b25d7459b2abf97ef81502aea2e7b0824452ce54
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2018 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observable.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63 #include "solist.h"
64 #include "event-loop.h"
65 #include "thread-fsm.h"
66 #include "common/enum-flags.h"
67 #include "progspace-and-thread.h"
68 #include "common/gdb_optional.h"
69 #include "arch-utils.h"
70
71 /* Prototypes for local functions */
72
73 static void sig_print_info (enum gdb_signal);
74
75 static void sig_print_header (void);
76
77 static int follow_fork (void);
78
79 static int follow_fork_inferior (int follow_child, int detach_fork);
80
81 static void follow_inferior_reset_breakpoints (void);
82
83 static int currently_stepping (struct thread_info *tp);
84
85 void nullify_last_target_wait_ptid (void);
86
87 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
88
89 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
90
91 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
92
93 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
94
95 static void resume (gdb_signal sig);
96
97 /* Asynchronous signal handler registered as event loop source for
98 when we have pending events ready to be passed to the core. */
99 static struct async_event_handler *infrun_async_inferior_event_token;
100
101 /* Stores whether infrun_async was previously enabled or disabled.
102 Starts off as -1, indicating "never enabled/disabled". */
103 static int infrun_is_async = -1;
104
105 /* See infrun.h. */
106
107 void
108 infrun_async (int enable)
109 {
110 if (infrun_is_async != enable)
111 {
112 infrun_is_async = enable;
113
114 if (debug_infrun)
115 fprintf_unfiltered (gdb_stdlog,
116 "infrun: infrun_async(%d)\n",
117 enable);
118
119 if (enable)
120 mark_async_event_handler (infrun_async_inferior_event_token);
121 else
122 clear_async_event_handler (infrun_async_inferior_event_token);
123 }
124 }
125
126 /* See infrun.h. */
127
128 void
129 mark_infrun_async_event_handler (void)
130 {
131 mark_async_event_handler (infrun_async_inferior_event_token);
132 }
133
134 /* When set, stop the 'step' command if we enter a function which has
135 no line number information. The normal behavior is that we step
136 over such function. */
137 int step_stop_if_no_debug = 0;
138 static void
139 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
140 struct cmd_list_element *c, const char *value)
141 {
142 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
143 }
144
145 /* proceed and normal_stop use this to notify the user when the
146 inferior stopped in a different thread than it had been running
147 in. */
148
149 static ptid_t previous_inferior_ptid;
150
151 /* If set (default for legacy reasons), when following a fork, GDB
152 will detach from one of the fork branches, child or parent.
153 Exactly which branch is detached depends on 'set follow-fork-mode'
154 setting. */
155
156 static int detach_fork = 1;
157
158 int debug_displaced = 0;
159 static void
160 show_debug_displaced (struct ui_file *file, int from_tty,
161 struct cmd_list_element *c, const char *value)
162 {
163 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
164 }
165
166 unsigned int debug_infrun = 0;
167 static void
168 show_debug_infrun (struct ui_file *file, int from_tty,
169 struct cmd_list_element *c, const char *value)
170 {
171 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
172 }
173
174
175 /* Support for disabling address space randomization. */
176
177 int disable_randomization = 1;
178
179 static void
180 show_disable_randomization (struct ui_file *file, int from_tty,
181 struct cmd_list_element *c, const char *value)
182 {
183 if (target_supports_disable_randomization ())
184 fprintf_filtered (file,
185 _("Disabling randomization of debuggee's "
186 "virtual address space is %s.\n"),
