* elf64-sparc.c (sparc64_elf_relocate_section): Ignore overflows
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
6 Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include "symtab.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "breakpoint.h"
32 #include "gdb_wait.h"
33 #include "gdbcore.h"
34 #include "gdbcmd.h"
35 #include "cli/cli-script.h"
36 #include "target.h"
37 #include "gdbthread.h"
38 #include "annotate.h"
39 #include "symfile.h"
40 #include "top.h"
41 #include <signal.h>
42 #include "inf-loop.h"
43 #include "regcache.h"
44 #include "value.h"
45 #include "observer.h"
46 #include "language.h"
47 #include "gdb_assert.h"
48
49 /* Prototypes for local functions */
50
51 static void signals_info (char *, int);
52
53 static void handle_command (char *, int);
54
55 static void sig_print_info (enum target_signal);
56
57 static void sig_print_header (void);
58
59 static void resume_cleanups (void *);
60
61 static int hook_stop_stub (void *);
62
63 static int restore_selected_frame (void *);
64
65 static void build_infrun (void);
66
67 static int follow_fork (void);
68
69 static void set_schedlock_func (char *args, int from_tty,
70 struct cmd_list_element *c);
71
72 struct execution_control_state;
73
74 static int currently_stepping (struct execution_control_state *ecs);
75
76 static void xdb_handle_command (char *args, int from_tty);
77
78 static int prepare_to_proceed (void);
79
80 void _initialize_infrun (void);
81
82 int inferior_ignoring_startup_exec_events = 0;
83 int inferior_ignoring_leading_exec_events = 0;
84
85 /* When set, stop the 'step' command if we enter a function which has
86 no line number information. The normal behavior is that we step
87 over such function. */
88 int step_stop_if_no_debug = 0;
89
90 /* In asynchronous mode, but simulating synchronous execution. */
91
92 int sync_execution = 0;
93
94 /* wait_for_inferior and normal_stop use this to notify the user
95 when the inferior stopped in a different thread than it had been
96 running in. */
97
98 static ptid_t previous_inferior_ptid;
99
100 /* This is true for configurations that may follow through execl() and
101 similar functions. At present this is only true for HP-UX native. */
102
103 #ifndef MAY_FOLLOW_EXEC
104 #define MAY_FOLLOW_EXEC (0)
105 #endif
106
107 static int may_follow_exec = MAY_FOLLOW_EXEC;
108
109 static int debug_infrun = 0;
110
111 /* If the program uses ELF-style shared libraries, then calls to
112 functions in shared libraries go through stubs, which live in a
113 table called the PLT (Procedure Linkage Table). The first time the
114 function is called, the stub sends control to the dynamic linker,
115 which looks up the function's real address, patches the stub so
116 that future calls will go directly to the function, and then passes
117 control to the function.
118
119 If we are stepping at the source level, we don't want to see any of
120 this --- we just want to skip over the stub and the dynamic linker.
121 The simple approach is to single-step until control leaves the
122 dynamic linker.
123
124 However, on some systems (e.g., Red Hat's 5.2 distribution) the
125 dynamic linker calls functions in the shared C library, so you
126 can't tell from the PC alone whether the dynamic linker is still
127 running. In this case, we use a step-resume breakpoint to get us
128 past the dynamic linker, as if we were using "next" to step over a
129 function call.
130
131 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
132 linker code or not. Normally, this means we single-step. However,
133 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
134 address where we can place a step-resume breakpoint to get past the
135 linker's symbol resolution function.
136
137 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
138 pretty portable way, by comparing the PC against the address ranges
139 of the dynamic linker's sections.
140
141 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
142 it depends on internal details of the dynamic linker. It's usually
143 not too hard to figure out where to put a breakpoint, but it
144 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
145 sanity checking. If it can't figure things out, returning zero and
146 getting the (possibly confusing) stepping behavior is better than
147 signalling an error, which will obscure the change in the
148 inferior's state. */
149
150 #ifndef IN_SOLIB_DYNSYM_RESOLVE_CODE
151 #define IN_SOLIB_DYNSYM_RESOLVE_CODE(pc) 0
152 #endif
153
154 /* This function returns TRUE if pc is the address of an instruction
155 that lies within the dynamic linker (such as the event hook, or the
156 dld itself).
157
158 This function must be used only when a dynamic linker event has
159 been caught, and the inferior is being stepped out of the hook, or
160 undefined results are guaranteed. */
161
162 #ifndef SOLIB_IN_DYNAMIC_LINKER
163 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
164 #endif
165
166 /* We can't step off a permanent breakpoint in the ordinary way, because we
167 can't remove it. Instead, we have to advance the PC to the next
168 instruction. This macro should expand to a pointer to a function that
169 does that, or zero if we have no such function. If we don't have a
170 definition for it, we have to report an error. */
171 #ifndef SKIP_PERMANENT_BREAKPOINT
172 #define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
173 static void
174 default_skip_permanent_breakpoint (void)
175 {
176 error ("\
177 The program is stopped at a permanent breakpoint, but GDB does not know\n\
178 how to step past a permanent breakpoint on this architecture. Try using\n\
179 a command like `return' or `jump' to continue execution.");
180 }
181 #endif
182
183
184 /* Convert the #defines into values. This is temporary until wfi control
185 flow is completely sorted out. */
186
187 #ifndef HAVE_STEPPABLE_WATCHPOINT
188 #define HAVE_STEPPABLE_WATCHPOINT 0
189 #else
190 #undef HAVE_STEPPABLE_WATCHPOINT
191 #define HAVE_STEPPABLE_WATCHPOINT 1
192 #endif
193
194 #ifndef CANNOT_STEP_HW_WATCHPOINTS
195 #define CANNOT_STEP_HW_WATCHPOINTS 0
196 #else
197 #undef CANNOT_STEP_HW_WATCHPOINTS
198 #define CANNOT_STEP_HW_WATCHPOINTS 1
199 #endif
200
201 /* Tables of how to react to signals; the user sets them. */
202
203 static unsigned char *signal_stop;
204 static unsigned char *signal_print;
205 static unsigned char *signal_program;
206
207 #define SET_SIGS(nsigs,sigs,flags) \
208 do { \
209 int signum = (nsigs); \
210 while (signum-- > 0) \
211 if ((sigs)[signum]) \
212 (flags)[signum] = 1; \
213 } while (0)
214
215 #define UNSET_SIGS(nsigs,sigs,flags) \
216 do { \
217 int signum = (nsigs); \
218 while (signum-- > 0) \
219 if ((sigs)[signum]) \
220 (flags)[signum] = 0; \
221 } while (0)
222
223 /* Value to pass to target_resume() to cause all threads to resume */
224
225 #define RESUME_ALL (pid_to_ptid (-1))
226
227 /* Command list pointer for the "stop" placeholder. */
228
229 static struct cmd_list_element *stop_command;
230
231 /* Nonzero if breakpoints are now inserted in the inferior. */
232
233 static int breakpoints_inserted;
234
235 /* Function inferior was in as of last step command. */
236
237 static struct symbol *step_start_function;
238
239 /* Nonzero if we are expecting a trace trap and should proceed from it. */
240
241 static int trap_expected;
242
243 #ifdef SOLIB_ADD
244 /* Nonzero if we want to give control to the user when we're notified
245 of shared library events by the dynamic linker. */
246 static int stop_on_solib_events;
247 #endif
248
249 /* Nonzero means expecting a trace trap
250 and should stop the inferior and return silently when it happens. */
251
252 int stop_after_trap;
253
254 /* Nonzero means expecting a trap and caller will handle it themselves.
255 It is used after attach, due to attaching to a process;
256 when running in the shell before the child program has been exec'd;
257 and when running some kinds of remote stuff (FIXME?). */
258
259 enum stop_kind stop_soon;
260
261 /* Nonzero if proceed is being used for a "finish" command or a similar
262 situation when stop_registers should be saved. */
263
264 int proceed_to_finish;
265
266 /* Save register contents here when about to pop a stack dummy frame,
267 if-and-only-if proceed_to_finish is set.
268 Thus this contains the return value from the called function (assuming
269 values are returned in a register). */
270
271 struct regcache *stop_registers;
272
273 /* Nonzero if program stopped due to error trying to insert breakpoints. */
274
275 static int breakpoints_failed;
276
277 /* Nonzero after stop if current stack frame should be printed. */
278
279 static int stop_print_frame;
280
281 static struct breakpoint *step_resume_breakpoint = NULL;
282
283 /* This is a cached copy of the pid/waitstatus of the last event
284 returned by target_wait()/deprecated_target_wait_hook(). This
285 information is returned by get_last_target_status(). */
286 static ptid_t target_last_wait_ptid;
287 static struct target_waitstatus target_last_waitstatus;
288
289 /* This is used to remember when a fork, vfork or exec event
290 was caught by a catchpoint, and thus the event is to be
291 followed at the next resume of the inferior, and not
292 immediately. */
293 static struct
294 {
295 enum target_waitkind kind;
296 struct
297 {
298 int parent_pid;
299 int child_pid;
300 }
301 fork_event;
302 char *execd_pathname;
303 }
304 pending_follow;
305
306 static const char follow_fork_mode_child[] = "child";
307 static const char follow_fork_mode_parent[] = "parent";
308
309 static const char *follow_fork_mode_kind_names[] = {
310 follow_fork_mode_child,
311 follow_fork_mode_parent,
312 NULL
313 };
314
315 static const char *follow_fork_mode_string = follow_fork_mode_parent;
316 \f
317
318 static int
319 follow_fork (void)
320 {
321 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
322
323 return target_follow_fork (follow_child);
324 }
325
326 void
327 follow_inferior_reset_breakpoints (void)
328 {
329 /* Was there a step_resume breakpoint? (There was if the user
330 did a "next" at the fork() call.) If so, explicitly reset its
331 thread number.
332
333 step_resumes are a form of bp that are made to be per-thread.
334 Since we created the step_resume bp when the parent process
335 was being debugged, and now are switching to the child process,
336 from the breakpoint package's viewpoint, that's a switch of
337 "threads". We must update the bp's notion of which thread
338 it is for, or it'll be ignored when it triggers. */
339
340 if (step_resume_breakpoint)
341 breakpoint_re_set_thread (step_resume_breakpoint);
342
343 /* Reinsert all breakpoints in the child. The user may have set
344 breakpoints after catching the fork, in which case those
345 were never set in the child, but only in the parent. This makes
346 sure the inserted breakpoints match the breakpoint list. */
347
348 breakpoint_re_set ();
349 insert_breakpoints ();
350 }
351
352 /* EXECD_PATHNAME is assumed to be non-NULL. */
353
354 static void
355 follow_exec (int pid, char *execd_pathname)
356 {
357 int saved_pid = pid;
358 struct target_ops *tgt;
359
360 if (!may_follow_exec)
361 return;
362
363 /* This is an exec event that we actually wish to pay attention to.
364 Refresh our symbol table to the newly exec'd program, remove any
365 momentary bp's, etc.
366
367 If there are breakpoints, they aren't really inserted now,
368 since the exec() transformed our inferior into a fresh set
369 of instructions.
370
371 We want to preserve symbolic breakpoints on the list, since
372 we have hopes that they can be reset after the new a.out's
373 symbol table is read.
374
375 However, any "raw" breakpoints must be removed from the list
376 (e.g., the solib bp's), since their address is probably invalid
377 now.
378
379 And, we DON'T want to call delete_breakpoints() here, since
380 that may write the bp's "shadow contents" (the instruction
381 value that was overwritten witha TRAP instruction). Since
382 we now have a new a.out, those shadow contents aren't valid. */
383 update_breakpoints_after_exec ();
384
385 /* If there was one, it's gone now. We cannot truly step-to-next
386 statement through an exec(). */
387 step_resume_breakpoint = NULL;
388 step_range_start = 0;
389 step_range_end = 0;
390
391 /* What is this a.out's name? */
392 printf_unfiltered ("Executing new program: %s\n", execd_pathname);
393
394 /* We've followed the inferior through an exec. Therefore, the
395 inferior has essentially been killed & reborn. */
396
397 /* First collect the run target in effect. */
398 tgt = find_run_target ();
399 /* If we can't find one, things are in a very strange state... */
400 if (tgt == NULL)
401 error ("Could find run target to save before following exec");
402
403 gdb_flush (gdb_stdout);
404 target_mourn_inferior ();
405 inferior_ptid = pid_to_ptid (saved_pid);
406 /* Because mourn_inferior resets inferior_ptid. */
407 push_target (tgt);
408
409 /* That a.out is now the one to use. */
410 exec_file_attach (execd_pathname, 0);
411
412 /* And also is where symbols can be found. */
413 symbol_file_add_main (execd_pathname, 0);
414
415 /* Reset the shared library package. This ensures that we get
416 a shlib event when the child reaches "_start", at which point
417 the dld will have had a chance to initialize the child. */
418 #if defined(SOLIB_RESTART)
419 SOLIB_RESTART ();
420 #endif
421 #ifdef SOLIB_CREATE_INFERIOR_HOOK
422 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
423 #endif
424
425 /* Reinsert all breakpoints. (Those which were symbolic have
426 been reset to the proper address in the new a.out, thanks
427 to symbol_file_command...) */
428 insert_breakpoints ();
429
430 /* The next resume of this inferior should bring it to the shlib
431 startup breakpoints. (If the user had also set bp's on
432 "main" from the old (parent) process, then they'll auto-
433 matically get reset there in the new process.) */
434 }
435
436 /* Non-zero if we just simulating a single-step. This is needed
437 because we cannot remove the breakpoints in the inferior process
438 until after the `wait' in `wait_for_inferior'. */
439 static int singlestep_breakpoints_inserted_p = 0;
440
441 /* The thread we inserted single-step breakpoints for. */
442 static ptid_t singlestep_ptid;
443
444 /* If another thread hit the singlestep breakpoint, we save the original
445 thread here so that we can resume single-stepping it later. */
446 static ptid_t saved_singlestep_ptid;
447 static int stepping_past_singlestep_breakpoint;
448 \f
449
450 /* Things to clean up if we QUIT out of resume (). */
451 static void
452 resume_cleanups (void *ignore)
453 {
454 normal_stop ();
455 }
456
457 static const char schedlock_off[] = "off";
458 static const char schedlock_on[] = "on";
459 static const char schedlock_step[] = "step";
460 static const char *scheduler_mode = schedlock_off;
461 static const char *scheduler_enums[] = {
462 schedlock_off,
463 schedlock_on,
464 schedlock_step,
465 NULL
466 };
467
468 static void
469 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
470 {
471 /* NOTE: cagney/2002-03-17: The deprecated_add_show_from_set()
472 function clones the set command passed as a parameter. The clone
473 operation will include (BUG?) any ``set'' command callback, if
474 present. Commands like ``info set'' call all the ``show''
475 command callbacks. Unfortunately, for ``show'' commands cloned
476 from ``set'', this includes callbacks belonging to ``set''
477 commands. Making this worse, this only occures if
478 deprecated_add_show_from_set() is called after add_cmd_sfunc()
479 (BUG?). */
480 if (cmd_type (c) == set_cmd)
481 if (!target_can_lock_scheduler)
482 {
483 scheduler_mode = schedlock_off;
484 error ("Target '%s' cannot support this command.", target_shortname);
485 }
486 }
487
488
489 /* Resume the inferior, but allow a QUIT. This is useful if the user
490 wants to interrupt some lengthy single-stepping operation
491 (for child processes, the SIGINT goes to the inferior, and so
492 we get a SIGINT random_signal, but for remote debugging and perhaps
493 other targets, that's not true).
494
495 STEP nonzero if we should step (zero to continue instead).
496 SIG is the signal to give the inferior (zero for none). */
497 void
498 resume (int step, enum target_signal sig)
499 {
500 int should_resume = 1;
501 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
502 QUIT;
503
504 if (debug_infrun)
505 printf_unfiltered ("infrun: resume (step=%d, signal=%d)\n", step, sig);
506
507 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
508
509
510 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
511 over an instruction that causes a page fault without triggering
512 a hardware watchpoint. The kernel properly notices that it shouldn't
513 stop, because the hardware watchpoint is not triggered, but it forgets
514 the step request and continues the program normally.
