Change detach_breakpoints to take a ptid instead of a pid
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2012 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "exceptions.h"
28 #include "breakpoint.h"
29 #include "gdb_wait.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "cli/cli-script.h"
33 #include "target.h"
34 #include "gdbthread.h"
35 #include "annotate.h"
36 #include "symfile.h"
37 #include "top.h"
38 #include <signal.h>
39 #include "inf-loop.h"
40 #include "regcache.h"
41 #include "value.h"
42 #include "observer.h"
43 #include "language.h"
44 #include "solib.h"
45 #include "main.h"
46 #include "dictionary.h"
47 #include "block.h"
48 #include "gdb_assert.h"
49 #include "mi/mi-common.h"
50 #include "event-top.h"
51 #include "record.h"
52 #include "inline-frame.h"
53 #include "jit.h"
54 #include "tracepoint.h"
55 #include "continuations.h"
56 #include "interps.h"
57 #include "skip.h"
58 #include "probe.h"
59 #include "objfiles.h"
60 #include "completer.h"
61
62 /* Prototypes for local functions */
63
64 static void signals_info (char *, int);
65
66 static void handle_command (char *, int);
67
68 static void sig_print_info (enum gdb_signal);
69
70 static void sig_print_header (void);
71
72 static void resume_cleanups (void *);
73
74 static int hook_stop_stub (void *);
75
76 static int restore_selected_frame (void *);
77
78 static int follow_fork (void);
79
80 static void set_schedlock_func (char *args, int from_tty,
81 struct cmd_list_element *c);
82
83 static int currently_stepping (struct thread_info *tp);
84
85 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
86 void *data);
87
88 static void xdb_handle_command (char *args, int from_tty);
89
90 static int prepare_to_proceed (int);
91
92 static void print_exited_reason (int exitstatus);
93
94 static void print_signal_exited_reason (enum gdb_signal siggnal);
95
96 static void print_no_history_reason (void);
97
98 static void print_signal_received_reason (enum gdb_signal siggnal);
99
100 static void print_end_stepping_range_reason (void);
101
102 void _initialize_infrun (void);
103
104 void nullify_last_target_wait_ptid (void);
105
106 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
107
108 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
109
110 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
111
112 /* When set, stop the 'step' command if we enter a function which has
113 no line number information. The normal behavior is that we step
114 over such function. */
115 int step_stop_if_no_debug = 0;
116 static void
117 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c, const char *value)
119 {
120 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
121 }
122
123 /* In asynchronous mode, but simulating synchronous execution. */
124
125 int sync_execution = 0;
126
127 /* wait_for_inferior and normal_stop use this to notify the user
128 when the inferior stopped in a different thread than it had been
129 running in. */
130
131 static ptid_t previous_inferior_ptid;
132
133 /* Default behavior is to detach newly forked processes (legacy). */
134 int detach_fork = 1;
135
136 int debug_displaced = 0;
137 static void
138 show_debug_displaced (struct ui_file *file, int from_tty,
139 struct cmd_list_element *c, const char *value)
140 {
141 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
142 }
143
144 unsigned int debug_infrun = 0;
145 static void
146 show_debug_infrun (struct ui_file *file, int from_tty,
147 struct cmd_list_element *c, const char *value)
148 {
149 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
150 }
151
152
153 /* Support for disabling address space randomization. */
154
155 int disable_randomization = 1;
156
157 static void
158 show_disable_randomization (struct ui_file *file, int from_tty,
159 struct cmd_list_element *c, const char *value)
160 {
161 if (target_supports_disable_randomization ())
162 fprintf_filtered (file,
163 _("Disabling randomization of debuggee's "
164 "virtual address space is %s.\n"),
165 value);
166 else
167 fputs_filtered (_("Disabling randomization of debuggee's "
168 "virtual address space is unsupported on\n"
169 "this platform.\n"), file);
170 }
171
172 static void
173 set_disable_randomization (char *args, int from_tty,
174 struct cmd_list_element *c)
175 {
176 if (!target_supports_disable_randomization ())
177 error (_("Disabling randomization of debuggee's "
178 "virtual address space is unsupported on\n"
179 "this platform."));
180 }
181
182
183 /* If the program uses ELF-style shared libraries, then calls to
184 functions in shared libraries go through stubs, which live in a
185 table called the PLT (Procedure Linkage Table). The first time the
186 function is called, the stub sends control to the dynamic linker,
187 which looks up the function's real address, patches the stub so
188 that future calls will go directly to the function, and then passes
189 control to the function.
190
191 If we are stepping at the source level, we don't want to see any of
192 this --- we just want to skip over the stub and the dynamic linker.
193 The simple approach is to single-step until control leaves the
194 dynamic linker.
195
196 However, on some systems (e.g., Red Hat's 5.2 distribution) the
197 dynamic linker calls functions in the shared C library, so you
198 can't tell from the PC alone whether the dynamic linker is still
199 running. In this case, we use a step-resume breakpoint to get us
200 past the dynamic linker, as if we were using "next" to step over a
201 function call.
202
203 in_solib_dynsym_resolve_code() says whether we're in the dynamic
204 linker code or not. Normally, this means we single-step. However,
205 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
206 address where we can place a step-resume breakpoint to get past the
207 linker's symbol resolution function.
208
209 in_solib_dynsym_resolve_code() can generally be implemented in a
210 pretty portable way, by comparing the PC against the address ranges
211 of the dynamic linker's sections.
212
213 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
214 it depends on internal details of the dynamic linker. It's usually
215 not too hard to figure out where to put a breakpoint, but it
216 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
217 sanity checking. If it can't figure things out, returning zero and
218 getting the (possibly confusing) stepping behavior is better than
219 signalling an error, which will obscure the change in the
220 inferior's state. */
221
222 /* This function returns TRUE if pc is the address of an instruction
223 that lies within the dynamic linker (such as the event hook, or the
224 dld itself).
225
226 This function must be used only when a dynamic linker event has
227 been caught, and the inferior is being stepped out of the hook, or
228 undefined results are guaranteed. */
229
230 #ifndef SOLIB_IN_DYNAMIC_LINKER
231 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
232 #endif
233
234 /* "Observer mode" is somewhat like a more extreme version of
235 non-stop, in which all GDB operations that might affect the
236 target's execution have been disabled. */
237
238 static int non_stop_1 = 0;
239
240 int observer_mode = 0;
241 static int observer_mode_1 = 0;
242
243 static void
244 set_observer_mode (char *args, int from_tty,
245 struct cmd_list_element *c)
246 {
247 extern int pagination_enabled;
248
249 if (target_has_execution)
250 {
251 observer_mode_1 = observer_mode;
252 error (_("Cannot change this setting while the inferior is running."));
253 }
254
255 observer_mode = observer_mode_1;
256
257 may_write_registers = !observer_mode;
258 may_write_memory = !observer_mode;
259 may_insert_breakpoints = !observer_mode;
260 may_insert_tracepoints = !observer_mode;
261 /* We can insert fast tracepoints in or out of observer mode,
262 but enable them if we're going into this mode. */
263 if (observer_mode)
264 may_insert_fast_tracepoints = 1;
265 may_stop = !observer_mode;
266 update_target_permissions ();
267
268 /* Going *into* observer mode we must force non-stop, then
269 going out we leave it that way. */
270 if (observer_mode)
271 {
272 target_async_permitted = 1;
273 pagination_enabled = 0;
274 non_stop = non_stop_1 = 1;
275 }
276
277 if (from_tty)
278 printf_filtered (_("Observer mode is now %s.\n"),
279 (observer_mode ? "on" : "off"));
280 }
281
282 static void
283 show_observer_mode (struct ui_file *file, int from_tty,
284 struct cmd_list_element *c, const char *value)
285 {
286 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
287 }
288
289 /* This updates the value of observer mode based on changes in
290 permissions. Note that we are deliberately ignoring the values of
291 may-write-registers and may-write-memory, since the user may have
292 reason to enable these during a session, for instance to turn on a
293 debugging-related global. */
294
295 void
296 update_observer_mode (void)
297 {
298 int newval;
299
300 newval = (!may_insert_breakpoints
301 && !may_insert_tracepoints
302 && may_insert_fast_tracepoints
303 && !may_stop
304 && non_stop);
305
306 /* Let the user know if things change. */
307 if (newval != observer_mode)
308 printf_filtered (_("Observer mode is now %s.\n"),
309 (newval ? "on" : "off"));
310
311 observer_mode = observer_mode_1 = newval;
312 }
313
314 /* Tables of how to react to signals; the user sets them. */
315
316 static unsigned char *signal_stop;
317 static unsigned char *signal_print;
318 static unsigned char *signal_program;
319
320 /* Table of signals that the target may silently handle.
321 This is automatically determined from the flags above,
322 and simply cached here. */
323 static unsigned char *signal_pass;
324
325 #define SET_SIGS(nsigs,sigs,flags) \
326 do { \
327 int signum = (nsigs); \
328 while (signum-- > 0) \
329 if ((sigs)[signum]) \
330 (flags)[signum] = 1; \
331 } while (0)
332
333 #define UNSET_SIGS(nsigs,sigs,flags) \
334 do { \
335 int signum = (nsigs); \
336 while (signum-- > 0) \
337 if ((sigs)[signum]) \
338 (flags)[signum] = 0; \
339 } while (0)
340
341 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
342 this function is to avoid exporting `signal_program'. */
343
344 void
345 update_signals_program_target (void)
346 {
347 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
348 }
349
350 /* Value to pass to target_resume() to cause all threads to resume. */
351
352 #define RESUME_ALL minus_one_ptid
353
354 /* Command list pointer for the "stop" placeholder. */
355
356 static struct cmd_list_element *stop_command;
357
358 /* Function inferior was in as of last step command. */
359
360 static struct symbol *step_start_function;
361
362 /* Nonzero if we want to give control to the user when we're notified
363 of shared library events by the dynamic linker. */
364 int stop_on_solib_events;
365 static void
366 show_stop_on_solib_events (struct ui_file *file, int from_tty,
367 struct cmd_list_element *c, const char *value)
368 {
369 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
370 value);
371 }
372
373 /* Nonzero means expecting a trace trap
374 and should stop the inferior and return silently when it happens. */
375
376 int stop_after_trap;
377
378 /* Save register contents here when executing a "finish" command or are
379 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
380 Thus this contains the return value from the called function (assuming
381 values are returned in a register). */
382
383 struct regcache *stop_registers;
384
385 /* Nonzero after stop if current stack frame should be printed. */
386
387 static int stop_print_frame;
388
389 /* This is a cached copy of the pid/waitstatus of the last event
390 returned by target_wait()/deprecated_target_wait_hook(). This
391 information is returned by get_last_target_status(). */
392 static ptid_t target_last_wait_ptid;
393 static struct target_waitstatus target_last_waitstatus;
394
395 static void context_switch (ptid_t ptid);
396
397 void init_thread_stepping_state (struct thread_info *tss);
398
399 void init_infwait_state (void);
400
401 static const char follow_fork_mode_child[] = "child";
402 static const char follow_fork_mode_parent[] = "parent";
403
404 static const char *const follow_fork_mode_kind_names[] = {
405 follow_fork_mode_child,
406 follow_fork_mode_parent,
407 NULL
408 };
409
410 static const char *follow_fork_mode_string = follow_fork_mode_parent;
411 static void
412 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
413 struct cmd_list_element *c, const char *value)
414 {
415 fprintf_filtered (file,
416 _("Debugger response to a program "
417 "call of fork or vfork is \"%s\".\n"),
418 value);
419 }
420 \f
421
422 /* Tell the target to follow the fork we're stopped at. Returns true
423 if the inferior should be resumed; false, if the target for some
424 reason decided it's best not to resume. */
425
426 static int
427 follow_fork (void)
428 {
429 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
430 int should_resume = 1;
431 struct thread_info *tp;
432
433 /* Copy user stepping state to the new inferior thread. FIXME: the
434 followed fork child thread should have a copy of most of the
435 parent thread structure's run control related fields, not just these.
436 Initialized to avoid "may be used uninitialized" warnings from gcc. */
437 struct breakpoint *step_resume_breakpoint = NULL;
438 struct breakpoint *exception_resume_breakpoint = NULL;
439 CORE_ADDR step_range_start = 0;
440 CORE_ADDR step_range_end = 0;
441 struct frame_id step_frame_id = { 0 };
442
443 if (!non_stop)
444 {
445 ptid_t wait_ptid;
446 struct target_waitstatus wait_status;
447
448 /* Get the last target status returned by target_wait(). */
449 get_last_target_status (&wait_ptid, &wait_status);
450
451 /* If not stopped at a fork event, then there's nothing else to
452 do. */
453 if (wait_status.kind != TARGET_WAITKIND_FORKED
454 && wait_status.kind != TARGET_WAITKIND_VFORKED)
455 return 1;
456
457 /* Check if we switched over from WAIT_PTID, since the event was
458 reported. */
459 if (!ptid_equal (wait_ptid, minus_one_ptid)
460 && !ptid_equal (inferior_ptid, wait_ptid))
461 {
462 /* We did. Switch back to WAIT_PTID thread, to tell the
463 target to follow it (in either direction). We'll
464 afterwards refuse to resume, and inform the user what
465 happened. */
466 switch_to_thread (wait_ptid);
467 should_resume = 0;
468 }
469 }
470
471 tp = inferior_thread ();
472
473 /* If there were any forks/vforks that were caught and are now to be
474 followed, then do so now. */
475 switch (tp->pending_follow.kind)
476 {
477 case TARGET_WAITKIND_FORKED:
478 case TARGET_WAITKIND_VFORKED:
479 {
480 ptid_t parent, child;
481
482 /* If the user did a next/step, etc, over a fork call,
483 preserve the stepping state in the fork child. */
484 if (follow_child && should_resume)
485 {
486 step_resume_breakpoint = clone_momentary_breakpoint
487 (tp->control.step_resume_breakpoint);
488 step_range_start = tp->control.step_range_start;
489 step_range_end = tp->control.step_range_end;
490 step_frame_id = tp->control.step_frame_id;
491 exception_resume_breakpoint
492 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
493
494 /* For now, delete the parent's sr breakpoint, otherwise,
495 parent/child sr breakpoints are considered duplicates,
496 and the child version will not be installed. Remove
497 this when the breakpoints module becomes aware of
498 inferiors and address spaces. */
499 delete_step_resume_breakpoint (tp);
500 tp->control.step_range_start = 0;
501 tp->control.step_range_end = 0;
502 tp->control.step_frame_id = null_frame_id;
503 delete_exception_resume_breakpoint (tp);
504 }
505
506 parent = inferior_ptid;
507 child = tp->pending_follow.value.related_pid;
508
509 /* Tell the target to do whatever is necessary to follow
510 either parent or child. */
511 if (target_follow_fork (follow_child))
512 {
513 /* Target refused to follow, or there's some other reason
514 we shouldn't resume. */
515 should_resume = 0;
516 }
517 else
518 {
519 /* This pending follow fork event is now handled, one way
520 or another. The previous selected thread may be gone
521 from the lists by now, but if it is still around, need
522 to clear the pending follow request. */
523 tp = find_thread_ptid (parent);
524 if (tp)
525 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
526
527 /* This makes sure we don't try to apply the "Switched
528 over from WAIT_PID" logic above. */
529 nullify_last_target_wait_ptid ();
530
531 /* If we followed the child, switch to it... */
532 if (follow_child)
533 {
534 switch_to_thread (child);
535
536 /* ... and preserve the stepping state, in case the
537 user was stepping over the fork call. */
538 if (should_resume)
539 {
540 tp = inferior_thread ();
541 tp->control.step_resume_breakpoint
542 = step_resume_breakpoint;
543 tp->control.step_range_start = step_range_start;
544 tp->control.step_range_end = step_range_end;
545 tp->control.step_frame_id = step_frame_id;
546 tp->control.exception_resume_breakpoint
547 = exception_resume_breakpoint;
548 }
549 else
550 {
551 /* If we get here, it was because we're trying to
552 resume from a fork catchpoint, but, the user
553 has switched threads away from the thread that
554 forked. In that case, the resume command
555 issued is most likely not applicable to the
556 child, so just warn, and refuse to resume. */
557 warning (_("Not resuming: switched threads "
558 "before following fork child.\n"));
559 }
560
561 /* Reset breakpoints in the child as appropriate. */
562 follow_inferior_reset_breakpoints ();
563 }
564 else
565 switch_to_thread (parent);
566 }
567 }
568 break;
569 case TARGET_WAITKIND_SPURIOUS:
570 /* Nothing to follow. */
571 break;
572 default:
573 internal_error (__FILE__, __LINE__,
574 "Unexpected pending_follow.kind %d\n",
575 tp->pending_follow.kind);
576 break;
577 }
578
579 return should_resume;
580 }
581
582 void
583 follow_inferior_reset_breakpoints (void)
584 {
585 struct thread_info *tp = inferior_thread ();
586
587 /* Was there a step_resume breakpoint? (There was if the user
588 did a "next" at the fork() call.) If so, explicitly reset its
589 thread number.
590
591 step_resumes are a form of bp that are made to be per-thread.
592 Since we created the step_resume bp when the parent process
593 was being debugged, and now are switching to the child process,
594 from the breakpoint package's viewpoint, that's a switch of
595 "threads". We must update the bp's notion of which thread
596 it is for, or it'll be ignored when it triggers. */
597
598 if (tp->control.step_resume_breakpoint)
599 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
600
601 if (tp->control.exception_resume_breakpoint)
602 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
603
604 /* Reinsert all breakpoints in the child. The user may have set
605 breakpoints after catching the fork, in which case those
606 were never set in the child, but only in the parent. This makes
607 sure the inserted breakpoints match the breakpoint list. */
608
609 breakpoint_re_set ();
610 insert_breakpoints ();
611 }
612
613 /* The child has exited or execed: resume threads of the parent the
614 user wanted to be executing. */
615
616 static int
617 proceed_after_vfork_done (struct thread_info *thread,
618 void *arg)
619 {
620 int pid = * (int *) arg;
621
622 if (ptid_get_pid (thread->ptid) == pid
623 && is_running (thread->ptid)
624 && !is_executing (thread->ptid)
625 && !thread->stop_requested
626 && thread->suspend.stop_signal == GDB_SIGNAL_0)
627 {
628 if (debug_infrun)
629 fprintf_unfiltered (gdb_stdlog,
630 "infrun: resuming vfork parent thread %s\n",
631 target_pid_to_str (thread->ptid));
632
633 switch_to_thread (thread->ptid);
634 clear_proceed_status ();
635 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
636 }
637
638 return 0;
639 }
640
641 /* Called whenever we notice an exec or exit event, to handle
642 detaching or resuming a vfork parent. */
643
644 static void
645 handle_vfork_child_exec_or_exit (int exec)
646 {
647 struct inferior *inf = current_inferior ();
648
649 if (inf->vfork_parent)
650 {
651 int resume_parent = -1;
652
653 /* This exec or exit marks the end of the shared memory region
654 between the parent and the child. If the user wanted to
655 detach from the parent, now is the time. */
656
657 if (inf->vfork_parent->pending_detach)
658 {
659 struct thread_info *tp;
660 struct cleanup *old_chain;
661 struct program_space *pspace;
662 struct address_space *aspace;
663
664 /* follow-fork child, detach-on-fork on. */
665
666 old_chain = make_cleanup_restore_current_thread ();
667
668 /* We're letting loose of the parent. */
669 tp = any_live_thread_of_process (inf->vfork_parent->pid);
670 switch_to_thread (tp->ptid);
671
672 /* We're about to detach from the parent, which implicitly
673 removes breakpoints from its address space. There's a
674 catch here: we want to reuse the spaces for the child,
675 but, parent/child are still sharing the pspace at this
676 point, although the exec in reality makes the kernel give
677 the child a fresh set of new pages. The problem here is
678 that the breakpoints module being unaware of this, would
679 likely chose the child process to write to the parent
680 address space. Swapping the child temporarily away from
681 the spaces has the desired effect. Yes, this is "sort
682 of" a hack. */
683
684 pspace = inf->pspace;
685 aspace = inf->aspace;
686 inf->aspace = NULL;
687 inf->pspace = NULL;
688
689 if (debug_infrun || info_verbose)
690 {
691 target_terminal_ours ();
692
693 if (exec)
694 fprintf_filtered (gdb_stdlog,
695 "Detaching vfork parent process "
696 "%d after child exec.\n",
697 inf->vfork_parent->pid);
698 else
699 fprintf_filtered (gdb_stdlog,
700 "Detaching vfork parent process "
701 "%d after child exit.\n",
702 inf->vfork_parent->pid);
703 }
704
705 target_detach (NULL, 0);
706
707 /* Put it back. */
708 inf->pspace = pspace;
709 inf->aspace = aspace;
710
711 do_cleanups (old_chain);
712 }
713 else if (exec)
714 {
715 /* We're staying attached to the parent, so, really give the
716 child a new address space. */
717 inf->pspace = add_program_space (maybe_new_address_space ());
718 inf->aspace = inf->pspace->aspace;
719 inf->removable = 1;
720 set_current_program_space (inf->pspace);
721
722 resume_parent = inf->vfork_parent->pid;
723
724 /* Break the bonds. */
725 inf->vfork_parent->vfork_child = NULL;
726 }
727 else
728 {
729 struct cleanup *old_chain;
730 struct program_space *pspace;
731
732 /* If this is a vfork child exiting, then the pspace and
733 aspaces were shared with the parent. Since we're
734 reporting the process exit, we'll be mourning all that is
735 found in the address space, and switching to null_ptid,
736 preparing to start a new inferior. But, since we don't
737 want to clobber the parent's address/program spaces, we
738 go ahead and create a new one for this exiting
739 inferior. */
740
741 /* Switch to null_ptid, so that clone_program_space doesn't want
742 to read the selected frame of a dead process. */
743 old_chain = save_inferior_ptid ();
744 inferior_ptid = null_ptid;
745
746 /* This inferior is dead, so avoid giving the breakpoints
747 module the option to write through to it (cloning a
748 program space resets breakpoints). */
749 inf->aspace = NULL;
750 inf->pspace = NULL;
751 pspace = add_program_space (maybe_new_address_space ());
752 set_current_program_space (pspace);
753 inf->removable = 1;
754 inf->symfile_flags = SYMFILE_NO_READ;
755 clone_program_space (pspace, inf->vfork_parent->pspace);
756 inf->pspace = pspace;
757 inf->aspace = pspace->aspace;
758
759 /* Put back inferior_ptid. We'll continue mourning this
760 inferior. */
761 do_cleanups (old_chain);
762
763 resume_parent = inf->vfork_parent->pid;
764 /* Break the bonds. */
765 inf->vfork_parent->vfork_child = NULL;
766 }
767
768 inf->vfork_parent = NULL;
769
770 gdb_assert (current_program_space == inf->pspace);
771
772 if (non_stop && resume_parent != -1)
773 {
774 /* If the user wanted the parent to be running, let it go
775 free now. */
776 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
777
778 if (debug_infrun)
779 fprintf_unfiltered (gdb_stdlog,
780 "infrun: resuming vfork parent process %d\n",
781 resume_parent);
782
783 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
784
785 do_cleanups (old_chain);
786 }
787 }
788 }
789
790 /* Enum strings for "set|show displaced-stepping". */
791
792 static const char follow_exec_mode_new[] = "new";
793 static const char follow_exec_mode_same[] = "same";
794 static const char *const follow_exec_mode_names[] =
795 {
796 follow_exec_mode_new,
797 follow_exec_mode_same,
798 NULL,
799 };
800
801 static const char *follow_exec_mode_string = follow_exec_mode_same;
802 static void
803 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
804 struct cmd_list_element *c, const char *value)
805 {
806 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
807 }
808
809 /* EXECD_PATHNAME is assumed to be non-NULL. */
810
811 static void
812 follow_exec (ptid_t pid, char *execd_pathname)
813 {
814 struct thread_info *th = inferior_thread ();
815 struct inferior *inf = current_inferior ();
816
817 /* This is an exec event that we actually wish to pay attention to.
818 Refresh our symbol table to the newly exec'd program, remove any
819 momentary bp's, etc.
820
821 If there are breakpoints, they aren't really inserted now,
822 since the exec() transformed our inferior into a fresh set
823 of instructions.
824
825 We want to preserve symbolic breakpoints on the list, since
826 we have hopes that they can be reset after the new a.out's
827 symbol table is read.
828
829 However, any "raw" breakpoints must be removed from the list
830 (e.g., the solib bp's), since their address is probably invalid
831 now.
832
833 And, we DON'T want to call delete_breakpoints() here, since
834 that may write the bp's "shadow contents" (the instruction
835 value that was overwritten witha TRAP instruction). Since
836 we now have a new a.out, those shadow contents aren't valid. */
837
838 mark_breakpoints_out ();
839
840 update_breakpoints_after_exec ();
841
842 /* If there was one, it's gone now. We cannot truly step-to-next
843 statement through an exec(). */
844 th->control.step_resume_breakpoint = NULL;
845 th->control.exception_resume_breakpoint = NULL;
846 th->control.step_range_start = 0;
847 th->control.step_range_end = 0;
848
849 /* The target reports the exec event to the main thread, even if
850 some other thread does the exec, and even if the main thread was
851 already stopped --- if debugging in non-stop mode, it's possible
852 the user had the main thread held stopped in the previous image
853 --- release it now. This is the same behavior as step-over-exec
854 with scheduler-locking on in all-stop mode. */
855 th->stop_requested = 0;
856
857 /* What is this a.out's name? */
858 printf_unfiltered (_("%s is executing new program: %s\n"),
859 target_pid_to_str (inferior_ptid),
860 execd_pathname);
861
862 /* We've followed the inferior through an exec. Therefore, the
863 inferior has essentially been killed & reborn. */
864
865 gdb_flush (gdb_stdout);
866
867 breakpoint_init_inferior (inf_execd);
868
869 if (gdb_sysroot && *gdb_sysroot)
870 {
871 char *name = alloca (strlen (gdb_sysroot)
872 + strlen (execd_pathname)
873 + 1);
874
875 strcpy (name, gdb_sysroot);
876 strcat (name, execd_pathname);
877 execd_pathname = name;
878 }
879
880 /* Reset the shared library package. This ensures that we get a
881 shlib event when the child reaches "_start", at which point the
882 dld will have had a chance to initialize the child. */
883 /* Also, loading a symbol file below may trigger symbol lookups, and
884 we don't want those to be satisfied by the libraries of the
885 previous incarnation of this process. */
886 no_shared_libraries (NULL, 0);
887
888 if (follow_exec_mode_string == follow_exec_mode_new)
889 {
890 struct program_space *pspace;
891
892 /* The user wants to keep the old inferior and program spaces
893 around. Create a new fresh one, and switch to it. */
894
895 inf = add_inferior (current_inferior ()->pid);
896 pspace = add_program_space (maybe_new_address_space ());
897 inf->pspace = pspace;
898 inf->aspace = pspace->aspace;
899
900 exit_inferior_num_silent (current_inferior ()->num);
901
902 set_current_inferior (inf);
903 set_current_program_space (pspace);
904 }
905
906 gdb_assert (current_program_space == inf->pspace);
907
908 /* That a.out is now the one to use. */
909 exec_file_attach (execd_pathname, 0);
910
911 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
912 (Position Independent Executable) main symbol file will get applied by
913 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
914 the breakpoints with the zero displacement. */
915
916 symbol_file_add (execd_pathname,
917 (inf->symfile_flags
918 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
919 NULL, 0);
920
921 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
922 set_initial_language ();
923
924 #ifdef SOLIB_CREATE_INFERIOR_HOOK
925 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
926 #else
927 solib_create_inferior_hook (0);
928 #endif
929
930 jit_inferior_created_hook ();
931
932 breakpoint_re_set ();
933
934 /* Reinsert all breakpoints. (Those which were symbolic have
935 been reset to the proper address in the new a.out, thanks
936 to symbol_file_command...). */
937 insert_breakpoints ();
938
939 /* The next resume of this inferior should bring it to the shlib
940 startup breakpoints. (If the user had also set bp's on
941 "main" from the old (parent) process, then they'll auto-
942 matically get reset there in the new process.). */
943 }
944
945 /* Non-zero if we just simulating a single-step. This is needed
946 because we cannot remove the breakpoints in the inferior process
947 until after the `wait' in `wait_for_inferior'. */
948 static int singlestep_breakpoints_inserted_p = 0;
949
950 /* The thread we inserted single-step breakpoints for. */
951 static ptid_t singlestep_ptid;
952
953 /* PC when we started this single-step. */
954 static CORE_ADDR singlestep_pc;
955
956 /* If another thread hit the singlestep breakpoint, we save the original
957 thread here so that we can resume single-stepping it later. */
958 static ptid_t saved_singlestep_ptid;
959 static int stepping_past_singlestep_breakpoint;
960
961 /* If not equal to null_ptid, this means that after stepping over breakpoint
962 is finished, we need to switch to deferred_step_ptid, and step it.
963
964 The use case is when one thread has hit a breakpoint, and then the user
965 has switched to another thread and issued 'step'. We need to step over
966 breakpoint in the thread which hit the breakpoint, but then continue
967 stepping the thread user has selected. */
968 static ptid_t deferred_step_ptid;
969 \f
970 /* Displaced stepping. */
971
972 /* In non-stop debugging mode, we must take special care to manage
973 breakpoints properly; in particular, the traditional strategy for
974 stepping a thread past a breakpoint it has hit is unsuitable.
975 'Displaced stepping' is a tactic for stepping one thread past a
976 breakpoint it has hit while ensuring that other threads running
977 concurrently will hit the breakpoint as they should.
978
979 The traditional way to step a thread T off a breakpoint in a
980 multi-threaded program in all-stop mode is as follows:
981
982 a0) Initially, all threads are stopped, and breakpoints are not
983 inserted.
984 a1) We single-step T, leaving breakpoints uninserted.
985 a2) We insert breakpoints, and resume all threads.
986
987 In non-stop debugging, however, this strategy is unsuitable: we
988 don't want to have to stop all threads in the system in order to
989 continue or step T past a breakpoint. Instead, we use displaced
990 stepping:
991
992 n0) Initially, T is stopped, other threads are running, and
993 breakpoints are inserted.
