a0786939405babf575c60882bdd67f6a457cb9da
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
6 Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include "symtab.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "exceptions.h"
32 #include "breakpoint.h"
33 #include "gdb_wait.h"
34 #include "gdbcore.h"
35 #include "gdbcmd.h"
36 #include "cli/cli-script.h"
37 #include "target.h"
38 #include "gdbthread.h"
39 #include "annotate.h"
40 #include "symfile.h"
41 #include "top.h"
42 #include <signal.h>
43 #include "inf-loop.h"
44 #include "regcache.h"
45 #include "value.h"
46 #include "observer.h"
47 #include "language.h"
48 #include "gdb_assert.h"
49
50 /* Prototypes for local functions */
51
52 static void signals_info (char *, int);
53
54 static void handle_command (char *, int);
55
56 static void sig_print_info (enum target_signal);
57
58 static void sig_print_header (void);
59
60 static void resume_cleanups (void *);
61
62 static int hook_stop_stub (void *);
63
64 static int restore_selected_frame (void *);
65
66 static void build_infrun (void);
67
68 static int follow_fork (void);
69
70 static void set_schedlock_func (char *args, int from_tty,
71 struct cmd_list_element *c);
72
73 struct execution_control_state;
74
75 static int currently_stepping (struct execution_control_state *ecs);
76
77 static void xdb_handle_command (char *args, int from_tty);
78
79 static int prepare_to_proceed (void);
80
81 void _initialize_infrun (void);
82
83 int inferior_ignoring_startup_exec_events = 0;
84 int inferior_ignoring_leading_exec_events = 0;
85
86 /* When set, stop the 'step' command if we enter a function which has
87 no line number information. The normal behavior is that we step
88 over such function. */
89 int step_stop_if_no_debug = 0;
90 static void
91 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
92 struct cmd_list_element *c, const char *value)
93 {
94 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
95 }
96
97 /* In asynchronous mode, but simulating synchronous execution. */
98
99 int sync_execution = 0;
100
101 /* wait_for_inferior and normal_stop use this to notify the user
102 when the inferior stopped in a different thread than it had been
103 running in. */
104
105 static ptid_t previous_inferior_ptid;
106
107 /* This is true for configurations that may follow through execl() and
108 similar functions. At present this is only true for HP-UX native. */
109
110 #ifndef MAY_FOLLOW_EXEC
111 #define MAY_FOLLOW_EXEC (0)
112 #endif
113
114 static int may_follow_exec = MAY_FOLLOW_EXEC;
115
116 static int debug_infrun = 0;
117 static void
118 show_debug_infrun (struct ui_file *file, int from_tty,
119 struct cmd_list_element *c, const char *value)
120 {
121 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
122 }
123
124 /* If the program uses ELF-style shared libraries, then calls to
125 functions in shared libraries go through stubs, which live in a
126 table called the PLT (Procedure Linkage Table). The first time the
127 function is called, the stub sends control to the dynamic linker,
128 which looks up the function's real address, patches the stub so
129 that future calls will go directly to the function, and then passes
130 control to the function.
131
132 If we are stepping at the source level, we don't want to see any of
133 this --- we just want to skip over the stub and the dynamic linker.
134 The simple approach is to single-step until control leaves the
135 dynamic linker.
136
137 However, on some systems (e.g., Red Hat's 5.2 distribution) the
138 dynamic linker calls functions in the shared C library, so you
139 can't tell from the PC alone whether the dynamic linker is still
140 running. In this case, we use a step-resume breakpoint to get us
141 past the dynamic linker, as if we were using "next" to step over a
142 function call.
143
144 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
145 linker code or not. Normally, this means we single-step. However,
146 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
147 address where we can place a step-resume breakpoint to get past the
148 linker's symbol resolution function.
149
150 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
151 pretty portable way, by comparing the PC against the address ranges
152 of the dynamic linker's sections.
153
154 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
155 it depends on internal details of the dynamic linker. It's usually
156 not too hard to figure out where to put a breakpoint, but it
157 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
158 sanity checking. If it can't figure things out, returning zero and
159 getting the (possibly confusing) stepping behavior is better than
160 signalling an error, which will obscure the change in the
161 inferior's state. */
162
163 #ifndef IN_SOLIB_DYNSYM_RESOLVE_CODE
164 #define IN_SOLIB_DYNSYM_RESOLVE_CODE(pc) 0
165 #endif
166
167 /* This function returns TRUE if pc is the address of an instruction
168 that lies within the dynamic linker (such as the event hook, or the
169 dld itself).
170
171 This function must be used only when a dynamic linker event has
172 been caught, and the inferior is being stepped out of the hook, or
173 undefined results are guaranteed. */
174
175 #ifndef SOLIB_IN_DYNAMIC_LINKER
176 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
177 #endif
178
179 /* We can't step off a permanent breakpoint in the ordinary way, because we
180 can't remove it. Instead, we have to advance the PC to the next
181 instruction. This macro should expand to a pointer to a function that
182 does that, or zero if we have no such function. If we don't have a
183 definition for it, we have to report an error. */
184 #ifndef SKIP_PERMANENT_BREAKPOINT
185 #define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
186 static void
187 default_skip_permanent_breakpoint (void)
188 {
189 error (_("\
190 The program is stopped at a permanent breakpoint, but GDB does not know\n\
191 how to step past a permanent breakpoint on this architecture. Try using\n\
192 a command like `return' or `jump' to continue execution."));
193 }
194 #endif
195
196
197 /* Convert the #defines into values. This is temporary until wfi control
198 flow is completely sorted out. */
199
200 #ifndef HAVE_STEPPABLE_WATCHPOINT
201 #define HAVE_STEPPABLE_WATCHPOINT 0
202 #else
203 #undef HAVE_STEPPABLE_WATCHPOINT
204 #define HAVE_STEPPABLE_WATCHPOINT 1
205 #endif
206
207 #ifndef CANNOT_STEP_HW_WATCHPOINTS
208 #define CANNOT_STEP_HW_WATCHPOINTS 0
209 #else
210 #undef CANNOT_STEP_HW_WATCHPOINTS
211 #define CANNOT_STEP_HW_WATCHPOINTS 1
212 #endif
213
214 /* Tables of how to react to signals; the user sets them. */
215
216 static unsigned char *signal_stop;
217 static unsigned char *signal_print;
218 static unsigned char *signal_program;
219
220 #define SET_SIGS(nsigs,sigs,flags) \
221 do { \
222 int signum = (nsigs); \
223 while (signum-- > 0) \
224 if ((sigs)[signum]) \
225 (flags)[signum] = 1; \
226 } while (0)
227
228 #define UNSET_SIGS(nsigs,sigs,flags) \
229 do { \
230 int signum = (nsigs); \
231 while (signum-- > 0) \
232 if ((sigs)[signum]) \
233 (flags)[signum] = 0; \
234 } while (0)
235
236 /* Value to pass to target_resume() to cause all threads to resume */
237
238 #define RESUME_ALL (pid_to_ptid (-1))
239
240 /* Command list pointer for the "stop" placeholder. */
241
242 static struct cmd_list_element *stop_command;
243
244 /* Nonzero if breakpoints are now inserted in the inferior. */
245
246 static int breakpoints_inserted;
247
248 /* Function inferior was in as of last step command. */
249
250 static struct symbol *step_start_function;
251
252 /* Nonzero if we are expecting a trace trap and should proceed from it. */
253
254 static int trap_expected;
255
256 #ifdef SOLIB_ADD
257 /* Nonzero if we want to give control to the user when we're notified
258 of shared library events by the dynamic linker. */
259 static int stop_on_solib_events;
260 static void
261 show_stop_on_solib_events (struct ui_file *file, int from_tty,
262 struct cmd_list_element *c, const char *value)
263 {
264 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
265 value);
266 }
267 #endif
268
269 /* Nonzero means expecting a trace trap
270 and should stop the inferior and return silently when it happens. */
271
272 int stop_after_trap;
273
274 /* Nonzero means expecting a trap and caller will handle it themselves.
275 It is used after attach, due to attaching to a process;
276 when running in the shell before the child program has been exec'd;
277 and when running some kinds of remote stuff (FIXME?). */
278
279 enum stop_kind stop_soon;
280
281 /* Nonzero if proceed is being used for a "finish" command or a similar
282 situation when stop_registers should be saved. */
283
284 int proceed_to_finish;
285
286 /* Save register contents here when about to pop a stack dummy frame,
287 if-and-only-if proceed_to_finish is set.
288 Thus this contains the return value from the called function (assuming
289 values are returned in a register). */
290
291 struct regcache *stop_registers;
292
293 /* Nonzero if program stopped due to error trying to insert breakpoints. */
294
295 static int breakpoints_failed;
296
297 /* Nonzero after stop if current stack frame should be printed. */
298
299 static int stop_print_frame;
300
301 static struct breakpoint *step_resume_breakpoint = NULL;
302
303 /* This is a cached copy of the pid/waitstatus of the last event
304 returned by target_wait()/deprecated_target_wait_hook(). This
305 information is returned by get_last_target_status(). */
306 static ptid_t target_last_wait_ptid;
307 static struct target_waitstatus target_last_waitstatus;
308
309 /* This is used to remember when a fork, vfork or exec event
310 was caught by a catchpoint, and thus the event is to be
311 followed at the next resume of the inferior, and not
312 immediately. */
313 static struct
314 {
315 enum target_waitkind kind;
316 struct
317 {
318 int parent_pid;
319 int child_pid;
320 }
321 fork_event;
322 char *execd_pathname;
323 }
324 pending_follow;
325
326 static const char follow_fork_mode_child[] = "child";
327 static const char follow_fork_mode_parent[] = "parent";
328
329 static const char *follow_fork_mode_kind_names[] = {
330 follow_fork_mode_child,
331 follow_fork_mode_parent,
332 NULL
333 };
334
335 static const char *follow_fork_mode_string = follow_fork_mode_parent;
336 static void
337 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
338 struct cmd_list_element *c, const char *value)
339 {
340 fprintf_filtered (file, _("\
341 Debugger response to a program call of fork or vfork is \"%s\".\n"),
342 value);
343 }
344 \f
345
346 static int
347 follow_fork (void)
348 {
349 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
350
351 return target_follow_fork (follow_child);
352 }
353
354 void
355 follow_inferior_reset_breakpoints (void)
356 {
357 /* Was there a step_resume breakpoint? (There was if the user
358 did a "next" at the fork() call.) If so, explicitly reset its
359 thread number.
360
361 step_resumes are a form of bp that are made to be per-thread.
362 Since we created the step_resume bp when the parent process
363 was being debugged, and now are switching to the child process,
364 from the breakpoint package's viewpoint, that's a switch of
365 "threads". We must update the bp's notion of which thread
366 it is for, or it'll be ignored when it triggers. */
367
368 if (step_resume_breakpoint)
369 breakpoint_re_set_thread (step_resume_breakpoint);
370
371 /* Reinsert all breakpoints in the child. The user may have set
372 breakpoints after catching the fork, in which case those
373 were never set in the child, but only in the parent. This makes
374 sure the inserted breakpoints match the breakpoint list. */
375
376 breakpoint_re_set ();
377 insert_breakpoints ();
378 }
379
380 /* EXECD_PATHNAME is assumed to be non-NULL. */
381
382 static void
383 follow_exec (int pid, char *execd_pathname)
384 {
385 int saved_pid = pid;
386 struct target_ops *tgt;
387
388 if (!may_follow_exec)
389 return;
390
391 /* This is an exec event that we actually wish to pay attention to.
392 Refresh our symbol table to the newly exec'd program, remove any
393 momentary bp's, etc.
394
395 If there are breakpoints, they aren't really inserted now,
396 since the exec() transformed our inferior into a fresh set
397 of instructions.
398
399 We want to preserve symbolic breakpoints on the list, since
400 we have hopes that they can be reset after the new a.out's
401 symbol table is read.
402
403 However, any "raw" breakpoints must be removed from the list
404 (e.g., the solib bp's), since their address is probably invalid
405 now.
406
407 And, we DON'T want to call delete_breakpoints() here, since
408 that may write the bp's "shadow contents" (the instruction
409 value that was overwritten witha TRAP instruction). Since
410 we now have a new a.out, those shadow contents aren't valid. */
411 update_breakpoints_after_exec ();
412
413 /* If there was one, it's gone now. We cannot truly step-to-next
414 statement through an exec(). */
415 step_resume_breakpoint = NULL;
416 step_range_start = 0;
417 step_range_end = 0;
418
419 /* What is this a.out's name? */
420 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
421
422 /* We've followed the inferior through an exec. Therefore, the
423 inferior has essentially been killed & reborn. */
424
425 /* First collect the run target in effect. */
426 tgt = find_run_target ();
427 /* If we can't find one, things are in a very strange state... */
428 if (tgt == NULL)
429 error (_("Could find run target to save before following exec"));
430
431 gdb_flush (gdb_stdout);
432 target_mourn_inferior ();
433 inferior_ptid = pid_to_ptid (saved_pid);
434 /* Because mourn_inferior resets inferior_ptid. */
435 push_target (tgt);
436
437 /* That a.out is now the one to use. */
438 exec_file_attach (execd_pathname, 0);
439
440 /* And also is where symbols can be found. */
441 symbol_file_add_main (execd_pathname, 0);
442
443 /* Reset the shared library package. This ensures that we get
444 a shlib event when the child reaches "_start", at which point
445 the dld will have had a chance to initialize the child. */
446 #if defined(SOLIB_RESTART)
447 SOLIB_RESTART ();
448 #endif
449 #ifdef SOLIB_CREATE_INFERIOR_HOOK
450 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
451 #endif
452
453 /* Reinsert all breakpoints. (Those which were symbolic have
454 been reset to the proper address in the new a.out, thanks
455 to symbol_file_command...) */
456 insert_breakpoints ();
457
458 /* The next resume of this inferior should bring it to the shlib
459 startup breakpoints. (If the user had also set bp's on
460 "main" from the old (parent) process, then they'll auto-
461 matically get reset there in the new process.) */
462 }
463
464 /* Non-zero if we just simulating a single-step. This is needed
465 because we cannot remove the breakpoints in the inferior process
466 until after the `wait' in `wait_for_inferior'. */
467 static int singlestep_breakpoints_inserted_p = 0;
468
469 /* The thread we inserted single-step breakpoints for. */
470 static ptid_t singlestep_ptid;
471
472 /* If another thread hit the singlestep breakpoint, we save the original
473 thread here so that we can resume single-stepping it later. */
474 static ptid_t saved_singlestep_ptid;
475 static int stepping_past_singlestep_breakpoint;
476 \f
477
478 /* Things to clean up if we QUIT out of resume (). */
479 static void
480 resume_cleanups (void *ignore)
481 {
482 normal_stop ();
483 }
484
485 static const char schedlock_off[] = "off";
486 static const char schedlock_on[] = "on";
487 static const char schedlock_step[] = "step";
488 static const char *scheduler_enums[] = {
489 schedlock_off,
490 schedlock_on,
491 schedlock_step,
492 NULL
493 };
494 static const char *scheduler_mode = schedlock_off;
495 static void
496 show_scheduler_mode (struct ui_file *file, int from_tty,
497 struct cmd_list_element *c, const char *value)
498 {
499 fprintf_filtered (file, _("\
500 Mode for locking scheduler during execution is \"%s\".\n"),
501 value);
502 }
503
504 static void
505 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
506 {
507 if (!target_can_lock_scheduler)
508 {
509 scheduler_mode = schedlock_off;
510 error (_("Target '%s' cannot support this command."), target_shortname);
511 }
512 }
513
514
515 /* Resume the inferior, but allow a QUIT. This is useful if the user
516 wants to interrupt some lengthy single-stepping operation
517 (for child processes, the SIGINT goes to the inferior, and so
518 we get a SIGINT random_signal, but for remote debugging and perhaps
519 other targets, that's not true).
520
521 STEP nonzero if we should step (zero to continue instead).
522 SIG is the signal to give the inferior (zero for none). */
523 void
524 resume (int step, enum target_signal sig)
525 {
526 int should_resume = 1;
527 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
528 QUIT;
529
530 if (debug_infrun)
531 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
532 step, sig);
533
534 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
535
536
537 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
538 over an instruction that causes a page fault without triggering
539 a hardware watchpoint. The kernel properly notices that it shouldn't
540 stop, because the hardware watchpoint is not triggered, but it forgets
541 the step request and continues the program normally.
