2232 Return 1 if target_resume() should use hardware single step.
2233
2234 GDBARCH the current gdbarch.
2235 PC the location to step over. */
2236
2237 static int
2238 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2239 {
2240 int hw_step = 1;
2241
2242 if (execution_direction == EXEC_FORWARD
2243 && gdbarch_software_single_step_p (gdbarch))
2244 hw_step = !insert_single_step_breakpoints (gdbarch);
2245
2246 return hw_step;
2247 }
2248
2249 /* See infrun.h. */
2250
2251 ptid_t
2252 user_visible_resume_ptid (int step)
2253 {
2254 ptid_t resume_ptid;
2255
2256 if (non_stop)
2257 {
2258 /* With non-stop mode on, threads are always handled
2259 individually. */
2260 resume_ptid = inferior_ptid;
2261 }
2262 else if ((scheduler_mode == schedlock_on)
2263 || (scheduler_mode == schedlock_step && step))
2264 {
2265 /* User-settable 'scheduler' mode requires solo thread
2266 resume. */
2267 resume_ptid = inferior_ptid;
2268 }
2269 else if ((scheduler_mode == schedlock_replay)
2270 && target_record_will_replay (minus_one_ptid, execution_direction))
2271 {
2272 /* User-settable 'scheduler' mode requires solo thread resume in replay
2273 mode. */
2274 resume_ptid = inferior_ptid;
2275 }
2276 else if (!sched_multi && target_supports_multi_process ())
2277 {
2278 /* Resume all threads of the current process (and none of other
2279 processes). */
2280 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2281 }
2282 else
2283 {
2284 /* Resume all threads of all processes. */
2285 resume_ptid = RESUME_ALL;
2286 }
2287
2288 return resume_ptid;
2289 }
2290
2291 /* Return a ptid representing the set of threads that we will resume,
2292 in the perspective of the target, assuming run control handling
2293 does not require leaving some threads stopped (e.g., stepping past
2294 breakpoint). USER_STEP indicates whether we're about to start the
2295 target for a stepping command. */
2296
2297 static ptid_t
2298 internal_resume_ptid (int user_step)
2299 {
2300 /* In non-stop, we always control threads individually. Note that
2301 the target may always work in non-stop mode even with "set
2302 non-stop off", in which case user_visible_resume_ptid could
2303 return a wildcard ptid. */
2304 if (target_is_non_stop_p ())
2305 return inferior_ptid;
2306 else
2307 return user_visible_resume_ptid (user_step);
2308 }
2309
2310 /* Wrapper for target_resume, that handles infrun-specific
2311 bookkeeping. */
2312
2313 static void
2314 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2315 {
2316 struct thread_info *tp = inferior_thread ();
2317
2318 gdb_assert (!tp->stop_requested);
2319
2320 /* Install inferior's terminal modes. */
2321 target_terminal::inferior ();
2322
2323 /* Avoid confusing the next resume, if the next stop/resume
2324 happens to apply to another thread. */
2325 tp->suspend.stop_signal = GDB_SIGNAL_0;
2326
2327 /* Advise target which signals may be handled silently.
2328
2329 If we have removed breakpoints because we are stepping over one
2330 in-line (in any thread), we need to receive all signals to avoid
2331 accidentally skipping a breakpoint during execution of a signal
2332 handler.
2333
2334 Likewise if we're displaced stepping, otherwise a trap for a
2335 breakpoint in a signal handler might be confused with the
2336 displaced step finishing. We don't make the displaced_step_fixup
2337 step distinguish the cases instead, because:
2338
2339 - a backtrace while stopped in the signal handler would show the
2340 scratch pad as frame older than the signal handler, instead of
2341 the real mainline code.
2342
2343 - when the thread is later resumed, the signal handler would
2344 return to the scratch pad area, which would no longer be
2345 valid. */
2346 if (step_over_info_valid_p ()
2347 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2348 target_pass_signals (0, NULL);
2349 else
2350 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2351
2352 target_resume (resume_ptid, step, sig);
2353
2354 target_commit_resume ();
2355 }
2356
2357 /* Resume the inferior. SIG is the signal to give the inferior
2358 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2359 call 'resume', which handles exceptions. */
2360
2361 static void
2362 resume_1 (enum gdb_signal sig)
2363 {
2364 struct regcache *regcache = get_current_regcache ();
2365 struct gdbarch *gdbarch = regcache->arch ();
2366 struct thread_info *tp = inferior_thread ();
2367 CORE_ADDR pc = regcache_read_pc (regcache);
2368 const address_space *aspace = regcache->aspace ();
2369 ptid_t resume_ptid;
2370 /* This represents the user's step vs continue request. When
2371 deciding whether "set scheduler-locking step" applies, it's the
2372 user's intention that counts. */
2373 const int user_step = tp->control.stepping_command;
2374 /* This represents what we'll actually request the target to do.
2375 This can decay from a step to a continue, if e.g., we need to
2376 implement single-stepping with breakpoints (software
2377 single-step). */
2378 int step;
2379
2380 gdb_assert (!tp->stop_requested);
2381 gdb_assert (!thread_is_in_step_over_chain (tp));
2382
2383 if (tp->suspend.waitstatus_pending_p)
2384 {
2385 if (debug_infrun)
2386 {
2387 std::string statstr
2388 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2389
2390 fprintf_unfiltered (gdb_stdlog,
2391 "infrun: resume: thread %s has pending wait "
2392 "status %s (currently_stepping=%d).\n",
2393 target_pid_to_str (tp->ptid), statstr.c_str (),
2394 currently_stepping (tp));
2395 }
2396
2397 tp->resumed = 1;
2398
2399 /* FIXME: What should we do if we are supposed to resume this
2400 thread with a signal? Maybe we should maintain a queue of
2401 pending signals to deliver. */
2402 if (sig != GDB_SIGNAL_0)
2403 {
2404 warning (_("Couldn't deliver signal %s to %s."),
2405 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2406 }
2407
2408 tp->suspend.stop_signal = GDB_SIGNAL_0;
2409
2410 if (target_can_async_p ())
2411 target_async (1);
2412 return;
2413 }
2414
2415 tp->stepped_breakpoint = 0;
2416
2417 /* Depends on stepped_breakpoint. */
2418 step = currently_stepping (tp);
2419
2420 if (current_inferior ()->waiting_for_vfork_done)
2421 {
2422 /* Don't try to single-step a vfork parent that is waiting for
2423 the child to get out of the shared memory region (by exec'ing
2424 or exiting). This is particularly important on software
2425 single-step archs, as the child process would trip on the
2426 software single step breakpoint inserted for the parent
2427 process. Since the parent will not actually execute any
2428 instruction until the child is out of the shared region (such
2429 are vfork's semantics), it is safe to simply continue it.
2430 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2431 the parent, and tell it to `keep_going', which automatically
2432 re-sets it stepping. */
2433 if (debug_infrun)
2434 fprintf_unfiltered (gdb_stdlog,
2435 "infrun: resume : clear step\n");
2436 step = 0;
2437 }
2438
2439 if (debug_infrun)
2440 fprintf_unfiltered (gdb_stdlog,
2441 "infrun: resume (step=%d, signal=%s), "
2442 "trap_expected=%d, current thread [%s] at %s\n",
2443 step, gdb_signal_to_symbol_string (sig),
2444 tp->control.trap_expected,
2445 target_pid_to_str (inferior_ptid),
2446 paddress (gdbarch, pc));
2447
2448 /* Normally, by the time we reach `resume', the breakpoints are either
2449 removed or inserted, as appropriate. The exception is if we're sitting
2450 at a permanent breakpoint; we need to step over it, but permanent
2451 breakpoints can't be removed. So we have to test for it here. */
2452 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2453 {
2454 if (sig != GDB_SIGNAL_0)
2455 {
2456 /* We have a signal to pass to the inferior. The resume
2457 may, or may not take us to the signal handler. If this
2458 is a step, we'll need to stop in the signal handler, if
2459 there's one, (if the target supports stepping into
2460 handlers), or in the next mainline instruction, if
2461 there's no handler. If this is a continue, we need to be
2462 sure to run the handler with all breakpoints inserted.
2463 In all cases, set a breakpoint at the current address
2464 (where the handler returns to), and once that breakpoint
2465 is hit, resume skipping the permanent breakpoint. If
2466 that breakpoint isn't hit, then we've stepped into the
2467 signal handler (or hit some other event). We'll delete
2468 the step-resume breakpoint then. */
2469
2470 if (debug_infrun)
2471 fprintf_unfiltered (gdb_stdlog,
2472 "infrun: resume: skipping permanent breakpoint, "
2473 "deliver signal first\n");
2474
2475 clear_step_over_info ();
2476 tp->control.trap_expected = 0;
2477
2478 if (tp->control.step_resume_breakpoint == NULL)
2479 {
2480 /* Set a "high-priority" step-resume, as we don't want
2481 user breakpoints at PC to trigger (again) when this
2482 hits. */
2483 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2484 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2485
2486 tp->step_after_step_resume_breakpoint = step;
2487 }
2488
2489 insert_breakpoints ();
2490 }
2491 else
2492 {
2493 /* There's no signal to pass, we can go ahead and skip the
2494 permanent breakpoint manually. */
2495 if (debug_infrun)
2496 fprintf_unfiltered (gdb_stdlog,
2497 "infrun: resume: skipping permanent breakpoint\n");
2498 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2499 /* Update pc to reflect the new address from which we will
2500 execute instructions. */
2501 pc = regcache_read_pc (regcache);
2502
2503 if (step)
2504 {
2505 /* We've already advanced the PC, so the stepping part
2506 is done. Now we need to arrange for a trap to be
2507 reported to handle_inferior_event. Set a breakpoint
2508 at the current PC, and run to it. Don't update
2509 prev_pc, because if we end in
2510 switch_back_to_stepped_thread, we want the "expected
2511 thread advanced also" branch to be taken. IOW, we
2512 don't want this thread to step further from PC
2513 (overstep). */
2514 gdb_assert (!step_over_info_valid_p ());
2515 insert_single_step_breakpoint (gdbarch, aspace, pc);
2516 insert_breakpoints ();
2517
2518 resume_ptid = internal_resume_ptid (user_step);
2519 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2520 tp->resumed = 1;
2521 return;
2522 }
2523 }
2524 }
2525
2526 /* If we have a breakpoint to step over, make sure to do a single
2527 step only. Same if we have software watchpoints. */
2528 if (tp->control.trap_expected || bpstat_should_step ())
2529 tp->control.may_range_step = 0;
2530
2531 /* If enabled, step over breakpoints by executing a copy of the
2532 instruction at a different address.
2533
2534 We can't use displaced stepping when we have a signal to deliver;
2535 the comments for displaced_step_prepare explain why. The
2536 comments in the handle_inferior event for dealing with 'random
2537 signals' explain what we do instead.
2538
2539 We can't use displaced stepping when we are waiting for vfork_done
2540 event, displaced stepping breaks the vfork child similarly as single
2541 step software breakpoint. */
2542 if (tp->control.trap_expected
2543 && use_displaced_stepping (tp)
2544 && !step_over_info_valid_p ()
2545 && sig == GDB_SIGNAL_0
2546 && !current_inferior ()->waiting_for_vfork_done)
2547 {
2548 int prepared = displaced_step_prepare (inferior_ptid);
2549
2550 if (prepared == 0)
2551 {
2552 if (debug_infrun)
2553 fprintf_unfiltered (gdb_stdlog,
2554 "Got placed in step-over queue\n");
2555
2556 tp->control.trap_expected = 0;
2557 return;
2558 }
2559 else if (prepared < 0)
2560 {
2561 /* Fallback to stepping over the breakpoint in-line. */
2562
2563 if (target_is_non_stop_p ())
2564 stop_all_threads ();
2565
2566 set_step_over_info (regcache->aspace (),
2567 regcache_read_pc (regcache), 0, tp->global_num);
2568
2569 step = maybe_software_singlestep (gdbarch, pc);
2570
2571 insert_breakpoints ();
2572 }
2573 else if (prepared > 0)
2574 {
2575 struct displaced_step_inferior_state *displaced;
2576
2577 /* Update pc to reflect the new address from which we will
2578 execute instructions due to displaced stepping. */
2579 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2580
2581 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2582 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2583 displaced->step_closure);
2584 }
2585 }
2586
2587 /* Do we need to do it the hard way, w/temp breakpoints? */
2588 else if (step)
2589 step = maybe_software_singlestep (gdbarch, pc);
2590
2591 /* Currently, our software single-step implementation leads to different
2592 results than hardware single-stepping in one situation: when stepping
2593 into delivering a signal which has an associated signal handler,
2594 hardware single-step will stop at the first instruction of the handler,
2595 while software single-step will simply skip execution of the handler.
2596
2597 For now, this difference in behavior is accepted since there is no
2598 easy way to actually implement single-stepping into a signal handler
2599 without kernel support.
2600
2601 However, there is one scenario where this difference leads to follow-on
2602 problems: if we're stepping off a breakpoint by removing all breakpoints
2603 and then single-stepping. In this case, the software single-step
2604 behavior means that even if there is a *breakpoint* in the signal
2605 handler, GDB still would not stop.
2606
2607 Fortunately, we can at least fix this particular issue. We detect
2608 here the case where we are about to deliver a signal while software
2609 single-stepping with breakpoints removed. In this situation, we
2610 revert the decisions to remove all breakpoints and insert single-
2611 step breakpoints, and instead we install a step-resume breakpoint
2612 at the current address, deliver the signal without stepping, and
2613 once we arrive back at the step-resume breakpoint, actually step
2614 over the breakpoint we originally wanted to step over. */
2615 if (thread_has_single_step_breakpoints_set (tp)
2616 && sig != GDB_SIGNAL_0
2617 && step_over_info_valid_p ())
2618 {
2619 /* If we have nested signals or a pending signal is delivered
2620 immediately after a handler returns, might might already have
2621 a step-resume breakpoint set on the earlier handler. We cannot
2622 set another step-resume breakpoint; just continue on until the
2623 original breakpoint is hit. */
2624 if (tp->control.step_resume_breakpoint == NULL)
2625 {
2626 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2627 tp->step_after_step_resume_breakpoint = 1;
2628 }
2629
2630 delete_single_step_breakpoints (tp);
2631
2632 clear_step_over_info ();
2633 tp->control.trap_expected = 0;
2634
2635 insert_breakpoints ();
2636 }
2637
2638 /* If STEP is set, it's a request to use hardware stepping
2639 facilities. But in that case, we should never
2640 use singlestep breakpoint. */
2641 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2642
2643 /* Decide the set of threads to ask the target to resume. */
2644 if (tp->control.trap_expected)
2645 {
2646 /* We're allowing a thread to run past a breakpoint it has
2647 hit, either by single-stepping the thread with the breakpoint
2648 removed, or by displaced stepping, with the breakpoint inserted.
2649 In the former case, we need to single-step only this thread,
2650 and keep others stopped, as they can miss this breakpoint if
2651 allowed to run. That's not really a problem for displaced
2652 stepping, but, we still keep other threads stopped, in case
2653 another thread is also stopped for a breakpoint waiting for
2654 its turn in the displaced stepping queue. */
2655 resume_ptid = inferior_ptid;
2656 }
2657 else
2658 resume_ptid = internal_resume_ptid (user_step);
2659
2660 if (execution_direction != EXEC_REVERSE
2661 && step && breakpoint_inserted_here_p (aspace, pc))
2662 {
2663 /* There are two cases where we currently need to step a
2664 breakpoint instruction when we have a signal to deliver:
2665
2666 - See handle_signal_stop where we handle random signals that
2667 could take out us out of the stepping range. Normally, in
2668 that case we end up continuing (instead of stepping) over the
2669 signal handler with a breakpoint at PC, but there are cases
2670 where we should _always_ single-step, even if we have a
2671 step-resume breakpoint, like when a software watchpoint is
2672 set. Assuming single-stepping and delivering a signal at the
2673 same time would takes us to the signal handler, then we could
2674 have removed the breakpoint at PC to step over it. However,
2675 some hardware step targets (like e.g., Mac OS) can't step
2676 into signal handlers, and for those, we need to leave the
2677 breakpoint at PC inserted, as otherwise if the handler
2678 recurses and executes PC again, it'll miss the breakpoint.
2679 So we leave the breakpoint inserted anyway, but we need to
2680 record that we tried to step a breakpoint instruction, so
2681 that adjust_pc_after_break doesn't end up confused.
2682
2683 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2684 in one thread after another thread that was stepping had been
2685 momentarily paused for a step-over. When we re-resume the
2686 stepping thread, it may be resumed from that address with a
2687 breakpoint that hasn't trapped yet. Seen with
2688 gdb.threads/non-stop-fair-events.exp, on targets that don't
2689 do displaced stepping. */
2690
2691 if (debug_infrun)
2692 fprintf_unfiltered (gdb_stdlog,
2693 "infrun: resume: [%s] stepped breakpoint\n",
2694 target_pid_to_str (tp->ptid));
2695
2696 tp->stepped_breakpoint = 1;
2697
2698 /* Most targets can step a breakpoint instruction, thus
2699 executing it normally. But if this one cannot, just
2700 continue and we will hit it anyway. */
2701 if (gdbarch_cannot_step_breakpoint (gdbarch))
2702 step = 0;
2703 }
2704
2705 if (debug_displaced
2706 && tp->control.trap_expected
2707 && use_displaced_stepping (tp)
2708 && !step_over_info_valid_p ())
2709 {
2710 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
2711 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2712 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2713 gdb_byte buf[4];
2714
2715 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2716 paddress (resume_gdbarch, actual_pc));
2717 read_memory (actual_pc, buf, sizeof (buf));
2718 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2719 }
2720
2721 if (tp->control.may_range_step)
2722 {
2723 /* If we're resuming a thread with the PC out of the step
2724 range, then we're doing some nested/finer run control
2725 operation, like stepping the thread out of the dynamic
2726 linker or the displaced stepping scratch pad. We
2727 shouldn't have allowed a range step then. */
2728 gdb_assert (pc_in_thread_step_range (pc, tp));
2729 }
2730
2731 do_target_resume (resume_ptid, step, sig);
2732 tp->resumed = 1;
2733 }
2734
2735 /* Resume the inferior. SIG is the signal to give the inferior
2736 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2737 rolls back state on error. */
2738
2739 void
2740 resume (gdb_signal sig)
2741 {
2742 TRY
2743 {
2744 resume_1 (sig);
2745 }
2746 CATCH (ex, RETURN_MASK_ALL)
2747 {
2748 /* If resuming is being aborted for any reason, delete any
2749 single-step breakpoint resume_1 may have created, to avoid
2750 confusing the following resumption, and to avoid leaving
2751 single-step breakpoints perturbing other threads, in case
2752 we're running in non-stop mode. */
2753 if (inferior_ptid != null_ptid)
2754 delete_single_step_breakpoints (inferior_thread ());
2755 throw_exception (ex);
2756 }
2757 END_CATCH
2758 }
2759
2760 \f
2761 /* Proceeding. */
2762
2763 /* See infrun.h. */
2764
2765 /* Counter that tracks number of user visible stops. This can be used
2766 to tell whether a command has proceeded the inferior past the
2767 current location. This allows e.g., inferior function calls in
2768 breakpoint commands to not interrupt the command list. When the
2769 call finishes successfully, the inferior is standing at the same
2770 breakpoint as if nothing happened (and so we don't call
2771 normal_stop). */
2772 static ULONGEST current_stop_id;
2773
2774 /* See infrun.h. */
2775
2776 ULONGEST
2777 get_stop_id (void)
2778 {
2779 return current_stop_id;
2780 }
2781
2782 /* Called when we report a user visible stop. */
2783
2784 static void
2785 new_stop_id (void)
2786 {
2787 current_stop_id++;
2788 }
2789
2790 /* Clear out all variables saying what to do when inferior is continued.
2791 First do this, then set the ones you want, then call `proceed'. */
2792
2793 static void
2794 clear_proceed_status_thread (struct thread_info *tp)
2795 {
2796 if (debug_infrun)
2797 fprintf_unfiltered (gdb_stdlog,
2798 "infrun: clear_proceed_status_thread (%s)\n",
2799 target_pid_to_str (tp->ptid));
2800
2801 /* If we're starting a new sequence, then the previous finished
2802 single-step is no longer relevant. */
2803 if (tp->suspend.waitstatus_pending_p)
2804 {
2805 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2806 {
2807 if (debug_infrun)
2808 fprintf_unfiltered (gdb_stdlog,
2809 "infrun: clear_proceed_status: pending "
2810 "event of %s was a finished step. "
2811 "Discarding.\n",
2812 target_pid_to_str (tp->ptid));
2813
2814 tp->suspend.waitstatus_pending_p = 0;
2815 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2816 }
2817 else if (debug_infrun)
2818 {
2819 std::string statstr
2820 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2821
2822 fprintf_unfiltered (gdb_stdlog,
2823 "infrun: clear_proceed_status_thread: thread %s "
2824 "has pending wait status %s "
2825 "(currently_stepping=%d).\n",
2826 target_pid_to_str (tp->ptid), statstr.c_str (),
2827 currently_stepping (tp));
2828 }
2829 }
2830
2831 /* If this signal should not be seen by program, give it zero.
2832 Used for debugging signals. */
2833 if (!signal_pass_state (tp->suspend.stop_signal))
2834 tp->suspend.stop_signal = GDB_SIGNAL_0;
2835
2836 thread_fsm_delete (tp->thread_fsm);
2837 tp->thread_fsm = NULL;
2838
2839 tp->control.trap_expected = 0;
2840 tp->control.step_range_start = 0;
2841 tp->control.step_range_end = 0;
2842 tp->control.may_range_step = 0;
2843 tp->control.step_frame_id = null_frame_id;
2844 tp->control.step_stack_frame_id = null_frame_id;
2845 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2846 tp->control.step_start_function = NULL;
2847 tp->stop_requested = 0;
2848
2849 tp->control.stop_step = 0;
2850
2851 tp->control.proceed_to_finish = 0;
2852
2853 tp->control.stepping_command = 0;
2854
2855 /* Discard any remaining commands or status from previous stop. */
2856 bpstat_clear (&tp->control.stop_bpstat);
2857 }
2858
2859 void
2860 clear_proceed_status (int step)
2861 {
2862 /* With scheduler-locking replay, stop replaying other threads if we're
2863 not replaying the user-visible resume ptid.
2864
2865 This is a convenience feature to not require the user to explicitly
2866 stop replaying the other threads. We're assuming that the user's
2867 intent is to resume tracing the recorded process. */
2868 if (!non_stop && scheduler_mode == schedlock_replay
2869 && target_record_is_replaying (minus_one_ptid)
2870 && !target_record_will_replay (user_visible_resume_ptid (step),
2871 execution_direction))
2872 target_record_stop_replaying ();
2873
2874 if (!non_stop)
2875 {
2876 struct thread_info *tp;
2877 ptid_t resume_ptid;
2878
2879 resume_ptid = user_visible_resume_ptid (step);
2880
2881 /* In all-stop mode, delete the per-thread status of all threads
2882 we're about to resume, implicitly and explicitly. */
2883 ALL_NON_EXITED_THREADS (tp)
2884 {
2885 if (!ptid_match (tp->ptid, resume_ptid))
2886 continue;
2887 clear_proceed_status_thread (tp);
2888 }
2889 }
2890
2891 if (!ptid_equal (inferior_ptid, null_ptid))
2892 {
2893 struct inferior *inferior;
2894
2895 if (non_stop)
2896 {
2897 /* If in non-stop mode, only delete the per-thread status of
2898 the current thread. */
2899 clear_proceed_status_thread (inferior_thread ());
2900 }
2901
2902 inferior = current_inferior ();
2903 inferior->control.stop_soon = NO_STOP_QUIETLY;
2904 }
2905
2906 gdb::observers::about_to_proceed.notify ();
2907 }
2908
2909 /* Returns true if TP is still stopped at a breakpoint that needs
2910 stepping-over in order to make progress. If the breakpoint is gone
2911 meanwhile, we can skip the whole step-over dance. */
2912
2913 static int
2914 thread_still_needs_step_over_bp (struct thread_info *tp)
2915 {
2916 if (tp->stepping_over_breakpoint)
2917 {
2918 struct regcache *regcache = get_thread_regcache (tp->ptid);
2919
2920 if (breakpoint_here_p (regcache->aspace (),
2921 regcache_read_pc (regcache))
2922 == ordinary_breakpoint_here)
2923 return 1;
2924
2925 tp->stepping_over_breakpoint = 0;
2926 }
2927
2928 return 0;
2929 }
2930
2931 /* Check whether thread TP still needs to start a step-over in order
2932 to make progress when resumed. Returns an bitwise or of enum
2933 step_over_what bits, indicating what needs to be stepped over. */
2934
2935 static step_over_what
2936 thread_still_needs_step_over (struct thread_info *tp)
2937 {
2938 step_over_what what = 0;
2939
2940 if (thread_still_needs_step_over_bp (tp))
2941 what |= STEP_OVER_BREAKPOINT;
2942
2943 if (tp->stepping_over_watchpoint
2944 && !target_have_steppable_watchpoint)
2945 what |= STEP_OVER_WATCHPOINT;
2946
2947 return what;
2948 }
2949
2950 /* Returns true if scheduler locking applies. STEP indicates whether
2951 we're about to do a step/next-like command to a thread. */
2952
2953 static int
2954 schedlock_applies (struct thread_info *tp)
2955 {
2956 return (scheduler_mode == schedlock_on
2957 || (scheduler_mode == schedlock_step
2958 && tp->control.stepping_command)
2959 || (scheduler_mode == schedlock_replay
2960 && target_record_will_replay (minus_one_ptid,
2961 execution_direction)));
2962 }
2963
2964 /* Basic routine for continuing the program in various fashions.
2965
2966 ADDR is the address to resume at, or -1 for resume where stopped.
2967 SIGGNAL is the signal to give it, or 0 for none,
2968 or -1 for act according to how it stopped.
2969 STEP is nonzero if should trap after one instruction.
2970 -1 means return after that and print nothing.
2971 You should probably set various step_... variables
2972 before calling here, if you are stepping.
2973
2974 You should call clear_proceed_status before calling proceed. */
2975
2976 void
2977 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2978 {
2979 struct regcache *regcache;
2980 struct gdbarch *gdbarch;
2981 struct thread_info *tp;
2982 CORE_ADDR pc;
2983 ptid_t resume_ptid;
2984 struct execution_control_state ecss;
2985 struct execution_control_state *ecs = &ecss;
2986 int started;
2987
2988 /* If we're stopped at a fork/vfork, follow the branch set by the
2989 "set follow-fork-mode" command; otherwise, we'll just proceed
2990 resuming the current thread. */
2991 if (!follow_fork ())
2992 {
2993 /* The target for some reason decided not to resume. */
2994 normal_stop ();
2995 if (target_can_async_p ())
2996 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2997 return;
2998 }
2999
3000 /* We'll update this if & when we switch to a new thread. */
3001 previous_inferior_ptid = inferior_ptid;
3002
3003 regcache = get_current_regcache ();
3004 gdbarch = regcache->arch ();
3005 const address_space *aspace = regcache->aspace ();
3006
3007 pc = regcache_read_pc (regcache);
3008 tp = inferior_thread ();
3009
3010 /* Fill in with reasonable starting values. */
3011 init_thread_stepping_state (tp);
3012
3013 gdb_assert (!thread_is_in_step_over_chain (tp));
3014
3015 if (addr == (CORE_ADDR) -1)
3016 {
3017 if (pc == stop_pc
3018 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
3019 && execution_direction != EXEC_REVERSE)
3020 /* There is a breakpoint at the address we will resume at,
3021 step one instruction before inserting breakpoints so that
3022 we do not stop right away (and report a second hit at this
3023 breakpoint).
3024
3025 Note, we don't do this in reverse, because we won't
3026 actually be executing the breakpoint insn anyway.
3027 We'll be (un-)executing the previous instruction. */
3028 tp->stepping_over_breakpoint = 1;
3029 else if (gdbarch_single_step_through_delay_p (gdbarch)
3030 && gdbarch_single_step_through_delay (gdbarch,
3031 get_current_frame ()))
3032 /* We stepped onto an instruction that needs to be stepped
3033 again before re-inserting the breakpoint, do so. */
3034 tp->stepping_over_breakpoint = 1;
3035 }
3036 else
3037 {
3038 regcache_write_pc (regcache, addr);
3039 }
3040
3041 if (siggnal != GDB_SIGNAL_DEFAULT)
3042 tp->suspend.stop_signal = siggnal;
3043
3044 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3045
3046 /* If an exception is thrown from this point on, make sure to
3047 propagate GDB's knowledge of the executing state to the
3048 frontend/user running state. */
3049 scoped_finish_thread_state finish_state (resume_ptid);
3050
3051 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3052 threads (e.g., we might need to set threads stepping over
3053 breakpoints first), from the user/frontend's point of view, all
3054 threads in RESUME_PTID are now running. Unless we're calling an
3055 inferior function, as in that case we pretend the inferior
3056 doesn't run at all. */
3057 if (!tp->control.in_infcall)
3058 set_running (resume_ptid, 1);
3059
3060 if (debug_infrun)
3061 fprintf_unfiltered (gdb_stdlog,
3062 "infrun: proceed (addr=%s, signal=%s)\n",
3063 paddress (gdbarch, addr),
3064 gdb_signal_to_symbol_string (siggnal));
3065
3066 annotate_starting ();
3067
3068 /* Make sure that output from GDB appears before output from the
3069 inferior. */
3070 gdb_flush (gdb_stdout);
3071
3072 /* Since we've marked the inferior running, give it the terminal. A
3073 QUIT/Ctrl-C from here on is forwarded to the target (which can
3074 still detect attempts to unblock a stuck connection with repeated
3075 Ctrl-C from within target_pass_ctrlc). */
3076 target_terminal::inferior ();
3077
3078 /* In a multi-threaded task we may select another thread and
3079 then continue or step.