515 Work around the problem by removing hardware watchpoints if a step is
516 requested, GDB will check for a hardware watchpoint trigger after the
517 step anyway. */
518 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
519 remove_hw_watchpoints ();
520
521
522 /* Normally, by the time we reach `resume', the breakpoints are either
523 removed or inserted, as appropriate. The exception is if we're sitting
524 at a permanent breakpoint; we need to step over it, but permanent
525 breakpoints can't be removed. So we have to test for it here. */
526 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
527 SKIP_PERMANENT_BREAKPOINT ();
528
529 if (SOFTWARE_SINGLE_STEP_P () && step)
530 {
531 /* Do it the hard way, w/temp breakpoints */
532 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
533 /* ...and don't ask hardware to do it. */
534 step = 0;
535 /* and do not pull these breakpoints until after a `wait' in
536 `wait_for_inferior' */
537 singlestep_breakpoints_inserted_p = 1;
538 singlestep_ptid = inferior_ptid;
539 }
540
541 /* If there were any forks/vforks/execs that were caught and are
542 now to be followed, then do so. */
543 switch (pending_follow.kind)
544 {
545 case TARGET_WAITKIND_FORKED:
546 case TARGET_WAITKIND_VFORKED:
547 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
548 if (follow_fork ())
549 should_resume = 0;
550 break;
551
552 case TARGET_WAITKIND_EXECD:
553 /* follow_exec is called as soon as the exec event is seen. */
554 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
555 break;
556
557 default:
558 break;
559 }
560
561 /* Install inferior's terminal modes. */
562 target_terminal_inferior ();
563
564 if (should_resume)
565 {
566 ptid_t resume_ptid;
567
568 resume_ptid = RESUME_ALL; /* Default */
569
570 if ((step || singlestep_breakpoints_inserted_p)
571 && (stepping_past_singlestep_breakpoint
572 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
573 {
574 /* Stepping past a breakpoint without inserting breakpoints.
575 Make sure only the current thread gets to step, so that
576 other threads don't sneak past breakpoints while they are
577 not inserted. */
578
579 resume_ptid = inferior_ptid;
580 }
581
582 if ((scheduler_mode == schedlock_on)
583 || (scheduler_mode == schedlock_step
584 && (step || singlestep_breakpoints_inserted_p)))
585 {
586 /* User-settable 'scheduler' mode requires solo thread resume. */
587 resume_ptid = inferior_ptid;
588 }
589
590 if (CANNOT_STEP_BREAKPOINT)
591 {
592 /* Most targets can step a breakpoint instruction, thus
593 executing it normally. But if this one cannot, just
594 continue and we will hit it anyway. */
595 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
596 step = 0;
597 }
598 target_resume (resume_ptid, step, sig);
599 }
600
601 discard_cleanups (old_cleanups);
602 }
603 \f
604
605 /* Clear out all variables saying what to do when inferior is continued.
606 First do this, then set the ones you want, then call `proceed'. */
607
608 void
609 clear_proceed_status (void)
610 {
611 trap_expected = 0;
612 step_range_start = 0;
613 step_range_end = 0;
614 step_frame_id = null_frame_id;
615 step_over_calls = STEP_OVER_UNDEBUGGABLE;
616 stop_after_trap = 0;
617 stop_soon = NO_STOP_QUIETLY;
618 proceed_to_finish = 0;
619 breakpoint_proceeded = 1; /* We're about to proceed... */
620
621 /* Discard any remaining commands or status from previous stop. */
622 bpstat_clear (&stop_bpstat);
623 }
624
625 /* This should be suitable for any targets that support threads. */
626
627 static int
628 prepare_to_proceed (void)
629 {
630 ptid_t wait_ptid;
631 struct target_waitstatus wait_status;
632
633 /* Get the last target status returned by target_wait(). */
634 get_last_target_status (&wait_ptid, &wait_status);
635
636 /* Make sure we were stopped either at a breakpoint, or because
637 of a Ctrl-C. */
638 if (wait_status.kind != TARGET_WAITKIND_STOPPED
639 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
640 && wait_status.value.sig != TARGET_SIGNAL_INT))
641 {
642 return 0;
643 }
644
645 if (!ptid_equal (wait_ptid, minus_one_ptid)
646 && !ptid_equal (inferior_ptid, wait_ptid))
647 {
648 /* Switched over from WAIT_PID. */
649 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
650
651 if (wait_pc != read_pc ())
652 {
653 /* Switch back to WAIT_PID thread. */
654 inferior_ptid = wait_ptid;
655
656 /* FIXME: This stuff came from switch_to_thread() in
657 thread.c (which should probably be a public function). */
658 flush_cached_frames ();
659 registers_changed ();
660 stop_pc = wait_pc;
661 select_frame (get_current_frame ());
662 }
663
664 /* We return 1 to indicate that there is a breakpoint here,
665 so we need to step over it before continuing to avoid
666 hitting it straight away. */
667 if (breakpoint_here_p (wait_pc))
668 return 1;
669 }
670
671 return 0;
672
673 }
674
675 /* Record the pc of the program the last time it stopped. This is
676 just used internally by wait_for_inferior, but need to be preserved
677 over calls to it and cleared when the inferior is started. */
678 static CORE_ADDR prev_pc;
679
680 /* Basic routine for continuing the program in various fashions.
681
682 ADDR is the address to resume at, or -1 for resume where stopped.
683 SIGGNAL is the signal to give it, or 0 for none,
684 or -1 for act according to how it stopped.
685 STEP is nonzero if should trap after one instruction.
686 -1 means return after that and print nothing.
687 You should probably set various step_... variables
688 before calling here, if you are stepping.
689
690 You should call clear_proceed_status before calling proceed. */
691
692 void
693 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
694 {
695 int oneproc = 0;
696
697 if (step > 0)
698 step_start_function = find_pc_function (read_pc ());
699 if (step < 0)
700 stop_after_trap = 1;
701
702 if (addr == (CORE_ADDR) -1)
703 {
704 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
705 /* There is a breakpoint at the address we will resume at,
706 step one instruction before inserting breakpoints so that
707 we do not stop right away (and report a second hit at this
708 breakpoint). */
709 oneproc = 1;
710 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
711 && gdbarch_single_step_through_delay (current_gdbarch,
712 get_current_frame ()))
713 /* We stepped onto an instruction that needs to be stepped
714 again before re-inserting the breakpoint, do so. */
715 oneproc = 1;
716 }
717 else
718 {
719 write_pc (addr);
720 }
721
722 if (debug_infrun)
723 printf_unfiltered ("infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
724 paddr_nz (addr), siggnal, step);
725
726 /* In a multi-threaded task we may select another thread
727 and then continue or step.
728
729 But if the old thread was stopped at a breakpoint, it
730 will immediately cause another breakpoint stop without
731 any execution (i.e. it will report a breakpoint hit
732 incorrectly). So we must step over it first.
733
734 prepare_to_proceed checks the current thread against the thread
735 that reported the most recent event. If a step-over is required
736 it returns TRUE and sets the current thread to the old thread. */
737 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
738 oneproc = 1;
739
740 if (oneproc)
741 /* We will get a trace trap after one instruction.
742 Continue it automatically and insert breakpoints then. */
743 trap_expected = 1;
744 else
745 {
746 insert_breakpoints ();
747 /* If we get here there was no call to error() in
748 insert breakpoints -- so they were inserted. */
749 breakpoints_inserted = 1;
750 }
751
752 if (siggnal != TARGET_SIGNAL_DEFAULT)
753 stop_signal = siggnal;
754 /* If this signal should not be seen by program,
755 give it zero. Used for debugging signals. */
756 else if (!signal_program[stop_signal])
757 stop_signal = TARGET_SIGNAL_0;
758
759 annotate_starting ();
760
761 /* Make sure that output from GDB appears before output from the
762 inferior. */
763 gdb_flush (gdb_stdout);
764
765 /* Refresh prev_pc value just prior to resuming. This used to be
766 done in stop_stepping, however, setting prev_pc there did not handle
767 scenarios such as inferior function calls or returning from
768 a function via the return command. In those cases, the prev_pc
769 value was not set properly for subsequent commands. The prev_pc value
770 is used to initialize the starting line number in the ecs. With an
771 invalid value, the gdb next command ends up stopping at the position
772 represented by the next line table entry past our start position.
773 On platforms that generate one line table entry per line, this
774 is not a problem. However, on the ia64, the compiler generates
775 extraneous line table entries that do not increase the line number.
776 When we issue the gdb next command on the ia64 after an inferior call
777 or a return command, we often end up a few instructions forward, still
778 within the original line we started.
779
780 An attempt was made to have init_execution_control_state () refresh
781 the prev_pc value before calculating the line number. This approach
782 did not work because on platforms that use ptrace, the pc register
783 cannot be read unless the inferior is stopped. At that point, we
784 are not guaranteed the inferior is stopped and so the read_pc ()
785 call can fail. Setting the prev_pc value here ensures the value is
786 updated correctly when the inferior is stopped. */
787 prev_pc = read_pc ();
788
789 /* Resume inferior. */
790 resume (oneproc || step || bpstat_should_step (), stop_signal);
791
792 /* Wait for it to stop (if not standalone)
793 and in any case decode why it stopped, and act accordingly. */
794 /* Do this only if we are not using the event loop, or if the target
795 does not support asynchronous execution. */
796 if (!target_can_async_p ())
797 {
798 wait_for_inferior ();
799 normal_stop ();
800 }
801 }
802 \f
803
804 /* Start remote-debugging of a machine over a serial link. */
805
806 void
807 start_remote (void)
808 {
809 init_thread_list ();
810 init_wait_for_inferior ();
811 stop_soon = STOP_QUIETLY;
812 trap_expected = 0;
813
814 /* Always go on waiting for the target, regardless of the mode. */
815 /* FIXME: cagney/1999-09-23: At present it isn't possible to
816 indicate to wait_for_inferior that a target should timeout if
817 nothing is returned (instead of just blocking). Because of this,
818 targets expecting an immediate response need to, internally, set
819 things up so that the target_wait() is forced to eventually
820 timeout. */
821 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
822 differentiate to its caller what the state of the target is after
823 the initial open has been performed. Here we're assuming that
824 the target has stopped. It should be possible to eventually have
825 target_open() return to the caller an indication that the target
826 is currently running and GDB state should be set to the same as
827 for an async run. */
828 wait_for_inferior ();
829 normal_stop ();
830 }
831
832 /* Initialize static vars when a new inferior begins. */
833
834 void
835 init_wait_for_inferior (void)
836 {
837 /* These are meaningless until the first time through wait_for_inferior. */
838 prev_pc = 0;
839
840 breakpoints_inserted = 0;
841 breakpoint_init_inferior (inf_starting);
842
843 /* Don't confuse first call to proceed(). */
844 stop_signal = TARGET_SIGNAL_0;
845
846 /* The first resume is not following a fork/vfork/exec. */
847 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
848
849 clear_proceed_status ();
850
851 stepping_past_singlestep_breakpoint = 0;
852 }
853 \f
854 /* This enum encodes possible reasons for doing a target_wait, so that
855 wfi can call target_wait in one place. (Ultimately the call will be
856 moved out of the infinite loop entirely.) */
857
858 enum infwait_states
859 {
860 infwait_normal_state,
861 infwait_thread_hop_state,
862 infwait_nonstep_watch_state
863 };
864
865 /* Why did the inferior stop? Used to print the appropriate messages
866 to the interface from within handle_inferior_event(). */
867 enum inferior_stop_reason
868 {
869 /* We don't know why. */
870 STOP_UNKNOWN,
871 /* Step, next, nexti, stepi finished. */
872 END_STEPPING_RANGE,
873 /* Found breakpoint. */
874 BREAKPOINT_HIT,
875 /* Inferior terminated by signal. */
876 SIGNAL_EXITED,
877 /* Inferior exited. */
878 EXITED,
879 /* Inferior received signal, and user asked to be notified. */
880 SIGNAL_RECEIVED
881 };
882
883 /* This structure contains what used to be local variables in
884 wait_for_inferior. Probably many of them can return to being
885 locals in handle_inferior_event. */
886
887 struct execution_control_state
888 {
889 struct target_waitstatus ws;
890 struct target_waitstatus *wp;
891 int another_trap;
892 int random_signal;
893 CORE_ADDR stop_func_start;
894 CORE_ADDR stop_func_end;
895 char *stop_func_name;
896 struct symtab_and_line sal;
897 int current_line;
898 struct symtab *current_symtab;
899 int handling_longjmp; /* FIXME */
900 ptid_t ptid;
901 ptid_t saved_inferior_ptid;
902 int step_after_step_resume_breakpoint;
903 int stepping_through_solib_after_catch;
904 bpstat stepping_through_solib_catchpoints;
905 int new_thread_event;
906 struct target_waitstatus tmpstatus;
907 enum infwait_states infwait_state;
908 ptid_t waiton_ptid;
909 int wait_some_more;
910 };
911
912 void init_execution_control_state (struct execution_control_state *ecs);
913
914 void handle_inferior_event (struct execution_control_state *ecs);
915
916 static void step_into_function (struct execution_control_state *ecs);
917 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
918 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
919 struct frame_id sr_id);
920 static void stop_stepping (struct execution_control_state *ecs);
921 static void prepare_to_wait (struct execution_control_state *ecs);
922 static void keep_going (struct execution_control_state *ecs);
923 static void print_stop_reason (enum inferior_stop_reason stop_reason,
924 int stop_info);
925
926 /* Wait for control to return from inferior to debugger.
927 If inferior gets a signal, we may decide to start it up again
928 instead of returning. That is why there is a loop in this function.
929 When this function actually returns it means the inferior
930 should be left stopped and GDB should read more commands. */
931
932 void
933 wait_for_inferior (void)
934 {
935 struct cleanup *old_cleanups;
936 struct execution_control_state ecss;
937 struct execution_control_state *ecs;
938
939 if (debug_infrun)
940 printf_unfiltered ("infrun: wait_for_inferior\n");
941
942 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
943 &step_resume_breakpoint);
944
945 /* wfi still stays in a loop, so it's OK just to take the address of
946 a local to get the ecs pointer. */
947 ecs = &ecss;
948
949 /* Fill in with reasonable starting values. */
950 init_execution_control_state (ecs);
951
952 /* We'll update this if & when we switch to a new thread. */
953 previous_inferior_ptid = inferior_ptid;
954
955 overlay_cache_invalid = 1;
956
957 /* We have to invalidate the registers BEFORE calling target_wait
958 because they can be loaded from the target while in target_wait.
959 This makes remote debugging a bit more efficient for those
960 targets that provide critical registers as part of their normal
961 status mechanism. */
962
963 registers_changed ();
964
965 while (1)
966 {
967 if (deprecated_target_wait_hook)
968 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
969 else
970 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
971
972 /* Now figure out what to do with the result of the result. */
973 handle_inferior_event (ecs);
974
975 if (!ecs->wait_some_more)
976 break;
977 }
978 do_cleanups (old_cleanups);
979 }
980
981 /* Asynchronous version of wait_for_inferior. It is called by the
982 event loop whenever a change of state is detected on the file
983 descriptor corresponding to the target. It can be called more than
984 once to complete a single execution command. In such cases we need
985 to keep the state in a global variable ASYNC_ECSS. If it is the
986 last time that this function is called for a single execution
987 command, then report to the user that the inferior has stopped, and
988 do the necessary cleanups. */
989
990 struct execution_control_state async_ecss;
991 struct execution_control_state *async_ecs;
992
993 void
994 fetch_inferior_event (void *client_data)
995 {
996 static struct cleanup *old_cleanups;
997
998 async_ecs = &async_ecss;
999
1000 if (!async_ecs->wait_some_more)
1001 {
1002 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1003 &step_resume_breakpoint);
1004
1005 /* Fill in with reasonable starting values. */
1006 init_execution_control_state (async_ecs);
1007
1008 /* We'll update this if & when we switch to a new thread. */
1009 previous_inferior_ptid = inferior_ptid;
1010
1011 overlay_cache_invalid = 1;
1012
1013 /* We have to invalidate the registers BEFORE calling target_wait
1014 because they can be loaded from the target while in target_wait.