542 Work around the problem by removing hardware watchpoints if a step is
543 requested, GDB will check for a hardware watchpoint trigger after the
544 step anyway. */
545 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
546 remove_hw_watchpoints ();
547
548
549 /* Normally, by the time we reach `resume', the breakpoints are either
550 removed or inserted, as appropriate. The exception is if we're sitting
551 at a permanent breakpoint; we need to step over it, but permanent
552 breakpoints can't be removed. So we have to test for it here. */
553 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
554 SKIP_PERMANENT_BREAKPOINT ();
555
556 if (SOFTWARE_SINGLE_STEP_P () && step)
557 {
558 /* Do it the hard way, w/temp breakpoints */
559 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
560 /* ...and don't ask hardware to do it. */
561 step = 0;
562 /* and do not pull these breakpoints until after a `wait' in
563 `wait_for_inferior' */
564 singlestep_breakpoints_inserted_p = 1;
565 singlestep_ptid = inferior_ptid;
566 }
567
568 /* If there were any forks/vforks/execs that were caught and are
569 now to be followed, then do so. */
570 switch (pending_follow.kind)
571 {
572 case TARGET_WAITKIND_FORKED:
573 case TARGET_WAITKIND_VFORKED:
574 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
575 if (follow_fork ())
576 should_resume = 0;
577 break;
578
579 case TARGET_WAITKIND_EXECD:
580 /* follow_exec is called as soon as the exec event is seen. */
581 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
582 break;
583
584 default:
585 break;
586 }
587
588 /* Install inferior's terminal modes. */
589 target_terminal_inferior ();
590
591 if (should_resume)
592 {
593 ptid_t resume_ptid;
594
595 resume_ptid = RESUME_ALL; /* Default */
596
597 if ((step || singlestep_breakpoints_inserted_p)
598 && (stepping_past_singlestep_breakpoint
599 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
600 {
601 /* Stepping past a breakpoint without inserting breakpoints.
602 Make sure only the current thread gets to step, so that
603 other threads don't sneak past breakpoints while they are
604 not inserted. */
605
606 resume_ptid = inferior_ptid;
607 }
608
609 if ((scheduler_mode == schedlock_on)
610 || (scheduler_mode == schedlock_step
611 && (step || singlestep_breakpoints_inserted_p)))
612 {
613 /* User-settable 'scheduler' mode requires solo thread resume. */
614 resume_ptid = inferior_ptid;
615 }
616
617 if (CANNOT_STEP_BREAKPOINT)
618 {
619 /* Most targets can step a breakpoint instruction, thus
620 executing it normally. But if this one cannot, just
621 continue and we will hit it anyway. */
622 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
623 step = 0;
624 }
625 target_resume (resume_ptid, step, sig);
626 }
627
628 discard_cleanups (old_cleanups);
629 }
630 \f
631
632 /* Clear out all variables saying what to do when inferior is continued.
633 First do this, then set the ones you want, then call `proceed'. */
634
635 void
636 clear_proceed_status (void)
637 {
638 trap_expected = 0;
639 step_range_start = 0;
640 step_range_end = 0;
641 step_frame_id = null_frame_id;
642 step_over_calls = STEP_OVER_UNDEBUGGABLE;
643 stop_after_trap = 0;
644 stop_soon = NO_STOP_QUIETLY;
645 proceed_to_finish = 0;
646 breakpoint_proceeded = 1; /* We're about to proceed... */
647
648 /* Discard any remaining commands or status from previous stop. */
649 bpstat_clear (&stop_bpstat);
650 }
651
652 /* This should be suitable for any targets that support threads. */
653
654 static int
655 prepare_to_proceed (void)
656 {
657 ptid_t wait_ptid;
658 struct target_waitstatus wait_status;
659
660 /* Get the last target status returned by target_wait(). */
661 get_last_target_status (&wait_ptid, &wait_status);
662
663 /* Make sure we were stopped either at a breakpoint, or because
664 of a Ctrl-C. */
665 if (wait_status.kind != TARGET_WAITKIND_STOPPED
666 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
667 && wait_status.value.sig != TARGET_SIGNAL_INT))
668 {
669 return 0;
670 }
671
672 if (!ptid_equal (wait_ptid, minus_one_ptid)
673 && !ptid_equal (inferior_ptid, wait_ptid))
674 {
675 /* Switched over from WAIT_PID. */
676 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
677
678 if (wait_pc != read_pc ())
679 {
680 /* Switch back to WAIT_PID thread. */
681 inferior_ptid = wait_ptid;
682
683 /* FIXME: This stuff came from switch_to_thread() in
684 thread.c (which should probably be a public function). */
685 flush_cached_frames ();
686 registers_changed ();
687 stop_pc = wait_pc;
688 select_frame (get_current_frame ());
689 }
690
691 /* We return 1 to indicate that there is a breakpoint here,
692 so we need to step over it before continuing to avoid
693 hitting it straight away. */
694 if (breakpoint_here_p (wait_pc))
695 return 1;
696 }
697
698 return 0;
699
700 }
701
702 /* Record the pc of the program the last time it stopped. This is
703 just used internally by wait_for_inferior, but need to be preserved
704 over calls to it and cleared when the inferior is started. */
705 static CORE_ADDR prev_pc;
706
707 /* Basic routine for continuing the program in various fashions.
708
709 ADDR is the address to resume at, or -1 for resume where stopped.
710 SIGGNAL is the signal to give it, or 0 for none,
711 or -1 for act according to how it stopped.
712 STEP is nonzero if should trap after one instruction.
713 -1 means return after that and print nothing.
714 You should probably set various step_... variables
715 before calling here, if you are stepping.
716
717 You should call clear_proceed_status before calling proceed. */
718
719 void
720 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
721 {
722 int oneproc = 0;
723
724 if (step > 0)
725 step_start_function = find_pc_function (read_pc ());
726 if (step < 0)
727 stop_after_trap = 1;
728
729 if (addr == (CORE_ADDR) -1)
730 {
731 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
732 /* There is a breakpoint at the address we will resume at,
733 step one instruction before inserting breakpoints so that
734 we do not stop right away (and report a second hit at this
735 breakpoint). */
736 oneproc = 1;
737 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
738 && gdbarch_single_step_through_delay (current_gdbarch,
739 get_current_frame ()))
740 /* We stepped onto an instruction that needs to be stepped
741 again before re-inserting the breakpoint, do so. */
742 oneproc = 1;
743 }
744 else
745 {
746 write_pc (addr);
747 }
748
749 if (debug_infrun)
750 fprintf_unfiltered (gdb_stdlog,
751 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
752 paddr_nz (addr), siggnal, step);
753
754 /* In a multi-threaded task we may select another thread
755 and then continue or step.
756
757 But if the old thread was stopped at a breakpoint, it
758 will immediately cause another breakpoint stop without
759 any execution (i.e. it will report a breakpoint hit
760 incorrectly). So we must step over it first.
761
762 prepare_to_proceed checks the current thread against the thread
763 that reported the most recent event. If a step-over is required
764 it returns TRUE and sets the current thread to the old thread. */
765 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
766 oneproc = 1;
767
768 if (oneproc)
769 /* We will get a trace trap after one instruction.
770 Continue it automatically and insert breakpoints then. */
771 trap_expected = 1;
772 else
773 {
774 insert_breakpoints ();
775 /* If we get here there was no call to error() in
776 insert breakpoints -- so they were inserted. */
777 breakpoints_inserted = 1;
778 }
779
780 if (siggnal != TARGET_SIGNAL_DEFAULT)
781 stop_signal = siggnal;
782 /* If this signal should not be seen by program,
783 give it zero. Used for debugging signals. */
784 else if (!signal_program[stop_signal])
785 stop_signal = TARGET_SIGNAL_0;
786
787 annotate_starting ();
788
789 /* Make sure that output from GDB appears before output from the
790 inferior. */
791 gdb_flush (gdb_stdout);
792
793 /* Refresh prev_pc value just prior to resuming. This used to be
794 done in stop_stepping, however, setting prev_pc there did not handle
795 scenarios such as inferior function calls or returning from
796 a function via the return command. In those cases, the prev_pc
797 value was not set properly for subsequent commands. The prev_pc value
798 is used to initialize the starting line number in the ecs. With an
799 invalid value, the gdb next command ends up stopping at the position
800 represented by the next line table entry past our start position.
801 On platforms that generate one line table entry per line, this
802 is not a problem. However, on the ia64, the compiler generates
803 extraneous line table entries that do not increase the line number.
804 When we issue the gdb next command on the ia64 after an inferior call
805 or a return command, we often end up a few instructions forward, still
806 within the original line we started.
807
808 An attempt was made to have init_execution_control_state () refresh
809 the prev_pc value before calculating the line number. This approach
810 did not work because on platforms that use ptrace, the pc register
811 cannot be read unless the inferior is stopped. At that point, we
812 are not guaranteed the inferior is stopped and so the read_pc ()
813 call can fail. Setting the prev_pc value here ensures the value is
814 updated correctly when the inferior is stopped. */
815 prev_pc = read_pc ();
816
817 /* Resume inferior. */
818 resume (oneproc || step || bpstat_should_step (), stop_signal);
819
820 /* Wait for it to stop (if not standalone)
821 and in any case decode why it stopped, and act accordingly. */
822 /* Do this only if we are not using the event loop, or if the target
823 does not support asynchronous execution. */
824 if (!target_can_async_p ())
825 {
826 wait_for_inferior ();
827 normal_stop ();
828 }
829 }
830 \f
831
832 /* Start remote-debugging of a machine over a serial link. */
833
834 void
835 start_remote (void)
836 {
837 init_thread_list ();
838 init_wait_for_inferior ();
839 stop_soon = STOP_QUIETLY;
840 trap_expected = 0;
841
842 /* Always go on waiting for the target, regardless of the mode. */
843 /* FIXME: cagney/1999-09-23: At present it isn't possible to
844 indicate to wait_for_inferior that a target should timeout if
845 nothing is returned (instead of just blocking). Because of this,
846 targets expecting an immediate response need to, internally, set
847 things up so that the target_wait() is forced to eventually
848 timeout. */
849 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
850 differentiate to its caller what the state of the target is after
851 the initial open has been performed. Here we're assuming that
852 the target has stopped. It should be possible to eventually have
853 target_open() return to the caller an indication that the target
854 is currently running and GDB state should be set to the same as
855 for an async run. */
856 wait_for_inferior ();
857 normal_stop ();
858 }
859
860 /* Initialize static vars when a new inferior begins. */
861
862 void
863 init_wait_for_inferior (void)
864 {
865 /* These are meaningless until the first time through wait_for_inferior. */
866 prev_pc = 0;
867
868 breakpoints_inserted = 0;
869 breakpoint_init_inferior (inf_starting);
870
871 /* Don't confuse first call to proceed(). */
872 stop_signal = TARGET_SIGNAL_0;
873
874 /* The first resume is not following a fork/vfork/exec. */
875 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
876
877 clear_proceed_status ();
878
879 stepping_past_singlestep_breakpoint = 0;
880 }
881 \f
882 /* This enum encodes possible reasons for doing a target_wait, so that
883 wfi can call target_wait in one place. (Ultimately the call will be
884 moved out of the infinite loop entirely.) */
885
886 enum infwait_states
887 {
888 infwait_normal_state,
889 infwait_thread_hop_state,
890 infwait_nonstep_watch_state
891 };
892
893 /* Why did the inferior stop? Used to print the appropriate messages
894 to the interface from within handle_inferior_event(). */
895 enum inferior_stop_reason
896 {
897 /* We don't know why. */
898 STOP_UNKNOWN,
899 /* Step, next, nexti, stepi finished. */
900 END_STEPPING_RANGE,
901 /* Found breakpoint. */
902 BREAKPOINT_HIT,
903 /* Inferior terminated by signal. */
904 SIGNAL_EXITED,
905 /* Inferior exited. */
906 EXITED,
907 /* Inferior received signal, and user asked to be notified. */
908 SIGNAL_RECEIVED
909 };
910
911 /* This structure contains what used to be local variables in
912 wait_for_inferior. Probably many of them can return to being
913 locals in handle_inferior_event. */
914
915 struct execution_control_state
916 {
917 struct target_waitstatus ws;
918 struct target_waitstatus *wp;
919 int another_trap;
920 int random_signal;
921 CORE_ADDR stop_func_start;
922 CORE_ADDR stop_func_end;
923 char *stop_func_name;
924 struct symtab_and_line sal;
925 int current_line;
926 struct symtab *current_symtab;
927 int handling_longjmp; /* FIXME */
928 ptid_t ptid;
929 ptid_t saved_inferior_ptid;
930 int step_after_step_resume_breakpoint;
931 int stepping_through_solib_after_catch;
932 bpstat stepping_through_solib_catchpoints;
933 int new_thread_event;
934 struct target_waitstatus tmpstatus;
935 enum infwait_states infwait_state;
936 ptid_t waiton_ptid;
937 int wait_some_more;
938 };
939
940 void init_execution_control_state (struct execution_control_state *ecs);
941
942 void handle_inferior_event (struct execution_control_state *ecs);
943
944 static void step_into_function (struct execution_control_state *ecs);
945 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
946 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
947 struct frame_id sr_id);
948 static void stop_stepping (struct execution_control_state *ecs);
949 static void prepare_to_wait (struct execution_control_state *ecs);
950 static void keep_going (struct execution_control_state *ecs);
951 static void print_stop_reason (enum inferior_stop_reason stop_reason,
952 int stop_info);
953
954 /* Wait for control to return from inferior to debugger.
955 If inferior gets a signal, we may decide to start it up again
956 instead of returning. That is why there is a loop in this function.
957 When this function actually returns it means the inferior
958 should be left stopped and GDB should read more commands. */
959
960 void
961 wait_for_inferior (void)
962 {
963 struct cleanup *old_cleanups;
964 struct execution_control_state ecss;
965 struct execution_control_state *ecs;
966
967 if (debug_infrun)
968 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
969
970 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
971 &step_resume_breakpoint);
972
973 /* wfi still stays in a loop, so it's OK just to take the address of
974 a local to get the ecs pointer. */
975 ecs = &ecss;
976
977 /* Fill in with reasonable starting values. */
978 init_execution_control_state (ecs);
979
980 /* We'll update this if & when we switch to a new thread. */
981 previous_inferior_ptid = inferior_ptid;
982
983 overlay_cache_invalid = 1;
984
985 /* We have to invalidate the registers BEFORE calling target_wait
986 because they can be loaded from the target while in target_wait.
987 This makes remote debugging a bit more efficient for those
988 targets that provide critical registers as part of their normal
989 status mechanism. */
990
991 registers_changed ();
992
993 while (1)
994 {
995 if (deprecated_target_wait_hook)
996 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
997 else
998 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
999
1000 /* Now figure out what to do with the result of the result. */
1001 handle_inferior_event (ecs);
1002
1003 if (!ecs->wait_some_more)
1004 break;
1005 }
1006 do_cleanups (old_cleanups);
1007 }
1008
1009 /* Asynchronous version of wait_for_inferior. It is called by the
1010 event loop whenever a change of state is detected on the file
1011 descriptor corresponding to the target. It can be called more than
1012 once to complete a single execution command. In such cases we need
1013 to keep the state in a global variable ASYNC_ECSS. If it is the
1014 last time that this function is called for a single execution
1015 command, then report to the user that the inferior has stopped, and
1016 do the necessary cleanups. */
1017
1018 struct execution_control_state async_ecss;
1019 struct execution_control_state *async_ecs;
1020
1021 void
1022 fetch_inferior_event (void *client_data)
1023 {
1024 static struct cleanup *old_cleanups;
1025
1026 async_ecs = &async_ecss;
1027
1028 if (!async_ecs->wait_some_more)
1029 {
1030 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1031 &step_resume_breakpoint);
1032
1033 /* Fill in with reasonable starting values. */
1034 init_execution_control_state (async_ecs);
1035
1036 /* We'll update this if & when we switch to a new thread. */
1037 previous_inferior_ptid = inferior_ptid;
1038
1039 overlay_cache_invalid = 1;
1040
1041 /* We have to invalidate the registers BEFORE calling target_wait
1042 because they can be loaded from the target while in target_wait.