994 n1) We copy the instruction "under" the breakpoint to a separate
995 location, outside the main code stream, making any adjustments
996 to the instruction, register, and memory state as directed by
997 T's architecture.
998 n2) We single-step T over the instruction at its new location.
999 n3) We adjust the resulting register and memory state as directed
1000 by T's architecture. This includes resetting T's PC to point
1001 back into the main instruction stream.
1002 n4) We resume T.
1003
1004 This approach depends on the following gdbarch methods:
1005
1006 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1007 indicate where to copy the instruction, and how much space must
1008 be reserved there. We use these in step n1.
1009
1010 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1011 address, and makes any necessary adjustments to the instruction,
1012 register contents, and memory. We use this in step n1.
1013
1014 - gdbarch_displaced_step_fixup adjusts registers and memory after
1015 we have successfuly single-stepped the instruction, to yield the
1016 same effect the instruction would have had if we had executed it
1017 at its original address. We use this in step n3.
1018
1019 - gdbarch_displaced_step_free_closure provides cleanup.
1020
1021 The gdbarch_displaced_step_copy_insn and
1022 gdbarch_displaced_step_fixup functions must be written so that
1023 copying an instruction with gdbarch_displaced_step_copy_insn,
1024 single-stepping across the copied instruction, and then applying
1025 gdbarch_displaced_insn_fixup should have the same effects on the
1026 thread's memory and registers as stepping the instruction in place
1027 would have. Exactly which responsibilities fall to the copy and
1028 which fall to the fixup is up to the author of those functions.
1029
1030 See the comments in gdbarch.sh for details.
1031
1032 Note that displaced stepping and software single-step cannot
1033 currently be used in combination, although with some care I think
1034 they could be made to. Software single-step works by placing
1035 breakpoints on all possible subsequent instructions; if the
1036 displaced instruction is a PC-relative jump, those breakpoints
1037 could fall in very strange places --- on pages that aren't
1038 executable, or at addresses that are not proper instruction
1039 boundaries. (We do generally let other threads run while we wait
1040 to hit the software single-step breakpoint, and they might
1041 encounter such a corrupted instruction.) One way to work around
1042 this would be to have gdbarch_displaced_step_copy_insn fully
1043 simulate the effect of PC-relative instructions (and return NULL)
1044 on architectures that use software single-stepping.
1045
1046 In non-stop mode, we can have independent and simultaneous step
1047 requests, so more than one thread may need to simultaneously step
1048 over a breakpoint. The current implementation assumes there is
1049 only one scratch space per process. In this case, we have to
1050 serialize access to the scratch space. If thread A wants to step
1051 over a breakpoint, but we are currently waiting for some other
1052 thread to complete a displaced step, we leave thread A stopped and
1053 place it in the displaced_step_request_queue. Whenever a displaced
1054 step finishes, we pick the next thread in the queue and start a new
1055 displaced step operation on it. See displaced_step_prepare and
1056 displaced_step_fixup for details. */
1057
1058 struct displaced_step_request
1059 {
1060 ptid_t ptid;
1061 struct displaced_step_request *next;
1062 };
1063
1064 /* Per-inferior displaced stepping state. */
1065 struct displaced_step_inferior_state
1066 {
1067 /* Pointer to next in linked list. */
1068 struct displaced_step_inferior_state *next;
1069
1070 /* The process this displaced step state refers to. */
1071 int pid;
1072
1073 /* A queue of pending displaced stepping requests. One entry per
1074 thread that needs to do a displaced step. */
1075 struct displaced_step_request *step_request_queue;
1076
1077 /* If this is not null_ptid, this is the thread carrying out a
1078 displaced single-step in process PID. This thread's state will
1079 require fixing up once it has completed its step. */
1080 ptid_t step_ptid;
1081
1082 /* The architecture the thread had when we stepped it. */
1083 struct gdbarch *step_gdbarch;
1084
1085 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1086 for post-step cleanup. */
1087 struct displaced_step_closure *step_closure;
1088
1089 /* The address of the original instruction, and the copy we
1090 made. */
1091 CORE_ADDR step_original, step_copy;
1092
1093 /* Saved contents of copy area. */
1094 gdb_byte *step_saved_copy;
1095 };
1096
1097 /* The list of states of processes involved in displaced stepping
1098 presently. */
1099 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1100
1101 /* Get the displaced stepping state of process PID. */
1102
1103 static struct displaced_step_inferior_state *
1104 get_displaced_stepping_state (int pid)
1105 {
1106 struct displaced_step_inferior_state *state;
1107
1108 for (state = displaced_step_inferior_states;
1109 state != NULL;
1110 state = state->next)
1111 if (state->pid == pid)
1112 return state;
1113
1114 return NULL;
1115 }
1116
1117 /* Add a new displaced stepping state for process PID to the displaced
1118 stepping state list, or return a pointer to an already existing
1119 entry, if it already exists. Never returns NULL. */
1120
1121 static struct displaced_step_inferior_state *
1122 add_displaced_stepping_state (int pid)
1123 {
1124 struct displaced_step_inferior_state *state;
1125
1126 for (state = displaced_step_inferior_states;
1127 state != NULL;
1128 state = state->next)
1129 if (state->pid == pid)
1130 return state;
1131
1132 state = xcalloc (1, sizeof (*state));
1133 state->pid = pid;
1134 state->next = displaced_step_inferior_states;
1135 displaced_step_inferior_states = state;
1136
1137 return state;
1138 }
1139
1140 /* If inferior is in displaced stepping, and ADDR equals to starting address
1141 of copy area, return corresponding displaced_step_closure. Otherwise,
1142 return NULL. */
1143
1144 struct displaced_step_closure*
1145 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1146 {
1147 struct displaced_step_inferior_state *displaced
1148 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1149
1150 /* If checking the mode of displaced instruction in copy area. */
1151 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1152 && (displaced->step_copy == addr))
1153 return displaced->step_closure;
1154
1155 return NULL;
1156 }
1157
1158 /* Remove the displaced stepping state of process PID. */
1159
1160 static void
1161 remove_displaced_stepping_state (int pid)
1162 {
1163 struct displaced_step_inferior_state *it, **prev_next_p;
1164
1165 gdb_assert (pid != 0);
1166
1167 it = displaced_step_inferior_states;
1168 prev_next_p = &displaced_step_inferior_states;
1169 while (it)
1170 {
1171 if (it->pid == pid)
1172 {
1173 *prev_next_p = it->next;
1174 xfree (it);
1175 return;
1176 }
1177
1178 prev_next_p = &it->next;
1179 it = *prev_next_p;
1180 }
1181 }
1182
1183 static void
1184 infrun_inferior_exit (struct inferior *inf)
1185 {
1186 remove_displaced_stepping_state (inf->pid);
1187 }
1188
1189 /* If ON, and the architecture supports it, GDB will use displaced
1190 stepping to step over breakpoints. If OFF, or if the architecture
1191 doesn't support it, GDB will instead use the traditional
1192 hold-and-step approach. If AUTO (which is the default), GDB will
1193 decide which technique to use to step over breakpoints depending on
1194 which of all-stop or non-stop mode is active --- displaced stepping
1195 in non-stop mode; hold-and-step in all-stop mode. */
1196
1197 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1198
1199 static void
1200 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1201 struct cmd_list_element *c,
1202 const char *value)
1203 {
1204 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1205 fprintf_filtered (file,
1206 _("Debugger's willingness to use displaced stepping "
1207 "to step over breakpoints is %s (currently %s).\n"),
1208 value, non_stop ? "on" : "off");
1209 else
1210 fprintf_filtered (file,
1211 _("Debugger's willingness to use displaced stepping "
1212 "to step over breakpoints is %s.\n"), value);
1213 }
1214
1215 /* Return non-zero if displaced stepping can/should be used to step
1216 over breakpoints. */
1217
1218 static int
1219 use_displaced_stepping (struct gdbarch *gdbarch)
1220 {
1221 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1222 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1223 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1224 && !RECORD_IS_USED);
1225 }
1226
1227 /* Clean out any stray displaced stepping state. */
1228 static void
1229 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1230 {
1231 /* Indicate that there is no cleanup pending. */
1232 displaced->step_ptid = null_ptid;
1233
1234 if (displaced->step_closure)
1235 {
1236 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1237 displaced->step_closure);
1238 displaced->step_closure = NULL;
1239 }
1240 }
1241
1242 static void
1243 displaced_step_clear_cleanup (void *arg)
1244 {
1245 struct displaced_step_inferior_state *state = arg;
1246
1247 displaced_step_clear (state);
1248 }
1249
1250 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1251 void
1252 displaced_step_dump_bytes (struct ui_file *file,
1253 const gdb_byte *buf,
1254 size_t len)
1255 {
1256 int i;
1257
1258 for (i = 0; i < len; i++)
1259 fprintf_unfiltered (file, "%02x ", buf[i]);
1260 fputs_unfiltered ("\n", file);
1261 }
1262
1263 /* Prepare to single-step, using displaced stepping.
1264
1265 Note that we cannot use displaced stepping when we have a signal to
1266 deliver. If we have a signal to deliver and an instruction to step
1267 over, then after the step, there will be no indication from the
1268 target whether the thread entered a signal handler or ignored the
1269 signal and stepped over the instruction successfully --- both cases
1270 result in a simple SIGTRAP. In the first case we mustn't do a
1271 fixup, and in the second case we must --- but we can't tell which.
1272 Comments in the code for 'random signals' in handle_inferior_event
1273 explain how we handle this case instead.
1274
1275 Returns 1 if preparing was successful -- this thread is going to be
1276 stepped now; or 0 if displaced stepping this thread got queued. */
1277 static int
1278 displaced_step_prepare (ptid_t ptid)
1279 {
1280 struct cleanup *old_cleanups, *ignore_cleanups;
1281 struct regcache *regcache = get_thread_regcache (ptid);
1282 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1283 CORE_ADDR original, copy;
1284 ULONGEST len;
1285 struct displaced_step_closure *closure;
1286 struct displaced_step_inferior_state *displaced;
1287 int status;
1288
1289 /* We should never reach this function if the architecture does not
1290 support displaced stepping. */
1291 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1292
1293 /* We have to displaced step one thread at a time, as we only have
1294 access to a single scratch space per inferior. */
1295
1296 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1297
1298 if (!ptid_equal (displaced->step_ptid, null_ptid))
1299 {
1300 /* Already waiting for a displaced step to finish. Defer this
1301 request and place in queue. */
1302 struct displaced_step_request *req, *new_req;
1303
1304 if (debug_displaced)
1305 fprintf_unfiltered (gdb_stdlog,
1306 "displaced: defering step of %s\n",
1307 target_pid_to_str (ptid));
1308
1309 new_req = xmalloc (sizeof (*new_req));
1310 new_req->ptid = ptid;
1311 new_req->next = NULL;
1312
1313 if (displaced->step_request_queue)
1314 {
1315 for (req = displaced->step_request_queue;
1316 req && req->next;
1317 req = req->next)
1318 ;
1319 req->next = new_req;
1320 }
1321 else
1322 displaced->step_request_queue = new_req;
1323
1324 return 0;
1325 }
1326 else
1327 {
1328 if (debug_displaced)
1329 fprintf_unfiltered (gdb_stdlog,
1330 "displaced: stepping %s now\n",
1331 target_pid_to_str (ptid));
1332 }
1333
1334 displaced_step_clear (displaced);
1335
1336 old_cleanups = save_inferior_ptid ();
1337 inferior_ptid = ptid;
1338
1339 original = regcache_read_pc (regcache);
1340
1341 copy = gdbarch_displaced_step_location (gdbarch);
1342 len = gdbarch_max_insn_length (gdbarch);
1343
1344 /* Save the original contents of the copy area. */
1345 displaced->step_saved_copy = xmalloc (len);
1346 ignore_cleanups = make_cleanup (free_current_contents,
1347 &displaced->step_saved_copy);
1348 status = target_read_memory (copy, displaced->step_saved_copy, len);
1349 if (status != 0)
1350 throw_error (MEMORY_ERROR,
1351 _("Error accessing memory address %s (%s) for "
1352 "displaced-stepping scratch space."),
1353 paddress (gdbarch, copy), safe_strerror (status));
1354 if (debug_displaced)
1355 {
1356 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1357 paddress (gdbarch, copy));
1358 displaced_step_dump_bytes (gdb_stdlog,
1359 displaced->step_saved_copy,
1360 len);
1361 };
1362
1363 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1364 original, copy, regcache);
1365
1366 /* We don't support the fully-simulated case at present. */
1367 gdb_assert (closure);
1368
1369 /* Save the information we need to fix things up if the step
1370 succeeds. */
1371 displaced->step_ptid = ptid;
1372 displaced->step_gdbarch = gdbarch;
1373 displaced->step_closure = closure;
1374 displaced->step_original = original;
1375 displaced->step_copy = copy;
1376
1377 make_cleanup (displaced_step_clear_cleanup, displaced);
1378
1379 /* Resume execution at the copy. */
1380 regcache_write_pc (regcache, copy);
1381
1382 discard_cleanups (ignore_cleanups);
1383
1384 do_cleanups (old_cleanups);
1385
1386 if (debug_displaced)
1387 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1388 paddress (gdbarch, copy));
1389
1390 return 1;
1391 }
1392
1393 static void
1394 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1395 const gdb_byte *myaddr, int len)
1396 {
1397 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1398
1399 inferior_ptid = ptid;
1400 write_memory (memaddr, myaddr, len);
1401 do_cleanups (ptid_cleanup);
1402 }
1403
1404 /* Restore the contents of the copy area for thread PTID. */
1405
1406 static void
1407 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1408 ptid_t ptid)
1409 {
1410 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1411
1412 write_memory_ptid (ptid, displaced->step_copy,
1413 displaced->step_saved_copy, len);
1414 if (debug_displaced)
1415 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1416 target_pid_to_str (ptid),
1417 paddress (displaced->step_gdbarch,
1418 displaced->step_copy));
1419 }
1420
1421 static void
1422 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1423 {
1424 struct cleanup *old_cleanups;
1425 struct displaced_step_inferior_state *displaced
1426 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1427
1428 /* Was any thread of this process doing a displaced step? */
1429 if (displaced == NULL)
1430 return;
1431
1432 /* Was this event for the pid we displaced? */
1433 if (ptid_equal (displaced->step_ptid, null_ptid)
1434 || ! ptid_equal (displaced->step_ptid, event_ptid))
1435 return;
1436
1437 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1438
1439 displaced_step_restore (displaced, displaced->step_ptid);
1440
1441 /* Did the instruction complete successfully? */
1442 if (signal == GDB_SIGNAL_TRAP)
1443 {
1444 /* Fix up the resulting state. */
1445 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1446 displaced->step_closure,
1447 displaced->step_original,
1448 displaced->step_copy,
1449 get_thread_regcache (displaced->step_ptid));
1450 }
1451 else
1452 {
1453 /* Since the instruction didn't complete, all we can do is
1454 relocate the PC. */
1455 struct regcache *regcache = get_thread_regcache (event_ptid);
1456 CORE_ADDR pc = regcache_read_pc (regcache);
1457
1458 pc = displaced->step_original + (pc - displaced->step_copy);
1459 regcache_write_pc (regcache, pc);
1460 }
1461
1462 do_cleanups (old_cleanups);
1463
1464 displaced->step_ptid = null_ptid;
1465
1466 /* Are there any pending displaced stepping requests? If so, run
1467 one now. Leave the state object around, since we're likely to
1468 need it again soon. */
1469 while (displaced->step_request_queue)
1470 {
1471 struct displaced_step_request *head;
1472 ptid_t ptid;
1473 struct regcache *regcache;
1474 struct gdbarch *gdbarch;
1475 CORE_ADDR actual_pc;
1476 struct address_space *aspace;
1477
1478 head = displaced->step_request_queue;
1479 ptid = head->ptid;
1480 displaced->step_request_queue = head->next;
1481 xfree (head);
1482
1483 context_switch (ptid);
1484
1485 regcache = get_thread_regcache (ptid);
1486 actual_pc = regcache_read_pc (regcache);
1487 aspace = get_regcache_aspace (regcache);
1488
1489 if (breakpoint_here_p (aspace, actual_pc))
1490 {
1491 if (debug_displaced)
1492 fprintf_unfiltered (gdb_stdlog,
1493 "displaced: stepping queued %s now\n",
1494 target_pid_to_str (ptid));
1495
1496 displaced_step_prepare (ptid);
1497
1498 gdbarch = get_regcache_arch (regcache);
1499
1500 if (debug_displaced)
1501 {
1502 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1503 gdb_byte buf[4];
1504
1505 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1506 paddress (gdbarch, actual_pc));
1507 read_memory (actual_pc, buf, sizeof (buf));
1508 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1509 }
1510
1511 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1512 displaced->step_closure))
1513 target_resume (ptid, 1, GDB_SIGNAL_0);
1514 else
1515 target_resume (ptid, 0, GDB_SIGNAL_0);
1516
1517 /* Done, we're stepping a thread. */
1518 break;
1519 }
1520 else
1521 {
1522 int step;
1523 struct thread_info *tp = inferior_thread ();
1524
1525 /* The breakpoint we were sitting under has since been
1526 removed. */
1527 tp->control.trap_expected = 0;
1528
1529 /* Go back to what we were trying to do. */
1530 step = currently_stepping (tp);
1531
1532 if (debug_displaced)
1533 fprintf_unfiltered (gdb_stdlog,
1534 "displaced: breakpoint is gone: %s, step(%d)\n",
1535 target_pid_to_str (tp->ptid), step);
1536
1537 target_resume (ptid, step, GDB_SIGNAL_0);
1538 tp->suspend.stop_signal = GDB_SIGNAL_0;
1539
1540 /* This request was discarded. See if there's any other
1541 thread waiting for its turn. */
1542 }
1543 }
1544 }
1545
1546 /* Update global variables holding ptids to hold NEW_PTID if they were
1547 holding OLD_PTID. */
1548 static void
1549 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1550 {
1551 struct displaced_step_request *it;
1552 struct displaced_step_inferior_state *displaced;
1553
1554 if (ptid_equal (inferior_ptid, old_ptid))
1555 inferior_ptid = new_ptid;
1556
1557 if (ptid_equal (singlestep_ptid, old_ptid))
1558 singlestep_ptid = new_ptid;
1559
1560 if (ptid_equal (deferred_step_ptid, old_ptid))
1561 deferred_step_ptid = new_ptid;
1562
1563 for (displaced = displaced_step_inferior_states;
1564 displaced;
1565 displaced = displaced->next)
1566 {
1567 if (ptid_equal (displaced->step_ptid, old_ptid))
1568 displaced->step_ptid = new_ptid;
1569
1570 for (it = displaced->step_request_queue; it; it = it->next)
1571 if (ptid_equal (it->ptid, old_ptid))
1572 it->ptid = new_ptid;
1573 }
1574 }
1575
1576 \f
1577 /* Resuming. */
1578
1579 /* Things to clean up if we QUIT out of resume (). */
1580 static void
1581 resume_cleanups (void *ignore)
1582 {
1583 normal_stop ();
1584 }
1585
1586 static const char schedlock_off[] = "off";
1587 static const char schedlock_on[] = "on";
1588 static const char schedlock_step[] = "step";
1589 static const char *const scheduler_enums[] = {
1590 schedlock_off,
1591 schedlock_on,
1592 schedlock_step,
1593 NULL
1594 };
1595 static const char *scheduler_mode = schedlock_off;
1596 static void
1597 show_scheduler_mode (struct ui_file *file, int from_tty,
1598 struct cmd_list_element *c, const char *value)
1599 {
1600 fprintf_filtered (file,
1601 _("Mode for locking scheduler "
1602 "during execution is \"%s\".\n"),
1603 value);
1604 }
1605
1606 static void
1607 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1608 {
1609 if (!target_can_lock_scheduler)
1610 {
1611 scheduler_mode = schedlock_off;
1612 error (_("Target '%s' cannot support this command."), target_shortname);
1613 }
1614 }
1615
1616 /* True if execution commands resume all threads of all processes by
1617 default; otherwise, resume only threads of the current inferior
1618 process. */
1619 int sched_multi = 0;
1620
1621 /* Try to setup for software single stepping over the specified location.
1622 Return 1 if target_resume() should use hardware single step.
1623
1624 GDBARCH the current gdbarch.
1625 PC the location to step over. */
1626
1627 static int
1628 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1629 {
1630 int hw_step = 1;
1631
1632 if (execution_direction == EXEC_FORWARD
1633 && gdbarch_software_single_step_p (gdbarch)
1634 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1635 {
1636 hw_step = 0;
1637 /* Do not pull these breakpoints until after a `wait' in
1638 `wait_for_inferior'. */
1639 singlestep_breakpoints_inserted_p = 1;
1640 singlestep_ptid = inferior_ptid;
1641 singlestep_pc = pc;
1642 }
1643 return hw_step;
1644 }
1645
1646 /* Return a ptid representing the set of threads that we will proceed,
1647 in the perspective of the user/frontend. We may actually resume
1648 fewer threads at first, e.g., if a thread is stopped at a
1649 breakpoint that needs stepping-off, but that should not be visible
1650 to the user/frontend, and neither should the frontend/user be
1651 allowed to proceed any of the threads that happen to be stopped for
1652 internal run control handling, if a previous command wanted them
1653 resumed. */
1654
1655 ptid_t
1656 user_visible_resume_ptid (int step)
1657 {
1658 /* By default, resume all threads of all processes. */
1659 ptid_t resume_ptid = RESUME_ALL;
1660
1661 /* Maybe resume only all threads of the current process. */
1662 if (!sched_multi && target_supports_multi_process ())
1663 {
1664 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1665 }
1666
1667 /* Maybe resume a single thread after all. */
1668 if (non_stop)
1669 {
1670 /* With non-stop mode on, threads are always handled
1671 individually. */
1672 resume_ptid = inferior_ptid;
1673 }
1674 else if ((scheduler_mode == schedlock_on)
1675 || (scheduler_mode == schedlock_step
1676 && (step || singlestep_breakpoints_inserted_p)))
1677 {
1678 /* User-settable 'scheduler' mode requires solo thread resume. */
1679 resume_ptid = inferior_ptid;
1680 }
1681
1682 return resume_ptid;
1683 }
1684
1685 /* Resume the inferior, but allow a QUIT. This is useful if the user
1686 wants to interrupt some lengthy single-stepping operation
1687 (for child processes, the SIGINT goes to the inferior, and so
1688 we get a SIGINT random_signal, but for remote debugging and perhaps
1689 other targets, that's not true).
1690
1691 STEP nonzero if we should step (zero to continue instead).
1692 SIG is the signal to give the inferior (zero for none). */
1693 void
1694 resume (int step, enum gdb_signal sig)
1695 {
1696 int should_resume = 1;
1697 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1698 struct regcache *regcache = get_current_regcache ();
1699 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1700 struct thread_info *tp = inferior_thread ();
1701 CORE_ADDR pc = regcache_read_pc (regcache);
1702 struct address_space *aspace = get_regcache_aspace (regcache);
1703
1704 QUIT;
1705
1706 if (current_inferior ()->waiting_for_vfork_done)
1707 {
1708 /* Don't try to single-step a vfork parent that is waiting for
1709 the child to get out of the shared memory region (by exec'ing
1710 or exiting). This is particularly important on software
1711 single-step archs, as the child process would trip on the
1712 software single step breakpoint inserted for the parent
1713 process. Since the parent will not actually execute any
1714 instruction until the child is out of the shared region (such
1715 are vfork's semantics), it is safe to simply continue it.
1716 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1717 the parent, and tell it to `keep_going', which automatically
1718 re-sets it stepping. */
1719 if (debug_infrun)
1720 fprintf_unfiltered (gdb_stdlog,
1721 "infrun: resume : clear step\n");
1722 step = 0;
1723 }
1724
1725 if (debug_infrun)
1726 fprintf_unfiltered (gdb_stdlog,
1727 "infrun: resume (step=%d, signal=%d), "
1728 "trap_expected=%d, current thread [%s] at %s\n",
1729 step, sig, tp->control.trap_expected,
1730 target_pid_to_str (inferior_ptid),
1731 paddress (gdbarch, pc));
1732
1733 /* Normally, by the time we reach `resume', the breakpoints are either
1734 removed or inserted, as appropriate. The exception is if we're sitting
1735 at a permanent breakpoint; we need to step over it, but permanent
1736 breakpoints can't be removed. So we have to test for it here. */
1737 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1738 {
1739 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1740 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1741 else
1742 error (_("\
1743 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1744 how to step past a permanent breakpoint on this architecture. Try using\n\
1745 a command like `return' or `jump' to continue execution."));
1746 }
1747
1748 /* If enabled, step over breakpoints by executing a copy of the
1749 instruction at a different address.
1750
1751 We can't use displaced stepping when we have a signal to deliver;
1752 the comments for displaced_step_prepare explain why. The
1753 comments in the handle_inferior event for dealing with 'random
1754 signals' explain what we do instead.
1755
1756 We can't use displaced stepping when we are waiting for vfork_done
1757 event, displaced stepping breaks the vfork child similarly as single
1758 step software breakpoint. */
1759 if (use_displaced_stepping (gdbarch)
1760 && (tp->control.trap_expected
1761 || (step && gdbarch_software_single_step_p (gdbarch)))
1762 && sig == GDB_SIGNAL_0
1763 && !current_inferior ()->waiting_for_vfork_done)
1764 {
1765 struct displaced_step_inferior_state *displaced;
1766
1767 if (!displaced_step_prepare (inferior_ptid))
1768 {
1769 /* Got placed in displaced stepping queue. Will be resumed
1770 later when all the currently queued displaced stepping
1771 requests finish. The thread is not executing at this point,
1772 and the call to set_executing will be made later. But we
1773 need to call set_running here, since from frontend point of view,
1774 the thread is running. */
1775 set_running (inferior_ptid, 1);
1776 discard_cleanups (old_cleanups);
1777 return;
1778 }
1779
1780 /* Update pc to reflect the new address from which we will execute
1781 instructions due to displaced stepping. */
1782 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1783
1784 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1785 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1786 displaced->step_closure);
1787 }
1788
1789 /* Do we need to do it the hard way, w/temp breakpoints? */
1790 else if (step)
1791 step = maybe_software_singlestep (gdbarch, pc);
1792
1793 /* Currently, our software single-step implementation leads to different
1794 results than hardware single-stepping in one situation: when stepping
1795 into delivering a signal which has an associated signal handler,
1796 hardware single-step will stop at the first instruction of the handler,
1797 while software single-step will simply skip execution of the handler.
1798
1799 For now, this difference in behavior is accepted since there is no
1800 easy way to actually implement single-stepping into a signal handler
1801 without kernel support.
1802
1803 However, there is one scenario where this difference leads to follow-on
1804 problems: if we're stepping off a breakpoint by removing all breakpoints
1805 and then single-stepping. In this case, the software single-step
1806 behavior means that even if there is a *breakpoint* in the signal
1807 handler, GDB still would not stop.
1808
1809 Fortunately, we can at least fix this particular issue. We detect
1810 here the case where we are about to deliver a signal while software
1811 single-stepping with breakpoints removed. In this situation, we
1812 revert the decisions to remove all breakpoints and insert single-
1813 step breakpoints, and instead we install a step-resume breakpoint
1814 at the current address, deliver the signal without stepping, and
1815 once we arrive back at the step-resume breakpoint, actually step
1816 over the breakpoint we originally wanted to step over. */
1817 if (singlestep_breakpoints_inserted_p
1818 && tp->control.trap_expected && sig != GDB_SIGNAL_0)
1819 {
1820 /* If we have nested signals or a pending signal is delivered
1821 immediately after a handler returns, might might already have
1822 a step-resume breakpoint set on the earlier handler. We cannot
1823 set another step-resume breakpoint; just continue on until the
1824 original breakpoint is hit. */
1825 if (tp->control.step_resume_breakpoint == NULL)
1826 {
1827 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
1828 tp->step_after_step_resume_breakpoint = 1;
1829 }
1830
1831 remove_single_step_breakpoints ();
1832 singlestep_breakpoints_inserted_p = 0;
1833
1834 insert_breakpoints ();
1835 tp->control.trap_expected = 0;
1836 }
1837
1838 if (should_resume)
1839 {
1840 ptid_t resume_ptid;
1841
1842 /* If STEP is set, it's a request to use hardware stepping
1843 facilities. But in that case, we should never
1844 use singlestep breakpoint. */
1845 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1846
1847 /* Decide the set of threads to ask the target to resume. Start
1848 by assuming everything will be resumed, than narrow the set
1849 by applying increasingly restricting conditions. */
1850 resume_ptid = user_visible_resume_ptid (step);
1851
1852 /* Maybe resume a single thread after all. */
1853 if (singlestep_breakpoints_inserted_p
1854 && stepping_past_singlestep_breakpoint)
1855 {
1856 /* The situation here is as follows. In thread T1 we wanted to
1857 single-step. Lacking hardware single-stepping we've
1858 set breakpoint at the PC of the next instruction -- call it
1859 P. After resuming, we've hit that breakpoint in thread T2.
1860 Now we've removed original breakpoint, inserted breakpoint
1861 at P+1, and try to step to advance T2 past breakpoint.
1862 We need to step only T2, as if T1 is allowed to freely run,
1863 it can run past P, and if other threads are allowed to run,
1864 they can hit breakpoint at P+1, and nested hits of single-step
1865 breakpoints is not something we'd want -- that's complicated
1866 to support, and has no value. */
1867 resume_ptid = inferior_ptid;
1868 }
1869 else if ((step || singlestep_breakpoints_inserted_p)
1870 && tp->control.trap_expected)
1871 {
1872 /* We're allowing a thread to run past a breakpoint it has
1873 hit, by single-stepping the thread with the breakpoint
1874 removed. In which case, we need to single-step only this
1875 thread, and keep others stopped, as they can miss this
1876 breakpoint if allowed to run.