1015 This makes remote debugging a bit more efficient for those
1016 targets that provide critical registers as part of their normal
1017 status mechanism. */
1018
1019 registers_changed ();
1020 }
1021
1022 if (deprecated_target_wait_hook)
1023 async_ecs->ptid =
1024 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1025 else
1026 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1027
1028 /* Now figure out what to do with the result of the result. */
1029 handle_inferior_event (async_ecs);
1030
1031 if (!async_ecs->wait_some_more)
1032 {
1033 /* Do only the cleanups that have been added by this
1034 function. Let the continuations for the commands do the rest,
1035 if there are any. */
1036 do_exec_cleanups (old_cleanups);
1037 normal_stop ();
1038 if (step_multi && stop_step)
1039 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1040 else
1041 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1042 }
1043 }
1044
1045 /* Prepare an execution control state for looping through a
1046 wait_for_inferior-type loop. */
1047
1048 void
1049 init_execution_control_state (struct execution_control_state *ecs)
1050 {
1051 /* ecs->another_trap? */
1052 ecs->random_signal = 0;
1053 ecs->step_after_step_resume_breakpoint = 0;
1054 ecs->handling_longjmp = 0; /* FIXME */
1055 ecs->stepping_through_solib_after_catch = 0;
1056 ecs->stepping_through_solib_catchpoints = NULL;
1057 ecs->sal = find_pc_line (prev_pc, 0);
1058 ecs->current_line = ecs->sal.line;
1059 ecs->current_symtab = ecs->sal.symtab;
1060 ecs->infwait_state = infwait_normal_state;
1061 ecs->waiton_ptid = pid_to_ptid (-1);
1062 ecs->wp = &(ecs->ws);
1063 }
1064
1065 /* Return the cached copy of the last pid/waitstatus returned by
1066 target_wait()/deprecated_target_wait_hook(). The data is actually
1067 cached by handle_inferior_event(), which gets called immediately
1068 after target_wait()/deprecated_target_wait_hook(). */
1069
1070 void
1071 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1072 {
1073 *ptidp = target_last_wait_ptid;
1074 *status = target_last_waitstatus;
1075 }
1076
1077 /* Switch thread contexts, maintaining "infrun state". */
1078
1079 static void
1080 context_switch (struct execution_control_state *ecs)
1081 {
1082 /* Caution: it may happen that the new thread (or the old one!)
1083 is not in the thread list. In this case we must not attempt
1084 to "switch context", or we run the risk that our context may
1085 be lost. This may happen as a result of the target module
1086 mishandling thread creation. */
1087
1088 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1089 { /* Perform infrun state context switch: */
1090 /* Save infrun state for the old thread. */
1091 save_infrun_state (inferior_ptid, prev_pc,
1092 trap_expected, step_resume_breakpoint,
1093 step_range_start,
1094 step_range_end, &step_frame_id,
1095 ecs->handling_longjmp, ecs->another_trap,
1096 ecs->stepping_through_solib_after_catch,
1097 ecs->stepping_through_solib_catchpoints,
1098 ecs->current_line, ecs->current_symtab);
1099
1100 /* Load infrun state for the new thread. */
1101 load_infrun_state (ecs->ptid, &prev_pc,
1102 &trap_expected, &step_resume_breakpoint,
1103 &step_range_start,
1104 &step_range_end, &step_frame_id,
1105 &ecs->handling_longjmp, &ecs->another_trap,
1106 &ecs->stepping_through_solib_after_catch,
1107 &ecs->stepping_through_solib_catchpoints,
1108 &ecs->current_line, &ecs->current_symtab);
1109 }
1110 inferior_ptid = ecs->ptid;
1111 }
1112
1113 static void
1114 adjust_pc_after_break (struct execution_control_state *ecs)
1115 {
1116 CORE_ADDR breakpoint_pc;
1117
1118 /* If this target does not decrement the PC after breakpoints, then
1119 we have nothing to do. */
1120 if (DECR_PC_AFTER_BREAK == 0)
1121 return;
1122
1123 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1124 we aren't, just return.
1125
1126 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1127 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1128 by software breakpoints should be handled through the normal breakpoint
1129 layer.
1130
1131 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1132 different signals (SIGILL or SIGEMT for instance), but it is less
1133 clear where the PC is pointing afterwards. It may not match
1134 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1135 these signals at breakpoints (the code has been in GDB since at least
1136 1992) so I can not guess how to handle them here.
1137
1138 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1139 would have the PC after hitting a watchpoint affected by
1140 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1141 in GDB history, and it seems unlikely to be correct, so
1142 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1143
1144 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1145 return;
1146
1147 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1148 return;
1149
1150 /* Find the location where (if we've hit a breakpoint) the
1151 breakpoint would be. */
1152 breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1153
1154 if (SOFTWARE_SINGLE_STEP_P ())
1155 {
1156 /* When using software single-step, a SIGTRAP can only indicate
1157 an inserted breakpoint. This actually makes things
1158 easier. */
1159 if (singlestep_breakpoints_inserted_p)
1160 /* When software single stepping, the instruction at [prev_pc]
1161 is never a breakpoint, but the instruction following
1162 [prev_pc] (in program execution order) always is. Assume
1163 that following instruction was reached and hence a software
1164 breakpoint was hit. */
1165 write_pc_pid (breakpoint_pc, ecs->ptid);
1166 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1167 /* The inferior was free running (i.e., no single-step
1168 breakpoints inserted) and it hit a software breakpoint. */
1169 write_pc_pid (breakpoint_pc, ecs->ptid);
1170 }
1171 else
1172 {
1173 /* When using hardware single-step, a SIGTRAP is reported for
1174 both a completed single-step and a software breakpoint. Need
1175 to differentiate between the two as the latter needs
1176 adjusting but the former does not. */
1177 if (currently_stepping (ecs))
1178 {
1179 if (prev_pc == breakpoint_pc
1180 && software_breakpoint_inserted_here_p (breakpoint_pc))
1181 /* Hardware single-stepped a software breakpoint (as
1182 occures when the inferior is resumed with PC pointing
1183 at not-yet-hit software breakpoint). Since the
1184 breakpoint really is executed, the inferior needs to be
1185 backed up to the breakpoint address. */
1186 write_pc_pid (breakpoint_pc, ecs->ptid);
1187 }
1188 else
1189 {
1190 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1191 /* The inferior was free running (i.e., no hardware
1192 single-step and no possibility of a false SIGTRAP) and
1193 hit a software breakpoint. */
1194 write_pc_pid (breakpoint_pc, ecs->ptid);
1195 }
1196 }
1197 }
1198
1199 /* Given an execution control state that has been freshly filled in
1200 by an event from the inferior, figure out what it means and take
1201 appropriate action. */
1202
1203 int stepped_after_stopped_by_watchpoint;
1204
1205 void
1206 handle_inferior_event (struct execution_control_state *ecs)
1207 {
1208 /* NOTE: cagney/2003-03-28: If you're looking at this code and
1209 thinking that the variable stepped_after_stopped_by_watchpoint
1210 isn't used, then you're wrong! The macro STOPPED_BY_WATCHPOINT,
1211 defined in the file "config/pa/nm-hppah.h", accesses the variable
1212 indirectly. Mutter something rude about the HP merge. */
1213 int sw_single_step_trap_p = 0;
1214 int stopped_by_watchpoint = -1; /* Mark as unknown. */
1215
1216 /* Cache the last pid/waitstatus. */
1217 target_last_wait_ptid = ecs->ptid;
1218 target_last_waitstatus = *ecs->wp;
1219
1220 adjust_pc_after_break (ecs);
1221
1222 switch (ecs->infwait_state)
1223 {
1224 case infwait_thread_hop_state:
1225 if (debug_infrun)
1226 printf_unfiltered ("infrun: infwait_thread_hop_state\n");
1227 /* Cancel the waiton_ptid. */
1228 ecs->waiton_ptid = pid_to_ptid (-1);
1229 break;
1230
1231 case infwait_normal_state:
1232 if (debug_infrun)
1233 printf_unfiltered ("infrun: infwait_normal_state\n");
1234 stepped_after_stopped_by_watchpoint = 0;
1235 break;
1236
1237 case infwait_nonstep_watch_state:
1238 if (debug_infrun)
1239 printf_unfiltered ("infrun: infwait_nonstep_watch_state\n");
1240 insert_breakpoints ();
1241
1242 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1243 handle things like signals arriving and other things happening
1244 in combination correctly? */
1245 stepped_after_stopped_by_watchpoint = 1;
1246 break;
1247
1248 default:
1249 internal_error (__FILE__, __LINE__, "bad switch");
1250 }
1251 ecs->infwait_state = infwait_normal_state;
1252
1253 flush_cached_frames ();
1254
1255 /* If it's a new process, add it to the thread database */
1256
1257 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1258 && !ptid_equal (ecs->ptid, minus_one_ptid)
1259 && !in_thread_list (ecs->ptid));
1260
1261 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1262 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1263 {
1264 add_thread (ecs->ptid);
1265
1266 ui_out_text (uiout, "[New ");
1267 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1268 ui_out_text (uiout, "]\n");
1269 }
1270
1271 switch (ecs->ws.kind)
1272 {
1273 case TARGET_WAITKIND_LOADED:
1274 if (debug_infrun)
1275 printf_unfiltered ("infrun: TARGET_WAITKIND_LOADED\n");
1276 /* Ignore gracefully during startup of the inferior, as it
1277 might be the shell which has just loaded some objects,
1278 otherwise add the symbols for the newly loaded objects. */
1279 #ifdef SOLIB_ADD
1280 if (stop_soon == NO_STOP_QUIETLY)
1281 {
1282 /* Remove breakpoints, SOLIB_ADD might adjust
1283 breakpoint addresses via breakpoint_re_set. */
1284 if (breakpoints_inserted)
1285 remove_breakpoints ();
1286
1287 /* Check for any newly added shared libraries if we're
1288 supposed to be adding them automatically. Switch
1289 terminal for any messages produced by
1290 breakpoint_re_set. */
1291 target_terminal_ours_for_output ();
1292 /* NOTE: cagney/2003-11-25: Make certain that the target
1293 stack's section table is kept up-to-date. Architectures,
1294 (e.g., PPC64), use the section table to perform
1295 operations such as address => section name and hence
1296 require the table to contain all sections (including
1297 those found in shared libraries). */
1298 /* NOTE: cagney/2003-11-25: Pass current_target and not
1299 exec_ops to SOLIB_ADD. This is because current GDB is
1300 only tooled to propagate section_table changes out from
1301 the "current_target" (see target_resize_to_sections), and
1302 not up from the exec stratum. This, of course, isn't
1303 right. "infrun.c" should only interact with the
1304 exec/process stratum, instead relying on the target stack
1305 to propagate relevant changes (stop, section table
1306 changed, ...) up to other layers. */
1307 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1308 target_terminal_inferior ();
1309
1310 /* Reinsert breakpoints and continue. */
1311 if (breakpoints_inserted)
1312 insert_breakpoints ();
1313 }
1314 #endif
1315 resume (0, TARGET_SIGNAL_0);
1316 prepare_to_wait (ecs);
1317 return;
1318
1319 case TARGET_WAITKIND_SPURIOUS:
1320 if (debug_infrun)
1321 printf_unfiltered ("infrun: TARGET_WAITKIND_SPURIOUS\n");
1322 resume (0, TARGET_SIGNAL_0);
1323 prepare_to_wait (ecs);
1324 return;
1325
1326 case TARGET_WAITKIND_EXITED:
1327 if (debug_infrun)
1328 printf_unfiltered ("infrun: TARGET_WAITKIND_EXITED\n");
1329 target_terminal_ours (); /* Must do this before mourn anyway */
1330 print_stop_reason (EXITED, ecs->ws.value.integer);
1331
1332 /* Record the exit code in the convenience variable $_exitcode, so
1333 that the user can inspect this again later. */
1334 set_internalvar (lookup_internalvar ("_exitcode"),
1335 value_from_longest (builtin_type_int,
1336 (LONGEST) ecs->ws.value.integer));
1337 gdb_flush (gdb_stdout);
1338 target_mourn_inferior ();
1339 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1340 stop_print_frame = 0;
1341 stop_stepping (ecs);
1342 return;
1343
1344 case TARGET_WAITKIND_SIGNALLED:
1345 if (debug_infrun)
1346 printf_unfiltered ("infrun: TARGET_WAITKIND_SIGNALLED\n");
1347 stop_print_frame = 0;
1348 stop_signal = ecs->ws.value.sig;
1349 target_terminal_ours (); /* Must do this before mourn anyway */
1350
1351 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1352 reach here unless the inferior is dead. However, for years
1353 target_kill() was called here, which hints that fatal signals aren't
1354 really fatal on some systems. If that's true, then some changes
1355 may be needed. */
1356 target_mourn_inferior ();
1357
1358 print_stop_reason (SIGNAL_EXITED, stop_signal);
1359 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1360 stop_stepping (ecs);
1361 return;
1362
1363 /* The following are the only cases in which we keep going;
1364 the above cases end in a continue or goto. */
1365 case TARGET_WAITKIND_FORKED:
1366 case TARGET_WAITKIND_VFORKED:
1367 if (debug_infrun)
1368 printf_unfiltered ("infrun: TARGET_WAITKIND_FORKED\n");
1369 stop_signal = TARGET_SIGNAL_TRAP;
1370 pending_follow.kind = ecs->ws.kind;
1371
1372 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1373 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1374
1375 stop_pc = read_pc ();
1376
1377 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1378
1379 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1380
1381 /* If no catchpoint triggered for this, then keep going. */
1382 if (ecs->random_signal)
1383 {
1384 stop_signal = TARGET_SIGNAL_0;
1385 keep_going (ecs);
1386 return;
1387 }
1388 goto process_event_stop_test;
1389
1390 case TARGET_WAITKIND_EXECD:
1391 if (debug_infrun)
1392 printf_unfiltered ("infrun: TARGET_WAITKIND_EXECED\n");
1393 stop_signal = TARGET_SIGNAL_TRAP;
1394
1395 /* NOTE drow/2002-12-05: This code should be pushed down into the
1396 target_wait function. Until then following vfork on HP/UX 10.20
1397 is probably broken by this. Of course, it's broken anyway. */
1398 /* Is this a target which reports multiple exec events per actual
1399 call to exec()? (HP-UX using ptrace does, for example.) If so,
1400 ignore all but the last one. Just resume the exec'r, and wait
1401 for the next exec event. */
1402 if (inferior_ignoring_leading_exec_events)
1403 {
1404 inferior_ignoring_leading_exec_events--;
1405 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1406 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1407 parent_pid);
1408 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1409 prepare_to_wait (ecs);
1410 return;
1411 }
1412 inferior_ignoring_leading_exec_events =
1413 target_reported_exec_events_per_exec_call () - 1;
1414
1415 pending_follow.execd_pathname =
1416 savestring (ecs->ws.value.execd_pathname,
1417 strlen (ecs->ws.value.execd_pathname));
1418
1419 /* This causes the eventpoints and symbol table to be reset. Must
1420 do this now, before trying to determine whether to stop. */
1421 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1422 xfree (pending_follow.execd_pathname);
1423
1424 stop_pc = read_pc_pid (ecs->ptid);
1425 ecs->saved_inferior_ptid = inferior_ptid;
1426 inferior_ptid = ecs->ptid;
1427
1428 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1429
1430 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1431 inferior_ptid = ecs->saved_inferior_ptid;
1432
1433 /* If no catchpoint triggered for this, then keep going. */
1434 if (ecs->random_signal)
1435 {
1436 stop_signal = TARGET_SIGNAL_0;
1437 keep_going (ecs);
1438 return;
1439 }
1440 goto process_event_stop_test;
1441
1442 /* Be careful not to try to gather much state about a thread
1443 that's in a syscall. It's frequently a losing proposition. */
1444 case TARGET_WAITKIND_SYSCALL_ENTRY:
1445 if (debug_infrun)
1446 printf_unfiltered ("infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1447 resume (0, TARGET_SIGNAL_0);
1448 prepare_to_wait (ecs);
1449 return;
1450
1451 /* Before examining the threads further, step this thread to
1452 get it entirely out of the syscall. (We get notice of the
1453 event when the thread is just on the verge of exiting a
1454 syscall. Stepping one instruction seems to get it back
1455 into user code.) */
1456 case TARGET_WAITKIND_SYSCALL_RETURN:
1457 if (debug_infrun)
1458 printf_unfiltered ("infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1459 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1460 prepare_to_wait (ecs);
1461 return;
1462
1463 case TARGET_WAITKIND_STOPPED:
1464 if (debug_infrun)
1465 printf_unfiltered ("infrun: TARGET_WAITKIND_STOPPED\n");
1466 stop_signal = ecs->ws.value.sig;
1467 break;
1468
1469 /* We had an event in the inferior, but we are not interested
1470 in handling it at this level. The lower layers have already
1471 done what needs to be done, if anything.