1043 This makes remote debugging a bit more efficient for those
1044 targets that provide critical registers as part of their normal
1045 status mechanism. */
1046
1047 registers_changed ();
1048 }
1049
1050 if (deprecated_target_wait_hook)
1051 async_ecs->ptid =
1052 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1053 else
1054 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1055
1056 /* Now figure out what to do with the result of the result. */
1057 handle_inferior_event (async_ecs);
1058
1059 if (!async_ecs->wait_some_more)
1060 {
1061 /* Do only the cleanups that have been added by this
1062 function. Let the continuations for the commands do the rest,
1063 if there are any. */
1064 do_exec_cleanups (old_cleanups);
1065 normal_stop ();
1066 if (step_multi && stop_step)
1067 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1068 else
1069 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1070 }
1071 }
1072
1073 /* Prepare an execution control state for looping through a
1074 wait_for_inferior-type loop. */
1075
1076 void
1077 init_execution_control_state (struct execution_control_state *ecs)
1078 {
1079 /* ecs->another_trap? */
1080 ecs->random_signal = 0;
1081 ecs->step_after_step_resume_breakpoint = 0;
1082 ecs->handling_longjmp = 0; /* FIXME */
1083 ecs->stepping_through_solib_after_catch = 0;
1084 ecs->stepping_through_solib_catchpoints = NULL;
1085 ecs->sal = find_pc_line (prev_pc, 0);
1086 ecs->current_line = ecs->sal.line;
1087 ecs->current_symtab = ecs->sal.symtab;
1088 ecs->infwait_state = infwait_normal_state;
1089 ecs->waiton_ptid = pid_to_ptid (-1);
1090 ecs->wp = &(ecs->ws);
1091 }
1092
1093 /* Return the cached copy of the last pid/waitstatus returned by
1094 target_wait()/deprecated_target_wait_hook(). The data is actually
1095 cached by handle_inferior_event(), which gets called immediately
1096 after target_wait()/deprecated_target_wait_hook(). */
1097
1098 void
1099 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1100 {
1101 *ptidp = target_last_wait_ptid;
1102 *status = target_last_waitstatus;
1103 }
1104
1105 /* Switch thread contexts, maintaining "infrun state". */
1106
1107 static void
1108 context_switch (struct execution_control_state *ecs)
1109 {
1110 /* Caution: it may happen that the new thread (or the old one!)
1111 is not in the thread list. In this case we must not attempt
1112 to "switch context", or we run the risk that our context may
1113 be lost. This may happen as a result of the target module
1114 mishandling thread creation. */
1115
1116 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1117 { /* Perform infrun state context switch: */
1118 /* Save infrun state for the old thread. */
1119 save_infrun_state (inferior_ptid, prev_pc,
1120 trap_expected, step_resume_breakpoint,
1121 step_range_start,
1122 step_range_end, &step_frame_id,
1123 ecs->handling_longjmp, ecs->another_trap,
1124 ecs->stepping_through_solib_after_catch,
1125 ecs->stepping_through_solib_catchpoints,
1126 ecs->current_line, ecs->current_symtab);
1127
1128 /* Load infrun state for the new thread. */
1129 load_infrun_state (ecs->ptid, &prev_pc,
1130 &trap_expected, &step_resume_breakpoint,
1131 &step_range_start,
1132 &step_range_end, &step_frame_id,
1133 &ecs->handling_longjmp, &ecs->another_trap,
1134 &ecs->stepping_through_solib_after_catch,
1135 &ecs->stepping_through_solib_catchpoints,
1136 &ecs->current_line, &ecs->current_symtab);
1137 }
1138 inferior_ptid = ecs->ptid;
1139 }
1140
1141 static void
1142 adjust_pc_after_break (struct execution_control_state *ecs)
1143 {
1144 CORE_ADDR breakpoint_pc;
1145
1146 /* If this target does not decrement the PC after breakpoints, then
1147 we have nothing to do. */
1148 if (DECR_PC_AFTER_BREAK == 0)
1149 return;
1150
1151 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1152 we aren't, just return.
1153
1154 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1155 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1156 by software breakpoints should be handled through the normal breakpoint
1157 layer.
1158
1159 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1160 different signals (SIGILL or SIGEMT for instance), but it is less
1161 clear where the PC is pointing afterwards. It may not match
1162 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1163 these signals at breakpoints (the code has been in GDB since at least
1164 1992) so I can not guess how to handle them here.
1165
1166 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1167 would have the PC after hitting a watchpoint affected by
1168 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1169 in GDB history, and it seems unlikely to be correct, so
1170 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1171
1172 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1173 return;
1174
1175 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1176 return;
1177
1178 /* Find the location where (if we've hit a breakpoint) the
1179 breakpoint would be. */
1180 breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1181
1182 if (SOFTWARE_SINGLE_STEP_P ())
1183 {
1184 /* When using software single-step, a SIGTRAP can only indicate
1185 an inserted breakpoint. This actually makes things
1186 easier. */
1187 if (singlestep_breakpoints_inserted_p)
1188 /* When software single stepping, the instruction at [prev_pc]
1189 is never a breakpoint, but the instruction following
1190 [prev_pc] (in program execution order) always is. Assume
1191 that following instruction was reached and hence a software
1192 breakpoint was hit. */
1193 write_pc_pid (breakpoint_pc, ecs->ptid);
1194 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1195 /* The inferior was free running (i.e., no single-step
1196 breakpoints inserted) and it hit a software breakpoint. */
1197 write_pc_pid (breakpoint_pc, ecs->ptid);
1198 }
1199 else
1200 {
1201 /* When using hardware single-step, a SIGTRAP is reported for
1202 both a completed single-step and a software breakpoint. Need
1203 to differentiate between the two as the latter needs
1204 adjusting but the former does not. */
1205 if (currently_stepping (ecs))
1206 {
1207 if (prev_pc == breakpoint_pc
1208 && software_breakpoint_inserted_here_p (breakpoint_pc))
1209 /* Hardware single-stepped a software breakpoint (as
1210 occures when the inferior is resumed with PC pointing
1211 at not-yet-hit software breakpoint). Since the
1212 breakpoint really is executed, the inferior needs to be
1213 backed up to the breakpoint address. */
1214 write_pc_pid (breakpoint_pc, ecs->ptid);
1215 }
1216 else
1217 {
1218 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1219 /* The inferior was free running (i.e., no hardware
1220 single-step and no possibility of a false SIGTRAP) and
1221 hit a software breakpoint. */
1222 write_pc_pid (breakpoint_pc, ecs->ptid);
1223 }
1224 }
1225 }
1226
1227 /* Given an execution control state that has been freshly filled in
1228 by an event from the inferior, figure out what it means and take
1229 appropriate action. */
1230
1231 int stepped_after_stopped_by_watchpoint;
1232
1233 void
1234 handle_inferior_event (struct execution_control_state *ecs)
1235 {
1236 /* NOTE: bje/2005-05-02: If you're looking at this code and thinking
1237 that the variable stepped_after_stopped_by_watchpoint isn't used,
1238 then you're wrong! See remote.c:remote_stopped_data_address. */
1239
1240 int sw_single_step_trap_p = 0;
1241 int stopped_by_watchpoint = -1; /* Mark as unknown. */
1242
1243 /* Cache the last pid/waitstatus. */
1244 target_last_wait_ptid = ecs->ptid;
1245 target_last_waitstatus = *ecs->wp;
1246
1247 adjust_pc_after_break (ecs);
1248
1249 switch (ecs->infwait_state)
1250 {
1251 case infwait_thread_hop_state:
1252 if (debug_infrun)
1253 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1254 /* Cancel the waiton_ptid. */
1255 ecs->waiton_ptid = pid_to_ptid (-1);
1256 break;
1257
1258 case infwait_normal_state:
1259 if (debug_infrun)
1260 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1261 stepped_after_stopped_by_watchpoint = 0;
1262 break;
1263
1264 case infwait_nonstep_watch_state:
1265 if (debug_infrun)
1266 fprintf_unfiltered (gdb_stdlog,
1267 "infrun: infwait_nonstep_watch_state\n");
1268 insert_breakpoints ();
1269
1270 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1271 handle things like signals arriving and other things happening
1272 in combination correctly? */
1273 stepped_after_stopped_by_watchpoint = 1;
1274 break;
1275
1276 default:
1277 internal_error (__FILE__, __LINE__, _("bad switch"));
1278 }
1279 ecs->infwait_state = infwait_normal_state;
1280
1281 flush_cached_frames ();
1282
1283 /* If it's a new process, add it to the thread database */
1284
1285 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1286 && !ptid_equal (ecs->ptid, minus_one_ptid)
1287 && !in_thread_list (ecs->ptid));
1288
1289 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1290 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1291 {
1292 add_thread (ecs->ptid);
1293
1294 ui_out_text (uiout, "[New ");
1295 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1296 ui_out_text (uiout, "]\n");
1297 }
1298
1299 switch (ecs->ws.kind)
1300 {
1301 case TARGET_WAITKIND_LOADED:
1302 if (debug_infrun)
1303 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1304 /* Ignore gracefully during startup of the inferior, as it
1305 might be the shell which has just loaded some objects,
1306 otherwise add the symbols for the newly loaded objects. */
1307 #ifdef SOLIB_ADD
1308 if (stop_soon == NO_STOP_QUIETLY)
1309 {
1310 /* Remove breakpoints, SOLIB_ADD might adjust
1311 breakpoint addresses via breakpoint_re_set. */
1312 if (breakpoints_inserted)
1313 remove_breakpoints ();
1314
1315 /* Check for any newly added shared libraries if we're
1316 supposed to be adding them automatically. Switch
1317 terminal for any messages produced by
1318 breakpoint_re_set. */
1319 target_terminal_ours_for_output ();
1320 /* NOTE: cagney/2003-11-25: Make certain that the target
1321 stack's section table is kept up-to-date. Architectures,
1322 (e.g., PPC64), use the section table to perform
1323 operations such as address => section name and hence
1324 require the table to contain all sections (including
1325 those found in shared libraries). */
1326 /* NOTE: cagney/2003-11-25: Pass current_target and not
1327 exec_ops to SOLIB_ADD. This is because current GDB is
1328 only tooled to propagate section_table changes out from
1329 the "current_target" (see target_resize_to_sections), and
1330 not up from the exec stratum. This, of course, isn't
1331 right. "infrun.c" should only interact with the
1332 exec/process stratum, instead relying on the target stack
1333 to propagate relevant changes (stop, section table
1334 changed, ...) up to other layers. */
1335 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1336 target_terminal_inferior ();
1337
1338 /* Reinsert breakpoints and continue. */
1339 if (breakpoints_inserted)
1340 insert_breakpoints ();
1341 }
1342 #endif
1343 resume (0, TARGET_SIGNAL_0);
1344 prepare_to_wait (ecs);
1345 return;
1346
1347 case TARGET_WAITKIND_SPURIOUS:
1348 if (debug_infrun)
1349 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1350 resume (0, TARGET_SIGNAL_0);
1351 prepare_to_wait (ecs);
1352 return;
1353
1354 case TARGET_WAITKIND_EXITED:
1355 if (debug_infrun)
1356 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1357 target_terminal_ours (); /* Must do this before mourn anyway */
1358 print_stop_reason (EXITED, ecs->ws.value.integer);
1359
1360 /* Record the exit code in the convenience variable $_exitcode, so
1361 that the user can inspect this again later. */
1362 set_internalvar (lookup_internalvar ("_exitcode"),
1363 value_from_longest (builtin_type_int,
1364 (LONGEST) ecs->ws.value.integer));
1365 gdb_flush (gdb_stdout);
1366 target_mourn_inferior ();
1367 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1368 stop_print_frame = 0;
1369 stop_stepping (ecs);
1370 return;
1371
1372 case TARGET_WAITKIND_SIGNALLED:
1373 if (debug_infrun)
1374 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1375 stop_print_frame = 0;
1376 stop_signal = ecs->ws.value.sig;
1377 target_terminal_ours (); /* Must do this before mourn anyway */
1378
1379 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1380 reach here unless the inferior is dead. However, for years
1381 target_kill() was called here, which hints that fatal signals aren't
1382 really fatal on some systems. If that's true, then some changes
1383 may be needed. */
1384 target_mourn_inferior ();
1385
1386 print_stop_reason (SIGNAL_EXITED, stop_signal);
1387 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1388 stop_stepping (ecs);
1389 return;
1390
1391 /* The following are the only cases in which we keep going;
1392 the above cases end in a continue or goto. */
1393 case TARGET_WAITKIND_FORKED:
1394 case TARGET_WAITKIND_VFORKED:
1395 if (debug_infrun)
1396 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1397 stop_signal = TARGET_SIGNAL_TRAP;
1398 pending_follow.kind = ecs->ws.kind;
1399
1400 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1401 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1402
1403 stop_pc = read_pc ();
1404
1405 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1406
1407 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1408
1409 /* If no catchpoint triggered for this, then keep going. */
1410 if (ecs->random_signal)
1411 {
1412 stop_signal = TARGET_SIGNAL_0;
1413 keep_going (ecs);
1414 return;
1415 }
1416 goto process_event_stop_test;
1417
1418 case TARGET_WAITKIND_EXECD:
1419 if (debug_infrun)
1420 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECED\n");
1421 stop_signal = TARGET_SIGNAL_TRAP;
1422
1423 /* NOTE drow/2002-12-05: This code should be pushed down into the
1424 target_wait function. Until then following vfork on HP/UX 10.20
1425 is probably broken by this. Of course, it's broken anyway. */
1426 /* Is this a target which reports multiple exec events per actual
1427 call to exec()? (HP-UX using ptrace does, for example.) If so,
1428 ignore all but the last one. Just resume the exec'r, and wait
1429 for the next exec event. */
1430 if (inferior_ignoring_leading_exec_events)
1431 {
1432 inferior_ignoring_leading_exec_events--;
1433 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1434 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1435 parent_pid);
1436 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1437 prepare_to_wait (ecs);
1438 return;
1439 }
1440 inferior_ignoring_leading_exec_events =
1441 target_reported_exec_events_per_exec_call () - 1;
1442
1443 pending_follow.execd_pathname =
1444 savestring (ecs->ws.value.execd_pathname,
1445 strlen (ecs->ws.value.execd_pathname));
1446
1447 /* This causes the eventpoints and symbol table to be reset. Must
1448 do this now, before trying to determine whether to stop. */
1449 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1450 xfree (pending_follow.execd_pathname);
1451
1452 stop_pc = read_pc_pid (ecs->ptid);
1453 ecs->saved_inferior_ptid = inferior_ptid;
1454 inferior_ptid = ecs->ptid;
1455
1456 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1457
1458 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1459 inferior_ptid = ecs->saved_inferior_ptid;
1460
1461 /* If no catchpoint triggered for this, then keep going. */
1462 if (ecs->random_signal)
1463 {
1464 stop_signal = TARGET_SIGNAL_0;
1465 keep_going (ecs);
1466 return;
1467 }
1468 goto process_event_stop_test;
1469
1470 /* Be careful not to try to gather much state about a thread
1471 that's in a syscall. It's frequently a losing proposition. */
1472 case TARGET_WAITKIND_SYSCALL_ENTRY:
1473 if (debug_infrun)
1474 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1475 resume (0, TARGET_SIGNAL_0);
1476 prepare_to_wait (ecs);
1477 return;
1478
1479 /* Before examining the threads further, step this thread to
1480 get it entirely out of the syscall. (We get notice of the
1481 event when the thread is just on the verge of exiting a
1482 syscall. Stepping one instruction seems to get it back
1483 into user code.) */
1484 case TARGET_WAITKIND_SYSCALL_RETURN:
1485 if (debug_infrun)
1486 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1487 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1488 prepare_to_wait (ecs);
1489 return;
1490
1491 case TARGET_WAITKIND_STOPPED:
1492 if (debug_infrun)
1493 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1494 stop_signal = ecs->ws.value.sig;
1495 break;
1496
1497 /* We had an event in the inferior, but we are not interested
1498 in handling it at this level. The lower layers have already
1499 done what needs to be done, if anything.