3080
3081 But if a thread that we're resuming had stopped at a breakpoint,
3082 it will immediately cause another breakpoint stop without any
3083 execution (i.e. it will report a breakpoint hit incorrectly). So
3084 we must step over it first.
3085
3086 Look for threads other than the current (TP) that reported a
3087 breakpoint hit and haven't been resumed yet since. */
3088
3089 /* If scheduler locking applies, we can avoid iterating over all
3090 threads. */
3091 if (!non_stop && !schedlock_applies (tp))
3092 {
3093 struct thread_info *current = tp;
3094
3095 ALL_NON_EXITED_THREADS (tp)
3096 {
3097 /* Ignore the current thread here. It's handled
3098 afterwards. */
3099 if (tp == current)
3100 continue;
3101
3102 /* Ignore threads of processes we're not resuming. */
3103 if (!ptid_match (tp->ptid, resume_ptid))
3104 continue;
3105
3106 if (!thread_still_needs_step_over (tp))
3107 continue;
3108
3109 gdb_assert (!thread_is_in_step_over_chain (tp));
3110
3111 if (debug_infrun)
3112 fprintf_unfiltered (gdb_stdlog,
3113 "infrun: need to step-over [%s] first\n",
3114 target_pid_to_str (tp->ptid));
3115
3116 thread_step_over_chain_enqueue (tp);
3117 }
3118
3119 tp = current;
3120 }
3121
3122 /* Enqueue the current thread last, so that we move all other
3123 threads over their breakpoints first. */
3124 if (tp->stepping_over_breakpoint)
3125 thread_step_over_chain_enqueue (tp);
3126
3127 /* If the thread isn't started, we'll still need to set its prev_pc,
3128 so that switch_back_to_stepped_thread knows the thread hasn't
3129 advanced. Must do this before resuming any thread, as in
3130 all-stop/remote, once we resume we can't send any other packet
3131 until the target stops again. */
3132 tp->prev_pc = regcache_read_pc (regcache);
3133
3134 {
3135 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
3136
3137 started = start_step_over ();
3138
3139 if (step_over_info_valid_p ())
3140 {
3141 /* Either this thread started a new in-line step over, or some
3142 other thread was already doing one. In either case, don't
3143 resume anything else until the step-over is finished. */
3144 }
3145 else if (started && !target_is_non_stop_p ())
3146 {
3147 /* A new displaced stepping sequence was started. In all-stop,
3148 we can't talk to the target anymore until it next stops. */
3149 }
3150 else if (!non_stop && target_is_non_stop_p ())
3151 {
3152 /* In all-stop, but the target is always in non-stop mode.
3153 Start all other threads that are implicitly resumed too. */
3154 ALL_NON_EXITED_THREADS (tp)
3155 {
3156 /* Ignore threads of processes we're not resuming. */
3157 if (!ptid_match (tp->ptid, resume_ptid))
3158 continue;
3159
3160 if (tp->resumed)
3161 {
3162 if (debug_infrun)
3163 fprintf_unfiltered (gdb_stdlog,
3164 "infrun: proceed: [%s] resumed\n",
3165 target_pid_to_str (tp->ptid));
3166 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3167 continue;
3168 }
3169
3170 if (thread_is_in_step_over_chain (tp))
3171 {
3172 if (debug_infrun)
3173 fprintf_unfiltered (gdb_stdlog,
3174 "infrun: proceed: [%s] needs step-over\n",
3175 target_pid_to_str (tp->ptid));
3176 continue;
3177 }
3178
3179 if (debug_infrun)
3180 fprintf_unfiltered (gdb_stdlog,
3181 "infrun: proceed: resuming %s\n",
3182 target_pid_to_str (tp->ptid));
3183
3184 reset_ecs (ecs, tp);
3185 switch_to_thread (tp->ptid);
3186 keep_going_pass_signal (ecs);
3187 if (!ecs->wait_some_more)
3188 error (_("Command aborted."));
3189 }
3190 }
3191 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3192 {
3193 /* The thread wasn't started, and isn't queued, run it now. */
3194 reset_ecs (ecs, tp);
3195 switch_to_thread (tp->ptid);
3196 keep_going_pass_signal (ecs);
3197 if (!ecs->wait_some_more)
3198 error (_("Command aborted."));
3199 }
3200 }
3201
3202 target_commit_resume ();
3203
3204 finish_state.release ();
3205
3206 /* Tell the event loop to wait for it to stop. If the target
3207 supports asynchronous execution, it'll do this from within
3208 target_resume. */
3209 if (!target_can_async_p ())
3210 mark_async_event_handler (infrun_async_inferior_event_token);
3211 }
3212 \f
3213
3214 /* Start remote-debugging of a machine over a serial link. */
3215
3216 void
3217 start_remote (int from_tty)
3218 {
3219 struct inferior *inferior;
3220
3221 inferior = current_inferior ();
3222 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3223
3224 /* Always go on waiting for the target, regardless of the mode. */
3225 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3226 indicate to wait_for_inferior that a target should timeout if
3227 nothing is returned (instead of just blocking). Because of this,
3228 targets expecting an immediate response need to, internally, set
3229 things up so that the target_wait() is forced to eventually
3230 timeout. */
3231 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3232 differentiate to its caller what the state of the target is after
3233 the initial open has been performed. Here we're assuming that
3234 the target has stopped. It should be possible to eventually have
3235 target_open() return to the caller an indication that the target
3236 is currently running and GDB state should be set to the same as
3237 for an async run. */
3238 wait_for_inferior ();
3239
3240 /* Now that the inferior has stopped, do any bookkeeping like
3241 loading shared libraries. We want to do this before normal_stop,
3242 so that the displayed frame is up to date. */
3243 post_create_inferior (current_top_target (), from_tty);
3244
3245 normal_stop ();
3246 }
3247
3248 /* Initialize static vars when a new inferior begins. */
3249
3250 void
3251 init_wait_for_inferior (void)
3252 {
3253 /* These are meaningless until the first time through wait_for_inferior. */
3254
3255 breakpoint_init_inferior (inf_starting);
3256
3257 clear_proceed_status (0);
3258
3259 target_last_wait_ptid = minus_one_ptid;
3260
3261 previous_inferior_ptid = inferior_ptid;
3262
3263 /* Discard any skipped inlined frames. */
3264 clear_inline_frame_state (minus_one_ptid);
3265 }
3266
3267 \f
3268
3269 static void handle_inferior_event (struct execution_control_state *ecs);
3270
3271 static void handle_step_into_function (struct gdbarch *gdbarch,
3272 struct execution_control_state *ecs);
3273 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3274 struct execution_control_state *ecs);
3275 static void handle_signal_stop (struct execution_control_state *ecs);
3276 static void check_exception_resume (struct execution_control_state *,
3277 struct frame_info *);
3278
3279 static void end_stepping_range (struct execution_control_state *ecs);
3280 static void stop_waiting (struct execution_control_state *ecs);
3281 static void keep_going (struct execution_control_state *ecs);
3282 static void process_event_stop_test (struct execution_control_state *ecs);
3283 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3284
3285 /* This function is attached as a "thread_stop_requested" observer.
3286 Cleanup local state that assumed the PTID was to be resumed, and
3287 report the stop to the frontend. */
3288
3289 static void
3290 infrun_thread_stop_requested (ptid_t ptid)
3291 {
3292 struct thread_info *tp;
3293
3294 /* PTID was requested to stop. If the thread was already stopped,
3295 but the user/frontend doesn't know about that yet (e.g., the
3296 thread had been temporarily paused for some step-over), set up
3297 for reporting the stop now. */
3298 ALL_NON_EXITED_THREADS (tp)
3299 if (ptid_match (tp->ptid, ptid))
3300 {
3301 if (tp->state != THREAD_RUNNING)
3302 continue;
3303 if (tp->executing)
3304 continue;
3305
3306 /* Remove matching threads from the step-over queue, so
3307 start_step_over doesn't try to resume them
3308 automatically. */
3309 if (thread_is_in_step_over_chain (tp))
3310 thread_step_over_chain_remove (tp);
3311
3312 /* If the thread is stopped, but the user/frontend doesn't
3313 know about that yet, queue a pending event, as if the
3314 thread had just stopped now. Unless the thread already had
3315 a pending event. */
3316 if (!tp->suspend.waitstatus_pending_p)
3317 {
3318 tp->suspend.waitstatus_pending_p = 1;
3319 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3320 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3321 }
3322
3323 /* Clear the inline-frame state, since we're re-processing the
3324 stop. */
3325 clear_inline_frame_state (tp->ptid);
3326
3327 /* If this thread was paused because some other thread was
3328 doing an inline-step over, let that finish first. Once
3329 that happens, we'll restart all threads and consume pending
3330 stop events then. */
3331 if (step_over_info_valid_p ())
3332 continue;
3333
3334 /* Otherwise we can process the (new) pending event now. Set
3335 it so this pending event is considered by
3336 do_target_wait. */
3337 tp->resumed = 1;
3338 }
3339 }
3340
3341 static void
3342 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3343 {
3344 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3345 nullify_last_target_wait_ptid ();
3346 }
3347
3348 /* Delete the step resume, single-step and longjmp/exception resume
3349 breakpoints of TP. */
3350
3351 static void
3352 delete_thread_infrun_breakpoints (struct thread_info *tp)
3353 {
3354 delete_step_resume_breakpoint (tp);
3355 delete_exception_resume_breakpoint (tp);
3356 delete_single_step_breakpoints (tp);
3357 }
3358
3359 /* If the target still has execution, call FUNC for each thread that
3360 just stopped. In all-stop, that's all the non-exited threads; in
3361 non-stop, that's the current thread, only. */
3362
3363 typedef void (*for_each_just_stopped_thread_callback_func)
3364 (struct thread_info *tp);
3365
3366 static void
3367 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3368 {
3369 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
3370 return;
3371
3372 if (target_is_non_stop_p ())
3373 {
3374 /* If in non-stop mode, only the current thread stopped. */
3375 func (inferior_thread ());
3376 }
3377 else
3378 {
3379 struct thread_info *tp;
3380
3381 /* In all-stop mode, all threads have stopped. */
3382 ALL_NON_EXITED_THREADS (tp)
3383 {
3384 func (tp);
3385 }
3386 }
3387 }
3388
3389 /* Delete the step resume and longjmp/exception resume breakpoints of
3390 the threads that just stopped. */
3391
3392 static void
3393 delete_just_stopped_threads_infrun_breakpoints (void)
3394 {
3395 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3396 }
3397
3398 /* Delete the single-step breakpoints of the threads that just
3399 stopped. */
3400
3401 static void
3402 delete_just_stopped_threads_single_step_breakpoints (void)
3403 {
3404 for_each_just_stopped_thread (delete_single_step_breakpoints);
3405 }
3406
3407 /* A cleanup wrapper. */
3408
3409 static void
3410 delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
3411 {
3412 delete_just_stopped_threads_infrun_breakpoints ();
3413 }
3414
3415 /* See infrun.h. */
3416
3417 void
3418 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3419 const struct target_waitstatus *ws)
3420 {
3421 std::string status_string = target_waitstatus_to_string (ws);
3422 string_file stb;
3423
3424 /* The text is split over several lines because it was getting too long.
3425 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3426 output as a unit; we want only one timestamp printed if debug_timestamp
3427 is set. */
3428
3429 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3430 ptid_get_pid (waiton_ptid),
3431 ptid_get_lwp (waiton_ptid),
3432 ptid_get_tid (waiton_ptid));
3433 if (ptid_get_pid (waiton_ptid) != -1)
3434 stb.printf (" [%s]", target_pid_to_str (waiton_ptid));
3435 stb.printf (", status) =\n");
3436 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3437 ptid_get_pid (result_ptid),
3438 ptid_get_lwp (result_ptid),
3439 ptid_get_tid (result_ptid),
3440 target_pid_to_str (result_ptid));
3441 stb.printf ("infrun: %s\n", status_string.c_str ());
3442
3443 /* This uses %s in part to handle %'s in the text, but also to avoid
3444 a gcc error: the format attribute requires a string literal. */
3445 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3446 }
3447
3448 /* Select a thread at random, out of those which are resumed and have
3449 had events. */
3450
3451 static struct thread_info *
3452 random_pending_event_thread (ptid_t waiton_ptid)
3453 {
3454 struct thread_info *event_tp;
3455 int num_events = 0;
3456 int random_selector;
3457
3458 /* First see how many events we have. Count only resumed threads
3459 that have an event pending. */
3460 ALL_NON_EXITED_THREADS (event_tp)
3461 if (ptid_match (event_tp->ptid, waiton_ptid)
3462 && event_tp->resumed
3463 && event_tp->suspend.waitstatus_pending_p)
3464 num_events++;
3465
3466 if (num_events == 0)
3467 return NULL;
3468
3469 /* Now randomly pick a thread out of those that have had events. */
3470 random_selector = (int)
3471 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3472
3473 if (debug_infrun && num_events > 1)
3474 fprintf_unfiltered (gdb_stdlog,
3475 "infrun: Found %d events, selecting #%d\n",
3476 num_events, random_selector);
3477
3478 /* Select the Nth thread that has had an event. */
3479 ALL_NON_EXITED_THREADS (event_tp)
3480 if (ptid_match (event_tp->ptid, waiton_ptid)
3481 && event_tp->resumed
3482 && event_tp->suspend.waitstatus_pending_p)
3483 if (random_selector-- == 0)
3484 break;
3485
3486 return event_tp;
3487 }
3488
3489 /* Wrapper for target_wait that first checks whether threads have
3490 pending statuses to report before actually asking the target for
3491 more events. */
3492
3493 static ptid_t
3494 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3495 {
3496 ptid_t event_ptid;
3497 struct thread_info *tp;
3498
3499 /* First check if there is a resumed thread with a wait status
3500 pending. */
3501 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3502 {
3503 tp = random_pending_event_thread (ptid);
3504 }
3505 else
3506 {
3507 if (debug_infrun)
3508 fprintf_unfiltered (gdb_stdlog,
3509 "infrun: Waiting for specific thread %s.\n",
3510 target_pid_to_str (ptid));
3511
3512 /* We have a specific thread to check. */
3513 tp = find_thread_ptid (ptid);
3514 gdb_assert (tp != NULL);
3515 if (!tp->suspend.waitstatus_pending_p)
3516 tp = NULL;
3517 }
3518
3519 if (tp != NULL
3520 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3521 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3522 {
3523 struct regcache *regcache = get_thread_regcache (tp->ptid);
3524 struct gdbarch *gdbarch = regcache->arch ();
3525 CORE_ADDR pc;
3526 int discard = 0;
3527
3528 pc = regcache_read_pc (regcache);
3529
3530 if (pc != tp->suspend.stop_pc)
3531 {
3532 if (debug_infrun)
3533 fprintf_unfiltered (gdb_stdlog,
3534 "infrun: PC of %s changed. was=%s, now=%s\n",
3535 target_pid_to_str (tp->ptid),
3536 paddress (gdbarch, tp->prev_pc),
3537 paddress (gdbarch, pc));
3538 discard = 1;
3539 }
3540 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3541 {
3542 if (debug_infrun)
3543 fprintf_unfiltered (gdb_stdlog,
3544 "infrun: previous breakpoint of %s, at %s gone\n",
3545 target_pid_to_str (tp->ptid),
3546 paddress (gdbarch, pc));
3547
3548 discard = 1;
3549 }
3550
3551 if (discard)
3552 {
3553 if (debug_infrun)
3554 fprintf_unfiltered (gdb_stdlog,
3555 "infrun: pending event of %s cancelled.\n",
3556 target_pid_to_str (tp->ptid));
3557
3558 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3559 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3560 }
3561 }
3562
3563 if (tp != NULL)
3564 {
3565 if (debug_infrun)
3566 {
3567 std::string statstr
3568 = target_waitstatus_to_string (&tp->suspend.waitstatus);
3569
3570 fprintf_unfiltered (gdb_stdlog,
3571 "infrun: Using pending wait status %s for %s.\n",
3572 statstr.c_str (),
3573 target_pid_to_str (tp->ptid));
3574 }
3575
3576 /* Now that we've selected our final event LWP, un-adjust its PC
3577 if it was a software breakpoint (and the target doesn't
3578 always adjust the PC itself). */
3579 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3580 && !target_supports_stopped_by_sw_breakpoint ())
3581 {
3582 struct regcache *regcache;
3583 struct gdbarch *gdbarch;
3584 int decr_pc;
3585
3586 regcache = get_thread_regcache (tp->ptid);
3587 gdbarch = regcache->arch ();
3588
3589 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3590 if (decr_pc != 0)
3591 {
3592 CORE_ADDR pc;
3593
3594 pc = regcache_read_pc (regcache);
3595 regcache_write_pc (regcache, pc + decr_pc);
3596 }
3597 }
3598
3599 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3600 *status = tp->suspend.waitstatus;
3601 tp->suspend.waitstatus_pending_p = 0;
3602
3603 /* Wake up the event loop again, until all pending events are
3604 processed. */
3605 if (target_is_async_p ())
3606 mark_async_event_handler (infrun_async_inferior_event_token);
3607 return tp->ptid;
3608 }
3609
3610 /* But if we don't find one, we'll have to wait. */
3611
3612 if (deprecated_target_wait_hook)
3613 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3614 else
3615 event_ptid = target_wait (ptid, status, options);
3616
3617 return event_ptid;
3618 }
3619
3620 /* Prepare and stabilize the inferior for detaching it. E.g.,
3621 detaching while a thread is displaced stepping is a recipe for
3622 crashing it, as nothing would readjust the PC out of the scratch
3623 pad. */
3624
3625 void
3626 prepare_for_detach (void)
3627 {
3628 struct inferior *inf = current_inferior ();
3629 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3630 struct displaced_step_inferior_state *displaced;
3631
3632 displaced = get_displaced_stepping_state (inf->pid);
3633
3634 /* Is any thread of this process displaced stepping? If not,
3635 there's nothing else to do. */
3636 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3637 return;
3638
3639 if (debug_infrun)
3640 fprintf_unfiltered (gdb_stdlog,
3641 "displaced-stepping in-process while detaching");
3642
3643 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3644
3645 while (!ptid_equal (displaced->step_ptid, null_ptid))
3646 {
3647 struct execution_control_state ecss;
3648 struct execution_control_state *ecs;
3649
3650 ecs = &ecss;
3651 memset (ecs, 0, sizeof (*ecs));
3652
3653 overlay_cache_invalid = 1;
3654 /* Flush target cache before starting to handle each event.
3655 Target was running and cache could be stale. This is just a
3656 heuristic. Running threads may modify target memory, but we
3657 don't get any event. */
3658 target_dcache_invalidate ();
3659
3660 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3661
3662 if (debug_infrun)
3663 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3664
3665 /* If an error happens while handling the event, propagate GDB's
3666 knowledge of the executing state to the frontend/user running
3667 state. */
3668 scoped_finish_thread_state finish_state (minus_one_ptid);
3669
3670 /* Now figure out what to do with the result of the result. */
3671 handle_inferior_event (ecs);
3672
3673 /* No error, don't finish the state yet. */
3674 finish_state.release ();
3675
3676 /* Breakpoints and watchpoints are not installed on the target
3677 at this point, and signals are passed directly to the
3678 inferior, so this must mean the process is gone. */
3679 if (!ecs->wait_some_more)
3680 {
3681 restore_detaching.release ();
3682 error (_("Program exited while detaching"));
3683 }
3684 }
3685
3686 restore_detaching.release ();
3687 }
3688
3689 /* Wait for control to return from inferior to debugger.
3690
3691 If inferior gets a signal, we may decide to start it up again
3692 instead of returning. That is why there is a loop in this function.
3693 When this function actually returns it means the inferior
3694 should be left stopped and GDB should read more commands. */
3695
3696 void
3697 wait_for_inferior (void)
3698 {
3699 struct cleanup *old_cleanups;
3700
3701 if (debug_infrun)
3702 fprintf_unfiltered
3703 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3704
3705 old_cleanups
3706 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3707 NULL);
3708
3709 /* If an error happens while handling the event, propagate GDB's
3710 knowledge of the executing state to the frontend/user running
3711 state. */
3712 scoped_finish_thread_state finish_state (minus_one_ptid);
3713
3714 while (1)
3715 {
3716 struct execution_control_state ecss;
3717 struct execution_control_state *ecs = &ecss;
3718 ptid_t waiton_ptid = minus_one_ptid;
3719
3720 memset (ecs, 0, sizeof (*ecs));
3721
3722 overlay_cache_invalid = 1;
3723
3724 /* Flush target cache before starting to handle each event.
3725 Target was running and cache could be stale. This is just a
3726 heuristic. Running threads may modify target memory, but we
3727 don't get any event. */
3728 target_dcache_invalidate ();
3729
3730 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3731
3732 if (debug_infrun)
3733 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3734
3735 /* Now figure out what to do with the result of the result. */
3736 handle_inferior_event (ecs);
3737
3738 if (!ecs->wait_some_more)
3739 break;
3740 }
3741
3742 /* No error, don't finish the state yet. */
3743 finish_state.release ();
3744
3745 do_cleanups (old_cleanups);
3746 }
3747
3748 /* Cleanup that reinstalls the readline callback handler, if the
3749 target is running in the background. If while handling the target
3750 event something triggered a secondary prompt, like e.g., a
3751 pagination prompt, we'll have removed the callback handler (see
3752 gdb_readline_wrapper_line). Need to do this as we go back to the
3753 event loop, ready to process further input. Note this has no
3754 effect if the handler hasn't actually been removed, because calling
3755 rl_callback_handler_install resets the line buffer, thus losing
3756 input. */
3757
3758 static void
3759 reinstall_readline_callback_handler_cleanup (void *arg)
3760 {
3761 struct ui *ui = current_ui;
3762
3763 if (!ui->async)
3764 {
3765 /* We're not going back to the top level event loop yet. Don't
3766 install the readline callback, as it'd prep the terminal,
3767 readline-style (raw, noecho) (e.g., --batch). We'll install
3768 it the next time the prompt is displayed, when we're ready
3769 for input. */
3770 return;
3771 }
3772
3773 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3774 gdb_rl_callback_handler_reinstall ();
3775 }
3776
3777 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3778 that's just the event thread. In all-stop, that's all threads. */
3779
3780 static void
3781 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3782 {
3783 struct thread_info *thr = ecs->event_thread;
3784
3785 if (thr != NULL && thr->thread_fsm != NULL)
3786 thread_fsm_clean_up (thr->thread_fsm, thr);
3787
3788 if (!non_stop)
3789 {
3790 ALL_NON_EXITED_THREADS (thr)
3791 {
3792 if (thr->thread_fsm == NULL)
3793 continue;
3794 if (thr == ecs->event_thread)
3795 continue;
3796
3797 switch_to_thread (thr->ptid);
3798 thread_fsm_clean_up (thr->thread_fsm, thr);
3799 }
3800
3801 if (ecs->event_thread != NULL)
3802 switch_to_thread (ecs->event_thread->ptid);
3803 }
3804 }
3805
3806 /* Helper for all_uis_check_sync_execution_done that works on the
3807 current UI. */
3808
3809 static void
3810 check_curr_ui_sync_execution_done (void)
3811 {
3812 struct ui *ui = current_ui;
3813
3814 if (ui->prompt_state == PROMPT_NEEDED
3815 && ui->async
3816 && !gdb_in_secondary_prompt_p (ui))
3817 {
3818 target_terminal::ours ();
3819 gdb::observers::sync_execution_done.notify ();
3820 ui_register_input_event_handler (ui);
3821 }
3822 }
3823
3824 /* See infrun.h. */
3825
3826 void
3827 all_uis_check_sync_execution_done (void)
3828 {
3829 SWITCH_THRU_ALL_UIS ()
3830 {
3831 check_curr_ui_sync_execution_done ();
3832 }
3833 }
3834
3835 /* See infrun.h. */
3836
3837 void
3838 all_uis_on_sync_execution_starting (void)
3839 {
3840 SWITCH_THRU_ALL_UIS ()
3841 {
3842 if (current_ui->prompt_state == PROMPT_NEEDED)
3843 async_disable_stdin ();
3844 }
3845 }
3846
3847 /* Asynchronous version of wait_for_inferior. It is called by the
3848 event loop whenever a change of state is detected on the file
3849 descriptor corresponding to the target. It can be called more than
3850 once to complete a single execution command. In such cases we need
3851 to keep the state in a global variable ECSS. If it is the last time
3852 that this function is called for a single execution command, then
3853 report to the user that the inferior has stopped, and do the
3854 necessary cleanups. */
3855
3856 void
3857 fetch_inferior_event (void *client_data)
3858 {
3859 struct execution_control_state ecss;
3860 struct execution_control_state *ecs = &ecss;
3861 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3862 int cmd_done = 0;
3863 ptid_t waiton_ptid = minus_one_ptid;
3864
3865 memset (ecs, 0, sizeof (*ecs));
3866
3867 /* Events are always processed with the main UI as current UI. This
3868 way, warnings, debug output, etc. are always consistently sent to
3869 the main console. */
3870 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3871
3872 /* End up with readline processing input, if necessary. */
3873 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3874
3875 /* We're handling a live event, so make sure we're doing live
3876 debugging. If we're looking at traceframes while the target is
3877 running, we're going to need to get back to that mode after
3878 handling the event. */
3879 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3880 if (non_stop)
3881 {
3882 maybe_restore_traceframe.emplace ();
3883 set_current_traceframe (-1);
3884 }
3885
3886 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3887
3888 if (non_stop)
3889 /* In non-stop mode, the user/frontend should not notice a thread
3890 switch due to internal events. Make sure we reverse to the
3891 user selected thread and frame after handling the event and
3892 running any breakpoint commands. */
3893 maybe_restore_thread.emplace ();
3894
3895 overlay_cache_invalid = 1;
3896 /* Flush target cache before starting to handle each event. Target
3897 was running and cache could be stale. This is just a heuristic.
3898 Running threads may modify target memory, but we don't get any
3899 event. */
3900 target_dcache_invalidate ();
3901
3902 scoped_restore save_exec_dir
3903 = make_scoped_restore (&execution_direction, target_execution_direction ());
3904
3905 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3906 target_can_async_p () ? TARGET_WNOHANG : 0);
3907
3908 if (debug_infrun)
3909 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3910
3911 /* If an error happens while handling the event, propagate GDB's
3912 knowledge of the executing state to the frontend/user running
3913 state. */
3914 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3915 scoped_finish_thread_state finish_state (finish_ptid);
3916
3917 /* Get executed before make_cleanup_restore_current_thread above to apply
3918 still for the thread which has thrown the exception. */
3919 struct cleanup *ts_old_chain = make_bpstat_clear_actions_cleanup ();
3920
3921 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3922
3923 /* Now figure out what to do with the result of the result. */
3924 handle_inferior_event (ecs);
3925
3926 if (!ecs->wait_some_more)
3927 {
3928 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3929 int should_stop = 1;
3930 struct thread_info *thr = ecs->event_thread;
3931 int should_notify_stop = 1;
3932
3933 delete_just_stopped_threads_infrun_breakpoints ();
3934
3935 if (thr != NULL)
3936 {
3937 struct thread_fsm *thread_fsm = thr->thread_fsm;
3938
3939 if (thread_fsm != NULL)
3940 should_stop = thread_fsm_should_stop (thread_fsm, thr);
3941 }
3942
3943 if (!should_stop)
3944 {
3945 keep_going (ecs);
3946 }
3947 else
3948 {
3949 clean_up_just_stopped_threads_fsms (ecs);
3950
3951 if (thr != NULL && thr->thread_fsm != NULL)
3952 {
3953 should_notify_stop
3954 = thread_fsm_should_notify_stop (thr->thread_fsm);
3955 }
3956
3957 if (should_notify_stop)
3958 {
3959 int proceeded = 0;
3960
3961 /* We may not find an inferior if this was a process exit. */
3962 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3963 proceeded = normal_stop ();
3964
3965 if (!proceeded)
3966 {
3967 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3968 cmd_done = 1;
3969 }
3970 }
3971 }
3972 }
3973
3974 discard_cleanups (ts_old_chain);
3975
3976 /* No error, don't finish the thread states yet. */
3977 finish_state.release ();
3978
3979 /* Revert thread and frame. */
3980 do_cleanups (old_chain);
3981
3982 /* If a UI was in sync execution mode, and now isn't, restore its
3983 prompt (a synchronous execution command has finished, and we're
3984 ready for input). */
3985 all_uis_check_sync_execution_done ();
3986
3987 if (cmd_done
3988 && exec_done_display_p
3989 && (ptid_equal (inferior_ptid, null_ptid)
3990 || !is_running (inferior_ptid)))
3991 printf_unfiltered (_("completed.\n"));
3992 }
3993
3994 /* Record the frame and location we're currently stepping through. */
3995 void
3996 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3997 {
3998 struct thread_info *tp = inferior_thread ();
3999
4000 tp->control.step_frame_id = get_frame_id (frame);
4001 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4002
4003 tp->current_symtab = sal.symtab;
4004 tp->current_line = sal.line;
4005 }
4006
4007 /* Clear context switchable stepping state. */
4008
4009 void
4010 init_thread_stepping_state (struct thread_info *tss)
4011 {
4012 tss->stepped_breakpoint = 0;
4013 tss->stepping_over_breakpoint = 0;
4014 tss->stepping_over_watchpoint = 0;
4015 tss->step_after_step_resume_breakpoint = 0;
4016 }
4017
4018 /* Set the cached copy of the last ptid/waitstatus. */
4019
4020 void
4021 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4022 {
4023 target_last_wait_ptid = ptid;
4024 target_last_waitstatus = status;
4025 }
4026
4027 /* Return the cached copy of the last pid/waitstatus returned by
4028 target_wait()/deprecated_target_wait_hook(). The data is actually
4029 cached by handle_inferior_event(), which gets called immediately
4030 after target_wait()/deprecated_target_wait_hook(). */
4031
4032 void
4033 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
4034 {
4035 *ptidp = target_last_wait_ptid;
4036 *status = target_last_waitstatus;
4037 }
4038
4039 void
4040 nullify_last_target_wait_ptid (void)
4041 {
4042 target_last_wait_ptid = minus_one_ptid;
4043 }
4044
4045 /* Switch thread contexts. */
4046
4047 static void
4048 context_switch (ptid_t ptid)
4049 {
4050 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
4051 {
4052 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4053 target_pid_to_str (inferior_ptid));
4054 fprintf_unfiltered (gdb_stdlog, "to %s\n",
4055 target_pid_to_str (ptid));
4056 }
4057
4058 switch_to_thread (ptid);
4059 }
4060
4061 /* If the target can't tell whether we've hit breakpoints
4062 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4063 check whether that could have been caused by a breakpoint. If so,
4064 adjust the PC, per gdbarch_decr_pc_after_break. */
4065
4066 static void
4067 adjust_pc_after_break (struct thread_info *thread,
4068 struct target_waitstatus *ws)
4069 {
4070 struct regcache *regcache;
4071 struct gdbarch *gdbarch;
4072 CORE_ADDR breakpoint_pc, decr_pc;
4073
4074 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4075 we aren't, just return.