1472
1473 One of the possible circumstances for this is when the
1474 inferior produces output for the console. The inferior has
1475 not stopped, and we are ignoring the event. Another possible
1476 circumstance is any event which the lower level knows will be
1477 reported multiple times without an intervening resume. */
1478 case TARGET_WAITKIND_IGNORE:
1479 if (debug_infrun)
1480 printf_unfiltered ("infrun: TARGET_WAITKIND_IGNORE\n");
1481 prepare_to_wait (ecs);
1482 return;
1483 }
1484
1485 /* We may want to consider not doing a resume here in order to give
1486 the user a chance to play with the new thread. It might be good
1487 to make that a user-settable option. */
1488
1489 /* At this point, all threads are stopped (happens automatically in
1490 either the OS or the native code). Therefore we need to continue
1491 all threads in order to make progress. */
1492 if (ecs->new_thread_event)
1493 {
1494 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1495 prepare_to_wait (ecs);
1496 return;
1497 }
1498
1499 stop_pc = read_pc_pid (ecs->ptid);
1500
1501 if (debug_infrun)
1502 printf_unfiltered ("infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1503
1504 if (stepping_past_singlestep_breakpoint)
1505 {
1506 gdb_assert (SOFTWARE_SINGLE_STEP_P ()
1507 && singlestep_breakpoints_inserted_p);
1508 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1509 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1510
1511 stepping_past_singlestep_breakpoint = 0;
1512
1513 /* We've either finished single-stepping past the single-step
1514 breakpoint, or stopped for some other reason. It would be nice if
1515 we could tell, but we can't reliably. */
1516 if (stop_signal == TARGET_SIGNAL_TRAP)
1517 {
1518 if (debug_infrun)
1519 printf_unfiltered ("infrun: stepping_past_singlestep_breakpoint\n");
1520 /* Pull the single step breakpoints out of the target. */
1521 SOFTWARE_SINGLE_STEP (0, 0);
1522 singlestep_breakpoints_inserted_p = 0;
1523
1524 ecs->random_signal = 0;
1525
1526 ecs->ptid = saved_singlestep_ptid;
1527 context_switch (ecs);
1528 if (deprecated_context_hook)
1529 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1530
1531 resume (1, TARGET_SIGNAL_0);
1532 prepare_to_wait (ecs);
1533 return;
1534 }
1535 }
1536
1537 stepping_past_singlestep_breakpoint = 0;
1538
1539 /* See if a thread hit a thread-specific breakpoint that was meant for
1540 another thread. If so, then step that thread past the breakpoint,
1541 and continue it. */
1542
1543 if (stop_signal == TARGET_SIGNAL_TRAP)
1544 {
1545 int thread_hop_needed = 0;
1546
1547 /* Check if a regular breakpoint has been hit before checking
1548 for a potential single step breakpoint. Otherwise, GDB will
1549 not see this breakpoint hit when stepping onto breakpoints. */
1550 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
1551 {
1552 ecs->random_signal = 0;
1553 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1554 thread_hop_needed = 1;
1555 }
1556 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1557 {
1558 ecs->random_signal = 0;
1559 /* The call to in_thread_list is necessary because PTIDs sometimes
1560 change when we go from single-threaded to multi-threaded. If
1561 the singlestep_ptid is still in the list, assume that it is
1562 really different from ecs->ptid. */
1563 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1564 && in_thread_list (singlestep_ptid))
1565 {
1566 thread_hop_needed = 1;
1567 stepping_past_singlestep_breakpoint = 1;
1568 saved_singlestep_ptid = singlestep_ptid;
1569 }
1570 }
1571
1572 if (thread_hop_needed)
1573 {
1574 int remove_status;
1575
1576 if (debug_infrun)
1577 printf_unfiltered ("infrun: thread_hop_needed\n");
1578
1579 /* Saw a breakpoint, but it was hit by the wrong thread.
1580 Just continue. */
1581
1582 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1583 {
1584 /* Pull the single step breakpoints out of the target. */
1585 SOFTWARE_SINGLE_STEP (0, 0);
1586 singlestep_breakpoints_inserted_p = 0;
1587 }
1588
1589 remove_status = remove_breakpoints ();
1590 /* Did we fail to remove breakpoints? If so, try
1591 to set the PC past the bp. (There's at least
1592 one situation in which we can fail to remove
1593 the bp's: On HP-UX's that use ttrace, we can't
1594 change the address space of a vforking child
1595 process until the child exits (well, okay, not
1596 then either :-) or execs. */
1597 if (remove_status != 0)
1598 {
1599 /* FIXME! This is obviously non-portable! */
1600 write_pc_pid (stop_pc + 4, ecs->ptid);
1601 /* We need to restart all the threads now,
1602 * unles we're running in scheduler-locked mode.
1603 * Use currently_stepping to determine whether to
1604 * step or continue.
1605 */
1606 /* FIXME MVS: is there any reason not to call resume()? */
1607 if (scheduler_mode == schedlock_on)
1608 target_resume (ecs->ptid,
1609 currently_stepping (ecs), TARGET_SIGNAL_0);
1610 else
1611 target_resume (RESUME_ALL,
1612 currently_stepping (ecs), TARGET_SIGNAL_0);
1613 prepare_to_wait (ecs);
1614 return;
1615 }
1616 else
1617 { /* Single step */
1618 breakpoints_inserted = 0;
1619 if (!ptid_equal (inferior_ptid, ecs->ptid))
1620 context_switch (ecs);
1621 ecs->waiton_ptid = ecs->ptid;
1622 ecs->wp = &(ecs->ws);
1623 ecs->another_trap = 1;
1624
1625 ecs->infwait_state = infwait_thread_hop_state;
1626 keep_going (ecs);
1627 registers_changed ();
1628 return;
1629 }
1630 }
1631 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1632 {
1633 sw_single_step_trap_p = 1;
1634 ecs->random_signal = 0;
1635 }
1636 }
1637 else
1638 ecs->random_signal = 1;
1639
1640 /* See if something interesting happened to the non-current thread. If
1641 so, then switch to that thread. */
1642 if (!ptid_equal (ecs->ptid, inferior_ptid))
1643 {
1644 if (debug_infrun)
1645 printf_unfiltered ("infrun: context switch\n");
1646
1647 context_switch (ecs);
1648
1649 if (deprecated_context_hook)
1650 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1651
1652 flush_cached_frames ();
1653 }
1654
1655 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1656 {
1657 /* Pull the single step breakpoints out of the target. */
1658 SOFTWARE_SINGLE_STEP (0, 0);
1659 singlestep_breakpoints_inserted_p = 0;
1660 }
1661
1662 /* It may not be necessary to disable the watchpoint to stop over
1663 it. For example, the PA can (with some kernel cooperation)
1664 single step over a watchpoint without disabling the watchpoint. */
1665 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1666 {
1667 if (debug_infrun)
1668 printf_unfiltered ("infrun: STOPPED_BY_WATCHPOINT\n");
1669 resume (1, 0);
1670 prepare_to_wait (ecs);
1671 return;
1672 }
1673
1674 /* It is far more common to need to disable a watchpoint to step
1675 the inferior over it. FIXME. What else might a debug
1676 register or page protection watchpoint scheme need here? */
1677 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1678 {
1679 /* At this point, we are stopped at an instruction which has
1680 attempted to write to a piece of memory under control of
1681 a watchpoint. The instruction hasn't actually executed
1682 yet. If we were to evaluate the watchpoint expression
1683 now, we would get the old value, and therefore no change
1684 would seem to have occurred.
1685
1686 In order to make watchpoints work `right', we really need
1687 to complete the memory write, and then evaluate the
1688 watchpoint expression. The following code does that by
1689 removing the watchpoint (actually, all watchpoints and
1690 breakpoints), single-stepping the target, re-inserting
1691 watchpoints, and then falling through to let normal
1692 single-step processing handle proceed. Since this
1693 includes evaluating watchpoints, things will come to a
1694 stop in the correct manner. */
1695
1696 if (debug_infrun)
1697 printf_unfiltered ("infrun: STOPPED_BY_WATCHPOINT\n");
1698 remove_breakpoints ();
1699 registers_changed ();
1700 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1701
1702 ecs->waiton_ptid = ecs->ptid;
1703 ecs->wp = &(ecs->ws);
1704 ecs->infwait_state = infwait_nonstep_watch_state;
1705 prepare_to_wait (ecs);
1706 return;
1707 }
1708
1709 /* It may be possible to simply continue after a watchpoint. */
1710 if (HAVE_CONTINUABLE_WATCHPOINT)
1711 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
1712
1713 ecs->stop_func_start = 0;
1714 ecs->stop_func_end = 0;
1715 ecs->stop_func_name = 0;
1716 /* Don't care about return value; stop_func_start and stop_func_name
1717 will both be 0 if it doesn't work. */
1718 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1719 &ecs->stop_func_start, &ecs->stop_func_end);
1720 ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET;
1721 ecs->another_trap = 0;
1722 bpstat_clear (&stop_bpstat);
1723 stop_step = 0;
1724 stop_stack_dummy = 0;
1725 stop_print_frame = 1;
1726 ecs->random_signal = 0;
1727 stopped_by_random_signal = 0;
1728 breakpoints_failed = 0;
1729
1730 if (stop_signal == TARGET_SIGNAL_TRAP
1731 && trap_expected
1732 && gdbarch_single_step_through_delay_p (current_gdbarch)
1733 && currently_stepping (ecs))
1734 {
1735 /* We're trying to step of a breakpoint. Turns out that we're
1736 also on an instruction that needs to be stepped multiple
1737 times before it's been fully executing. E.g., architectures
1738 with a delay slot. It needs to be stepped twice, once for
1739 the instruction and once for the delay slot. */
1740 int step_through_delay
1741 = gdbarch_single_step_through_delay (current_gdbarch,
1742 get_current_frame ());
1743 if (debug_infrun && step_through_delay)
1744 printf_unfiltered ("infrun: step through delay\n");
1745 if (step_range_end == 0 && step_through_delay)
1746 {
1747 /* The user issued a continue when stopped at a breakpoint.
1748 Set up for another trap and get out of here. */
1749 ecs->another_trap = 1;
1750 keep_going (ecs);
1751 return;
1752 }
1753 else if (step_through_delay)
1754 {
1755 /* The user issued a step when stopped at a breakpoint.
1756 Maybe we should stop, maybe we should not - the delay
1757 slot *might* correspond to a line of source. In any
1758 case, don't decide that here, just set ecs->another_trap,
1759 making sure we single-step again before breakpoints are
1760 re-inserted. */
1761 ecs->another_trap = 1;
1762 }
1763 }
1764
1765 /* Look at the cause of the stop, and decide what to do.
1766 The alternatives are:
1767 1) break; to really stop and return to the debugger,
1768 2) drop through to start up again
1769 (set ecs->another_trap to 1 to single step once)
1770 3) set ecs->random_signal to 1, and the decision between 1 and 2
1771 will be made according to the signal handling tables. */
1772
1773 /* First, distinguish signals caused by the debugger from signals
1774 that have to do with the program's own actions. Note that
1775 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1776 on the operating system version. Here we detect when a SIGILL or
1777 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1778 something similar for SIGSEGV, since a SIGSEGV will be generated
1779 when we're trying to execute a breakpoint instruction on a
1780 non-executable stack. This happens for call dummy breakpoints
1781 for architectures like SPARC that place call dummies on the
1782 stack. */
1783
1784 if (stop_signal == TARGET_SIGNAL_TRAP
1785 || (breakpoints_inserted
1786 && (stop_signal == TARGET_SIGNAL_ILL
1787 || stop_signal == TARGET_SIGNAL_SEGV
1788 || stop_signal == TARGET_SIGNAL_EMT))
1789 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1790 {
1791 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1792 {
1793 if (debug_infrun)
1794 printf_unfiltered ("infrun: stopped\n");
1795 stop_print_frame = 0;
1796 stop_stepping (ecs);
1797 return;
1798 }
1799
1800 /* This is originated from start_remote(), start_inferior() and
1801 shared libraries hook functions. */
1802 if (stop_soon == STOP_QUIETLY)
1803 {
1804 if (debug_infrun)
1805 printf_unfiltered ("infrun: quietly stopped\n");
1806 stop_stepping (ecs);
1807 return;
1808 }
1809
1810 /* This originates from attach_command(). We need to overwrite
1811 the stop_signal here, because some kernels don't ignore a
1812 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1813 See more comments in inferior.h. */
1814 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1815 {
1816 stop_stepping (ecs);
1817 if (stop_signal == TARGET_SIGNAL_STOP)
1818 stop_signal = TARGET_SIGNAL_0;
1819 return;
1820 }
1821
1822 /* Don't even think about breakpoints if just proceeded over a
1823 breakpoint. */
1824 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
1825 {
1826 if (debug_infrun)
1827 printf_unfiltered ("infrun: trap expected\n");
1828 bpstat_clear (&stop_bpstat);
1829 }
1830 else
1831 {
1832 /* See if there is a breakpoint at the current PC. */
1833 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
1834 stopped_by_watchpoint);
1835
1836 /* Following in case break condition called a
1837 function. */
1838 stop_print_frame = 1;
1839 }
1840
1841 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1842 at one stage in the past included checks for an inferior
1843 function call's call dummy's return breakpoint. The original
1844 comment, that went with the test, read:
1845
1846 ``End of a stack dummy. Some systems (e.g. Sony news) give
1847 another signal besides SIGTRAP, so check here as well as
1848 above.''
1849
1850 If someone ever tries to get get call dummys on a
1851 non-executable stack to work (where the target would stop
1852 with something like a SIGSEGV), then those tests might need
1853 to be re-instated. Given, however, that the tests were only
1854 enabled when momentary breakpoints were not being used, I
1855 suspect that it won't be the case.
1856
1857 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1858 be necessary for call dummies on a non-executable stack on
1859 SPARC. */
1860
1861 if (stop_signal == TARGET_SIGNAL_TRAP)
1862 ecs->random_signal
1863 = !(bpstat_explains_signal (stop_bpstat)
1864 || trap_expected
1865 || (step_range_end && step_resume_breakpoint == NULL));
1866 else
1867 {
1868 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1869 if (!ecs->random_signal)
1870 stop_signal = TARGET_SIGNAL_TRAP;
1871 }
1872 }
1873
1874 /* When we reach this point, we've pretty much decided
1875 that the reason for stopping must've been a random
1876 (unexpected) signal. */
1877
1878 else
1879 ecs->random_signal = 1;
1880
1881 process_event_stop_test:
1882 /* For the program's own signals, act according to
1883 the signal handling tables. */
1884
1885 if (ecs->random_signal)
1886 {
1887 /* Signal not for debugging purposes. */
1888 int printed = 0;
1889
1890 if (debug_infrun)
1891 printf_unfiltered ("infrun: random signal %d\n", stop_signal);
1892
1893 stopped_by_random_signal = 1;
1894
1895 if (signal_print[stop_signal])
1896 {
1897 printed = 1;
1898 target_terminal_ours_for_output ();
1899 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1900 }
1901 if (signal_stop[stop_signal])
1902 {
1903 stop_stepping (ecs);
1904 return;
1905 }
1906 /* If not going to stop, give terminal back
1907 if we took it away. */
1908 else if (printed)
1909 target_terminal_inferior ();
1910
1911 /* Clear the signal if it should not be passed. */
1912 if (signal_program[stop_signal] == 0)
1913 stop_signal = TARGET_SIGNAL_0;
1914
1915 if (prev_pc == read_pc ()
1916 && !breakpoints_inserted
1917 && breakpoint_here_p (read_pc ())
1918 && step_resume_breakpoint == NULL)
1919 {
1920 /* We were just starting a new sequence, attempting to
1921 single-step off of a breakpoint and expecting a SIGTRAP.
1922 Intead this signal arrives. This signal will take us out
1923 of the stepping range so GDB needs to remember to, when
1924 the signal handler returns, resume stepping off that
1925 breakpoint. */
1926 /* To simplify things, "continue" is forced to use the same
1927 code paths as single-step - set a breakpoint at the
1928 signal return address and then, once hit, step off that
1929 breakpoint. */
1930 insert_step_resume_breakpoint_at_frame (get_current_frame ());
1931 ecs->step_after_step_resume_breakpoint = 1;
1932 }
1933 else if (step_range_end != 0
1934 && stop_signal != TARGET_SIGNAL_0
1935 && stop_pc >= step_range_start && stop_pc < step_range_end
1936 && frame_id_eq (get_frame_id (get_current_frame ()),
1937 step_frame_id))
1938 {
1939 /* The inferior is about to take a signal that will take it
1940 out of the single step range. Set a breakpoint at the
1941 current PC (which is presumably where the signal handler
1942 will eventually return) and then allow the inferior to
1943 run free.