187 value);
188 else
189 fputs_filtered (_("Disabling randomization of debuggee's "
190 "virtual address space is unsupported on\n"
191 "this platform.\n"), file);
192 }
193
194 static void
195 set_disable_randomization (const char *args, int from_tty,
196 struct cmd_list_element *c)
197 {
198 if (!target_supports_disable_randomization ())
199 error (_("Disabling randomization of debuggee's "
200 "virtual address space is unsupported on\n"
201 "this platform."));
202 }
203
204 /* User interface for non-stop mode. */
205
206 int non_stop = 0;
207 static int non_stop_1 = 0;
208
209 static void
210 set_non_stop (const char *args, int from_tty,
211 struct cmd_list_element *c)
212 {
213 if (target_has_execution)
214 {
215 non_stop_1 = non_stop;
216 error (_("Cannot change this setting while the inferior is running."));
217 }
218
219 non_stop = non_stop_1;
220 }
221
222 static void
223 show_non_stop (struct ui_file *file, int from_tty,
224 struct cmd_list_element *c, const char *value)
225 {
226 fprintf_filtered (file,
227 _("Controlling the inferior in non-stop mode is %s.\n"),
228 value);
229 }
230
231 /* "Observer mode" is somewhat like a more extreme version of
232 non-stop, in which all GDB operations that might affect the
233 target's execution have been disabled. */
234
235 int observer_mode = 0;
236 static int observer_mode_1 = 0;
237
238 static void
239 set_observer_mode (const char *args, int from_tty,
240 struct cmd_list_element *c)
241 {
242 if (target_has_execution)
243 {
244 observer_mode_1 = observer_mode;
245 error (_("Cannot change this setting while the inferior is running."));
246 }
247
248 observer_mode = observer_mode_1;
249
250 may_write_registers = !observer_mode;
251 may_write_memory = !observer_mode;
252 may_insert_breakpoints = !observer_mode;
253 may_insert_tracepoints = !observer_mode;
254 /* We can insert fast tracepoints in or out of observer mode,
255 but enable them if we're going into this mode. */
256 if (observer_mode)
257 may_insert_fast_tracepoints = 1;
258 may_stop = !observer_mode;
259 update_target_permissions ();
260
261 /* Going *into* observer mode we must force non-stop, then
262 going out we leave it that way. */
263 if (observer_mode)
264 {
265 pagination_enabled = 0;
266 non_stop = non_stop_1 = 1;
267 }
268
269 if (from_tty)
270 printf_filtered (_("Observer mode is now %s.\n"),
271 (observer_mode ? "on" : "off"));
272 }
273
274 static void
275 show_observer_mode (struct ui_file *file, int from_tty,
276 struct cmd_list_element *c, const char *value)
277 {
278 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
279 }
280
281 /* This updates the value of observer mode based on changes in
282 permissions. Note that we are deliberately ignoring the values of
283 may-write-registers and may-write-memory, since the user may have
284 reason to enable these during a session, for instance to turn on a
285 debugging-related global. */
286
287 void
288 update_observer_mode (void)
289 {
290 int newval;
291
292 newval = (!may_insert_breakpoints
293 && !may_insert_tracepoints
294 && may_insert_fast_tracepoints
295 && !may_stop
296 && non_stop);
297
298 /* Let the user know if things change. */
299 if (newval != observer_mode)
300 printf_filtered (_("Observer mode is now %s.\n"),
301 (newval ? "on" : "off"));
302
303 observer_mode = observer_mode_1 = newval;
304 }
305
306 /* Tables of how to react to signals; the user sets them. */
307
308 static unsigned char *signal_stop;
309 static unsigned char *signal_print;
310 static unsigned char *signal_program;
311
312 /* Table of signals that are registered with "catch signal". A
313 non-zero entry indicates that the signal is caught by some "catch
314 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
315 signals. */
316 static unsigned char *signal_catch;
317
318 /* Table of signals that the target may silently handle.