4076
4077 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4078 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4079 implemented by software breakpoints should be handled through the normal
4080 breakpoint layer.
4081
4082 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4083 different signals (SIGILL or SIGEMT for instance), but it is less
4084 clear where the PC is pointing afterwards. It may not match
4085 gdbarch_decr_pc_after_break. I don't know any specific target that
4086 generates these signals at breakpoints (the code has been in GDB since at
4087 least 1992) so I can not guess how to handle them here.
4088
4089 In earlier versions of GDB, a target with
4090 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4091 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4092 target with both of these set in GDB history, and it seems unlikely to be
4093 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4094
4095 if (ws->kind != TARGET_WAITKIND_STOPPED)
4096 return;
4097
4098 if (ws->value.sig != GDB_SIGNAL_TRAP)
4099 return;
4100
4101 /* In reverse execution, when a breakpoint is hit, the instruction
4102 under it has already been de-executed. The reported PC always
4103 points at the breakpoint address, so adjusting it further would
4104 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4105 architecture:
4106
4107 B1 0x08000000 : INSN1
4108 B2 0x08000001 : INSN2
4109 0x08000002 : INSN3
4110 PC -> 0x08000003 : INSN4
4111
4112 Say you're stopped at 0x08000003 as above. Reverse continuing
4113 from that point should hit B2 as below. Reading the PC when the
4114 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4115 been de-executed already.
4116
4117 B1 0x08000000 : INSN1
4118 B2 PC -> 0x08000001 : INSN2
4119 0x08000002 : INSN3
4120 0x08000003 : INSN4
4121
4122 We can't apply the same logic as for forward execution, because
4123 we would wrongly adjust the PC to 0x08000000, since there's a
4124 breakpoint at PC - 1. We'd then report a hit on B1, although
4125 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4126 behaviour. */
4127 if (execution_direction == EXEC_REVERSE)
4128 return;
4129
4130 /* If the target can tell whether the thread hit a SW breakpoint,
4131 trust it. Targets that can tell also adjust the PC
4132 themselves. */
4133 if (target_supports_stopped_by_sw_breakpoint ())
4134 return;
4135
4136 /* Note that relying on whether a breakpoint is planted in memory to
4137 determine this can fail. E.g,. the breakpoint could have been
4138 removed since. Or the thread could have been told to step an
4139 instruction the size of a breakpoint instruction, and only
4140 _after_ was a breakpoint inserted at its address. */
4141
4142 /* If this target does not decrement the PC after breakpoints, then
4143 we have nothing to do. */
4144 regcache = get_thread_regcache (thread->ptid);
4145 gdbarch = regcache->arch ();
4146
4147 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4148 if (decr_pc == 0)
4149 return;
4150
4151 const address_space *aspace = regcache->aspace ();
4152
4153 /* Find the location where (if we've hit a breakpoint) the
4154 breakpoint would be. */
4155 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4156
4157 /* If the target can't tell whether a software breakpoint triggered,
4158 fallback to figuring it out based on breakpoints we think were
4159 inserted in the target, and on whether the thread was stepped or
4160 continued. */
4161
4162 /* Check whether there actually is a software breakpoint inserted at
4163 that location.
4164
4165 If in non-stop mode, a race condition is possible where we've
4166 removed a breakpoint, but stop events for that breakpoint were
4167 already queued and arrive later. To suppress those spurious
4168 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4169 and retire them after a number of stop events are reported. Note
4170 this is an heuristic and can thus get confused. The real fix is
4171 to get the "stopped by SW BP and needs adjustment" info out of
4172 the target/kernel (and thus never reach here; see above). */
4173 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4174 || (target_is_non_stop_p ()
4175 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4176 {
4177 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4178
4179 if (record_full_is_used ())
4180 restore_operation_disable.emplace
4181 (record_full_gdb_operation_disable_set ());
4182
4183 /* When using hardware single-step, a SIGTRAP is reported for both
4184 a completed single-step and a software breakpoint. Need to
4185 differentiate between the two, as the latter needs adjusting
4186 but the former does not.
4187
4188 The SIGTRAP can be due to a completed hardware single-step only if
4189 - we didn't insert software single-step breakpoints
4190 - this thread is currently being stepped
4191
4192 If any of these events did not occur, we must have stopped due
4193 to hitting a software breakpoint, and have to back up to the
4194 breakpoint address.
4195
4196 As a special case, we could have hardware single-stepped a
4197 software breakpoint. In this case (prev_pc == breakpoint_pc),
4198 we also need to back up to the breakpoint address. */
4199
4200 if (thread_has_single_step_breakpoints_set (thread)
4201 || !currently_stepping (thread)
4202 || (thread->stepped_breakpoint
4203 && thread->prev_pc == breakpoint_pc))
4204 regcache_write_pc (regcache, breakpoint_pc);
4205 }
4206 }
4207
4208 static int
4209 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4210 {
4211 for (frame = get_prev_frame (frame);
4212 frame != NULL;
4213 frame = get_prev_frame (frame))
4214 {
4215 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4216 return 1;
4217 if (get_frame_type (frame) != INLINE_FRAME)
4218 break;
4219 }
4220
4221 return 0;
4222 }
4223
4224 /* If the event thread has the stop requested flag set, pretend it
4225 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4226 target_stop). */
4227
4228 static bool
4229 handle_stop_requested (struct execution_control_state *ecs)
4230 {
4231 if (ecs->event_thread->stop_requested)
4232 {
4233 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4234 ecs->ws.value.sig = GDB_SIGNAL_0;
4235 handle_signal_stop (ecs);
4236 return true;
4237 }
4238 return false;
4239 }
4240
4241 /* Auxiliary function that handles syscall entry/return events.
4242 It returns 1 if the inferior should keep going (and GDB
4243 should ignore the event), or 0 if the event deserves to be
4244 processed. */
4245
4246 static int
4247 handle_syscall_event (struct execution_control_state *ecs)
4248 {
4249 struct regcache *regcache;
4250 int syscall_number;
4251
4252 if (!ptid_equal (ecs->ptid, inferior_ptid))
4253 context_switch (ecs->ptid);
4254
4255 regcache = get_thread_regcache (ecs->ptid);
4256 syscall_number = ecs->ws.value.syscall_number;
4257 stop_pc = regcache_read_pc (regcache);
4258
4259 if (catch_syscall_enabled () > 0
4260 && catching_syscall_number (syscall_number) > 0)
4261 {
4262 if (debug_infrun)
4263 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4264 syscall_number);
4265
4266 ecs->event_thread->control.stop_bpstat
4267 = bpstat_stop_status (regcache->aspace (),
4268 stop_pc, ecs->ptid, &ecs->ws);
4269
4270 if (handle_stop_requested (ecs))
4271 return 0;
4272
4273 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4274 {
4275 /* Catchpoint hit. */
4276 return 0;
4277 }
4278 }
4279
4280 if (handle_stop_requested (ecs))
4281 return 0;
4282
4283 /* If no catchpoint triggered for this, then keep going. */
4284 keep_going (ecs);
4285 return 1;
4286 }
4287
4288 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4289
4290 static void
4291 fill_in_stop_func (struct gdbarch *gdbarch,
4292 struct execution_control_state *ecs)
4293 {
4294 if (!ecs->stop_func_filled_in)
4295 {
4296 /* Don't care about return value; stop_func_start and stop_func_name
4297 will both be 0 if it doesn't work. */
4298 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4299 &ecs->stop_func_start, &ecs->stop_func_end);
4300 ecs->stop_func_start
4301 += gdbarch_deprecated_function_start_offset (gdbarch);
4302
4303 if (gdbarch_skip_entrypoint_p (gdbarch))
4304 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4305 ecs->stop_func_start);
4306
4307 ecs->stop_func_filled_in = 1;
4308 }
4309 }
4310
4311
4312 /* Return the STOP_SOON field of the inferior pointed at by PTID. */
4313
4314 static enum stop_kind
4315 get_inferior_stop_soon (ptid_t ptid)
4316 {
4317 struct inferior *inf = find_inferior_ptid (ptid);
4318
4319 gdb_assert (inf != NULL);
4320 return inf->control.stop_soon;
4321 }
4322
4323 /* Wait for one event. Store the resulting waitstatus in WS, and
4324 return the event ptid. */
4325
4326 static ptid_t
4327 wait_one (struct target_waitstatus *ws)
4328 {
4329 ptid_t event_ptid;
4330 ptid_t wait_ptid = minus_one_ptid;
4331
4332 overlay_cache_invalid = 1;
4333
4334 /* Flush target cache before starting to handle each event.
4335 Target was running and cache could be stale. This is just a
4336 heuristic. Running threads may modify target memory, but we
4337 don't get any event. */
4338 target_dcache_invalidate ();
4339
4340 if (deprecated_target_wait_hook)
4341 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4342 else
4343 event_ptid = target_wait (wait_ptid, ws, 0);
4344
4345 if (debug_infrun)
4346 print_target_wait_results (wait_ptid, event_ptid, ws);
4347
4348 return event_ptid;
4349 }
4350
4351 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4352 instead of the current thread. */
4353 #define THREAD_STOPPED_BY(REASON) \
4354 static int \
4355 thread_stopped_by_ ## REASON (ptid_t ptid) \
4356 { \
4357 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
4358 inferior_ptid = ptid; \
4359 \
4360 return target_stopped_by_ ## REASON (); \
4361 }
4362
4363 /* Generate thread_stopped_by_watchpoint. */
4364 THREAD_STOPPED_BY (watchpoint)
4365 /* Generate thread_stopped_by_sw_breakpoint. */
4366 THREAD_STOPPED_BY (sw_breakpoint)
4367 /* Generate thread_stopped_by_hw_breakpoint. */
4368 THREAD_STOPPED_BY (hw_breakpoint)
4369
4370 /* Cleanups that switches to the PTID pointed at by PTID_P. */
4371
4372 static void
4373 switch_to_thread_cleanup (void *ptid_p)
4374 {
4375 ptid_t ptid = *(ptid_t *) ptid_p;
4376
4377 switch_to_thread (ptid);
4378 }
4379
4380 /* Save the thread's event and stop reason to process it later. */
4381
4382 static void
4383 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4384 {
4385 struct regcache *regcache;
4386
4387 if (debug_infrun)
4388 {
4389 std::string statstr = target_waitstatus_to_string (ws);
4390
4391 fprintf_unfiltered (gdb_stdlog,
4392 "infrun: saving status %s for %d.%ld.%ld\n",
4393 statstr.c_str (),
4394 ptid_get_pid (tp->ptid),
4395 ptid_get_lwp (tp->ptid),
4396 ptid_get_tid (tp->ptid));
4397 }
4398
4399 /* Record for later. */
4400 tp->suspend.waitstatus = *ws;
4401 tp->suspend.waitstatus_pending_p = 1;
4402
4403 regcache = get_thread_regcache (tp->ptid);
4404 const address_space *aspace = regcache->aspace ();
4405
4406 if (ws->kind == TARGET_WAITKIND_STOPPED
4407 && ws->value.sig == GDB_SIGNAL_TRAP)
4408 {
4409 CORE_ADDR pc = regcache_read_pc (regcache);
4410
4411 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4412
4413 if (thread_stopped_by_watchpoint (tp->ptid))
4414 {
4415 tp->suspend.stop_reason
4416 = TARGET_STOPPED_BY_WATCHPOINT;
4417 }
4418 else if (target_supports_stopped_by_sw_breakpoint ()
4419 && thread_stopped_by_sw_breakpoint (tp->ptid))
4420 {
4421 tp->suspend.stop_reason
4422 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4423 }
4424 else if (target_supports_stopped_by_hw_breakpoint ()
4425 && thread_stopped_by_hw_breakpoint (tp->ptid))
4426 {
4427 tp->suspend.stop_reason
4428 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4429 }
4430 else if (!target_supports_stopped_by_hw_breakpoint ()
4431 && hardware_breakpoint_inserted_here_p (aspace,
4432 pc))
4433 {
4434 tp->suspend.stop_reason
4435 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4436 }
4437 else if (!target_supports_stopped_by_sw_breakpoint ()
4438 && software_breakpoint_inserted_here_p (aspace,
4439 pc))
4440 {
4441 tp->suspend.stop_reason
4442 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4443 }
4444 else if (!thread_has_single_step_breakpoints_set (tp)
4445 && currently_stepping (tp))
4446 {
4447 tp->suspend.stop_reason
4448 = TARGET_STOPPED_BY_SINGLE_STEP;
4449 }
4450 }
4451 }
4452
4453 /* A cleanup that disables thread create/exit events. */
4454
4455 static void
4456 disable_thread_events (void *arg)
4457 {
4458 target_thread_events (0);
4459 }
4460
4461 /* See infrun.h. */
4462
4463 void
4464 stop_all_threads (void)
4465 {
4466 /* We may need multiple passes to discover all threads. */
4467 int pass;
4468 int iterations = 0;
4469 ptid_t entry_ptid;
4470 struct cleanup *old_chain;
4471
4472 gdb_assert (target_is_non_stop_p ());
4473
4474 if (debug_infrun)
4475 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4476
4477 entry_ptid = inferior_ptid;
4478 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4479
4480 target_thread_events (1);
4481 make_cleanup (disable_thread_events, NULL);
4482
4483 /* Request threads to stop, and then wait for the stops. Because
4484 threads we already know about can spawn more threads while we're
4485 trying to stop them, and we only learn about new threads when we
4486 update the thread list, do this in a loop, and keep iterating
4487 until two passes find no threads that need to be stopped. */
4488 for (pass = 0; pass < 2; pass++, iterations++)
4489 {
4490 if (debug_infrun)
4491 fprintf_unfiltered (gdb_stdlog,
4492 "infrun: stop_all_threads, pass=%d, "
4493 "iterations=%d\n", pass, iterations);
4494 while (1)
4495 {
4496 ptid_t event_ptid;
4497 struct target_waitstatus ws;
4498 int need_wait = 0;
4499 struct thread_info *t;
4500
4501 update_thread_list ();
4502
4503 /* Go through all threads looking for threads that we need
4504 to tell the target to stop. */
4505 ALL_NON_EXITED_THREADS (t)
4506 {
4507 if (t->executing)
4508 {
4509 /* If already stopping, don't request a stop again.
4510 We just haven't seen the notification yet. */
4511 if (!t->stop_requested)
4512 {
4513 if (debug_infrun)
4514 fprintf_unfiltered (gdb_stdlog,
4515 "infrun: %s executing, "
4516 "need stop\n",
4517 target_pid_to_str (t->ptid));
4518 target_stop (t->ptid);
4519 t->stop_requested = 1;
4520 }
4521 else
4522 {
4523 if (debug_infrun)
4524 fprintf_unfiltered (gdb_stdlog,
4525 "infrun: %s executing, "
4526 "already stopping\n",
4527 target_pid_to_str (t->ptid));
4528 }
4529
4530 if (t->stop_requested)
4531 need_wait = 1;
4532 }
4533 else
4534 {
4535 if (debug_infrun)
4536 fprintf_unfiltered (gdb_stdlog,
4537 "infrun: %s not executing\n",
4538 target_pid_to_str (t->ptid));
4539
4540 /* The thread may be not executing, but still be
4541 resumed with a pending status to process. */
4542 t->resumed = 0;
4543 }
4544 }
4545
4546 if (!need_wait)
4547 break;
4548
4549 /* If we find new threads on the second iteration, restart
4550 over. We want to see two iterations in a row with all
4551 threads stopped. */
4552 if (pass > 0)
4553 pass = -1;
4554
4555 event_ptid = wait_one (&ws);
4556 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4557 {
4558 /* All resumed threads exited. */
4559 }
4560 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4561 || ws.kind == TARGET_WAITKIND_EXITED
4562 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4563 {
4564 if (debug_infrun)
4565 {
4566 ptid_t ptid = pid_to_ptid (ws.value.integer);
4567
4568 fprintf_unfiltered (gdb_stdlog,
4569 "infrun: %s exited while "
4570 "stopping threads\n",
4571 target_pid_to_str (ptid));
4572 }
4573 }
4574 else
4575 {
4576 struct inferior *inf;
4577
4578 t = find_thread_ptid (event_ptid);
4579 if (t == NULL)
4580 t = add_thread (event_ptid);
4581
4582 t->stop_requested = 0;
4583 t->executing = 0;
4584 t->resumed = 0;
4585 t->control.may_range_step = 0;
4586
4587 /* This may be the first time we see the inferior report
4588 a stop. */
4589 inf = find_inferior_ptid (event_ptid);
4590 if (inf->needs_setup)
4591 {
4592 switch_to_thread_no_regs (t);
4593 setup_inferior (0);
4594 }
4595
4596 if (ws.kind == TARGET_WAITKIND_STOPPED
4597 && ws.value.sig == GDB_SIGNAL_0)
4598 {
4599 /* We caught the event that we intended to catch, so
4600 there's no event pending. */
4601 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4602 t->suspend.waitstatus_pending_p = 0;
4603
4604 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4605 {
4606 /* Add it back to the step-over queue. */
4607 if (debug_infrun)
4608 {
4609 fprintf_unfiltered (gdb_stdlog,
4610 "infrun: displaced-step of %s "
4611 "canceled: adding back to the "
4612 "step-over queue\n",
4613 target_pid_to_str (t->ptid));
4614 }
4615 t->control.trap_expected = 0;
4616 thread_step_over_chain_enqueue (t);
4617 }
4618 }
4619 else
4620 {
4621 enum gdb_signal sig;
4622 struct regcache *regcache;
4623
4624 if (debug_infrun)
4625 {
4626 std::string statstr = target_waitstatus_to_string (&ws);
4627
4628 fprintf_unfiltered (gdb_stdlog,
4629 "infrun: target_wait %s, saving "
4630 "status for %d.%ld.%ld\n",
4631 statstr.c_str (),
4632 ptid_get_pid (t->ptid),
4633 ptid_get_lwp (t->ptid),
4634 ptid_get_tid (t->ptid));
4635 }
4636
4637 /* Record for later. */
4638 save_waitstatus (t, &ws);
4639
4640 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4641 ? ws.value.sig : GDB_SIGNAL_0);
4642
4643 if (displaced_step_fixup (t->ptid, sig) < 0)
4644 {
4645 /* Add it back to the step-over queue. */
4646 t->control.trap_expected = 0;
4647 thread_step_over_chain_enqueue (t);
4648 }
4649
4650 regcache = get_thread_regcache (t->ptid);
4651 t->suspend.stop_pc = regcache_read_pc (regcache);
4652
4653 if (debug_infrun)
4654 {
4655 fprintf_unfiltered (gdb_stdlog,
4656 "infrun: saved stop_pc=%s for %s "
4657 "(currently_stepping=%d)\n",
4658 paddress (target_gdbarch (),
4659 t->suspend.stop_pc),
4660 target_pid_to_str (t->ptid),
4661 currently_stepping (t));
4662 }
4663 }
4664 }
4665 }
4666 }
4667
4668 do_cleanups (old_chain);
4669
4670 if (debug_infrun)
4671 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4672 }
4673
4674 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4675
4676 static int
4677 handle_no_resumed (struct execution_control_state *ecs)
4678 {
4679 struct inferior *inf;
4680 struct thread_info *thread;
4681
4682 if (target_can_async_p ())
4683 {
4684 struct ui *ui;
4685 int any_sync = 0;
4686
4687 ALL_UIS (ui)
4688 {
4689 if (ui->prompt_state == PROMPT_BLOCKED)
4690 {
4691 any_sync = 1;
4692 break;
4693 }
4694 }
4695 if (!any_sync)
4696 {
4697 /* There were no unwaited-for children left in the target, but,
4698 we're not synchronously waiting for events either. Just
4699 ignore. */
4700
4701 if (debug_infrun)
4702 fprintf_unfiltered (gdb_stdlog,
4703 "infrun: TARGET_WAITKIND_NO_RESUMED "
4704 "(ignoring: bg)\n");
4705 prepare_to_wait (ecs);
4706 return 1;
4707 }
4708 }
4709
4710 /* Otherwise, if we were running a synchronous execution command, we
4711 may need to cancel it and give the user back the terminal.
4712
4713 In non-stop mode, the target can't tell whether we've already
4714 consumed previous stop events, so it can end up sending us a
4715 no-resumed event like so:
4716
4717 #0 - thread 1 is left stopped
4718
4719 #1 - thread 2 is resumed and hits breakpoint
4720 -> TARGET_WAITKIND_STOPPED
4721
4722 #2 - thread 3 is resumed and exits
4723 this is the last resumed thread, so
4724 -> TARGET_WAITKIND_NO_RESUMED
4725
4726 #3 - gdb processes stop for thread 2 and decides to re-resume
4727 it.
4728
4729 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4730 thread 2 is now resumed, so the event should be ignored.
4731
4732 IOW, if the stop for thread 2 doesn't end a foreground command,
4733 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4734 event. But it could be that the event meant that thread 2 itself
4735 (or whatever other thread was the last resumed thread) exited.
4736
4737 To address this we refresh the thread list and check whether we
4738 have resumed threads _now_. In the example above, this removes
4739 thread 3 from the thread list. If thread 2 was re-resumed, we
4740 ignore this event. If we find no thread resumed, then we cancel
4741 the synchronous command show "no unwaited-for " to the user. */
4742 update_thread_list ();
4743
4744 ALL_NON_EXITED_THREADS (thread)
4745 {
4746 if (thread->executing
4747 || thread->suspend.waitstatus_pending_p)
4748 {
4749 /* There were no unwaited-for children left in the target at
4750 some point, but there are now. Just ignore. */
4751 if (debug_infrun)
4752 fprintf_unfiltered (gdb_stdlog,
4753 "infrun: TARGET_WAITKIND_NO_RESUMED "
4754 "(ignoring: found resumed)\n");
4755 prepare_to_wait (ecs);
4756 return 1;
4757 }
4758 }
4759
4760 /* Note however that we may find no resumed thread because the whole
4761 process exited meanwhile (thus updating the thread list results
4762 in an empty thread list). In this case we know we'll be getting
4763 a process exit event shortly. */
4764 ALL_INFERIORS (inf)
4765 {
4766 if (inf->pid == 0)
4767 continue;
4768
4769 thread = any_live_thread_of_process (inf->pid);
4770 if (thread == NULL)
4771 {
4772 if (debug_infrun)
4773 fprintf_unfiltered (gdb_stdlog,
4774 "infrun: TARGET_WAITKIND_NO_RESUMED "
4775 "(expect process exit)\n");
4776 prepare_to_wait (ecs);
4777 return 1;
4778 }
4779 }
4780
4781 /* Go ahead and report the event. */
4782 return 0;
4783 }
4784
4785 /* Given an execution control state that has been freshly filled in by
4786 an event from the inferior, figure out what it means and take
4787 appropriate action.
4788
4789 The alternatives are:
4790
4791 1) stop_waiting and return; to really stop and return to the
4792 debugger.
4793
4794 2) keep_going and return; to wait for the next event (set
4795 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4796 once). */
4797
4798 static void
4799 handle_inferior_event_1 (struct execution_control_state *ecs)
4800 {
4801 enum stop_kind stop_soon;
4802
4803 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4804 {
4805 /* We had an event in the inferior, but we are not interested in
4806 handling it at this level. The lower layers have already
4807 done what needs to be done, if anything.
4808
4809 One of the possible circumstances for this is when the
4810 inferior produces output for the console. The inferior has
4811 not stopped, and we are ignoring the event. Another possible
4812 circumstance is any event which the lower level knows will be
4813 reported multiple times without an intervening resume. */
4814 if (debug_infrun)
4815 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4816 prepare_to_wait (ecs);
4817 return;
4818 }
4819
4820 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4821 {
4822 if (debug_infrun)
4823 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4824 prepare_to_wait (ecs);
4825 return;
4826 }
4827
4828 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4829 && handle_no_resumed (ecs))
4830 return;
4831
4832 /* Cache the last pid/waitstatus. */
4833 set_last_target_status (ecs->ptid, ecs->ws);
4834
4835 /* Always clear state belonging to the previous time we stopped. */
4836 stop_stack_dummy = STOP_NONE;
4837
4838 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4839 {
4840 /* No unwaited-for children left. IOW, all resumed children
4841 have exited. */
4842 if (debug_infrun)
4843 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4844
4845 stop_print_frame = 0;
4846 stop_waiting (ecs);
4847 return;
4848 }
4849
4850 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4851 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4852 {
4853 ecs->event_thread = find_thread_ptid (ecs->ptid);
4854 /* If it's a new thread, add it to the thread database. */
4855 if (ecs->event_thread == NULL)
4856 ecs->event_thread = add_thread (ecs->ptid);
4857
4858 /* Disable range stepping. If the next step request could use a
4859 range, this will be end up re-enabled then. */
4860 ecs->event_thread->control.may_range_step = 0;
4861 }
4862
4863 /* Dependent on valid ECS->EVENT_THREAD. */
4864 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4865
4866 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4867 reinit_frame_cache ();
4868
4869 breakpoint_retire_moribund ();
4870
4871 /* First, distinguish signals caused by the debugger from signals
4872 that have to do with the program's own actions. Note that
4873 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4874 on the operating system version. Here we detect when a SIGILL or
4875 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4876 something similar for SIGSEGV, since a SIGSEGV will be generated
4877 when we're trying to execute a breakpoint instruction on a
4878 non-executable stack. This happens for call dummy breakpoints
4879 for architectures like SPARC that place call dummies on the
4880 stack. */
4881 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4882 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4883 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4884 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4885 {
4886 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4887
4888 if (breakpoint_inserted_here_p (regcache->aspace (),
4889 regcache_read_pc (regcache)))
4890 {
4891 if (debug_infrun)
4892 fprintf_unfiltered (gdb_stdlog,
4893 "infrun: Treating signal as SIGTRAP\n");
4894 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4895 }
4896 }
4897
4898 /* Mark the non-executing threads accordingly. In all-stop, all
4899 threads of all processes are stopped when we get any event
4900 reported. In non-stop mode, only the event thread stops. */
4901 {
4902 ptid_t mark_ptid;
4903
4904 if (!target_is_non_stop_p ())
4905 mark_ptid = minus_one_ptid;
4906 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4907 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4908 {
4909 /* If we're handling a process exit in non-stop mode, even
4910 though threads haven't been deleted yet, one would think
4911 that there is nothing to do, as threads of the dead process
4912 will be soon deleted, and threads of any other process were
4913 left running. However, on some targets, threads survive a
4914 process exit event. E.g., for the "checkpoint" command,
4915 when the current checkpoint/fork exits, linux-fork.c
4916 automatically switches to another fork from within
4917 target_mourn_inferior, by associating the same
4918 inferior/thread to another fork. We haven't mourned yet at
4919 this point, but we must mark any threads left in the
4920 process as not-executing so that finish_thread_state marks
4921 them stopped (in the user's perspective) if/when we present
4922 the stop to the user. */
4923 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4924 }
4925 else
4926 mark_ptid = ecs->ptid;
4927
4928 set_executing (mark_ptid, 0);
4929
4930 /* Likewise the resumed flag. */
4931 set_resumed (mark_ptid, 0);
4932 }
4933
4934 switch (ecs->ws.kind)
4935 {
4936 case TARGET_WAITKIND_LOADED:
4937 if (debug_infrun)
4938 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
4939 if (!ptid_equal (ecs->ptid, inferior_ptid))
4940 context_switch (ecs->ptid);
4941 /* Ignore gracefully during startup of the inferior, as it might
4942 be the shell which has just loaded some objects, otherwise
4943 add the symbols for the newly loaded objects. Also ignore at
4944 the beginning of an attach or remote session; we will query
4945 the full list of libraries once the connection is
4946 established. */
4947
4948 stop_soon = get_inferior_stop_soon (ecs->ptid);
4949 if (stop_soon == NO_STOP_QUIETLY)
4950 {
4951 struct regcache *regcache;
4952
4953 regcache = get_thread_regcache (ecs->ptid);
4954
4955 handle_solib_event ();
4956
4957 ecs->event_thread->control.stop_bpstat
4958 = bpstat_stop_status (regcache->aspace (),
4959 stop_pc, ecs->ptid, &ecs->ws);
4960
4961 if (handle_stop_requested (ecs))
4962 return;
4963
4964 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4965 {
4966 /* A catchpoint triggered. */
4967 process_event_stop_test (ecs);
4968 return;
4969 }
4970
4971 /* If requested, stop when the dynamic linker notifies
4972 gdb of events. This allows the user to get control
4973 and place breakpoints in initializer routines for
4974 dynamically loaded objects (among other things). */
4975 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4976 if (stop_on_solib_events)
4977 {
4978 /* Make sure we print "Stopped due to solib-event" in
4979 normal_stop. */
4980 stop_print_frame = 1;
4981
4982 stop_waiting (ecs);
4983 return;
4984 }
4985 }
4986
4987 /* If we are skipping through a shell, or through shared library
4988 loading that we aren't interested in, resume the program. If
4989 we're running the program normally, also resume. */
4990 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4991 {
4992 /* Loading of shared libraries might have changed breakpoint
4993 addresses. Make sure new breakpoints are inserted. */
4994 if (stop_soon == NO_STOP_QUIETLY)
4995 insert_breakpoints ();
4996 resume (GDB_SIGNAL_0);
4997 prepare_to_wait (ecs);
4998 return;
4999 }
5000
5001 /* But stop if we're attaching or setting up a remote
5002 connection. */
5003 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5004 || stop_soon == STOP_QUIETLY_REMOTE)
5005 {
5006 if (debug_infrun)
5007 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5008 stop_waiting (ecs);
5009 return;
5010 }
5011
5012 internal_error (__FILE__, __LINE__,
5013 _("unhandled stop_soon: %d"), (int) stop_soon);
5014
5015 case TARGET_WAITKIND_SPURIOUS:
5016 if (debug_infrun)
5017 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
5018 if (handle_stop_requested (ecs))
5019 return;
5020 if (!ptid_equal (ecs->ptid, inferior_ptid))
5021 context_switch (ecs->ptid);
5022 resume (GDB_SIGNAL_0);
5023 prepare_to_wait (ecs);
5024 return;
5025
5026 case TARGET_WAITKIND_THREAD_CREATED:
5027 if (debug_infrun)
5028 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
5029 if (handle_stop_requested (ecs))
5030 return;
5031 if (!ptid_equal (ecs->ptid, inferior_ptid))
5032 context_switch (ecs->ptid);
5033 if (!switch_back_to_stepped_thread (ecs))
5034 keep_going (ecs);
5035 return;
5036
5037 case TARGET_WAITKIND_EXITED:
5038 case TARGET_WAITKIND_SIGNALLED:
5039 if (debug_infrun)
5040 {
5041 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5042 fprintf_unfiltered (gdb_stdlog,
5043 "infrun: TARGET_WAITKIND_EXITED\n");
5044 else
5045 fprintf_unfiltered (gdb_stdlog,
5046 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5047 }
5048
5049 inferior_ptid = ecs->ptid;
5050 set_current_inferior (find_inferior_ptid (ecs->ptid));
5051 set_current_program_space (current_inferior ()->pspace);
5052 handle_vfork_child_exec_or_exit (0);
5053 target_terminal::ours (); /* Must do this before mourn anyway. */
5054
5055 /* Clearing any previous state of convenience variables. */
5056 clear_exit_convenience_vars ();
5057
5058 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5059 {
5060 /* Record the exit code in the convenience variable $_exitcode, so
5061 that the user can inspect this again later. */
5062 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5063 (LONGEST) ecs->ws.value.integer);
5064
5065 /* Also record this in the inferior itself. */
5066 current_inferior ()->has_exit_code = 1;
5067 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5068
5069 /* Support the --return-child-result option. */
5070 return_child_result_value = ecs->ws.value.integer;
5071
5072 gdb::observers::exited.notify (ecs->ws.value.integer);
5073 }
5074 else
5075 {
5076 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5077 struct gdbarch *gdbarch = regcache->arch ();
5078
5079 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5080 {
5081 /* Set the value of the internal variable $_exitsignal,
5082 which holds the signal uncaught by the inferior. */
5083 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5084 gdbarch_gdb_signal_to_target (gdbarch,
5085 ecs->ws.value.sig));
5086 }
5087 else
5088 {
5089 /* We don't have access to the target's method used for
5090 converting between signal numbers (GDB's internal
5091 representation <-> target's representation).