1944
1945 Note that this is only needed for a signal delivered
1946 while in the single-step range. Nested signals aren't a
1947 problem as they eventually all return. */
1948 insert_step_resume_breakpoint_at_frame (get_current_frame ());
1949 }
1950 keep_going (ecs);
1951 return;
1952 }
1953
1954 /* Handle cases caused by hitting a breakpoint. */
1955 {
1956 CORE_ADDR jmp_buf_pc;
1957 struct bpstat_what what;
1958
1959 what = bpstat_what (stop_bpstat);
1960
1961 if (what.call_dummy)
1962 {
1963 stop_stack_dummy = 1;
1964 }
1965
1966 switch (what.main_action)
1967 {
1968 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
1969 /* If we hit the breakpoint at longjmp, disable it for the
1970 duration of this command. Then, install a temporary
1971 breakpoint at the target of the jmp_buf. */
1972 if (debug_infrun)
1973 printf_unfiltered ("infrun: BPSTATE_WHAT_SET_LONGJMP_RESUME\n");
1974 disable_longjmp_breakpoint ();
1975 remove_breakpoints ();
1976 breakpoints_inserted = 0;
1977 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
1978 {
1979 keep_going (ecs);
1980 return;
1981 }
1982
1983 /* Need to blow away step-resume breakpoint, as it
1984 interferes with us */
1985 if (step_resume_breakpoint != NULL)
1986 {
1987 delete_step_resume_breakpoint (&step_resume_breakpoint);
1988 }
1989
1990 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
1991 ecs->handling_longjmp = 1; /* FIXME */
1992 keep_going (ecs);
1993 return;
1994
1995 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
1996 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
1997 if (debug_infrun)
1998 printf_unfiltered ("infrun: BPSTATE_WHAT_CLEAR_LONGJMP_RESUME\n");
1999 remove_breakpoints ();
2000 breakpoints_inserted = 0;
2001 disable_longjmp_breakpoint ();
2002 ecs->handling_longjmp = 0; /* FIXME */
2003 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2004 break;
2005 /* else fallthrough */
2006
2007 case BPSTAT_WHAT_SINGLE:
2008 if (debug_infrun)
2009 printf_unfiltered ("infrun: BPSTATE_WHAT_SINGLE\n");
2010 if (breakpoints_inserted)
2011 {
2012 remove_breakpoints ();
2013 }
2014 breakpoints_inserted = 0;
2015 ecs->another_trap = 1;
2016 /* Still need to check other stuff, at least the case
2017 where we are stepping and step out of the right range. */
2018 break;
2019
2020 case BPSTAT_WHAT_STOP_NOISY:
2021 if (debug_infrun)
2022 printf_unfiltered ("infrun: BPSTATE_WHAT_STOP_NOISY\n");
2023 stop_print_frame = 1;
2024
2025 /* We are about to nuke the step_resume_breakpointt via the
2026 cleanup chain, so no need to worry about it here. */
2027
2028 stop_stepping (ecs);
2029 return;
2030
2031 case BPSTAT_WHAT_STOP_SILENT:
2032 if (debug_infrun)
2033 printf_unfiltered ("infrun: BPSTATE_WHAT_STOP_SILENT\n");
2034 stop_print_frame = 0;
2035
2036 /* We are about to nuke the step_resume_breakpoin via the
2037 cleanup chain, so no need to worry about it here. */
2038
2039 stop_stepping (ecs);
2040 return;
2041
2042 case BPSTAT_WHAT_STEP_RESUME:
2043 /* This proably demands a more elegant solution, but, yeah
2044 right...
2045
2046 This function's use of the simple variable
2047 step_resume_breakpoint doesn't seem to accomodate
2048 simultaneously active step-resume bp's, although the
2049 breakpoint list certainly can.
2050
2051 If we reach here and step_resume_breakpoint is already
2052 NULL, then apparently we have multiple active
2053 step-resume bp's. We'll just delete the breakpoint we
2054 stopped at, and carry on.
2055
2056 Correction: what the code currently does is delete a
2057 step-resume bp, but it makes no effort to ensure that
2058 the one deleted is the one currently stopped at. MVS */
2059
2060 if (debug_infrun)
2061 printf_unfiltered ("infrun: BPSTATE_WHAT_STEP_RESUME\n");
2062
2063 if (step_resume_breakpoint == NULL)
2064 {
2065 step_resume_breakpoint =
2066 bpstat_find_step_resume_breakpoint (stop_bpstat);
2067 }
2068 delete_step_resume_breakpoint (&step_resume_breakpoint);
2069 if (ecs->step_after_step_resume_breakpoint)
2070 {
2071 /* Back when the step-resume breakpoint was inserted, we
2072 were trying to single-step off a breakpoint. Go back
2073 to doing that. */
2074 ecs->step_after_step_resume_breakpoint = 0;
2075 remove_breakpoints ();
2076 breakpoints_inserted = 0;
2077 ecs->another_trap = 1;
2078 keep_going (ecs);
2079 return;
2080 }
2081 break;
2082
2083 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2084 if (debug_infrun)
2085 printf_unfiltered ("infrun: BPSTATE_WHAT_THROUGH_SIGTRAMP\n");
2086 /* If were waiting for a trap, hitting the step_resume_break
2087 doesn't count as getting it. */
2088 if (trap_expected)
2089 ecs->another_trap = 1;
2090 break;
2091
2092 case BPSTAT_WHAT_CHECK_SHLIBS:
2093 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2094 #ifdef SOLIB_ADD
2095 {
2096 if (debug_infrun)
2097 printf_unfiltered ("infrun: BPSTATE_WHAT_CHECK_SHLIBS\n");
2098 /* Remove breakpoints, we eventually want to step over the
2099 shlib event breakpoint, and SOLIB_ADD might adjust
2100 breakpoint addresses via breakpoint_re_set. */
2101 if (breakpoints_inserted)
2102 remove_breakpoints ();
2103 breakpoints_inserted = 0;
2104
2105 /* Check for any newly added shared libraries if we're
2106 supposed to be adding them automatically. Switch
2107 terminal for any messages produced by
2108 breakpoint_re_set. */
2109 target_terminal_ours_for_output ();
2110 /* NOTE: cagney/2003-11-25: Make certain that the target
2111 stack's section table is kept up-to-date. Architectures,
2112 (e.g., PPC64), use the section table to perform
2113 operations such as address => section name and hence
2114 require the table to contain all sections (including
2115 those found in shared libraries). */
2116 /* NOTE: cagney/2003-11-25: Pass current_target and not
2117 exec_ops to SOLIB_ADD. This is because current GDB is
2118 only tooled to propagate section_table changes out from
2119 the "current_target" (see target_resize_to_sections), and
2120 not up from the exec stratum. This, of course, isn't
2121 right. "infrun.c" should only interact with the
2122 exec/process stratum, instead relying on the target stack
2123 to propagate relevant changes (stop, section table
2124 changed, ...) up to other layers. */
2125 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2126 target_terminal_inferior ();
2127
2128 /* Try to reenable shared library breakpoints, additional
2129 code segments in shared libraries might be mapped in now. */
2130 re_enable_breakpoints_in_shlibs ();
2131
2132 /* If requested, stop when the dynamic linker notifies
2133 gdb of events. This allows the user to get control
2134 and place breakpoints in initializer routines for
2135 dynamically loaded objects (among other things). */
2136 if (stop_on_solib_events || stop_stack_dummy)
2137 {
2138 stop_stepping (ecs);
2139 return;
2140 }
2141
2142 /* If we stopped due to an explicit catchpoint, then the
2143 (see above) call to SOLIB_ADD pulled in any symbols
2144 from a newly-loaded library, if appropriate.
2145
2146 We do want the inferior to stop, but not where it is
2147 now, which is in the dynamic linker callback. Rather,
2148 we would like it stop in the user's program, just after
2149 the call that caused this catchpoint to trigger. That
2150 gives the user a more useful vantage from which to
2151 examine their program's state. */
2152 else if (what.main_action
2153 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2154 {
2155 /* ??rehrauer: If I could figure out how to get the
2156 right return PC from here, we could just set a temp
2157 breakpoint and resume. I'm not sure we can without
2158 cracking open the dld's shared libraries and sniffing
2159 their unwind tables and text/data ranges, and that's
2160 not a terribly portable notion.
2161
2162 Until that time, we must step the inferior out of the
2163 dld callback, and also out of the dld itself (and any
2164 code or stubs in libdld.sl, such as "shl_load" and
2165 friends) until we reach non-dld code. At that point,
2166 we can stop stepping. */
2167 bpstat_get_triggered_catchpoints (stop_bpstat,
2168 &ecs->
2169 stepping_through_solib_catchpoints);
2170 ecs->stepping_through_solib_after_catch = 1;
2171
2172 /* Be sure to lift all breakpoints, so the inferior does
2173 actually step past this point... */
2174 ecs->another_trap = 1;
2175 break;
2176 }
2177 else
2178 {
2179 /* We want to step over this breakpoint, then keep going. */
2180 ecs->another_trap = 1;
2181 break;
2182 }
2183 }
2184 #endif
2185 break;
2186
2187 case BPSTAT_WHAT_LAST:
2188 /* Not a real code, but listed here to shut up gcc -Wall. */
2189
2190 case BPSTAT_WHAT_KEEP_CHECKING:
2191 break;
2192 }
2193 }
2194
2195 /* We come here if we hit a breakpoint but should not
2196 stop for it. Possibly we also were stepping
2197 and should stop for that. So fall through and
2198 test for stepping. But, if not stepping,
2199 do not stop. */
2200
2201 /* Are we stepping to get the inferior out of the dynamic
2202 linker's hook (and possibly the dld itself) after catching
2203 a shlib event? */
2204 if (ecs->stepping_through_solib_after_catch)
2205 {
2206 #if defined(SOLIB_ADD)
2207 /* Have we reached our destination? If not, keep going. */
2208 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2209 {
2210 if (debug_infrun)
2211 printf_unfiltered ("infrun: stepping in dynamic linker\n");
2212 ecs->another_trap = 1;
2213 keep_going (ecs);
2214 return;
2215 }
2216 #endif
2217 if (debug_infrun)
2218 printf_unfiltered ("infrun: step past dynamic linker\n");
2219 /* Else, stop and report the catchpoint(s) whose triggering
2220 caused us to begin stepping. */
2221 ecs->stepping_through_solib_after_catch = 0;
2222 bpstat_clear (&stop_bpstat);
2223 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2224 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2225 stop_print_frame = 1;
2226 stop_stepping (ecs);
2227 return;
2228 }
2229
2230 if (step_resume_breakpoint)
2231 {
2232 if (debug_infrun)
2233 printf_unfiltered ("infrun: step-resume breakpoint\n");
2234
2235 /* Having a step-resume breakpoint overrides anything
2236 else having to do with stepping commands until
2237 that breakpoint is reached. */
2238 keep_going (ecs);
2239 return;
2240 }
2241
2242 if (step_range_end == 0)
2243 {
2244 if (debug_infrun)
2245 printf_unfiltered ("infrun: no stepping, continue\n");
2246 /* Likewise if we aren't even stepping. */
2247 keep_going (ecs);
2248 return;
2249 }
2250
2251 /* If stepping through a line, keep going if still within it.
2252
2253 Note that step_range_end is the address of the first instruction
2254 beyond the step range, and NOT the address of the last instruction
2255 within it! */
2256 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2257 {
2258 if (debug_infrun)
2259 printf_unfiltered ("infrun: stepping inside range [0x%s-0x%s]\n",
2260 paddr_nz (step_range_start),
2261 paddr_nz (step_range_end));
2262 keep_going (ecs);
2263 return;
2264 }
2265
2266 /* We stepped out of the stepping range. */
2267
2268 /* If we are stepping at the source level and entered the runtime
2269 loader dynamic symbol resolution code, we keep on single stepping
2270 until we exit the run time loader code and reach the callee's
2271 address. */
2272 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2273 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc))
2274 {
2275 CORE_ADDR pc_after_resolver =
2276 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2277
2278 if (debug_infrun)
2279 printf_unfiltered ("infrun: stepped into dynsym resolve code\n");
2280
2281 if (pc_after_resolver)
2282 {
2283 /* Set up a step-resume breakpoint at the address
2284 indicated by SKIP_SOLIB_RESOLVER. */
2285 struct symtab_and_line sr_sal;
2286 init_sal (&sr_sal);
2287 sr_sal.pc = pc_after_resolver;
2288
2289 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2290 }
2291
2292 keep_going (ecs);
2293 return;
2294 }
2295
2296 if (step_range_end != 1
2297 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2298 || step_over_calls == STEP_OVER_ALL)
2299 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2300 {
2301 if (debug_infrun)
2302 printf_unfiltered ("infrun: stepped into signal trampoline\n");
2303 /* The inferior, while doing a "step" or "next", has ended up in
2304 a signal trampoline (either by a signal being delivered or by
2305 the signal handler returning). Just single-step until the
2306 inferior leaves the trampoline (either by calling the handler
2307 or returning). */
2308 keep_going (ecs);
2309 return;
2310 }
2311
2312 if (frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2313 {
2314 /* It's a subroutine call. */
2315 CORE_ADDR real_stop_pc;
2316
2317 if (debug_infrun)
2318 printf_unfiltered ("infrun: stepped into subroutine\n");
2319
2320 if ((step_over_calls == STEP_OVER_NONE)
2321 || ((step_range_end == 1)
2322 && in_prologue (prev_pc, ecs->stop_func_start)))
2323 {
2324 /* I presume that step_over_calls is only 0 when we're
2325 supposed to be stepping at the assembly language level
2326 ("stepi"). Just stop. */
2327 /* Also, maybe we just did a "nexti" inside a prolog, so we
2328 thought it was a subroutine call but it was not. Stop as
2329 well. FENN */
2330 stop_step = 1;
2331 print_stop_reason (END_STEPPING_RANGE, 0);
2332 stop_stepping (ecs);
2333 return;
2334 }
2335
2336 if (step_over_calls == STEP_OVER_ALL)
2337 {
2338 /* We're doing a "next", set a breakpoint at callee's return
2339 address (the address at which the caller will
2340 resume). */
2341 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
2342 keep_going (ecs);
2343 return;
2344 }
2345
2346 /* If we are in a function call trampoline (a stub between the
2347 calling routine and the real function), locate the real
2348 function. That's what tells us (a) whether we want to step
2349 into it at all, and (b) what prologue we want to run to the
2350 end of, if we do step into it. */
2351 real_stop_pc = skip_language_trampoline (stop_pc);
2352 if (real_stop_pc == 0)
2353 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2354 if (real_stop_pc != 0)
2355 ecs->stop_func_start = real_stop_pc;
2356
2357 if (IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start))
2358 {
2359 struct symtab_and_line sr_sal;
2360 init_sal (&sr_sal);
2361 sr_sal.pc = ecs->stop_func_start;
2362
2363 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2364 keep_going (ecs);
2365 return;
2366 }
2367
2368 /* If we have line number information for the function we are
2369 thinking of stepping into, step into it.
2370
2371 If there are several symtabs at that PC (e.g. with include
2372 files), just want to know whether *any* of them have line
2373 numbers. find_pc_line handles this. */
2374 {
2375 struct symtab_and_line tmp_sal;
2376
2377 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2378 if (tmp_sal.line != 0)
2379 {
2380 step_into_function (ecs);
2381 return;
2382 }
2383 }
2384
2385 /* If we have no line number and the step-stop-if-no-debug is
2386 set, we stop the step so that the user has a chance to switch
2387 in assembly mode. */
2388 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2389 {
2390 stop_step = 1;
2391 print_stop_reason (END_STEPPING_RANGE, 0);
2392 stop_stepping (ecs);
2393 return;
2394 }
2395
2396 /* Set a breakpoint at callee's return address (the address at
2397 which the caller will resume). */
2398 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
2399 keep_going (ecs);
2400 return;
2401 }
2402
2403 /* If we're in the return path from a shared library trampoline,
2404 we want to proceed through the trampoline when stepping. */
2405 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2406 {
2407 /* Determine where this trampoline returns. */
2408 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2409
2410 if (debug_infrun)
2411 printf_unfiltered ("infrun: stepped into solib return tramp\n");
2412
2413 /* Only proceed through if we know where it's going. */
2414 if (real_stop_pc)
2415 {
2416 /* And put the step-breakpoint there and go until there. */
2417 struct symtab_and_line sr_sal;
2418
2419 init_sal (&sr_sal); /* initialize to zeroes */
2420 sr_sal.pc = real_stop_pc;
2421 sr_sal.section = find_pc_overlay (sr_sal.pc);
2422
2423 /* Do not specify what the fp should be when we stop since
2424 on some machines the prologue is where the new fp value
2425 is established. */
2426 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2427
2428 /* Restart without fiddling with the step ranges or
2429 other state. */
2430 keep_going (ecs);
2431 return;
2432 }
2433 }
2434
2435 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2436 the trampoline processing logic, however, there are some trampolines
2437 that have no names, so we should do trampoline handling first. */
2438 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2439 && ecs->stop_func_name == NULL)
2440 {
2441 if (debug_infrun)
2442 printf_unfiltered ("infrun: stepped into undebuggable function\n");
2443
2444 /* The inferior just stepped into, or returned to, an
2445 undebuggable function (where there is no symbol, not even a
2446 minimal symbol, corresponding to the address where the
2447 inferior stopped). Since we want to skip this kind of code,
2448 we keep going until the inferior returns from this
2449 function. */
2450 if (step_stop_if_no_debug)
2451 {
2452 /* If we have no line number and the step-stop-if-no-debug
2453 is set, we stop the step so that the user has a chance to
2454 switch in assembly mode. */
2455 stop_step = 1;
2456 print_stop_reason (END_STEPPING_RANGE, 0);
2457 stop_stepping (ecs);
2458 return;
2459 }
2460 else
2461 {
2462 /* Set a breakpoint at callee's return address (the address
2463 at which the caller will resume). */
2464 insert_step_resume_breakpoint_at_frame (get_prev_frame (get_current_frame ()));
2465 keep_going (ecs);
2466 return;
2467 }
2468 }
2469
2470 if (step_range_end == 1)
2471 {
2472 /* It is stepi or nexti. We always want to stop stepping after
2473 one instruction. */
2474 if (debug_infrun)
2475 printf_unfiltered ("infrun: stepi/nexti\n");
2476 stop_step = 1;
2477 print_stop_reason (END_STEPPING_RANGE, 0);
2478 stop_stepping (ecs);
2479 return;
2480 }
2481
2482 ecs->sal = find_pc_line (stop_pc, 0);
2483
2484 if (ecs->sal.line == 0)
2485 {
2486 /* We have no line number information. That means to stop
2487 stepping (does this always happen right after one instruction,
2488 when we do "s" in a function with no line numbers,
2489 or can this happen as a result of a return or longjmp?). */
2490 if (debug_infrun)
2491 printf_unfiltered ("infrun: no line number info\n");
2492 stop_step = 1;
2493 print_stop_reason (END_STEPPING_RANGE, 0);
2494 stop_stepping (ecs);
2495 return;
2496 }
2497
2498 if ((stop_pc == ecs->sal.pc)
2499 && (ecs->current_line != ecs->sal.line
2500 || ecs->current_symtab != ecs->sal.symtab))
2501 {
2502 /* We are at the start of a different line. So stop. Note that
2503 we don't stop if we step into the middle of a different line.