1500
1501 One of the possible circumstances for this is when the
1502 inferior produces output for the console. The inferior has
1503 not stopped, and we are ignoring the event. Another possible
1504 circumstance is any event which the lower level knows will be
1505 reported multiple times without an intervening resume. */
1506 case TARGET_WAITKIND_IGNORE:
1507 if (debug_infrun)
1508 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1509 prepare_to_wait (ecs);
1510 return;
1511 }
1512
1513 /* We may want to consider not doing a resume here in order to give
1514 the user a chance to play with the new thread. It might be good
1515 to make that a user-settable option. */
1516
1517 /* At this point, all threads are stopped (happens automatically in
1518 either the OS or the native code). Therefore we need to continue
1519 all threads in order to make progress. */
1520 if (ecs->new_thread_event)
1521 {
1522 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1523 prepare_to_wait (ecs);
1524 return;
1525 }
1526
1527 stop_pc = read_pc_pid (ecs->ptid);
1528
1529 if (debug_infrun)
1530 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1531
1532 if (stepping_past_singlestep_breakpoint)
1533 {
1534 gdb_assert (SOFTWARE_SINGLE_STEP_P ()
1535 && singlestep_breakpoints_inserted_p);
1536 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1537 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1538
1539 stepping_past_singlestep_breakpoint = 0;
1540
1541 /* We've either finished single-stepping past the single-step
1542 breakpoint, or stopped for some other reason. It would be nice if
1543 we could tell, but we can't reliably. */
1544 if (stop_signal == TARGET_SIGNAL_TRAP)
1545 {
1546 if (debug_infrun)
1547 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
1548 /* Pull the single step breakpoints out of the target. */
1549 SOFTWARE_SINGLE_STEP (0, 0);
1550 singlestep_breakpoints_inserted_p = 0;
1551
1552 ecs->random_signal = 0;
1553
1554 ecs->ptid = saved_singlestep_ptid;
1555 context_switch (ecs);
1556 if (deprecated_context_hook)
1557 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1558
1559 resume (1, TARGET_SIGNAL_0);
1560 prepare_to_wait (ecs);
1561 return;
1562 }
1563 }
1564
1565 stepping_past_singlestep_breakpoint = 0;
1566
1567 /* See if a thread hit a thread-specific breakpoint that was meant for
1568 another thread. If so, then step that thread past the breakpoint,
1569 and continue it. */
1570
1571 if (stop_signal == TARGET_SIGNAL_TRAP)
1572 {
1573 int thread_hop_needed = 0;
1574
1575 /* Check if a regular breakpoint has been hit before checking
1576 for a potential single step breakpoint. Otherwise, GDB will
1577 not see this breakpoint hit when stepping onto breakpoints. */
1578 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
1579 {
1580 ecs->random_signal = 0;
1581 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1582 thread_hop_needed = 1;
1583 }
1584 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1585 {
1586 ecs->random_signal = 0;
1587 /* The call to in_thread_list is necessary because PTIDs sometimes
1588 change when we go from single-threaded to multi-threaded. If
1589 the singlestep_ptid is still in the list, assume that it is
1590 really different from ecs->ptid. */
1591 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1592 && in_thread_list (singlestep_ptid))
1593 {
1594 thread_hop_needed = 1;
1595 stepping_past_singlestep_breakpoint = 1;
1596 saved_singlestep_ptid = singlestep_ptid;
1597 }
1598 }
1599
1600 if (thread_hop_needed)
1601 {
1602 int remove_status;
1603
1604 if (debug_infrun)
1605 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
1606
1607 /* Saw a breakpoint, but it was hit by the wrong thread.
1608 Just continue. */
1609
1610 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1611 {
1612 /* Pull the single step breakpoints out of the target. */
1613 SOFTWARE_SINGLE_STEP (0, 0);
1614 singlestep_breakpoints_inserted_p = 0;
1615 }
1616
1617 remove_status = remove_breakpoints ();
1618 /* Did we fail to remove breakpoints? If so, try
1619 to set the PC past the bp. (There's at least
1620 one situation in which we can fail to remove
1621 the bp's: On HP-UX's that use ttrace, we can't
1622 change the address space of a vforking child
1623 process until the child exits (well, okay, not
1624 then either :-) or execs. */
1625 if (remove_status != 0)
1626 {
1627 /* FIXME! This is obviously non-portable! */
1628 write_pc_pid (stop_pc + 4, ecs->ptid);
1629 /* We need to restart all the threads now,
1630 * unles we're running in scheduler-locked mode.
1631 * Use currently_stepping to determine whether to
1632 * step or continue.
1633 */
1634 /* FIXME MVS: is there any reason not to call resume()? */
1635 if (scheduler_mode == schedlock_on)
1636 target_resume (ecs->ptid,
1637 currently_stepping (ecs), TARGET_SIGNAL_0);
1638 else
1639 target_resume (RESUME_ALL,
1640 currently_stepping (ecs), TARGET_SIGNAL_0);
1641 prepare_to_wait (ecs);
1642 return;
1643 }
1644 else
1645 { /* Single step */
1646 breakpoints_inserted = 0;
1647 if (!ptid_equal (inferior_ptid, ecs->ptid))
1648 context_switch (ecs);
1649 ecs->waiton_ptid = ecs->ptid;
1650 ecs->wp = &(ecs->ws);
1651 ecs->another_trap = 1;
1652
1653 ecs->infwait_state = infwait_thread_hop_state;
1654 keep_going (ecs);
1655 registers_changed ();
1656 return;
1657 }
1658 }
1659 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1660 {
1661 sw_single_step_trap_p = 1;
1662 ecs->random_signal = 0;
1663 }
1664 }
1665 else
1666 ecs->random_signal = 1;
1667
1668 /* See if something interesting happened to the non-current thread. If
1669 so, then switch to that thread. */
1670 if (!ptid_equal (ecs->ptid, inferior_ptid))
1671 {
1672 if (debug_infrun)
1673 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
1674
1675 context_switch (ecs);
1676
1677 if (deprecated_context_hook)
1678 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1679
1680 flush_cached_frames ();
1681 }
1682
1683 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1684 {
1685 /* Pull the single step breakpoints out of the target. */
1686 SOFTWARE_SINGLE_STEP (0, 0);
1687 singlestep_breakpoints_inserted_p = 0;
1688 }
1689
1690 /* It may not be necessary to disable the watchpoint to stop over
1691 it. For example, the PA can (with some kernel cooperation)
1692 single step over a watchpoint without disabling the watchpoint. */
1693 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1694 {
1695 if (debug_infrun)
1696 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1697 resume (1, 0);
1698 prepare_to_wait (ecs);
1699 return;
1700 }
1701
1702 /* It is far more common to need to disable a watchpoint to step
1703 the inferior over it. FIXME. What else might a debug
1704 register or page protection watchpoint scheme need here? */
1705 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1706 {
1707 /* At this point, we are stopped at an instruction which has
1708 attempted to write to a piece of memory under control of
1709 a watchpoint. The instruction hasn't actually executed
1710 yet. If we were to evaluate the watchpoint expression
1711 now, we would get the old value, and therefore no change
1712 would seem to have occurred.
1713
1714 In order to make watchpoints work `right', we really need
1715 to complete the memory write, and then evaluate the
1716 watchpoint expression. The following code does that by
1717 removing the watchpoint (actually, all watchpoints and
1718 breakpoints), single-stepping the target, re-inserting
1719 watchpoints, and then falling through to let normal
1720 single-step processing handle proceed. Since this
1721 includes evaluating watchpoints, things will come to a
1722 stop in the correct manner. */
1723
1724 if (debug_infrun)
1725 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1726 remove_breakpoints ();
1727 registers_changed ();
1728 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1729
1730 ecs->waiton_ptid = ecs->ptid;
1731 ecs->wp = &(ecs->ws);
1732 ecs->infwait_state = infwait_nonstep_watch_state;
1733 prepare_to_wait (ecs);
1734 return;
1735 }
1736
1737 /* It may be possible to simply continue after a watchpoint. */
1738 if (HAVE_CONTINUABLE_WATCHPOINT)
1739 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
1740
1741 ecs->stop_func_start = 0;
1742 ecs->stop_func_end = 0;
1743 ecs->stop_func_name = 0;
1744 /* Don't care about return value; stop_func_start and stop_func_name
1745 will both be 0 if it doesn't work. */
1746 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1747 &ecs->stop_func_start, &ecs->stop_func_end);
1748 ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET;
1749 ecs->another_trap = 0;
1750 bpstat_clear (&stop_bpstat);
1751 stop_step = 0;
1752 stop_stack_dummy = 0;
1753 stop_print_frame = 1;
1754 ecs->random_signal = 0;
1755 stopped_by_random_signal = 0;
1756 breakpoints_failed = 0;
1757
1758 if (stop_signal == TARGET_SIGNAL_TRAP
1759 && trap_expected
1760 && gdbarch_single_step_through_delay_p (current_gdbarch)
1761 && currently_stepping (ecs))
1762 {
1763 /* We're trying to step of a breakpoint. Turns out that we're
1764 also on an instruction that needs to be stepped multiple
1765 times before it's been fully executing. E.g., architectures
1766 with a delay slot. It needs to be stepped twice, once for
1767 the instruction and once for the delay slot. */
1768 int step_through_delay
1769 = gdbarch_single_step_through_delay (current_gdbarch,
1770 get_current_frame ());
1771 if (debug_infrun && step_through_delay)
1772 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
1773 if (step_range_end == 0 && step_through_delay)
1774 {
1775 /* The user issued a continue when stopped at a breakpoint.
1776 Set up for another trap and get out of here. */
1777 ecs->another_trap = 1;
1778 keep_going (ecs);
1779 return;
1780 }
1781 else if (step_through_delay)
1782 {
1783 /* The user issued a step when stopped at a breakpoint.
1784 Maybe we should stop, maybe we should not - the delay
1785 slot *might* correspond to a line of source. In any
1786 case, don't decide that here, just set ecs->another_trap,
1787 making sure we single-step again before breakpoints are
1788 re-inserted. */
1789 ecs->another_trap = 1;
1790 }
1791 }
1792
1793 /* Look at the cause of the stop, and decide what to do.
1794 The alternatives are:
1795 1) break; to really stop and return to the debugger,
1796 2) drop through to start up again
1797 (set ecs->another_trap to 1 to single step once)
1798 3) set ecs->random_signal to 1, and the decision between 1 and 2
1799 will be made according to the signal handling tables. */
1800
1801 /* First, distinguish signals caused by the debugger from signals
1802 that have to do with the program's own actions. Note that
1803 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1804 on the operating system version. Here we detect when a SIGILL or
1805 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1806 something similar for SIGSEGV, since a SIGSEGV will be generated
1807 when we're trying to execute a breakpoint instruction on a
1808 non-executable stack. This happens for call dummy breakpoints
1809 for architectures like SPARC that place call dummies on the
1810 stack. */
1811
1812 if (stop_signal == TARGET_SIGNAL_TRAP
1813 || (breakpoints_inserted
1814 && (stop_signal == TARGET_SIGNAL_ILL
1815 || stop_signal == TARGET_SIGNAL_SEGV
1816 || stop_signal == TARGET_SIGNAL_EMT))
1817 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1818 {
1819 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1820 {
1821 if (debug_infrun)
1822 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
1823 stop_print_frame = 0;
1824 stop_stepping (ecs);
1825 return;
1826 }
1827
1828 /* This is originated from start_remote(), start_inferior() and
1829 shared libraries hook functions. */
1830 if (stop_soon == STOP_QUIETLY)
1831 {
1832 if (debug_infrun)
1833 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
1834 stop_stepping (ecs);
1835 return;
1836 }
1837
1838 /* This originates from attach_command(). We need to overwrite
1839 the stop_signal here, because some kernels don't ignore a
1840 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1841 See more comments in inferior.h. */
1842 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1843 {
1844 stop_stepping (ecs);
1845 if (stop_signal == TARGET_SIGNAL_STOP)
1846 stop_signal = TARGET_SIGNAL_0;
1847 return;
1848 }
1849
1850 /* Don't even think about breakpoints if just proceeded over a
1851 breakpoint. */
1852 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
1853 {
1854 if (debug_infrun)
1855 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
1856 bpstat_clear (&stop_bpstat);
1857 }
1858 else
1859 {
1860 /* See if there is a breakpoint at the current PC. */
1861 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
1862 stopped_by_watchpoint);
1863
1864 /* Following in case break condition called a
1865 function. */
1866 stop_print_frame = 1;
1867 }
1868
1869 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1870 at one stage in the past included checks for an inferior
1871 function call's call dummy's return breakpoint. The original
1872 comment, that went with the test, read:
1873
1874 ``End of a stack dummy. Some systems (e.g. Sony news) give
1875 another signal besides SIGTRAP, so check here as well as
1876 above.''
1877
1878 If someone ever tries to get get call dummys on a
1879 non-executable stack to work (where the target would stop
1880 with something like a SIGSEGV), then those tests might need
1881 to be re-instated. Given, however, that the tests were only
1882 enabled when momentary breakpoints were not being used, I
1883 suspect that it won't be the case.
1884
1885 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1886 be necessary for call dummies on a non-executable stack on
1887 SPARC. */
1888
1889 if (stop_signal == TARGET_SIGNAL_TRAP)
1890 ecs->random_signal
1891 = !(bpstat_explains_signal (stop_bpstat)
1892 || trap_expected
1893 || (step_range_end && step_resume_breakpoint == NULL));
1894 else
1895 {
1896 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1897 if (!ecs->random_signal)
1898 stop_signal = TARGET_SIGNAL_TRAP;
1899 }
1900 }
1901
1902 /* When we reach this point, we've pretty much decided
1903 that the reason for stopping must've been a random
1904 (unexpected) signal. */
1905
1906 else
1907 ecs->random_signal = 1;
1908
1909 process_event_stop_test:
1910 /* For the program's own signals, act according to
1911 the signal handling tables. */
1912
1913 if (ecs->random_signal)
1914 {
1915 /* Signal not for debugging purposes. */
1916 int printed = 0;
1917
1918 if (debug_infrun)
1919 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
1920
1921 stopped_by_random_signal = 1;
1922
1923 if (signal_print[stop_signal])
1924 {
1925 printed = 1;
1926 target_terminal_ours_for_output ();
1927 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1928 }
1929 if (signal_stop[stop_signal])
1930 {
1931 stop_stepping (ecs);
1932 return;
1933 }
1934 /* If not going to stop, give terminal back
1935 if we took it away. */
1936 else if (printed)
1937 target_terminal_inferior ();
1938
1939 /* Clear the signal if it should not be passed. */
1940 if (signal_program[stop_signal] == 0)
1941 stop_signal = TARGET_SIGNAL_0;
1942
1943 if (prev_pc == read_pc ()
1944 && !breakpoints_inserted
1945 && breakpoint_here_p (read_pc ())
1946 && step_resume_breakpoint == NULL)
1947 {
1948 /* We were just starting a new sequence, attempting to
1949 single-step off of a breakpoint and expecting a SIGTRAP.
1950 Intead this signal arrives. This signal will take us out
1951 of the stepping range so GDB needs to remember to, when
1952 the signal handler returns, resume stepping off that
1953 breakpoint. */
1954 /* To simplify things, "continue" is forced to use the same
1955 code paths as single-step - set a breakpoint at the
1956 signal return address and then, once hit, step off that
1957 breakpoint. */
1958 insert_step_resume_breakpoint_at_frame (get_current_frame ());
1959 ecs->step_after_step_resume_breakpoint = 1;
1960 keep_going (ecs);
1961 return;
1962 }
1963
1964 if (step_range_end != 0
1965 && stop_signal != TARGET_SIGNAL_0
1966 && stop_pc >= step_range_start && stop_pc < step_range_end
1967 && frame_id_eq (get_frame_id (get_current_frame ()),
1968 step_frame_id)
1969 && step_resume_breakpoint == NULL)
1970 {
1971 /* The inferior is about to take a signal that will take it
1972 out of the single step range. Set a breakpoint at the
1973 current PC (which is presumably where the signal handler
1974 will eventually return) and then allow the inferior to
1975 run free.