1877
1878 The current code actually removes all breakpoints when
1879 doing this, not just the one being stepped over, so if we
1880 let other threads run, we can actually miss any
1881 breakpoint, not just the one at PC. */
1882 resume_ptid = inferior_ptid;
1883 }
1884
1885 if (gdbarch_cannot_step_breakpoint (gdbarch))
1886 {
1887 /* Most targets can step a breakpoint instruction, thus
1888 executing it normally. But if this one cannot, just
1889 continue and we will hit it anyway. */
1890 if (step && breakpoint_inserted_here_p (aspace, pc))
1891 step = 0;
1892 }
1893
1894 if (debug_displaced
1895 && use_displaced_stepping (gdbarch)
1896 && tp->control.trap_expected)
1897 {
1898 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1899 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1900 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1901 gdb_byte buf[4];
1902
1903 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1904 paddress (resume_gdbarch, actual_pc));
1905 read_memory (actual_pc, buf, sizeof (buf));
1906 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1907 }
1908
1909 /* Install inferior's terminal modes. */
1910 target_terminal_inferior ();
1911
1912 /* Avoid confusing the next resume, if the next stop/resume
1913 happens to apply to another thread. */
1914 tp->suspend.stop_signal = GDB_SIGNAL_0;
1915
1916 /* Advise target which signals may be handled silently. If we have
1917 removed breakpoints because we are stepping over one (which can
1918 happen only if we are not using displaced stepping), we need to
1919 receive all signals to avoid accidentally skipping a breakpoint
1920 during execution of a signal handler. */
1921 if ((step || singlestep_breakpoints_inserted_p)
1922 && tp->control.trap_expected
1923 && !use_displaced_stepping (gdbarch))
1924 target_pass_signals (0, NULL);
1925 else
1926 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
1927
1928 target_resume (resume_ptid, step, sig);
1929 }
1930
1931 discard_cleanups (old_cleanups);
1932 }
1933 \f
1934 /* Proceeding. */
1935
1936 /* Clear out all variables saying what to do when inferior is continued.
1937 First do this, then set the ones you want, then call `proceed'. */
1938
1939 static void
1940 clear_proceed_status_thread (struct thread_info *tp)
1941 {
1942 if (debug_infrun)
1943 fprintf_unfiltered (gdb_stdlog,
1944 "infrun: clear_proceed_status_thread (%s)\n",
1945 target_pid_to_str (tp->ptid));
1946
1947 tp->control.trap_expected = 0;
1948 tp->control.step_range_start = 0;
1949 tp->control.step_range_end = 0;
1950 tp->control.step_frame_id = null_frame_id;
1951 tp->control.step_stack_frame_id = null_frame_id;
1952 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
1953 tp->stop_requested = 0;
1954
1955 tp->control.stop_step = 0;
1956
1957 tp->control.proceed_to_finish = 0;
1958
1959 /* Discard any remaining commands or status from previous stop. */
1960 bpstat_clear (&tp->control.stop_bpstat);
1961 }
1962
1963 static int
1964 clear_proceed_status_callback (struct thread_info *tp, void *data)
1965 {
1966 if (is_exited (tp->ptid))
1967 return 0;
1968
1969 clear_proceed_status_thread (tp);
1970 return 0;
1971 }
1972
1973 void
1974 clear_proceed_status (void)
1975 {
1976 if (!non_stop)
1977 {
1978 /* In all-stop mode, delete the per-thread status of all
1979 threads, even if inferior_ptid is null_ptid, there may be
1980 threads on the list. E.g., we may be launching a new
1981 process, while selecting the executable. */
1982 iterate_over_threads (clear_proceed_status_callback, NULL);
1983 }
1984
1985 if (!ptid_equal (inferior_ptid, null_ptid))
1986 {
1987 struct inferior *inferior;
1988
1989 if (non_stop)
1990 {
1991 /* If in non-stop mode, only delete the per-thread status of
1992 the current thread. */
1993 clear_proceed_status_thread (inferior_thread ());
1994 }
1995
1996 inferior = current_inferior ();
1997 inferior->control.stop_soon = NO_STOP_QUIETLY;
1998 }
1999
2000 stop_after_trap = 0;
2001
2002 observer_notify_about_to_proceed ();
2003
2004 if (stop_registers)
2005 {
2006 regcache_xfree (stop_registers);
2007 stop_registers = NULL;
2008 }
2009 }
2010
2011 /* Check the current thread against the thread that reported the most recent
2012 event. If a step-over is required return TRUE and set the current thread
2013 to the old thread. Otherwise return FALSE.
2014
2015 This should be suitable for any targets that support threads. */
2016
2017 static int
2018 prepare_to_proceed (int step)
2019 {
2020 ptid_t wait_ptid;
2021 struct target_waitstatus wait_status;
2022 int schedlock_enabled;
2023
2024 /* With non-stop mode on, threads are always handled individually. */
2025 gdb_assert (! non_stop);
2026
2027 /* Get the last target status returned by target_wait(). */
2028 get_last_target_status (&wait_ptid, &wait_status);
2029
2030 /* Make sure we were stopped at a breakpoint. */
2031 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2032 || (wait_status.value.sig != GDB_SIGNAL_TRAP
2033 && wait_status.value.sig != GDB_SIGNAL_ILL
2034 && wait_status.value.sig != GDB_SIGNAL_SEGV
2035 && wait_status.value.sig != GDB_SIGNAL_EMT))
2036 {
2037 return 0;
2038 }
2039
2040 schedlock_enabled = (scheduler_mode == schedlock_on
2041 || (scheduler_mode == schedlock_step
2042 && step));
2043
2044 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2045 if (schedlock_enabled)
2046 return 0;
2047
2048 /* Don't switch over if we're about to resume some other process
2049 other than WAIT_PTID's, and schedule-multiple is off. */
2050 if (!sched_multi
2051 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2052 return 0;
2053
2054 /* Switched over from WAIT_PID. */
2055 if (!ptid_equal (wait_ptid, minus_one_ptid)
2056 && !ptid_equal (inferior_ptid, wait_ptid))
2057 {
2058 struct regcache *regcache = get_thread_regcache (wait_ptid);
2059
2060 if (breakpoint_here_p (get_regcache_aspace (regcache),
2061 regcache_read_pc (regcache)))
2062 {
2063 /* If stepping, remember current thread to switch back to. */
2064 if (step)
2065 deferred_step_ptid = inferior_ptid;
2066
2067 /* Switch back to WAIT_PID thread. */
2068 switch_to_thread (wait_ptid);
2069
2070 if (debug_infrun)
2071 fprintf_unfiltered (gdb_stdlog,
2072 "infrun: prepare_to_proceed (step=%d), "
2073 "switched to [%s]\n",
2074 step, target_pid_to_str (inferior_ptid));
2075
2076 /* We return 1 to indicate that there is a breakpoint here,
2077 so we need to step over it before continuing to avoid
2078 hitting it straight away. */
2079 return 1;
2080 }
2081 }
2082
2083 return 0;
2084 }
2085
2086 /* Basic routine for continuing the program in various fashions.
2087
2088 ADDR is the address to resume at, or -1 for resume where stopped.
2089 SIGGNAL is the signal to give it, or 0 for none,
2090 or -1 for act according to how it stopped.
2091 STEP is nonzero if should trap after one instruction.
2092 -1 means return after that and print nothing.
2093 You should probably set various step_... variables
2094 before calling here, if you are stepping.
2095
2096 You should call clear_proceed_status before calling proceed. */
2097
2098 void
2099 proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
2100 {
2101 struct regcache *regcache;
2102 struct gdbarch *gdbarch;
2103 struct thread_info *tp;
2104 CORE_ADDR pc;
2105 struct address_space *aspace;
2106 int oneproc = 0;
2107
2108 /* If we're stopped at a fork/vfork, follow the branch set by the
2109 "set follow-fork-mode" command; otherwise, we'll just proceed
2110 resuming the current thread. */
2111 if (!follow_fork ())
2112 {
2113 /* The target for some reason decided not to resume. */
2114 normal_stop ();
2115 if (target_can_async_p ())
2116 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2117 return;
2118 }
2119
2120 /* We'll update this if & when we switch to a new thread. */
2121 previous_inferior_ptid = inferior_ptid;
2122
2123 regcache = get_current_regcache ();
2124 gdbarch = get_regcache_arch (regcache);
2125 aspace = get_regcache_aspace (regcache);
2126 pc = regcache_read_pc (regcache);
2127
2128 if (step > 0)
2129 step_start_function = find_pc_function (pc);
2130 if (step < 0)
2131 stop_after_trap = 1;
2132
2133 if (addr == (CORE_ADDR) -1)
2134 {
2135 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
2136 && execution_direction != EXEC_REVERSE)
2137 /* There is a breakpoint at the address we will resume at,
2138 step one instruction before inserting breakpoints so that
2139 we do not stop right away (and report a second hit at this
2140 breakpoint).
2141
2142 Note, we don't do this in reverse, because we won't
2143 actually be executing the breakpoint insn anyway.
2144 We'll be (un-)executing the previous instruction. */
2145
2146 oneproc = 1;
2147 else if (gdbarch_single_step_through_delay_p (gdbarch)
2148 && gdbarch_single_step_through_delay (gdbarch,
2149 get_current_frame ()))
2150 /* We stepped onto an instruction that needs to be stepped
2151 again before re-inserting the breakpoint, do so. */
2152 oneproc = 1;
2153 }
2154 else
2155 {
2156 regcache_write_pc (regcache, addr);
2157 }
2158
2159 if (debug_infrun)
2160 fprintf_unfiltered (gdb_stdlog,
2161 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2162 paddress (gdbarch, addr), siggnal, step);
2163
2164 if (non_stop)
2165 /* In non-stop, each thread is handled individually. The context
2166 must already be set to the right thread here. */
2167 ;
2168 else
2169 {
2170 /* In a multi-threaded task we may select another thread and
2171 then continue or step.
2172
2173 But if the old thread was stopped at a breakpoint, it will
2174 immediately cause another breakpoint stop without any
2175 execution (i.e. it will report a breakpoint hit incorrectly).
2176 So we must step over it first.
2177
2178 prepare_to_proceed checks the current thread against the
2179 thread that reported the most recent event. If a step-over
2180 is required it returns TRUE and sets the current thread to
2181 the old thread. */
2182 if (prepare_to_proceed (step))
2183 oneproc = 1;
2184 }
2185
2186 /* prepare_to_proceed may change the current thread. */
2187 tp = inferior_thread ();
2188
2189 if (oneproc)
2190 {
2191 tp->control.trap_expected = 1;
2192 /* If displaced stepping is enabled, we can step over the
2193 breakpoint without hitting it, so leave all breakpoints
2194 inserted. Otherwise we need to disable all breakpoints, step
2195 one instruction, and then re-add them when that step is
2196 finished. */
2197 if (!use_displaced_stepping (gdbarch))
2198 remove_breakpoints ();
2199 }
2200
2201 /* We can insert breakpoints if we're not trying to step over one,
2202 or if we are stepping over one but we're using displaced stepping
2203 to do so. */
2204 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2205 insert_breakpoints ();
2206
2207 if (!non_stop)
2208 {
2209 /* Pass the last stop signal to the thread we're resuming,
2210 irrespective of whether the current thread is the thread that
2211 got the last event or not. This was historically GDB's
2212 behaviour before keeping a stop_signal per thread. */
2213
2214 struct thread_info *last_thread;
2215 ptid_t last_ptid;
2216 struct target_waitstatus last_status;
2217
2218 get_last_target_status (&last_ptid, &last_status);
2219 if (!ptid_equal (inferior_ptid, last_ptid)
2220 && !ptid_equal (last_ptid, null_ptid)
2221 && !ptid_equal (last_ptid, minus_one_ptid))
2222 {
2223 last_thread = find_thread_ptid (last_ptid);
2224 if (last_thread)
2225 {
2226 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2227 last_thread->suspend.stop_signal = GDB_SIGNAL_0;
2228 }
2229 }
2230 }
2231
2232 if (siggnal != GDB_SIGNAL_DEFAULT)
2233 tp->suspend.stop_signal = siggnal;
2234 /* If this signal should not be seen by program,
2235 give it zero. Used for debugging signals. */
2236 else if (!signal_program[tp->suspend.stop_signal])
2237 tp->suspend.stop_signal = GDB_SIGNAL_0;
2238
2239 annotate_starting ();
2240
2241 /* Make sure that output from GDB appears before output from the
2242 inferior. */
2243 gdb_flush (gdb_stdout);
2244
2245 /* Refresh prev_pc value just prior to resuming. This used to be
2246 done in stop_stepping, however, setting prev_pc there did not handle
2247 scenarios such as inferior function calls or returning from
2248 a function via the return command. In those cases, the prev_pc
2249 value was not set properly for subsequent commands. The prev_pc value
2250 is used to initialize the starting line number in the ecs. With an
2251 invalid value, the gdb next command ends up stopping at the position
2252 represented by the next line table entry past our start position.
2253 On platforms that generate one line table entry per line, this
2254 is not a problem. However, on the ia64, the compiler generates
2255 extraneous line table entries that do not increase the line number.
2256 When we issue the gdb next command on the ia64 after an inferior call
2257 or a return command, we often end up a few instructions forward, still
2258 within the original line we started.
2259
2260 An attempt was made to refresh the prev_pc at the same time the
2261 execution_control_state is initialized (for instance, just before
2262 waiting for an inferior event). But this approach did not work
2263 because of platforms that use ptrace, where the pc register cannot
2264 be read unless the inferior is stopped. At that point, we are not
2265 guaranteed the inferior is stopped and so the regcache_read_pc() call
2266 can fail. Setting the prev_pc value here ensures the value is updated
2267 correctly when the inferior is stopped. */
2268 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2269
2270 /* Fill in with reasonable starting values. */
2271 init_thread_stepping_state (tp);
2272
2273 /* Reset to normal state. */
2274 init_infwait_state ();
2275
2276 /* Resume inferior. */
2277 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
2278
2279 /* Wait for it to stop (if not standalone)
2280 and in any case decode why it stopped, and act accordingly. */
2281 /* Do this only if we are not using the event loop, or if the target
2282 does not support asynchronous execution. */
2283 if (!target_can_async_p ())
2284 {
2285 wait_for_inferior ();
2286 normal_stop ();
2287 }
2288 }
2289 \f
2290
2291 /* Start remote-debugging of a machine over a serial link. */
2292
2293 void
2294 start_remote (int from_tty)
2295 {
2296 struct inferior *inferior;
2297
2298 inferior = current_inferior ();
2299 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2300
2301 /* Always go on waiting for the target, regardless of the mode. */
2302 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2303 indicate to wait_for_inferior that a target should timeout if
2304 nothing is returned (instead of just blocking). Because of this,
2305 targets expecting an immediate response need to, internally, set
2306 things up so that the target_wait() is forced to eventually
2307 timeout. */
2308 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2309 differentiate to its caller what the state of the target is after
2310 the initial open has been performed. Here we're assuming that
2311 the target has stopped. It should be possible to eventually have
2312 target_open() return to the caller an indication that the target
2313 is currently running and GDB state should be set to the same as
2314 for an async run. */
2315 wait_for_inferior ();
2316
2317 /* Now that the inferior has stopped, do any bookkeeping like
2318 loading shared libraries. We want to do this before normal_stop,
2319 so that the displayed frame is up to date. */
2320 post_create_inferior (&current_target, from_tty);
2321
2322 normal_stop ();
2323 }
2324
2325 /* Initialize static vars when a new inferior begins. */
2326
2327 void
2328 init_wait_for_inferior (void)
2329 {
2330 /* These are meaningless until the first time through wait_for_inferior. */
2331
2332 breakpoint_init_inferior (inf_starting);
2333
2334 clear_proceed_status ();
2335
2336 stepping_past_singlestep_breakpoint = 0;
2337 deferred_step_ptid = null_ptid;
2338
2339 target_last_wait_ptid = minus_one_ptid;
2340
2341 previous_inferior_ptid = inferior_ptid;
2342 init_infwait_state ();
2343
2344 /* Discard any skipped inlined frames. */
2345 clear_inline_frame_state (minus_one_ptid);
2346 }
2347
2348 \f
2349 /* This enum encodes possible reasons for doing a target_wait, so that
2350 wfi can call target_wait in one place. (Ultimately the call will be
2351 moved out of the infinite loop entirely.) */
2352
2353 enum infwait_states
2354 {
2355 infwait_normal_state,
2356 infwait_thread_hop_state,
2357 infwait_step_watch_state,
2358 infwait_nonstep_watch_state
2359 };
2360
2361 /* The PTID we'll do a target_wait on.*/
2362 ptid_t waiton_ptid;
2363
2364 /* Current inferior wait state. */
2365 enum infwait_states infwait_state;
2366
2367 /* Data to be passed around while handling an event. This data is
2368 discarded between events. */
2369 struct execution_control_state
2370 {
2371 ptid_t ptid;
2372 /* The thread that got the event, if this was a thread event; NULL
2373 otherwise. */
2374 struct thread_info *event_thread;
2375
2376 struct target_waitstatus ws;
2377 int random_signal;
2378 int stop_func_filled_in;
2379 CORE_ADDR stop_func_start;
2380 CORE_ADDR stop_func_end;
2381 const char *stop_func_name;
2382 int wait_some_more;
2383 };
2384
2385 static void handle_inferior_event (struct execution_control_state *ecs);
2386
2387 static void handle_step_into_function (struct gdbarch *gdbarch,
2388 struct execution_control_state *ecs);
2389 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2390 struct execution_control_state *ecs);
2391 static void check_exception_resume (struct execution_control_state *,
2392 struct frame_info *);
2393
2394 static void stop_stepping (struct execution_control_state *ecs);
2395 static void prepare_to_wait (struct execution_control_state *ecs);
2396 static void keep_going (struct execution_control_state *ecs);
2397
2398 /* Callback for iterate over threads. If the thread is stopped, but
2399 the user/frontend doesn't know about that yet, go through
2400 normal_stop, as if the thread had just stopped now. ARG points at
2401 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2402 ptid_is_pid(PTID) is true, applies to all threads of the process
2403 pointed at by PTID. Otherwise, apply only to the thread pointed by
2404 PTID. */
2405
2406 static int
2407 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2408 {
2409 ptid_t ptid = * (ptid_t *) arg;
2410
2411 if ((ptid_equal (info->ptid, ptid)
2412 || ptid_equal (minus_one_ptid, ptid)
2413 || (ptid_is_pid (ptid)
2414 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2415 && is_running (info->ptid)
2416 && !is_executing (info->ptid))
2417 {
2418 struct cleanup *old_chain;
2419 struct execution_control_state ecss;
2420 struct execution_control_state *ecs = &ecss;
2421
2422 memset (ecs, 0, sizeof (*ecs));
2423
2424 old_chain = make_cleanup_restore_current_thread ();
2425
2426 /* Go through handle_inferior_event/normal_stop, so we always
2427 have consistent output as if the stop event had been
2428 reported. */
2429 ecs->ptid = info->ptid;
2430 ecs->event_thread = find_thread_ptid (info->ptid);
2431 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2432 ecs->ws.value.sig = GDB_SIGNAL_0;
2433
2434 handle_inferior_event (ecs);
2435
2436 if (!ecs->wait_some_more)
2437 {
2438 struct thread_info *tp;
2439
2440 normal_stop ();
2441
2442 /* Finish off the continuations. */
2443 tp = inferior_thread ();
2444 do_all_intermediate_continuations_thread (tp, 1);
2445 do_all_continuations_thread (tp, 1);
2446 }
2447
2448 do_cleanups (old_chain);
2449 }
2450
2451 return 0;
2452 }
2453
2454 /* This function is attached as a "thread_stop_requested" observer.
2455 Cleanup local state that assumed the PTID was to be resumed, and
2456 report the stop to the frontend. */
2457
2458 static void
2459 infrun_thread_stop_requested (ptid_t ptid)
2460 {
2461 struct displaced_step_inferior_state *displaced;
2462
2463 /* PTID was requested to stop. Remove it from the displaced
2464 stepping queue, so we don't try to resume it automatically. */
2465
2466 for (displaced = displaced_step_inferior_states;
2467 displaced;
2468 displaced = displaced->next)
2469 {
2470 struct displaced_step_request *it, **prev_next_p;
2471
2472 it = displaced->step_request_queue;
2473 prev_next_p = &displaced->step_request_queue;
2474 while (it)
2475 {
2476 if (ptid_match (it->ptid, ptid))
2477 {
2478 *prev_next_p = it->next;
2479 it->next = NULL;
2480 xfree (it);
2481 }
2482 else
2483 {
2484 prev_next_p = &it->next;
2485 }
2486
2487 it = *prev_next_p;
2488 }
2489 }
2490
2491 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2492 }
2493
2494 static void
2495 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2496 {
2497 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2498 nullify_last_target_wait_ptid ();
2499 }
2500
2501 /* Callback for iterate_over_threads. */
2502
2503 static int
2504 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2505 {
2506 if (is_exited (info->ptid))
2507 return 0;
2508
2509 delete_step_resume_breakpoint (info);
2510 delete_exception_resume_breakpoint (info);
2511 return 0;
2512 }
2513
2514 /* In all-stop, delete the step resume breakpoint of any thread that
2515 had one. In non-stop, delete the step resume breakpoint of the
2516 thread that just stopped. */
2517
2518 static void
2519 delete_step_thread_step_resume_breakpoint (void)
2520 {
2521 if (!target_has_execution
2522 || ptid_equal (inferior_ptid, null_ptid))
2523 /* If the inferior has exited, we have already deleted the step
2524 resume breakpoints out of GDB's lists. */
2525 return;
2526
2527 if (non_stop)
2528 {
2529 /* If in non-stop mode, only delete the step-resume or
2530 longjmp-resume breakpoint of the thread that just stopped
2531 stepping. */
2532 struct thread_info *tp = inferior_thread ();
2533
2534 delete_step_resume_breakpoint (tp);
2535 delete_exception_resume_breakpoint (tp);
2536 }
2537 else
2538 /* In all-stop mode, delete all step-resume and longjmp-resume
2539 breakpoints of any thread that had them. */
2540 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2541 }
2542
2543 /* A cleanup wrapper. */
2544
2545 static void
2546 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2547 {
2548 delete_step_thread_step_resume_breakpoint ();
2549 }
2550
2551 /* Pretty print the results of target_wait, for debugging purposes. */
2552
2553 static void
2554 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2555 const struct target_waitstatus *ws)
2556 {
2557 char *status_string = target_waitstatus_to_string (ws);
2558 struct ui_file *tmp_stream = mem_fileopen ();
2559 char *text;
2560
2561 /* The text is split over several lines because it was getting too long.
2562 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2563 output as a unit; we want only one timestamp printed if debug_timestamp
2564 is set. */
2565
2566 fprintf_unfiltered (tmp_stream,
2567 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2568 if (PIDGET (waiton_ptid) != -1)
2569 fprintf_unfiltered (tmp_stream,
2570 " [%s]", target_pid_to_str (waiton_ptid));
2571 fprintf_unfiltered (tmp_stream, ", status) =\n");
2572 fprintf_unfiltered (tmp_stream,
2573 "infrun: %d [%s],\n",
2574 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2575 fprintf_unfiltered (tmp_stream,
2576 "infrun: %s\n",
2577 status_string);
2578
2579 text = ui_file_xstrdup (tmp_stream, NULL);
2580
2581 /* This uses %s in part to handle %'s in the text, but also to avoid
2582 a gcc error: the format attribute requires a string literal. */
2583 fprintf_unfiltered (gdb_stdlog, "%s", text);
2584
2585 xfree (status_string);
2586 xfree (text);
2587 ui_file_delete (tmp_stream);
2588 }
2589
2590 /* Prepare and stabilize the inferior for detaching it. E.g.,
2591 detaching while a thread is displaced stepping is a recipe for
2592 crashing it, as nothing would readjust the PC out of the scratch
2593 pad. */
2594
2595 void
2596 prepare_for_detach (void)
2597 {
2598 struct inferior *inf = current_inferior ();
2599 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2600 struct cleanup *old_chain_1;
2601 struct displaced_step_inferior_state *displaced;
2602
2603 displaced = get_displaced_stepping_state (inf->pid);
2604
2605 /* Is any thread of this process displaced stepping? If not,
2606 there's nothing else to do. */
2607 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2608 return;
2609
2610 if (debug_infrun)
2611 fprintf_unfiltered (gdb_stdlog,
2612 "displaced-stepping in-process while detaching");
2613
2614 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2615 inf->detaching = 1;
2616
2617 while (!ptid_equal (displaced->step_ptid, null_ptid))
2618 {
2619 struct cleanup *old_chain_2;
2620 struct execution_control_state ecss;
2621 struct execution_control_state *ecs;
2622
2623 ecs = &ecss;
2624 memset (ecs, 0, sizeof (*ecs));
2625
2626 overlay_cache_invalid = 1;
2627
2628 if (deprecated_target_wait_hook)
2629 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2630 else
2631 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2632
2633 if (debug_infrun)
2634 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2635
2636 /* If an error happens while handling the event, propagate GDB's
2637 knowledge of the executing state to the frontend/user running
2638 state. */
2639 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2640 &minus_one_ptid);
2641
2642 /* Now figure out what to do with the result of the result. */
2643 handle_inferior_event (ecs);
2644
2645 /* No error, don't finish the state yet. */
2646 discard_cleanups (old_chain_2);
2647
2648 /* Breakpoints and watchpoints are not installed on the target
2649 at this point, and signals are passed directly to the
2650 inferior, so this must mean the process is gone. */
2651 if (!ecs->wait_some_more)
2652 {
2653 discard_cleanups (old_chain_1);
2654 error (_("Program exited while detaching"));
2655 }
2656 }
2657
2658 discard_cleanups (old_chain_1);
2659 }
2660
2661 /* Wait for control to return from inferior to debugger.
2662
2663 If inferior gets a signal, we may decide to start it up again
2664 instead of returning. That is why there is a loop in this function.
2665 When this function actually returns it means the inferior
2666 should be left stopped and GDB should read more commands. */
2667
2668 void
2669 wait_for_inferior (void)
2670 {
2671 struct cleanup *old_cleanups;
2672
2673 if (debug_infrun)
2674 fprintf_unfiltered
2675 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
2676
2677 old_cleanups =
2678 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2679
2680 while (1)
2681 {
2682 struct execution_control_state ecss;
2683 struct execution_control_state *ecs = &ecss;
2684 struct cleanup *old_chain;
2685
2686 memset (ecs, 0, sizeof (*ecs));
2687
2688 overlay_cache_invalid = 1;
2689
2690 if (deprecated_target_wait_hook)
2691 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2692 else
2693 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2694
2695 if (debug_infrun)
2696 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2697
2698 /* If an error happens while handling the event, propagate GDB's
2699 knowledge of the executing state to the frontend/user running
2700 state. */
2701 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2702
2703 /* Now figure out what to do with the result of the result. */
2704 handle_inferior_event (ecs);
2705
2706 /* No error, don't finish the state yet. */
2707 discard_cleanups (old_chain);
2708
2709 if (!ecs->wait_some_more)
2710 break;
2711 }
2712
2713 do_cleanups (old_cleanups);
2714 }
2715
2716 /* Asynchronous version of wait_for_inferior. It is called by the
2717 event loop whenever a change of state is detected on the file
2718 descriptor corresponding to the target. It can be called more than
2719 once to complete a single execution command. In such cases we need
2720 to keep the state in a global variable ECSS. If it is the last time
2721 that this function is called for a single execution command, then
2722 report to the user that the inferior has stopped, and do the
2723 necessary cleanups. */
2724
2725 void
2726 fetch_inferior_event (void *client_data)
2727 {
2728 struct execution_control_state ecss;
2729 struct execution_control_state *ecs = &ecss;
2730 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2731 struct cleanup *ts_old_chain;
2732 int was_sync = sync_execution;
2733 int cmd_done = 0;
2734
2735 memset (ecs, 0, sizeof (*ecs));
2736
2737 /* We're handling a live event, so make sure we're doing live
2738 debugging. If we're looking at traceframes while the target is
2739 running, we're going to need to get back to that mode after
2740 handling the event. */
2741 if (non_stop)
2742 {
2743 make_cleanup_restore_current_traceframe ();
2744 set_current_traceframe (-1);
2745 }
2746
2747 if (non_stop)
2748 /* In non-stop mode, the user/frontend should not notice a thread
2749 switch due to internal events. Make sure we reverse to the
2750 user selected thread and frame after handling the event and
2751 running any breakpoint commands. */
2752 make_cleanup_restore_current_thread ();
2753
2754 overlay_cache_invalid = 1;
2755
2756 make_cleanup_restore_integer (&execution_direction);
2757 execution_direction = target_execution_direction ();
2758
2759 if (deprecated_target_wait_hook)
2760 ecs->ptid =
2761 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2762 else
2763 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2764
2765 if (debug_infrun)
2766 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2767
2768 /* If an error happens while handling the event, propagate GDB's
2769 knowledge of the executing state to the frontend/user running
2770 state. */
2771 if (!non_stop)
2772 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2773 else
2774 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2775
2776 /* Get executed before make_cleanup_restore_current_thread above to apply
2777 still for the thread which has thrown the exception. */
2778 make_bpstat_clear_actions_cleanup ();
2779
2780 /* Now figure out what to do with the result of the result. */
2781 handle_inferior_event (ecs);
2782
2783 if (!ecs->wait_some_more)
2784 {
2785 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2786
2787 delete_step_thread_step_resume_breakpoint ();
2788
2789 /* We may not find an inferior if this was a process exit. */
2790 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
2791 normal_stop ();
2792
2793 if (target_has_execution
2794 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
2795 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2796 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2797 && ecs->event_thread->step_multi
2798 && ecs->event_thread->control.stop_step)
2799 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2800 else
2801 {
2802 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2803 cmd_done = 1;
2804 }
2805 }
2806
2807 /* No error, don't finish the thread states yet. */
2808 discard_cleanups (ts_old_chain);
2809
2810 /* Revert thread and frame. */
2811 do_cleanups (old_chain);
2812
2813 /* If the inferior was in sync execution mode, and now isn't,
2814 restore the prompt (a synchronous execution command has finished,
2815 and we're ready for input). */
2816 if (interpreter_async && was_sync && !sync_execution)
2817 display_gdb_prompt (0);
2818
2819 if (cmd_done
2820 && !was_sync
2821 && exec_done_display_p
2822 && (ptid_equal (inferior_ptid, null_ptid)
2823 || !is_running (inferior_ptid)))
2824 printf_unfiltered (_("completed.\n"));
2825 }
2826
2827 /* Record the frame and location we're currently stepping through. */
2828 void
2829 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2830 {
2831 struct thread_info *tp = inferior_thread ();
2832
2833 tp->control.step_frame_id = get_frame_id (frame);
2834 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
2835
2836 tp->current_symtab = sal.symtab;
2837 tp->current_line = sal.line;
2838 }
2839
2840 /* Clear context switchable stepping state. */
2841
2842 void
2843 init_thread_stepping_state (struct thread_info *tss)
2844 {
2845 tss->stepping_over_breakpoint = 0;
2846 tss->step_after_step_resume_breakpoint = 0;
2847 }
2848
2849 /* Return the cached copy of the last pid/waitstatus returned by
2850 target_wait()/deprecated_target_wait_hook(). The data is actually
2851 cached by handle_inferior_event(), which gets called immediately
2852 after target_wait()/deprecated_target_wait_hook(). */
2853
2854 void
2855 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2856 {
2857 *ptidp = target_last_wait_ptid;
2858 *status = target_last_waitstatus;
2859 }
2860
2861 void
2862 nullify_last_target_wait_ptid (void)
2863 {
2864 target_last_wait_ptid = minus_one_ptid;
2865 }
2866
2867 /* Switch thread contexts. */
2868
2869 static void
2870 context_switch (ptid_t ptid)
2871 {
2872 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
2873 {
2874 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2875 target_pid_to_str (inferior_ptid));
2876 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2877 target_pid_to_str (ptid));
2878 }
2879
2880 switch_to_thread (ptid);
2881 }
2882
2883 static void
2884 adjust_pc_after_break (struct execution_control_state *ecs)
2885 {
2886 struct regcache *regcache;
2887 struct gdbarch *gdbarch;
2888 struct address_space *aspace;
2889 CORE_ADDR breakpoint_pc;
2890
2891 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2892 we aren't, just return.