2504 That is said to make things like for (;;) statements work
2505 better. */
2506 if (debug_infrun)
2507 printf_unfiltered ("infrun: stepped to a different line\n");
2508 stop_step = 1;
2509 print_stop_reason (END_STEPPING_RANGE, 0);
2510 stop_stepping (ecs);
2511 return;
2512 }
2513
2514 /* We aren't done stepping.
2515
2516 Optimize by setting the stepping range to the line.
2517 (We might not be in the original line, but if we entered a
2518 new line in mid-statement, we continue stepping. This makes
2519 things like for(;;) statements work better.) */
2520
2521 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2522 {
2523 /* If this is the last line of the function, don't keep stepping
2524 (it would probably step us out of the function).
2525 This is particularly necessary for a one-line function,
2526 in which after skipping the prologue we better stop even though
2527 we will be in mid-line. */
2528 if (debug_infrun)
2529 printf_unfiltered ("infrun: stepped to a different function\n");
2530 stop_step = 1;
2531 print_stop_reason (END_STEPPING_RANGE, 0);
2532 stop_stepping (ecs);
2533 return;
2534 }
2535 step_range_start = ecs->sal.pc;
2536 step_range_end = ecs->sal.end;
2537 step_frame_id = get_frame_id (get_current_frame ());
2538 ecs->current_line = ecs->sal.line;
2539 ecs->current_symtab = ecs->sal.symtab;
2540
2541 /* In the case where we just stepped out of a function into the
2542 middle of a line of the caller, continue stepping, but
2543 step_frame_id must be modified to current frame */
2544 #if 0
2545 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2546 generous. It will trigger on things like a step into a frameless
2547 stackless leaf function. I think the logic should instead look
2548 at the unwound frame ID has that should give a more robust
2549 indication of what happened. */
2550 if (step - ID == current - ID)
2551 still stepping in same function;
2552 else if (step - ID == unwind (current - ID))
2553 stepped into a function;
2554 else
2555 stepped out of a function;
2556 /* Of course this assumes that the frame ID unwind code is robust
2557 and we're willing to introduce frame unwind logic into this
2558 function. Fortunately, those days are nearly upon us. */
2559 #endif
2560 {
2561 struct frame_id current_frame = get_frame_id (get_current_frame ());
2562 if (!(frame_id_inner (current_frame, step_frame_id)))
2563 step_frame_id = current_frame;
2564 }
2565
2566 if (debug_infrun)
2567 printf_unfiltered ("infrun: keep going\n");
2568 keep_going (ecs);
2569 }
2570
2571 /* Are we in the middle of stepping? */
2572
2573 static int
2574 currently_stepping (struct execution_control_state *ecs)
2575 {
2576 return ((!ecs->handling_longjmp
2577 && ((step_range_end && step_resume_breakpoint == NULL)
2578 || trap_expected))
2579 || ecs->stepping_through_solib_after_catch
2580 || bpstat_should_step ());
2581 }
2582
2583 /* Subroutine call with source code we should not step over. Do step
2584 to the first line of code in it. */
2585
2586 static void
2587 step_into_function (struct execution_control_state *ecs)
2588 {
2589 struct symtab *s;
2590 struct symtab_and_line sr_sal;
2591
2592 s = find_pc_symtab (stop_pc);
2593 if (s && s->language != language_asm)
2594 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2595
2596 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2597 /* Use the step_resume_break to step until the end of the prologue,
2598 even if that involves jumps (as it seems to on the vax under
2599 4.2). */
2600 /* If the prologue ends in the middle of a source line, continue to
2601 the end of that source line (if it is still within the function).
2602 Otherwise, just go to end of prologue. */
2603 if (ecs->sal.end
2604 && ecs->sal.pc != ecs->stop_func_start
2605 && ecs->sal.end < ecs->stop_func_end)
2606 ecs->stop_func_start = ecs->sal.end;
2607
2608 /* Architectures which require breakpoint adjustment might not be able
2609 to place a breakpoint at the computed address. If so, the test
2610 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2611 ecs->stop_func_start to an address at which a breakpoint may be
2612 legitimately placed.
2613
2614 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2615 made, GDB will enter an infinite loop when stepping through
2616 optimized code consisting of VLIW instructions which contain
2617 subinstructions corresponding to different source lines. On
2618 FR-V, it's not permitted to place a breakpoint on any but the
2619 first subinstruction of a VLIW instruction. When a breakpoint is
2620 set, GDB will adjust the breakpoint address to the beginning of
2621 the VLIW instruction. Thus, we need to make the corresponding
2622 adjustment here when computing the stop address. */
2623
2624 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2625 {
2626 ecs->stop_func_start
2627 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2628 ecs->stop_func_start);
2629 }
2630
2631 if (ecs->stop_func_start == stop_pc)
2632 {
2633 /* We are already there: stop now. */
2634 stop_step = 1;
2635 print_stop_reason (END_STEPPING_RANGE, 0);
2636 stop_stepping (ecs);
2637 return;
2638 }
2639 else
2640 {
2641 /* Put the step-breakpoint there and go until there. */
2642 init_sal (&sr_sal); /* initialize to zeroes */
2643 sr_sal.pc = ecs->stop_func_start;
2644 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2645
2646 /* Do not specify what the fp should be when we stop since on
2647 some machines the prologue is where the new fp value is
2648 established. */
2649 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2650
2651 /* And make sure stepping stops right away then. */
2652 step_range_end = step_range_start;
2653 }
2654 keep_going (ecs);
2655 }
2656
2657 /* Insert a "step resume breakpoint" at SR_SAL with frame ID SR_ID.
2658 This is used to both functions and to skip over code. */
2659
2660 static void
2661 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2662 struct frame_id sr_id)
2663 {
2664 /* There should never be more than one step-resume breakpoint per
2665 thread, so we should never be setting a new
2666 step_resume_breakpoint when one is already active. */
2667 gdb_assert (step_resume_breakpoint == NULL);
2668 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2669 bp_step_resume);
2670 if (breakpoints_inserted)
2671 insert_breakpoints ();
2672 }
2673
2674 /* Insert a "step resume breakpoint" at RETURN_FRAME.pc. This is used
2675 to skip a function (next, skip-no-debug) or signal. It's assumed
2676 that the function/signal handler being skipped eventually returns
2677 to the breakpoint inserted at RETURN_FRAME.pc.
2678
2679 For the skip-function case, the function may have been reached by
2680 either single stepping a call / return / signal-return instruction,
2681 or by hitting a breakpoint. In all cases, the RETURN_FRAME belongs
2682 to the skip-function's caller.
2683
2684 For the signals case, this is called with the interrupted
2685 function's frame. The signal handler, when it returns, will resume
2686 the interrupted function at RETURN_FRAME.pc. */
2687
2688 static void
2689 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2690 {
2691 struct symtab_and_line sr_sal;
2692
2693 init_sal (&sr_sal); /* initialize to zeros */
2694
2695 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (return_frame));
2696 sr_sal.section = find_pc_overlay (sr_sal.pc);
2697
2698 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2699 }
2700
2701 static void
2702 stop_stepping (struct execution_control_state *ecs)
2703 {
2704 if (debug_infrun)
2705 printf_unfiltered ("infrun: stop_stepping\n");
2706
2707 /* Let callers know we don't want to wait for the inferior anymore. */
2708 ecs->wait_some_more = 0;
2709 }
2710
2711 /* This function handles various cases where we need to continue
2712 waiting for the inferior. */
2713 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2714
2715 static void
2716 keep_going (struct execution_control_state *ecs)
2717 {
2718 /* Save the pc before execution, to compare with pc after stop. */
2719 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2720
2721 /* If we did not do break;, it means we should keep running the
2722 inferior and not return to debugger. */
2723
2724 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2725 {
2726 /* We took a signal (which we are supposed to pass through to
2727 the inferior, else we'd have done a break above) and we
2728 haven't yet gotten our trap. Simply continue. */
2729 resume (currently_stepping (ecs), stop_signal);
2730 }
2731 else
2732 {
2733 /* Either the trap was not expected, but we are continuing
2734 anyway (the user asked that this signal be passed to the
2735 child)
2736 -- or --
2737 The signal was SIGTRAP, e.g. it was our signal, but we
2738 decided we should resume from it.
2739
2740 We're going to run this baby now! */
2741
2742 if (!breakpoints_inserted && !ecs->another_trap)
2743 {
2744 breakpoints_failed = insert_breakpoints ();
2745 if (breakpoints_failed)
2746 {
2747 stop_stepping (ecs);
2748 return;
2749 }
2750 breakpoints_inserted = 1;
2751 }
2752
2753 trap_expected = ecs->another_trap;
2754
2755 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2756 specifies that such a signal should be delivered to the
2757 target program).
2758
2759 Typically, this would occure when a user is debugging a
2760 target monitor on a simulator: the target monitor sets a
2761 breakpoint; the simulator encounters this break-point and
2762 halts the simulation handing control to GDB; GDB, noteing
2763 that the break-point isn't valid, returns control back to the
2764 simulator; the simulator then delivers the hardware
2765 equivalent of a SIGNAL_TRAP to the program being debugged. */
2766
2767 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2768 stop_signal = TARGET_SIGNAL_0;
2769
2770
2771 resume (currently_stepping (ecs), stop_signal);
2772 }
2773
2774 prepare_to_wait (ecs);
2775 }
2776
2777 /* This function normally comes after a resume, before
2778 handle_inferior_event exits. It takes care of any last bits of
2779 housekeeping, and sets the all-important wait_some_more flag. */
2780
2781 static void
2782 prepare_to_wait (struct execution_control_state *ecs)
2783 {
2784 if (debug_infrun)
2785 printf_unfiltered ("infrun: prepare_to_wait\n");
2786 if (ecs->infwait_state == infwait_normal_state)
2787 {
2788 overlay_cache_invalid = 1;
2789
2790 /* We have to invalidate the registers BEFORE calling
2791 target_wait because they can be loaded from the target while
2792 in target_wait. This makes remote debugging a bit more
2793 efficient for those targets that provide critical registers
2794 as part of their normal status mechanism. */
2795
2796 registers_changed ();
2797 ecs->waiton_ptid = pid_to_ptid (-1);
2798 ecs->wp = &(ecs->ws);
2799 }
2800 /* This is the old end of the while loop. Let everybody know we
2801 want to wait for the inferior some more and get called again
2802 soon. */
2803 ecs->wait_some_more = 1;
2804 }
2805
2806 /* Print why the inferior has stopped. We always print something when
2807 the inferior exits, or receives a signal. The rest of the cases are
2808 dealt with later on in normal_stop() and print_it_typical(). Ideally
2809 there should be a call to this function from handle_inferior_event()
2810 each time stop_stepping() is called.*/
2811 static void
2812 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2813 {
2814 switch (stop_reason)
2815 {
2816 case STOP_UNKNOWN:
2817 /* We don't deal with these cases from handle_inferior_event()
2818 yet. */
2819 break;
2820 case END_STEPPING_RANGE:
2821 /* We are done with a step/next/si/ni command. */
2822 /* For now print nothing. */
2823 /* Print a message only if not in the middle of doing a "step n"
2824 operation for n > 1 */
2825 if (!step_multi || !stop_step)
2826 if (ui_out_is_mi_like_p (uiout))
2827 ui_out_field_string (uiout, "reason", "end-stepping-range");
2828 break;
2829 case BREAKPOINT_HIT:
2830 /* We found a breakpoint. */
2831 /* For now print nothing. */
2832 break;
2833 case SIGNAL_EXITED:
2834 /* The inferior was terminated by a signal. */
2835 annotate_signalled ();
2836 if (ui_out_is_mi_like_p (uiout))
2837 ui_out_field_string (uiout, "reason", "exited-signalled");
2838 ui_out_text (uiout, "\nProgram terminated with signal ");
2839 annotate_signal_name ();
2840 ui_out_field_string (uiout, "signal-name",
2841 target_signal_to_name (stop_info));
2842 annotate_signal_name_end ();
2843 ui_out_text (uiout, ", ");
2844 annotate_signal_string ();
2845 ui_out_field_string (uiout, "signal-meaning",
2846 target_signal_to_string (stop_info));
2847 annotate_signal_string_end ();
2848 ui_out_text (uiout, ".\n");
2849 ui_out_text (uiout, "The program no longer exists.\n");
2850 break;
2851 case EXITED:
2852 /* The inferior program is finished. */
2853 annotate_exited (stop_info);
2854 if (stop_info)
2855 {
2856 if (ui_out_is_mi_like_p (uiout))
2857 ui_out_field_string (uiout, "reason", "exited");
2858 ui_out_text (uiout, "\nProgram exited with code ");
2859 ui_out_field_fmt (uiout, "exit-code", "0%o",
2860 (unsigned int) stop_info);
2861 ui_out_text (uiout, ".\n");
2862 }
2863 else
2864 {
2865 if (ui_out_is_mi_like_p (uiout))
2866 ui_out_field_string (uiout, "reason", "exited-normally");
2867 ui_out_text (uiout, "\nProgram exited normally.\n");
2868 }
2869 break;
2870 case SIGNAL_RECEIVED:
2871 /* Signal received. The signal table tells us to print about
2872 it. */
2873 annotate_signal ();
2874 ui_out_text (uiout, "\nProgram received signal ");
2875 annotate_signal_name ();
2876 if (ui_out_is_mi_like_p (uiout))
2877 ui_out_field_string (uiout, "reason", "signal-received");
2878 ui_out_field_string (uiout, "signal-name",
2879 target_signal_to_name (stop_info));
2880 annotate_signal_name_end ();
2881 ui_out_text (uiout, ", ");
2882 annotate_signal_string ();
2883 ui_out_field_string (uiout, "signal-meaning",
2884 target_signal_to_string (stop_info));
2885 annotate_signal_string_end ();
2886 ui_out_text (uiout, ".\n");
2887 break;
2888 default:
2889 internal_error (__FILE__, __LINE__,
2890 "print_stop_reason: unrecognized enum value");
2891 break;
2892 }
2893 }
2894 \f
2895
2896 /* Here to return control to GDB when the inferior stops for real.
2897 Print appropriate messages, remove breakpoints, give terminal our modes.
2898
2899 STOP_PRINT_FRAME nonzero means print the executing frame
2900 (pc, function, args, file, line number and line text).
2901 BREAKPOINTS_FAILED nonzero means stop was due to error
2902 attempting to insert breakpoints. */
2903
2904 void
2905 normal_stop (void)
2906 {
2907 struct target_waitstatus last;
2908 ptid_t last_ptid;
2909
2910 get_last_target_status (&last_ptid, &last);
2911
2912 /* As with the notification of thread events, we want to delay
2913 notifying the user that we've switched thread context until
2914 the inferior actually stops.