1976
1977 Note that this is only needed for a signal delivered
1978 while in the single-step range. Nested signals aren't a
1979 problem as they eventually all return. */
1980 insert_step_resume_breakpoint_at_frame (get_current_frame ());
1981 keep_going (ecs);
1982 return;
1983 }
1984
1985 /* Note: step_resume_breakpoint may be non-NULL. This occures
1986 when either there's a nested signal, or when there's a
1987 pending signal enabled just as the signal handler returns
1988 (leaving the inferior at the step-resume-breakpoint without
1989 actually executing it). Either way continue until the
1990 breakpoint is really hit. */
1991 keep_going (ecs);
1992 return;
1993 }
1994
1995 /* Handle cases caused by hitting a breakpoint. */
1996 {
1997 CORE_ADDR jmp_buf_pc;
1998 struct bpstat_what what;
1999
2000 what = bpstat_what (stop_bpstat);
2001
2002 if (what.call_dummy)
2003 {
2004 stop_stack_dummy = 1;
2005 }
2006
2007 switch (what.main_action)
2008 {
2009 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2010 /* If we hit the breakpoint at longjmp, disable it for the
2011 duration of this command. Then, install a temporary
2012 breakpoint at the target of the jmp_buf. */
2013 if (debug_infrun)
2014 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_SET_LONGJMP_RESUME\n");
2015 disable_longjmp_breakpoint ();
2016 remove_breakpoints ();
2017 breakpoints_inserted = 0;
2018 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
2019 {
2020 keep_going (ecs);
2021 return;
2022 }
2023
2024 /* Need to blow away step-resume breakpoint, as it
2025 interferes with us */
2026 if (step_resume_breakpoint != NULL)
2027 {
2028 delete_step_resume_breakpoint (&step_resume_breakpoint);
2029 }
2030
2031 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2032 ecs->handling_longjmp = 1; /* FIXME */
2033 keep_going (ecs);
2034 return;
2035
2036 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2037 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2038 if (debug_infrun)
2039 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_CLEAR_LONGJMP_RESUME\n");
2040 remove_breakpoints ();
2041 breakpoints_inserted = 0;
2042 disable_longjmp_breakpoint ();
2043 ecs->handling_longjmp = 0; /* FIXME */
2044 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2045 break;
2046 /* else fallthrough */
2047
2048 case BPSTAT_WHAT_SINGLE:
2049 if (debug_infrun)
2050 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_SINGLE\n");
2051 if (breakpoints_inserted)
2052 {
2053 remove_breakpoints ();
2054 }
2055 breakpoints_inserted = 0;
2056 ecs->another_trap = 1;
2057 /* Still need to check other stuff, at least the case
2058 where we are stepping and step out of the right range. */
2059 break;
2060
2061 case BPSTAT_WHAT_STOP_NOISY:
2062 if (debug_infrun)
2063 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_STOP_NOISY\n");
2064 stop_print_frame = 1;
2065
2066 /* We are about to nuke the step_resume_breakpointt via the
2067 cleanup chain, so no need to worry about it here. */
2068
2069 stop_stepping (ecs);
2070 return;
2071
2072 case BPSTAT_WHAT_STOP_SILENT:
2073 if (debug_infrun)
2074 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_STOP_SILENT\n");
2075 stop_print_frame = 0;
2076
2077 /* We are about to nuke the step_resume_breakpoin via the
2078 cleanup chain, so no need to worry about it here. */
2079
2080 stop_stepping (ecs);
2081 return;
2082
2083 case BPSTAT_WHAT_STEP_RESUME:
2084 /* This proably demands a more elegant solution, but, yeah
2085 right...
2086
2087 This function's use of the simple variable
2088 step_resume_breakpoint doesn't seem to accomodate
2089 simultaneously active step-resume bp's, although the
2090 breakpoint list certainly can.
2091
2092 If we reach here and step_resume_breakpoint is already
2093 NULL, then apparently we have multiple active
2094 step-resume bp's. We'll just delete the breakpoint we
2095 stopped at, and carry on.
2096
2097 Correction: what the code currently does is delete a
2098 step-resume bp, but it makes no effort to ensure that
2099 the one deleted is the one currently stopped at. MVS */
2100
2101 if (debug_infrun)
2102 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_STEP_RESUME\n");
2103
2104 if (step_resume_breakpoint == NULL)
2105 {
2106 step_resume_breakpoint =
2107 bpstat_find_step_resume_breakpoint (stop_bpstat);
2108 }
2109 delete_step_resume_breakpoint (&step_resume_breakpoint);
2110 if (ecs->step_after_step_resume_breakpoint)
2111 {
2112 /* Back when the step-resume breakpoint was inserted, we
2113 were trying to single-step off a breakpoint. Go back
2114 to doing that. */
2115 ecs->step_after_step_resume_breakpoint = 0;
2116 remove_breakpoints ();
2117 breakpoints_inserted = 0;
2118 ecs->another_trap = 1;
2119 keep_going (ecs);
2120 return;
2121 }
2122 break;
2123
2124 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2125 if (debug_infrun)
2126 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_THROUGH_SIGTRAMP\n");
2127 /* If were waiting for a trap, hitting the step_resume_break
2128 doesn't count as getting it. */
2129 if (trap_expected)
2130 ecs->another_trap = 1;
2131 break;
2132
2133 case BPSTAT_WHAT_CHECK_SHLIBS:
2134 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2135 #ifdef SOLIB_ADD
2136 {
2137 if (debug_infrun)
2138 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTATE_WHAT_CHECK_SHLIBS\n");
2139 /* Remove breakpoints, we eventually want to step over the
2140 shlib event breakpoint, and SOLIB_ADD might adjust
2141 breakpoint addresses via breakpoint_re_set. */
2142 if (breakpoints_inserted)
2143 remove_breakpoints ();
2144 breakpoints_inserted = 0;
2145
2146 /* Check for any newly added shared libraries if we're
2147 supposed to be adding them automatically. Switch
2148 terminal for any messages produced by
2149 breakpoint_re_set. */
2150 target_terminal_ours_for_output ();
2151 /* NOTE: cagney/2003-11-25: Make certain that the target
2152 stack's section table is kept up-to-date. Architectures,
2153 (e.g., PPC64), use the section table to perform
2154 operations such as address => section name and hence
2155 require the table to contain all sections (including
2156 those found in shared libraries). */
2157 /* NOTE: cagney/2003-11-25: Pass current_target and not
2158 exec_ops to SOLIB_ADD. This is because current GDB is
2159 only tooled to propagate section_table changes out from
2160 the "current_target" (see target_resize_to_sections), and
2161 not up from the exec stratum. This, of course, isn't
2162 right. "infrun.c" should only interact with the
2163 exec/process stratum, instead relying on the target stack
2164 to propagate relevant changes (stop, section table
2165 changed, ...) up to other layers. */
2166 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2167 target_terminal_inferior ();
2168
2169 /* Try to reenable shared library breakpoints, additional
2170 code segments in shared libraries might be mapped in now. */
2171 re_enable_breakpoints_in_shlibs ();
2172
2173 /* If requested, stop when the dynamic linker notifies
2174 gdb of events. This allows the user to get control
2175 and place breakpoints in initializer routines for
2176 dynamically loaded objects (among other things). */
2177 if (stop_on_solib_events || stop_stack_dummy)
2178 {
2179 stop_stepping (ecs);
2180 return;
2181 }
2182
2183 /* If we stopped due to an explicit catchpoint, then the
2184 (see above) call to SOLIB_ADD pulled in any symbols
2185 from a newly-loaded library, if appropriate.
2186
2187 We do want the inferior to stop, but not where it is
2188 now, which is in the dynamic linker callback. Rather,
2189 we would like it stop in the user's program, just after
2190 the call that caused this catchpoint to trigger. That
2191 gives the user a more useful vantage from which to
2192 examine their program's state. */
2193 else if (what.main_action
2194 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2195 {
2196 /* ??rehrauer: If I could figure out how to get the
2197 right return PC from here, we could just set a temp
2198 breakpoint and resume. I'm not sure we can without
2199 cracking open the dld's shared libraries and sniffing
2200 their unwind tables and text/data ranges, and that's
2201 not a terribly portable notion.
2202
2203 Until that time, we must step the inferior out of the
2204 dld callback, and also out of the dld itself (and any
2205 code or stubs in libdld.sl, such as "shl_load" and
2206 friends) until we reach non-dld code. At that point,
2207 we can stop stepping. */
2208 bpstat_get_triggered_catchpoints (stop_bpstat,
2209 &ecs->
2210 stepping_through_solib_catchpoints);
2211 ecs->stepping_through_solib_after_catch = 1;
2212
2213 /* Be sure to lift all breakpoints, so the inferior does
2214 actually step past this point... */
2215 ecs->another_trap = 1;
2216 break;
2217 }
2218 else
2219 {
2220 /* We want to step over this breakpoint, then keep going. */
2221 ecs->another_trap = 1;
2222 break;
2223 }
2224 }
2225 #endif
2226 break;
2227
2228 case BPSTAT_WHAT_LAST:
2229 /* Not a real code, but listed here to shut up gcc -Wall. */
2230
2231 case BPSTAT_WHAT_KEEP_CHECKING:
2232 break;
2233 }
2234 }
2235
2236 /* We come here if we hit a breakpoint but should not
2237 stop for it. Possibly we also were stepping
2238 and should stop for that. So fall through and
2239 test for stepping. But, if not stepping,
2240 do not stop. */
2241
2242 /* Are we stepping to get the inferior out of the dynamic linker's
2243 hook (and possibly the dld itself) after catching a shlib
2244 event? */
2245 if (ecs->stepping_through_solib_after_catch)
2246 {
2247 #if defined(SOLIB_ADD)
2248 /* Have we reached our destination? If not, keep going. */
2249 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2250 {
2251 if (debug_infrun)
2252 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2253 ecs->another_trap = 1;
2254 keep_going (ecs);
2255 return;
2256 }
2257 #endif
2258 if (debug_infrun)
2259 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2260 /* Else, stop and report the catchpoint(s) whose triggering
2261 caused us to begin stepping. */
2262 ecs->stepping_through_solib_after_catch = 0;
2263 bpstat_clear (&stop_bpstat);
2264 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2265 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2266 stop_print_frame = 1;
2267 stop_stepping (ecs);
2268 return;
2269 }
2270
2271 if (step_resume_breakpoint)
2272 {
2273 if (debug_infrun)
2274 fprintf_unfiltered (gdb_stdlog, "infrun: step-resume breakpoint\n");
2275
2276 /* Having a step-resume breakpoint overrides anything
2277 else having to do with stepping commands until
2278 that breakpoint is reached. */
2279 keep_going (ecs);
2280 return;
2281 }
2282
2283 if (step_range_end == 0)
2284 {
2285 if (debug_infrun)
2286 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2287 /* Likewise if we aren't even stepping. */
2288 keep_going (ecs);
2289 return;
2290 }
2291
2292 /* If stepping through a line, keep going if still within it.
2293
2294 Note that step_range_end is the address of the first instruction
2295 beyond the step range, and NOT the address of the last instruction
2296 within it! */
2297 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2298 {
2299 if (debug_infrun)
2300 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2301 paddr_nz (step_range_start),
2302 paddr_nz (step_range_end));
2303 keep_going (ecs);
2304 return;
2305 }
2306
2307 /* We stepped out of the stepping range. */
2308
2309 /* If we are stepping at the source level and entered the runtime
2310 loader dynamic symbol resolution code, we keep on single stepping
2311 until we exit the run time loader code and reach the callee's
2312 address. */
2313 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2314 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc))
2315 {
2316 CORE_ADDR pc_after_resolver =
2317 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2318
2319 if (debug_infrun)
2320 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2321
2322 if (pc_after_resolver)
2323 {
2324 /* Set up a step-resume breakpoint at the address
2325 indicated by SKIP_SOLIB_RESOLVER. */
2326 struct symtab_and_line sr_sal;
2327 init_sal (&sr_sal);
2328 sr_sal.pc = pc_after_resolver;
2329
2330 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2331 }
2332
2333 keep_going (ecs);
2334 return;
2335 }
2336
2337 if (step_range_end != 1
2338 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2339 || step_over_calls == STEP_OVER_ALL)
2340 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2341 {
2342 if (debug_infrun)
2343 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2344 /* The inferior, while doing a "step" or "next", has ended up in
2345 a signal trampoline (either by a signal being delivered or by
2346 the signal handler returning). Just single-step until the
2347 inferior leaves the trampoline (either by calling the handler
2348 or returning). */
2349 keep_going (ecs);
2350 return;
2351 }
2352
2353 if (frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2354 {
2355 /* It's a subroutine call. */
2356 CORE_ADDR real_stop_pc;
2357
2358 if (debug_infrun)
2359 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2360
2361 if ((step_over_calls == STEP_OVER_NONE)
2362 || ((step_range_end == 1)
2363 && in_prologue (prev_pc, ecs->stop_func_start)))
2364 {
2365 /* I presume that step_over_calls is only 0 when we're
2366 supposed to be stepping at the assembly language level
2367 ("stepi"). Just stop. */
2368 /* Also, maybe we just did a "nexti" inside a prolog, so we
2369 thought it was a subroutine call but it was not. Stop as
2370 well. FENN */
2371 stop_step = 1;
2372 print_stop_reason (END_STEPPING_RANGE, 0);
2373 stop_stepping (ecs);
2374 return;
2375 }
2376
2377 if (step_over_calls == STEP_OVER_ALL)
2378 {
2379 /* We're doing a "next", set a breakpoint at callee's return
2380 address (the address at which the caller will
2381 resume). */
2382 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
2383 keep_going (ecs);
2384 return;
2385 }
2386
2387 /* If we are in a function call trampoline (a stub between the
2388 calling routine and the real function), locate the real
2389 function. That's what tells us (a) whether we want to step
2390 into it at all, and (b) what prologue we want to run to the
2391 end of, if we do step into it. */
2392 real_stop_pc = skip_language_trampoline (stop_pc);
2393 if (real_stop_pc == 0)
2394 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2395 if (real_stop_pc != 0)
2396 ecs->stop_func_start = real_stop_pc;
2397
2398 if (IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start))
2399 {
2400 struct symtab_and_line sr_sal;
2401 init_sal (&sr_sal);
2402 sr_sal.pc = ecs->stop_func_start;
2403
2404 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2405 keep_going (ecs);
2406 return;
2407 }
2408
2409 /* If we have line number information for the function we are
2410 thinking of stepping into, step into it.
2411
2412 If there are several symtabs at that PC (e.g. with include
2413 files), just want to know whether *any* of them have line
2414 numbers. find_pc_line handles this. */
2415 {
2416 struct symtab_and_line tmp_sal;
2417
2418 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2419 if (tmp_sal.line != 0)
2420 {
2421 step_into_function (ecs);
2422 return;
2423 }
2424 }
2425
2426 /* If we have no line number and the step-stop-if-no-debug is
2427 set, we stop the step so that the user has a chance to switch
2428 in assembly mode. */
2429 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2430 {
2431 stop_step = 1;
2432 print_stop_reason (END_STEPPING_RANGE, 0);
2433 stop_stepping (ecs);
2434 return;
2435 }
2436
2437 /* Set a breakpoint at callee's return address (the address at
2438 which the caller will resume). */
2439 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
2440 keep_going (ecs);
2441 return;
2442 }
2443
2444 /* If we're in the return path from a shared library trampoline,
2445 we want to proceed through the trampoline when stepping. */
2446 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2447 {
2448 /* Determine where this trampoline returns. */
2449 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2450
2451 if (debug_infrun)
2452 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
2453
2454 /* Only proceed through if we know where it's going. */
2455 if (real_stop_pc)
2456 {
2457 /* And put the step-breakpoint there and go until there. */
2458 struct symtab_and_line sr_sal;
2459
2460 init_sal (&sr_sal); /* initialize to zeroes */
2461 sr_sal.pc = real_stop_pc;
2462 sr_sal.section = find_pc_overlay (sr_sal.pc);
2463
2464 /* Do not specify what the fp should be when we stop since
2465 on some machines the prologue is where the new fp value
2466 is established. */
2467 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2468
2469 /* Restart without fiddling with the step ranges or
2470 other state. */
2471 keep_going (ecs);
2472 return;
2473 }
2474 }
2475
2476 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2477 the trampoline processing logic, however, there are some trampolines
2478 that have no names, so we should do trampoline handling first. */
2479 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2480 && ecs->stop_func_name == NULL)
2481 {
2482 if (debug_infrun)
2483 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
2484
2485 /* The inferior just stepped into, or returned to, an
2486 undebuggable function (where there is no symbol, not even a
2487 minimal symbol, corresponding to the address where the
2488 inferior stopped). Since we want to skip this kind of code,
2489 we keep going until the inferior returns from this
2490 function. */
2491 if (step_stop_if_no_debug)
2492 {
2493 /* If we have no line number and the step-stop-if-no-debug
2494 is set, we stop the step so that the user has a chance to
2495 switch in assembly mode. */
2496 stop_step = 1;
2497 print_stop_reason (END_STEPPING_RANGE, 0);
2498 stop_stepping (ecs);
2499 return;
2500 }
2501 else
2502 {
2503 /* Set a breakpoint at callee's return address (the address
2504 at which the caller will resume). */
2505 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
2506 keep_going (ecs);
2507 return;
2508 }
2509 }
2510
2511 if (step_range_end == 1)
2512 {
2513 /* It is stepi or nexti. We always want to stop stepping after
2514 one instruction. */
2515 if (debug_infrun)
2516 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
2517 stop_step = 1;
2518 print_stop_reason (END_STEPPING_RANGE, 0);
2519 stop_stepping (ecs);
2520 return;
2521 }
2522
2523 ecs->sal = find_pc_line (stop_pc, 0);
2524
2525 if (ecs->sal.line == 0)
2526 {
2527 /* We have no line number information. That means to stop
2528 stepping (does this always happen right after one instruction,
2529 when we do "s" in a function with no line numbers,
2530 or can this happen as a result of a return or longjmp?). */
2531 if (debug_infrun)
2532 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
2533 stop_step = 1;
2534 print_stop_reason (END_STEPPING_RANGE, 0);
2535 stop_stepping (ecs);
2536 return;
2537 }
2538
2539 if ((stop_pc == ecs->sal.pc)
2540 && (ecs->current_line != ecs->sal.line
2541 || ecs->current_symtab != ecs->sal.symtab))
2542 {
2543 /* We are at the start of a different line. So stop. Note that
2544 we don't stop if we step into the middle of a different line.