2893
2894 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2895 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2896 implemented by software breakpoints should be handled through the normal
2897 breakpoint layer.
2898
2899 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2900 different signals (SIGILL or SIGEMT for instance), but it is less
2901 clear where the PC is pointing afterwards. It may not match
2902 gdbarch_decr_pc_after_break. I don't know any specific target that
2903 generates these signals at breakpoints (the code has been in GDB since at
2904 least 1992) so I can not guess how to handle them here.
2905
2906 In earlier versions of GDB, a target with
2907 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2908 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2909 target with both of these set in GDB history, and it seems unlikely to be
2910 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2911
2912 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2913 return;
2914
2915 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
2916 return;
2917
2918 /* In reverse execution, when a breakpoint is hit, the instruction
2919 under it has already been de-executed. The reported PC always
2920 points at the breakpoint address, so adjusting it further would
2921 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2922 architecture:
2923
2924 B1 0x08000000 : INSN1
2925 B2 0x08000001 : INSN2
2926 0x08000002 : INSN3
2927 PC -> 0x08000003 : INSN4
2928
2929 Say you're stopped at 0x08000003 as above. Reverse continuing
2930 from that point should hit B2 as below. Reading the PC when the
2931 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2932 been de-executed already.
2933
2934 B1 0x08000000 : INSN1
2935 B2 PC -> 0x08000001 : INSN2
2936 0x08000002 : INSN3
2937 0x08000003 : INSN4
2938
2939 We can't apply the same logic as for forward execution, because
2940 we would wrongly adjust the PC to 0x08000000, since there's a
2941 breakpoint at PC - 1. We'd then report a hit on B1, although
2942 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2943 behaviour. */
2944 if (execution_direction == EXEC_REVERSE)
2945 return;
2946
2947 /* If this target does not decrement the PC after breakpoints, then
2948 we have nothing to do. */
2949 regcache = get_thread_regcache (ecs->ptid);
2950 gdbarch = get_regcache_arch (regcache);
2951 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2952 return;
2953
2954 aspace = get_regcache_aspace (regcache);
2955
2956 /* Find the location where (if we've hit a breakpoint) the
2957 breakpoint would be. */
2958 breakpoint_pc = regcache_read_pc (regcache)
2959 - gdbarch_decr_pc_after_break (gdbarch);
2960
2961 /* Check whether there actually is a software breakpoint inserted at
2962 that location.
2963
2964 If in non-stop mode, a race condition is possible where we've
2965 removed a breakpoint, but stop events for that breakpoint were
2966 already queued and arrive later. To suppress those spurious
2967 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2968 and retire them after a number of stop events are reported. */
2969 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2970 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
2971 {
2972 struct cleanup *old_cleanups = NULL;
2973
2974 if (RECORD_IS_USED)
2975 old_cleanups = record_gdb_operation_disable_set ();
2976
2977 /* When using hardware single-step, a SIGTRAP is reported for both
2978 a completed single-step and a software breakpoint. Need to
2979 differentiate between the two, as the latter needs adjusting
2980 but the former does not.
2981
2982 The SIGTRAP can be due to a completed hardware single-step only if
2983 - we didn't insert software single-step breakpoints
2984 - the thread to be examined is still the current thread
2985 - this thread is currently being stepped
2986
2987 If any of these events did not occur, we must have stopped due
2988 to hitting a software breakpoint, and have to back up to the
2989 breakpoint address.
2990
2991 As a special case, we could have hardware single-stepped a
2992 software breakpoint. In this case (prev_pc == breakpoint_pc),
2993 we also need to back up to the breakpoint address. */
2994
2995 if (singlestep_breakpoints_inserted_p
2996 || !ptid_equal (ecs->ptid, inferior_ptid)
2997 || !currently_stepping (ecs->event_thread)
2998 || ecs->event_thread->prev_pc == breakpoint_pc)
2999 regcache_write_pc (regcache, breakpoint_pc);
3000
3001 if (RECORD_IS_USED)
3002 do_cleanups (old_cleanups);
3003 }
3004 }
3005
3006 void
3007 init_infwait_state (void)
3008 {
3009 waiton_ptid = pid_to_ptid (-1);
3010 infwait_state = infwait_normal_state;
3011 }
3012
3013 void
3014 error_is_running (void)
3015 {
3016 error (_("Cannot execute this command while "
3017 "the selected thread is running."));
3018 }
3019
3020 void
3021 ensure_not_running (void)
3022 {
3023 if (is_running (inferior_ptid))
3024 error_is_running ();
3025 }
3026
3027 static int
3028 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3029 {
3030 for (frame = get_prev_frame (frame);
3031 frame != NULL;
3032 frame = get_prev_frame (frame))
3033 {
3034 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3035 return 1;
3036 if (get_frame_type (frame) != INLINE_FRAME)
3037 break;
3038 }
3039
3040 return 0;
3041 }
3042
3043 /* Auxiliary function that handles syscall entry/return events.
3044 It returns 1 if the inferior should keep going (and GDB
3045 should ignore the event), or 0 if the event deserves to be
3046 processed. */
3047
3048 static int
3049 handle_syscall_event (struct execution_control_state *ecs)
3050 {
3051 struct regcache *regcache;
3052 struct gdbarch *gdbarch;
3053 int syscall_number;
3054
3055 if (!ptid_equal (ecs->ptid, inferior_ptid))
3056 context_switch (ecs->ptid);
3057
3058 regcache = get_thread_regcache (ecs->ptid);
3059 gdbarch = get_regcache_arch (regcache);
3060 syscall_number = ecs->ws.value.syscall_number;
3061 stop_pc = regcache_read_pc (regcache);
3062
3063 if (catch_syscall_enabled () > 0
3064 && catching_syscall_number (syscall_number) > 0)
3065 {
3066 if (debug_infrun)
3067 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3068 syscall_number);
3069
3070 ecs->event_thread->control.stop_bpstat
3071 = bpstat_stop_status (get_regcache_aspace (regcache),
3072 stop_pc, ecs->ptid, &ecs->ws);
3073 ecs->random_signal
3074 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3075
3076 if (!ecs->random_signal)
3077 {
3078 /* Catchpoint hit. */
3079 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3080 return 0;
3081 }
3082 }
3083
3084 /* If no catchpoint triggered for this, then keep going. */
3085 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3086 keep_going (ecs);
3087 return 1;
3088 }
3089
3090 /* Clear the supplied execution_control_state's stop_func_* fields. */
3091
3092 static void
3093 clear_stop_func (struct execution_control_state *ecs)
3094 {
3095 ecs->stop_func_filled_in = 0;
3096 ecs->stop_func_start = 0;
3097 ecs->stop_func_end = 0;
3098 ecs->stop_func_name = NULL;
3099 }
3100
3101 /* Lazily fill in the execution_control_state's stop_func_* fields. */
3102
3103 static void
3104 fill_in_stop_func (struct gdbarch *gdbarch,
3105 struct execution_control_state *ecs)
3106 {
3107 if (!ecs->stop_func_filled_in)
3108 {
3109 /* Don't care about return value; stop_func_start and stop_func_name
3110 will both be 0 if it doesn't work. */
3111 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3112 &ecs->stop_func_start, &ecs->stop_func_end);
3113 ecs->stop_func_start
3114 += gdbarch_deprecated_function_start_offset (gdbarch);
3115
3116 ecs->stop_func_filled_in = 1;
3117 }
3118 }
3119
3120 /* Given an execution control state that has been freshly filled in
3121 by an event from the inferior, figure out what it means and take
3122 appropriate action. */
3123
3124 static void
3125 handle_inferior_event (struct execution_control_state *ecs)
3126 {
3127 struct frame_info *frame;
3128 struct gdbarch *gdbarch;
3129 int stopped_by_watchpoint;
3130 int stepped_after_stopped_by_watchpoint = 0;
3131 struct symtab_and_line stop_pc_sal;
3132 enum stop_kind stop_soon;
3133
3134 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3135 {
3136 /* We had an event in the inferior, but we are not interested in
3137 handling it at this level. The lower layers have already
3138 done what needs to be done, if anything.
3139
3140 One of the possible circumstances for this is when the
3141 inferior produces output for the console. The inferior has
3142 not stopped, and we are ignoring the event. Another possible
3143 circumstance is any event which the lower level knows will be
3144 reported multiple times without an intervening resume. */
3145 if (debug_infrun)
3146 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3147 prepare_to_wait (ecs);
3148 return;
3149 }
3150
3151 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3152 && target_can_async_p () && !sync_execution)
3153 {
3154 /* There were no unwaited-for children left in the target, but,
3155 we're not synchronously waiting for events either. Just
3156 ignore. Otherwise, if we were running a synchronous
3157 execution command, we need to cancel it and give the user
3158 back the terminal. */
3159 if (debug_infrun)
3160 fprintf_unfiltered (gdb_stdlog,
3161 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3162 prepare_to_wait (ecs);
3163 return;
3164 }
3165
3166 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3167 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3168 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3169 {
3170 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3171
3172 gdb_assert (inf);
3173 stop_soon = inf->control.stop_soon;
3174 }
3175 else
3176 stop_soon = NO_STOP_QUIETLY;
3177
3178 /* Cache the last pid/waitstatus. */
3179 target_last_wait_ptid = ecs->ptid;
3180 target_last_waitstatus = ecs->ws;
3181
3182 /* Always clear state belonging to the previous time we stopped. */
3183 stop_stack_dummy = STOP_NONE;
3184
3185 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3186 {
3187 /* No unwaited-for children left. IOW, all resumed children
3188 have exited. */
3189 if (debug_infrun)
3190 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3191
3192 stop_print_frame = 0;
3193 stop_stepping (ecs);
3194 return;
3195 }
3196
3197 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3198 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
3199 {
3200 ecs->event_thread = find_thread_ptid (ecs->ptid);
3201 /* If it's a new thread, add it to the thread database. */
3202 if (ecs->event_thread == NULL)
3203 ecs->event_thread = add_thread (ecs->ptid);
3204 }
3205
3206 /* Dependent on valid ECS->EVENT_THREAD. */
3207 adjust_pc_after_break (ecs);
3208
3209 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3210 reinit_frame_cache ();
3211
3212 breakpoint_retire_moribund ();
3213
3214 /* First, distinguish signals caused by the debugger from signals
3215 that have to do with the program's own actions. Note that
3216 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3217 on the operating system version. Here we detect when a SIGILL or
3218 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3219 something similar for SIGSEGV, since a SIGSEGV will be generated
3220 when we're trying to execute a breakpoint instruction on a
3221 non-executable stack. This happens for call dummy breakpoints
3222 for architectures like SPARC that place call dummies on the
3223 stack. */
3224 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3225 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3226 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3227 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
3228 {
3229 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3230
3231 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3232 regcache_read_pc (regcache)))
3233 {
3234 if (debug_infrun)
3235 fprintf_unfiltered (gdb_stdlog,
3236 "infrun: Treating signal as SIGTRAP\n");
3237 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
3238 }
3239 }
3240
3241 /* Mark the non-executing threads accordingly. In all-stop, all
3242 threads of all processes are stopped when we get any event
3243 reported. In non-stop mode, only the event thread stops. If
3244 we're handling a process exit in non-stop mode, there's nothing
3245 to do, as threads of the dead process are gone, and threads of
3246 any other process were left running. */
3247 if (!non_stop)
3248 set_executing (minus_one_ptid, 0);
3249 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3250 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3251 set_executing (ecs->ptid, 0);
3252
3253 switch (infwait_state)
3254 {
3255 case infwait_thread_hop_state:
3256 if (debug_infrun)
3257 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
3258 break;
3259
3260 case infwait_normal_state:
3261 if (debug_infrun)
3262 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
3263 break;
3264
3265 case infwait_step_watch_state:
3266 if (debug_infrun)
3267 fprintf_unfiltered (gdb_stdlog,
3268 "infrun: infwait_step_watch_state\n");
3269
3270 stepped_after_stopped_by_watchpoint = 1;
3271 break;
3272
3273 case infwait_nonstep_watch_state:
3274 if (debug_infrun)
3275 fprintf_unfiltered (gdb_stdlog,
3276 "infrun: infwait_nonstep_watch_state\n");
3277 insert_breakpoints ();
3278
3279 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3280 handle things like signals arriving and other things happening
3281 in combination correctly? */
3282 stepped_after_stopped_by_watchpoint = 1;
3283 break;
3284
3285 default:
3286 internal_error (__FILE__, __LINE__, _("bad switch"));
3287 }
3288
3289 infwait_state = infwait_normal_state;
3290 waiton_ptid = pid_to_ptid (-1);
3291
3292 switch (ecs->ws.kind)
3293 {
3294 case TARGET_WAITKIND_LOADED:
3295 if (debug_infrun)
3296 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3297 /* Ignore gracefully during startup of the inferior, as it might
3298 be the shell which has just loaded some objects, otherwise
3299 add the symbols for the newly loaded objects. Also ignore at
3300 the beginning of an attach or remote session; we will query
3301 the full list of libraries once the connection is
3302 established. */
3303 if (stop_soon == NO_STOP_QUIETLY)
3304 {
3305 struct regcache *regcache;
3306
3307 if (!ptid_equal (ecs->ptid, inferior_ptid))
3308 context_switch (ecs->ptid);
3309 regcache = get_thread_regcache (ecs->ptid);
3310
3311 handle_solib_event ();
3312
3313 ecs->event_thread->control.stop_bpstat
3314 = bpstat_stop_status (get_regcache_aspace (regcache),
3315 stop_pc, ecs->ptid, &ecs->ws);
3316 ecs->random_signal
3317 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3318
3319 if (!ecs->random_signal)
3320 {
3321 /* A catchpoint triggered. */
3322 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3323 goto process_event_stop_test;
3324 }
3325
3326 /* If requested, stop when the dynamic linker notifies
3327 gdb of events. This allows the user to get control
3328 and place breakpoints in initializer routines for
3329 dynamically loaded objects (among other things). */
3330 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3331 if (stop_on_solib_events)
3332 {
3333 /* Make sure we print "Stopped due to solib-event" in
3334 normal_stop. */
3335 stop_print_frame = 1;
3336
3337 stop_stepping (ecs);
3338 return;
3339 }
3340 }
3341
3342 /* If we are skipping through a shell, or through shared library
3343 loading that we aren't interested in, resume the program. If
3344 we're running the program normally, also resume. But stop if
3345 we're attaching or setting up a remote connection. */
3346 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3347 {
3348 if (!ptid_equal (ecs->ptid, inferior_ptid))
3349 context_switch (ecs->ptid);
3350
3351 /* Loading of shared libraries might have changed breakpoint
3352 addresses. Make sure new breakpoints are inserted. */
3353 if (stop_soon == NO_STOP_QUIETLY
3354 && !breakpoints_always_inserted_mode ())
3355 insert_breakpoints ();
3356 resume (0, GDB_SIGNAL_0);
3357 prepare_to_wait (ecs);
3358 return;
3359 }
3360
3361 break;
3362
3363 case TARGET_WAITKIND_SPURIOUS:
3364 if (debug_infrun)
3365 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3366 if (!ptid_equal (ecs->ptid, inferior_ptid))
3367 context_switch (ecs->ptid);
3368 resume (0, GDB_SIGNAL_0);
3369 prepare_to_wait (ecs);
3370 return;
3371
3372 case TARGET_WAITKIND_EXITED:
3373 if (debug_infrun)
3374 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
3375 inferior_ptid = ecs->ptid;
3376 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3377 set_current_program_space (current_inferior ()->pspace);
3378 handle_vfork_child_exec_or_exit (0);
3379 target_terminal_ours (); /* Must do this before mourn anyway. */
3380 print_exited_reason (ecs->ws.value.integer);
3381
3382 /* Record the exit code in the convenience variable $_exitcode, so
3383 that the user can inspect this again later. */
3384 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3385 (LONGEST) ecs->ws.value.integer);
3386
3387 /* Also record this in the inferior itself. */
3388 current_inferior ()->has_exit_code = 1;
3389 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3390
3391 gdb_flush (gdb_stdout);
3392 target_mourn_inferior ();
3393 singlestep_breakpoints_inserted_p = 0;
3394 cancel_single_step_breakpoints ();
3395 stop_print_frame = 0;
3396 stop_stepping (ecs);
3397 return;
3398
3399 case TARGET_WAITKIND_SIGNALLED:
3400 if (debug_infrun)
3401 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
3402 inferior_ptid = ecs->ptid;
3403 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3404 set_current_program_space (current_inferior ()->pspace);
3405 handle_vfork_child_exec_or_exit (0);
3406 stop_print_frame = 0;
3407 target_terminal_ours (); /* Must do this before mourn anyway. */
3408
3409 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3410 reach here unless the inferior is dead. However, for years
3411 target_kill() was called here, which hints that fatal signals aren't
3412 really fatal on some systems. If that's true, then some changes
3413 may be needed. */
3414 target_mourn_inferior ();
3415
3416 print_signal_exited_reason (ecs->ws.value.sig);
3417 singlestep_breakpoints_inserted_p = 0;
3418 cancel_single_step_breakpoints ();
3419 stop_stepping (ecs);
3420 return;
3421
3422 /* The following are the only cases in which we keep going;
3423 the above cases end in a continue or goto. */
3424 case TARGET_WAITKIND_FORKED:
3425 case TARGET_WAITKIND_VFORKED:
3426 if (debug_infrun)
3427 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3428
3429 /* Check whether the inferior is displaced stepping. */
3430 {
3431 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3432 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3433 struct displaced_step_inferior_state *displaced
3434 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3435
3436 /* If checking displaced stepping is supported, and thread
3437 ecs->ptid is displaced stepping. */
3438 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3439 {
3440 struct inferior *parent_inf
3441 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3442 struct regcache *child_regcache;
3443 CORE_ADDR parent_pc;
3444
3445 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3446 indicating that the displaced stepping of syscall instruction
3447 has been done. Perform cleanup for parent process here. Note
3448 that this operation also cleans up the child process for vfork,
3449 because their pages are shared. */
3450 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
3451
3452 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3453 {
3454 /* Restore scratch pad for child process. */
3455 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3456 }
3457
3458 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3459 the child's PC is also within the scratchpad. Set the child's PC
3460 to the parent's PC value, which has already been fixed up.
3461 FIXME: we use the parent's aspace here, although we're touching
3462 the child, because the child hasn't been added to the inferior
3463 list yet at this point. */
3464
3465 child_regcache
3466 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3467 gdbarch,
3468 parent_inf->aspace);
3469 /* Read PC value of parent process. */
3470 parent_pc = regcache_read_pc (regcache);
3471
3472 if (debug_displaced)
3473 fprintf_unfiltered (gdb_stdlog,
3474 "displaced: write child pc from %s to %s\n",
3475 paddress (gdbarch,
3476 regcache_read_pc (child_regcache)),
3477 paddress (gdbarch, parent_pc));
3478
3479 regcache_write_pc (child_regcache, parent_pc);
3480 }
3481 }
3482
3483 if (!ptid_equal (ecs->ptid, inferior_ptid))
3484 context_switch (ecs->ptid);
3485
3486 /* Immediately detach breakpoints from the child before there's
3487 any chance of letting the user delete breakpoints from the
3488 breakpoint lists. If we don't do this early, it's easy to
3489 leave left over traps in the child, vis: "break foo; catch
3490 fork; c; <fork>; del; c; <child calls foo>". We only follow
3491 the fork on the last `continue', and by that time the
3492 breakpoint at "foo" is long gone from the breakpoint table.
3493 If we vforked, then we don't need to unpatch here, since both
3494 parent and child are sharing the same memory pages; we'll
3495 need to unpatch at follow/detach time instead to be certain
3496 that new breakpoints added between catchpoint hit time and
3497 vfork follow are detached. */
3498 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3499 {
3500 /* This won't actually modify the breakpoint list, but will
3501 physically remove the breakpoints from the child. */
3502 detach_breakpoints (ecs->ws.value.related_pid);
3503 }
3504
3505 if (singlestep_breakpoints_inserted_p)
3506 {
3507 /* Pull the single step breakpoints out of the target. */
3508 remove_single_step_breakpoints ();
3509 singlestep_breakpoints_inserted_p = 0;
3510 }
3511
3512 /* In case the event is caught by a catchpoint, remember that
3513 the event is to be followed at the next resume of the thread,
3514 and not immediately. */
3515 ecs->event_thread->pending_follow = ecs->ws;
3516
3517 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3518
3519 ecs->event_thread->control.stop_bpstat
3520 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3521 stop_pc, ecs->ptid, &ecs->ws);
3522
3523 /* Note that we're interested in knowing the bpstat actually
3524 causes a stop, not just if it may explain the signal.
3525 Software watchpoints, for example, always appear in the
3526 bpstat. */
3527 ecs->random_signal
3528 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
3529
3530 /* If no catchpoint triggered for this, then keep going. */
3531 if (ecs->random_signal)
3532 {
3533 ptid_t parent;
3534 ptid_t child;
3535 int should_resume;
3536 int follow_child
3537 = (follow_fork_mode_string == follow_fork_mode_child);
3538
3539 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3540
3541 should_resume = follow_fork ();
3542
3543 parent = ecs->ptid;
3544 child = ecs->ws.value.related_pid;
3545
3546 /* In non-stop mode, also resume the other branch. */
3547 if (non_stop && !detach_fork)
3548 {
3549 if (follow_child)
3550 switch_to_thread (parent);
3551 else
3552 switch_to_thread (child);
3553
3554 ecs->event_thread = inferior_thread ();
3555 ecs->ptid = inferior_ptid;
3556 keep_going (ecs);
3557 }
3558
3559 if (follow_child)
3560 switch_to_thread (child);
3561 else
3562 switch_to_thread (parent);
3563
3564 ecs->event_thread = inferior_thread ();
3565 ecs->ptid = inferior_ptid;
3566
3567 if (should_resume)
3568 keep_going (ecs);
3569 else
3570 stop_stepping (ecs);
3571 return;
3572 }
3573 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3574 goto process_event_stop_test;
3575
3576 case TARGET_WAITKIND_VFORK_DONE:
3577 /* Done with the shared memory region. Re-insert breakpoints in
3578 the parent, and keep going. */
3579
3580 if (debug_infrun)
3581 fprintf_unfiltered (gdb_stdlog,
3582 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3583
3584 if (!ptid_equal (ecs->ptid, inferior_ptid))
3585 context_switch (ecs->ptid);
3586
3587 current_inferior ()->waiting_for_vfork_done = 0;
3588 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3589 /* This also takes care of reinserting breakpoints in the
3590 previously locked inferior. */
3591 keep_going (ecs);
3592 return;
3593
3594 case TARGET_WAITKIND_EXECD:
3595 if (debug_infrun)
3596 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3597
3598 if (!ptid_equal (ecs->ptid, inferior_ptid))
3599 context_switch (ecs->ptid);
3600
3601 singlestep_breakpoints_inserted_p = 0;
3602 cancel_single_step_breakpoints ();
3603
3604 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3605
3606 /* Do whatever is necessary to the parent branch of the vfork. */
3607 handle_vfork_child_exec_or_exit (1);
3608
3609 /* This causes the eventpoints and symbol table to be reset.
3610 Must do this now, before trying to determine whether to
3611 stop. */
3612 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3613
3614 ecs->event_thread->control.stop_bpstat
3615 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3616 stop_pc, ecs->ptid, &ecs->ws);
3617 ecs->random_signal
3618 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3619
3620 /* Note that this may be referenced from inside
3621 bpstat_stop_status above, through inferior_has_execd. */
3622 xfree (ecs->ws.value.execd_pathname);
3623 ecs->ws.value.execd_pathname = NULL;
3624
3625 /* If no catchpoint triggered for this, then keep going. */
3626 if (ecs->random_signal)
3627 {
3628 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3629 keep_going (ecs);
3630 return;
3631 }
3632 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
3633 goto process_event_stop_test;
3634
3635 /* Be careful not to try to gather much state about a thread
3636 that's in a syscall. It's frequently a losing proposition. */
3637 case TARGET_WAITKIND_SYSCALL_ENTRY:
3638 if (debug_infrun)
3639 fprintf_unfiltered (gdb_stdlog,
3640 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3641 /* Getting the current syscall number. */
3642 if (handle_syscall_event (ecs) != 0)
3643 return;
3644 goto process_event_stop_test;
3645
3646 /* Before examining the threads further, step this thread to
3647 get it entirely out of the syscall. (We get notice of the
3648 event when the thread is just on the verge of exiting a
3649 syscall. Stepping one instruction seems to get it back
3650 into user code.) */
3651 case TARGET_WAITKIND_SYSCALL_RETURN:
3652 if (debug_infrun)
3653 fprintf_unfiltered (gdb_stdlog,
3654 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3655 if (handle_syscall_event (ecs) != 0)
3656 return;
3657 goto process_event_stop_test;
3658
3659 case TARGET_WAITKIND_STOPPED:
3660 if (debug_infrun)
3661 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3662 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
3663 break;
3664
3665 case TARGET_WAITKIND_NO_HISTORY:
3666 if (debug_infrun)
3667 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
3668 /* Reverse execution: target ran out of history info. */
3669
3670 /* Pull the single step breakpoints out of the target. */
3671 if (singlestep_breakpoints_inserted_p)
3672 {
3673 if (!ptid_equal (ecs->ptid, inferior_ptid))
3674 context_switch (ecs->ptid);
3675 remove_single_step_breakpoints ();
3676 singlestep_breakpoints_inserted_p = 0;
3677 }
3678 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3679 print_no_history_reason ();
3680 stop_stepping (ecs);
3681 return;
3682 }
3683
3684 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
3685 {
3686 /* Do we need to clean up the state of a thread that has
3687 completed a displaced single-step? (Doing so usually affects
3688 the PC, so do it here, before we set stop_pc.) */
3689 displaced_step_fixup (ecs->ptid,
3690 ecs->event_thread->suspend.stop_signal);
3691
3692 /* If we either finished a single-step or hit a breakpoint, but
3693 the user wanted this thread to be stopped, pretend we got a
3694 SIG0 (generic unsignaled stop). */
3695
3696 if (ecs->event_thread->stop_requested
3697 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3698 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3699 }
3700
3701 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3702
3703 if (debug_infrun)
3704 {
3705 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3706 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3707 struct cleanup *old_chain = save_inferior_ptid ();
3708
3709 inferior_ptid = ecs->ptid;
3710
3711 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3712 paddress (gdbarch, stop_pc));
3713 if (target_stopped_by_watchpoint ())
3714 {
3715 CORE_ADDR addr;
3716
3717 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3718
3719 if (target_stopped_data_address (&current_target, &addr))
3720 fprintf_unfiltered (gdb_stdlog,
3721 "infrun: stopped data address = %s\n",
3722 paddress (gdbarch, addr));
3723 else
3724 fprintf_unfiltered (gdb_stdlog,
3725 "infrun: (no data address available)\n");
3726 }
3727
3728 do_cleanups (old_chain);
3729 }
3730
3731 if (stepping_past_singlestep_breakpoint)
3732 {
3733 gdb_assert (singlestep_breakpoints_inserted_p);
3734 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3735 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3736
3737 stepping_past_singlestep_breakpoint = 0;
3738
3739 /* We've either finished single-stepping past the single-step
3740 breakpoint, or stopped for some other reason. It would be nice if
3741 we could tell, but we can't reliably. */
3742 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3743 {
3744 if (debug_infrun)
3745 fprintf_unfiltered (gdb_stdlog,
3746 "infrun: stepping_past_"
3747 "singlestep_breakpoint\n");
3748 /* Pull the single step breakpoints out of the target. */
3749 if (!ptid_equal (ecs->ptid, inferior_ptid))
3750 context_switch (ecs->ptid);
3751 remove_single_step_breakpoints ();
3752 singlestep_breakpoints_inserted_p = 0;
3753
3754 ecs->random_signal = 0;
3755 ecs->event_thread->control.trap_expected = 0;
3756
3757 context_switch (saved_singlestep_ptid);
3758 if (deprecated_context_hook)
3759 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3760
3761 resume (1, GDB_SIGNAL_0);
3762 prepare_to_wait (ecs);
3763 return;
3764 }
3765 }
3766
3767 if (!ptid_equal (deferred_step_ptid, null_ptid))
3768 {
3769 /* In non-stop mode, there's never a deferred_step_ptid set. */
3770 gdb_assert (!non_stop);
3771
3772 /* If we stopped for some other reason than single-stepping, ignore
3773 the fact that we were supposed to switch back. */
3774 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3775 {
3776 if (debug_infrun)
3777 fprintf_unfiltered (gdb_stdlog,
3778 "infrun: handling deferred step\n");
3779
3780 /* Pull the single step breakpoints out of the target. */
3781 if (singlestep_breakpoints_inserted_p)
3782 {
3783 if (!ptid_equal (ecs->ptid, inferior_ptid))
3784 context_switch (ecs->ptid);
3785 remove_single_step_breakpoints ();
3786 singlestep_breakpoints_inserted_p = 0;
3787 }
3788
3789 ecs->event_thread->control.trap_expected = 0;
3790
3791 context_switch (deferred_step_ptid);
3792 deferred_step_ptid = null_ptid;
3793 /* Suppress spurious "Switching to ..." message. */
3794 previous_inferior_ptid = inferior_ptid;
3795
3796 resume (1, GDB_SIGNAL_0);
3797 prepare_to_wait (ecs);
3798 return;
3799 }
3800
3801 deferred_step_ptid = null_ptid;
3802 }
3803
3804 /* See if a thread hit a thread-specific breakpoint that was meant for
3805 another thread. If so, then step that thread past the breakpoint,
3806 and continue it. */
3807
3808 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3809 {
3810 int thread_hop_needed = 0;
3811 struct address_space *aspace =
3812 get_regcache_aspace (get_thread_regcache (ecs->ptid));
3813
3814 /* Check if a regular breakpoint has been hit before checking
3815 for a potential single step breakpoint. Otherwise, GDB will
3816 not see this breakpoint hit when stepping onto breakpoints. */
3817 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3818 {
3819 ecs->random_signal = 0;
3820 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3821 thread_hop_needed = 1;
3822 }
3823 else if (singlestep_breakpoints_inserted_p)
3824 {
3825 /* We have not context switched yet, so this should be true
3826 no matter which thread hit the singlestep breakpoint. */
3827 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3828 if (debug_infrun)
3829 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3830 "trap for %s\n",
3831 target_pid_to_str (ecs->ptid));
3832
3833 ecs->random_signal = 0;
3834 /* The call to in_thread_list is necessary because PTIDs sometimes
3835 change when we go from single-threaded to multi-threaded. If
3836 the singlestep_ptid is still in the list, assume that it is
3837 really different from ecs->ptid. */
3838 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3839 && in_thread_list (singlestep_ptid))
3840 {
3841 /* If the PC of the thread we were trying to single-step
3842 has changed, discard this event (which we were going
3843 to ignore anyway), and pretend we saw that thread
3844 trap. This prevents us continuously moving the
3845 single-step breakpoint forward, one instruction at a
3846 time. If the PC has changed, then the thread we were
3847 trying to single-step has trapped or been signalled,
3848 but the event has not been reported to GDB yet.