2915
2916 There's no point in saying anything if the inferior has exited.
2917 Note that SIGNALLED here means "exited with a signal", not
2918 "received a signal". */
2919 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
2920 && target_has_execution
2921 && last.kind != TARGET_WAITKIND_SIGNALLED
2922 && last.kind != TARGET_WAITKIND_EXITED)
2923 {
2924 target_terminal_ours_for_output ();
2925 printf_filtered ("[Switching to %s]\n",
2926 target_pid_or_tid_to_str (inferior_ptid));
2927 previous_inferior_ptid = inferior_ptid;
2928 }
2929
2930 /* NOTE drow/2004-01-17: Is this still necessary? */
2931 /* Make sure that the current_frame's pc is correct. This
2932 is a correction for setting up the frame info before doing
2933 DECR_PC_AFTER_BREAK */
2934 if (target_has_execution)
2935 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
2936 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
2937 frame code to check for this and sort out any resultant mess.
2938 DECR_PC_AFTER_BREAK needs to just go away. */
2939 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
2940
2941 if (target_has_execution && breakpoints_inserted)
2942 {
2943 if (remove_breakpoints ())
2944 {
2945 target_terminal_ours_for_output ();
2946 printf_filtered ("Cannot remove breakpoints because ");
2947 printf_filtered ("program is no longer writable.\n");
2948 printf_filtered ("It might be running in another process.\n");
2949 printf_filtered ("Further execution is probably impossible.\n");
2950 }
2951 }
2952 breakpoints_inserted = 0;
2953
2954 /* Delete the breakpoint we stopped at, if it wants to be deleted.
2955 Delete any breakpoint that is to be deleted at the next stop. */
2956
2957 breakpoint_auto_delete (stop_bpstat);
2958
2959 /* If an auto-display called a function and that got a signal,
2960 delete that auto-display to avoid an infinite recursion. */
2961
2962 if (stopped_by_random_signal)
2963 disable_current_display ();
2964
2965 /* Don't print a message if in the middle of doing a "step n"
2966 operation for n > 1 */
2967 if (step_multi && stop_step)
2968 goto done;
2969
2970 target_terminal_ours ();
2971
2972 /* Look up the hook_stop and run it (CLI internally handles problem
2973 of stop_command's pre-hook not existing). */
2974 if (stop_command)
2975 catch_errors (hook_stop_stub, stop_command,
2976 "Error while running hook_stop:\n", RETURN_MASK_ALL);
2977
2978 if (!target_has_stack)
2979 {
2980
2981 goto done;
2982 }
2983
2984 /* Select innermost stack frame - i.e., current frame is frame 0,
2985 and current location is based on that.
2986 Don't do this on return from a stack dummy routine,
2987 or if the program has exited. */
2988
2989 if (!stop_stack_dummy)
2990 {
2991 select_frame (get_current_frame ());
2992
2993 /* Print current location without a level number, if
2994 we have changed functions or hit a breakpoint.
2995 Print source line if we have one.
2996 bpstat_print() contains the logic deciding in detail
2997 what to print, based on the event(s) that just occurred. */
2998
2999 if (stop_print_frame && deprecated_selected_frame)
3000 {
3001 int bpstat_ret;
3002 int source_flag;
3003 int do_frame_printing = 1;
3004
3005 bpstat_ret = bpstat_print (stop_bpstat);
3006 switch (bpstat_ret)
3007 {
3008 case PRINT_UNKNOWN:
3009 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3010 (or should) carry around the function and does (or
3011 should) use that when doing a frame comparison. */
3012 if (stop_step
3013 && frame_id_eq (step_frame_id,
3014 get_frame_id (get_current_frame ()))
3015 && step_start_function == find_pc_function (stop_pc))
3016 source_flag = SRC_LINE; /* finished step, just print source line */
3017 else
3018 source_flag = SRC_AND_LOC; /* print location and source line */
3019 break;
3020 case PRINT_SRC_AND_LOC:
3021 source_flag = SRC_AND_LOC; /* print location and source line */
3022 break;
3023 case PRINT_SRC_ONLY:
3024 source_flag = SRC_LINE;
3025 break;
3026 case PRINT_NOTHING:
3027 source_flag = SRC_LINE; /* something bogus */
3028 do_frame_printing = 0;
3029 break;
3030 default:
3031 internal_error (__FILE__, __LINE__, "Unknown value.");
3032 }
3033 /* For mi, have the same behavior every time we stop:
3034 print everything but the source line. */
3035 if (ui_out_is_mi_like_p (uiout))
3036 source_flag = LOC_AND_ADDRESS;
3037
3038 if (ui_out_is_mi_like_p (uiout))
3039 ui_out_field_int (uiout, "thread-id",
3040 pid_to_thread_id (inferior_ptid));
3041 /* The behavior of this routine with respect to the source
3042 flag is:
3043 SRC_LINE: Print only source line
3044 LOCATION: Print only location
3045 SRC_AND_LOC: Print location and source line */
3046 if (do_frame_printing)
3047 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3048
3049 /* Display the auto-display expressions. */
3050 do_displays ();
3051 }
3052 }
3053
3054 /* Save the function value return registers, if we care.
3055 We might be about to restore their previous contents. */
3056 if (proceed_to_finish)
3057 /* NB: The copy goes through to the target picking up the value of
3058 all the registers. */
3059 regcache_cpy (stop_registers, current_regcache);
3060
3061 if (stop_stack_dummy)
3062 {
3063 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3064 ends with a setting of the current frame, so we can use that
3065 next. */
3066 frame_pop (get_current_frame ());
3067 /* Set stop_pc to what it was before we called the function.
3068 Can't rely on restore_inferior_status because that only gets
3069 called if we don't stop in the called function. */
3070 stop_pc = read_pc ();
3071 select_frame (get_current_frame ());
3072 }
3073
3074 done:
3075 annotate_stopped ();
3076 observer_notify_normal_stop (stop_bpstat);
3077 }
3078
3079 static int
3080 hook_stop_stub (void *cmd)
3081 {
3082 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3083 return (0);
3084 }
3085 \f
3086 int
3087 signal_stop_state (int signo)
3088 {
3089 return signal_stop[signo];
3090 }
3091
3092 int
3093 signal_print_state (int signo)
3094 {
3095 return signal_print[signo];
3096 }
3097
3098 int
3099 signal_pass_state (int signo)
3100 {
3101 return signal_program[signo];
3102 }
3103
3104 int
3105 signal_stop_update (int signo, int state)
3106 {
3107 int ret = signal_stop[signo];
3108 signal_stop[signo] = state;
3109 return ret;
3110 }
3111
3112 int
3113 signal_print_update (int signo, int state)
3114 {
3115 int ret = signal_print[signo];
3116 signal_print[signo] = state;
3117 return ret;
3118 }
3119
3120 int
3121 signal_pass_update (int signo, int state)
3122 {
3123 int ret = signal_program[signo];
3124 signal_program[signo] = state;
3125 return ret;
3126 }
3127
3128 static void
3129 sig_print_header (void)
3130 {
3131 printf_filtered ("\
3132 Signal Stop\tPrint\tPass to program\tDescription\n");
3133 }
3134
3135 static void
3136 sig_print_info (enum target_signal oursig)
3137 {
3138 char *name = target_signal_to_name (oursig);
3139 int name_padding = 13 - strlen (name);
3140
3141 if (name_padding <= 0)
3142 name_padding = 0;
3143
3144 printf_filtered ("%s", name);
3145 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3146 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3147 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3148 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3149 printf_filtered ("%s\n", target_signal_to_string (oursig));
3150 }
3151
3152 /* Specify how various signals in the inferior should be handled. */
3153
3154 static void
3155 handle_command (char *args, int from_tty)
3156 {
3157 char **argv;
3158 int digits, wordlen;
3159 int sigfirst, signum, siglast;
3160 enum target_signal oursig;
3161 int allsigs;
3162 int nsigs;
3163 unsigned char *sigs;
3164 struct cleanup *old_chain;
3165
3166 if (args == NULL)
3167 {
3168 error_no_arg ("signal to handle");
3169 }
3170
3171 /* Allocate and zero an array of flags for which signals to handle. */
3172
3173 nsigs = (int) TARGET_SIGNAL_LAST;
3174 sigs = (unsigned char *) alloca (nsigs);
3175 memset (sigs, 0, nsigs);
3176
3177 /* Break the command line up into args. */
3178
3179 argv = buildargv (args);
3180 if (argv == NULL)
3181 {
3182 nomem (0);
3183 }
3184 old_chain = make_cleanup_freeargv (argv);
3185
3186 /* Walk through the args, looking for signal oursigs, signal names, and
3187 actions. Signal numbers and signal names may be interspersed with
3188 actions, with the actions being performed for all signals cumulatively
3189 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3190
3191 while (*argv != NULL)
3192 {
3193 wordlen = strlen (*argv);
3194 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3195 {;
3196 }
3197 allsigs = 0;
3198 sigfirst = siglast = -1;
3199
3200 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3201 {
3202 /* Apply action to all signals except those used by the
3203 debugger. Silently skip those. */
3204 allsigs = 1;
3205 sigfirst = 0;
3206 siglast = nsigs - 1;
3207 }
3208 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3209 {
3210 SET_SIGS (nsigs, sigs, signal_stop);
3211 SET_SIGS (nsigs, sigs, signal_print);
3212 }
3213 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3214 {
3215 UNSET_SIGS (nsigs, sigs, signal_program);
3216 }
3217 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3218 {
3219 SET_SIGS (nsigs, sigs, signal_print);
3220 }
3221 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3222 {
3223 SET_SIGS (nsigs, sigs, signal_program);
3224 }
3225 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3226 {
3227 UNSET_SIGS (nsigs, sigs, signal_stop);
3228 }
3229 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3230 {
3231 SET_SIGS (nsigs, sigs, signal_program);
3232 }
3233 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3234 {
3235 UNSET_SIGS (nsigs, sigs, signal_print);
3236 UNSET_SIGS (nsigs, sigs, signal_stop);
3237 }
3238 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3239 {
3240 UNSET_SIGS (nsigs, sigs, signal_program);
3241 }
3242 else if (digits > 0)
3243 {
3244 /* It is numeric. The numeric signal refers to our own
3245 internal signal numbering from target.h, not to host/target
3246 signal number. This is a feature; users really should be
3247 using symbolic names anyway, and the common ones like
3248 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3249
3250 sigfirst = siglast = (int)
3251 target_signal_from_command (atoi (*argv));
3252 if ((*argv)[digits] == '-')
3253 {
3254 siglast = (int)
3255 target_signal_from_command (atoi ((*argv) + digits + 1));
3256 }
3257 if (sigfirst > siglast)
3258 {
3259 /* Bet he didn't figure we'd think of this case... */
3260 signum = sigfirst;
3261 sigfirst = siglast;
3262 siglast = signum;
3263 }
3264 }
3265 else
3266 {
3267 oursig = target_signal_from_name (*argv);
3268 if (oursig != TARGET_SIGNAL_UNKNOWN)
3269 {
3270 sigfirst = siglast = (int) oursig;
3271 }
3272 else
3273 {
3274 /* Not a number and not a recognized flag word => complain. */
3275 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
3276 }
3277 }
3278
3279 /* If any signal numbers or symbol names were found, set flags for
3280 which signals to apply actions to. */
3281
3282 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3283 {
3284 switch ((enum target_signal) signum)
3285 {
3286 case TARGET_SIGNAL_TRAP:
3287 case TARGET_SIGNAL_INT:
3288 if (!allsigs && !sigs[signum])
3289 {
3290 if (query ("%s is used by the debugger.\n\
3291 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3292 {
3293 sigs[signum] = 1;
3294 }
3295 else
3296 {
3297 printf_unfiltered ("Not confirmed, unchanged.\n");
3298 gdb_flush (gdb_stdout);
3299 }
3300 }
3301 break;
3302 case TARGET_SIGNAL_0:
3303 case TARGET_SIGNAL_DEFAULT:
3304 case TARGET_SIGNAL_UNKNOWN:
3305 /* Make sure that "all" doesn't print these. */
3306 break;
3307 default:
3308 sigs[signum] = 1;
3309 break;
3310 }
3311 }
3312
3313 argv++;
3314 }
3315
3316 target_notice_signals (inferior_ptid);
3317
3318 if (from_tty)
3319 {
3320 /* Show the results. */
3321 sig_print_header ();
3322 for (signum = 0; signum < nsigs; signum++)
3323 {
3324 if (sigs[signum])
3325 {
3326 sig_print_info (signum);
3327 }
3328 }
3329 }
3330
3331 do_cleanups (old_chain);
3332 }
3333
3334 static void
3335 xdb_handle_command (char *args, int from_tty)
3336 {
3337 char **argv;
3338 struct cleanup *old_chain;
3339
3340 /* Break the command line up into args. */
3341
3342 argv = buildargv (args);
3343 if (argv == NULL)
3344 {
3345 nomem (0);
3346 }
3347 old_chain = make_cleanup_freeargv (argv);
3348 if (argv[1] != (char *) NULL)
3349 {
3350 char *argBuf;
3351 int bufLen;
3352
3353 bufLen = strlen (argv[0]) + 20;
3354 argBuf = (char *) xmalloc (bufLen);
3355 if (argBuf)
3356 {
3357 int validFlag = 1;
3358 enum target_signal oursig;
3359
3360 oursig = target_signal_from_name (argv[0]);
3361 memset (argBuf, 0, bufLen);
3362 if (strcmp (argv[1], "Q") == 0)
3363 sprintf (argBuf, "%s %s", argv[0], "noprint");
3364 else
3365 {
3366 if (strcmp (argv[1], "s") == 0)
3367 {
3368 if (!signal_stop[oursig])
3369 sprintf (argBuf, "%s %s", argv[0], "stop");
3370 else
3371 sprintf (argBuf, "%s %s", argv[0], "nostop");
3372 }
3373 else if (strcmp (argv[1], "i") == 0)
3374 {
3375 if (!signal_program[oursig])
3376 sprintf (argBuf, "%s %s", argv[0], "pass");
3377 else
3378 sprintf (argBuf, "%s %s", argv[0], "nopass");
3379 }
3380 else if (strcmp (argv[1], "r") == 0)
3381 {
3382 if (!signal_print[oursig])
3383 sprintf (argBuf, "%s %s", argv[0], "print");
3384 else
3385 sprintf (argBuf, "%s %s", argv[0], "noprint");
3386 }
3387 else
3388 validFlag = 0;
3389 }
3390 if (validFlag)
3391 handle_command (argBuf, from_tty);
3392 else
3393 printf_filtered ("Invalid signal handling flag.\n");
3394 if (argBuf)
3395 xfree (argBuf);
3396 }
3397 }
3398 do_cleanups (old_chain);
3399 }
3400
3401 /* Print current contents of the tables set by the handle command.
3402 It is possible we should just be printing signals actually used
3403 by the current target (but for things to work right when switching
3404 targets, all signals should be in the signal tables). */
3405
3406 static void
3407 signals_info (char *signum_exp, int from_tty)
3408 {
3409 enum target_signal oursig;
3410 sig_print_header ();
3411
3412 if (signum_exp)
3413 {
3414 /* First see if this is a symbol name. */
3415 oursig = target_signal_from_name (signum_exp);
3416 if (oursig == TARGET_SIGNAL_UNKNOWN)
3417 {
3418 /* No, try numeric. */
3419 oursig =
3420 target_signal_from_command (parse_and_eval_long (signum_exp));
3421 }
3422 sig_print_info (oursig);
3423 return;
3424 }
3425
3426 printf_filtered ("\n");
3427 /* These ugly casts brought to you by the native VAX compiler. */
3428 for (oursig = TARGET_SIGNAL_FIRST;
3429 (int) oursig < (int) TARGET_SIGNAL_LAST;
3430 oursig = (enum target_signal) ((int) oursig + 1))
3431 {
3432 QUIT;
3433
3434 if (oursig != TARGET_SIGNAL_UNKNOWN
3435 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3436 sig_print_info (oursig);
3437 }
3438
3439 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
3440 }
3441 \f
3442 struct inferior_status
3443 {
3444 enum target_signal stop_signal;
3445 CORE_ADDR stop_pc;
3446 bpstat stop_bpstat;
3447 int stop_step;
3448 int stop_stack_dummy;
3449 int stopped_by_random_signal;
3450 int trap_expected;
3451 CORE_ADDR step_range_start;
3452 CORE_ADDR step_range_end;
3453 struct frame_id step_frame_id;
3454 enum step_over_calls_kind step_over_calls;
3455 CORE_ADDR step_resume_break_address;
3456 int stop_after_trap;
3457 int stop_soon;
3458 struct regcache *stop_registers;
3459
3460 /* These are here because if call_function_by_hand has written some
3461 registers and then decides to call error(), we better not have changed
3462 any registers. */
3463 struct regcache *registers;
3464
3465 /* A frame unique identifier. */
3466 struct frame_id selected_frame_id;
3467
3468 int breakpoint_proceeded;
3469 int restore_stack_info;
3470 int proceed_to_finish;
3471 };
3472
3473 void
3474 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3475 LONGEST val)
3476 {
3477 int size = register_size (current_gdbarch, regno);
3478 void *buf = alloca (size);
3479 store_signed_integer (buf, size, val);
3480 regcache_raw_write (inf_status->registers, regno, buf);
3481 }
3482
3483 /* Save all of the information associated with the inferior<==>gdb
3484 connection. INF_STATUS is a pointer to a "struct inferior_status"
3485 (defined in inferior.h). */
3486
3487 struct inferior_status *
3488 save_inferior_status (int restore_stack_info)
3489 {
3490 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3491
3492 inf_status->stop_signal = stop_signal;
3493 inf_status->stop_pc = stop_pc;
3494 inf_status->stop_step = stop_step;
3495 inf_status->stop_stack_dummy = stop_stack_dummy;
3496 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3497 inf_status->trap_expected = trap_expected;
3498 inf_status->step_range_start = step_range_start;
3499 inf_status->step_range_end = step_range_end;
3500 inf_status->step_frame_id = step_frame_id;
3501 inf_status->step_over_calls = step_over_calls;
3502 inf_status->stop_after_trap = stop_after_trap;
3503 inf_status->stop_soon = stop_soon;
3504 /* Save original bpstat chain here; replace it with copy of chain.