2545 That is said to make things like for (;;) statements work
2546 better. */
2547 if (debug_infrun)
2548 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
2549 stop_step = 1;
2550 print_stop_reason (END_STEPPING_RANGE, 0);
2551 stop_stepping (ecs);
2552 return;
2553 }
2554
2555 /* We aren't done stepping.
2556
2557 Optimize by setting the stepping range to the line.
2558 (We might not be in the original line, but if we entered a
2559 new line in mid-statement, we continue stepping. This makes
2560 things like for(;;) statements work better.) */
2561
2562 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2563 {
2564 /* If this is the last line of the function, don't keep stepping
2565 (it would probably step us out of the function).
2566 This is particularly necessary for a one-line function,
2567 in which after skipping the prologue we better stop even though
2568 we will be in mid-line. */
2569 if (debug_infrun)
2570 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
2571 stop_step = 1;
2572 print_stop_reason (END_STEPPING_RANGE, 0);
2573 stop_stepping (ecs);
2574 return;
2575 }
2576 step_range_start = ecs->sal.pc;
2577 step_range_end = ecs->sal.end;
2578 step_frame_id = get_frame_id (get_current_frame ());
2579 ecs->current_line = ecs->sal.line;
2580 ecs->current_symtab = ecs->sal.symtab;
2581
2582 /* In the case where we just stepped out of a function into the
2583 middle of a line of the caller, continue stepping, but
2584 step_frame_id must be modified to current frame */
2585 #if 0
2586 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2587 generous. It will trigger on things like a step into a frameless
2588 stackless leaf function. I think the logic should instead look
2589 at the unwound frame ID has that should give a more robust
2590 indication of what happened. */
2591 if (step - ID == current - ID)
2592 still stepping in same function;
2593 else if (step - ID == unwind (current - ID))
2594 stepped into a function;
2595 else
2596 stepped out of a function;
2597 /* Of course this assumes that the frame ID unwind code is robust
2598 and we're willing to introduce frame unwind logic into this
2599 function. Fortunately, those days are nearly upon us. */
2600 #endif
2601 {
2602 struct frame_id current_frame = get_frame_id (get_current_frame ());
2603 if (!(frame_id_inner (current_frame, step_frame_id)))
2604 step_frame_id = current_frame;
2605 }
2606
2607 if (debug_infrun)
2608 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
2609 keep_going (ecs);
2610 }
2611
2612 /* Are we in the middle of stepping? */
2613
2614 static int
2615 currently_stepping (struct execution_control_state *ecs)
2616 {
2617 return ((!ecs->handling_longjmp
2618 && ((step_range_end && step_resume_breakpoint == NULL)
2619 || trap_expected))
2620 || ecs->stepping_through_solib_after_catch
2621 || bpstat_should_step ());
2622 }
2623
2624 /* Subroutine call with source code we should not step over. Do step
2625 to the first line of code in it. */
2626
2627 static void
2628 step_into_function (struct execution_control_state *ecs)
2629 {
2630 struct symtab *s;
2631 struct symtab_and_line sr_sal;
2632
2633 s = find_pc_symtab (stop_pc);
2634 if (s && s->language != language_asm)
2635 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2636
2637 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2638 /* Use the step_resume_break to step until the end of the prologue,
2639 even if that involves jumps (as it seems to on the vax under
2640 4.2). */
2641 /* If the prologue ends in the middle of a source line, continue to
2642 the end of that source line (if it is still within the function).
2643 Otherwise, just go to end of prologue. */
2644 if (ecs->sal.end
2645 && ecs->sal.pc != ecs->stop_func_start
2646 && ecs->sal.end < ecs->stop_func_end)
2647 ecs->stop_func_start = ecs->sal.end;
2648
2649 /* Architectures which require breakpoint adjustment might not be able
2650 to place a breakpoint at the computed address. If so, the test
2651 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2652 ecs->stop_func_start to an address at which a breakpoint may be
2653 legitimately placed.
2654
2655 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2656 made, GDB will enter an infinite loop when stepping through
2657 optimized code consisting of VLIW instructions which contain
2658 subinstructions corresponding to different source lines. On
2659 FR-V, it's not permitted to place a breakpoint on any but the
2660 first subinstruction of a VLIW instruction. When a breakpoint is
2661 set, GDB will adjust the breakpoint address to the beginning of
2662 the VLIW instruction. Thus, we need to make the corresponding
2663 adjustment here when computing the stop address. */
2664
2665 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2666 {
2667 ecs->stop_func_start
2668 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2669 ecs->stop_func_start);
2670 }
2671
2672 if (ecs->stop_func_start == stop_pc)
2673 {
2674 /* We are already there: stop now. */
2675 stop_step = 1;
2676 print_stop_reason (END_STEPPING_RANGE, 0);
2677 stop_stepping (ecs);
2678 return;
2679 }
2680 else
2681 {
2682 /* Put the step-breakpoint there and go until there. */
2683 init_sal (&sr_sal); /* initialize to zeroes */
2684 sr_sal.pc = ecs->stop_func_start;
2685 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2686
2687 /* Do not specify what the fp should be when we stop since on
2688 some machines the prologue is where the new fp value is
2689 established. */
2690 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2691
2692 /* And make sure stepping stops right away then. */
2693 step_range_end = step_range_start;
2694 }
2695 keep_going (ecs);
2696 }
2697
2698 /* Insert a "step resume breakpoint" at SR_SAL with frame ID SR_ID.
2699 This is used to both functions and to skip over code. */
2700
2701 static void
2702 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2703 struct frame_id sr_id)
2704 {
2705 /* There should never be more than one step-resume breakpoint per
2706 thread, so we should never be setting a new
2707 step_resume_breakpoint when one is already active. */
2708 gdb_assert (step_resume_breakpoint == NULL);
2709 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2710 bp_step_resume);
2711 if (breakpoints_inserted)
2712 insert_breakpoints ();
2713 }
2714
2715 /* Insert a "step resume breakpoint" at RETURN_FRAME.pc. This is used
2716 to skip a function (next, skip-no-debug) or signal. It's assumed
2717 that the function/signal handler being skipped eventually returns
2718 to the breakpoint inserted at RETURN_FRAME.pc.
2719
2720 For the skip-function case, the function may have been reached by
2721 either single stepping a call / return / signal-return instruction,
2722 or by hitting a breakpoint. In all cases, the RETURN_FRAME belongs
2723 to the skip-function's caller.
2724
2725 For the signals case, this is called with the interrupted
2726 function's frame. The signal handler, when it returns, will resume
2727 the interrupted function at RETURN_FRAME.pc. */
2728
2729 static void
2730 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2731 {
2732 struct symtab_and_line sr_sal;
2733
2734 init_sal (&sr_sal); /* initialize to zeros */
2735
2736 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (return_frame));
2737 sr_sal.section = find_pc_overlay (sr_sal.pc);
2738
2739 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2740 }
2741
2742 static void
2743 stop_stepping (struct execution_control_state *ecs)
2744 {
2745 if (debug_infrun)
2746 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
2747
2748 /* Let callers know we don't want to wait for the inferior anymore. */
2749 ecs->wait_some_more = 0;
2750 }
2751
2752 /* This function handles various cases where we need to continue
2753 waiting for the inferior. */
2754 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2755
2756 static void
2757 keep_going (struct execution_control_state *ecs)
2758 {
2759 /* Save the pc before execution, to compare with pc after stop. */
2760 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2761
2762 /* If we did not do break;, it means we should keep running the
2763 inferior and not return to debugger. */
2764
2765 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2766 {
2767 /* We took a signal (which we are supposed to pass through to
2768 the inferior, else we'd have done a break above) and we
2769 haven't yet gotten our trap. Simply continue. */
2770 resume (currently_stepping (ecs), stop_signal);
2771 }
2772 else
2773 {
2774 /* Either the trap was not expected, but we are continuing
2775 anyway (the user asked that this signal be passed to the
2776 child)
2777 -- or --
2778 The signal was SIGTRAP, e.g. it was our signal, but we
2779 decided we should resume from it.
2780
2781 We're going to run this baby now! */
2782
2783 if (!breakpoints_inserted && !ecs->another_trap)
2784 {
2785 breakpoints_failed = insert_breakpoints ();
2786 if (breakpoints_failed)
2787 {
2788 stop_stepping (ecs);
2789 return;
2790 }
2791 breakpoints_inserted = 1;
2792 }
2793
2794 trap_expected = ecs->another_trap;
2795
2796 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2797 specifies that such a signal should be delivered to the
2798 target program).
2799
2800 Typically, this would occure when a user is debugging a
2801 target monitor on a simulator: the target monitor sets a
2802 breakpoint; the simulator encounters this break-point and
2803 halts the simulation handing control to GDB; GDB, noteing
2804 that the break-point isn't valid, returns control back to the
2805 simulator; the simulator then delivers the hardware
2806 equivalent of a SIGNAL_TRAP to the program being debugged. */
2807
2808 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2809 stop_signal = TARGET_SIGNAL_0;
2810
2811
2812 resume (currently_stepping (ecs), stop_signal);
2813 }
2814
2815 prepare_to_wait (ecs);
2816 }
2817
2818 /* This function normally comes after a resume, before
2819 handle_inferior_event exits. It takes care of any last bits of
2820 housekeeping, and sets the all-important wait_some_more flag. */
2821
2822 static void
2823 prepare_to_wait (struct execution_control_state *ecs)
2824 {
2825 if (debug_infrun)
2826 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
2827 if (ecs->infwait_state == infwait_normal_state)
2828 {
2829 overlay_cache_invalid = 1;
2830
2831 /* We have to invalidate the registers BEFORE calling
2832 target_wait because they can be loaded from the target while
2833 in target_wait. This makes remote debugging a bit more
2834 efficient for those targets that provide critical registers
2835 as part of their normal status mechanism. */
2836
2837 registers_changed ();
2838 ecs->waiton_ptid = pid_to_ptid (-1);
2839 ecs->wp = &(ecs->ws);
2840 }
2841 /* This is the old end of the while loop. Let everybody know we
2842 want to wait for the inferior some more and get called again
2843 soon. */
2844 ecs->wait_some_more = 1;
2845 }
2846
2847 /* Print why the inferior has stopped. We always print something when
2848 the inferior exits, or receives a signal. The rest of the cases are
2849 dealt with later on in normal_stop() and print_it_typical(). Ideally
2850 there should be a call to this function from handle_inferior_event()
2851 each time stop_stepping() is called.*/
2852 static void
2853 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2854 {
2855 switch (stop_reason)
2856 {
2857 case STOP_UNKNOWN:
2858 /* We don't deal with these cases from handle_inferior_event()
2859 yet. */
2860 break;
2861 case END_STEPPING_RANGE:
2862 /* We are done with a step/next/si/ni command. */
2863 /* For now print nothing. */
2864 /* Print a message only if not in the middle of doing a "step n"
2865 operation for n > 1 */
2866 if (!step_multi || !stop_step)
2867 if (ui_out_is_mi_like_p (uiout))
2868 ui_out_field_string (uiout, "reason", "end-stepping-range");
2869 break;
2870 case BREAKPOINT_HIT:
2871 /* We found a breakpoint. */
2872 /* For now print nothing. */
2873 break;
2874 case SIGNAL_EXITED:
2875 /* The inferior was terminated by a signal. */
2876 annotate_signalled ();
2877 if (ui_out_is_mi_like_p (uiout))
2878 ui_out_field_string (uiout, "reason", "exited-signalled");
2879 ui_out_text (uiout, "\nProgram terminated with signal ");
2880 annotate_signal_name ();
2881 ui_out_field_string (uiout, "signal-name",
2882 target_signal_to_name (stop_info));
2883 annotate_signal_name_end ();
2884 ui_out_text (uiout, ", ");
2885 annotate_signal_string ();
2886 ui_out_field_string (uiout, "signal-meaning",
2887 target_signal_to_string (stop_info));
2888 annotate_signal_string_end ();
2889 ui_out_text (uiout, ".\n");
2890 ui_out_text (uiout, "The program no longer exists.\n");
2891 break;
2892 case EXITED:
2893 /* The inferior program is finished. */
2894 annotate_exited (stop_info);
2895 if (stop_info)
2896 {
2897 if (ui_out_is_mi_like_p (uiout))
2898 ui_out_field_string (uiout, "reason", "exited");
2899 ui_out_text (uiout, "\nProgram exited with code ");
2900 ui_out_field_fmt (uiout, "exit-code", "0%o",
2901 (unsigned int) stop_info);
2902 ui_out_text (uiout, ".\n");
2903 }
2904 else
2905 {
2906 if (ui_out_is_mi_like_p (uiout))
2907 ui_out_field_string (uiout, "reason", "exited-normally");
2908 ui_out_text (uiout, "\nProgram exited normally.\n");
2909 }
2910 break;
2911 case SIGNAL_RECEIVED:
2912 /* Signal received. The signal table tells us to print about
2913 it. */
2914 annotate_signal ();
2915 ui_out_text (uiout, "\nProgram received signal ");
2916 annotate_signal_name ();
2917 if (ui_out_is_mi_like_p (uiout))
2918 ui_out_field_string (uiout, "reason", "signal-received");
2919 ui_out_field_string (uiout, "signal-name",
2920 target_signal_to_name (stop_info));
2921 annotate_signal_name_end ();
2922 ui_out_text (uiout, ", ");
2923 annotate_signal_string ();
2924 ui_out_field_string (uiout, "signal-meaning",
2925 target_signal_to_string (stop_info));
2926 annotate_signal_string_end ();
2927 ui_out_text (uiout, ".\n");
2928 break;
2929 default:
2930 internal_error (__FILE__, __LINE__,
2931 _("print_stop_reason: unrecognized enum value"));
2932 break;
2933 }
2934 }
2935 \f
2936
2937 /* Here to return control to GDB when the inferior stops for real.
2938 Print appropriate messages, remove breakpoints, give terminal our modes.
2939
2940 STOP_PRINT_FRAME nonzero means print the executing frame
2941 (pc, function, args, file, line number and line text).
2942 BREAKPOINTS_FAILED nonzero means stop was due to error
2943 attempting to insert breakpoints. */
2944
2945 void
2946 normal_stop (void)
2947 {
2948 struct target_waitstatus last;
2949 ptid_t last_ptid;
2950
2951 get_last_target_status (&last_ptid, &last);
2952
2953 /* As with the notification of thread events, we want to delay
2954 notifying the user that we've switched thread context until
2955 the inferior actually stops.
2956
2957 There's no point in saying anything if the inferior has exited.
2958 Note that SIGNALLED here means "exited with a signal", not
2959 "received a signal". */
2960 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
2961 && target_has_execution
2962 && last.kind != TARGET_WAITKIND_SIGNALLED
2963 && last.kind != TARGET_WAITKIND_EXITED)
2964 {
2965 target_terminal_ours_for_output ();
2966 printf_filtered (_("[Switching to %s]\n"),
2967 target_pid_or_tid_to_str (inferior_ptid));
2968 previous_inferior_ptid = inferior_ptid;
2969 }
2970
2971 /* NOTE drow/2004-01-17: Is this still necessary? */
2972 /* Make sure that the current_frame's pc is correct. This
2973 is a correction for setting up the frame info before doing
2974 DECR_PC_AFTER_BREAK */
2975 if (target_has_execution)
2976 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
2977 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
2978 frame code to check for this and sort out any resultant mess.