3849
3850 There might be some cases where this loses signal
3851 information, if a signal has arrived at exactly the
3852 same time that the PC changed, but this is the best
3853 we can do with the information available. Perhaps we
3854 should arrange to report all events for all threads
3855 when they stop, or to re-poll the remote looking for
3856 this particular thread (i.e. temporarily enable
3857 schedlock). */
3858
3859 CORE_ADDR new_singlestep_pc
3860 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3861
3862 if (new_singlestep_pc != singlestep_pc)
3863 {
3864 enum gdb_signal stop_signal;
3865
3866 if (debug_infrun)
3867 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3868 " but expected thread advanced also\n");
3869
3870 /* The current context still belongs to
3871 singlestep_ptid. Don't swap here, since that's
3872 the context we want to use. Just fudge our
3873 state and continue. */
3874 stop_signal = ecs->event_thread->suspend.stop_signal;
3875 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3876 ecs->ptid = singlestep_ptid;
3877 ecs->event_thread = find_thread_ptid (ecs->ptid);
3878 ecs->event_thread->suspend.stop_signal = stop_signal;
3879 stop_pc = new_singlestep_pc;
3880 }
3881 else
3882 {
3883 if (debug_infrun)
3884 fprintf_unfiltered (gdb_stdlog,
3885 "infrun: unexpected thread\n");
3886
3887 thread_hop_needed = 1;
3888 stepping_past_singlestep_breakpoint = 1;
3889 saved_singlestep_ptid = singlestep_ptid;
3890 }
3891 }
3892 }
3893
3894 if (thread_hop_needed)
3895 {
3896 struct regcache *thread_regcache;
3897 int remove_status = 0;
3898
3899 if (debug_infrun)
3900 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
3901
3902 /* Switch context before touching inferior memory, the
3903 previous thread may have exited. */
3904 if (!ptid_equal (inferior_ptid, ecs->ptid))
3905 context_switch (ecs->ptid);
3906
3907 /* Saw a breakpoint, but it was hit by the wrong thread.
3908 Just continue. */
3909
3910 if (singlestep_breakpoints_inserted_p)
3911 {
3912 /* Pull the single step breakpoints out of the target. */
3913 remove_single_step_breakpoints ();
3914 singlestep_breakpoints_inserted_p = 0;
3915 }
3916
3917 /* If the arch can displace step, don't remove the
3918 breakpoints. */
3919 thread_regcache = get_thread_regcache (ecs->ptid);
3920 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
3921 remove_status = remove_breakpoints ();
3922
3923 /* Did we fail to remove breakpoints? If so, try
3924 to set the PC past the bp. (There's at least
3925 one situation in which we can fail to remove
3926 the bp's: On HP-UX's that use ttrace, we can't
3927 change the address space of a vforking child
3928 process until the child exits (well, okay, not
3929 then either :-) or execs. */
3930 if (remove_status != 0)
3931 error (_("Cannot step over breakpoint hit in wrong thread"));
3932 else
3933 { /* Single step */
3934 if (!non_stop)
3935 {
3936 /* Only need to require the next event from this
3937 thread in all-stop mode. */
3938 waiton_ptid = ecs->ptid;
3939 infwait_state = infwait_thread_hop_state;
3940 }
3941
3942 ecs->event_thread->stepping_over_breakpoint = 1;
3943 keep_going (ecs);
3944 return;
3945 }
3946 }
3947 else if (singlestep_breakpoints_inserted_p)
3948 {
3949 ecs->random_signal = 0;
3950 }
3951 }
3952 else
3953 ecs->random_signal = 1;
3954
3955 /* See if something interesting happened to the non-current thread. If
3956 so, then switch to that thread. */
3957 if (!ptid_equal (ecs->ptid, inferior_ptid))
3958 {
3959 if (debug_infrun)
3960 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
3961
3962 context_switch (ecs->ptid);
3963
3964 if (deprecated_context_hook)
3965 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
3966 }
3967
3968 /* At this point, get hold of the now-current thread's frame. */
3969 frame = get_current_frame ();
3970 gdbarch = get_frame_arch (frame);
3971
3972 if (singlestep_breakpoints_inserted_p)
3973 {
3974 /* Pull the single step breakpoints out of the target. */
3975 remove_single_step_breakpoints ();
3976 singlestep_breakpoints_inserted_p = 0;
3977 }
3978
3979 if (stepped_after_stopped_by_watchpoint)
3980 stopped_by_watchpoint = 0;
3981 else
3982 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3983
3984 /* If necessary, step over this watchpoint. We'll be back to display
3985 it in a moment. */
3986 if (stopped_by_watchpoint
3987 && (target_have_steppable_watchpoint
3988 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
3989 {
3990 /* At this point, we are stopped at an instruction which has
3991 attempted to write to a piece of memory under control of
3992 a watchpoint. The instruction hasn't actually executed
3993 yet. If we were to evaluate the watchpoint expression
3994 now, we would get the old value, and therefore no change
3995 would seem to have occurred.
3996
3997 In order to make watchpoints work `right', we really need
3998 to complete the memory write, and then evaluate the
3999 watchpoint expression. We do this by single-stepping the
4000 target.
4001
4002 It may not be necessary to disable the watchpoint to stop over
4003 it. For example, the PA can (with some kernel cooperation)
4004 single step over a watchpoint without disabling the watchpoint.
4005
4006 It is far more common to need to disable a watchpoint to step
4007 the inferior over it. If we have non-steppable watchpoints,
4008 we must disable the current watchpoint; it's simplest to
4009 disable all watchpoints and breakpoints. */
4010 int hw_step = 1;
4011
4012 if (!target_have_steppable_watchpoint)
4013 {
4014 remove_breakpoints ();
4015 /* See comment in resume why we need to stop bypassing signals
4016 while breakpoints have been removed. */
4017 target_pass_signals (0, NULL);
4018 }
4019 /* Single step */
4020 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
4021 target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
4022 waiton_ptid = ecs->ptid;
4023 if (target_have_steppable_watchpoint)
4024 infwait_state = infwait_step_watch_state;
4025 else
4026 infwait_state = infwait_nonstep_watch_state;
4027 prepare_to_wait (ecs);
4028 return;
4029 }
4030
4031 clear_stop_func (ecs);
4032 ecs->event_thread->stepping_over_breakpoint = 0;
4033 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4034 ecs->event_thread->control.stop_step = 0;
4035 stop_print_frame = 1;
4036 ecs->random_signal = 0;
4037 stopped_by_random_signal = 0;
4038
4039 /* Hide inlined functions starting here, unless we just performed stepi or
4040 nexti. After stepi and nexti, always show the innermost frame (not any
4041 inline function call sites). */
4042 if (ecs->event_thread->control.step_range_end != 1)
4043 {
4044 struct address_space *aspace =
4045 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4046
4047 /* skip_inline_frames is expensive, so we avoid it if we can
4048 determine that the address is one where functions cannot have
4049 been inlined. This improves performance with inferiors that
4050 load a lot of shared libraries, because the solib event
4051 breakpoint is defined as the address of a function (i.e. not
4052 inline). Note that we have to check the previous PC as well
4053 as the current one to catch cases when we have just
4054 single-stepped off a breakpoint prior to reinstating it.
4055 Note that we're assuming that the code we single-step to is
4056 not inline, but that's not definitive: there's nothing
4057 preventing the event breakpoint function from containing
4058 inlined code, and the single-step ending up there. If the
4059 user had set a breakpoint on that inlined code, the missing
4060 skip_inline_frames call would break things. Fortunately
4061 that's an extremely unlikely scenario. */
4062 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
4063 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4064 && ecs->event_thread->control.trap_expected
4065 && pc_at_non_inline_function (aspace,
4066 ecs->event_thread->prev_pc,
4067 &ecs->ws)))
4068 {
4069 skip_inline_frames (ecs->ptid);
4070
4071 /* Re-fetch current thread's frame in case that invalidated
4072 the frame cache. */
4073 frame = get_current_frame ();
4074 gdbarch = get_frame_arch (frame);
4075 }
4076 }
4077
4078 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4079 && ecs->event_thread->control.trap_expected
4080 && gdbarch_single_step_through_delay_p (gdbarch)
4081 && currently_stepping (ecs->event_thread))
4082 {
4083 /* We're trying to step off a breakpoint. Turns out that we're
4084 also on an instruction that needs to be stepped multiple
4085 times before it's been fully executing. E.g., architectures
4086 with a delay slot. It needs to be stepped twice, once for
4087 the instruction and once for the delay slot. */
4088 int step_through_delay
4089 = gdbarch_single_step_through_delay (gdbarch, frame);
4090
4091 if (debug_infrun && step_through_delay)
4092 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4093 if (ecs->event_thread->control.step_range_end == 0
4094 && step_through_delay)
4095 {
4096 /* The user issued a continue when stopped at a breakpoint.
4097 Set up for another trap and get out of here. */
4098 ecs->event_thread->stepping_over_breakpoint = 1;
4099 keep_going (ecs);
4100 return;
4101 }
4102 else if (step_through_delay)
4103 {
4104 /* The user issued a step when stopped at a breakpoint.
4105 Maybe we should stop, maybe we should not - the delay
4106 slot *might* correspond to a line of source. In any
4107 case, don't decide that here, just set
4108 ecs->stepping_over_breakpoint, making sure we
4109 single-step again before breakpoints are re-inserted. */
4110 ecs->event_thread->stepping_over_breakpoint = 1;
4111 }
4112 }
4113
4114 /* Look at the cause of the stop, and decide what to do.
4115 The alternatives are:
4116 1) stop_stepping and return; to really stop and return to the debugger,
4117 2) keep_going and return to start up again
4118 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
4119 3) set ecs->random_signal to 1, and the decision between 1 and 2
4120 will be made according to the signal handling tables. */
4121
4122 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4123 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
4124 || stop_soon == STOP_QUIETLY_REMOTE)
4125 {
4126 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4127 && stop_after_trap)
4128 {
4129 if (debug_infrun)
4130 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4131 stop_print_frame = 0;
4132 stop_stepping (ecs);
4133 return;
4134 }
4135
4136 /* This is originated from start_remote(), start_inferior() and
4137 shared libraries hook functions. */
4138 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4139 {
4140 if (debug_infrun)
4141 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4142 stop_stepping (ecs);
4143 return;
4144 }
4145
4146 /* This originates from attach_command(). We need to overwrite
4147 the stop_signal here, because some kernels don't ignore a
4148 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4149 See more comments in inferior.h. On the other hand, if we
4150 get a non-SIGSTOP, report it to the user - assume the backend
4151 will handle the SIGSTOP if it should show up later.
4152
4153 Also consider that the attach is complete when we see a
4154 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4155 target extended-remote report it instead of a SIGSTOP
4156 (e.g. gdbserver). We already rely on SIGTRAP being our
4157 signal, so this is no exception.
4158
4159 Also consider that the attach is complete when we see a
4160 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4161 the target to stop all threads of the inferior, in case the
4162 low level attach operation doesn't stop them implicitly. If
4163 they weren't stopped implicitly, then the stub will report a
4164 GDB_SIGNAL_0, meaning: stopped for no particular reason
4165 other than GDB's request. */
4166 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4167 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4168 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4169 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4170 {
4171 stop_stepping (ecs);
4172 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4173 return;
4174 }
4175
4176 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4177 handles this event. */
4178 ecs->event_thread->control.stop_bpstat
4179 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4180 stop_pc, ecs->ptid, &ecs->ws);
4181
4182 /* Following in case break condition called a
4183 function. */
4184 stop_print_frame = 1;
4185
4186 /* This is where we handle "moribund" watchpoints. Unlike
4187 software breakpoints traps, hardware watchpoint traps are
4188 always distinguishable from random traps. If no high-level
4189 watchpoint is associated with the reported stop data address
4190 anymore, then the bpstat does not explain the signal ---
4191 simply make sure to ignore it if `stopped_by_watchpoint' is
4192 set. */
4193
4194 if (debug_infrun
4195 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4196 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4197 && stopped_by_watchpoint)
4198 fprintf_unfiltered (gdb_stdlog,
4199 "infrun: no user watchpoint explains "
4200 "watchpoint SIGTRAP, ignoring\n");
4201
4202 /* NOTE: cagney/2003-03-29: These two checks for a random signal
4203 at one stage in the past included checks for an inferior
4204 function call's call dummy's return breakpoint. The original
4205 comment, that went with the test, read:
4206
4207 ``End of a stack dummy. Some systems (e.g. Sony news) give
4208 another signal besides SIGTRAP, so check here as well as
4209 above.''
4210
4211 If someone ever tries to get call dummys on a
4212 non-executable stack to work (where the target would stop
4213 with something like a SIGSEGV), then those tests might need
4214 to be re-instated. Given, however, that the tests were only
4215 enabled when momentary breakpoints were not being used, I
4216 suspect that it won't be the case.
4217
4218 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4219 be necessary for call dummies on a non-executable stack on
4220 SPARC. */
4221
4222 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4223 ecs->random_signal
4224 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4225 || stopped_by_watchpoint
4226 || ecs->event_thread->control.trap_expected
4227 || (ecs->event_thread->control.step_range_end
4228 && (ecs->event_thread->control.step_resume_breakpoint
4229 == NULL)));
4230 else
4231 {
4232 ecs->random_signal = !bpstat_explains_signal
4233 (ecs->event_thread->control.stop_bpstat);
4234 if (!ecs->random_signal)
4235 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
4236 }
4237 }
4238
4239 /* When we reach this point, we've pretty much decided
4240 that the reason for stopping must've been a random
4241 (unexpected) signal. */
4242
4243 else
4244 ecs->random_signal = 1;
4245
4246 process_event_stop_test:
4247
4248 /* Re-fetch current thread's frame in case we did a
4249 "goto process_event_stop_test" above. */
4250 frame = get_current_frame ();
4251 gdbarch = get_frame_arch (frame);
4252
4253 /* For the program's own signals, act according to
4254 the signal handling tables. */
4255
4256 if (ecs->random_signal)
4257 {
4258 /* Signal not for debugging purposes. */
4259 int printed = 0;
4260 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4261
4262 if (debug_infrun)
4263 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
4264 ecs->event_thread->suspend.stop_signal);
4265
4266 stopped_by_random_signal = 1;
4267
4268 if (signal_print[ecs->event_thread->suspend.stop_signal])
4269 {
4270 printed = 1;
4271 target_terminal_ours_for_output ();
4272 print_signal_received_reason
4273 (ecs->event_thread->suspend.stop_signal);
4274 }
4275 /* Always stop on signals if we're either just gaining control
4276 of the program, or the user explicitly requested this thread
4277 to remain stopped. */
4278 if (stop_soon != NO_STOP_QUIETLY
4279 || ecs->event_thread->stop_requested
4280 || (!inf->detaching
4281 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4282 {
4283 stop_stepping (ecs);
4284 return;
4285 }
4286 /* If not going to stop, give terminal back
4287 if we took it away. */
4288 else if (printed)
4289 target_terminal_inferior ();
4290
4291 /* Clear the signal if it should not be passed. */
4292 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4293 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4294
4295 if (ecs->event_thread->prev_pc == stop_pc
4296 && ecs->event_thread->control.trap_expected
4297 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4298 {
4299 /* We were just starting a new sequence, attempting to
4300 single-step off of a breakpoint and expecting a SIGTRAP.
4301 Instead this signal arrives. This signal will take us out
4302 of the stepping range so GDB needs to remember to, when
4303 the signal handler returns, resume stepping off that
4304 breakpoint. */
4305 /* To simplify things, "continue" is forced to use the same
4306 code paths as single-step - set a breakpoint at the
4307 signal return address and then, once hit, step off that
4308 breakpoint. */
4309 if (debug_infrun)
4310 fprintf_unfiltered (gdb_stdlog,
4311 "infrun: signal arrived while stepping over "
4312 "breakpoint\n");
4313
4314 insert_hp_step_resume_breakpoint_at_frame (frame);
4315 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4316 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4317 ecs->event_thread->control.trap_expected = 0;
4318 keep_going (ecs);
4319 return;
4320 }
4321
4322 if (ecs->event_thread->control.step_range_end != 0
4323 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4324 && (ecs->event_thread->control.step_range_start <= stop_pc
4325 && stop_pc < ecs->event_thread->control.step_range_end)
4326 && frame_id_eq (get_stack_frame_id (frame),
4327 ecs->event_thread->control.step_stack_frame_id)
4328 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4329 {
4330 /* The inferior is about to take a signal that will take it
4331 out of the single step range. Set a breakpoint at the
4332 current PC (which is presumably where the signal handler
4333 will eventually return) and then allow the inferior to
4334 run free.
4335
4336 Note that this is only needed for a signal delivered
4337 while in the single-step range. Nested signals aren't a
4338 problem as they eventually all return. */
4339 if (debug_infrun)
4340 fprintf_unfiltered (gdb_stdlog,
4341 "infrun: signal may take us out of "
4342 "single-step range\n");
4343
4344 insert_hp_step_resume_breakpoint_at_frame (frame);
4345 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4346 ecs->event_thread->control.trap_expected = 0;
4347 keep_going (ecs);
4348 return;
4349 }
4350
4351 /* Note: step_resume_breakpoint may be non-NULL. This occures
4352 when either there's a nested signal, or when there's a
4353 pending signal enabled just as the signal handler returns
4354 (leaving the inferior at the step-resume-breakpoint without
4355 actually executing it). Either way continue until the
4356 breakpoint is really hit. */
4357 }
4358 else
4359 {
4360 /* Handle cases caused by hitting a breakpoint. */
4361
4362 CORE_ADDR jmp_buf_pc;
4363 struct bpstat_what what;
4364
4365 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4366
4367 if (what.call_dummy)
4368 {
4369 stop_stack_dummy = what.call_dummy;
4370 }
4371
4372 /* If we hit an internal event that triggers symbol changes, the
4373 current frame will be invalidated within bpstat_what (e.g.,
4374 if we hit an internal solib event). Re-fetch it. */
4375 frame = get_current_frame ();
4376 gdbarch = get_frame_arch (frame);
4377
4378 switch (what.main_action)
4379 {
4380 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4381 /* If we hit the breakpoint at longjmp while stepping, we
4382 install a momentary breakpoint at the target of the
4383 jmp_buf. */
4384
4385 if (debug_infrun)
4386 fprintf_unfiltered (gdb_stdlog,
4387 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4388
4389 ecs->event_thread->stepping_over_breakpoint = 1;
4390
4391 if (what.is_longjmp)
4392 {
4393 struct value *arg_value;
4394
4395 /* If we set the longjmp breakpoint via a SystemTap
4396 probe, then use it to extract the arguments. The
4397 destination PC is the third argument to the
4398 probe. */
4399 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4400 if (arg_value)
4401 jmp_buf_pc = value_as_address (arg_value);
4402 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4403 || !gdbarch_get_longjmp_target (gdbarch,
4404 frame, &jmp_buf_pc))
4405 {
4406 if (debug_infrun)
4407 fprintf_unfiltered (gdb_stdlog,
4408 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4409 "(!gdbarch_get_longjmp_target)\n");
4410 keep_going (ecs);
4411 return;
4412 }
4413
4414 /* Insert a breakpoint at resume address. */
4415 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4416 }
4417 else
4418 check_exception_resume (ecs, frame);
4419 keep_going (ecs);
4420 return;
4421
4422 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4423 {
4424 struct frame_info *init_frame;
4425
4426 /* There are several cases to consider.
4427
4428 1. The initiating frame no longer exists. In this case
4429 we must stop, because the exception or longjmp has gone
4430 too far.
4431
4432 2. The initiating frame exists, and is the same as the
4433 current frame. We stop, because the exception or
4434 longjmp has been caught.
4435
4436 3. The initiating frame exists and is different from
4437 the current frame. This means the exception or longjmp
4438 has been caught beneath the initiating frame, so keep
4439 going.
4440
4441 4. longjmp breakpoint has been placed just to protect
4442 against stale dummy frames and user is not interested
4443 in stopping around longjmps. */
4444
4445 if (debug_infrun)
4446 fprintf_unfiltered (gdb_stdlog,
4447 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4448
4449 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4450 != NULL);
4451 delete_exception_resume_breakpoint (ecs->event_thread);
4452
4453 if (what.is_longjmp)
4454 {
4455 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread->num);
4456
4457 if (!frame_id_p (ecs->event_thread->initiating_frame))
4458 {
4459 /* Case 4. */
4460 keep_going (ecs);
4461 return;
4462 }
4463 }
4464
4465 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
4466
4467 if (init_frame)
4468 {
4469 struct frame_id current_id
4470 = get_frame_id (get_current_frame ());
4471 if (frame_id_eq (current_id,
4472 ecs->event_thread->initiating_frame))
4473 {
4474 /* Case 2. Fall through. */
4475 }
4476 else
4477 {
4478 /* Case 3. */
4479 keep_going (ecs);
4480 return;
4481 }
4482 }
4483
4484 /* For Cases 1 and 2, remove the step-resume breakpoint,
4485 if it exists. */
4486 delete_step_resume_breakpoint (ecs->event_thread);
4487
4488 ecs->event_thread->control.stop_step = 1;
4489 print_end_stepping_range_reason ();
4490 stop_stepping (ecs);
4491 }
4492 return;
4493
4494 case BPSTAT_WHAT_SINGLE:
4495 if (debug_infrun)
4496 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4497 ecs->event_thread->stepping_over_breakpoint = 1;
4498 /* Still need to check other stuff, at least the case where
4499 we are stepping and step out of the right range. */
4500 break;
4501
4502 case BPSTAT_WHAT_STEP_RESUME:
4503 if (debug_infrun)
4504 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4505
4506 delete_step_resume_breakpoint (ecs->event_thread);
4507 if (ecs->event_thread->control.proceed_to_finish
4508 && execution_direction == EXEC_REVERSE)
4509 {
4510 struct thread_info *tp = ecs->event_thread;
4511
4512 /* We are finishing a function in reverse, and just hit
4513 the step-resume breakpoint at the start address of
4514 the function, and we're almost there -- just need to
4515 back up by one more single-step, which should take us
4516 back to the function call. */
4517 tp->control.step_range_start = tp->control.step_range_end = 1;
4518 keep_going (ecs);
4519 return;
4520 }
4521 fill_in_stop_func (gdbarch, ecs);
4522 if (stop_pc == ecs->stop_func_start
4523 && execution_direction == EXEC_REVERSE)
4524 {
4525 /* We are stepping over a function call in reverse, and
4526 just hit the step-resume breakpoint at the start
4527 address of the function. Go back to single-stepping,
4528 which should take us back to the function call. */
4529 ecs->event_thread->stepping_over_breakpoint = 1;
4530 keep_going (ecs);
4531 return;
4532 }
4533 break;
4534
4535 case BPSTAT_WHAT_STOP_NOISY:
4536 if (debug_infrun)
4537 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4538 stop_print_frame = 1;
4539
4540 /* We are about to nuke the step_resume_breakpointt via the
4541 cleanup chain, so no need to worry about it here. */
4542
4543 stop_stepping (ecs);
4544 return;
4545
4546 case BPSTAT_WHAT_STOP_SILENT:
4547 if (debug_infrun)
4548 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4549 stop_print_frame = 0;
4550
4551 /* We are about to nuke the step_resume_breakpoin via the
4552 cleanup chain, so no need to worry about it here. */
4553
4554 stop_stepping (ecs);
4555 return;
4556
4557 case BPSTAT_WHAT_HP_STEP_RESUME:
4558 if (debug_infrun)
4559 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4560
4561 delete_step_resume_breakpoint (ecs->event_thread);
4562 if (ecs->event_thread->step_after_step_resume_breakpoint)
4563 {
4564 /* Back when the step-resume breakpoint was inserted, we
4565 were trying to single-step off a breakpoint. Go back
4566 to doing that. */
4567 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4568 ecs->event_thread->stepping_over_breakpoint = 1;
4569 keep_going (ecs);
4570 return;
4571 }
4572 break;
4573
4574 case BPSTAT_WHAT_KEEP_CHECKING:
4575 break;
4576 }
4577 }
4578
4579 /* We come here if we hit a breakpoint but should not
4580 stop for it. Possibly we also were stepping
4581 and should stop for that. So fall through and
4582 test for stepping. But, if not stepping,
4583 do not stop. */
4584
4585 /* In all-stop mode, if we're currently stepping but have stopped in
4586 some other thread, we need to switch back to the stepped thread. */
4587 if (!non_stop)
4588 {
4589 struct thread_info *tp;
4590
4591 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
4592 ecs->event_thread);
4593 if (tp)
4594 {
4595 /* However, if the current thread is blocked on some internal
4596 breakpoint, and we simply need to step over that breakpoint
4597 to get it going again, do that first. */
4598 if ((ecs->event_thread->control.trap_expected
4599 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
4600 || ecs->event_thread->stepping_over_breakpoint)
4601 {
4602 keep_going (ecs);
4603 return;
4604 }
4605
4606 /* If the stepping thread exited, then don't try to switch
4607 back and resume it, which could fail in several different
4608 ways depending on the target. Instead, just keep going.
4609
4610 We can find a stepping dead thread in the thread list in
4611 two cases:
4612
4613 - The target supports thread exit events, and when the
4614 target tries to delete the thread from the thread list,
4615 inferior_ptid pointed at the exiting thread. In such
4616 case, calling delete_thread does not really remove the
4617 thread from the list; instead, the thread is left listed,
4618 with 'exited' state.
4619
4620 - The target's debug interface does not support thread
4621 exit events, and so we have no idea whatsoever if the
4622 previously stepping thread is still alive. For that
4623 reason, we need to synchronously query the target
4624 now. */
4625 if (is_exited (tp->ptid)
4626 || !target_thread_alive (tp->ptid))
4627 {
4628 if (debug_infrun)
4629 fprintf_unfiltered (gdb_stdlog,
4630 "infrun: not switching back to "
4631 "stepped thread, it has vanished\n");
4632
4633 delete_thread (tp->ptid);
4634 keep_going (ecs);
4635 return;
4636 }
4637
4638 /* Otherwise, we no longer expect a trap in the current thread.
4639 Clear the trap_expected flag before switching back -- this is
4640 what keep_going would do as well, if we called it. */
4641 ecs->event_thread->control.trap_expected = 0;
4642
4643 if (debug_infrun)
4644 fprintf_unfiltered (gdb_stdlog,
4645 "infrun: switching back to stepped thread\n");
4646
4647 ecs->event_thread = tp;
4648 ecs->ptid = tp->ptid;
4649 context_switch (ecs->ptid);
4650 keep_going (ecs);
4651 return;
4652 }
4653 }
4654
4655 if (ecs->event_thread->control.step_resume_breakpoint)
4656 {
4657 if (debug_infrun)
4658 fprintf_unfiltered (gdb_stdlog,
4659 "infrun: step-resume breakpoint is inserted\n");
4660
4661 /* Having a step-resume breakpoint overrides anything
4662 else having to do with stepping commands until
4663 that breakpoint is reached. */
4664 keep_going (ecs);
4665 return;
4666 }
4667
4668 if (ecs->event_thread->control.step_range_end == 0)
4669 {
4670 if (debug_infrun)
4671 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4672 /* Likewise if we aren't even stepping. */
4673 keep_going (ecs);
4674 return;
4675 }
4676
4677 /* Re-fetch current thread's frame in case the code above caused
4678 the frame cache to be re-initialized, making our FRAME variable
4679 a dangling pointer. */
4680 frame = get_current_frame ();
4681 gdbarch = get_frame_arch (frame);
4682 fill_in_stop_func (gdbarch, ecs);
4683
4684 /* If stepping through a line, keep going if still within it.