5092 Therefore, we cannot do a good job at displaying this
5093 information to the user. It's better to just warn
5094 her about it (if infrun debugging is enabled), and
5095 give up. */
5096 if (debug_infrun)
5097 fprintf_filtered (gdb_stdlog, _("\
5098 Cannot fill $_exitsignal with the correct signal number.\n"));
5099 }
5100
5101 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
5102 }
5103
5104 gdb_flush (gdb_stdout);
5105 target_mourn_inferior (inferior_ptid);
5106 stop_print_frame = 0;
5107 stop_waiting (ecs);
5108 return;
5109
5110 /* The following are the only cases in which we keep going;
5111 the above cases end in a continue or goto. */
5112 case TARGET_WAITKIND_FORKED:
5113 case TARGET_WAITKIND_VFORKED:
5114 if (debug_infrun)
5115 {
5116 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5117 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5118 else
5119 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5120 }
5121
5122 /* Check whether the inferior is displaced stepping. */
5123 {
5124 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5125 struct gdbarch *gdbarch = regcache->arch ();
5126
5127 /* If checking displaced stepping is supported, and thread
5128 ecs->ptid is displaced stepping. */
5129 if (displaced_step_in_progress_thread (ecs->ptid))
5130 {
5131 struct inferior *parent_inf
5132 = find_inferior_ptid (ecs->ptid);
5133 struct regcache *child_regcache;
5134 CORE_ADDR parent_pc;
5135
5136 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5137 indicating that the displaced stepping of syscall instruction
5138 has been done. Perform cleanup for parent process here. Note
5139 that this operation also cleans up the child process for vfork,
5140 because their pages are shared. */
5141 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
5142 /* Start a new step-over in another thread if there's one
5143 that needs it. */
5144 start_step_over ();
5145
5146 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5147 {
5148 struct displaced_step_inferior_state *displaced
5149 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5150
5151 /* Restore scratch pad for child process. */
5152 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5153 }
5154
5155 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5156 the child's PC is also within the scratchpad. Set the child's PC
5157 to the parent's PC value, which has already been fixed up.
5158 FIXME: we use the parent's aspace here, although we're touching
5159 the child, because the child hasn't been added to the inferior
5160 list yet at this point. */
5161
5162 child_regcache
5163 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5164 gdbarch,
5165 parent_inf->aspace);
5166 /* Read PC value of parent process. */
5167 parent_pc = regcache_read_pc (regcache);
5168
5169 if (debug_displaced)
5170 fprintf_unfiltered (gdb_stdlog,
5171 "displaced: write child pc from %s to %s\n",
5172 paddress (gdbarch,
5173 regcache_read_pc (child_regcache)),
5174 paddress (gdbarch, parent_pc));
5175
5176 regcache_write_pc (child_regcache, parent_pc);
5177 }
5178 }
5179
5180 if (!ptid_equal (ecs->ptid, inferior_ptid))
5181 context_switch (ecs->ptid);
5182
5183 /* Immediately detach breakpoints from the child before there's
5184 any chance of letting the user delete breakpoints from the
5185 breakpoint lists. If we don't do this early, it's easy to
5186 leave left over traps in the child, vis: "break foo; catch
5187 fork; c; <fork>; del; c; <child calls foo>". We only follow
5188 the fork on the last `continue', and by that time the
5189 breakpoint at "foo" is long gone from the breakpoint table.
5190 If we vforked, then we don't need to unpatch here, since both
5191 parent and child are sharing the same memory pages; we'll
5192 need to unpatch at follow/detach time instead to be certain
5193 that new breakpoints added between catchpoint hit time and
5194 vfork follow are detached. */
5195 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5196 {
5197 /* This won't actually modify the breakpoint list, but will
5198 physically remove the breakpoints from the child. */
5199 detach_breakpoints (ecs->ws.value.related_pid);
5200 }
5201
5202 delete_just_stopped_threads_single_step_breakpoints ();
5203
5204 /* In case the event is caught by a catchpoint, remember that
5205 the event is to be followed at the next resume of the thread,
5206 and not immediately. */
5207 ecs->event_thread->pending_follow = ecs->ws;
5208
5209 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5210
5211 ecs->event_thread->control.stop_bpstat
5212 = bpstat_stop_status (get_current_regcache ()->aspace (),
5213 stop_pc, ecs->ptid, &ecs->ws);
5214
5215 if (handle_stop_requested (ecs))
5216 return;
5217
5218 /* If no catchpoint triggered for this, then keep going. Note
5219 that we're interested in knowing the bpstat actually causes a
5220 stop, not just if it may explain the signal. Software
5221 watchpoints, for example, always appear in the bpstat. */
5222 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5223 {
5224 ptid_t parent;
5225 ptid_t child;
5226 int should_resume;
5227 int follow_child
5228 = (follow_fork_mode_string == follow_fork_mode_child);
5229
5230 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5231
5232 should_resume = follow_fork ();
5233
5234 parent = ecs->ptid;
5235 child = ecs->ws.value.related_pid;
5236
5237 /* At this point, the parent is marked running, and the
5238 child is marked stopped. */
5239
5240 /* If not resuming the parent, mark it stopped. */
5241 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5242 set_running (parent, 0);
5243
5244 /* If resuming the child, mark it running. */
5245 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5246 set_running (child, 1);
5247
5248 /* In non-stop mode, also resume the other branch. */
5249 if (!detach_fork && (non_stop
5250 || (sched_multi && target_is_non_stop_p ())))
5251 {
5252 if (follow_child)
5253 switch_to_thread (parent);
5254 else
5255 switch_to_thread (child);
5256
5257 ecs->event_thread = inferior_thread ();
5258 ecs->ptid = inferior_ptid;
5259 keep_going (ecs);
5260 }
5261
5262 if (follow_child)
5263 switch_to_thread (child);
5264 else
5265 switch_to_thread (parent);
5266
5267 ecs->event_thread = inferior_thread ();
5268 ecs->ptid = inferior_ptid;
5269
5270 if (should_resume)
5271 keep_going (ecs);
5272 else
5273 stop_waiting (ecs);
5274 return;
5275 }
5276 process_event_stop_test (ecs);
5277 return;
5278
5279 case TARGET_WAITKIND_VFORK_DONE:
5280 /* Done with the shared memory region. Re-insert breakpoints in
5281 the parent, and keep going. */
5282
5283 if (debug_infrun)
5284 fprintf_unfiltered (gdb_stdlog,
5285 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
5286
5287 if (!ptid_equal (ecs->ptid, inferior_ptid))
5288 context_switch (ecs->ptid);
5289
5290 current_inferior ()->waiting_for_vfork_done = 0;
5291 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5292
5293 if (handle_stop_requested (ecs))
5294 return;
5295
5296 /* This also takes care of reinserting breakpoints in the
5297 previously locked inferior. */
5298 keep_going (ecs);
5299 return;
5300
5301 case TARGET_WAITKIND_EXECD:
5302 if (debug_infrun)
5303 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
5304
5305 /* Note we can't read registers yet (the stop_pc), because we
5306 don't yet know the inferior's post-exec architecture.
5307 'stop_pc' is explicitly read below instead. */
5308 if (!ptid_equal (ecs->ptid, inferior_ptid))
5309 switch_to_thread_no_regs (ecs->event_thread);
5310
5311 /* Do whatever is necessary to the parent branch of the vfork. */
5312 handle_vfork_child_exec_or_exit (1);
5313
5314 /* This causes the eventpoints and symbol table to be reset.
5315 Must do this now, before trying to determine whether to
5316 stop. */
5317 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5318
5319 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5320
5321 /* In follow_exec we may have deleted the original thread and
5322 created a new one. Make sure that the event thread is the
5323 execd thread for that case (this is a nop otherwise). */
5324 ecs->event_thread = inferior_thread ();
5325
5326 ecs->event_thread->control.stop_bpstat
5327 = bpstat_stop_status (get_current_regcache ()->aspace (),
5328 stop_pc, ecs->ptid, &ecs->ws);
5329
5330 /* Note that this may be referenced from inside
5331 bpstat_stop_status above, through inferior_has_execd. */
5332 xfree (ecs->ws.value.execd_pathname);
5333 ecs->ws.value.execd_pathname = NULL;
5334
5335 if (handle_stop_requested (ecs))
5336 return;
5337
5338 /* If no catchpoint triggered for this, then keep going. */
5339 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5340 {
5341 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5342 keep_going (ecs);
5343 return;
5344 }
5345 process_event_stop_test (ecs);
5346 return;
5347
5348 /* Be careful not to try to gather much state about a thread
5349 that's in a syscall. It's frequently a losing proposition. */
5350 case TARGET_WAITKIND_SYSCALL_ENTRY:
5351 if (debug_infrun)
5352 fprintf_unfiltered (gdb_stdlog,
5353 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
5354 /* Getting the current syscall number. */
5355 if (handle_syscall_event (ecs) == 0)
5356 process_event_stop_test (ecs);
5357 return;
5358
5359 /* Before examining the threads further, step this thread to
5360 get it entirely out of the syscall. (We get notice of the
5361 event when the thread is just on the verge of exiting a
5362 syscall. Stepping one instruction seems to get it back
5363 into user code.) */
5364 case TARGET_WAITKIND_SYSCALL_RETURN:
5365 if (debug_infrun)
5366 fprintf_unfiltered (gdb_stdlog,
5367 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
5368 if (handle_syscall_event (ecs) == 0)
5369 process_event_stop_test (ecs);
5370 return;
5371
5372 case TARGET_WAITKIND_STOPPED:
5373 if (debug_infrun)
5374 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
5375 handle_signal_stop (ecs);
5376 return;
5377
5378 case TARGET_WAITKIND_NO_HISTORY:
5379 if (debug_infrun)
5380 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
5381 /* Reverse execution: target ran out of history info. */
5382
5383 /* Switch to the stopped thread. */
5384 if (!ptid_equal (ecs->ptid, inferior_ptid))
5385 context_switch (ecs->ptid);
5386 if (debug_infrun)
5387 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5388
5389 delete_just_stopped_threads_single_step_breakpoints ();
5390 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
5391
5392 if (handle_stop_requested (ecs))
5393 return;
5394
5395 gdb::observers::no_history.notify ();
5396 stop_waiting (ecs);
5397 return;
5398 }
5399 }
5400
5401 /* A wrapper around handle_inferior_event_1, which also makes sure
5402 that all temporary struct value objects that were created during
5403 the handling of the event get deleted at the end. */
5404
5405 static void
5406 handle_inferior_event (struct execution_control_state *ecs)
5407 {
5408 struct value *mark = value_mark ();
5409
5410 handle_inferior_event_1 (ecs);
5411 /* Purge all temporary values created during the event handling,
5412 as it could be a long time before we return to the command level
5413 where such values would otherwise be purged. */
5414 value_free_to_mark (mark);
5415 }
5416
5417 /* Restart threads back to what they were trying to do back when we
5418 paused them for an in-line step-over. The EVENT_THREAD thread is
5419 ignored. */
5420
5421 static void
5422 restart_threads (struct thread_info *event_thread)
5423 {
5424 struct thread_info *tp;
5425
5426 /* In case the instruction just stepped spawned a new thread. */
5427 update_thread_list ();
5428
5429 ALL_NON_EXITED_THREADS (tp)
5430 {
5431 if (tp == event_thread)
5432 {
5433 if (debug_infrun)
5434 fprintf_unfiltered (gdb_stdlog,
5435 "infrun: restart threads: "
5436 "[%s] is event thread\n",
5437 target_pid_to_str (tp->ptid));
5438 continue;
5439 }
5440
5441 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5442 {
5443 if (debug_infrun)
5444 fprintf_unfiltered (gdb_stdlog,
5445 "infrun: restart threads: "
5446 "[%s] not meant to be running\n",
5447 target_pid_to_str (tp->ptid));
5448 continue;
5449 }
5450
5451 if (tp->resumed)
5452 {
5453 if (debug_infrun)
5454 fprintf_unfiltered (gdb_stdlog,
5455 "infrun: restart threads: [%s] resumed\n",
5456 target_pid_to_str (tp->ptid));
5457 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5458 continue;
5459 }
5460
5461 if (thread_is_in_step_over_chain (tp))
5462 {
5463 if (debug_infrun)
5464 fprintf_unfiltered (gdb_stdlog,
5465 "infrun: restart threads: "
5466 "[%s] needs step-over\n",
5467 target_pid_to_str (tp->ptid));
5468 gdb_assert (!tp->resumed);
5469 continue;
5470 }
5471
5472
5473 if (tp->suspend.waitstatus_pending_p)
5474 {
5475 if (debug_infrun)
5476 fprintf_unfiltered (gdb_stdlog,
5477 "infrun: restart threads: "
5478 "[%s] has pending status\n",
5479 target_pid_to_str (tp->ptid));
5480 tp->resumed = 1;
5481 continue;
5482 }
5483
5484 gdb_assert (!tp->stop_requested);
5485
5486 /* If some thread needs to start a step-over at this point, it
5487 should still be in the step-over queue, and thus skipped
5488 above. */
5489 if (thread_still_needs_step_over (tp))
5490 {
5491 internal_error (__FILE__, __LINE__,
5492 "thread [%s] needs a step-over, but not in "
5493 "step-over queue\n",
5494 target_pid_to_str (tp->ptid));
5495 }
5496
5497 if (currently_stepping (tp))
5498 {
5499 if (debug_infrun)
5500 fprintf_unfiltered (gdb_stdlog,
5501 "infrun: restart threads: [%s] was stepping\n",
5502 target_pid_to_str (tp->ptid));
5503 keep_going_stepped_thread (tp);
5504 }
5505 else
5506 {
5507 struct execution_control_state ecss;
5508 struct execution_control_state *ecs = &ecss;
5509
5510 if (debug_infrun)
5511 fprintf_unfiltered (gdb_stdlog,
5512 "infrun: restart threads: [%s] continuing\n",
5513 target_pid_to_str (tp->ptid));
5514 reset_ecs (ecs, tp);
5515 switch_to_thread (tp->ptid);
5516 keep_going_pass_signal (ecs);
5517 }
5518 }
5519 }
5520
5521 /* Callback for iterate_over_threads. Find a resumed thread that has
5522 a pending waitstatus. */
5523
5524 static int
5525 resumed_thread_with_pending_status (struct thread_info *tp,
5526 void *arg)
5527 {
5528 return (tp->resumed
5529 && tp->suspend.waitstatus_pending_p);
5530 }
5531
5532 /* Called when we get an event that may finish an in-line or
5533 out-of-line (displaced stepping) step-over started previously.
5534 Return true if the event is processed and we should go back to the
5535 event loop; false if the caller should continue processing the
5536 event. */
5537
5538 static int
5539 finish_step_over (struct execution_control_state *ecs)
5540 {
5541 int had_step_over_info;
5542
5543 displaced_step_fixup (ecs->ptid,
5544 ecs->event_thread->suspend.stop_signal);
5545
5546 had_step_over_info = step_over_info_valid_p ();
5547
5548 if (had_step_over_info)
5549 {
5550 /* If we're stepping over a breakpoint with all threads locked,
5551 then only the thread that was stepped should be reporting
5552 back an event. */
5553 gdb_assert (ecs->event_thread->control.trap_expected);
5554
5555 clear_step_over_info ();
5556 }
5557
5558 if (!target_is_non_stop_p ())
5559 return 0;
5560
5561 /* Start a new step-over in another thread if there's one that
5562 needs it. */
5563 start_step_over ();
5564
5565 /* If we were stepping over a breakpoint before, and haven't started
5566 a new in-line step-over sequence, then restart all other threads
5567 (except the event thread). We can't do this in all-stop, as then
5568 e.g., we wouldn't be able to issue any other remote packet until
5569 these other threads stop. */
5570 if (had_step_over_info && !step_over_info_valid_p ())
5571 {
5572 struct thread_info *pending;
5573
5574 /* If we only have threads with pending statuses, the restart
5575 below won't restart any thread and so nothing re-inserts the
5576 breakpoint we just stepped over. But we need it inserted
5577 when we later process the pending events, otherwise if
5578 another thread has a pending event for this breakpoint too,
5579 we'd discard its event (because the breakpoint that
5580 originally caused the event was no longer inserted). */
5581 context_switch (ecs->ptid);
5582 insert_breakpoints ();
5583
5584 restart_threads (ecs->event_thread);
5585
5586 /* If we have events pending, go through handle_inferior_event
5587 again, picking up a pending event at random. This avoids
5588 thread starvation. */
5589
5590 /* But not if we just stepped over a watchpoint in order to let
5591 the instruction execute so we can evaluate its expression.
5592 The set of watchpoints that triggered is recorded in the
5593 breakpoint objects themselves (see bp->watchpoint_triggered).
5594 If we processed another event first, that other event could
5595 clobber this info. */
5596 if (ecs->event_thread->stepping_over_watchpoint)
5597 return 0;
5598
5599 pending = iterate_over_threads (resumed_thread_with_pending_status,
5600 NULL);
5601 if (pending != NULL)
5602 {
5603 struct thread_info *tp = ecs->event_thread;
5604 struct regcache *regcache;
5605
5606 if (debug_infrun)
5607 {
5608 fprintf_unfiltered (gdb_stdlog,
5609 "infrun: found resumed threads with "
5610 "pending events, saving status\n");
5611 }
5612
5613 gdb_assert (pending != tp);
5614
5615 /* Record the event thread's event for later. */
5616 save_waitstatus (tp, &ecs->ws);
5617 /* This was cleared early, by handle_inferior_event. Set it
5618 so this pending event is considered by
5619 do_target_wait. */
5620 tp->resumed = 1;
5621
5622 gdb_assert (!tp->executing);
5623
5624 regcache = get_thread_regcache (tp->ptid);
5625 tp->suspend.stop_pc = regcache_read_pc (regcache);
5626
5627 if (debug_infrun)
5628 {
5629 fprintf_unfiltered (gdb_stdlog,
5630 "infrun: saved stop_pc=%s for %s "
5631 "(currently_stepping=%d)\n",
5632 paddress (target_gdbarch (),
5633 tp->suspend.stop_pc),
5634 target_pid_to_str (tp->ptid),
5635 currently_stepping (tp));
5636 }
5637
5638 /* This in-line step-over finished; clear this so we won't
5639 start a new one. This is what handle_signal_stop would
5640 do, if we returned false. */
5641 tp->stepping_over_breakpoint = 0;
5642
5643 /* Wake up the event loop again. */
5644 mark_async_event_handler (infrun_async_inferior_event_token);
5645
5646 prepare_to_wait (ecs);
5647 return 1;
5648 }
5649 }
5650
5651 return 0;
5652 }
5653
5654 /* Come here when the program has stopped with a signal. */
5655
5656 static void
5657 handle_signal_stop (struct execution_control_state *ecs)
5658 {
5659 struct frame_info *frame;
5660 struct gdbarch *gdbarch;
5661 int stopped_by_watchpoint;
5662 enum stop_kind stop_soon;
5663 int random_signal;
5664
5665 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5666
5667 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5668
5669 /* Do we need to clean up the state of a thread that has
5670 completed a displaced single-step? (Doing so usually affects
5671 the PC, so do it here, before we set stop_pc.) */
5672 if (finish_step_over (ecs))
5673 return;
5674
5675 /* If we either finished a single-step or hit a breakpoint, but
5676 the user wanted this thread to be stopped, pretend we got a
5677 SIG0 (generic unsignaled stop). */
5678 if (ecs->event_thread->stop_requested
5679 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5680 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5681
5682 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5683
5684 if (debug_infrun)
5685 {
5686 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5687 struct gdbarch *gdbarch = regcache->arch ();
5688 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
5689
5690 inferior_ptid = ecs->ptid;
5691
5692 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5693 paddress (gdbarch, stop_pc));
5694 if (target_stopped_by_watchpoint ())
5695 {
5696 CORE_ADDR addr;
5697
5698 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5699
5700 if (target_stopped_data_address (current_top_target (), &addr))
5701 fprintf_unfiltered (gdb_stdlog,
5702 "infrun: stopped data address = %s\n",
5703 paddress (gdbarch, addr));
5704 else
5705 fprintf_unfiltered (gdb_stdlog,
5706 "infrun: (no data address available)\n");
5707 }
5708 }
5709
5710 /* This is originated from start_remote(), start_inferior() and
5711 shared libraries hook functions. */
5712 stop_soon = get_inferior_stop_soon (ecs->ptid);
5713 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5714 {
5715 if (!ptid_equal (ecs->ptid, inferior_ptid))
5716 context_switch (ecs->ptid);
5717 if (debug_infrun)
5718 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5719 stop_print_frame = 1;
5720 stop_waiting (ecs);
5721 return;
5722 }
5723
5724 /* This originates from attach_command(). We need to overwrite
5725 the stop_signal here, because some kernels don't ignore a
5726 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5727 See more comments in inferior.h. On the other hand, if we
5728 get a non-SIGSTOP, report it to the user - assume the backend
5729 will handle the SIGSTOP if it should show up later.
5730
5731 Also consider that the attach is complete when we see a
5732 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5733 target extended-remote report it instead of a SIGSTOP
5734 (e.g. gdbserver). We already rely on SIGTRAP being our
5735 signal, so this is no exception.
5736
5737 Also consider that the attach is complete when we see a
5738 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5739 the target to stop all threads of the inferior, in case the
5740 low level attach operation doesn't stop them implicitly. If
5741 they weren't stopped implicitly, then the stub will report a
5742 GDB_SIGNAL_0, meaning: stopped for no particular reason
5743 other than GDB's request. */
5744 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5745 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5746 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5747 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5748 {
5749 stop_print_frame = 1;
5750 stop_waiting (ecs);
5751 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5752 return;
5753 }
5754
5755 /* See if something interesting happened to the non-current thread. If
5756 so, then switch to that thread. */
5757 if (!ptid_equal (ecs->ptid, inferior_ptid))
5758 {
5759 if (debug_infrun)
5760 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5761
5762 context_switch (ecs->ptid);
5763
5764 if (deprecated_context_hook)
5765 deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid));
5766 }
5767
5768 /* At this point, get hold of the now-current thread's frame. */
5769 frame = get_current_frame ();
5770 gdbarch = get_frame_arch (frame);
5771
5772 /* Pull the single step breakpoints out of the target. */
5773 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5774 {
5775 struct regcache *regcache;
5776 CORE_ADDR pc;
5777
5778 regcache = get_thread_regcache (ecs->ptid);
5779 const address_space *aspace = regcache->aspace ();
5780
5781 pc = regcache_read_pc (regcache);
5782
5783 /* However, before doing so, if this single-step breakpoint was
5784 actually for another thread, set this thread up for moving
5785 past it. */
5786 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5787 aspace, pc))
5788 {
5789 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5790 {
5791 if (debug_infrun)
5792 {
5793 fprintf_unfiltered (gdb_stdlog,
5794 "infrun: [%s] hit another thread's "
5795 "single-step breakpoint\n",
5796 target_pid_to_str (ecs->ptid));
5797 }
5798 ecs->hit_singlestep_breakpoint = 1;
5799 }
5800 }
5801 else
5802 {
5803 if (debug_infrun)
5804 {
5805 fprintf_unfiltered (gdb_stdlog,
5806 "infrun: [%s] hit its "
5807 "single-step breakpoint\n",
5808 target_pid_to_str (ecs->ptid));
5809 }
5810 }
5811 }
5812 delete_just_stopped_threads_single_step_breakpoints ();
5813
5814 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5815 && ecs->event_thread->control.trap_expected
5816 && ecs->event_thread->stepping_over_watchpoint)
5817 stopped_by_watchpoint = 0;
5818 else
5819 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5820
5821 /* If necessary, step over this watchpoint. We'll be back to display
5822 it in a moment. */
5823 if (stopped_by_watchpoint
5824 && (target_have_steppable_watchpoint
5825 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5826 {
5827 /* At this point, we are stopped at an instruction which has
5828 attempted to write to a piece of memory under control of
5829 a watchpoint. The instruction hasn't actually executed
5830 yet. If we were to evaluate the watchpoint expression
5831 now, we would get the old value, and therefore no change
5832 would seem to have occurred.
5833
5834 In order to make watchpoints work `right', we really need
5835 to complete the memory write, and then evaluate the
5836 watchpoint expression. We do this by single-stepping the
5837 target.
5838
5839 It may not be necessary to disable the watchpoint to step over
5840 it. For example, the PA can (with some kernel cooperation)
5841 single step over a watchpoint without disabling the watchpoint.
5842
5843 It is far more common to need to disable a watchpoint to step
5844 the inferior over it. If we have non-steppable watchpoints,
5845 we must disable the current watchpoint; it's simplest to
5846 disable all watchpoints.