2979 DECR_PC_AFTER_BREAK needs to just go away. */
2980 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
2981
2982 if (target_has_execution && breakpoints_inserted)
2983 {
2984 if (remove_breakpoints ())
2985 {
2986 target_terminal_ours_for_output ();
2987 printf_filtered (_("\
2988 Cannot remove breakpoints because program is no longer writable.\n\
2989 It might be running in another process.\n\
2990 Further execution is probably impossible.\n"));
2991 }
2992 }
2993 breakpoints_inserted = 0;
2994
2995 /* Delete the breakpoint we stopped at, if it wants to be deleted.
2996 Delete any breakpoint that is to be deleted at the next stop. */
2997
2998 breakpoint_auto_delete (stop_bpstat);
2999
3000 /* If an auto-display called a function and that got a signal,
3001 delete that auto-display to avoid an infinite recursion. */
3002
3003 if (stopped_by_random_signal)
3004 disable_current_display ();
3005
3006 /* Don't print a message if in the middle of doing a "step n"
3007 operation for n > 1 */
3008 if (step_multi && stop_step)
3009 goto done;
3010
3011 target_terminal_ours ();
3012
3013 /* Look up the hook_stop and run it (CLI internally handles problem
3014 of stop_command's pre-hook not existing). */
3015 if (stop_command)
3016 catch_errors (hook_stop_stub, stop_command,
3017 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3018
3019 if (!target_has_stack)
3020 {
3021
3022 goto done;
3023 }
3024
3025 /* Select innermost stack frame - i.e., current frame is frame 0,
3026 and current location is based on that.
3027 Don't do this on return from a stack dummy routine,
3028 or if the program has exited. */
3029
3030 if (!stop_stack_dummy)
3031 {
3032 select_frame (get_current_frame ());
3033
3034 /* Print current location without a level number, if
3035 we have changed functions or hit a breakpoint.
3036 Print source line if we have one.
3037 bpstat_print() contains the logic deciding in detail
3038 what to print, based on the event(s) that just occurred. */
3039
3040 if (stop_print_frame && deprecated_selected_frame)
3041 {
3042 int bpstat_ret;
3043 int source_flag;
3044 int do_frame_printing = 1;
3045
3046 bpstat_ret = bpstat_print (stop_bpstat);
3047 switch (bpstat_ret)
3048 {
3049 case PRINT_UNKNOWN:
3050 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3051 (or should) carry around the function and does (or
3052 should) use that when doing a frame comparison. */
3053 if (stop_step
3054 && frame_id_eq (step_frame_id,
3055 get_frame_id (get_current_frame ()))
3056 && step_start_function == find_pc_function (stop_pc))
3057 source_flag = SRC_LINE; /* finished step, just print source line */
3058 else
3059 source_flag = SRC_AND_LOC; /* print location and source line */
3060 break;
3061 case PRINT_SRC_AND_LOC:
3062 source_flag = SRC_AND_LOC; /* print location and source line */
3063 break;
3064 case PRINT_SRC_ONLY:
3065 source_flag = SRC_LINE;
3066 break;
3067 case PRINT_NOTHING:
3068 source_flag = SRC_LINE; /* something bogus */
3069 do_frame_printing = 0;
3070 break;
3071 default:
3072 internal_error (__FILE__, __LINE__, _("Unknown value."));
3073 }
3074 /* For mi, have the same behavior every time we stop:
3075 print everything but the source line. */
3076 if (ui_out_is_mi_like_p (uiout))
3077 source_flag = LOC_AND_ADDRESS;
3078
3079 if (ui_out_is_mi_like_p (uiout))
3080 ui_out_field_int (uiout, "thread-id",
3081 pid_to_thread_id (inferior_ptid));
3082 /* The behavior of this routine with respect to the source
3083 flag is:
3084 SRC_LINE: Print only source line
3085 LOCATION: Print only location
3086 SRC_AND_LOC: Print location and source line */
3087 if (do_frame_printing)
3088 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3089
3090 /* Display the auto-display expressions. */
3091 do_displays ();
3092 }
3093 }
3094
3095 /* Save the function value return registers, if we care.
3096 We might be about to restore their previous contents. */
3097 if (proceed_to_finish)
3098 /* NB: The copy goes through to the target picking up the value of
3099 all the registers. */
3100 regcache_cpy (stop_registers, current_regcache);
3101
3102 if (stop_stack_dummy)
3103 {
3104 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3105 ends with a setting of the current frame, so we can use that
3106 next. */
3107 frame_pop (get_current_frame ());
3108 /* Set stop_pc to what it was before we called the function.
3109 Can't rely on restore_inferior_status because that only gets
3110 called if we don't stop in the called function. */
3111 stop_pc = read_pc ();
3112 select_frame (get_current_frame ());
3113 }
3114
3115 done:
3116 annotate_stopped ();
3117 observer_notify_normal_stop (stop_bpstat);
3118 }
3119
3120 static int
3121 hook_stop_stub (void *cmd)
3122 {
3123 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3124 return (0);
3125 }
3126 \f
3127 int
3128 signal_stop_state (int signo)
3129 {
3130 return signal_stop[signo];
3131 }
3132
3133 int
3134 signal_print_state (int signo)
3135 {
3136 return signal_print[signo];
3137 }
3138
3139 int
3140 signal_pass_state (int signo)
3141 {
3142 return signal_program[signo];
3143 }
3144
3145 int
3146 signal_stop_update (int signo, int state)
3147 {
3148 int ret = signal_stop[signo];
3149 signal_stop[signo] = state;
3150 return ret;
3151 }
3152
3153 int
3154 signal_print_update (int signo, int state)
3155 {
3156 int ret = signal_print[signo];
3157 signal_print[signo] = state;
3158 return ret;
3159 }
3160
3161 int
3162 signal_pass_update (int signo, int state)
3163 {
3164 int ret = signal_program[signo];
3165 signal_program[signo] = state;
3166 return ret;
3167 }
3168
3169 static void
3170 sig_print_header (void)
3171 {
3172 printf_filtered (_("\
3173 Signal Stop\tPrint\tPass to program\tDescription\n"));
3174 }
3175
3176 static void
3177 sig_print_info (enum target_signal oursig)
3178 {
3179 char *name = target_signal_to_name (oursig);
3180 int name_padding = 13 - strlen (name);
3181
3182 if (name_padding <= 0)
3183 name_padding = 0;
3184
3185 printf_filtered ("%s", name);
3186 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3187 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3188 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3189 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3190 printf_filtered ("%s\n", target_signal_to_string (oursig));
3191 }
3192
3193 /* Specify how various signals in the inferior should be handled. */
3194
3195 static void
3196 handle_command (char *args, int from_tty)
3197 {
3198 char **argv;
3199 int digits, wordlen;
3200 int sigfirst, signum, siglast;
3201 enum target_signal oursig;
3202 int allsigs;
3203 int nsigs;
3204 unsigned char *sigs;
3205 struct cleanup *old_chain;
3206
3207 if (args == NULL)
3208 {
3209 error_no_arg (_("signal to handle"));
3210 }
3211
3212 /* Allocate and zero an array of flags for which signals to handle. */
3213
3214 nsigs = (int) TARGET_SIGNAL_LAST;
3215 sigs = (unsigned char *) alloca (nsigs);
3216 memset (sigs, 0, nsigs);
3217
3218 /* Break the command line up into args. */
3219
3220 argv = buildargv (args);
3221 if (argv == NULL)
3222 {
3223 nomem (0);
3224 }
3225 old_chain = make_cleanup_freeargv (argv);
3226
3227 /* Walk through the args, looking for signal oursigs, signal names, and
3228 actions. Signal numbers and signal names may be interspersed with
3229 actions, with the actions being performed for all signals cumulatively
3230 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3231
3232 while (*argv != NULL)
3233 {
3234 wordlen = strlen (*argv);
3235 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3236 {;
3237 }
3238 allsigs = 0;
3239 sigfirst = siglast = -1;
3240
3241 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3242 {
3243 /* Apply action to all signals except those used by the
3244 debugger. Silently skip those. */
3245 allsigs = 1;
3246 sigfirst = 0;
3247 siglast = nsigs - 1;
3248 }
3249 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3250 {
3251 SET_SIGS (nsigs, sigs, signal_stop);
3252 SET_SIGS (nsigs, sigs, signal_print);
3253 }
3254 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3255 {
3256 UNSET_SIGS (nsigs, sigs, signal_program);
3257 }
3258 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3259 {
3260 SET_SIGS (nsigs, sigs, signal_print);
3261 }
3262 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3263 {
3264 SET_SIGS (nsigs, sigs, signal_program);
3265 }
3266 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3267 {
3268 UNSET_SIGS (nsigs, sigs, signal_stop);
3269 }
3270 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3271 {
3272 SET_SIGS (nsigs, sigs, signal_program);
3273 }
3274 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3275 {
3276 UNSET_SIGS (nsigs, sigs, signal_print);
3277 UNSET_SIGS (nsigs, sigs, signal_stop);
3278 }
3279 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3280 {
3281 UNSET_SIGS (nsigs, sigs, signal_program);
3282 }
3283 else if (digits > 0)
3284 {
3285 /* It is numeric. The numeric signal refers to our own
3286 internal signal numbering from target.h, not to host/target
3287 signal number. This is a feature; users really should be
3288 using symbolic names anyway, and the common ones like
3289 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3290
3291 sigfirst = siglast = (int)
3292 target_signal_from_command (atoi (*argv));
3293 if ((*argv)[digits] == '-')
3294 {
3295 siglast = (int)
3296 target_signal_from_command (atoi ((*argv) + digits + 1));
3297 }
3298 if (sigfirst > siglast)
3299 {
3300 /* Bet he didn't figure we'd think of this case... */
3301 signum = sigfirst;
3302 sigfirst = siglast;
3303 siglast = signum;
3304 }
3305 }
3306 else
3307 {
3308 oursig = target_signal_from_name (*argv);
3309 if (oursig != TARGET_SIGNAL_UNKNOWN)
3310 {
3311 sigfirst = siglast = (int) oursig;
3312 }
3313 else
3314 {
3315 /* Not a number and not a recognized flag word => complain. */
3316 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3317 }
3318 }
3319
3320 /* If any signal numbers or symbol names were found, set flags for
3321 which signals to apply actions to. */
3322
3323 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3324 {
3325 switch ((enum target_signal) signum)
3326 {
3327 case TARGET_SIGNAL_TRAP:
3328 case TARGET_SIGNAL_INT:
3329 if (!allsigs && !sigs[signum])
3330 {
3331 if (query ("%s is used by the debugger.\n\
3332 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3333 {
3334 sigs[signum] = 1;
3335 }
3336 else
3337 {
3338 printf_unfiltered (_("Not confirmed, unchanged.\n"));
3339 gdb_flush (gdb_stdout);
3340 }
3341 }
3342 break;
3343 case TARGET_SIGNAL_0:
3344 case TARGET_SIGNAL_DEFAULT:
3345 case TARGET_SIGNAL_UNKNOWN:
3346 /* Make sure that "all" doesn't print these. */
3347 break;
3348 default:
3349 sigs[signum] = 1;
3350 break;
3351 }
3352 }
3353
3354 argv++;
3355 }
3356
3357 target_notice_signals (inferior_ptid);
3358
3359 if (from_tty)
3360 {
3361 /* Show the results. */
3362 sig_print_header ();
3363 for (signum = 0; signum < nsigs; signum++)
3364 {
3365 if (sigs[signum])
3366 {
3367 sig_print_info (signum);
3368 }
3369 }
3370 }
3371
3372 do_cleanups (old_chain);
3373 }
3374
3375 static void
3376 xdb_handle_command (char *args, int from_tty)
3377 {
3378 char **argv;
3379 struct cleanup *old_chain;
3380
3381 /* Break the command line up into args. */
3382
3383 argv = buildargv (args);
3384 if (argv == NULL)
3385 {
3386 nomem (0);
3387 }
3388 old_chain = make_cleanup_freeargv (argv);
3389 if (argv[1] != (char *) NULL)
3390 {
3391 char *argBuf;
3392 int bufLen;
3393
3394 bufLen = strlen (argv[0]) + 20;
3395 argBuf = (char *) xmalloc (bufLen);
3396 if (argBuf)
3397 {
3398 int validFlag = 1;
3399 enum target_signal oursig;
3400
3401 oursig = target_signal_from_name (argv[0]);
3402 memset (argBuf, 0, bufLen);
3403 if (strcmp (argv[1], "Q") == 0)
3404 sprintf (argBuf, "%s %s", argv[0], "noprint");
3405 else
3406 {
3407 if (strcmp (argv[1], "s") == 0)
3408 {
3409 if (!signal_stop[oursig])
3410 sprintf (argBuf, "%s %s", argv[0], "stop");
3411 else
3412 sprintf (argBuf, "%s %s", argv[0], "nostop");
3413 }
3414 else if (strcmp (argv[1], "i") == 0)
3415 {
3416 if (!signal_program[oursig])
3417 sprintf (argBuf, "%s %s", argv[0], "pass");
3418 else
3419 sprintf (argBuf, "%s %s", argv[0], "nopass");
3420 }
3421 else if (strcmp (argv[1], "r") == 0)
3422 {
3423 if (!signal_print[oursig])
3424 sprintf (argBuf, "%s %s", argv[0], "print");
3425 else
3426 sprintf (argBuf, "%s %s", argv[0], "noprint");
3427 }
3428 else
3429 validFlag = 0;
3430 }
3431 if (validFlag)
3432 handle_command (argBuf, from_tty);
3433 else
3434 printf_filtered (_("Invalid signal handling flag.\n"));
3435 if (argBuf)
3436 xfree (argBuf);
3437 }
3438 }
3439 do_cleanups (old_chain);
3440 }
3441
3442 /* Print current contents of the tables set by the handle command.
3443 It is possible we should just be printing signals actually used
3444 by the current target (but for things to work right when switching
3445 targets, all signals should be in the signal tables). */
3446
3447 static void
3448 signals_info (char *signum_exp, int from_tty)
3449 {
3450 enum target_signal oursig;
3451 sig_print_header ();
3452
3453 if (signum_exp)
3454 {
3455 /* First see if this is a symbol name. */
3456 oursig = target_signal_from_name (signum_exp);
3457 if (oursig == TARGET_SIGNAL_UNKNOWN)
3458 {
3459 /* No, try numeric. */
3460 oursig =
3461 target_signal_from_command (parse_and_eval_long (signum_exp));
3462 }
3463 sig_print_info (oursig);
3464 return;
3465 }
3466
3467 printf_filtered ("\n");
3468 /* These ugly casts brought to you by the native VAX compiler. */
3469 for (oursig = TARGET_SIGNAL_FIRST;
3470 (int) oursig < (int) TARGET_SIGNAL_LAST;
3471 oursig = (enum target_signal) ((int) oursig + 1))
3472 {
3473 QUIT;
3474
3475 if (oursig != TARGET_SIGNAL_UNKNOWN
3476 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3477 sig_print_info (oursig);
3478 }
3479
3480 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
3481 }
3482 \f
3483 struct inferior_status
3484 {
3485 enum target_signal stop_signal;
3486 CORE_ADDR stop_pc;
3487 bpstat stop_bpstat;
3488 int stop_step;
3489 int stop_stack_dummy;
3490 int stopped_by_random_signal;
3491 int trap_expected;
3492 CORE_ADDR step_range_start;
3493 CORE_ADDR step_range_end;
3494 struct frame_id step_frame_id;
3495 enum step_over_calls_kind step_over_calls;
3496 CORE_ADDR step_resume_break_address;
3497 int stop_after_trap;
3498 int stop_soon;
3499 struct regcache *stop_registers;
3500
3501 /* These are here because if call_function_by_hand has written some
3502 registers and then decides to call error(), we better not have changed
3503 any registers. */
3504 struct regcache *registers;
3505
3506 /* A frame unique identifier. */
3507 struct frame_id selected_frame_id;
3508
3509 int breakpoint_proceeded;
3510 int restore_stack_info;
3511 int proceed_to_finish;
3512 };
3513
3514 void
3515 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3516 LONGEST val)
3517 {
3518 int size = register_size (current_gdbarch, regno);
3519 void *buf = alloca (size);
3520 store_signed_integer (buf, size, val);
3521 regcache_raw_write (inf_status->registers, regno, buf);
3522 }
3523
3524 /* Save all of the information associated with the inferior<==>gdb
3525 connection. INF_STATUS is a pointer to a "struct inferior_status"
3526 (defined in inferior.h). */
3527
3528 struct inferior_status *
3529 save_inferior_status (int restore_stack_info)
3530 {
3531 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3532
3533 inf_status->stop_signal = stop_signal;
3534 inf_status->stop_pc = stop_pc;
3535 inf_status->stop_step = stop_step;
3536 inf_status->stop_stack_dummy = stop_stack_dummy;
3537 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3538 inf_status->trap_expected = trap_expected;
3539 inf_status->step_range_start = step_range_start;
3540 inf_status->step_range_end = step_range_end;
3541 inf_status->step_frame_id = step_frame_id;
3542 inf_status->step_over_calls = step_over_calls;
3543 inf_status->stop_after_trap = stop_after_trap;
3544 inf_status->stop_soon = stop_soon;
3545 /* Save original bpstat chain here; replace it with copy of chain.