4685
4686 Note that step_range_end is the address of the first instruction
4687 beyond the step range, and NOT the address of the last instruction
4688 within it!
4689
4690 Note also that during reverse execution, we may be stepping
4691 through a function epilogue and therefore must detect when
4692 the current-frame changes in the middle of a line. */
4693
4694 if (stop_pc >= ecs->event_thread->control.step_range_start
4695 && stop_pc < ecs->event_thread->control.step_range_end
4696 && (execution_direction != EXEC_REVERSE
4697 || frame_id_eq (get_frame_id (frame),
4698 ecs->event_thread->control.step_frame_id)))
4699 {
4700 if (debug_infrun)
4701 fprintf_unfiltered
4702 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4703 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4704 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4705
4706 /* When stepping backward, stop at beginning of line range
4707 (unless it's the function entry point, in which case
4708 keep going back to the call point). */
4709 if (stop_pc == ecs->event_thread->control.step_range_start
4710 && stop_pc != ecs->stop_func_start
4711 && execution_direction == EXEC_REVERSE)
4712 {
4713 ecs->event_thread->control.stop_step = 1;
4714 print_end_stepping_range_reason ();
4715 stop_stepping (ecs);
4716 }
4717 else
4718 keep_going (ecs);
4719
4720 return;
4721 }
4722
4723 /* We stepped out of the stepping range. */
4724
4725 /* If we are stepping at the source level and entered the runtime
4726 loader dynamic symbol resolution code...
4727
4728 EXEC_FORWARD: we keep on single stepping until we exit the run
4729 time loader code and reach the callee's address.
4730
4731 EXEC_REVERSE: we've already executed the callee (backward), and
4732 the runtime loader code is handled just like any other
4733 undebuggable function call. Now we need only keep stepping
4734 backward through the trampoline code, and that's handled further
4735 down, so there is nothing for us to do here. */
4736
4737 if (execution_direction != EXEC_REVERSE
4738 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4739 && in_solib_dynsym_resolve_code (stop_pc))
4740 {
4741 CORE_ADDR pc_after_resolver =
4742 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4743
4744 if (debug_infrun)
4745 fprintf_unfiltered (gdb_stdlog,
4746 "infrun: stepped into dynsym resolve code\n");
4747
4748 if (pc_after_resolver)
4749 {
4750 /* Set up a step-resume breakpoint at the address
4751 indicated by SKIP_SOLIB_RESOLVER. */
4752 struct symtab_and_line sr_sal;
4753
4754 init_sal (&sr_sal);
4755 sr_sal.pc = pc_after_resolver;
4756 sr_sal.pspace = get_frame_program_space (frame);
4757
4758 insert_step_resume_breakpoint_at_sal (gdbarch,
4759 sr_sal, null_frame_id);
4760 }
4761
4762 keep_going (ecs);
4763 return;
4764 }
4765
4766 if (ecs->event_thread->control.step_range_end != 1
4767 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4768 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4769 && get_frame_type (frame) == SIGTRAMP_FRAME)
4770 {
4771 if (debug_infrun)
4772 fprintf_unfiltered (gdb_stdlog,
4773 "infrun: stepped into signal trampoline\n");
4774 /* The inferior, while doing a "step" or "next", has ended up in
4775 a signal trampoline (either by a signal being delivered or by
4776 the signal handler returning). Just single-step until the
4777 inferior leaves the trampoline (either by calling the handler
4778 or returning). */
4779 keep_going (ecs);
4780 return;
4781 }
4782
4783 /* If we're in the return path from a shared library trampoline,
4784 we want to proceed through the trampoline when stepping. */
4785 /* macro/2012-04-25: This needs to come before the subroutine
4786 call check below as on some targets return trampolines look
4787 like subroutine calls (MIPS16 return thunks). */
4788 if (gdbarch_in_solib_return_trampoline (gdbarch,
4789 stop_pc, ecs->stop_func_name)
4790 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4791 {
4792 /* Determine where this trampoline returns. */
4793 CORE_ADDR real_stop_pc;
4794
4795 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4796
4797 if (debug_infrun)
4798 fprintf_unfiltered (gdb_stdlog,
4799 "infrun: stepped into solib return tramp\n");
4800
4801 /* Only proceed through if we know where it's going. */
4802 if (real_stop_pc)
4803 {
4804 /* And put the step-breakpoint there and go until there. */
4805 struct symtab_and_line sr_sal;
4806
4807 init_sal (&sr_sal); /* initialize to zeroes */
4808 sr_sal.pc = real_stop_pc;
4809 sr_sal.section = find_pc_overlay (sr_sal.pc);
4810 sr_sal.pspace = get_frame_program_space (frame);
4811
4812 /* Do not specify what the fp should be when we stop since
4813 on some machines the prologue is where the new fp value
4814 is established. */
4815 insert_step_resume_breakpoint_at_sal (gdbarch,
4816 sr_sal, null_frame_id);
4817
4818 /* Restart without fiddling with the step ranges or
4819 other state. */
4820 keep_going (ecs);
4821 return;
4822 }
4823 }
4824
4825 /* Check for subroutine calls. The check for the current frame
4826 equalling the step ID is not necessary - the check of the
4827 previous frame's ID is sufficient - but it is a common case and
4828 cheaper than checking the previous frame's ID.
4829
4830 NOTE: frame_id_eq will never report two invalid frame IDs as
4831 being equal, so to get into this block, both the current and
4832 previous frame must have valid frame IDs. */
4833 /* The outer_frame_id check is a heuristic to detect stepping
4834 through startup code. If we step over an instruction which
4835 sets the stack pointer from an invalid value to a valid value,
4836 we may detect that as a subroutine call from the mythical
4837 "outermost" function. This could be fixed by marking
4838 outermost frames as !stack_p,code_p,special_p. Then the
4839 initial outermost frame, before sp was valid, would
4840 have code_addr == &_start. See the comment in frame_id_eq
4841 for more. */
4842 if (!frame_id_eq (get_stack_frame_id (frame),
4843 ecs->event_thread->control.step_stack_frame_id)
4844 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4845 ecs->event_thread->control.step_stack_frame_id)
4846 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4847 outer_frame_id)
4848 || step_start_function != find_pc_function (stop_pc))))
4849 {
4850 CORE_ADDR real_stop_pc;
4851
4852 if (debug_infrun)
4853 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4854
4855 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4856 || ((ecs->event_thread->control.step_range_end == 1)
4857 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4858 ecs->stop_func_start)))
4859 {
4860 /* I presume that step_over_calls is only 0 when we're
4861 supposed to be stepping at the assembly language level
4862 ("stepi"). Just stop. */
4863 /* Also, maybe we just did a "nexti" inside a prolog, so we
4864 thought it was a subroutine call but it was not. Stop as
4865 well. FENN */
4866 /* And this works the same backward as frontward. MVS */
4867 ecs->event_thread->control.stop_step = 1;
4868 print_end_stepping_range_reason ();
4869 stop_stepping (ecs);
4870 return;
4871 }
4872
4873 /* Reverse stepping through solib trampolines. */
4874
4875 if (execution_direction == EXEC_REVERSE
4876 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
4877 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4878 || (ecs->stop_func_start == 0
4879 && in_solib_dynsym_resolve_code (stop_pc))))
4880 {
4881 /* Any solib trampoline code can be handled in reverse
4882 by simply continuing to single-step. We have already
4883 executed the solib function (backwards), and a few
4884 steps will take us back through the trampoline to the
4885 caller. */
4886 keep_going (ecs);
4887 return;
4888 }
4889
4890 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4891 {
4892 /* We're doing a "next".
4893
4894 Normal (forward) execution: set a breakpoint at the
4895 callee's return address (the address at which the caller
4896 will resume).
4897
4898 Reverse (backward) execution. set the step-resume
4899 breakpoint at the start of the function that we just
4900 stepped into (backwards), and continue to there. When we
4901 get there, we'll need to single-step back to the caller. */
4902
4903 if (execution_direction == EXEC_REVERSE)
4904 {
4905 struct symtab_and_line sr_sal;
4906
4907 /* Normal function call return (static or dynamic). */
4908 init_sal (&sr_sal);
4909 sr_sal.pc = ecs->stop_func_start;
4910 sr_sal.pspace = get_frame_program_space (frame);
4911 insert_step_resume_breakpoint_at_sal (gdbarch,
4912 sr_sal, null_frame_id);
4913 }
4914 else
4915 insert_step_resume_breakpoint_at_caller (frame);
4916
4917 keep_going (ecs);
4918 return;
4919 }
4920
4921 /* If we are in a function call trampoline (a stub between the
4922 calling routine and the real function), locate the real
4923 function. That's what tells us (a) whether we want to step
4924 into it at all, and (b) what prologue we want to run to the
4925 end of, if we do step into it. */
4926 real_stop_pc = skip_language_trampoline (frame, stop_pc);
4927 if (real_stop_pc == 0)
4928 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4929 if (real_stop_pc != 0)
4930 ecs->stop_func_start = real_stop_pc;
4931
4932 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4933 {
4934 struct symtab_and_line sr_sal;
4935
4936 init_sal (&sr_sal);
4937 sr_sal.pc = ecs->stop_func_start;
4938 sr_sal.pspace = get_frame_program_space (frame);
4939
4940 insert_step_resume_breakpoint_at_sal (gdbarch,
4941 sr_sal, null_frame_id);
4942 keep_going (ecs);
4943 return;
4944 }
4945
4946 /* If we have line number information for the function we are
4947 thinking of stepping into and the function isn't on the skip
4948 list, step into it.
4949
4950 If there are several symtabs at that PC (e.g. with include
4951 files), just want to know whether *any* of them have line
4952 numbers. find_pc_line handles this. */
4953 {
4954 struct symtab_and_line tmp_sal;
4955
4956 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4957 if (tmp_sal.line != 0
4958 && !function_pc_is_marked_for_skip (ecs->stop_func_start))
4959 {
4960 if (execution_direction == EXEC_REVERSE)
4961 handle_step_into_function_backward (gdbarch, ecs);
4962 else
4963 handle_step_into_function (gdbarch, ecs);
4964 return;
4965 }
4966 }
4967
4968 /* If we have no line number and the step-stop-if-no-debug is
4969 set, we stop the step so that the user has a chance to switch
4970 in assembly mode. */
4971 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4972 && step_stop_if_no_debug)
4973 {
4974 ecs->event_thread->control.stop_step = 1;
4975 print_end_stepping_range_reason ();
4976 stop_stepping (ecs);
4977 return;
4978 }
4979
4980 if (execution_direction == EXEC_REVERSE)
4981 {
4982 /* Set a breakpoint at callee's start address.
4983 From there we can step once and be back in the caller. */
4984 struct symtab_and_line sr_sal;
4985
4986 init_sal (&sr_sal);
4987 sr_sal.pc = ecs->stop_func_start;
4988 sr_sal.pspace = get_frame_program_space (frame);
4989 insert_step_resume_breakpoint_at_sal (gdbarch,
4990 sr_sal, null_frame_id);
4991 }
4992 else
4993 /* Set a breakpoint at callee's return address (the address
4994 at which the caller will resume). */
4995 insert_step_resume_breakpoint_at_caller (frame);
4996
4997 keep_going (ecs);
4998 return;
4999 }
5000
5001 /* Reverse stepping through solib trampolines. */
5002
5003 if (execution_direction == EXEC_REVERSE
5004 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5005 {
5006 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5007 || (ecs->stop_func_start == 0
5008 && in_solib_dynsym_resolve_code (stop_pc)))
5009 {
5010 /* Any solib trampoline code can be handled in reverse
5011 by simply continuing to single-step. We have already
5012 executed the solib function (backwards), and a few
5013 steps will take us back through the trampoline to the
5014 caller. */
5015 keep_going (ecs);
5016 return;
5017 }
5018 else if (in_solib_dynsym_resolve_code (stop_pc))
5019 {
5020 /* Stepped backward into the solib dynsym resolver.
5021 Set a breakpoint at its start and continue, then
5022 one more step will take us out. */
5023 struct symtab_and_line sr_sal;
5024
5025 init_sal (&sr_sal);
5026 sr_sal.pc = ecs->stop_func_start;
5027 sr_sal.pspace = get_frame_program_space (frame);
5028 insert_step_resume_breakpoint_at_sal (gdbarch,
5029 sr_sal, null_frame_id);
5030 keep_going (ecs);
5031 return;
5032 }
5033 }
5034
5035 stop_pc_sal = find_pc_line (stop_pc, 0);
5036
5037 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5038 the trampoline processing logic, however, there are some trampolines
5039 that have no names, so we should do trampoline handling first. */
5040 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5041 && ecs->stop_func_name == NULL
5042 && stop_pc_sal.line == 0)
5043 {
5044 if (debug_infrun)
5045 fprintf_unfiltered (gdb_stdlog,
5046 "infrun: stepped into undebuggable function\n");
5047
5048 /* The inferior just stepped into, or returned to, an
5049 undebuggable function (where there is no debugging information
5050 and no line number corresponding to the address where the
5051 inferior stopped). Since we want to skip this kind of code,
5052 we keep going until the inferior returns from this
5053 function - unless the user has asked us not to (via
5054 set step-mode) or we no longer know how to get back
5055 to the call site. */
5056 if (step_stop_if_no_debug
5057 || !frame_id_p (frame_unwind_caller_id (frame)))
5058 {
5059 /* If we have no line number and the step-stop-if-no-debug
5060 is set, we stop the step so that the user has a chance to
5061 switch in assembly mode. */
5062 ecs->event_thread->control.stop_step = 1;
5063 print_end_stepping_range_reason ();
5064 stop_stepping (ecs);
5065 return;
5066 }
5067 else
5068 {
5069 /* Set a breakpoint at callee's return address (the address
5070 at which the caller will resume). */
5071 insert_step_resume_breakpoint_at_caller (frame);
5072 keep_going (ecs);
5073 return;
5074 }
5075 }
5076
5077 if (ecs->event_thread->control.step_range_end == 1)
5078 {
5079 /* It is stepi or nexti. We always want to stop stepping after
5080 one instruction. */
5081 if (debug_infrun)
5082 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
5083 ecs->event_thread->control.stop_step = 1;
5084 print_end_stepping_range_reason ();
5085 stop_stepping (ecs);
5086 return;
5087 }
5088
5089 if (stop_pc_sal.line == 0)
5090 {
5091 /* We have no line number information. That means to stop
5092 stepping (does this always happen right after one instruction,
5093 when we do "s" in a function with no line numbers,
5094 or can this happen as a result of a return or longjmp?). */
5095 if (debug_infrun)
5096 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
5097 ecs->event_thread->control.stop_step = 1;
5098 print_end_stepping_range_reason ();
5099 stop_stepping (ecs);
5100 return;
5101 }
5102
5103 /* Look for "calls" to inlined functions, part one. If the inline
5104 frame machinery detected some skipped call sites, we have entered
5105 a new inline function. */
5106
5107 if (frame_id_eq (get_frame_id (get_current_frame ()),
5108 ecs->event_thread->control.step_frame_id)
5109 && inline_skipped_frames (ecs->ptid))
5110 {
5111 struct symtab_and_line call_sal;
5112
5113 if (debug_infrun)
5114 fprintf_unfiltered (gdb_stdlog,
5115 "infrun: stepped into inlined function\n");
5116
5117 find_frame_sal (get_current_frame (), &call_sal);
5118
5119 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5120 {
5121 /* For "step", we're going to stop. But if the call site
5122 for this inlined function is on the same source line as
5123 we were previously stepping, go down into the function
5124 first. Otherwise stop at the call site. */
5125
5126 if (call_sal.line == ecs->event_thread->current_line
5127 && call_sal.symtab == ecs->event_thread->current_symtab)
5128 step_into_inline_frame (ecs->ptid);
5129
5130 ecs->event_thread->control.stop_step = 1;
5131 print_end_stepping_range_reason ();
5132 stop_stepping (ecs);
5133 return;
5134 }
5135 else
5136 {
5137 /* For "next", we should stop at the call site if it is on a
5138 different source line. Otherwise continue through the
5139 inlined function. */
5140 if (call_sal.line == ecs->event_thread->current_line
5141 && call_sal.symtab == ecs->event_thread->current_symtab)
5142 keep_going (ecs);
5143 else
5144 {
5145 ecs->event_thread->control.stop_step = 1;
5146 print_end_stepping_range_reason ();
5147 stop_stepping (ecs);
5148 }
5149 return;
5150 }
5151 }
5152
5153 /* Look for "calls" to inlined functions, part two. If we are still
5154 in the same real function we were stepping through, but we have
5155 to go further up to find the exact frame ID, we are stepping
5156 through a more inlined call beyond its call site. */
5157
5158 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5159 && !frame_id_eq (get_frame_id (get_current_frame ()),
5160 ecs->event_thread->control.step_frame_id)
5161 && stepped_in_from (get_current_frame (),
5162 ecs->event_thread->control.step_frame_id))
5163 {
5164 if (debug_infrun)
5165 fprintf_unfiltered (gdb_stdlog,
5166 "infrun: stepping through inlined function\n");
5167
5168 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5169 keep_going (ecs);
5170 else
5171 {
5172 ecs->event_thread->control.stop_step = 1;
5173 print_end_stepping_range_reason ();
5174 stop_stepping (ecs);
5175 }
5176 return;
5177 }
5178
5179 if ((stop_pc == stop_pc_sal.pc)
5180 && (ecs->event_thread->current_line != stop_pc_sal.line
5181 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5182 {
5183 /* We are at the start of a different line. So stop. Note that
5184 we don't stop if we step into the middle of a different line.
5185 That is said to make things like for (;;) statements work
5186 better. */
5187 if (debug_infrun)
5188 fprintf_unfiltered (gdb_stdlog,
5189 "infrun: stepped to a different line\n");
5190 ecs->event_thread->control.stop_step = 1;
5191 print_end_stepping_range_reason ();
5192 stop_stepping (ecs);
5193 return;
5194 }
5195
5196 /* We aren't done stepping.
5197
5198 Optimize by setting the stepping range to the line.
5199 (We might not be in the original line, but if we entered a
5200 new line in mid-statement, we continue stepping. This makes
5201 things like for(;;) statements work better.) */
5202
5203 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5204 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5205 set_step_info (frame, stop_pc_sal);
5206
5207 if (debug_infrun)
5208 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5209 keep_going (ecs);
5210 }
5211
5212 /* Is thread TP in the middle of single-stepping? */
5213
5214 static int
5215 currently_stepping (struct thread_info *tp)
5216 {
5217 return ((tp->control.step_range_end
5218 && tp->control.step_resume_breakpoint == NULL)
5219 || tp->control.trap_expected
5220 || bpstat_should_step ());
5221 }
5222
5223 /* Returns true if any thread *but* the one passed in "data" is in the
5224 middle of stepping or of handling a "next". */
5225
5226 static int
5227 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
5228 {
5229 if (tp == data)
5230 return 0;
5231
5232 return (tp->control.step_range_end
5233 || tp->control.trap_expected);
5234 }
5235
5236 /* Inferior has stepped into a subroutine call with source code that
5237 we should not step over. Do step to the first line of code in
5238 it. */
5239
5240 static void
5241 handle_step_into_function (struct gdbarch *gdbarch,
5242 struct execution_control_state *ecs)
5243 {
5244 struct symtab *s;
5245 struct symtab_and_line stop_func_sal, sr_sal;
5246
5247 fill_in_stop_func (gdbarch, ecs);
5248
5249 s = find_pc_symtab (stop_pc);
5250 if (s && s->language != language_asm)
5251 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5252 ecs->stop_func_start);
5253
5254 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5255 /* Use the step_resume_break to step until the end of the prologue,
5256 even if that involves jumps (as it seems to on the vax under
5257 4.2). */
5258 /* If the prologue ends in the middle of a source line, continue to
5259 the end of that source line (if it is still within the function).
5260 Otherwise, just go to end of prologue. */
5261 if (stop_func_sal.end
5262 && stop_func_sal.pc != ecs->stop_func_start
5263 && stop_func_sal.end < ecs->stop_func_end)
5264 ecs->stop_func_start = stop_func_sal.end;
5265
5266 /* Architectures which require breakpoint adjustment might not be able
5267 to place a breakpoint at the computed address. If so, the test
5268 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5269 ecs->stop_func_start to an address at which a breakpoint may be
5270 legitimately placed.
5271
5272 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5273 made, GDB will enter an infinite loop when stepping through
5274 optimized code consisting of VLIW instructions which contain
5275 subinstructions corresponding to different source lines. On
5276 FR-V, it's not permitted to place a breakpoint on any but the
5277 first subinstruction of a VLIW instruction. When a breakpoint is
5278 set, GDB will adjust the breakpoint address to the beginning of
5279 the VLIW instruction. Thus, we need to make the corresponding
5280 adjustment here when computing the stop address. */
5281
5282 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5283 {
5284 ecs->stop_func_start
5285 = gdbarch_adjust_breakpoint_address (gdbarch,
5286 ecs->stop_func_start);
5287 }
5288
5289 if (ecs->stop_func_start == stop_pc)
5290 {
5291 /* We are already there: stop now. */
5292 ecs->event_thread->control.stop_step = 1;
5293 print_end_stepping_range_reason ();
5294 stop_stepping (ecs);
5295 return;
5296 }
5297 else
5298 {
5299 /* Put the step-breakpoint there and go until there. */
5300 init_sal (&sr_sal); /* initialize to zeroes */
5301 sr_sal.pc = ecs->stop_func_start;
5302 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5303 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5304
5305 /* Do not specify what the fp should be when we stop since on
5306 some machines the prologue is where the new fp value is
5307 established. */
5308 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5309
5310 /* And make sure stepping stops right away then. */
5311 ecs->event_thread->control.step_range_end
5312 = ecs->event_thread->control.step_range_start;
5313 }
5314 keep_going (ecs);
5315 }
5316
5317 /* Inferior has stepped backward into a subroutine call with source
5318 code that we should not step over. Do step to the beginning of the
5319 last line of code in it. */
5320
5321 static void
5322 handle_step_into_function_backward (struct gdbarch *gdbarch,
5323 struct execution_control_state *ecs)
5324 {
5325 struct symtab *s;
5326 struct symtab_and_line stop_func_sal;
5327
5328 fill_in_stop_func (gdbarch, ecs);
5329
5330 s = find_pc_symtab (stop_pc);
5331 if (s && s->language != language_asm)
5332 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5333 ecs->stop_func_start);
5334
5335 stop_func_sal = find_pc_line (stop_pc, 0);
5336
5337 /* OK, we're just going to keep stepping here. */
5338 if (stop_func_sal.pc == stop_pc)
5339 {
5340 /* We're there already. Just stop stepping now. */
5341 ecs->event_thread->control.stop_step = 1;
5342 print_end_stepping_range_reason ();
5343 stop_stepping (ecs);
5344 }
5345 else
5346 {
5347 /* Else just reset the step range and keep going.
5348 No step-resume breakpoint, they don't work for
5349 epilogues, which can have multiple entry paths. */
5350 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5351 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5352 keep_going (ecs);
5353 }
5354 return;
5355 }
5356
5357 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5358 This is used to both functions and to skip over code. */
5359
5360 static void
5361 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5362 struct symtab_and_line sr_sal,
5363 struct frame_id sr_id,
5364 enum bptype sr_type)
5365 {
5366 /* There should never be more than one step-resume or longjmp-resume
5367 breakpoint per thread, so we should never be setting a new
5368 step_resume_breakpoint when one is already active. */
5369 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5370 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5371
5372 if (debug_infrun)
5373 fprintf_unfiltered (gdb_stdlog,
5374 "infrun: inserting step-resume breakpoint at %s\n",
5375 paddress (gdbarch, sr_sal.pc));
5376
5377 inferior_thread ()->control.step_resume_breakpoint
5378 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5379 }
5380
5381 void
5382 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5383 struct symtab_and_line sr_sal,
5384 struct frame_id sr_id)
5385 {
5386 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5387 sr_sal, sr_id,
5388 bp_step_resume);
5389 }
5390
5391 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5392 This is used to skip a potential signal handler.
5393
5394 This is called with the interrupted function's frame. The signal
5395 handler, when it returns, will resume the interrupted function at
5396 RETURN_FRAME.pc. */
5397
5398 static void
5399 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5400 {
5401 struct symtab_and_line sr_sal;
5402 struct gdbarch *gdbarch;
5403
5404 gdb_assert (return_frame != NULL);
5405 init_sal (&sr_sal); /* initialize to zeros */
5406
5407 gdbarch = get_frame_arch (return_frame);
5408 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5409 sr_sal.section = find_pc_overlay (sr_sal.pc);
5410 sr_sal.pspace = get_frame_program_space (return_frame);
5411
5412 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5413 get_stack_frame_id (return_frame),
5414 bp_hp_step_resume);
5415 }
5416
5417 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
5418 is used to skip a function after stepping into it (for "next" or if
5419 the called function has no debugging information).
5420
5421 The current function has almost always been reached by single
5422 stepping a call or return instruction. NEXT_FRAME belongs to the
5423 current function, and the breakpoint will be set at the caller's
5424 resume address.
5425
5426 This is a separate function rather than reusing
5427 insert_hp_step_resume_breakpoint_at_frame in order to avoid
5428 get_prev_frame, which may stop prematurely (see the implementation
5429 of frame_unwind_caller_id for an example). */
5430
5431 static void
5432 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5433 {
5434 struct symtab_and_line sr_sal;
5435 struct gdbarch *gdbarch;
5436
5437 /* We shouldn't have gotten here if we don't know where the call site
5438 is. */
5439 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5440
5441 init_sal (&sr_sal); /* initialize to zeros */
5442
5443 gdbarch = frame_unwind_caller_arch (next_frame);
5444 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5445 frame_unwind_caller_pc (next_frame));
5446 sr_sal.section = find_pc_overlay (sr_sal.pc);
5447 sr_sal.pspace = frame_unwind_program_space (next_frame);
5448
5449 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5450 frame_unwind_caller_id (next_frame));
5451 }
5452
5453 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5454 new breakpoint at the target of a jmp_buf. The handling of
5455 longjmp-resume uses the same mechanisms used for handling
5456 "step-resume" breakpoints. */
5457
5458 static void
5459 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5460 {
5461 /* There should never be more than one longjmp-resume breakpoint per
5462 thread, so we should never be setting a new
5463 longjmp_resume_breakpoint when one is already active. */
5464 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
5465
5466 if (debug_infrun)
5467 fprintf_unfiltered (gdb_stdlog,
5468 "infrun: inserting longjmp-resume breakpoint at %s\n",
5469 paddress (gdbarch, pc));
5470
5471 inferior_thread ()->control.exception_resume_breakpoint =
5472 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5473 }
5474
5475 /* Insert an exception resume breakpoint. TP is the thread throwing
5476 the exception. The block B is the block of the unwinder debug hook
5477 function. FRAME is the frame corresponding to the call to this
5478 function. SYM is the symbol of the function argument holding the
5479 target PC of the exception. */
5480
5481 static void
5482 insert_exception_resume_breakpoint (struct thread_info *tp,
5483 struct block *b,
5484 struct frame_info *frame,
5485 struct symbol *sym)
5486 {
5487 volatile struct gdb_exception e;
5488
5489 /* We want to ignore errors here. */
5490 TRY_CATCH (e, RETURN_MASK_ERROR)
5491 {
5492 struct symbol *vsym;
5493 struct value *value;
5494 CORE_ADDR handler;
5495 struct breakpoint *bp;
5496
5497 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5498 value = read_var_value (vsym, frame);
5499 /* If the value was optimized out, revert to the old behavior. */
5500 if (! value_optimized_out (value))
5501 {
5502 handler = value_as_address (value);
5503
5504 if (debug_infrun)
5505 fprintf_unfiltered (gdb_stdlog,
5506 "infrun: exception resume at %lx\n",
5507 (unsigned long) handler);
5508
5509 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5510 handler, bp_exception_resume);
5511
5512 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5513 frame = NULL;
5514
5515 bp->thread = tp->num;
5516 inferior_thread ()->control.exception_resume_breakpoint = bp;
5517 }
5518 }
5519 }
5520
5521 /* A helper for check_exception_resume that sets an
5522 exception-breakpoint based on a SystemTap probe. */
5523
5524 static void
5525 insert_exception_resume_from_probe (struct thread_info *tp,
5526 const struct probe *probe,
5527 struct frame_info *frame)
5528 {
5529 struct value *arg_value;
5530 CORE_ADDR handler;
5531 struct breakpoint *bp;
5532
5533 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5534 if (!arg_value)
5535 return;
5536
5537 handler = value_as_address (arg_value);
5538
5539 if (debug_infrun)
5540 fprintf_unfiltered (gdb_stdlog,
5541 "infrun: exception resume at %s\n",
5542 paddress (get_objfile_arch (probe->objfile),
5543 handler));
5544
5545 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5546 handler, bp_exception_resume);
5547 bp->thread = tp->num;
5548 inferior_thread ()->control.exception_resume_breakpoint = bp;
5549 }
5550
5551 /* This is called when an exception has been intercepted. Check to
5552 see whether the exception's destination is of interest, and if so,
5553 set an exception resume breakpoint there. */
5554
5555 static void
5556 check_exception_resume (struct execution_control_state *ecs,
5557 struct frame_info *frame)
5558 {
5559 volatile struct gdb_exception e;
5560 const struct probe *probe;
5561 struct symbol *func;
5562
5563 /* First see if this exception unwinding breakpoint was set via a
5564 SystemTap probe point. If so, the probe has two arguments: the
5565 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5566 set a breakpoint there. */
5567 probe = find_probe_by_pc (get_frame_pc (frame));
5568 if (probe)
5569 {
5570 insert_exception_resume_from_probe (ecs->event_thread, probe, frame);
5571 return;
5572 }
5573
5574 func = get_frame_function (frame);
5575 if (!func)
5576 return;
5577
5578 TRY_CATCH (e, RETURN_MASK_ERROR)
5579 {
5580 struct block *b;
5581 struct block_iterator iter;
5582 struct symbol *sym;
5583 int argno = 0;
5584
5585 /* The exception breakpoint is a thread-specific breakpoint on
5586 the unwinder's debug hook, declared as:
5587
5588 void _Unwind_DebugHook (void *cfa, void *handler);
5589
5590 The CFA argument indicates the frame to which control is
5591 about to be transferred. HANDLER is the destination PC.