5847
5848 Any breakpoint at PC must also be stepped over -- if there's
5849 one, it will have already triggered before the watchpoint
5850 triggered, and we either already reported it to the user, or
5851 it didn't cause a stop and we called keep_going. In either
5852 case, if there was a breakpoint at PC, we must be trying to
5853 step past it. */
5854 ecs->event_thread->stepping_over_watchpoint = 1;
5855 keep_going (ecs);
5856 return;
5857 }
5858
5859 ecs->event_thread->stepping_over_breakpoint = 0;
5860 ecs->event_thread->stepping_over_watchpoint = 0;
5861 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5862 ecs->event_thread->control.stop_step = 0;
5863 stop_print_frame = 1;
5864 stopped_by_random_signal = 0;
5865 bpstat stop_chain = NULL;
5866
5867 /* Hide inlined functions starting here, unless we just performed stepi or
5868 nexti. After stepi and nexti, always show the innermost frame (not any
5869 inline function call sites). */
5870 if (ecs->event_thread->control.step_range_end != 1)
5871 {
5872 const address_space *aspace =
5873 get_thread_regcache (ecs->ptid)->aspace ();
5874
5875 /* skip_inline_frames is expensive, so we avoid it if we can
5876 determine that the address is one where functions cannot have
5877 been inlined. This improves performance with inferiors that
5878 load a lot of shared libraries, because the solib event
5879 breakpoint is defined as the address of a function (i.e. not
5880 inline). Note that we have to check the previous PC as well
5881 as the current one to catch cases when we have just
5882 single-stepped off a breakpoint prior to reinstating it.
5883 Note that we're assuming that the code we single-step to is
5884 not inline, but that's not definitive: there's nothing
5885 preventing the event breakpoint function from containing
5886 inlined code, and the single-step ending up there. If the
5887 user had set a breakpoint on that inlined code, the missing
5888 skip_inline_frames call would break things. Fortunately
5889 that's an extremely unlikely scenario. */
5890 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
5891 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5892 && ecs->event_thread->control.trap_expected
5893 && pc_at_non_inline_function (aspace,
5894 ecs->event_thread->prev_pc,
5895 &ecs->ws)))
5896 {
5897 stop_chain = build_bpstat_chain (aspace, stop_pc, &ecs->ws);
5898 skip_inline_frames (ecs->ptid, stop_chain);
5899
5900 /* Re-fetch current thread's frame in case that invalidated
5901 the frame cache. */
5902 frame = get_current_frame ();
5903 gdbarch = get_frame_arch (frame);
5904 }
5905 }
5906
5907 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5908 && ecs->event_thread->control.trap_expected
5909 && gdbarch_single_step_through_delay_p (gdbarch)
5910 && currently_stepping (ecs->event_thread))
5911 {
5912 /* We're trying to step off a breakpoint. Turns out that we're
5913 also on an instruction that needs to be stepped multiple
5914 times before it's been fully executing. E.g., architectures
5915 with a delay slot. It needs to be stepped twice, once for
5916 the instruction and once for the delay slot. */
5917 int step_through_delay
5918 = gdbarch_single_step_through_delay (gdbarch, frame);
5919
5920 if (debug_infrun && step_through_delay)
5921 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5922 if (ecs->event_thread->control.step_range_end == 0
5923 && step_through_delay)
5924 {
5925 /* The user issued a continue when stopped at a breakpoint.
5926 Set up for another trap and get out of here. */
5927 ecs->event_thread->stepping_over_breakpoint = 1;
5928 keep_going (ecs);
5929 return;
5930 }
5931 else if (step_through_delay)
5932 {
5933 /* The user issued a step when stopped at a breakpoint.
5934 Maybe we should stop, maybe we should not - the delay
5935 slot *might* correspond to a line of source. In any
5936 case, don't decide that here, just set
5937 ecs->stepping_over_breakpoint, making sure we
5938 single-step again before breakpoints are re-inserted. */
5939 ecs->event_thread->stepping_over_breakpoint = 1;
5940 }
5941 }
5942
5943 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5944 handles this event. */
5945 ecs->event_thread->control.stop_bpstat
5946 = bpstat_stop_status (get_current_regcache ()->aspace (),
5947 stop_pc, ecs->ptid, &ecs->ws, stop_chain);
5948
5949 /* Following in case break condition called a
5950 function. */
5951 stop_print_frame = 1;
5952
5953 /* This is where we handle "moribund" watchpoints. Unlike
5954 software breakpoints traps, hardware watchpoint traps are
5955 always distinguishable from random traps. If no high-level
5956 watchpoint is associated with the reported stop data address
5957 anymore, then the bpstat does not explain the signal ---
5958 simply make sure to ignore it if `stopped_by_watchpoint' is
5959 set. */
5960
5961 if (debug_infrun
5962 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5963 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5964 GDB_SIGNAL_TRAP)
5965 && stopped_by_watchpoint)
5966 fprintf_unfiltered (gdb_stdlog,
5967 "infrun: no user watchpoint explains "
5968 "watchpoint SIGTRAP, ignoring\n");
5969
5970 /* NOTE: cagney/2003-03-29: These checks for a random signal
5971 at one stage in the past included checks for an inferior
5972 function call's call dummy's return breakpoint. The original
5973 comment, that went with the test, read:
5974
5975 ``End of a stack dummy. Some systems (e.g. Sony news) give
5976 another signal besides SIGTRAP, so check here as well as
5977 above.''
5978
5979 If someone ever tries to get call dummys on a
5980 non-executable stack to work (where the target would stop
5981 with something like a SIGSEGV), then those tests might need
5982 to be re-instated. Given, however, that the tests were only
5983 enabled when momentary breakpoints were not being used, I
5984 suspect that it won't be the case.
5985
5986 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5987 be necessary for call dummies on a non-executable stack on
5988 SPARC. */
5989
5990 /* See if the breakpoints module can explain the signal. */
5991 random_signal
5992 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5993 ecs->event_thread->suspend.stop_signal);
5994
5995 /* Maybe this was a trap for a software breakpoint that has since
5996 been removed. */
5997 if (random_signal && target_stopped_by_sw_breakpoint ())
5998 {
5999 if (program_breakpoint_here_p (gdbarch, stop_pc))
6000 {
6001 struct regcache *regcache;
6002 int decr_pc;
6003
6004 /* Re-adjust PC to what the program would see if GDB was not
6005 debugging it. */
6006 regcache = get_thread_regcache (ecs->event_thread->ptid);
6007 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6008 if (decr_pc != 0)
6009 {
6010 gdb::optional<scoped_restore_tmpl<int>>
6011 restore_operation_disable;
6012
6013 if (record_full_is_used ())
6014 restore_operation_disable.emplace
6015 (record_full_gdb_operation_disable_set ());
6016
6017 regcache_write_pc (regcache, stop_pc + decr_pc);
6018 }
6019 }
6020 else
6021 {
6022 /* A delayed software breakpoint event. Ignore the trap. */
6023 if (debug_infrun)
6024 fprintf_unfiltered (gdb_stdlog,
6025 "infrun: delayed software breakpoint "
6026 "trap, ignoring\n");
6027 random_signal = 0;
6028 }
6029 }
6030
6031 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6032 has since been removed. */
6033 if (random_signal && target_stopped_by_hw_breakpoint ())
6034 {
6035 /* A delayed hardware breakpoint event. Ignore the trap. */
6036 if (debug_infrun)
6037 fprintf_unfiltered (gdb_stdlog,
6038 "infrun: delayed hardware breakpoint/watchpoint "
6039 "trap, ignoring\n");
6040 random_signal = 0;
6041 }
6042
6043 /* If not, perhaps stepping/nexting can. */
6044 if (random_signal)
6045 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6046 && currently_stepping (ecs->event_thread));
6047
6048 /* Perhaps the thread hit a single-step breakpoint of _another_
6049 thread. Single-step breakpoints are transparent to the
6050 breakpoints module. */
6051 if (random_signal)
6052 random_signal = !ecs->hit_singlestep_breakpoint;
6053
6054 /* No? Perhaps we got a moribund watchpoint. */
6055 if (random_signal)
6056 random_signal = !stopped_by_watchpoint;
6057
6058 /* Always stop if the user explicitly requested this thread to
6059 remain stopped. */
6060 if (ecs->event_thread->stop_requested)
6061 {
6062 random_signal = 1;
6063 if (debug_infrun)
6064 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6065 }
6066
6067 /* For the program's own signals, act according to
6068 the signal handling tables. */
6069
6070 if (random_signal)
6071 {
6072 /* Signal not for debugging purposes. */
6073 struct inferior *inf = find_inferior_ptid (ecs->ptid);
6074 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6075
6076 if (debug_infrun)
6077 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6078 gdb_signal_to_symbol_string (stop_signal));
6079
6080 stopped_by_random_signal = 1;
6081
6082 /* Always stop on signals if we're either just gaining control
6083 of the program, or the user explicitly requested this thread
6084 to remain stopped. */
6085 if (stop_soon != NO_STOP_QUIETLY
6086 || ecs->event_thread->stop_requested
6087 || (!inf->detaching
6088 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6089 {
6090 stop_waiting (ecs);
6091 return;
6092 }
6093
6094 /* Notify observers the signal has "handle print" set. Note we
6095 returned early above if stopping; normal_stop handles the
6096 printing in that case. */
6097 if (signal_print[ecs->event_thread->suspend.stop_signal])
6098 {
6099 /* The signal table tells us to print about this signal. */
6100 target_terminal::ours_for_output ();
6101 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
6102 target_terminal::inferior ();
6103 }
6104
6105 /* Clear the signal if it should not be passed. */
6106 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6107 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6108
6109 if (ecs->event_thread->prev_pc == stop_pc
6110 && ecs->event_thread->control.trap_expected
6111 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6112 {
6113 /* We were just starting a new sequence, attempting to
6114 single-step off of a breakpoint and expecting a SIGTRAP.
6115 Instead this signal arrives. This signal will take us out
6116 of the stepping range so GDB needs to remember to, when
6117 the signal handler returns, resume stepping off that
6118 breakpoint. */
6119 /* To simplify things, "continue" is forced to use the same
6120 code paths as single-step - set a breakpoint at the
6121 signal return address and then, once hit, step off that
6122 breakpoint. */
6123 if (debug_infrun)
6124 fprintf_unfiltered (gdb_stdlog,
6125 "infrun: signal arrived while stepping over "
6126 "breakpoint\n");
6127
6128 insert_hp_step_resume_breakpoint_at_frame (frame);
6129 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6130 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6131 ecs->event_thread->control.trap_expected = 0;
6132
6133 /* If we were nexting/stepping some other thread, switch to
6134 it, so that we don't continue it, losing control. */
6135 if (!switch_back_to_stepped_thread (ecs))
6136 keep_going (ecs);
6137 return;
6138 }
6139
6140 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6141 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6142 || ecs->event_thread->control.step_range_end == 1)
6143 && frame_id_eq (get_stack_frame_id (frame),
6144 ecs->event_thread->control.step_stack_frame_id)
6145 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6146 {
6147 /* The inferior is about to take a signal that will take it
6148 out of the single step range. Set a breakpoint at the
6149 current PC (which is presumably where the signal handler
6150 will eventually return) and then allow the inferior to
6151 run free.
6152
6153 Note that this is only needed for a signal delivered
6154 while in the single-step range. Nested signals aren't a
6155 problem as they eventually all return. */
6156 if (debug_infrun)
6157 fprintf_unfiltered (gdb_stdlog,
6158 "infrun: signal may take us out of "
6159 "single-step range\n");
6160
6161 clear_step_over_info ();
6162 insert_hp_step_resume_breakpoint_at_frame (frame);
6163 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6164 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6165 ecs->event_thread->control.trap_expected = 0;
6166 keep_going (ecs);
6167 return;
6168 }
6169
6170 /* Note: step_resume_breakpoint may be non-NULL. This occures
6171 when either there's a nested signal, or when there's a
6172 pending signal enabled just as the signal handler returns
6173 (leaving the inferior at the step-resume-breakpoint without
6174 actually executing it). Either way continue until the
6175 breakpoint is really hit. */
6176
6177 if (!switch_back_to_stepped_thread (ecs))
6178 {
6179 if (debug_infrun)
6180 fprintf_unfiltered (gdb_stdlog,
6181 "infrun: random signal, keep going\n");
6182
6183 keep_going (ecs);
6184 }
6185 return;
6186 }
6187
6188 process_event_stop_test (ecs);
6189 }
6190
6191 /* Come here when we've got some debug event / signal we can explain
6192 (IOW, not a random signal), and test whether it should cause a
6193 stop, or whether we should resume the inferior (transparently).
6194 E.g., could be a breakpoint whose condition evaluates false; we
6195 could be still stepping within the line; etc. */
6196
6197 static void
6198 process_event_stop_test (struct execution_control_state *ecs)
6199 {
6200 struct symtab_and_line stop_pc_sal;
6201 struct frame_info *frame;
6202 struct gdbarch *gdbarch;
6203 CORE_ADDR jmp_buf_pc;
6204 struct bpstat_what what;
6205
6206 /* Handle cases caused by hitting a breakpoint. */
6207
6208 frame = get_current_frame ();
6209 gdbarch = get_frame_arch (frame);
6210
6211 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6212
6213 if (what.call_dummy)
6214 {
6215 stop_stack_dummy = what.call_dummy;
6216 }
6217
6218 /* A few breakpoint types have callbacks associated (e.g.,
6219 bp_jit_event). Run them now. */
6220 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6221
6222 /* If we hit an internal event that triggers symbol changes, the
6223 current frame will be invalidated within bpstat_what (e.g., if we
6224 hit an internal solib event). Re-fetch it. */
6225 frame = get_current_frame ();
6226 gdbarch = get_frame_arch (frame);
6227
6228 switch (what.main_action)
6229 {
6230 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6231 /* If we hit the breakpoint at longjmp while stepping, we
6232 install a momentary breakpoint at the target of the
6233 jmp_buf. */
6234
6235 if (debug_infrun)
6236 fprintf_unfiltered (gdb_stdlog,
6237 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6238
6239 ecs->event_thread->stepping_over_breakpoint = 1;
6240
6241 if (what.is_longjmp)
6242 {
6243 struct value *arg_value;
6244
6245 /* If we set the longjmp breakpoint via a SystemTap probe,
6246 then use it to extract the arguments. The destination PC
6247 is the third argument to the probe. */
6248 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6249 if (arg_value)
6250 {
6251 jmp_buf_pc = value_as_address (arg_value);
6252 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6253 }
6254 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6255 || !gdbarch_get_longjmp_target (gdbarch,
6256 frame, &jmp_buf_pc))
6257 {
6258 if (debug_infrun)
6259 fprintf_unfiltered (gdb_stdlog,
6260 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6261 "(!gdbarch_get_longjmp_target)\n");
6262 keep_going (ecs);
6263 return;
6264 }
6265
6266 /* Insert a breakpoint at resume address. */
6267 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6268 }
6269 else
6270 check_exception_resume (ecs, frame);
6271 keep_going (ecs);
6272 return;
6273
6274 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6275 {
6276 struct frame_info *init_frame;
6277
6278 /* There are several cases to consider.
6279
6280 1. The initiating frame no longer exists. In this case we
6281 must stop, because the exception or longjmp has gone too
6282 far.
6283
6284 2. The initiating frame exists, and is the same as the
6285 current frame. We stop, because the exception or longjmp
6286 has been caught.
6287
6288 3. The initiating frame exists and is different from the
6289 current frame. This means the exception or longjmp has
6290 been caught beneath the initiating frame, so keep going.
6291
6292 4. longjmp breakpoint has been placed just to protect
6293 against stale dummy frames and user is not interested in
6294 stopping around longjmps. */
6295
6296 if (debug_infrun)
6297 fprintf_unfiltered (gdb_stdlog,
6298 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6299
6300 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6301 != NULL);
6302 delete_exception_resume_breakpoint (ecs->event_thread);
6303
6304 if (what.is_longjmp)
6305 {
6306 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6307
6308 if (!frame_id_p (ecs->event_thread->initiating_frame))
6309 {
6310 /* Case 4. */
6311 keep_going (ecs);
6312 return;
6313 }
6314 }
6315
6316 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6317
6318 if (init_frame)
6319 {
6320 struct frame_id current_id
6321 = get_frame_id (get_current_frame ());
6322 if (frame_id_eq (current_id,
6323 ecs->event_thread->initiating_frame))
6324 {
6325 /* Case 2. Fall through. */
6326 }
6327 else
6328 {
6329 /* Case 3. */
6330 keep_going (ecs);
6331 return;
6332 }
6333 }
6334
6335 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6336 exists. */
6337 delete_step_resume_breakpoint (ecs->event_thread);
6338
6339 end_stepping_range (ecs);
6340 }
6341 return;
6342
6343 case BPSTAT_WHAT_SINGLE:
6344 if (debug_infrun)
6345 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6346 ecs->event_thread->stepping_over_breakpoint = 1;
6347 /* Still need to check other stuff, at least the case where we
6348 are stepping and step out of the right range. */
6349 break;
6350
6351 case BPSTAT_WHAT_STEP_RESUME:
6352 if (debug_infrun)
6353 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6354
6355 delete_step_resume_breakpoint (ecs->event_thread);
6356 if (ecs->event_thread->control.proceed_to_finish
6357 && execution_direction == EXEC_REVERSE)
6358 {
6359 struct thread_info *tp = ecs->event_thread;
6360
6361 /* We are finishing a function in reverse, and just hit the
6362 step-resume breakpoint at the start address of the
6363 function, and we're almost there -- just need to back up
6364 by one more single-step, which should take us back to the
6365 function call. */
6366 tp->control.step_range_start = tp->control.step_range_end = 1;
6367 keep_going (ecs);
6368 return;
6369 }
6370 fill_in_stop_func (gdbarch, ecs);
6371 if (stop_pc == ecs->stop_func_start
6372 && execution_direction == EXEC_REVERSE)
6373 {
6374 /* We are stepping over a function call in reverse, and just
6375 hit the step-resume breakpoint at the start address of
6376 the function. Go back to single-stepping, which should
6377 take us back to the function call. */
6378 ecs->event_thread->stepping_over_breakpoint = 1;
6379 keep_going (ecs);
6380 return;
6381 }
6382 break;
6383
6384 case BPSTAT_WHAT_STOP_NOISY:
6385 if (debug_infrun)
6386 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6387 stop_print_frame = 1;
6388
6389 /* Assume the thread stopped for a breapoint. We'll still check
6390 whether a/the breakpoint is there when the thread is next
6391 resumed. */
6392 ecs->event_thread->stepping_over_breakpoint = 1;
6393
6394 stop_waiting (ecs);
6395 return;
6396
6397 case BPSTAT_WHAT_STOP_SILENT:
6398 if (debug_infrun)
6399 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6400 stop_print_frame = 0;
6401
6402 /* Assume the thread stopped for a breapoint. We'll still check
6403 whether a/the breakpoint is there when the thread is next
6404 resumed. */
6405 ecs->event_thread->stepping_over_breakpoint = 1;
6406 stop_waiting (ecs);
6407 return;
6408
6409 case BPSTAT_WHAT_HP_STEP_RESUME:
6410 if (debug_infrun)
6411 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6412
6413 delete_step_resume_breakpoint (ecs->event_thread);
6414 if (ecs->event_thread->step_after_step_resume_breakpoint)
6415 {
6416 /* Back when the step-resume breakpoint was inserted, we
6417 were trying to single-step off a breakpoint. Go back to
6418 doing that. */
6419 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6420 ecs->event_thread->stepping_over_breakpoint = 1;
6421 keep_going (ecs);
6422 return;
6423 }
6424 break;
6425
6426 case BPSTAT_WHAT_KEEP_CHECKING:
6427 break;
6428 }
6429
6430 /* If we stepped a permanent breakpoint and we had a high priority
6431 step-resume breakpoint for the address we stepped, but we didn't
6432 hit it, then we must have stepped into the signal handler. The
6433 step-resume was only necessary to catch the case of _not_
6434 stepping into the handler, so delete it, and fall through to
6435 checking whether the step finished. */
6436 if (ecs->event_thread->stepped_breakpoint)
6437 {
6438 struct breakpoint *sr_bp
6439 = ecs->event_thread->control.step_resume_breakpoint;
6440
6441 if (sr_bp != NULL
6442 && sr_bp->loc->permanent
6443 && sr_bp->type == bp_hp_step_resume
6444 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6445 {
6446 if (debug_infrun)
6447 fprintf_unfiltered (gdb_stdlog,
6448 "infrun: stepped permanent breakpoint, stopped in "
6449 "handler\n");
6450 delete_step_resume_breakpoint (ecs->event_thread);
6451 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6452 }
6453 }
6454
6455 /* We come here if we hit a breakpoint but should not stop for it.
6456 Possibly we also were stepping and should stop for that. So fall
6457 through and test for stepping. But, if not stepping, do not
6458 stop. */
6459
6460 /* In all-stop mode, if we're currently stepping but have stopped in
6461 some other thread, we need to switch back to the stepped thread. */
6462 if (switch_back_to_stepped_thread (ecs))
6463 return;
6464
6465 if (ecs->event_thread->control.step_resume_breakpoint)
6466 {
6467 if (debug_infrun)
6468 fprintf_unfiltered (gdb_stdlog,
6469 "infrun: step-resume breakpoint is inserted\n");
6470
6471 /* Having a step-resume breakpoint overrides anything
6472 else having to do with stepping commands until
6473 that breakpoint is reached. */
6474 keep_going (ecs);
6475 return;
6476 }
6477
6478 if (ecs->event_thread->control.step_range_end == 0)
6479 {
6480 if (debug_infrun)
6481 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6482 /* Likewise if we aren't even stepping. */
6483 keep_going (ecs);
6484 return;
6485 }
6486
6487 /* Re-fetch current thread's frame in case the code above caused
6488 the frame cache to be re-initialized, making our FRAME variable
6489 a dangling pointer. */
6490 frame = get_current_frame ();
6491 gdbarch = get_frame_arch (frame);
6492 fill_in_stop_func (gdbarch, ecs);
6493
6494 /* If stepping through a line, keep going if still within it.
6495
6496 Note that step_range_end is the address of the first instruction
6497 beyond the step range, and NOT the address of the last instruction
6498 within it!
6499
6500 Note also that during reverse execution, we may be stepping
6501 through a function epilogue and therefore must detect when
6502 the current-frame changes in the middle of a line. */
6503
6504 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6505 && (execution_direction != EXEC_REVERSE
6506 || frame_id_eq (get_frame_id (frame),
6507 ecs->event_thread->control.step_frame_id)))
6508 {
6509 if (debug_infrun)
6510 fprintf_unfiltered
6511 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6512 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6513 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6514
6515 /* Tentatively re-enable range stepping; `resume' disables it if
6516 necessary (e.g., if we're stepping over a breakpoint or we
6517 have software watchpoints). */
6518 ecs->event_thread->control.may_range_step = 1;
6519
6520 /* When stepping backward, stop at beginning of line range
6521 (unless it's the function entry point, in which case
6522 keep going back to the call point). */
6523 if (stop_pc == ecs->event_thread->control.step_range_start
6524 && stop_pc != ecs->stop_func_start
6525 && execution_direction == EXEC_REVERSE)
6526 end_stepping_range (ecs);
6527 else
6528 keep_going (ecs);
6529
6530 return;
6531 }
6532
6533 /* We stepped out of the stepping range. */
6534
6535 /* If we are stepping at the source level and entered the runtime
6536 loader dynamic symbol resolution code...
6537
6538 EXEC_FORWARD: we keep on single stepping until we exit the run
6539 time loader code and reach the callee's address.
6540
6541 EXEC_REVERSE: we've already executed the callee (backward), and
6542 the runtime loader code is handled just like any other
6543 undebuggable function call. Now we need only keep stepping
6544 backward through the trampoline code, and that's handled further
6545 down, so there is nothing for us to do here. */
6546
6547 if (execution_direction != EXEC_REVERSE
6548 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6549 && in_solib_dynsym_resolve_code (stop_pc))
6550 {
6551 CORE_ADDR pc_after_resolver =
6552 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
6553
6554 if (debug_infrun)
6555 fprintf_unfiltered (gdb_stdlog,
6556 "infrun: stepped into dynsym resolve code\n");
6557
6558 if (pc_after_resolver)
6559 {
6560 /* Set up a step-resume breakpoint at the address
6561 indicated by SKIP_SOLIB_RESOLVER. */
6562 symtab_and_line sr_sal;
6563 sr_sal.pc = pc_after_resolver;
6564 sr_sal.pspace = get_frame_program_space (frame);
6565
6566 insert_step_resume_breakpoint_at_sal (gdbarch,
6567 sr_sal, null_frame_id);
6568 }
6569
6570 keep_going (ecs);
6571 return;
6572 }
6573
6574 /* Step through an indirect branch thunk. */
6575 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6576 && gdbarch_in_indirect_branch_thunk (gdbarch, stop_pc))
6577 {
6578 if (debug_infrun)
6579 fprintf_unfiltered (gdb_stdlog,
6580 "infrun: stepped into indirect branch thunk\n");
6581 keep_going (ecs);
6582 return;
6583 }
6584
6585 if (ecs->event_thread->control.step_range_end != 1
6586 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6587 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6588 && get_frame_type (frame) == SIGTRAMP_FRAME)
6589 {
6590 if (debug_infrun)
6591 fprintf_unfiltered (gdb_stdlog,
6592 "infrun: stepped into signal trampoline\n");
6593 /* The inferior, while doing a "step" or "next", has ended up in
6594 a signal trampoline (either by a signal being delivered or by
6595 the signal handler returning). Just single-step until the
6596 inferior leaves the trampoline (either by calling the handler
6597 or returning). */
6598 keep_going (ecs);
6599 return;
6600 }
6601
6602 /* If we're in the return path from a shared library trampoline,
6603 we want to proceed through the trampoline when stepping. */
6604 /* macro/2012-04-25: This needs to come before the subroutine
6605 call check below as on some targets return trampolines look
6606 like subroutine calls (MIPS16 return thunks). */
6607 if (gdbarch_in_solib_return_trampoline (gdbarch,
6608 stop_pc, ecs->stop_func_name)
6609 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6610 {
6611 /* Determine where this trampoline returns. */
6612 CORE_ADDR real_stop_pc;
6613
6614 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6615
6616 if (debug_infrun)
6617 fprintf_unfiltered (gdb_stdlog,
6618 "infrun: stepped into solib return tramp\n");
6619
6620 /* Only proceed through if we know where it's going. */
6621 if (real_stop_pc)
6622 {
6623 /* And put the step-breakpoint there and go until there. */
6624 symtab_and_line sr_sal;
6625 sr_sal.pc = real_stop_pc;
6626 sr_sal.section = find_pc_overlay (sr_sal.pc);
6627 sr_sal.pspace = get_frame_program_space (frame);
6628
6629 /* Do not specify what the fp should be when we stop since
6630 on some machines the prologue is where the new fp value
6631 is established. */
6632 insert_step_resume_breakpoint_at_sal (gdbarch,
6633 sr_sal, null_frame_id);
6634
6635 /* Restart without fiddling with the step ranges or
6636 other state. */
6637 keep_going (ecs);
6638 return;
6639 }
6640 }
6641
6642 /* Check for subroutine calls. The check for the current frame
6643 equalling the step ID is not necessary - the check of the
6644 previous frame's ID is sufficient - but it is a common case and
6645 cheaper than checking the previous frame's ID.
6646
6647 NOTE: frame_id_eq will never report two invalid frame IDs as
6648 being equal, so to get into this block, both the current and
6649 previous frame must have valid frame IDs. */
6650 /* The outer_frame_id check is a heuristic to detect stepping
6651 through startup code. If we step over an instruction which
6652 sets the stack pointer from an invalid value to a valid value,
6653 we may detect that as a subroutine call from the mythical
6654 "outermost" function. This could be fixed by marking
6655 outermost frames as !stack_p,code_p,special_p. Then the
6656 initial outermost frame, before sp was valid, would
6657 have code_addr == &_start. See the comment in frame_id_eq
6658 for more. */
6659 if (!frame_id_eq (get_stack_frame_id (frame),
6660 ecs->event_thread->control.step_stack_frame_id)
6661 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6662 ecs->event_thread->control.step_stack_frame_id)
6663 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6664 outer_frame_id)
6665 || (ecs->event_thread->control.step_start_function
6666 != find_pc_function (stop_pc)))))
6667 {
6668 CORE_ADDR real_stop_pc;
6669
6670 if (debug_infrun)
6671 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6672
6673 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6674 {
6675 /* I presume that step_over_calls is only 0 when we're
6676 supposed to be stepping at the assembly language level
6677 ("stepi"). Just stop. */
6678 /* And this works the same backward as frontward. MVS */
6679 end_stepping_range (ecs);
6680 return;
6681 }
6682
6683 /* Reverse stepping through solib trampolines. */
6684
6685 if (execution_direction == EXEC_REVERSE
6686 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6687 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6688 || (ecs->stop_func_start == 0
6689 && in_solib_dynsym_resolve_code (stop_pc))))
6690 {
6691 /* Any solib trampoline code can be handled in reverse
6692 by simply continuing to single-step. We have already
6693 executed the solib function (backwards), and a few
6694 steps will take us back through the trampoline to the
6695 caller. */
6696 keep_going (ecs);
6697 return;
6698 }
6699
6700 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6701 {
6702 /* We're doing a "next".
6703
6704 Normal (forward) execution: set a breakpoint at the
6705 callee's return address (the address at which the caller
6706 will resume).