3505 If caller's caller is walking the chain, they'll be happier if we
3506 hand them back the original chain when restore_inferior_status is
3507 called. */
3508 inf_status->stop_bpstat = stop_bpstat;
3509 stop_bpstat = bpstat_copy (stop_bpstat);
3510 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3511 inf_status->restore_stack_info = restore_stack_info;
3512 inf_status->proceed_to_finish = proceed_to_finish;
3513
3514 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
3515
3516 inf_status->registers = regcache_dup (current_regcache);
3517
3518 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
3519 return inf_status;
3520 }
3521
3522 static int
3523 restore_selected_frame (void *args)
3524 {
3525 struct frame_id *fid = (struct frame_id *) args;
3526 struct frame_info *frame;
3527
3528 frame = frame_find_by_id (*fid);
3529
3530 /* If inf_status->selected_frame_id is NULL, there was no previously
3531 selected frame. */
3532 if (frame == NULL)
3533 {
3534 warning ("Unable to restore previously selected frame.\n");
3535 return 0;
3536 }
3537
3538 select_frame (frame);
3539
3540 return (1);
3541 }
3542
3543 void
3544 restore_inferior_status (struct inferior_status *inf_status)
3545 {
3546 stop_signal = inf_status->stop_signal;
3547 stop_pc = inf_status->stop_pc;
3548 stop_step = inf_status->stop_step;
3549 stop_stack_dummy = inf_status->stop_stack_dummy;
3550 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3551 trap_expected = inf_status->trap_expected;
3552 step_range_start = inf_status->step_range_start;
3553 step_range_end = inf_status->step_range_end;
3554 step_frame_id = inf_status->step_frame_id;
3555 step_over_calls = inf_status->step_over_calls;
3556 stop_after_trap = inf_status->stop_after_trap;
3557 stop_soon = inf_status->stop_soon;
3558 bpstat_clear (&stop_bpstat);
3559 stop_bpstat = inf_status->stop_bpstat;
3560 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3561 proceed_to_finish = inf_status->proceed_to_finish;
3562
3563 /* FIXME: Is the restore of stop_registers always needed. */
3564 regcache_xfree (stop_registers);
3565 stop_registers = inf_status->stop_registers;
3566
3567 /* The inferior can be gone if the user types "print exit(0)"
3568 (and perhaps other times). */
3569 if (target_has_execution)
3570 /* NB: The register write goes through to the target. */
3571 regcache_cpy (current_regcache, inf_status->registers);
3572 regcache_xfree (inf_status->registers);
3573
3574 /* FIXME: If we are being called after stopping in a function which
3575 is called from gdb, we should not be trying to restore the
3576 selected frame; it just prints a spurious error message (The
3577 message is useful, however, in detecting bugs in gdb (like if gdb
3578 clobbers the stack)). In fact, should we be restoring the
3579 inferior status at all in that case? . */
3580
3581 if (target_has_stack && inf_status->restore_stack_info)
3582 {
3583 /* The point of catch_errors is that if the stack is clobbered,
3584 walking the stack might encounter a garbage pointer and
3585 error() trying to dereference it. */
3586 if (catch_errors
3587 (restore_selected_frame, &inf_status->selected_frame_id,
3588 "Unable to restore previously selected frame:\n",
3589 RETURN_MASK_ERROR) == 0)
3590 /* Error in restoring the selected frame. Select the innermost
3591 frame. */
3592 select_frame (get_current_frame ());
3593
3594 }
3595
3596 xfree (inf_status);
3597 }
3598
3599 static void
3600 do_restore_inferior_status_cleanup (void *sts)
3601 {
3602 restore_inferior_status (sts);
3603 }
3604
3605 struct cleanup *
3606 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3607 {
3608 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3609 }
3610
3611 void
3612 discard_inferior_status (struct inferior_status *inf_status)
3613 {
3614 /* See save_inferior_status for info on stop_bpstat. */
3615 bpstat_clear (&inf_status->stop_bpstat);
3616 regcache_xfree (inf_status->registers);
3617 regcache_xfree (inf_status->stop_registers);
3618 xfree (inf_status);
3619 }
3620
3621 int
3622 inferior_has_forked (int pid, int *child_pid)
3623 {
3624 struct target_waitstatus last;
3625 ptid_t last_ptid;
3626
3627 get_last_target_status (&last_ptid, &last);
3628
3629 if (last.kind != TARGET_WAITKIND_FORKED)
3630 return 0;
3631
3632 if (ptid_get_pid (last_ptid) != pid)
3633 return 0;
3634
3635 *child_pid = last.value.related_pid;
3636 return 1;
3637 }
3638
3639 int
3640 inferior_has_vforked (int pid, int *child_pid)
3641 {
3642 struct target_waitstatus last;
3643 ptid_t last_ptid;
3644
3645 get_last_target_status (&last_ptid, &last);
3646
3647 if (last.kind != TARGET_WAITKIND_VFORKED)
3648 return 0;
3649
3650 if (ptid_get_pid (last_ptid) != pid)
3651 return 0;
3652
3653 *child_pid = last.value.related_pid;
3654 return 1;
3655 }
3656
3657 int
3658 inferior_has_execd (int pid, char **execd_pathname)
3659 {
3660 struct target_waitstatus last;
3661 ptid_t last_ptid;
3662
3663 get_last_target_status (&last_ptid, &last);
3664
3665 if (last.kind != TARGET_WAITKIND_EXECD)
3666 return 0;
3667
3668 if (ptid_get_pid (last_ptid) != pid)
3669 return 0;
3670
3671 *execd_pathname = xstrdup (last.value.execd_pathname);
3672 return 1;
3673 }
3674
3675 /* Oft used ptids */
3676 ptid_t null_ptid;
3677 ptid_t minus_one_ptid;
3678
3679 /* Create a ptid given the necessary PID, LWP, and TID components. */
3680
3681 ptid_t
3682 ptid_build (int pid, long lwp, long tid)
3683 {
3684 ptid_t ptid;
3685
3686 ptid.pid = pid;
3687 ptid.lwp = lwp;
3688 ptid.tid = tid;
3689 return ptid;
3690 }
3691
3692 /* Create a ptid from just a pid. */
3693
3694 ptid_t
3695 pid_to_ptid (int pid)
3696 {
3697 return ptid_build (pid, 0, 0);
3698 }
3699
3700 /* Fetch the pid (process id) component from a ptid. */
3701
3702 int
3703 ptid_get_pid (ptid_t ptid)
3704 {
3705 return ptid.pid;
3706 }
3707
3708 /* Fetch the lwp (lightweight process) component from a ptid. */
3709
3710 long
3711 ptid_get_lwp (ptid_t ptid)
3712 {
3713 return ptid.lwp;
3714 }
3715
3716 /* Fetch the tid (thread id) component from a ptid. */
3717
3718 long
3719 ptid_get_tid (ptid_t ptid)
3720 {
3721 return ptid.tid;
3722 }
3723
3724 /* ptid_equal() is used to test equality of two ptids. */
3725
3726 int
3727 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3728 {
3729 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3730 && ptid1.tid == ptid2.tid);
3731 }
3732
3733 /* restore_inferior_ptid() will be used by the cleanup machinery
3734 to restore the inferior_ptid value saved in a call to
3735 save_inferior_ptid(). */
3736
3737 static void
3738 restore_inferior_ptid (void *arg)
3739 {
3740 ptid_t *saved_ptid_ptr = arg;
3741 inferior_ptid = *saved_ptid_ptr;
3742 xfree (arg);
3743 }
3744
3745 /* Save the value of inferior_ptid so that it may be restored by a
3746 later call to do_cleanups(). Returns the struct cleanup pointer
3747 needed for later doing the cleanup. */
3748
3749 struct cleanup *
3750 save_inferior_ptid (void)
3751 {
3752 ptid_t *saved_ptid_ptr;
3753
3754 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3755 *saved_ptid_ptr = inferior_ptid;
3756 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3757 }
3758 \f
3759
3760 static void
3761 build_infrun (void)
3762 {
3763 stop_registers = regcache_xmalloc (current_gdbarch);
3764 }
3765
3766 void
3767 _initialize_infrun (void)
3768 {
3769 int i;
3770 int numsigs;
3771 struct cmd_list_element *c;
3772
3773 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3774 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
3775
3776 add_info ("signals", signals_info,
3777 "What debugger does when program gets various signals.\n\
3778 Specify a signal as argument to print info on that signal only.");
3779 add_info_alias ("handle", "signals", 0);
3780
3781 add_com ("handle", class_run, handle_command,
3782 concat ("Specify how to handle a signal.\n\
3783 Args are signals and actions to apply to those signals.\n\
3784 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3785 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3786 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3787 The special arg \"all\" is recognized to mean all signals except those\n\
3788 used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3789 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3790 Stop means reenter debugger if this signal happens (implies print).\n\
3791 Print means print a message if this signal happens.\n\
3792 Pass means let program see this signal; otherwise program doesn't know.\n\
3793 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3794 Pass and Stop may be combined.", NULL));
3795 if (xdb_commands)
3796 {
3797 add_com ("lz", class_info, signals_info,
3798 "What debugger does when program gets various signals.\n\
3799 Specify a signal as argument to print info on that signal only.");
3800 add_com ("z", class_run, xdb_handle_command,
3801 concat ("Specify how to handle a signal.\n\
3802 Args are signals and actions to apply to those signals.\n\
3803 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3804 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3805 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3806 The special arg \"all\" is recognized to mean all signals except those\n\
3807 used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"s\" (toggles between stop and nostop), \n\
3808 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3809 nopass), \"Q\" (noprint)\n\
3810 Stop means reenter debugger if this signal happens (implies print).\n\
3811 Print means print a message if this signal happens.\n\
3812 Pass means let program see this signal; otherwise program doesn't know.\n\
3813 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3814 Pass and Stop may be combined.", NULL));
3815 }
3816
3817 if (!dbx_commands)
3818 stop_command =
3819 add_cmd ("stop", class_obscure, not_just_help_class_command, "There is no `stop' command, but you can set a hook on `stop'.\n\
3820 This allows you to set a list of commands to be run each time execution\n\
3821 of the program stops.", &cmdlist);
3822
3823 add_set_cmd ("infrun", class_maintenance, var_zinteger,
3824 &debug_infrun, "Set inferior debugging.\n\
3825 When non-zero, inferior specific debugging is enabled.", &setdebuglist);
3826
3827 numsigs = (int) TARGET_SIGNAL_LAST;
3828 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
3829 signal_print = (unsigned char *)
3830 xmalloc (sizeof (signal_print[0]) * numsigs);
3831 signal_program = (unsigned char *)
3832 xmalloc (sizeof (signal_program[0]) * numsigs);
3833 for (i = 0; i < numsigs; i++)
3834 {
3835 signal_stop[i] = 1;
3836 signal_print[i] = 1;
3837 signal_program[i] = 1;
3838 }
3839
3840 /* Signals caused by debugger's own actions
3841 should not be given to the program afterwards. */
3842 signal_program[TARGET_SIGNAL_TRAP] = 0;
3843 signal_program[TARGET_SIGNAL_INT] = 0;
3844
3845 /* Signals that are not errors should not normally enter the debugger. */
3846 signal_stop[TARGET_SIGNAL_ALRM] = 0;
3847 signal_print[TARGET_SIGNAL_ALRM] = 0;
3848 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
3849 signal_print[TARGET_SIGNAL_VTALRM] = 0;
3850 signal_stop[TARGET_SIGNAL_PROF] = 0;
3851 signal_print[TARGET_SIGNAL_PROF] = 0;
3852 signal_stop[TARGET_SIGNAL_CHLD] = 0;
3853 signal_print[TARGET_SIGNAL_CHLD] = 0;
3854 signal_stop[TARGET_SIGNAL_IO] = 0;
3855 signal_print[TARGET_SIGNAL_IO] = 0;
3856 signal_stop[TARGET_SIGNAL_POLL] = 0;
3857 signal_print[TARGET_SIGNAL_POLL] = 0;
3858 signal_stop[TARGET_SIGNAL_URG] = 0;
3859 signal_print[TARGET_SIGNAL_URG] = 0;
3860 signal_stop[TARGET_SIGNAL_WINCH] = 0;
3861 signal_print[TARGET_SIGNAL_WINCH] = 0;
3862
3863 /* These signals are used internally by user-level thread
3864 implementations. (See signal(5) on Solaris.) Like the above
3865 signals, a healthy program receives and handles them as part of
3866 its normal operation. */
3867 signal_stop[TARGET_SIGNAL_LWP] = 0;
3868 signal_print[TARGET_SIGNAL_LWP] = 0;
3869 signal_stop[TARGET_SIGNAL_WAITING] = 0;
3870 signal_print[TARGET_SIGNAL_WAITING] = 0;
3871 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
3872 signal_print[TARGET_SIGNAL_CANCEL] = 0;
3873
3874 #ifdef SOLIB_ADD
3875 deprecated_add_show_from_set
3876 (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger,
3877 (char *) &stop_on_solib_events,
3878 "Set stopping for shared library events.\n\
3879 If nonzero, gdb will give control to the user when the dynamic linker\n\
3880 notifies gdb of shared library events. The most common event of interest\n\
3881 to the user would be loading/unloading of a new library.\n", &setlist), &showlist);
3882 #endif
3883
3884 c = add_set_enum_cmd ("follow-fork-mode",
3885 class_run,
3886 follow_fork_mode_kind_names, &follow_fork_mode_string,
3887 "Set debugger response to a program call of fork \
3888 or vfork.\n\
3889 A fork or vfork creates a new process. follow-fork-mode can be:\n\
3890 parent - the original process is debugged after a fork\n\
3891 child - the new process is debugged after a fork\n\
3892 The unfollowed process will continue to run.\n\
3893 By default, the debugger will follow the parent process.", &setlist);
3894 deprecated_add_show_from_set (c, &showlist);
3895
3896 c = add_set_enum_cmd ("scheduler-locking", class_run, scheduler_enums, /* array of string names */
3897 &scheduler_mode, /* current mode */
3898 "Set mode for locking scheduler during execution.\n\
3899 off == no locking (threads may preempt at any time)\n\
3900 on == full locking (no thread except the current thread may run)\n\
3901 step == scheduler locked during every single-step operation.\n\
3902 In this mode, no other thread may run during a step command.\n\
3903 Other threads may run while stepping over a function call ('next').", &setlist);
3904
3905 set_cmd_sfunc (c, set_schedlock_func); /* traps on target vector */
3906 deprecated_add_show_from_set (c, &showlist);
3907
3908 c = add_set_cmd ("step-mode", class_run,
3909 var_boolean, (char *) &step_stop_if_no_debug,
3910 "Set mode of the step operation. When set, doing a step over a\n\
3911 function without debug line information will stop at the first\n\
3912 instruction of that function. Otherwise, the function is skipped and\n\
3913 the step command stops at a different source line.", &setlist);
3914 deprecated_add_show_from_set (c, &showlist);
3915
3916 /* ptid initializations */
3917 null_ptid = ptid_build (0, 0, 0);
3918 minus_one_ptid = ptid_build (-1, 0, 0);
3919 inferior_ptid = null_ptid;
3920 target_last_wait_ptid = minus_one_ptid;
3921 }
This page took 0.137533 seconds and 4 git commands to generate.