5592
5593 We ignore the CFA and set a temporary breakpoint at HANDLER.
5594 This is not extremely efficient but it avoids issues in gdb
5595 with computing the DWARF CFA, and it also works even in weird
5596 cases such as throwing an exception from inside a signal
5597 handler. */
5598
5599 b = SYMBOL_BLOCK_VALUE (func);
5600 ALL_BLOCK_SYMBOLS (b, iter, sym)
5601 {
5602 if (!SYMBOL_IS_ARGUMENT (sym))
5603 continue;
5604
5605 if (argno == 0)
5606 ++argno;
5607 else
5608 {
5609 insert_exception_resume_breakpoint (ecs->event_thread,
5610 b, frame, sym);
5611 break;
5612 }
5613 }
5614 }
5615 }
5616
5617 static void
5618 stop_stepping (struct execution_control_state *ecs)
5619 {
5620 if (debug_infrun)
5621 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
5622
5623 /* Let callers know we don't want to wait for the inferior anymore. */
5624 ecs->wait_some_more = 0;
5625 }
5626
5627 /* This function handles various cases where we need to continue
5628 waiting for the inferior. */
5629 /* (Used to be the keep_going: label in the old wait_for_inferior). */
5630
5631 static void
5632 keep_going (struct execution_control_state *ecs)
5633 {
5634 /* Make sure normal_stop is called if we get a QUIT handled before
5635 reaching resume. */
5636 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5637
5638 /* Save the pc before execution, to compare with pc after stop. */
5639 ecs->event_thread->prev_pc
5640 = regcache_read_pc (get_thread_regcache (ecs->ptid));
5641
5642 /* If we did not do break;, it means we should keep running the
5643 inferior and not return to debugger. */
5644
5645 if (ecs->event_thread->control.trap_expected
5646 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5647 {
5648 /* We took a signal (which we are supposed to pass through to
5649 the inferior, else we'd not get here) and we haven't yet
5650 gotten our trap. Simply continue. */
5651
5652 discard_cleanups (old_cleanups);
5653 resume (currently_stepping (ecs->event_thread),
5654 ecs->event_thread->suspend.stop_signal);
5655 }
5656 else
5657 {
5658 /* Either the trap was not expected, but we are continuing
5659 anyway (the user asked that this signal be passed to the
5660 child)
5661 -- or --
5662 The signal was SIGTRAP, e.g. it was our signal, but we
5663 decided we should resume from it.
5664
5665 We're going to run this baby now!
5666
5667 Note that insert_breakpoints won't try to re-insert
5668 already inserted breakpoints. Therefore, we don't
5669 care if breakpoints were already inserted, or not. */
5670
5671 if (ecs->event_thread->stepping_over_breakpoint)
5672 {
5673 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
5674
5675 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
5676 /* Since we can't do a displaced step, we have to remove
5677 the breakpoint while we step it. To keep things
5678 simple, we remove them all. */
5679 remove_breakpoints ();
5680 }
5681 else
5682 {
5683 volatile struct gdb_exception e;
5684
5685 /* Stop stepping when inserting breakpoints
5686 has failed. */
5687 TRY_CATCH (e, RETURN_MASK_ERROR)
5688 {
5689 insert_breakpoints ();
5690 }
5691 if (e.reason < 0)
5692 {
5693 exception_print (gdb_stderr, e);
5694 stop_stepping (ecs);
5695 return;
5696 }
5697 }
5698
5699 ecs->event_thread->control.trap_expected
5700 = ecs->event_thread->stepping_over_breakpoint;
5701
5702 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
5703 specifies that such a signal should be delivered to the
5704 target program).
5705
5706 Typically, this would occure when a user is debugging a
5707 target monitor on a simulator: the target monitor sets a
5708 breakpoint; the simulator encounters this break-point and
5709 halts the simulation handing control to GDB; GDB, noteing
5710 that the break-point isn't valid, returns control back to the
5711 simulator; the simulator then delivers the hardware
5712 equivalent of a SIGNAL_TRAP to the program being debugged. */
5713
5714 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5715 && !signal_program[ecs->event_thread->suspend.stop_signal])
5716 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5717
5718 discard_cleanups (old_cleanups);
5719 resume (currently_stepping (ecs->event_thread),
5720 ecs->event_thread->suspend.stop_signal);
5721 }
5722
5723 prepare_to_wait (ecs);
5724 }
5725
5726 /* This function normally comes after a resume, before
5727 handle_inferior_event exits. It takes care of any last bits of
5728 housekeeping, and sets the all-important wait_some_more flag. */
5729
5730 static void
5731 prepare_to_wait (struct execution_control_state *ecs)
5732 {
5733 if (debug_infrun)
5734 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
5735
5736 /* This is the old end of the while loop. Let everybody know we
5737 want to wait for the inferior some more and get called again
5738 soon. */
5739 ecs->wait_some_more = 1;
5740 }
5741
5742 /* Several print_*_reason functions to print why the inferior has stopped.
5743 We always print something when the inferior exits, or receives a signal.
5744 The rest of the cases are dealt with later on in normal_stop and
5745 print_it_typical. Ideally there should be a call to one of these
5746 print_*_reason functions functions from handle_inferior_event each time
5747 stop_stepping is called. */
5748
5749 /* Print why the inferior has stopped.
5750 We are done with a step/next/si/ni command, print why the inferior has
5751 stopped. For now print nothing. Print a message only if not in the middle
5752 of doing a "step n" operation for n > 1. */
5753
5754 static void
5755 print_end_stepping_range_reason (void)
5756 {
5757 if ((!inferior_thread ()->step_multi
5758 || !inferior_thread ()->control.stop_step)
5759 && ui_out_is_mi_like_p (current_uiout))
5760 ui_out_field_string (current_uiout, "reason",
5761 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5762 }
5763
5764 /* The inferior was terminated by a signal, print why it stopped. */
5765
5766 static void
5767 print_signal_exited_reason (enum gdb_signal siggnal)
5768 {
5769 struct ui_out *uiout = current_uiout;
5770
5771 annotate_signalled ();
5772 if (ui_out_is_mi_like_p (uiout))
5773 ui_out_field_string
5774 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5775 ui_out_text (uiout, "\nProgram terminated with signal ");
5776 annotate_signal_name ();
5777 ui_out_field_string (uiout, "signal-name",
5778 gdb_signal_to_name (siggnal));
5779 annotate_signal_name_end ();
5780 ui_out_text (uiout, ", ");
5781 annotate_signal_string ();
5782 ui_out_field_string (uiout, "signal-meaning",
5783 gdb_signal_to_string (siggnal));
5784 annotate_signal_string_end ();
5785 ui_out_text (uiout, ".\n");
5786 ui_out_text (uiout, "The program no longer exists.\n");
5787 }
5788
5789 /* The inferior program is finished, print why it stopped. */
5790
5791 static void
5792 print_exited_reason (int exitstatus)
5793 {
5794 struct inferior *inf = current_inferior ();
5795 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5796 struct ui_out *uiout = current_uiout;
5797
5798 annotate_exited (exitstatus);
5799 if (exitstatus)
5800 {
5801 if (ui_out_is_mi_like_p (uiout))
5802 ui_out_field_string (uiout, "reason",
5803 async_reason_lookup (EXEC_ASYNC_EXITED));
5804 ui_out_text (uiout, "[Inferior ");
5805 ui_out_text (uiout, plongest (inf->num));
5806 ui_out_text (uiout, " (");
5807 ui_out_text (uiout, pidstr);
5808 ui_out_text (uiout, ") exited with code ");
5809 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
5810 ui_out_text (uiout, "]\n");
5811 }
5812 else
5813 {
5814 if (ui_out_is_mi_like_p (uiout))
5815 ui_out_field_string
5816 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5817 ui_out_text (uiout, "[Inferior ");
5818 ui_out_text (uiout, plongest (inf->num));
5819 ui_out_text (uiout, " (");
5820 ui_out_text (uiout, pidstr);
5821 ui_out_text (uiout, ") exited normally]\n");
5822 }
5823 /* Support the --return-child-result option. */
5824 return_child_result_value = exitstatus;
5825 }
5826
5827 /* Signal received, print why the inferior has stopped. The signal table
5828 tells us to print about it. */
5829
5830 static void
5831 print_signal_received_reason (enum gdb_signal siggnal)
5832 {
5833 struct ui_out *uiout = current_uiout;
5834
5835 annotate_signal ();
5836
5837 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5838 {
5839 struct thread_info *t = inferior_thread ();
5840
5841 ui_out_text (uiout, "\n[");
5842 ui_out_field_string (uiout, "thread-name",
5843 target_pid_to_str (t->ptid));
5844 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5845 ui_out_text (uiout, " stopped");
5846 }
5847 else
5848 {
5849 ui_out_text (uiout, "\nProgram received signal ");
5850 annotate_signal_name ();
5851 if (ui_out_is_mi_like_p (uiout))
5852 ui_out_field_string
5853 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5854 ui_out_field_string (uiout, "signal-name",
5855 gdb_signal_to_name (siggnal));
5856 annotate_signal_name_end ();
5857 ui_out_text (uiout, ", ");
5858 annotate_signal_string ();
5859 ui_out_field_string (uiout, "signal-meaning",
5860 gdb_signal_to_string (siggnal));
5861 annotate_signal_string_end ();
5862 }
5863 ui_out_text (uiout, ".\n");
5864 }
5865
5866 /* Reverse execution: target ran out of history info, print why the inferior
5867 has stopped. */
5868
5869 static void
5870 print_no_history_reason (void)
5871 {
5872 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
5873 }
5874
5875 /* Here to return control to GDB when the inferior stops for real.
5876 Print appropriate messages, remove breakpoints, give terminal our modes.
5877
5878 STOP_PRINT_FRAME nonzero means print the executing frame
5879 (pc, function, args, file, line number and line text).
5880 BREAKPOINTS_FAILED nonzero means stop was due to error
5881 attempting to insert breakpoints. */
5882
5883 void
5884 normal_stop (void)
5885 {
5886 struct target_waitstatus last;
5887 ptid_t last_ptid;
5888 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5889
5890 get_last_target_status (&last_ptid, &last);
5891
5892 /* If an exception is thrown from this point on, make sure to
5893 propagate GDB's knowledge of the executing state to the
5894 frontend/user running state. A QUIT is an easy exception to see
5895 here, so do this before any filtered output. */
5896 if (!non_stop)
5897 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5898 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5899 && last.kind != TARGET_WAITKIND_EXITED
5900 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5901 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
5902
5903 /* In non-stop mode, we don't want GDB to switch threads behind the
5904 user's back, to avoid races where the user is typing a command to
5905 apply to thread x, but GDB switches to thread y before the user
5906 finishes entering the command. */
5907
5908 /* As with the notification of thread events, we want to delay
5909 notifying the user that we've switched thread context until
5910 the inferior actually stops.
5911
5912 There's no point in saying anything if the inferior has exited.
5913 Note that SIGNALLED here means "exited with a signal", not
5914 "received a signal". */
5915 if (!non_stop
5916 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
5917 && target_has_execution
5918 && last.kind != TARGET_WAITKIND_SIGNALLED
5919 && last.kind != TARGET_WAITKIND_EXITED
5920 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5921 {
5922 target_terminal_ours_for_output ();
5923 printf_filtered (_("[Switching to %s]\n"),
5924 target_pid_to_str (inferior_ptid));
5925 annotate_thread_changed ();
5926 previous_inferior_ptid = inferior_ptid;
5927 }
5928
5929 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
5930 {
5931 gdb_assert (sync_execution || !target_can_async_p ());
5932
5933 target_terminal_ours_for_output ();
5934 printf_filtered (_("No unwaited-for children left.\n"));
5935 }
5936
5937 if (!breakpoints_always_inserted_mode () && target_has_execution)
5938 {
5939 if (remove_breakpoints ())
5940 {
5941 target_terminal_ours_for_output ();
5942 printf_filtered (_("Cannot remove breakpoints because "
5943 "program is no longer writable.\nFurther "
5944 "execution is probably impossible.\n"));
5945 }
5946 }
5947
5948 /* If an auto-display called a function and that got a signal,
5949 delete that auto-display to avoid an infinite recursion. */
5950
5951 if (stopped_by_random_signal)
5952 disable_current_display ();
5953
5954 /* Don't print a message if in the middle of doing a "step n"
5955 operation for n > 1 */
5956 if (target_has_execution
5957 && last.kind != TARGET_WAITKIND_SIGNALLED
5958 && last.kind != TARGET_WAITKIND_EXITED
5959 && inferior_thread ()->step_multi
5960 && inferior_thread ()->control.stop_step)
5961 goto done;
5962
5963 target_terminal_ours ();
5964 async_enable_stdin ();
5965
5966 /* Set the current source location. This will also happen if we
5967 display the frame below, but the current SAL will be incorrect
5968 during a user hook-stop function. */
5969 if (has_stack_frames () && !stop_stack_dummy)
5970 set_current_sal_from_frame (get_current_frame (), 1);
5971
5972 /* Let the user/frontend see the threads as stopped. */
5973 do_cleanups (old_chain);
5974
5975 /* Look up the hook_stop and run it (CLI internally handles problem
5976 of stop_command's pre-hook not existing). */
5977 if (stop_command)
5978 catch_errors (hook_stop_stub, stop_command,
5979 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5980
5981 if (!has_stack_frames ())
5982 goto done;
5983
5984 if (last.kind == TARGET_WAITKIND_SIGNALLED
5985 || last.kind == TARGET_WAITKIND_EXITED)
5986 goto done;
5987
5988 /* Select innermost stack frame - i.e., current frame is frame 0,
5989 and current location is based on that.
5990 Don't do this on return from a stack dummy routine,
5991 or if the program has exited. */
5992
5993 if (!stop_stack_dummy)
5994 {
5995 select_frame (get_current_frame ());
5996
5997 /* Print current location without a level number, if
5998 we have changed functions or hit a breakpoint.
5999 Print source line if we have one.
6000 bpstat_print() contains the logic deciding in detail
6001 what to print, based on the event(s) that just occurred. */
6002
6003 /* If --batch-silent is enabled then there's no need to print the current
6004 source location, and to try risks causing an error message about
6005 missing source files. */
6006 if (stop_print_frame && !batch_silent)
6007 {
6008 int bpstat_ret;
6009 int source_flag;
6010 int do_frame_printing = 1;
6011 struct thread_info *tp = inferior_thread ();
6012
6013 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
6014 switch (bpstat_ret)
6015 {
6016 case PRINT_UNKNOWN:
6017 /* FIXME: cagney/2002-12-01: Given that a frame ID does
6018 (or should) carry around the function and does (or
6019 should) use that when doing a frame comparison. */
6020 if (tp->control.stop_step
6021 && frame_id_eq (tp->control.step_frame_id,
6022 get_frame_id (get_current_frame ()))
6023 && step_start_function == find_pc_function (stop_pc))
6024 source_flag = SRC_LINE; /* Finished step, just
6025 print source line. */
6026 else
6027 source_flag = SRC_AND_LOC; /* Print location and
6028 source line. */
6029 break;
6030 case PRINT_SRC_AND_LOC:
6031 source_flag = SRC_AND_LOC; /* Print location and
6032 source line. */
6033 break;
6034 case PRINT_SRC_ONLY:
6035 source_flag = SRC_LINE;
6036 break;
6037 case PRINT_NOTHING:
6038 source_flag = SRC_LINE; /* something bogus */
6039 do_frame_printing = 0;
6040 break;
6041 default:
6042 internal_error (__FILE__, __LINE__, _("Unknown value."));
6043 }
6044
6045 /* The behavior of this routine with respect to the source
6046 flag is:
6047 SRC_LINE: Print only source line
6048 LOCATION: Print only location
6049 SRC_AND_LOC: Print location and source line. */
6050 if (do_frame_printing)
6051 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
6052
6053 /* Display the auto-display expressions. */
6054 do_displays ();
6055 }
6056 }
6057
6058 /* Save the function value return registers, if we care.
6059 We might be about to restore their previous contents. */
6060 if (inferior_thread ()->control.proceed_to_finish
6061 && execution_direction != EXEC_REVERSE)
6062 {
6063 /* This should not be necessary. */
6064 if (stop_registers)
6065 regcache_xfree (stop_registers);
6066
6067 /* NB: The copy goes through to the target picking up the value of
6068 all the registers. */
6069 stop_registers = regcache_dup (get_current_regcache ());
6070 }
6071
6072 if (stop_stack_dummy == STOP_STACK_DUMMY)
6073 {
6074 /* Pop the empty frame that contains the stack dummy.
6075 This also restores inferior state prior to the call
6076 (struct infcall_suspend_state). */
6077 struct frame_info *frame = get_current_frame ();
6078
6079 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6080 frame_pop (frame);
6081 /* frame_pop() calls reinit_frame_cache as the last thing it
6082 does which means there's currently no selected frame. We
6083 don't need to re-establish a selected frame if the dummy call
6084 returns normally, that will be done by
6085 restore_infcall_control_state. However, we do have to handle
6086 the case where the dummy call is returning after being
6087 stopped (e.g. the dummy call previously hit a breakpoint).
6088 We can't know which case we have so just always re-establish
6089 a selected frame here. */
6090 select_frame (get_current_frame ());
6091 }
6092
6093 done:
6094 annotate_stopped ();
6095
6096 /* Suppress the stop observer if we're in the middle of:
6097
6098 - a step n (n > 1), as there still more steps to be done.
6099
6100 - a "finish" command, as the observer will be called in
6101 finish_command_continuation, so it can include the inferior
6102 function's return value.
6103
6104 - calling an inferior function, as we pretend we inferior didn't
6105 run at all. The return value of the call is handled by the
6106 expression evaluator, through call_function_by_hand. */
6107
6108 if (!target_has_execution
6109 || last.kind == TARGET_WAITKIND_SIGNALLED
6110 || last.kind == TARGET_WAITKIND_EXITED
6111 || last.kind == TARGET_WAITKIND_NO_RESUMED
6112 || (!(inferior_thread ()->step_multi
6113 && inferior_thread ()->control.stop_step)
6114 && !(inferior_thread ()->control.stop_bpstat
6115 && inferior_thread ()->control.proceed_to_finish)
6116 && !inferior_thread ()->control.in_infcall))
6117 {
6118 if (!ptid_equal (inferior_ptid, null_ptid))
6119 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
6120 stop_print_frame);
6121 else
6122 observer_notify_normal_stop (NULL, stop_print_frame);
6123 }
6124
6125 if (target_has_execution)
6126 {
6127 if (last.kind != TARGET_WAITKIND_SIGNALLED
6128 && last.kind != TARGET_WAITKIND_EXITED)
6129 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6130 Delete any breakpoint that is to be deleted at the next stop. */
6131 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
6132 }
6133
6134 /* Try to get rid of automatically added inferiors that are no
6135 longer needed. Keeping those around slows down things linearly.
6136 Note that this never removes the current inferior. */
6137 prune_inferiors ();
6138 }
6139
6140 static int
6141 hook_stop_stub (void *cmd)
6142 {
6143 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
6144 return (0);
6145 }
6146 \f
6147 int
6148 signal_stop_state (int signo)
6149 {
6150 return signal_stop[signo];
6151 }
6152
6153 int
6154 signal_print_state (int signo)
6155 {
6156 return signal_print[signo];
6157 }
6158
6159 int
6160 signal_pass_state (int signo)
6161 {
6162 return signal_program[signo];
6163 }
6164
6165 static void
6166 signal_cache_update (int signo)
6167 {
6168 if (signo == -1)
6169 {
6170 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
6171 signal_cache_update (signo);
6172
6173 return;
6174 }
6175
6176 signal_pass[signo] = (signal_stop[signo] == 0
6177 && signal_print[signo] == 0
6178 && signal_program[signo] == 1);
6179 }
6180
6181 int
6182 signal_stop_update (int signo, int state)
6183 {
6184 int ret = signal_stop[signo];
6185
6186 signal_stop[signo] = state;
6187 signal_cache_update (signo);
6188 return ret;
6189 }
6190
6191 int
6192 signal_print_update (int signo, int state)
6193 {
6194 int ret = signal_print[signo];
6195
6196 signal_print[signo] = state;
6197 signal_cache_update (signo);
6198 return ret;
6199 }
6200
6201 int
6202 signal_pass_update (int signo, int state)
6203 {
6204 int ret = signal_program[signo];
6205
6206 signal_program[signo] = state;
6207 signal_cache_update (signo);
6208 return ret;
6209 }
6210
6211 static void
6212 sig_print_header (void)
6213 {
6214 printf_filtered (_("Signal Stop\tPrint\tPass "
6215 "to program\tDescription\n"));
6216 }
6217
6218 static void
6219 sig_print_info (enum gdb_signal oursig)
6220 {
6221 const char *name = gdb_signal_to_name (oursig);
6222 int name_padding = 13 - strlen (name);
6223
6224 if (name_padding <= 0)
6225 name_padding = 0;
6226
6227 printf_filtered ("%s", name);
6228 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6229 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6230 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6231 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6232 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
6233 }
6234
6235 /* Specify how various signals in the inferior should be handled. */
6236
6237 static void
6238 handle_command (char *args, int from_tty)
6239 {
6240 char **argv;
6241 int digits, wordlen;
6242 int sigfirst, signum, siglast;
6243 enum gdb_signal oursig;
6244 int allsigs;
6245 int nsigs;
6246 unsigned char *sigs;
6247 struct cleanup *old_chain;
6248
6249 if (args == NULL)
6250 {
6251 error_no_arg (_("signal to handle"));
6252 }
6253
6254 /* Allocate and zero an array of flags for which signals to handle. */
6255
6256 nsigs = (int) GDB_SIGNAL_LAST;
6257 sigs = (unsigned char *) alloca (nsigs);
6258 memset (sigs, 0, nsigs);
6259
6260 /* Break the command line up into args. */
6261
6262 argv = gdb_buildargv (args);
6263 old_chain = make_cleanup_freeargv (argv);
6264
6265 /* Walk through the args, looking for signal oursigs, signal names, and
6266 actions. Signal numbers and signal names may be interspersed with
6267 actions, with the actions being performed for all signals cumulatively
6268 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6269
6270 while (*argv != NULL)
6271 {
6272 wordlen = strlen (*argv);
6273 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6274 {;
6275 }
6276 allsigs = 0;
6277 sigfirst = siglast = -1;
6278
6279 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6280 {
6281 /* Apply action to all signals except those used by the
6282 debugger. Silently skip those. */
6283 allsigs = 1;
6284 sigfirst = 0;
6285 siglast = nsigs - 1;
6286 }
6287 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6288 {
6289 SET_SIGS (nsigs, sigs, signal_stop);
6290 SET_SIGS (nsigs, sigs, signal_print);
6291 }
6292 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6293 {
6294 UNSET_SIGS (nsigs, sigs, signal_program);
6295 }
6296 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6297 {
6298 SET_SIGS (nsigs, sigs, signal_print);
6299 }
6300 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6301 {
6302 SET_SIGS (nsigs, sigs, signal_program);
6303 }
6304 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6305 {
6306 UNSET_SIGS (nsigs, sigs, signal_stop);
6307 }
6308 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6309 {
6310 SET_SIGS (nsigs, sigs, signal_program);
6311 }
6312 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6313 {
6314 UNSET_SIGS (nsigs, sigs, signal_print);
6315 UNSET_SIGS (nsigs, sigs, signal_stop);
6316 }
6317 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6318 {
6319 UNSET_SIGS (nsigs, sigs, signal_program);
6320 }
6321 else if (digits > 0)
6322 {
6323 /* It is numeric. The numeric signal refers to our own
6324 internal signal numbering from target.h, not to host/target
6325 signal number. This is a feature; users really should be
6326 using symbolic names anyway, and the common ones like
6327 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6328
6329 sigfirst = siglast = (int)
6330 gdb_signal_from_command (atoi (*argv));
6331 if ((*argv)[digits] == '-')
6332 {
6333 siglast = (int)
6334 gdb_signal_from_command (atoi ((*argv) + digits + 1));
6335 }
6336 if (sigfirst > siglast)
6337 {
6338 /* Bet he didn't figure we'd think of this case... */
6339 signum = sigfirst;
6340 sigfirst = siglast;
6341 siglast = signum;
6342 }
6343 }
6344 else
6345 {
6346 oursig = gdb_signal_from_name (*argv);
6347 if (oursig != GDB_SIGNAL_UNKNOWN)
6348 {
6349 sigfirst = siglast = (int) oursig;
6350 }
6351 else
6352 {
6353 /* Not a number and not a recognized flag word => complain. */
6354 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6355 }
6356 }
6357
6358 /* If any signal numbers or symbol names were found, set flags for
6359 which signals to apply actions to. */
6360
6361 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6362 {
6363 switch ((enum gdb_signal) signum)
6364 {
6365 case GDB_SIGNAL_TRAP:
6366 case GDB_SIGNAL_INT:
6367 if (!allsigs && !sigs[signum])
6368 {
6369 if (query (_("%s is used by the debugger.\n\
6370 Are you sure you want to change it? "),
6371 gdb_signal_to_name ((enum gdb_signal) signum)))
6372 {
6373 sigs[signum] = 1;
6374 }
6375 else
6376 {
6377 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6378 gdb_flush (gdb_stdout);
6379 }
6380 }
6381 break;
6382 case GDB_SIGNAL_0:
6383 case GDB_SIGNAL_DEFAULT:
6384 case GDB_SIGNAL_UNKNOWN:
6385 /* Make sure that "all" doesn't print these. */
6386 break;
6387 default:
6388 sigs[signum] = 1;
6389 break;
6390 }
6391 }
6392
6393 argv++;
6394 }
6395
6396 for (signum = 0; signum < nsigs; signum++)
6397 if (sigs[signum])
6398 {
6399 signal_cache_update (-1);
6400 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6401 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
6402
6403 if (from_tty)
6404 {
6405 /* Show the results. */
6406 sig_print_header ();
6407 for (; signum < nsigs; signum++)
6408 if (sigs[signum])
6409 sig_print_info (signum);
6410 }
6411
6412 break;
6413 }
6414
6415 do_cleanups (old_chain);
6416 }
6417
6418 /* Complete the "handle" command. */
6419
6420 static VEC (char_ptr) *
6421 handle_completer (struct cmd_list_element *ignore,
6422 char *text, char *word)
6423 {
6424 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6425 static const char * const keywords[] =
6426 {
6427 "all",
6428 "stop",
6429 "ignore",
6430 "print",
6431 "pass",
6432 "nostop",
6433 "noignore",
6434 "noprint",
6435 "nopass",
6436 NULL,
6437 };
6438
6439 vec_signals = signal_completer (ignore, text, word);
6440 vec_keywords = complete_on_enum (keywords, word, word);
6441
6442 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6443 VEC_free (char_ptr, vec_signals);
6444 VEC_free (char_ptr, vec_keywords);
6445 return return_val;
6446 }
6447
6448 static void
6449 xdb_handle_command (char *args, int from_tty)
6450 {
6451 char **argv;
6452 struct cleanup *old_chain;
6453
6454 if (args == NULL)
6455 error_no_arg (_("xdb command"));
6456
6457 /* Break the command line up into args. */
6458
6459 argv = gdb_buildargv (args);
6460 old_chain = make_cleanup_freeargv (argv);
6461 if (argv[1] != (char *) NULL)
6462 {
6463 char *argBuf;
6464 int bufLen;
6465
6466 bufLen = strlen (argv[0]) + 20;
6467 argBuf = (char *) xmalloc (bufLen);
6468 if (argBuf)
6469 {
6470 int validFlag = 1;
6471 enum gdb_signal oursig;
6472
6473 oursig = gdb_signal_from_name (argv[0]);
6474 memset (argBuf, 0, bufLen);
6475 if (strcmp (argv[1], "Q") == 0)
6476 sprintf (argBuf, "%s %s", argv[0], "noprint");
6477 else
6478 {
6479 if (strcmp (argv[1], "s") == 0)
6480 {
6481 if (!signal_stop[oursig])
6482 sprintf (argBuf, "%s %s", argv[0], "stop");
6483 else
6484 sprintf (argBuf, "%s %s", argv[0], "nostop");
6485 }
6486 else if (strcmp (argv[1], "i") == 0)
6487 {
6488 if (!signal_program[oursig])
6489 sprintf (argBuf, "%s %s", argv[0], "pass");
6490 else
6491 sprintf (argBuf, "%s %s", argv[0], "nopass");
6492 }
6493 else if (strcmp (argv[1], "r") == 0)
6494 {
6495 if (!signal_print[oursig])
6496 sprintf (argBuf, "%s %s", argv[0], "print");
6497 else
6498 sprintf (argBuf, "%s %s", argv[0], "noprint");
6499 }
6500 else
6501 validFlag = 0;
6502 }
6503 if (validFlag)
6504 handle_command (argBuf, from_tty);
6505 else
6506 printf_filtered (_("Invalid signal handling flag.\n"));
6507 if (argBuf)
6508 xfree (argBuf);
6509 }
6510 }
6511 do_cleanups (old_chain);
6512 }
6513
6514 enum gdb_signal
6515 gdb_signal_from_command (int num)
6516 {
6517 if (num >= 1 && num <= 15)
6518 return (enum gdb_signal) num;
6519 error (_("Only signals 1-15 are valid as numeric signals.\n\
6520 Use \"info signals\" for a list of symbolic signals."));
6521 }
6522
6523 /* Print current contents of the tables set by the handle command.