6707
6708 Reverse (backward) execution. set the step-resume
6709 breakpoint at the start of the function that we just
6710 stepped into (backwards), and continue to there. When we
6711 get there, we'll need to single-step back to the caller. */
6712
6713 if (execution_direction == EXEC_REVERSE)
6714 {
6715 /* If we're already at the start of the function, we've either
6716 just stepped backward into a single instruction function,
6717 or stepped back out of a signal handler to the first instruction
6718 of the function. Just keep going, which will single-step back
6719 to the caller. */
6720 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6721 {
6722 /* Normal function call return (static or dynamic). */
6723 symtab_and_line sr_sal;
6724 sr_sal.pc = ecs->stop_func_start;
6725 sr_sal.pspace = get_frame_program_space (frame);
6726 insert_step_resume_breakpoint_at_sal (gdbarch,
6727 sr_sal, null_frame_id);
6728 }
6729 }
6730 else
6731 insert_step_resume_breakpoint_at_caller (frame);
6732
6733 keep_going (ecs);
6734 return;
6735 }
6736
6737 /* If we are in a function call trampoline (a stub between the
6738 calling routine and the real function), locate the real
6739 function. That's what tells us (a) whether we want to step
6740 into it at all, and (b) what prologue we want to run to the
6741 end of, if we do step into it. */
6742 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6743 if (real_stop_pc == 0)
6744 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6745 if (real_stop_pc != 0)
6746 ecs->stop_func_start = real_stop_pc;
6747
6748 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6749 {
6750 symtab_and_line sr_sal;
6751 sr_sal.pc = ecs->stop_func_start;
6752 sr_sal.pspace = get_frame_program_space (frame);
6753
6754 insert_step_resume_breakpoint_at_sal (gdbarch,
6755 sr_sal, null_frame_id);
6756 keep_going (ecs);
6757 return;
6758 }
6759
6760 /* If we have line number information for the function we are
6761 thinking of stepping into and the function isn't on the skip
6762 list, step into it.
6763
6764 If there are several symtabs at that PC (e.g. with include
6765 files), just want to know whether *any* of them have line
6766 numbers. find_pc_line handles this. */
6767 {
6768 struct symtab_and_line tmp_sal;
6769
6770 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6771 if (tmp_sal.line != 0
6772 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6773 tmp_sal))
6774 {
6775 if (execution_direction == EXEC_REVERSE)
6776 handle_step_into_function_backward (gdbarch, ecs);
6777 else
6778 handle_step_into_function (gdbarch, ecs);
6779 return;
6780 }
6781 }
6782
6783 /* If we have no line number and the step-stop-if-no-debug is
6784 set, we stop the step so that the user has a chance to switch
6785 in assembly mode. */
6786 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6787 && step_stop_if_no_debug)
6788 {
6789 end_stepping_range (ecs);
6790 return;
6791 }
6792
6793 if (execution_direction == EXEC_REVERSE)
6794 {
6795 /* If we're already at the start of the function, we've either just
6796 stepped backward into a single instruction function without line
6797 number info, or stepped back out of a signal handler to the first
6798 instruction of the function without line number info. Just keep
6799 going, which will single-step back to the caller. */
6800 if (ecs->stop_func_start != stop_pc)
6801 {
6802 /* Set a breakpoint at callee's start address.
6803 From there we can step once and be back in the caller. */
6804 symtab_and_line sr_sal;
6805 sr_sal.pc = ecs->stop_func_start;
6806 sr_sal.pspace = get_frame_program_space (frame);
6807 insert_step_resume_breakpoint_at_sal (gdbarch,
6808 sr_sal, null_frame_id);
6809 }
6810 }
6811 else
6812 /* Set a breakpoint at callee's return address (the address
6813 at which the caller will resume). */
6814 insert_step_resume_breakpoint_at_caller (frame);
6815
6816 keep_going (ecs);
6817 return;
6818 }
6819
6820 /* Reverse stepping through solib trampolines. */
6821
6822 if (execution_direction == EXEC_REVERSE
6823 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6824 {
6825 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6826 || (ecs->stop_func_start == 0
6827 && in_solib_dynsym_resolve_code (stop_pc)))
6828 {
6829 /* Any solib trampoline code can be handled in reverse
6830 by simply continuing to single-step. We have already
6831 executed the solib function (backwards), and a few
6832 steps will take us back through the trampoline to the
6833 caller. */
6834 keep_going (ecs);
6835 return;
6836 }
6837 else if (in_solib_dynsym_resolve_code (stop_pc))
6838 {
6839 /* Stepped backward into the solib dynsym resolver.
6840 Set a breakpoint at its start and continue, then
6841 one more step will take us out. */
6842 symtab_and_line sr_sal;
6843 sr_sal.pc = ecs->stop_func_start;
6844 sr_sal.pspace = get_frame_program_space (frame);
6845 insert_step_resume_breakpoint_at_sal (gdbarch,
6846 sr_sal, null_frame_id);
6847 keep_going (ecs);
6848 return;
6849 }
6850 }
6851
6852 stop_pc_sal = find_pc_line (stop_pc, 0);
6853
6854 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6855 the trampoline processing logic, however, there are some trampolines
6856 that have no names, so we should do trampoline handling first. */
6857 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6858 && ecs->stop_func_name == NULL
6859 && stop_pc_sal.line == 0)
6860 {
6861 if (debug_infrun)
6862 fprintf_unfiltered (gdb_stdlog,
6863 "infrun: stepped into undebuggable function\n");
6864
6865 /* The inferior just stepped into, or returned to, an
6866 undebuggable function (where there is no debugging information
6867 and no line number corresponding to the address where the
6868 inferior stopped). Since we want to skip this kind of code,
6869 we keep going until the inferior returns from this
6870 function - unless the user has asked us not to (via
6871 set step-mode) or we no longer know how to get back
6872 to the call site. */
6873 if (step_stop_if_no_debug
6874 || !frame_id_p (frame_unwind_caller_id (frame)))
6875 {
6876 /* If we have no line number and the step-stop-if-no-debug
6877 is set, we stop the step so that the user has a chance to
6878 switch in assembly mode. */
6879 end_stepping_range (ecs);
6880 return;
6881 }
6882 else
6883 {
6884 /* Set a breakpoint at callee's return address (the address
6885 at which the caller will resume). */
6886 insert_step_resume_breakpoint_at_caller (frame);
6887 keep_going (ecs);
6888 return;
6889 }
6890 }
6891
6892 if (ecs->event_thread->control.step_range_end == 1)
6893 {
6894 /* It is stepi or nexti. We always want to stop stepping after
6895 one instruction. */
6896 if (debug_infrun)
6897 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6898 end_stepping_range (ecs);
6899 return;
6900 }
6901
6902 if (stop_pc_sal.line == 0)
6903 {
6904 /* We have no line number information. That means to stop
6905 stepping (does this always happen right after one instruction,
6906 when we do "s" in a function with no line numbers,
6907 or can this happen as a result of a return or longjmp?). */
6908 if (debug_infrun)
6909 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6910 end_stepping_range (ecs);
6911 return;
6912 }
6913
6914 /* Look for "calls" to inlined functions, part one. If the inline
6915 frame machinery detected some skipped call sites, we have entered
6916 a new inline function. */
6917
6918 if (frame_id_eq (get_frame_id (get_current_frame ()),
6919 ecs->event_thread->control.step_frame_id)
6920 && inline_skipped_frames (ecs->ptid))
6921 {
6922 if (debug_infrun)
6923 fprintf_unfiltered (gdb_stdlog,
6924 "infrun: stepped into inlined function\n");
6925
6926 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
6927
6928 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6929 {
6930 /* For "step", we're going to stop. But if the call site
6931 for this inlined function is on the same source line as
6932 we were previously stepping, go down into the function
6933 first. Otherwise stop at the call site. */
6934
6935 if (call_sal.line == ecs->event_thread->current_line
6936 && call_sal.symtab == ecs->event_thread->current_symtab)
6937 step_into_inline_frame (ecs->ptid);
6938
6939 end_stepping_range (ecs);
6940 return;
6941 }
6942 else
6943 {
6944 /* For "next", we should stop at the call site if it is on a
6945 different source line. Otherwise continue through the
6946 inlined function. */
6947 if (call_sal.line == ecs->event_thread->current_line
6948 && call_sal.symtab == ecs->event_thread->current_symtab)
6949 keep_going (ecs);
6950 else
6951 end_stepping_range (ecs);
6952 return;
6953 }
6954 }
6955
6956 /* Look for "calls" to inlined functions, part two. If we are still
6957 in the same real function we were stepping through, but we have
6958 to go further up to find the exact frame ID, we are stepping
6959 through a more inlined call beyond its call site. */
6960
6961 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6962 && !frame_id_eq (get_frame_id (get_current_frame ()),
6963 ecs->event_thread->control.step_frame_id)
6964 && stepped_in_from (get_current_frame (),
6965 ecs->event_thread->control.step_frame_id))
6966 {
6967 if (debug_infrun)
6968 fprintf_unfiltered (gdb_stdlog,
6969 "infrun: stepping through inlined function\n");
6970
6971 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6972 keep_going (ecs);
6973 else
6974 end_stepping_range (ecs);
6975 return;
6976 }
6977
6978 if ((stop_pc == stop_pc_sal.pc)
6979 && (ecs->event_thread->current_line != stop_pc_sal.line
6980 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
6981 {
6982 /* We are at the start of a different line. So stop. Note that
6983 we don't stop if we step into the middle of a different line.
6984 That is said to make things like for (;;) statements work
6985 better. */
6986 if (debug_infrun)
6987 fprintf_unfiltered (gdb_stdlog,
6988 "infrun: stepped to a different line\n");
6989 end_stepping_range (ecs);
6990 return;
6991 }
6992
6993 /* We aren't done stepping.
6994
6995 Optimize by setting the stepping range to the line.
6996 (We might not be in the original line, but if we entered a
6997 new line in mid-statement, we continue stepping. This makes
6998 things like for(;;) statements work better.) */
6999
7000 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7001 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7002 ecs->event_thread->control.may_range_step = 1;
7003 set_step_info (frame, stop_pc_sal);
7004
7005 if (debug_infrun)
7006 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
7007 keep_going (ecs);
7008 }
7009
7010 /* In all-stop mode, if we're currently stepping but have stopped in
7011 some other thread, we may need to switch back to the stepped
7012 thread. Returns true we set the inferior running, false if we left
7013 it stopped (and the event needs further processing). */
7014
7015 static int
7016 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7017 {
7018 if (!target_is_non_stop_p ())
7019 {
7020 struct thread_info *tp;
7021 struct thread_info *stepping_thread;
7022
7023 /* If any thread is blocked on some internal breakpoint, and we
7024 simply need to step over that breakpoint to get it going
7025 again, do that first. */
7026
7027 /* However, if we see an event for the stepping thread, then we
7028 know all other threads have been moved past their breakpoints
7029 already. Let the caller check whether the step is finished,
7030 etc., before deciding to move it past a breakpoint. */
7031 if (ecs->event_thread->control.step_range_end != 0)
7032 return 0;
7033
7034 /* Check if the current thread is blocked on an incomplete
7035 step-over, interrupted by a random signal. */
7036 if (ecs->event_thread->control.trap_expected
7037 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7038 {
7039 if (debug_infrun)
7040 {
7041 fprintf_unfiltered (gdb_stdlog,
7042 "infrun: need to finish step-over of [%s]\n",
7043 target_pid_to_str (ecs->event_thread->ptid));
7044 }
7045 keep_going (ecs);
7046 return 1;
7047 }
7048
7049 /* Check if the current thread is blocked by a single-step
7050 breakpoint of another thread. */
7051 if (ecs->hit_singlestep_breakpoint)
7052 {
7053 if (debug_infrun)
7054 {
7055 fprintf_unfiltered (gdb_stdlog,
7056 "infrun: need to step [%s] over single-step "
7057 "breakpoint\n",
7058 target_pid_to_str (ecs->ptid));
7059 }
7060 keep_going (ecs);
7061 return 1;
7062 }
7063
7064 /* If this thread needs yet another step-over (e.g., stepping
7065 through a delay slot), do it first before moving on to
7066 another thread. */
7067 if (thread_still_needs_step_over (ecs->event_thread))
7068 {
7069 if (debug_infrun)
7070 {
7071 fprintf_unfiltered (gdb_stdlog,
7072 "infrun: thread [%s] still needs step-over\n",
7073 target_pid_to_str (ecs->event_thread->ptid));
7074 }
7075 keep_going (ecs);
7076 return 1;
7077 }
7078
7079 /* If scheduler locking applies even if not stepping, there's no
7080 need to walk over threads. Above we've checked whether the
7081 current thread is stepping. If some other thread not the
7082 event thread is stepping, then it must be that scheduler
7083 locking is not in effect. */
7084 if (schedlock_applies (ecs->event_thread))
7085 return 0;
7086
7087 /* Otherwise, we no longer expect a trap in the current thread.
7088 Clear the trap_expected flag before switching back -- this is
7089 what keep_going does as well, if we call it. */
7090 ecs->event_thread->control.trap_expected = 0;
7091
7092 /* Likewise, clear the signal if it should not be passed. */
7093 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7094 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7095
7096 /* Do all pending step-overs before actually proceeding with
7097 step/next/etc. */
7098 if (start_step_over ())
7099 {
7100 prepare_to_wait (ecs);
7101 return 1;
7102 }
7103
7104 /* Look for the stepping/nexting thread. */
7105 stepping_thread = NULL;
7106
7107 ALL_NON_EXITED_THREADS (tp)
7108 {
7109 /* Ignore threads of processes the caller is not
7110 resuming. */
7111 if (!sched_multi
7112 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
7113 continue;
7114
7115 /* When stepping over a breakpoint, we lock all threads
7116 except the one that needs to move past the breakpoint.
7117 If a non-event thread has this set, the "incomplete
7118 step-over" check above should have caught it earlier. */
7119 if (tp->control.trap_expected)
7120 {
7121 internal_error (__FILE__, __LINE__,
7122 "[%s] has inconsistent state: "
7123 "trap_expected=%d\n",
7124 target_pid_to_str (tp->ptid),
7125 tp->control.trap_expected);
7126 }
7127
7128 /* Did we find the stepping thread? */
7129 if (tp->control.step_range_end)
7130 {
7131 /* Yep. There should only one though. */
7132 gdb_assert (stepping_thread == NULL);
7133
7134 /* The event thread is handled at the top, before we
7135 enter this loop. */
7136 gdb_assert (tp != ecs->event_thread);
7137
7138 /* If some thread other than the event thread is
7139 stepping, then scheduler locking can't be in effect,
7140 otherwise we wouldn't have resumed the current event
7141 thread in the first place. */
7142 gdb_assert (!schedlock_applies (tp));
7143
7144 stepping_thread = tp;
7145 }
7146 }
7147
7148 if (stepping_thread != NULL)
7149 {
7150 if (debug_infrun)
7151 fprintf_unfiltered (gdb_stdlog,
7152 "infrun: switching back to stepped thread\n");
7153
7154 if (keep_going_stepped_thread (stepping_thread))
7155 {
7156 prepare_to_wait (ecs);
7157 return 1;
7158 }
7159 }
7160 }
7161
7162 return 0;
7163 }
7164
7165 /* Set a previously stepped thread back to stepping. Returns true on
7166 success, false if the resume is not possible (e.g., the thread
7167 vanished). */
7168
7169 static int
7170 keep_going_stepped_thread (struct thread_info *tp)
7171 {
7172 struct frame_info *frame;
7173 struct execution_control_state ecss;
7174 struct execution_control_state *ecs = &ecss;
7175
7176 /* If the stepping thread exited, then don't try to switch back and
7177 resume it, which could fail in several different ways depending
7178 on the target. Instead, just keep going.
7179
7180 We can find a stepping dead thread in the thread list in two
7181 cases:
7182
7183 - The target supports thread exit events, and when the target
7184 tries to delete the thread from the thread list, inferior_ptid
7185 pointed at the exiting thread. In such case, calling
7186 delete_thread does not really remove the thread from the list;
7187 instead, the thread is left listed, with 'exited' state.
7188
7189 - The target's debug interface does not support thread exit
7190 events, and so we have no idea whatsoever if the previously
7191 stepping thread is still alive. For that reason, we need to
7192 synchronously query the target now. */
7193
7194 if (is_exited (tp->ptid)
7195 || !target_thread_alive (tp->ptid))
7196 {
7197 if (debug_infrun)
7198 fprintf_unfiltered (gdb_stdlog,
7199 "infrun: not resuming previously "
7200 "stepped thread, it has vanished\n");
7201
7202 delete_thread (tp->ptid);
7203 return 0;
7204 }
7205
7206 if (debug_infrun)
7207 fprintf_unfiltered (gdb_stdlog,
7208 "infrun: resuming previously stepped thread\n");
7209
7210 reset_ecs (ecs, tp);
7211 switch_to_thread (tp->ptid);
7212
7213 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7214 frame = get_current_frame ();
7215
7216 /* If the PC of the thread we were trying to single-step has
7217 changed, then that thread has trapped or been signaled, but the
7218 event has not been reported to GDB yet. Re-poll the target
7219 looking for this particular thread's event (i.e. temporarily
7220 enable schedlock) by:
7221
7222 - setting a break at the current PC
7223 - resuming that particular thread, only (by setting trap
7224 expected)
7225
7226 This prevents us continuously moving the single-step breakpoint
7227 forward, one instruction at a time, overstepping. */
7228
7229 if (stop_pc != tp->prev_pc)
7230 {
7231 ptid_t resume_ptid;
7232
7233 if (debug_infrun)
7234 fprintf_unfiltered (gdb_stdlog,
7235 "infrun: expected thread advanced also (%s -> %s)\n",
7236 paddress (target_gdbarch (), tp->prev_pc),
7237 paddress (target_gdbarch (), stop_pc));
7238
7239 /* Clear the info of the previous step-over, as it's no longer
7240 valid (if the thread was trying to step over a breakpoint, it
7241 has already succeeded). It's what keep_going would do too,
7242 if we called it. Do this before trying to insert the sss
7243 breakpoint, otherwise if we were previously trying to step
7244 over this exact address in another thread, the breakpoint is
7245 skipped. */
7246 clear_step_over_info ();
7247 tp->control.trap_expected = 0;
7248
7249 insert_single_step_breakpoint (get_frame_arch (frame),
7250 get_frame_address_space (frame),
7251 stop_pc);
7252
7253 tp->resumed = 1;
7254 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7255 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7256 }
7257 else
7258 {
7259 if (debug_infrun)
7260 fprintf_unfiltered (gdb_stdlog,
7261 "infrun: expected thread still hasn't advanced\n");
7262
7263 keep_going_pass_signal (ecs);
7264 }
7265 return 1;
7266 }
7267
7268 /* Is thread TP in the middle of (software or hardware)
7269 single-stepping? (Note the result of this function must never be
7270 passed directly as target_resume's STEP parameter.) */
7271
7272 static int
7273 currently_stepping (struct thread_info *tp)
7274 {
7275 return ((tp->control.step_range_end
7276 && tp->control.step_resume_breakpoint == NULL)
7277 || tp->control.trap_expected
7278 || tp->stepped_breakpoint
7279 || bpstat_should_step ());
7280 }
7281
7282 /* Inferior has stepped into a subroutine call with source code that
7283 we should not step over. Do step to the first line of code in
7284 it. */
7285
7286 static void
7287 handle_step_into_function (struct gdbarch *gdbarch,
7288 struct execution_control_state *ecs)
7289 {
7290 fill_in_stop_func (gdbarch, ecs);
7291
7292 compunit_symtab *cust = find_pc_compunit_symtab (stop_pc);
7293 if (cust != NULL && compunit_language (cust) != language_asm)
7294 ecs->stop_func_start
7295 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7296
7297 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7298 /* Use the step_resume_break to step until the end of the prologue,
7299 even if that involves jumps (as it seems to on the vax under
7300 4.2). */
7301 /* If the prologue ends in the middle of a source line, continue to
7302 the end of that source line (if it is still within the function).
7303 Otherwise, just go to end of prologue. */
7304 if (stop_func_sal.end
7305 && stop_func_sal.pc != ecs->stop_func_start
7306 && stop_func_sal.end < ecs->stop_func_end)
7307 ecs->stop_func_start = stop_func_sal.end;
7308
7309 /* Architectures which require breakpoint adjustment might not be able
7310 to place a breakpoint at the computed address. If so, the test
7311 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7312 ecs->stop_func_start to an address at which a breakpoint may be
7313 legitimately placed.
7314
7315 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7316 made, GDB will enter an infinite loop when stepping through
7317 optimized code consisting of VLIW instructions which contain
7318 subinstructions corresponding to different source lines. On
7319 FR-V, it's not permitted to place a breakpoint on any but the
7320 first subinstruction of a VLIW instruction. When a breakpoint is
7321 set, GDB will adjust the breakpoint address to the beginning of
7322 the VLIW instruction. Thus, we need to make the corresponding
7323 adjustment here when computing the stop address. */
7324
7325 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7326 {
7327 ecs->stop_func_start
7328 = gdbarch_adjust_breakpoint_address (gdbarch,
7329 ecs->stop_func_start);
7330 }
7331
7332 if (ecs->stop_func_start == stop_pc)
7333 {
7334 /* We are already there: stop now. */
7335 end_stepping_range (ecs);
7336 return;
7337 }
7338 else
7339 {
7340 /* Put the step-breakpoint there and go until there. */
7341 symtab_and_line sr_sal;
7342 sr_sal.pc = ecs->stop_func_start;
7343 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7344 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7345
7346 /* Do not specify what the fp should be when we stop since on
7347 some machines the prologue is where the new fp value is
7348 established. */
7349 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7350
7351 /* And make sure stepping stops right away then. */
7352 ecs->event_thread->control.step_range_end
7353 = ecs->event_thread->control.step_range_start;
7354 }
7355 keep_going (ecs);
7356 }
7357
7358 /* Inferior has stepped backward into a subroutine call with source
7359 code that we should not step over. Do step to the beginning of the
7360 last line of code in it. */
7361
7362 static void
7363 handle_step_into_function_backward (struct gdbarch *gdbarch,
7364 struct execution_control_state *ecs)
7365 {
7366 struct compunit_symtab *cust;
7367 struct symtab_and_line stop_func_sal;
7368
7369 fill_in_stop_func (gdbarch, ecs);
7370
7371 cust = find_pc_compunit_symtab (stop_pc);
7372 if (cust != NULL && compunit_language (cust) != language_asm)
7373 ecs->stop_func_start
7374 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7375
7376 stop_func_sal = find_pc_line (stop_pc, 0);
7377
7378 /* OK, we're just going to keep stepping here. */
7379 if (stop_func_sal.pc == stop_pc)
7380 {
7381 /* We're there already. Just stop stepping now. */
7382 end_stepping_range (ecs);
7383 }
7384 else
7385 {
7386 /* Else just reset the step range and keep going.
7387 No step-resume breakpoint, they don't work for
7388 epilogues, which can have multiple entry paths. */
7389 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7390 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7391 keep_going (ecs);
7392 }
7393 return;
7394 }
7395
7396 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7397 This is used to both functions and to skip over code. */
7398
7399 static void
7400 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7401 struct symtab_and_line sr_sal,
7402 struct frame_id sr_id,
7403 enum bptype sr_type)
7404 {
7405 /* There should never be more than one step-resume or longjmp-resume
7406 breakpoint per thread, so we should never be setting a new
7407 step_resume_breakpoint when one is already active. */
7408 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7409 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7410
7411 if (debug_infrun)
7412 fprintf_unfiltered (gdb_stdlog,
7413 "infrun: inserting step-resume breakpoint at %s\n",
7414 paddress (gdbarch, sr_sal.pc));
7415
7416 inferior_thread ()->control.step_resume_breakpoint
7417 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7418 }
7419
7420 void
7421 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7422 struct symtab_and_line sr_sal,
7423 struct frame_id sr_id)
7424 {
7425 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7426 sr_sal, sr_id,
7427 bp_step_resume);
7428 }
7429
7430 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7431 This is used to skip a potential signal handler.
7432
7433 This is called with the interrupted function's frame. The signal
7434 handler, when it returns, will resume the interrupted function at
7435 RETURN_FRAME.pc. */
7436
7437 static void
7438 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7439 {
7440 gdb_assert (return_frame != NULL);
7441
7442 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7443
7444 symtab_and_line sr_sal;
7445 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7446 sr_sal.section = find_pc_overlay (sr_sal.pc);
7447 sr_sal.pspace = get_frame_program_space (return_frame);
7448
7449 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7450 get_stack_frame_id (return_frame),
7451 bp_hp_step_resume);
7452 }
7453
7454 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7455 is used to skip a function after stepping into it (for "next" or if
7456 the called function has no debugging information).
7457
7458 The current function has almost always been reached by single
7459 stepping a call or return instruction. NEXT_FRAME belongs to the
7460 current function, and the breakpoint will be set at the caller's
7461 resume address.
7462
7463 This is a separate function rather than reusing
7464 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7465 get_prev_frame, which may stop prematurely (see the implementation
7466 of frame_unwind_caller_id for an example). */
7467
7468 static void
7469 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7470 {
7471 /* We shouldn't have gotten here if we don't know where the call site
7472 is. */
7473 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7474
7475 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7476
7477 symtab_and_line sr_sal;
7478 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7479 frame_unwind_caller_pc (next_frame));
7480 sr_sal.section = find_pc_overlay (sr_sal.pc);
7481 sr_sal.pspace = frame_unwind_program_space (next_frame);
7482
7483 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7484 frame_unwind_caller_id (next_frame));
7485 }
7486
7487 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7488 new breakpoint at the target of a jmp_buf. The handling of
7489 longjmp-resume uses the same mechanisms used for handling
7490 "step-resume" breakpoints. */
7491
7492 static void
7493 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7494 {
7495 /* There should never be more than one longjmp-resume breakpoint per
7496 thread, so we should never be setting a new
7497 longjmp_resume_breakpoint when one is already active. */
7498 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7499
7500 if (debug_infrun)
7501 fprintf_unfiltered (gdb_stdlog,
7502 "infrun: inserting longjmp-resume breakpoint at %s\n",
7503 paddress (gdbarch, pc));
7504
7505 inferior_thread ()->control.exception_resume_breakpoint =
7506 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7507 }
7508
7509 /* Insert an exception resume breakpoint. TP is the thread throwing
7510 the exception. The block B is the block of the unwinder debug hook
7511 function. FRAME is the frame corresponding to the call to this
7512 function. SYM is the symbol of the function argument holding the
7513 target PC of the exception. */
7514
7515 static void
7516 insert_exception_resume_breakpoint (struct thread_info *tp,
7517 const struct block *b,
7518 struct frame_info *frame,
7519 struct symbol *sym)
7520 {
7521 TRY
7522 {
7523 struct block_symbol vsym;
7524 struct value *value;
7525 CORE_ADDR handler;
7526 struct breakpoint *bp;
7527
7528 vsym = lookup_symbol_search_name (SYMBOL_SEARCH_NAME (sym),
7529 b, VAR_DOMAIN);
7530 value = read_var_value (vsym.symbol, vsym.block, frame);
7531 /* If the value was optimized out, revert to the old behavior. */
7532 if (! value_optimized_out (value))
7533 {
7534 handler = value_as_address (value);
7535
7536 if (debug_infrun)
7537 fprintf_unfiltered (gdb_stdlog,
7538 "infrun: exception resume at %lx\n",
7539 (unsigned long) handler);
7540
7541 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7542 handler,
7543 bp_exception_resume).release ();
7544
7545 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7546 frame = NULL;
7547
7548 bp->thread = tp->global_num;
7549 inferior_thread ()->control.exception_resume_breakpoint = bp;
7550 }
7551 }
7552 CATCH (e, RETURN_MASK_ERROR)
7553 {
7554 /* We want to ignore errors here. */
7555 }
7556 END_CATCH
7557 }
7558
7559 /* A helper for check_exception_resume that sets an
7560 exception-breakpoint based on a SystemTap probe. */
7561
7562 static void
7563 insert_exception_resume_from_probe (struct thread_info *tp,
7564 const struct bound_probe *probe,
7565 struct frame_info *frame)
7566 {
7567 struct value *arg_value;
7568 CORE_ADDR handler;
7569 struct breakpoint *bp;
7570
7571 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7572 if (!arg_value)
7573 return;
7574
7575 handler = value_as_address (arg_value);
7576
7577 if (debug_infrun)
7578 fprintf_unfiltered (gdb_stdlog,
7579 "infrun: exception resume at %s\n",
7580 paddress (get_objfile_arch (probe->objfile),
7581 handler));
7582
7583 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7584 handler, bp_exception_resume).release ();
7585 bp->thread = tp->global_num;
7586 inferior_thread ()->control.exception_resume_breakpoint = bp;
7587 }
7588
7589 /* This is called when an exception has been intercepted. Check to
7590 see whether the exception's destination is of interest, and if so,
7591 set an exception resume breakpoint there. */
7592
7593 static void
7594 check_exception_resume (struct execution_control_state *ecs,
7595 struct frame_info *frame)
7596 {
7597 struct bound_probe probe;
7598 struct symbol *func;
7599
7600 /* First see if this exception unwinding breakpoint was set via a
7601 SystemTap probe point. If so, the probe has two arguments: the
7602 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7603 set a breakpoint there. */
7604 probe = find_probe_by_pc (get_frame_pc (frame));
7605 if (probe.prob)
7606 {
7607 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7608 return;
7609 }
7610
7611 func = get_frame_function (frame);
7612 if (!func)
7613 return;
7614
7615 TRY
7616 {
7617 const struct block *b;
7618 struct block_iterator iter;
7619 struct symbol *sym;
7620 int argno = 0;
7621
7622 /* The exception breakpoint is a thread-specific breakpoint on
7623 the unwinder's debug hook, declared as:
7624
7625 void _Unwind_DebugHook (void *cfa, void *handler);
7626
7627 The CFA argument indicates the frame to which control is
7628 about to be transferred. HANDLER is the destination PC.