3546 If caller's caller is walking the chain, they'll be happier if we
3547 hand them back the original chain when restore_inferior_status is
3548 called. */
3549 inf_status->stop_bpstat = stop_bpstat;
3550 stop_bpstat = bpstat_copy (stop_bpstat);
3551 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3552 inf_status->restore_stack_info = restore_stack_info;
3553 inf_status->proceed_to_finish = proceed_to_finish;
3554
3555 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
3556
3557 inf_status->registers = regcache_dup (current_regcache);
3558
3559 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
3560 return inf_status;
3561 }
3562
3563 static int
3564 restore_selected_frame (void *args)
3565 {
3566 struct frame_id *fid = (struct frame_id *) args;
3567 struct frame_info *frame;
3568
3569 frame = frame_find_by_id (*fid);
3570
3571 /* If inf_status->selected_frame_id is NULL, there was no previously
3572 selected frame. */
3573 if (frame == NULL)
3574 {
3575 warning (_("Unable to restore previously selected frame."));
3576 return 0;
3577 }
3578
3579 select_frame (frame);
3580
3581 return (1);
3582 }
3583
3584 void
3585 restore_inferior_status (struct inferior_status *inf_status)
3586 {
3587 stop_signal = inf_status->stop_signal;
3588 stop_pc = inf_status->stop_pc;
3589 stop_step = inf_status->stop_step;
3590 stop_stack_dummy = inf_status->stop_stack_dummy;
3591 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3592 trap_expected = inf_status->trap_expected;
3593 step_range_start = inf_status->step_range_start;
3594 step_range_end = inf_status->step_range_end;
3595 step_frame_id = inf_status->step_frame_id;
3596 step_over_calls = inf_status->step_over_calls;
3597 stop_after_trap = inf_status->stop_after_trap;
3598 stop_soon = inf_status->stop_soon;
3599 bpstat_clear (&stop_bpstat);
3600 stop_bpstat = inf_status->stop_bpstat;
3601 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3602 proceed_to_finish = inf_status->proceed_to_finish;
3603
3604 /* FIXME: Is the restore of stop_registers always needed. */
3605 regcache_xfree (stop_registers);
3606 stop_registers = inf_status->stop_registers;
3607
3608 /* The inferior can be gone if the user types "print exit(0)"
3609 (and perhaps other times). */
3610 if (target_has_execution)
3611 /* NB: The register write goes through to the target. */
3612 regcache_cpy (current_regcache, inf_status->registers);
3613 regcache_xfree (inf_status->registers);
3614
3615 /* FIXME: If we are being called after stopping in a function which
3616 is called from gdb, we should not be trying to restore the
3617 selected frame; it just prints a spurious error message (The
3618 message is useful, however, in detecting bugs in gdb (like if gdb
3619 clobbers the stack)). In fact, should we be restoring the
3620 inferior status at all in that case? . */
3621
3622 if (target_has_stack && inf_status->restore_stack_info)
3623 {
3624 /* The point of catch_errors is that if the stack is clobbered,
3625 walking the stack might encounter a garbage pointer and
3626 error() trying to dereference it. */
3627 if (catch_errors
3628 (restore_selected_frame, &inf_status->selected_frame_id,
3629 "Unable to restore previously selected frame:\n",
3630 RETURN_MASK_ERROR) == 0)
3631 /* Error in restoring the selected frame. Select the innermost
3632 frame. */
3633 select_frame (get_current_frame ());
3634
3635 }
3636
3637 xfree (inf_status);
3638 }
3639
3640 static void
3641 do_restore_inferior_status_cleanup (void *sts)
3642 {
3643 restore_inferior_status (sts);
3644 }
3645
3646 struct cleanup *
3647 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3648 {
3649 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3650 }
3651
3652 void
3653 discard_inferior_status (struct inferior_status *inf_status)
3654 {
3655 /* See save_inferior_status for info on stop_bpstat. */
3656 bpstat_clear (&inf_status->stop_bpstat);
3657 regcache_xfree (inf_status->registers);
3658 regcache_xfree (inf_status->stop_registers);
3659 xfree (inf_status);
3660 }
3661
3662 int
3663 inferior_has_forked (int pid, int *child_pid)
3664 {
3665 struct target_waitstatus last;
3666 ptid_t last_ptid;
3667
3668 get_last_target_status (&last_ptid, &last);
3669
3670 if (last.kind != TARGET_WAITKIND_FORKED)
3671 return 0;
3672
3673 if (ptid_get_pid (last_ptid) != pid)
3674 return 0;
3675
3676 *child_pid = last.value.related_pid;
3677 return 1;
3678 }
3679
3680 int
3681 inferior_has_vforked (int pid, int *child_pid)
3682 {
3683 struct target_waitstatus last;
3684 ptid_t last_ptid;
3685
3686 get_last_target_status (&last_ptid, &last);
3687
3688 if (last.kind != TARGET_WAITKIND_VFORKED)
3689 return 0;
3690
3691 if (ptid_get_pid (last_ptid) != pid)
3692 return 0;
3693
3694 *child_pid = last.value.related_pid;
3695 return 1;
3696 }
3697
3698 int
3699 inferior_has_execd (int pid, char **execd_pathname)
3700 {
3701 struct target_waitstatus last;
3702 ptid_t last_ptid;
3703
3704 get_last_target_status (&last_ptid, &last);
3705
3706 if (last.kind != TARGET_WAITKIND_EXECD)
3707 return 0;
3708
3709 if (ptid_get_pid (last_ptid) != pid)
3710 return 0;
3711
3712 *execd_pathname = xstrdup (last.value.execd_pathname);
3713 return 1;
3714 }
3715
3716 /* Oft used ptids */
3717 ptid_t null_ptid;
3718 ptid_t minus_one_ptid;
3719
3720 /* Create a ptid given the necessary PID, LWP, and TID components. */
3721
3722 ptid_t
3723 ptid_build (int pid, long lwp, long tid)
3724 {
3725 ptid_t ptid;
3726
3727 ptid.pid = pid;
3728 ptid.lwp = lwp;
3729 ptid.tid = tid;
3730 return ptid;
3731 }
3732
3733 /* Create a ptid from just a pid. */
3734
3735 ptid_t
3736 pid_to_ptid (int pid)
3737 {
3738 return ptid_build (pid, 0, 0);
3739 }
3740
3741 /* Fetch the pid (process id) component from a ptid. */
3742
3743 int
3744 ptid_get_pid (ptid_t ptid)
3745 {
3746 return ptid.pid;
3747 }
3748
3749 /* Fetch the lwp (lightweight process) component from a ptid. */
3750
3751 long
3752 ptid_get_lwp (ptid_t ptid)
3753 {
3754 return ptid.lwp;
3755 }
3756
3757 /* Fetch the tid (thread id) component from a ptid. */
3758
3759 long
3760 ptid_get_tid (ptid_t ptid)
3761 {
3762 return ptid.tid;
3763 }
3764
3765 /* ptid_equal() is used to test equality of two ptids. */
3766
3767 int
3768 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3769 {
3770 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3771 && ptid1.tid == ptid2.tid);
3772 }
3773
3774 /* restore_inferior_ptid() will be used by the cleanup machinery
3775 to restore the inferior_ptid value saved in a call to
3776 save_inferior_ptid(). */
3777
3778 static void
3779 restore_inferior_ptid (void *arg)
3780 {
3781 ptid_t *saved_ptid_ptr = arg;
3782 inferior_ptid = *saved_ptid_ptr;
3783 xfree (arg);
3784 }
3785
3786 /* Save the value of inferior_ptid so that it may be restored by a
3787 later call to do_cleanups(). Returns the struct cleanup pointer
3788 needed for later doing the cleanup. */
3789
3790 struct cleanup *
3791 save_inferior_ptid (void)
3792 {
3793 ptid_t *saved_ptid_ptr;
3794
3795 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3796 *saved_ptid_ptr = inferior_ptid;
3797 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3798 }
3799 \f
3800
3801 static void
3802 build_infrun (void)
3803 {
3804 stop_registers = regcache_xmalloc (current_gdbarch);
3805 }
3806
3807 void
3808 _initialize_infrun (void)
3809 {
3810 int i;
3811 int numsigs;
3812 struct cmd_list_element *c;
3813
3814 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3815 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
3816
3817 add_info ("signals", signals_info, _("\
3818 What debugger does when program gets various signals.\n\
3819 Specify a signal as argument to print info on that signal only."));
3820 add_info_alias ("handle", "signals", 0);
3821
3822 add_com ("handle", class_run, handle_command, _("\
3823 Specify how to handle a signal.\n\
3824 Args are signals and actions to apply to those signals.\n\
3825 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3826 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3827 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3828 The special arg \"all\" is recognized to mean all signals except those\n\
3829 used by the debugger, typically SIGTRAP and SIGINT.\n\
3830 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3831 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3832 Stop means reenter debugger if this signal happens (implies print).\n\
3833 Print means print a message if this signal happens.\n\
3834 Pass means let program see this signal; otherwise program doesn't know.\n\
3835 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3836 Pass and Stop may be combined."));
3837 if (xdb_commands)
3838 {
3839 add_com ("lz", class_info, signals_info, _("\
3840 What debugger does when program gets various signals.\n\
3841 Specify a signal as argument to print info on that signal only."));
3842 add_com ("z", class_run, xdb_handle_command, _("\
3843 Specify how to handle a signal.\n\
3844 Args are signals and actions to apply to those signals.\n\
3845 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3846 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3847 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3848 The special arg \"all\" is recognized to mean all signals except those\n\
3849 used by the debugger, typically SIGTRAP and SIGINT.\n\
3850 Recognized actions include \"s\" (toggles between stop and nostop), \n\
3851 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3852 nopass), \"Q\" (noprint)\n\
3853 Stop means reenter debugger if this signal happens (implies print).\n\
3854 Print means print a message if this signal happens.\n\
3855 Pass means let program see this signal; otherwise program doesn't know.\n\
3856 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3857 Pass and Stop may be combined."));
3858 }
3859
3860 if (!dbx_commands)
3861 stop_command = add_cmd ("stop", class_obscure,
3862 not_just_help_class_command, _("\
3863 There is no `stop' command, but you can set a hook on `stop'.\n\
3864 This allows you to set a list of commands to be run each time execution\n\
3865 of the program stops."), &cmdlist);
3866
3867 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
3868 Set inferior debugging."), _("\
3869 Show inferior debugging."), _("\
3870 When non-zero, inferior specific debugging is enabled."),
3871 NULL,
3872 show_debug_infrun,
3873 &setdebuglist, &showdebuglist);
3874
3875 numsigs = (int) TARGET_SIGNAL_LAST;
3876 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
3877 signal_print = (unsigned char *)
3878 xmalloc (sizeof (signal_print[0]) * numsigs);
3879 signal_program = (unsigned char *)
3880 xmalloc (sizeof (signal_program[0]) * numsigs);
3881 for (i = 0; i < numsigs; i++)
3882 {
3883 signal_stop[i] = 1;
3884 signal_print[i] = 1;
3885 signal_program[i] = 1;
3886 }
3887
3888 /* Signals caused by debugger's own actions
3889 should not be given to the program afterwards. */
3890 signal_program[TARGET_SIGNAL_TRAP] = 0;
3891 signal_program[TARGET_SIGNAL_INT] = 0;
3892
3893 /* Signals that are not errors should not normally enter the debugger. */
3894 signal_stop[TARGET_SIGNAL_ALRM] = 0;
3895 signal_print[TARGET_SIGNAL_ALRM] = 0;
3896 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
3897 signal_print[TARGET_SIGNAL_VTALRM] = 0;
3898 signal_stop[TARGET_SIGNAL_PROF] = 0;
3899 signal_print[TARGET_SIGNAL_PROF] = 0;
3900 signal_stop[TARGET_SIGNAL_CHLD] = 0;
3901 signal_print[TARGET_SIGNAL_CHLD] = 0;
3902 signal_stop[TARGET_SIGNAL_IO] = 0;
3903 signal_print[TARGET_SIGNAL_IO] = 0;
3904 signal_stop[TARGET_SIGNAL_POLL] = 0;
3905 signal_print[TARGET_SIGNAL_POLL] = 0;
3906 signal_stop[TARGET_SIGNAL_URG] = 0;
3907 signal_print[TARGET_SIGNAL_URG] = 0;
3908 signal_stop[TARGET_SIGNAL_WINCH] = 0;
3909 signal_print[TARGET_SIGNAL_WINCH] = 0;
3910
3911 /* These signals are used internally by user-level thread
3912 implementations. (See signal(5) on Solaris.) Like the above
3913 signals, a healthy program receives and handles them as part of
3914 its normal operation. */
3915 signal_stop[TARGET_SIGNAL_LWP] = 0;
3916 signal_print[TARGET_SIGNAL_LWP] = 0;
3917 signal_stop[TARGET_SIGNAL_WAITING] = 0;
3918 signal_print[TARGET_SIGNAL_WAITING] = 0;
3919 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
3920 signal_print[TARGET_SIGNAL_CANCEL] = 0;
3921
3922 #ifdef SOLIB_ADD
3923 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
3924 &stop_on_solib_events, _("\
3925 Set stopping for shared library events."), _("\
3926 Show stopping for shared library events."), _("\
3927 If nonzero, gdb will give control to the user when the dynamic linker\n\
3928 notifies gdb of shared library events. The most common event of interest\n\
3929 to the user would be loading/unloading of a new library."),
3930 NULL,
3931 show_stop_on_solib_events,
3932 &setlist, &showlist);
3933 #endif
3934
3935 add_setshow_enum_cmd ("follow-fork-mode", class_run,
3936 follow_fork_mode_kind_names,
3937 &follow_fork_mode_string, _("\
3938 Set debugger response to a program call of fork or vfork."), _("\
3939 Show debugger response to a program call of fork or vfork."), _("\
3940 A fork or vfork creates a new process. follow-fork-mode can be:\n\
3941 parent - the original process is debugged after a fork\n\
3942 child - the new process is debugged after a fork\n\
3943 The unfollowed process will continue to run.\n\
3944 By default, the debugger will follow the parent process."),
3945 NULL,
3946 show_follow_fork_mode_string,
3947 &setlist, &showlist);
3948
3949 add_setshow_enum_cmd ("scheduler-locking", class_run,
3950 scheduler_enums, &scheduler_mode, _("\
3951 Set mode for locking scheduler during execution."), _("\
3952 Show mode for locking scheduler during execution."), _("\
3953 off == no locking (threads may preempt at any time)\n\
3954 on == full locking (no thread except the current thread may run)\n\
3955 step == scheduler locked during every single-step operation.\n\
3956 In this mode, no other thread may run during a step command.\n\
3957 Other threads may run while stepping over a function call ('next')."),
3958 set_schedlock_func, /* traps on target vector */
3959 show_scheduler_mode,
3960 &setlist, &showlist);
3961
3962 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
3963 Set mode of the step operation."), _("\
3964 Show mode of the step operation."), _("\
3965 When set, doing a step over a function without debug line information\n\
3966 will stop at the first instruction of that function. Otherwise, the\n\
3967 function is skipped and the step command stops at a different source line."),
3968 NULL,
3969 show_step_stop_if_no_debug,
3970 &setlist, &showlist);
3971
3972 /* ptid initializations */
3973 null_ptid = ptid_build (0, 0, 0);
3974 minus_one_ptid = ptid_build (-1, 0, 0);
3975 inferior_ptid = null_ptid;
3976 target_last_wait_ptid = minus_one_ptid;
3977 }
This page took 0.113553 seconds and 3 git commands to generate.