6524 It is possible we should just be printing signals actually used
6525 by the current target (but for things to work right when switching
6526 targets, all signals should be in the signal tables). */
6527
6528 static void
6529 signals_info (char *signum_exp, int from_tty)
6530 {
6531 enum gdb_signal oursig;
6532
6533 sig_print_header ();
6534
6535 if (signum_exp)
6536 {
6537 /* First see if this is a symbol name. */
6538 oursig = gdb_signal_from_name (signum_exp);
6539 if (oursig == GDB_SIGNAL_UNKNOWN)
6540 {
6541 /* No, try numeric. */
6542 oursig =
6543 gdb_signal_from_command (parse_and_eval_long (signum_exp));
6544 }
6545 sig_print_info (oursig);
6546 return;
6547 }
6548
6549 printf_filtered ("\n");
6550 /* These ugly casts brought to you by the native VAX compiler. */
6551 for (oursig = GDB_SIGNAL_FIRST;
6552 (int) oursig < (int) GDB_SIGNAL_LAST;
6553 oursig = (enum gdb_signal) ((int) oursig + 1))
6554 {
6555 QUIT;
6556
6557 if (oursig != GDB_SIGNAL_UNKNOWN
6558 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
6559 sig_print_info (oursig);
6560 }
6561
6562 printf_filtered (_("\nUse the \"handle\" command "
6563 "to change these tables.\n"));
6564 }
6565
6566 /* Check if it makes sense to read $_siginfo from the current thread
6567 at this point. If not, throw an error. */
6568
6569 static void
6570 validate_siginfo_access (void)
6571 {
6572 /* No current inferior, no siginfo. */
6573 if (ptid_equal (inferior_ptid, null_ptid))
6574 error (_("No thread selected."));
6575
6576 /* Don't try to read from a dead thread. */
6577 if (is_exited (inferior_ptid))
6578 error (_("The current thread has terminated"));
6579
6580 /* ... or from a spinning thread. */
6581 if (is_running (inferior_ptid))
6582 error (_("Selected thread is running."));
6583 }
6584
6585 /* The $_siginfo convenience variable is a bit special. We don't know
6586 for sure the type of the value until we actually have a chance to
6587 fetch the data. The type can change depending on gdbarch, so it is
6588 also dependent on which thread you have selected.
6589
6590 1. making $_siginfo be an internalvar that creates a new value on
6591 access.
6592
6593 2. making the value of $_siginfo be an lval_computed value. */
6594
6595 /* This function implements the lval_computed support for reading a
6596 $_siginfo value. */
6597
6598 static void
6599 siginfo_value_read (struct value *v)
6600 {
6601 LONGEST transferred;
6602
6603 validate_siginfo_access ();
6604
6605 transferred =
6606 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6607 NULL,
6608 value_contents_all_raw (v),
6609 value_offset (v),
6610 TYPE_LENGTH (value_type (v)));
6611
6612 if (transferred != TYPE_LENGTH (value_type (v)))
6613 error (_("Unable to read siginfo"));
6614 }
6615
6616 /* This function implements the lval_computed support for writing a
6617 $_siginfo value. */
6618
6619 static void
6620 siginfo_value_write (struct value *v, struct value *fromval)
6621 {
6622 LONGEST transferred;
6623
6624 validate_siginfo_access ();
6625
6626 transferred = target_write (&current_target,
6627 TARGET_OBJECT_SIGNAL_INFO,
6628 NULL,
6629 value_contents_all_raw (fromval),
6630 value_offset (v),
6631 TYPE_LENGTH (value_type (fromval)));
6632
6633 if (transferred != TYPE_LENGTH (value_type (fromval)))
6634 error (_("Unable to write siginfo"));
6635 }
6636
6637 static const struct lval_funcs siginfo_value_funcs =
6638 {
6639 siginfo_value_read,
6640 siginfo_value_write
6641 };
6642
6643 /* Return a new value with the correct type for the siginfo object of
6644 the current thread using architecture GDBARCH. Return a void value
6645 if there's no object available. */
6646
6647 static struct value *
6648 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
6649 void *ignore)
6650 {
6651 if (target_has_stack
6652 && !ptid_equal (inferior_ptid, null_ptid)
6653 && gdbarch_get_siginfo_type_p (gdbarch))
6654 {
6655 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6656
6657 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
6658 }
6659
6660 return allocate_value (builtin_type (gdbarch)->builtin_void);
6661 }
6662
6663 \f
6664 /* infcall_suspend_state contains state about the program itself like its
6665 registers and any signal it received when it last stopped.
6666 This state must be restored regardless of how the inferior function call
6667 ends (either successfully, or after it hits a breakpoint or signal)
6668 if the program is to properly continue where it left off. */
6669
6670 struct infcall_suspend_state
6671 {
6672 struct thread_suspend_state thread_suspend;
6673 #if 0 /* Currently unused and empty structures are not valid C. */
6674 struct inferior_suspend_state inferior_suspend;
6675 #endif
6676
6677 /* Other fields: */
6678 CORE_ADDR stop_pc;
6679 struct regcache *registers;
6680
6681 /* Format of SIGINFO_DATA or NULL if it is not present. */
6682 struct gdbarch *siginfo_gdbarch;
6683
6684 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6685 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6686 content would be invalid. */
6687 gdb_byte *siginfo_data;
6688 };
6689
6690 struct infcall_suspend_state *
6691 save_infcall_suspend_state (void)
6692 {
6693 struct infcall_suspend_state *inf_state;
6694 struct thread_info *tp = inferior_thread ();
6695 struct inferior *inf = current_inferior ();
6696 struct regcache *regcache = get_current_regcache ();
6697 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6698 gdb_byte *siginfo_data = NULL;
6699
6700 if (gdbarch_get_siginfo_type_p (gdbarch))
6701 {
6702 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6703 size_t len = TYPE_LENGTH (type);
6704 struct cleanup *back_to;
6705
6706 siginfo_data = xmalloc (len);
6707 back_to = make_cleanup (xfree, siginfo_data);
6708
6709 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6710 siginfo_data, 0, len) == len)
6711 discard_cleanups (back_to);
6712 else
6713 {
6714 /* Errors ignored. */
6715 do_cleanups (back_to);
6716 siginfo_data = NULL;
6717 }
6718 }
6719
6720 inf_state = XZALLOC (struct infcall_suspend_state);
6721
6722 if (siginfo_data)
6723 {
6724 inf_state->siginfo_gdbarch = gdbarch;
6725 inf_state->siginfo_data = siginfo_data;
6726 }
6727
6728 inf_state->thread_suspend = tp->suspend;
6729 #if 0 /* Currently unused and empty structures are not valid C. */
6730 inf_state->inferior_suspend = inf->suspend;
6731 #endif
6732
6733 /* run_inferior_call will not use the signal due to its `proceed' call with
6734 GDB_SIGNAL_0 anyway. */
6735 tp->suspend.stop_signal = GDB_SIGNAL_0;
6736
6737 inf_state->stop_pc = stop_pc;
6738
6739 inf_state->registers = regcache_dup (regcache);
6740
6741 return inf_state;
6742 }
6743
6744 /* Restore inferior session state to INF_STATE. */
6745
6746 void
6747 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6748 {
6749 struct thread_info *tp = inferior_thread ();
6750 struct inferior *inf = current_inferior ();
6751 struct regcache *regcache = get_current_regcache ();
6752 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6753
6754 tp->suspend = inf_state->thread_suspend;
6755 #if 0 /* Currently unused and empty structures are not valid C. */
6756 inf->suspend = inf_state->inferior_suspend;
6757 #endif
6758
6759 stop_pc = inf_state->stop_pc;
6760
6761 if (inf_state->siginfo_gdbarch == gdbarch)
6762 {
6763 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6764 size_t len = TYPE_LENGTH (type);
6765
6766 /* Errors ignored. */
6767 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6768 inf_state->siginfo_data, 0, len);
6769 }
6770
6771 /* The inferior can be gone if the user types "print exit(0)"
6772 (and perhaps other times). */
6773 if (target_has_execution)
6774 /* NB: The register write goes through to the target. */
6775 regcache_cpy (regcache, inf_state->registers);
6776
6777 discard_infcall_suspend_state (inf_state);
6778 }
6779
6780 static void
6781 do_restore_infcall_suspend_state_cleanup (void *state)
6782 {
6783 restore_infcall_suspend_state (state);
6784 }
6785
6786 struct cleanup *
6787 make_cleanup_restore_infcall_suspend_state
6788 (struct infcall_suspend_state *inf_state)
6789 {
6790 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
6791 }
6792
6793 void
6794 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6795 {
6796 regcache_xfree (inf_state->registers);
6797 xfree (inf_state->siginfo_data);
6798 xfree (inf_state);
6799 }
6800
6801 struct regcache *
6802 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
6803 {
6804 return inf_state->registers;
6805 }
6806
6807 /* infcall_control_state contains state regarding gdb's control of the
6808 inferior itself like stepping control. It also contains session state like
6809 the user's currently selected frame. */
6810
6811 struct infcall_control_state
6812 {
6813 struct thread_control_state thread_control;
6814 struct inferior_control_state inferior_control;
6815
6816 /* Other fields: */
6817 enum stop_stack_kind stop_stack_dummy;
6818 int stopped_by_random_signal;
6819 int stop_after_trap;
6820
6821 /* ID if the selected frame when the inferior function call was made. */
6822 struct frame_id selected_frame_id;
6823 };
6824
6825 /* Save all of the information associated with the inferior<==>gdb
6826 connection. */
6827
6828 struct infcall_control_state *
6829 save_infcall_control_state (void)
6830 {
6831 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
6832 struct thread_info *tp = inferior_thread ();
6833 struct inferior *inf = current_inferior ();
6834
6835 inf_status->thread_control = tp->control;
6836 inf_status->inferior_control = inf->control;
6837
6838 tp->control.step_resume_breakpoint = NULL;
6839 tp->control.exception_resume_breakpoint = NULL;
6840
6841 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6842 chain. If caller's caller is walking the chain, they'll be happier if we
6843 hand them back the original chain when restore_infcall_control_state is
6844 called. */
6845 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
6846
6847 /* Other fields: */
6848 inf_status->stop_stack_dummy = stop_stack_dummy;
6849 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6850 inf_status->stop_after_trap = stop_after_trap;
6851
6852 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
6853
6854 return inf_status;
6855 }
6856
6857 static int
6858 restore_selected_frame (void *args)
6859 {
6860 struct frame_id *fid = (struct frame_id *) args;
6861 struct frame_info *frame;
6862
6863 frame = frame_find_by_id (*fid);
6864
6865 /* If inf_status->selected_frame_id is NULL, there was no previously
6866 selected frame. */
6867 if (frame == NULL)
6868 {
6869 warning (_("Unable to restore previously selected frame."));
6870 return 0;
6871 }
6872
6873 select_frame (frame);
6874
6875 return (1);
6876 }
6877
6878 /* Restore inferior session state to INF_STATUS. */
6879
6880 void
6881 restore_infcall_control_state (struct infcall_control_state *inf_status)
6882 {
6883 struct thread_info *tp = inferior_thread ();
6884 struct inferior *inf = current_inferior ();
6885
6886 if (tp->control.step_resume_breakpoint)
6887 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6888
6889 if (tp->control.exception_resume_breakpoint)
6890 tp->control.exception_resume_breakpoint->disposition
6891 = disp_del_at_next_stop;
6892
6893 /* Handle the bpstat_copy of the chain. */
6894 bpstat_clear (&tp->control.stop_bpstat);
6895
6896 tp->control = inf_status->thread_control;
6897 inf->control = inf_status->inferior_control;
6898
6899 /* Other fields: */
6900 stop_stack_dummy = inf_status->stop_stack_dummy;
6901 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6902 stop_after_trap = inf_status->stop_after_trap;
6903
6904 if (target_has_stack)
6905 {
6906 /* The point of catch_errors is that if the stack is clobbered,
6907 walking the stack might encounter a garbage pointer and
6908 error() trying to dereference it. */
6909 if (catch_errors
6910 (restore_selected_frame, &inf_status->selected_frame_id,
6911 "Unable to restore previously selected frame:\n",
6912 RETURN_MASK_ERROR) == 0)
6913 /* Error in restoring the selected frame. Select the innermost
6914 frame. */
6915 select_frame (get_current_frame ());
6916 }
6917
6918 xfree (inf_status);
6919 }
6920
6921 static void
6922 do_restore_infcall_control_state_cleanup (void *sts)
6923 {
6924 restore_infcall_control_state (sts);
6925 }
6926
6927 struct cleanup *
6928 make_cleanup_restore_infcall_control_state
6929 (struct infcall_control_state *inf_status)
6930 {
6931 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
6932 }
6933
6934 void
6935 discard_infcall_control_state (struct infcall_control_state *inf_status)
6936 {
6937 if (inf_status->thread_control.step_resume_breakpoint)
6938 inf_status->thread_control.step_resume_breakpoint->disposition
6939 = disp_del_at_next_stop;
6940
6941 if (inf_status->thread_control.exception_resume_breakpoint)
6942 inf_status->thread_control.exception_resume_breakpoint->disposition
6943 = disp_del_at_next_stop;
6944
6945 /* See save_infcall_control_state for info on stop_bpstat. */
6946 bpstat_clear (&inf_status->thread_control.stop_bpstat);
6947
6948 xfree (inf_status);
6949 }
6950 \f
6951 int
6952 ptid_match (ptid_t ptid, ptid_t filter)
6953 {
6954 if (ptid_equal (filter, minus_one_ptid))
6955 return 1;
6956 if (ptid_is_pid (filter)
6957 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6958 return 1;
6959 else if (ptid_equal (ptid, filter))
6960 return 1;
6961
6962 return 0;
6963 }
6964
6965 /* restore_inferior_ptid() will be used by the cleanup machinery
6966 to restore the inferior_ptid value saved in a call to
6967 save_inferior_ptid(). */
6968
6969 static void
6970 restore_inferior_ptid (void *arg)
6971 {
6972 ptid_t *saved_ptid_ptr = arg;
6973
6974 inferior_ptid = *saved_ptid_ptr;
6975 xfree (arg);
6976 }
6977
6978 /* Save the value of inferior_ptid so that it may be restored by a
6979 later call to do_cleanups(). Returns the struct cleanup pointer
6980 needed for later doing the cleanup. */
6981
6982 struct cleanup *
6983 save_inferior_ptid (void)
6984 {
6985 ptid_t *saved_ptid_ptr;
6986
6987 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6988 *saved_ptid_ptr = inferior_ptid;
6989 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6990 }
6991 \f
6992
6993 /* User interface for reverse debugging:
6994 Set exec-direction / show exec-direction commands
6995 (returns error unless target implements to_set_exec_direction method). */
6996
6997 int execution_direction = EXEC_FORWARD;
6998 static const char exec_forward[] = "forward";
6999 static const char exec_reverse[] = "reverse";
7000 static const char *exec_direction = exec_forward;
7001 static const char *const exec_direction_names[] = {
7002 exec_forward,
7003 exec_reverse,
7004 NULL
7005 };
7006
7007 static void
7008 set_exec_direction_func (char *args, int from_tty,
7009 struct cmd_list_element *cmd)
7010 {
7011 if (target_can_execute_reverse)
7012 {
7013 if (!strcmp (exec_direction, exec_forward))
7014 execution_direction = EXEC_FORWARD;
7015 else if (!strcmp (exec_direction, exec_reverse))
7016 execution_direction = EXEC_REVERSE;
7017 }
7018 else
7019 {
7020 exec_direction = exec_forward;
7021 error (_("Target does not support this operation."));
7022 }
7023 }
7024
7025 static void
7026 show_exec_direction_func (struct ui_file *out, int from_tty,
7027 struct cmd_list_element *cmd, const char *value)
7028 {
7029 switch (execution_direction) {
7030 case EXEC_FORWARD:
7031 fprintf_filtered (out, _("Forward.\n"));
7032 break;
7033 case EXEC_REVERSE:
7034 fprintf_filtered (out, _("Reverse.\n"));
7035 break;
7036 default:
7037 internal_error (__FILE__, __LINE__,
7038 _("bogus execution_direction value: %d"),
7039 (int) execution_direction);
7040 }
7041 }
7042
7043 /* User interface for non-stop mode. */
7044
7045 int non_stop = 0;
7046
7047 static void
7048 set_non_stop (char *args, int from_tty,
7049 struct cmd_list_element *c)
7050 {
7051 if (target_has_execution)
7052 {
7053 non_stop_1 = non_stop;
7054 error (_("Cannot change this setting while the inferior is running."));
7055 }
7056
7057 non_stop = non_stop_1;
7058 }
7059
7060 static void
7061 show_non_stop (struct ui_file *file, int from_tty,
7062 struct cmd_list_element *c, const char *value)
7063 {
7064 fprintf_filtered (file,
7065 _("Controlling the inferior in non-stop mode is %s.\n"),
7066 value);
7067 }
7068
7069 static void
7070 show_schedule_multiple (struct ui_file *file, int from_tty,
7071 struct cmd_list_element *c, const char *value)
7072 {
7073 fprintf_filtered (file, _("Resuming the execution of threads "
7074 "of all processes is %s.\n"), value);
7075 }
7076
7077 /* Implementation of `siginfo' variable. */
7078
7079 static const struct internalvar_funcs siginfo_funcs =
7080 {
7081 siginfo_make_value,
7082 NULL,
7083 NULL
7084 };
7085
7086 void
7087 _initialize_infrun (void)
7088 {
7089 int i;
7090 int numsigs;
7091 struct cmd_list_element *c;
7092
7093 add_info ("signals", signals_info, _("\
7094 What debugger does when program gets various signals.\n\
7095 Specify a signal as argument to print info on that signal only."));
7096 add_info_alias ("handle", "signals", 0);
7097
7098 c = add_com ("handle", class_run, handle_command, _("\
7099 Specify how to handle a signal.\n\
7100 Usage: handle SIGNAL [ACTIONS]\n\
7101 Args are signals and actions to apply to those signals.\n\
7102 If no actions are specified, the current settings for the specified signal\n\
7103 will be displayed instead.\n\
7104 \n\
7105 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7106 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7107 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7108 The special arg \"all\" is recognized to mean all signals except those\n\
7109 used by the debugger, typically SIGTRAP and SIGINT.\n\
7110 \n\
7111 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
7112 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7113 Stop means reenter debugger if this signal happens (implies print).\n\
7114 Print means print a message if this signal happens.\n\
7115 Pass means let program see this signal; otherwise program doesn't know.\n\
7116 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7117 Pass and Stop may be combined."));
7118 set_cmd_completer (c, handle_completer);
7119
7120 if (xdb_commands)
7121 {
7122 add_com ("lz", class_info, signals_info, _("\
7123 What debugger does when program gets various signals.\n\
7124 Specify a signal as argument to print info on that signal only."));
7125 add_com ("z", class_run, xdb_handle_command, _("\
7126 Specify how to handle a signal.\n\
7127 Args are signals and actions to apply to those signals.\n\
7128 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7129 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7130 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7131 The special arg \"all\" is recognized to mean all signals except those\n\
7132 used by the debugger, typically SIGTRAP and SIGINT.\n\
7133 Recognized actions include \"s\" (toggles between stop and nostop),\n\
7134 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7135 nopass), \"Q\" (noprint)\n\
7136 Stop means reenter debugger if this signal happens (implies print).\n\
7137 Print means print a message if this signal happens.\n\
7138 Pass means let program see this signal; otherwise program doesn't know.\n\
7139 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7140 Pass and Stop may be combined."));
7141 }
7142
7143 if (!dbx_commands)
7144 stop_command = add_cmd ("stop", class_obscure,
7145 not_just_help_class_command, _("\
7146 There is no `stop' command, but you can set a hook on `stop'.\n\
7147 This allows you to set a list of commands to be run each time execution\n\
7148 of the program stops."), &cmdlist);
7149
7150 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7151 Set inferior debugging."), _("\
7152 Show inferior debugging."), _("\
7153 When non-zero, inferior specific debugging is enabled."),
7154 NULL,
7155 show_debug_infrun,
7156 &setdebuglist, &showdebuglist);
7157
7158 add_setshow_boolean_cmd ("displaced", class_maintenance,
7159 &debug_displaced, _("\
7160 Set displaced stepping debugging."), _("\
7161 Show displaced stepping debugging."), _("\
7162 When non-zero, displaced stepping specific debugging is enabled."),
7163 NULL,
7164 show_debug_displaced,
7165 &setdebuglist, &showdebuglist);
7166
7167 add_setshow_boolean_cmd ("non-stop", no_class,
7168 &non_stop_1, _("\
7169 Set whether gdb controls the inferior in non-stop mode."), _("\
7170 Show whether gdb controls the inferior in non-stop mode."), _("\
7171 When debugging a multi-threaded program and this setting is\n\
7172 off (the default, also called all-stop mode), when one thread stops\n\
7173 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7174 all other threads in the program while you interact with the thread of\n\
7175 interest. When you continue or step a thread, you can allow the other\n\
7176 threads to run, or have them remain stopped, but while you inspect any\n\
7177 thread's state, all threads stop.\n\
7178 \n\
7179 In non-stop mode, when one thread stops, other threads can continue\n\
7180 to run freely. You'll be able to step each thread independently,\n\
7181 leave it stopped or free to run as needed."),
7182 set_non_stop,
7183 show_non_stop,
7184 &setlist,
7185 &showlist);
7186
7187 numsigs = (int) GDB_SIGNAL_LAST;
7188 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7189 signal_print = (unsigned char *)
7190 xmalloc (sizeof (signal_print[0]) * numsigs);
7191 signal_program = (unsigned char *)
7192 xmalloc (sizeof (signal_program[0]) * numsigs);
7193 signal_pass = (unsigned char *)
7194 xmalloc (sizeof (signal_program[0]) * numsigs);
7195 for (i = 0; i < numsigs; i++)
7196 {
7197 signal_stop[i] = 1;
7198 signal_print[i] = 1;
7199 signal_program[i] = 1;
7200 }
7201
7202 /* Signals caused by debugger's own actions
7203 should not be given to the program afterwards. */
7204 signal_program[GDB_SIGNAL_TRAP] = 0;
7205 signal_program[GDB_SIGNAL_INT] = 0;
7206
7207 /* Signals that are not errors should not normally enter the debugger. */
7208 signal_stop[GDB_SIGNAL_ALRM] = 0;
7209 signal_print[GDB_SIGNAL_ALRM] = 0;
7210 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7211 signal_print[GDB_SIGNAL_VTALRM] = 0;
7212 signal_stop[GDB_SIGNAL_PROF] = 0;
7213 signal_print[GDB_SIGNAL_PROF] = 0;
7214 signal_stop[GDB_SIGNAL_CHLD] = 0;
7215 signal_print[GDB_SIGNAL_CHLD] = 0;
7216 signal_stop[GDB_SIGNAL_IO] = 0;
7217 signal_print[GDB_SIGNAL_IO] = 0;
7218 signal_stop[GDB_SIGNAL_POLL] = 0;
7219 signal_print[GDB_SIGNAL_POLL] = 0;
7220 signal_stop[GDB_SIGNAL_URG] = 0;
7221 signal_print[GDB_SIGNAL_URG] = 0;
7222 signal_stop[GDB_SIGNAL_WINCH] = 0;
7223 signal_print[GDB_SIGNAL_WINCH] = 0;
7224 signal_stop[GDB_SIGNAL_PRIO] = 0;
7225 signal_print[GDB_SIGNAL_PRIO] = 0;
7226
7227 /* These signals are used internally by user-level thread
7228 implementations. (See signal(5) on Solaris.) Like the above
7229 signals, a healthy program receives and handles them as part of
7230 its normal operation. */
7231 signal_stop[GDB_SIGNAL_LWP] = 0;
7232 signal_print[GDB_SIGNAL_LWP] = 0;
7233 signal_stop[GDB_SIGNAL_WAITING] = 0;
7234 signal_print[GDB_SIGNAL_WAITING] = 0;
7235 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7236 signal_print[GDB_SIGNAL_CANCEL] = 0;
7237
7238 /* Update cached state. */
7239 signal_cache_update (-1);
7240
7241 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7242 &stop_on_solib_events, _("\
7243 Set stopping for shared library events."), _("\
7244 Show stopping for shared library events."), _("\
7245 If nonzero, gdb will give control to the user when the dynamic linker\n\
7246 notifies gdb of shared library events. The most common event of interest\n\
7247 to the user would be loading/unloading of a new library."),
7248 NULL,
7249 show_stop_on_solib_events,
7250 &setlist, &showlist);
7251
7252 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7253 follow_fork_mode_kind_names,
7254 &follow_fork_mode_string, _("\
7255 Set debugger response to a program call of fork or vfork."), _("\
7256 Show debugger response to a program call of fork or vfork."), _("\
7257 A fork or vfork creates a new process. follow-fork-mode can be:\n\
7258 parent - the original process is debugged after a fork\n\
7259 child - the new process is debugged after a fork\n\
7260 The unfollowed process will continue to run.\n\
7261 By default, the debugger will follow the parent process."),
7262 NULL,
7263 show_follow_fork_mode_string,
7264 &setlist, &showlist);
7265
7266 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7267 follow_exec_mode_names,
7268 &follow_exec_mode_string, _("\
7269 Set debugger response to a program call of exec."), _("\
7270 Show debugger response to a program call of exec."), _("\
7271 An exec call replaces the program image of a process.\n\
7272 \n\
7273 follow-exec-mode can be:\n\
7274 \n\
7275 new - the debugger creates a new inferior and rebinds the process\n\
7276 to this new inferior. The program the process was running before\n\
7277 the exec call can be restarted afterwards by restarting the original\n\
7278 inferior.\n\
7279 \n\
7280 same - the debugger keeps the process bound to the same inferior.\n\
7281 The new executable image replaces the previous executable loaded in\n\
7282 the inferior. Restarting the inferior after the exec call restarts\n\
7283 the executable the process was running after the exec call.\n\
7284 \n\
7285 By default, the debugger will use the same inferior."),
7286 NULL,
7287 show_follow_exec_mode_string,
7288 &setlist, &showlist);
7289
7290 add_setshow_enum_cmd ("scheduler-locking", class_run,
7291 scheduler_enums, &scheduler_mode, _("\
7292 Set mode for locking scheduler during execution."), _("\
7293 Show mode for locking scheduler during execution."), _("\
7294 off == no locking (threads may preempt at any time)\n\
7295 on == full locking (no thread except the current thread may run)\n\
7296 step == scheduler locked during every single-step operation.\n\
7297 In this mode, no other thread may run during a step command.\n\
7298 Other threads may run while stepping over a function call ('next')."),
7299 set_schedlock_func, /* traps on target vector */
7300 show_scheduler_mode,
7301 &setlist, &showlist);
7302
7303 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7304 Set mode for resuming threads of all processes."), _("\
7305 Show mode for resuming threads of all processes."), _("\
7306 When on, execution commands (such as 'continue' or 'next') resume all\n\
7307 threads of all processes. When off (which is the default), execution\n\
7308 commands only resume the threads of the current process. The set of\n\
7309 threads that are resumed is further refined by the scheduler-locking\n\
7310 mode (see help set scheduler-locking)."),
7311 NULL,
7312 show_schedule_multiple,
7313 &setlist, &showlist);
7314
7315 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7316 Set mode of the step operation."), _("\
7317 Show mode of the step operation."), _("\
7318 When set, doing a step over a function without debug line information\n\
7319 will stop at the first instruction of that function. Otherwise, the\n\
7320 function is skipped and the step command stops at a different source line."),
7321 NULL,
7322 show_step_stop_if_no_debug,
7323 &setlist, &showlist);
7324
7325 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7326 &can_use_displaced_stepping, _("\
7327 Set debugger's willingness to use displaced stepping."), _("\
7328 Show debugger's willingness to use displaced stepping."), _("\
7329 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7330 supported by the target architecture. If off, gdb will not use displaced\n\
7331 stepping to step over breakpoints, even if such is supported by the target\n\
7332 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7333 if the target architecture supports it and non-stop mode is active, but will not\n\
7334 use it in all-stop mode (see help set non-stop)."),
7335 NULL,
7336 show_can_use_displaced_stepping,
7337 &setlist, &showlist);
7338
7339 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7340 &exec_direction, _("Set direction of execution.\n\
7341 Options are 'forward' or 'reverse'."),
7342 _("Show direction of execution (forward/reverse)."),
7343 _("Tells gdb whether to execute forward or backward."),
7344 set_exec_direction_func, show_exec_direction_func,
7345 &setlist, &showlist);
7346
7347 /* Set/show detach-on-fork: user-settable mode. */
7348
7349 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7350 Set whether gdb will detach the child of a fork."), _("\
7351 Show whether gdb will detach the child of a fork."), _("\
7352 Tells gdb whether to detach the child of a fork."),
7353 NULL, NULL, &setlist, &showlist);
7354
7355 /* Set/show disable address space randomization mode. */
7356
7357 add_setshow_boolean_cmd ("disable-randomization", class_support,
7358 &disable_randomization, _("\
7359 Set disabling of debuggee's virtual address space randomization."), _("\
7360 Show disabling of debuggee's virtual address space randomization."), _("\
7361 When this mode is on (which is the default), randomization of the virtual\n\
7362 address space is disabled. Standalone programs run with the randomization\n\
7363 enabled by default on some platforms."),
7364 &set_disable_randomization,
7365 &show_disable_randomization,
7366 &setlist, &showlist);
7367
7368 /* ptid initializations */
7369 inferior_ptid = null_ptid;
7370 target_last_wait_ptid = minus_one_ptid;
7371
7372 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7373 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7374 observer_attach_thread_exit (infrun_thread_thread_exit);
7375 observer_attach_inferior_exit (infrun_inferior_exit);
7376
7377 /* Explicitly create without lookup, since that tries to create a
7378 value with a void typed value, and when we get here, gdbarch
7379 isn't initialized yet. At this point, we're quite sure there
7380 isn't another convenience variable of the same name. */
7381 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
7382
7383 add_setshow_boolean_cmd ("observer", no_class,
7384 &observer_mode_1, _("\
7385 Set whether gdb controls the inferior in observer mode."), _("\
7386 Show whether gdb controls the inferior in observer mode."), _("\
7387 In observer mode, GDB can get data from the inferior, but not\n\
7388 affect its execution. Registers and memory may not be changed,\n\
7389 breakpoints may not be set, and the program cannot be interrupted\n\
7390 or signalled."),
7391 set_observer_mode,
7392 show_observer_mode,
7393 &setlist,
7394 &showlist);
7395 }
This page took 0.599307 seconds and 4 git commands to generate.