7629
7630 We ignore the CFA and set a temporary breakpoint at HANDLER.
7631 This is not extremely efficient but it avoids issues in gdb
7632 with computing the DWARF CFA, and it also works even in weird
7633 cases such as throwing an exception from inside a signal
7634 handler. */
7635
7636 b = SYMBOL_BLOCK_VALUE (func);
7637 ALL_BLOCK_SYMBOLS (b, iter, sym)
7638 {
7639 if (!SYMBOL_IS_ARGUMENT (sym))
7640 continue;
7641
7642 if (argno == 0)
7643 ++argno;
7644 else
7645 {
7646 insert_exception_resume_breakpoint (ecs->event_thread,
7647 b, frame, sym);
7648 break;
7649 }
7650 }
7651 }
7652 CATCH (e, RETURN_MASK_ERROR)
7653 {
7654 }
7655 END_CATCH
7656 }
7657
7658 static void
7659 stop_waiting (struct execution_control_state *ecs)
7660 {
7661 if (debug_infrun)
7662 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7663
7664 /* Let callers know we don't want to wait for the inferior anymore. */
7665 ecs->wait_some_more = 0;
7666
7667 /* If all-stop, but the target is always in non-stop mode, stop all
7668 threads now that we're presenting the stop to the user. */
7669 if (!non_stop && target_is_non_stop_p ())
7670 stop_all_threads ();
7671 }
7672
7673 /* Like keep_going, but passes the signal to the inferior, even if the
7674 signal is set to nopass. */
7675
7676 static void
7677 keep_going_pass_signal (struct execution_control_state *ecs)
7678 {
7679 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
7680 gdb_assert (!ecs->event_thread->resumed);
7681
7682 /* Save the pc before execution, to compare with pc after stop. */
7683 ecs->event_thread->prev_pc
7684 = regcache_read_pc (get_thread_regcache (ecs->ptid));
7685
7686 if (ecs->event_thread->control.trap_expected)
7687 {
7688 struct thread_info *tp = ecs->event_thread;
7689
7690 if (debug_infrun)
7691 fprintf_unfiltered (gdb_stdlog,
7692 "infrun: %s has trap_expected set, "
7693 "resuming to collect trap\n",
7694 target_pid_to_str (tp->ptid));
7695
7696 /* We haven't yet gotten our trap, and either: intercepted a
7697 non-signal event (e.g., a fork); or took a signal which we
7698 are supposed to pass through to the inferior. Simply
7699 continue. */
7700 resume (ecs->event_thread->suspend.stop_signal);
7701 }
7702 else if (step_over_info_valid_p ())
7703 {
7704 /* Another thread is stepping over a breakpoint in-line. If
7705 this thread needs a step-over too, queue the request. In
7706 either case, this resume must be deferred for later. */
7707 struct thread_info *tp = ecs->event_thread;
7708
7709 if (ecs->hit_singlestep_breakpoint
7710 || thread_still_needs_step_over (tp))
7711 {
7712 if (debug_infrun)
7713 fprintf_unfiltered (gdb_stdlog,
7714 "infrun: step-over already in progress: "
7715 "step-over for %s deferred\n",
7716 target_pid_to_str (tp->ptid));
7717 thread_step_over_chain_enqueue (tp);
7718 }
7719 else
7720 {
7721 if (debug_infrun)
7722 fprintf_unfiltered (gdb_stdlog,
7723 "infrun: step-over in progress: "
7724 "resume of %s deferred\n",
7725 target_pid_to_str (tp->ptid));
7726 }
7727 }
7728 else
7729 {
7730 struct regcache *regcache = get_current_regcache ();
7731 int remove_bp;
7732 int remove_wps;
7733 step_over_what step_what;
7734
7735 /* Either the trap was not expected, but we are continuing
7736 anyway (if we got a signal, the user asked it be passed to
7737 the child)
7738 -- or --
7739 We got our expected trap, but decided we should resume from
7740 it.
7741
7742 We're going to run this baby now!
7743
7744 Note that insert_breakpoints won't try to re-insert
7745 already inserted breakpoints. Therefore, we don't
7746 care if breakpoints were already inserted, or not. */
7747
7748 /* If we need to step over a breakpoint, and we're not using
7749 displaced stepping to do so, insert all breakpoints
7750 (watchpoints, etc.) but the one we're stepping over, step one
7751 instruction, and then re-insert the breakpoint when that step
7752 is finished. */
7753
7754 step_what = thread_still_needs_step_over (ecs->event_thread);
7755
7756 remove_bp = (ecs->hit_singlestep_breakpoint
7757 || (step_what & STEP_OVER_BREAKPOINT));
7758 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7759
7760 /* We can't use displaced stepping if we need to step past a
7761 watchpoint. The instruction copied to the scratch pad would
7762 still trigger the watchpoint. */
7763 if (remove_bp
7764 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7765 {
7766 set_step_over_info (regcache->aspace (),
7767 regcache_read_pc (regcache), remove_wps,
7768 ecs->event_thread->global_num);
7769 }
7770 else if (remove_wps)
7771 set_step_over_info (NULL, 0, remove_wps, -1);
7772
7773 /* If we now need to do an in-line step-over, we need to stop
7774 all other threads. Note this must be done before
7775 insert_breakpoints below, because that removes the breakpoint
7776 we're about to step over, otherwise other threads could miss
7777 it. */
7778 if (step_over_info_valid_p () && target_is_non_stop_p ())
7779 stop_all_threads ();
7780
7781 /* Stop stepping if inserting breakpoints fails. */
7782 TRY
7783 {
7784 insert_breakpoints ();
7785 }
7786 CATCH (e, RETURN_MASK_ERROR)
7787 {
7788 exception_print (gdb_stderr, e);
7789 stop_waiting (ecs);
7790 clear_step_over_info ();
7791 return;
7792 }
7793 END_CATCH
7794
7795 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7796
7797 resume (ecs->event_thread->suspend.stop_signal);
7798 }
7799
7800 prepare_to_wait (ecs);
7801 }
7802
7803 /* Called when we should continue running the inferior, because the
7804 current event doesn't cause a user visible stop. This does the
7805 resuming part; waiting for the next event is done elsewhere. */
7806
7807 static void
7808 keep_going (struct execution_control_state *ecs)
7809 {
7810 if (ecs->event_thread->control.trap_expected
7811 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7812 ecs->event_thread->control.trap_expected = 0;
7813
7814 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7815 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7816 keep_going_pass_signal (ecs);
7817 }
7818
7819 /* This function normally comes after a resume, before
7820 handle_inferior_event exits. It takes care of any last bits of
7821 housekeeping, and sets the all-important wait_some_more flag. */
7822
7823 static void
7824 prepare_to_wait (struct execution_control_state *ecs)
7825 {
7826 if (debug_infrun)
7827 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7828
7829 ecs->wait_some_more = 1;
7830
7831 if (!target_is_async_p ())
7832 mark_infrun_async_event_handler ();
7833 }
7834
7835 /* We are done with the step range of a step/next/si/ni command.
7836 Called once for each n of a "step n" operation. */
7837
7838 static void
7839 end_stepping_range (struct execution_control_state *ecs)
7840 {
7841 ecs->event_thread->control.stop_step = 1;
7842 stop_waiting (ecs);
7843 }
7844
7845 /* Several print_*_reason functions to print why the inferior has stopped.
7846 We always print something when the inferior exits, or receives a signal.
7847 The rest of the cases are dealt with later on in normal_stop and
7848 print_it_typical. Ideally there should be a call to one of these
7849 print_*_reason functions functions from handle_inferior_event each time
7850 stop_waiting is called.
7851
7852 Note that we don't call these directly, instead we delegate that to
7853 the interpreters, through observers. Interpreters then call these
7854 with whatever uiout is right. */
7855
7856 void
7857 print_end_stepping_range_reason (struct ui_out *uiout)
7858 {
7859 /* For CLI-like interpreters, print nothing. */
7860
7861 if (uiout->is_mi_like_p ())
7862 {
7863 uiout->field_string ("reason",
7864 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7865 }
7866 }
7867
7868 void
7869 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7870 {
7871 annotate_signalled ();
7872 if (uiout->is_mi_like_p ())
7873 uiout->field_string
7874 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7875 uiout->text ("\nProgram terminated with signal ");
7876 annotate_signal_name ();
7877 uiout->field_string ("signal-name",
7878 gdb_signal_to_name (siggnal));
7879 annotate_signal_name_end ();
7880 uiout->text (", ");
7881 annotate_signal_string ();
7882 uiout->field_string ("signal-meaning",
7883 gdb_signal_to_string (siggnal));
7884 annotate_signal_string_end ();
7885 uiout->text (".\n");
7886 uiout->text ("The program no longer exists.\n");
7887 }
7888
7889 void
7890 print_exited_reason (struct ui_out *uiout, int exitstatus)
7891 {
7892 struct inferior *inf = current_inferior ();
7893 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7894
7895 annotate_exited (exitstatus);
7896 if (exitstatus)
7897 {
7898 if (uiout->is_mi_like_p ())
7899 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7900 uiout->text ("[Inferior ");
7901 uiout->text (plongest (inf->num));
7902 uiout->text (" (");
7903 uiout->text (pidstr);
7904 uiout->text (") exited with code ");
7905 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7906 uiout->text ("]\n");
7907 }
7908 else
7909 {
7910 if (uiout->is_mi_like_p ())
7911 uiout->field_string
7912 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7913 uiout->text ("[Inferior ");
7914 uiout->text (plongest (inf->num));
7915 uiout->text (" (");
7916 uiout->text (pidstr);
7917 uiout->text (") exited normally]\n");
7918 }
7919 }
7920
7921 /* Some targets/architectures can do extra processing/display of
7922 segmentation faults. E.g., Intel MPX boundary faults.
7923 Call the architecture dependent function to handle the fault. */
7924
7925 static void
7926 handle_segmentation_fault (struct ui_out *uiout)
7927 {
7928 struct regcache *regcache = get_current_regcache ();
7929 struct gdbarch *gdbarch = regcache->arch ();
7930
7931 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7932 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7933 }
7934
7935 void
7936 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7937 {
7938 struct thread_info *thr = inferior_thread ();
7939
7940 annotate_signal ();
7941
7942 if (uiout->is_mi_like_p ())
7943 ;
7944 else if (show_thread_that_caused_stop ())
7945 {
7946 const char *name;
7947
7948 uiout->text ("\nThread ");
7949 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
7950
7951 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7952 if (name != NULL)
7953 {
7954 uiout->text (" \"");
7955 uiout->field_fmt ("name", "%s", name);
7956 uiout->text ("\"");
7957 }
7958 }
7959 else
7960 uiout->text ("\nProgram");
7961
7962 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7963 uiout->text (" stopped");
7964 else
7965 {
7966 uiout->text (" received signal ");
7967 annotate_signal_name ();
7968 if (uiout->is_mi_like_p ())
7969 uiout->field_string
7970 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7971 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
7972 annotate_signal_name_end ();
7973 uiout->text (", ");
7974 annotate_signal_string ();
7975 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
7976
7977 if (siggnal == GDB_SIGNAL_SEGV)
7978 handle_segmentation_fault (uiout);
7979
7980 annotate_signal_string_end ();
7981 }
7982 uiout->text (".\n");
7983 }
7984
7985 void
7986 print_no_history_reason (struct ui_out *uiout)
7987 {
7988 uiout->text ("\nNo more reverse-execution history.\n");
7989 }
7990
7991 /* Print current location without a level number, if we have changed
7992 functions or hit a breakpoint. Print source line if we have one.
7993 bpstat_print contains the logic deciding in detail what to print,
7994 based on the event(s) that just occurred. */
7995
7996 static void
7997 print_stop_location (struct target_waitstatus *ws)
7998 {
7999 int bpstat_ret;
8000 enum print_what source_flag;
8001 int do_frame_printing = 1;
8002 struct thread_info *tp = inferior_thread ();
8003
8004 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8005 switch (bpstat_ret)
8006 {
8007 case PRINT_UNKNOWN:
8008 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8009 should) carry around the function and does (or should) use
8010 that when doing a frame comparison. */
8011 if (tp->control.stop_step
8012 && frame_id_eq (tp->control.step_frame_id,
8013 get_frame_id (get_current_frame ()))
8014 && tp->control.step_start_function == find_pc_function (stop_pc))
8015 {
8016 /* Finished step, just print source line. */
8017 source_flag = SRC_LINE;
8018 }
8019 else
8020 {
8021 /* Print location and source line. */
8022 source_flag = SRC_AND_LOC;
8023 }
8024 break;
8025 case PRINT_SRC_AND_LOC:
8026 /* Print location and source line. */
8027 source_flag = SRC_AND_LOC;
8028 break;
8029 case PRINT_SRC_ONLY:
8030 source_flag = SRC_LINE;
8031 break;
8032 case PRINT_NOTHING:
8033 /* Something bogus. */
8034 source_flag = SRC_LINE;
8035 do_frame_printing = 0;
8036 break;
8037 default:
8038 internal_error (__FILE__, __LINE__, _("Unknown value."));
8039 }
8040
8041 /* The behavior of this routine with respect to the source
8042 flag is:
8043 SRC_LINE: Print only source line
8044 LOCATION: Print only location
8045 SRC_AND_LOC: Print location and source line. */
8046 if (do_frame_printing)
8047 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8048 }
8049
8050 /* See infrun.h. */
8051
8052 void
8053 print_stop_event (struct ui_out *uiout)
8054 {
8055 struct target_waitstatus last;
8056 ptid_t last_ptid;
8057 struct thread_info *tp;
8058
8059 get_last_target_status (&last_ptid, &last);
8060
8061 {
8062 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8063
8064 print_stop_location (&last);
8065
8066 /* Display the auto-display expressions. */
8067 do_displays ();
8068 }
8069
8070 tp = inferior_thread ();
8071 if (tp->thread_fsm != NULL
8072 && thread_fsm_finished_p (tp->thread_fsm))
8073 {
8074 struct return_value_info *rv;
8075
8076 rv = thread_fsm_return_value (tp->thread_fsm);
8077 if (rv != NULL)
8078 print_return_value (uiout, rv);
8079 }
8080 }
8081
8082 /* See infrun.h. */
8083
8084 void
8085 maybe_remove_breakpoints (void)
8086 {
8087 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8088 {
8089 if (remove_breakpoints ())
8090 {
8091 target_terminal::ours_for_output ();
8092 printf_filtered (_("Cannot remove breakpoints because "
8093 "program is no longer writable.\nFurther "
8094 "execution is probably impossible.\n"));
8095 }
8096 }
8097 }
8098
8099 /* The execution context that just caused a normal stop. */
8100
8101 struct stop_context
8102 {
8103 /* The stop ID. */
8104 ULONGEST stop_id;
8105
8106 /* The event PTID. */
8107
8108 ptid_t ptid;
8109
8110 /* If stopp for a thread event, this is the thread that caused the
8111 stop. */
8112 struct thread_info *thread;
8113
8114 /* The inferior that caused the stop. */
8115 int inf_num;
8116 };
8117
8118 /* Returns a new stop context. If stopped for a thread event, this
8119 takes a strong reference to the thread. */
8120
8121 static struct stop_context *
8122 save_stop_context (void)
8123 {
8124 struct stop_context *sc = XNEW (struct stop_context);
8125
8126 sc->stop_id = get_stop_id ();
8127 sc->ptid = inferior_ptid;
8128 sc->inf_num = current_inferior ()->num;
8129
8130 if (!ptid_equal (inferior_ptid, null_ptid))
8131 {
8132 /* Take a strong reference so that the thread can't be deleted
8133 yet. */
8134 sc->thread = inferior_thread ();
8135 sc->thread->incref ();
8136 }
8137 else
8138 sc->thread = NULL;
8139
8140 return sc;
8141 }
8142
8143 /* Release a stop context previously created with save_stop_context.
8144 Releases the strong reference to the thread as well. */
8145
8146 static void
8147 release_stop_context_cleanup (void *arg)
8148 {
8149 struct stop_context *sc = (struct stop_context *) arg;
8150
8151 if (sc->thread != NULL)
8152 sc->thread->decref ();
8153 xfree (sc);
8154 }
8155
8156 /* Return true if the current context no longer matches the saved stop
8157 context. */
8158
8159 static int
8160 stop_context_changed (struct stop_context *prev)
8161 {
8162 if (!ptid_equal (prev->ptid, inferior_ptid))
8163 return 1;
8164 if (prev->inf_num != current_inferior ()->num)
8165 return 1;
8166 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8167 return 1;
8168 if (get_stop_id () != prev->stop_id)
8169 return 1;
8170 return 0;
8171 }
8172
8173 /* See infrun.h. */
8174
8175 int
8176 normal_stop (void)
8177 {
8178 struct target_waitstatus last;
8179 ptid_t last_ptid;
8180
8181 get_last_target_status (&last_ptid, &last);
8182
8183 new_stop_id ();
8184
8185 /* If an exception is thrown from this point on, make sure to
8186 propagate GDB's knowledge of the executing state to the
8187 frontend/user running state. A QUIT is an easy exception to see
8188 here, so do this before any filtered output. */
8189
8190 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8191
8192 if (!non_stop)
8193 maybe_finish_thread_state.emplace (minus_one_ptid);
8194 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8195 || last.kind == TARGET_WAITKIND_EXITED)
8196 {
8197 /* On some targets, we may still have live threads in the
8198 inferior when we get a process exit event. E.g., for
8199 "checkpoint", when the current checkpoint/fork exits,
8200 linux-fork.c automatically switches to another fork from
8201 within target_mourn_inferior. */
8202 if (inferior_ptid != null_ptid)
8203 maybe_finish_thread_state.emplace (ptid_t (inferior_ptid.pid ()));
8204 }
8205 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8206 maybe_finish_thread_state.emplace (inferior_ptid);
8207
8208 /* As we're presenting a stop, and potentially removing breakpoints,
8209 update the thread list so we can tell whether there are threads
8210 running on the target. With target remote, for example, we can
8211 only learn about new threads when we explicitly update the thread
8212 list. Do this before notifying the interpreters about signal
8213 stops, end of stepping ranges, etc., so that the "new thread"
8214 output is emitted before e.g., "Program received signal FOO",
8215 instead of after. */
8216 update_thread_list ();
8217
8218 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8219 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
8220
8221 /* As with the notification of thread events, we want to delay
8222 notifying the user that we've switched thread context until
8223 the inferior actually stops.
8224
8225 There's no point in saying anything if the inferior has exited.
8226 Note that SIGNALLED here means "exited with a signal", not
8227 "received a signal".
8228
8229 Also skip saying anything in non-stop mode. In that mode, as we
8230 don't want GDB to switch threads behind the user's back, to avoid
8231 races where the user is typing a command to apply to thread x,
8232 but GDB switches to thread y before the user finishes entering
8233 the command, fetch_inferior_event installs a cleanup to restore
8234 the current thread back to the thread the user had selected right
8235 after this event is handled, so we're not really switching, only
8236 informing of a stop. */
8237 if (!non_stop
8238 && previous_inferior_ptid != inferior_ptid
8239 && target_has_execution
8240 && last.kind != TARGET_WAITKIND_SIGNALLED
8241 && last.kind != TARGET_WAITKIND_EXITED
8242 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8243 {
8244 SWITCH_THRU_ALL_UIS ()
8245 {
8246 target_terminal::ours_for_output ();
8247 printf_filtered (_("[Switching to %s]\n"),
8248 target_pid_to_str (inferior_ptid));
8249 annotate_thread_changed ();
8250 }
8251 previous_inferior_ptid = inferior_ptid;
8252 }
8253
8254 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8255 {
8256 SWITCH_THRU_ALL_UIS ()
8257 if (current_ui->prompt_state == PROMPT_BLOCKED)
8258 {
8259 target_terminal::ours_for_output ();
8260 printf_filtered (_("No unwaited-for children left.\n"));
8261 }
8262 }
8263
8264 /* Note: this depends on the update_thread_list call above. */
8265 maybe_remove_breakpoints ();
8266
8267 /* If an auto-display called a function and that got a signal,
8268 delete that auto-display to avoid an infinite recursion. */
8269
8270 if (stopped_by_random_signal)
8271 disable_current_display ();
8272
8273 SWITCH_THRU_ALL_UIS ()
8274 {
8275 async_enable_stdin ();
8276 }
8277
8278 /* Let the user/frontend see the threads as stopped. */
8279 maybe_finish_thread_state.reset ();
8280
8281 /* Select innermost stack frame - i.e., current frame is frame 0,
8282 and current location is based on that. Handle the case where the
8283 dummy call is returning after being stopped. E.g. the dummy call
8284 previously hit a breakpoint. (If the dummy call returns
8285 normally, we won't reach here.) Do this before the stop hook is
8286 run, so that it doesn't get to see the temporary dummy frame,
8287 which is not where we'll present the stop. */
8288 if (has_stack_frames ())
8289 {
8290 if (stop_stack_dummy == STOP_STACK_DUMMY)
8291 {
8292 /* Pop the empty frame that contains the stack dummy. This
8293 also restores inferior state prior to the call (struct
8294 infcall_suspend_state). */
8295 struct frame_info *frame = get_current_frame ();
8296
8297 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8298 frame_pop (frame);
8299 /* frame_pop calls reinit_frame_cache as the last thing it
8300 does which means there's now no selected frame. */
8301 }
8302
8303 select_frame (get_current_frame ());
8304
8305 /* Set the current source location. */
8306 set_current_sal_from_frame (get_current_frame ());
8307 }
8308
8309 /* Look up the hook_stop and run it (CLI internally handles problem
8310 of stop_command's pre-hook not existing). */
8311 if (stop_command != NULL)
8312 {
8313 struct stop_context *saved_context = save_stop_context ();
8314 struct cleanup *old_chain
8315 = make_cleanup (release_stop_context_cleanup, saved_context);
8316
8317 TRY
8318 {
8319 execute_cmd_pre_hook (stop_command);
8320 }
8321 CATCH (ex, RETURN_MASK_ALL)
8322 {
8323 exception_fprintf (gdb_stderr, ex,
8324 "Error while running hook_stop:\n");
8325 }
8326 END_CATCH
8327
8328 /* If the stop hook resumes the target, then there's no point in
8329 trying to notify about the previous stop; its context is
8330 gone. Likewise if the command switches thread or inferior --
8331 the observers would print a stop for the wrong
8332 thread/inferior. */
8333 if (stop_context_changed (saved_context))
8334 {
8335 do_cleanups (old_chain);
8336 return 1;
8337 }
8338 do_cleanups (old_chain);
8339 }
8340
8341 /* Notify observers about the stop. This is where the interpreters
8342 print the stop event. */
8343 if (!ptid_equal (inferior_ptid, null_ptid))
8344 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8345 stop_print_frame);
8346 else
8347 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8348
8349 annotate_stopped ();
8350
8351 if (target_has_execution)
8352 {
8353 if (last.kind != TARGET_WAITKIND_SIGNALLED
8354 && last.kind != TARGET_WAITKIND_EXITED)
8355 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8356 Delete any breakpoint that is to be deleted at the next stop. */
8357 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8358 }
8359
8360 /* Try to get rid of automatically added inferiors that are no
8361 longer needed. Keeping those around slows down things linearly.
8362 Note that this never removes the current inferior. */
8363 prune_inferiors ();
8364
8365 return 0;
8366 }
8367 \f
8368 int
8369 signal_stop_state (int signo)
8370 {
8371 return signal_stop[signo];
8372 }
8373
8374 int
8375 signal_print_state (int signo)
8376 {
8377 return signal_print[signo];
8378 }
8379
8380 int
8381 signal_pass_state (int signo)
8382 {
8383 return signal_program[signo];
8384 }
8385
8386 static void
8387 signal_cache_update (int signo)
8388 {
8389 if (signo == -1)
8390 {
8391 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8392 signal_cache_update (signo);
8393
8394 return;
8395 }
8396
8397 signal_pass[signo] = (signal_stop[signo] == 0
8398 && signal_print[signo] == 0
8399 && signal_program[signo] == 1
8400 && signal_catch[signo] == 0);
8401 }
8402
8403 int
8404 signal_stop_update (int signo, int state)
8405 {
8406 int ret = signal_stop[signo];
8407
8408 signal_stop[signo] = state;
8409 signal_cache_update (signo);
8410 return ret;
8411 }
8412
8413 int
8414 signal_print_update (int signo, int state)
8415 {
8416 int ret = signal_print[signo];
8417
8418 signal_print[signo] = state;
8419 signal_cache_update (signo);
8420 return ret;
8421 }
8422
8423 int
8424 signal_pass_update (int signo, int state)
8425 {
8426 int ret = signal_program[signo];
8427
8428 signal_program[signo] = state;
8429 signal_cache_update (signo);
8430 return ret;
8431 }
8432
8433 /* Update the global 'signal_catch' from INFO and notify the
8434 target. */
8435
8436 void
8437 signal_catch_update (const unsigned int *info)
8438 {
8439 int i;
8440
8441 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8442 signal_catch[i] = info[i] > 0;
8443 signal_cache_update (-1);
8444 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8445 }
8446
8447 static void
8448 sig_print_header (void)
8449 {
8450 printf_filtered (_("Signal Stop\tPrint\tPass "
8451 "to program\tDescription\n"));
8452 }
8453
8454 static void
8455 sig_print_info (enum gdb_signal oursig)
8456 {
8457 const char *name = gdb_signal_to_name (oursig);
8458 int name_padding = 13 - strlen (name);
8459
8460 if (name_padding <= 0)
8461 name_padding = 0;
8462
8463 printf_filtered ("%s", name);
8464 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8465 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8466 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8467 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8468 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8469 }
8470
8471 /* Specify how various signals in the inferior should be handled. */
8472
8473 static void
8474 handle_command (const char *args, int from_tty)
8475 {
8476 int digits, wordlen;
8477 int sigfirst, signum, siglast;
8478 enum gdb_signal oursig;
8479 int allsigs;
8480 int nsigs;
8481 unsigned char *sigs;
8482
8483 if (args == NULL)
8484 {
8485 error_no_arg (_("signal to handle"));
8486 }
8487
8488 /* Allocate and zero an array of flags for which signals to handle. */
8489
8490 nsigs = (int) GDB_SIGNAL_LAST;
8491 sigs = (unsigned char *) alloca (nsigs);
8492 memset (sigs, 0, nsigs);
8493
8494 /* Break the command line up into args. */
8495
8496 gdb_argv built_argv (args);
8497
8498 /* Walk through the args, looking for signal oursigs, signal names, and
8499 actions. Signal numbers and signal names may be interspersed with
8500 actions, with the actions being performed for all signals cumulatively
8501 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8502
8503 for (char *arg : built_argv)
8504 {
8505 wordlen = strlen (arg);
8506 for (digits = 0; isdigit (arg[digits]); digits++)
8507 {;
8508 }
8509 allsigs = 0;
8510 sigfirst = siglast = -1;
8511
8512 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8513 {
8514 /* Apply action to all signals except those used by the
8515 debugger. Silently skip those. */
8516 allsigs = 1;
8517 sigfirst = 0;
8518 siglast = nsigs - 1;
8519 }
8520 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8521 {
8522 SET_SIGS (nsigs, sigs, signal_stop);
8523 SET_SIGS (nsigs, sigs, signal_print);
8524 }
8525 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8526 {
8527 UNSET_SIGS (nsigs, sigs, signal_program);
8528 }
8529 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8530 {
8531 SET_SIGS (nsigs, sigs, signal_print);
8532 }
8533 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8534 {
8535 SET_SIGS (nsigs, sigs, signal_program);
8536 }
8537 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8538 {
8539 UNSET_SIGS (nsigs, sigs, signal_stop);
8540 }
8541 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8542 {
8543 SET_SIGS (nsigs, sigs, signal_program);
8544 }
8545 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8546 {
8547 UNSET_SIGS (nsigs, sigs, signal_print);
8548 UNSET_SIGS (nsigs, sigs, signal_stop);
8549 }
8550 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8551 {
8552 UNSET_SIGS (nsigs, sigs, signal_program);
8553 }
8554 else if (digits > 0)
8555 {
8556 /* It is numeric. The numeric signal refers to our own
8557 internal signal numbering from target.h, not to host/target
8558 signal number. This is a feature; users really should be
8559 using symbolic names anyway, and the common ones like
8560 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8561
8562 sigfirst = siglast = (int)
8563 gdb_signal_from_command (atoi (arg));
8564 if (arg[digits] == '-')
8565 {
8566 siglast = (int)
8567 gdb_signal_from_command (atoi (arg + digits + 1));
8568 }
8569 if (sigfirst > siglast)
8570 {
8571 /* Bet he didn't figure we'd think of this case... */
8572 signum = sigfirst;
8573 sigfirst = siglast;
8574 siglast = signum;
8575 }
8576 }
8577 else
8578 {
8579 oursig = gdb_signal_from_name (arg);
8580 if (oursig != GDB_SIGNAL_UNKNOWN)
8581 {
8582 sigfirst = siglast = (int) oursig;
8583 }
8584 else
8585 {
8586 /* Not a number and not a recognized flag word => complain. */
8587 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8588 }
8589 }
8590
8591 /* If any signal numbers or symbol names were found, set flags for
8592 which signals to apply actions to. */
8593
8594 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8595 {
8596 switch ((enum gdb_signal) signum)
8597 {
8598 case GDB_SIGNAL_TRAP:
8599 case GDB_SIGNAL_INT:
8600 if (!allsigs && !sigs[signum])
8601 {
8602 if (query (_("%s is used by the debugger.\n\
8603 Are you sure you want to change it? "),
8604 gdb_signal_to_name ((enum gdb_signal) signum)))
8605 {
8606 sigs[signum] = 1;
8607 }
8608 else
8609 {
8610 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8611 gdb_flush (gdb_stdout);
8612 }
8613 }
8614 break;
8615 case GDB_SIGNAL_0:
8616 case GDB_SIGNAL_DEFAULT:
8617 case GDB_SIGNAL_UNKNOWN:
8618 /* Make sure that "all" doesn't print these. */
8619 break;
8620 default:
8621 sigs[signum] = 1;
8622 break;
8623 }
8624 }
8625 }
8626
8627 for (signum = 0; signum < nsigs; signum++)
8628 if (sigs[signum])
8629 {
8630 signal_cache_update (-1);
8631 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8632 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
8633
8634 if (from_tty)
8635 {
8636 /* Show the results. */
8637 sig_print_header ();
8638 for (; signum < nsigs; signum++)
8639 if (sigs[signum])
8640 sig_print_info ((enum gdb_signal) signum);
8641 }
8642
8643 break;
8644 }
8645 }
8646
8647 /* Complete the "handle" command. */
8648
8649 static void
8650 handle_completer (struct cmd_list_element *ignore,
8651 completion_tracker &tracker,
8652 const char *text, const char *word)
8653 {
8654 static const char * const keywords[] =
8655 {
8656 "all",
8657 "stop",
8658 "ignore",
8659 "print",
8660 "pass",
8661 "nostop",
8662 "noignore",
8663 "noprint",
8664 "nopass",
8665 NULL,
8666 };
8667
8668 signal_completer (ignore, tracker, text, word);
8669 complete_on_enum (tracker, keywords, word, word);
8670 }
8671
8672 enum gdb_signal
8673 gdb_signal_from_command (int num)
8674 {
8675 if (num >= 1 && num <= 15)
8676 return (enum gdb_signal) num;
8677 error (_("Only signals 1-15 are valid as numeric signals.\n\
8678 Use \"info signals\" for a list of symbolic signals."));
8679 }
8680
8681 /* Print current contents of the tables set by the handle command.
8682 It is possible we should just be printing signals actually used
8683 by the current target (but for things to work right when switching
8684 targets, all signals should be in the signal tables). */
8685
8686 static void
8687 info_signals_command (const char *signum_exp, int from_tty)
8688 {
8689 enum gdb_signal oursig;
8690
8691 sig_print_header ();
8692
8693 if (signum_exp)
8694 {
8695 /* First see if this is a symbol name. */
8696 oursig = gdb_signal_from_name (signum_exp);
8697 if (oursig == GDB_SIGNAL_UNKNOWN)
8698 {
8699 /* No, try numeric. */
8700 oursig =
8701 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8702 }
8703 sig_print_info (oursig);
8704 return;
8705 }
8706
8707 printf_filtered ("\n");
8708 /* These ugly casts brought to you by the native VAX compiler. */
8709 for (oursig = GDB_SIGNAL_FIRST;
8710 (int) oursig < (int) GDB_SIGNAL_LAST;
8711 oursig = (enum gdb_signal) ((int) oursig + 1))
8712 {
8713 QUIT;
8714
8715 if (oursig != GDB_SIGNAL_UNKNOWN
8716 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8717 sig_print_info (oursig);
8718 }
8719
8720 printf_filtered (_("\nUse the \"handle\" command "
8721 "to change these tables.\n"));
8722 }
8723
8724 /* The $_siginfo convenience variable is a bit special. We don't know
8725 for sure the type of the value until we actually have a chance to
8726 fetch the data. The type can change depending on gdbarch, so it is
8727 also dependent on which thread you have selected.
8728
8729 1. making $_siginfo be an internalvar that creates a new value on
8730 access.
8731
8732 2. making the value of $_siginfo be an lval_computed value. */
8733
8734 /* This function implements the lval_computed support for reading a
8735 $_siginfo value. */
8736
8737 static void
8738 siginfo_value_read (struct value *v)
8739 {
8740 LONGEST transferred;
8741
8742 /* If we can access registers, so can we access $_siginfo. Likewise
8743 vice versa. */
8744 validate_registers_access ();
8745
8746 transferred =
8747 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
8748 NULL,
8749 value_contents_all_raw (v),
8750 value_offset (v),
8751 TYPE_LENGTH (value_type (v)));
8752
8753 if (transferred != TYPE_LENGTH (value_type (v)))
8754 error (_("Unable to read siginfo"));
8755 }
8756
8757 /* This function implements the lval_computed support for writing a
8758 $_siginfo value. */
8759
8760 static void
8761 siginfo_value_write (struct value *v, struct value *fromval)
8762 {
8763 LONGEST transferred;
8764
8765 /* If we can access registers, so can we access $_siginfo. Likewise
8766 vice versa. */
8767 validate_registers_access ();
8768
8769 transferred = target_write (current_top_target (),
8770 TARGET_OBJECT_SIGNAL_INFO,
8771 NULL,
8772 value_contents_all_raw (fromval),
8773 value_offset (v),
8774 TYPE_LENGTH (value_type (fromval)));
8775
8776 if (transferred != TYPE_LENGTH (value_type (fromval)))
8777 error (_("Unable to write siginfo"));
8778 }
8779
8780 static const struct lval_funcs siginfo_value_funcs =
8781 {
8782 siginfo_value_read,
8783 siginfo_value_write
8784 };
8785
8786 /* Return a new value with the correct type for the siginfo object of
8787 the current thread using architecture GDBARCH. Return a void value
8788 if there's no object available. */
8789
8790 static struct value *
8791 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8792 void *ignore)
8793 {
8794 if (target_has_stack
8795 && !ptid_equal (inferior_ptid, null_ptid)
8796 && gdbarch_get_siginfo_type_p (gdbarch))
8797 {
8798 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8799
8800 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8801 }
8802
8803 return allocate_value (builtin_type (gdbarch)->builtin_void);
8804 }
8805
8806 \f
8807 /* infcall_suspend_state contains state about the program itself like its
8808 registers and any signal it received when it last stopped.
8809 This state must be restored regardless of how the inferior function call
8810 ends (either successfully, or after it hits a breakpoint or signal)
8811 if the program is to properly continue where it left off. */
8812
8813 struct infcall_suspend_state
8814 {
8815 struct thread_suspend_state thread_suspend;
8816
8817 /* Other fields: */
8818 CORE_ADDR stop_pc;
8819 readonly_detached_regcache *registers;
8820
8821 /* Format of SIGINFO_DATA or NULL if it is not present. */
8822 struct gdbarch *siginfo_gdbarch;
8823
8824 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8825 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8826 content would be invalid. */
8827 gdb_byte *siginfo_data;
8828 };
8829
8830 struct infcall_suspend_state *
8831 save_infcall_suspend_state (void)
8832 {
8833 struct infcall_suspend_state *inf_state;
8834 struct thread_info *tp = inferior_thread ();
8835 struct regcache *regcache = get_current_regcache ();
8836 struct gdbarch *gdbarch = regcache->arch ();
8837 gdb_byte *siginfo_data = NULL;
8838
8839 if (gdbarch_get_siginfo_type_p (gdbarch))
8840 {
8841 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8842 size_t len = TYPE_LENGTH (type);
8843 struct cleanup *back_to;
8844
8845 siginfo_data = (gdb_byte *) xmalloc (len);
8846 back_to = make_cleanup (xfree, siginfo_data);
8847
8848 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8849 siginfo_data, 0, len) == len)
8850 discard_cleanups (back_to);
8851 else
8852 {
8853 /* Errors ignored. */
8854 do_cleanups (back_to);
8855 siginfo_data = NULL;
8856 }
8857 }
8858
8859 inf_state = XCNEW (struct infcall_suspend_state);
8860
8861 if (siginfo_data)
8862 {
8863 inf_state->siginfo_gdbarch = gdbarch;
8864 inf_state->siginfo_data = siginfo_data;
8865 }
8866
8867 inf_state->thread_suspend = tp->suspend;
8868
8869 /* run_inferior_call will not use the signal due to its `proceed' call with
8870 GDB_SIGNAL_0 anyway. */
8871 tp->suspend.stop_signal = GDB_SIGNAL_0;
8872
8873 inf_state->stop_pc = stop_pc;
8874
8875 inf_state->registers = new readonly_detached_regcache (*regcache);
8876
8877 return inf_state;
8878 }
8879
8880 /* Restore inferior session state to INF_STATE. */
8881
8882 void
8883 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8884 {
8885 struct thread_info *tp = inferior_thread ();
8886 struct regcache *regcache = get_current_regcache ();
8887 struct gdbarch *gdbarch = regcache->arch ();
8888
8889 tp->suspend = inf_state->thread_suspend;
8890
8891 stop_pc = inf_state->stop_pc;
8892
8893 if (inf_state->siginfo_gdbarch == gdbarch)
8894 {
8895 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8896
8897 /* Errors ignored. */
8898 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8899 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
8900 }
8901
8902 /* The inferior can be gone if the user types "print exit(0)"
8903 (and perhaps other times). */
8904 if (target_has_execution)
8905 /* NB: The register write goes through to the target. */
8906 regcache->restore (inf_state->registers);
8907
8908 discard_infcall_suspend_state (inf_state);
8909 }
8910
8911 static void
8912 do_restore_infcall_suspend_state_cleanup (void *state)
8913 {
8914 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
8915 }
8916
8917 struct cleanup *
8918 make_cleanup_restore_infcall_suspend_state
8919 (struct infcall_suspend_state *inf_state)
8920 {
8921 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
8922 }
8923
8924 void
8925 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8926 {
8927 delete inf_state->registers;
8928 xfree (inf_state->siginfo_data);
8929 xfree (inf_state);
8930 }
8931
8932 readonly_detached_regcache *
8933 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8934 {
8935 return inf_state->registers;
8936 }
8937
8938 /* infcall_control_state contains state regarding gdb's control of the
8939 inferior itself like stepping control. It also contains session state like
8940 the user's currently selected frame. */
8941
8942 struct infcall_control_state
8943 {
8944 struct thread_control_state thread_control;
8945 struct inferior_control_state inferior_control;
8946
8947 /* Other fields: */
8948 enum stop_stack_kind stop_stack_dummy;
8949 int stopped_by_random_signal;
8950
8951 /* ID if the selected frame when the inferior function call was made. */
8952 struct frame_id selected_frame_id;
8953 };
8954
8955 /* Save all of the information associated with the inferior<==>gdb
8956 connection. */
8957
8958 struct infcall_control_state *
8959 save_infcall_control_state (void)
8960 {
8961 struct infcall_control_state *inf_status =
8962 XNEW (struct infcall_control_state);
8963 struct thread_info *tp = inferior_thread ();
8964 struct inferior *inf = current_inferior ();
8965
8966 inf_status->thread_control = tp->control;
8967 inf_status->inferior_control = inf->control;
8968
8969 tp->control.step_resume_breakpoint = NULL;
8970 tp->control.exception_resume_breakpoint = NULL;
8971
8972 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8973 chain. If caller's caller is walking the chain, they'll be happier if we
8974 hand them back the original chain when restore_infcall_control_state is
8975 called. */
8976 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
8977
8978 /* Other fields: */
8979 inf_status->stop_stack_dummy = stop_stack_dummy;
8980 inf_status->stopped_by_random_signal = stopped_by_random_signal;
8981
8982 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
8983
8984 return inf_status;
8985 }
8986
8987 static void
8988 restore_selected_frame (const frame_id &fid)
8989 {
8990 frame_info *frame = frame_find_by_id (fid);
8991
8992 /* If inf_status->selected_frame_id is NULL, there was no previously
8993 selected frame. */
8994 if (frame == NULL)
8995 {
8996 warning (_("Unable to restore previously selected frame."));
8997 return;
8998 }
8999
9000 select_frame (frame);
9001 }
9002
9003 /* Restore inferior session state to INF_STATUS. */
9004
9005 void
9006 restore_infcall_control_state (struct infcall_control_state *inf_status)
9007 {
9008 struct thread_info *tp = inferior_thread ();
9009 struct inferior *inf = current_inferior ();
9010
9011 if (tp->control.step_resume_breakpoint)
9012 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9013
9014 if (tp->control.exception_resume_breakpoint)
9015 tp->control.exception_resume_breakpoint->disposition
9016 = disp_del_at_next_stop;
9017
9018 /* Handle the bpstat_copy of the chain. */
9019 bpstat_clear (&tp->control.stop_bpstat);
9020
9021 tp->control = inf_status->thread_control;
9022 inf->control = inf_status->inferior_control;
9023
9024 /* Other fields: */
9025 stop_stack_dummy = inf_status->stop_stack_dummy;
9026 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9027
9028 if (target_has_stack)
9029 {
9030 /* The point of the try/catch is that if the stack is clobbered,
9031 walking the stack might encounter a garbage pointer and
9032 error() trying to dereference it. */
9033 TRY
9034 {
9035 restore_selected_frame (inf_status->selected_frame_id);
9036 }
9037 CATCH (ex, RETURN_MASK_ERROR)
9038 {
9039 exception_fprintf (gdb_stderr, ex,
9040 "Unable to restore previously selected frame:\n");
9041 /* Error in restoring the selected frame. Select the
9042 innermost frame. */
9043 select_frame (get_current_frame ());
9044 }
9045 END_CATCH
9046 }
9047
9048 xfree (inf_status);
9049 }
9050
9051 static void
9052 do_restore_infcall_control_state_cleanup (void *sts)
9053 {
9054 restore_infcall_control_state ((struct infcall_control_state *) sts);
9055 }
9056
9057 struct cleanup *
9058 make_cleanup_restore_infcall_control_state
9059 (struct infcall_control_state *inf_status)
9060 {
9061 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
9062 }
9063
9064 void
9065 discard_infcall_control_state (struct infcall_control_state *inf_status)
9066 {
9067 if (inf_status->thread_control.step_resume_breakpoint)
9068 inf_status->thread_control.step_resume_breakpoint->disposition
9069 = disp_del_at_next_stop;
9070
9071 if (inf_status->thread_control.exception_resume_breakpoint)
9072 inf_status->thread_control.exception_resume_breakpoint->disposition
9073 = disp_del_at_next_stop;
9074
9075 /* See save_infcall_control_state for info on stop_bpstat. */
9076 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9077
9078 xfree (inf_status);
9079 }
9080 \f
9081 /* See infrun.h. */
9082
9083 void
9084 clear_exit_convenience_vars (void)
9085 {
9086 clear_internalvar (lookup_internalvar ("_exitsignal"));
9087 clear_internalvar (lookup_internalvar ("_exitcode"));
9088 }
9089 \f
9090
9091 /* User interface for reverse debugging:
9092 Set exec-direction / show exec-direction commands
9093 (returns error unless target implements to_set_exec_direction method). */
9094
9095 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9096 static const char exec_forward[] = "forward";
9097 static const char exec_reverse[] = "reverse";
9098 static const char *exec_direction = exec_forward;
9099 static const char *const exec_direction_names[] = {
9100 exec_forward,
9101 exec_reverse,
9102 NULL
9103 };
9104
9105 static void
9106 set_exec_direction_func (const char *args, int from_tty,
9107 struct cmd_list_element *cmd)
9108 {
9109 if (target_can_execute_reverse)
9110 {
9111 if (!strcmp (exec_direction, exec_forward))
9112 execution_direction = EXEC_FORWARD;
9113 else if (!strcmp (exec_direction, exec_reverse))
9114 execution_direction = EXEC_REVERSE;
9115 }
9116 else
9117 {
9118 exec_direction = exec_forward;
9119 error (_("Target does not support this operation."));
9120 }
9121 }
9122
9123 static void
9124 show_exec_direction_func (struct ui_file *out, int from_tty,
9125 struct cmd_list_element *cmd, const char *value)
9126 {
9127 switch (execution_direction) {
9128 case EXEC_FORWARD:
9129 fprintf_filtered (out, _("Forward.\n"));
9130 break;
9131 case EXEC_REVERSE:
9132 fprintf_filtered (out, _("Reverse.\n"));
9133 break;
9134 default:
9135 internal_error (__FILE__, __LINE__,
9136 _("bogus execution_direction value: %d"),
9137 (int) execution_direction);
9138 }
9139 }
9140
9141 static void
9142 show_schedule_multiple (struct ui_file *file, int from_tty,
9143 struct cmd_list_element *c, const char *value)
9144 {
9145 fprintf_filtered (file, _("Resuming the execution of threads "
9146 "of all processes is %s.\n"), value);
9147 }
9148
9149 /* Implementation of `siginfo' variable. */
9150
9151 static const struct internalvar_funcs siginfo_funcs =
9152 {
9153 siginfo_make_value,
9154 NULL,
9155 NULL
9156 };
9157
9158 /* Callback for infrun's target events source. This is marked when a
9159 thread has a pending status to process. */
9160
9161 static void
9162 infrun_async_inferior_event_handler (gdb_client_data data)
9163 {
9164 inferior_event_handler (INF_REG_EVENT, NULL);
9165 }
9166
9167 void
9168 _initialize_infrun (void)
9169 {
9170 int i;
9171 int numsigs;
9172 struct cmd_list_element *c;
9173
9174 /* Register extra event sources in the event loop. */
9175 infrun_async_inferior_event_token
9176 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9177
9178 add_info ("signals", info_signals_command, _("\
9179 What debugger does when program gets various signals.\n\
9180 Specify a signal as argument to print info on that signal only."));
9181 add_info_alias ("handle", "signals", 0);
9182
9183 c = add_com ("handle", class_run, handle_command, _("\
9184 Specify how to handle signals.\n\
9185 Usage: handle SIGNAL [ACTIONS]\n\
9186 Args are signals and actions to apply to those signals.\n\
9187 If no actions are specified, the current settings for the specified signals\n\
9188 will be displayed instead.\n\
9189 \n\
9190 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9191 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9192 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9193 The special arg \"all\" is recognized to mean all signals except those\n\
9194 used by the debugger, typically SIGTRAP and SIGINT.\n\
9195 \n\
9196 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9197 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9198 Stop means reenter debugger if this signal happens (implies print).\n\
9199 Print means print a message if this signal happens.\n\
9200 Pass means let program see this signal; otherwise program doesn't know.\n\
9201 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9202 Pass and Stop may be combined.\n\
9203 \n\
9204 Multiple signals may be specified. Signal numbers and signal names\n\
9205 may be interspersed with actions, with the actions being performed for\n\
9206 all signals cumulatively specified."));
9207 set_cmd_completer (c, handle_completer);
9208
9209 if (!dbx_commands)
9210 stop_command = add_cmd ("stop", class_obscure,
9211 not_just_help_class_command, _("\
9212 There is no `stop' command, but you can set a hook on `stop'.\n\
9213 This allows you to set a list of commands to be run each time execution\n\
9214 of the program stops."), &cmdlist);
9215
9216 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9217 Set inferior debugging."), _("\
9218 Show inferior debugging."), _("\
9219 When non-zero, inferior specific debugging is enabled."),
9220 NULL,
9221 show_debug_infrun,
9222 &setdebuglist, &showdebuglist);
9223
9224 add_setshow_boolean_cmd ("displaced", class_maintenance,
9225 &debug_displaced, _("\
9226 Set displaced stepping debugging."), _("\
9227 Show displaced stepping debugging."), _("\
9228 When non-zero, displaced stepping specific debugging is enabled."),
9229 NULL,
9230 show_debug_displaced,
9231 &setdebuglist, &showdebuglist);
9232
9233 add_setshow_boolean_cmd ("non-stop", no_class,
9234 &non_stop_1, _("\
9235 Set whether gdb controls the inferior in non-stop mode."), _("\
9236 Show whether gdb controls the inferior in non-stop mode."), _("\
9237 When debugging a multi-threaded program and this setting is\n\
9238 off (the default, also called all-stop mode), when one thread stops\n\
9239 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9240 all other threads in the program while you interact with the thread of\n\
9241 interest. When you continue or step a thread, you can allow the other\n\
9242 threads to run, or have them remain stopped, but while you inspect any\n\
9243 thread's state, all threads stop.\n\
9244 \n\
9245 In non-stop mode, when one thread stops, other threads can continue\n\
9246 to run freely. You'll be able to step each thread independently,\n\
9247 leave it stopped or free to run as needed."),
9248 set_non_stop,
9249 show_non_stop,
9250 &setlist,
9251 &showlist);
9252
9253 numsigs = (int) GDB_SIGNAL_LAST;
9254 signal_stop = XNEWVEC (unsigned char, numsigs);
9255 signal_print = XNEWVEC (unsigned char, numsigs);
9256 signal_program = XNEWVEC (unsigned char, numsigs);
9257 signal_catch = XNEWVEC (unsigned char, numsigs);
9258 signal_pass = XNEWVEC (unsigned char, numsigs);
9259 for (i = 0; i < numsigs; i++)
9260 {
9261 signal_stop[i] = 1;
9262 signal_print[i] = 1;
9263 signal_program[i] = 1;
9264 signal_catch[i] = 0;
9265 }
9266
9267 /* Signals caused by debugger's own actions should not be given to
9268 the program afterwards.
9269
9270 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9271 explicitly specifies that it should be delivered to the target
9272 program. Typically, that would occur when a user is debugging a
9273 target monitor on a simulator: the target monitor sets a
9274 breakpoint; the simulator encounters this breakpoint and halts
9275 the simulation handing control to GDB; GDB, noting that the stop
9276 address doesn't map to any known breakpoint, returns control back
9277 to the simulator; the simulator then delivers the hardware
9278 equivalent of a GDB_SIGNAL_TRAP to the program being
9279 debugged. */
9280 signal_program[GDB_SIGNAL_TRAP] = 0;
9281 signal_program[GDB_SIGNAL_INT] = 0;
9282
9283 /* Signals that are not errors should not normally enter the debugger. */
9284 signal_stop[GDB_SIGNAL_ALRM] = 0;
9285 signal_print[GDB_SIGNAL_ALRM] = 0;
9286 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9287 signal_print[GDB_SIGNAL_VTALRM] = 0;
9288 signal_stop[GDB_SIGNAL_PROF] = 0;
9289 signal_print[GDB_SIGNAL_PROF] = 0;
9290 signal_stop[GDB_SIGNAL_CHLD] = 0;
9291 signal_print[GDB_SIGNAL_CHLD] = 0;
9292 signal_stop[GDB_SIGNAL_IO] = 0;
9293 signal_print[GDB_SIGNAL_IO] = 0;
9294 signal_stop[GDB_SIGNAL_POLL] = 0;
9295 signal_print[GDB_SIGNAL_POLL] = 0;
9296 signal_stop[GDB_SIGNAL_URG] = 0;
9297 signal_print[GDB_SIGNAL_URG] = 0;
9298 signal_stop[GDB_SIGNAL_WINCH] = 0;
9299 signal_print[GDB_SIGNAL_WINCH] = 0;
9300 signal_stop[GDB_SIGNAL_PRIO] = 0;
9301 signal_print[GDB_SIGNAL_PRIO] = 0;
9302
9303 /* These signals are used internally by user-level thread
9304 implementations. (See signal(5) on Solaris.) Like the above
9305 signals, a healthy program receives and handles them as part of
9306 its normal operation. */
9307 signal_stop[GDB_SIGNAL_LWP] = 0;
9308 signal_print[GDB_SIGNAL_LWP] = 0;
9309 signal_stop[GDB_SIGNAL_WAITING] = 0;
9310 signal_print[GDB_SIGNAL_WAITING] = 0;
9311 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9312 signal_print[GDB_SIGNAL_CANCEL] = 0;
9313 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9314 signal_print[GDB_SIGNAL_LIBRT] = 0;
9315
9316 /* Update cached state. */
9317 signal_cache_update (-1);
9318
9319 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9320 &stop_on_solib_events, _("\
9321 Set stopping for shared library events."), _("\
9322 Show stopping for shared library events."), _("\
9323 If nonzero, gdb will give control to the user when the dynamic linker\n\
9324 notifies gdb of shared library events. The most common event of interest\n\
9325 to the user would be loading/unloading of a new library."),
9326 set_stop_on_solib_events,
9327 show_stop_on_solib_events,
9328 &setlist, &showlist);
9329
9330 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9331 follow_fork_mode_kind_names,
9332 &follow_fork_mode_string, _("\
9333 Set debugger response to a program call of fork or vfork."), _("\
9334 Show debugger response to a program call of fork or vfork."), _("\
9335 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9336 parent - the original process is debugged after a fork\n\
9337 child - the new process is debugged after a fork\n\
9338 The unfollowed process will continue to run.\n\
9339 By default, the debugger will follow the parent process."),
9340 NULL,
9341 show_follow_fork_mode_string,
9342 &setlist, &showlist);
9343
9344 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9345 follow_exec_mode_names,
9346 &follow_exec_mode_string, _("\
9347 Set debugger response to a program call of exec."), _("\
9348 Show debugger response to a program call of exec."), _("\
9349 An exec call replaces the program image of a process.\n\
9350 \n\
9351 follow-exec-mode can be:\n\
9352 \n\
9353 new - the debugger creates a new inferior and rebinds the process\n\
9354 to this new inferior. The program the process was running before\n\
9355 the exec call can be restarted afterwards by restarting the original\n\
9356 inferior.\n\
9357 \n\
9358 same - the debugger keeps the process bound to the same inferior.\n\
9359 The new executable image replaces the previous executable loaded in\n\
9360 the inferior. Restarting the inferior after the exec call restarts\n\
9361 the executable the process was running after the exec call.\n\
9362 \n\
9363 By default, the debugger will use the same inferior."),
9364 NULL,
9365 show_follow_exec_mode_string,
9366 &setlist, &showlist);
9367
9368 add_setshow_enum_cmd ("scheduler-locking", class_run,
9369 scheduler_enums, &scheduler_mode, _("\
9370 Set mode for locking scheduler during execution."), _("\
9371 Show mode for locking scheduler during execution."), _("\
9372 off == no locking (threads may preempt at any time)\n\
9373 on == full locking (no thread except the current thread may run)\n\
9374 This applies to both normal execution and replay mode.\n\
9375 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9376 In this mode, other threads may run during other commands.\n\
9377 This applies to both normal execution and replay mode.\n\
9378 replay == scheduler locked in replay mode and unlocked during normal execution."),
9379 set_schedlock_func, /* traps on target vector */
9380 show_scheduler_mode,
9381 &setlist, &showlist);
9382
9383 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9384 Set mode for resuming threads of all processes."), _("\
9385 Show mode for resuming threads of all processes."), _("\
9386 When on, execution commands (such as 'continue' or 'next') resume all\n\
9387 threads of all processes. When off (which is the default), execution\n\
9388 commands only resume the threads of the current process. The set of\n\
9389 threads that are resumed is further refined by the scheduler-locking\n\
9390 mode (see help set scheduler-locking)."),
9391 NULL,
9392 show_schedule_multiple,
9393 &setlist, &showlist);
9394
9395 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9396 Set mode of the step operation."), _("\
9397 Show mode of the step operation."), _("\
9398 When set, doing a step over a function without debug line information\n\
9399 will stop at the first instruction of that function. Otherwise, the\n\
9400 function is skipped and the step command stops at a different source line."),
9401 NULL,
9402 show_step_stop_if_no_debug,
9403 &setlist, &showlist);
9404
9405 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9406 &can_use_displaced_stepping, _("\
9407 Set debugger's willingness to use displaced stepping."), _("\
9408 Show debugger's willingness to use displaced stepping."), _("\
9409 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9410 supported by the target architecture. If off, gdb will not use displaced\n\
9411 stepping to step over breakpoints, even if such is supported by the target\n\
9412 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9413 if the target architecture supports it and non-stop mode is active, but will not\n\
9414 use it in all-stop mode (see help set non-stop)."),
9415 NULL,
9416 show_can_use_displaced_stepping,
9417 &setlist, &showlist);
9418
9419 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9420 &exec_direction, _("Set direction of execution.\n\
9421 Options are 'forward' or 'reverse'."),
9422 _("Show direction of execution (forward/reverse)."),
9423 _("Tells gdb whether to execute forward or backward."),
9424 set_exec_direction_func, show_exec_direction_func,
9425 &setlist, &showlist);
9426
9427 /* Set/show detach-on-fork: user-settable mode. */
9428
9429 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9430 Set whether gdb will detach the child of a fork."), _("\
9431 Show whether gdb will detach the child of a fork."), _("\
9432 Tells gdb whether to detach the child of a fork."),
9433 NULL, NULL, &setlist, &showlist);
9434
9435 /* Set/show disable address space randomization mode. */
9436
9437 add_setshow_boolean_cmd ("disable-randomization", class_support,
9438 &disable_randomization, _("\
9439 Set disabling of debuggee's virtual address space randomization."), _("\
9440 Show disabling of debuggee's virtual address space randomization."), _("\
9441 When this mode is on (which is the default), randomization of the virtual\n\
9442 address space is disabled. Standalone programs run with the randomization\n\
9443 enabled by default on some platforms."),
9444 &set_disable_randomization,
9445 &show_disable_randomization,
9446 &setlist, &showlist);
9447
9448 /* ptid initializations */
9449 inferior_ptid = null_ptid;
9450 target_last_wait_ptid = minus_one_ptid;
9451
9452 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9453 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9454 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9455 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9456
9457 /* Explicitly create without lookup, since that tries to create a
9458 value with a void typed value, and when we get here, gdbarch
9459 isn't initialized yet. At this point, we're quite sure there
9460 isn't another convenience variable of the same name. */
9461 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9462
9463 add_setshow_boolean_cmd ("observer", no_class,
9464 &observer_mode_1, _("\
9465 Set whether gdb controls the inferior in observer mode."), _("\
9466 Show whether gdb controls the inferior in observer mode."), _("\
9467 In observer mode, GDB can get data from the inferior, but not\n\
9468 affect its execution. Registers and memory may not be changed,\n\
9469 breakpoints may not be set, and the program cannot be interrupted\n\
9470 or signalled."),
9471 set_observer_mode,
9472 show_observer_mode,
9473 &setlist,
9474 &showlist);
9475 }
This page took 0.302133 seconds and 4 git commands to generate.