319 This is automatically determined from the flags above,
320 and simply cached here. */
321 static unsigned char *signal_pass;
322
323 #define SET_SIGS(nsigs,sigs,flags) \
324 do { \
325 int signum = (nsigs); \
326 while (signum-- > 0) \
327 if ((sigs)[signum]) \
328 (flags)[signum] = 1; \
329 } while (0)
330
331 #define UNSET_SIGS(nsigs,sigs,flags) \
332 do { \
333 int signum = (nsigs); \
334 while (signum-- > 0) \
335 if ((sigs)[signum]) \
336 (flags)[signum] = 0; \
337 } while (0)
338
339 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
340 this function is to avoid exporting `signal_program'. */
341
342 void
343 update_signals_program_target (void)
344 {
345 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
346 }
347
348 /* Value to pass to target_resume() to cause all threads to resume. */
349
350 #define RESUME_ALL minus_one_ptid
351
352 /* Command list pointer for the "stop" placeholder. */
353
354 static struct cmd_list_element *stop_command;
355
356 /* Nonzero if we want to give control to the user when we're notified
357 of shared library events by the dynamic linker. */
358 int stop_on_solib_events;
359
360 /* Enable or disable optional shared library event breakpoints
361 as appropriate when the above flag is changed. */
362
363 static void
364 set_stop_on_solib_events (const char *args,
365 int from_tty, struct cmd_list_element *c)
366 {
367 update_solib_breakpoints ();
368 }
369
370 static void
371 show_stop_on_solib_events (struct ui_file *file, int from_tty,
372 struct cmd_list_element *c, const char *value)
373 {
374 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
375 value);
376 }
377
378 /* Nonzero after stop if current stack frame should be printed. */
379
380 static int stop_print_frame;
381
382 /* This is a cached copy of the pid/waitstatus of the last event
383 returned by target_wait()/deprecated_target_wait_hook(). This
384 information is returned by get_last_target_status(). */
385 static ptid_t target_last_wait_ptid;
386 static struct target_waitstatus target_last_waitstatus;
387
388 void init_thread_stepping_state (struct thread_info *tss);
389
390 static const char follow_fork_mode_child[] = "child";
391 static const char follow_fork_mode_parent[] = "parent";
392
393 static const char *const follow_fork_mode_kind_names[] = {
394 follow_fork_mode_child,
395 follow_fork_mode_parent,
396 NULL
397 };
398
399 static const char *follow_fork_mode_string = follow_fork_mode_parent;
400 static void
401 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
402 struct cmd_list_element *c, const char *value)
403 {
404 fprintf_filtered (file,
405 _("Debugger response to a program "
406 "call of fork or vfork is \"%s\".\n"),
407 value);
408 }
409 \f
410
411 /* Handle changes to the inferior list based on the type of fork,
412 which process is being followed, and whether the other process
413 should be detached. On entry inferior_ptid must be the ptid of
414 the fork parent. At return inferior_ptid is the ptid of the
415 followed inferior. */
416
417 static int
418 follow_fork_inferior (int follow_child, int detach_fork)
419 {
420 int has_vforked;
421 ptid_t parent_ptid, child_ptid;
422
423 has_vforked = (inferior_thread ()->pending_follow.kind
424 == TARGET_WAITKIND_VFORKED);
425 parent_ptid = inferior_ptid;
426 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
427
428 if (has_vforked
429 && !non_stop /* Non-stop always resumes both branches. */
430 && current_ui->prompt_state == PROMPT_BLOCKED
431 && !(follow_child || detach_fork || sched_multi))
432 {
433 /* The parent stays blocked inside the vfork syscall until the
434 child execs or exits. If we don't let the child run, then
435 the parent stays blocked. If we're telling the parent to run
436 in the foreground, the user will not be able to ctrl-c to get
437 back the terminal, effectively hanging the debug session. */
438 fprintf_filtered (gdb_stderr, _("\
439 Can not resume the parent process over vfork in the foreground while\n\
440 holding the child stopped. Try \"set detach-on-fork\" or \
441 \"set schedule-multiple\".\n"));
442 /* FIXME output string > 80 columns. */
443 return 1;
444 }
445
446 if (!follow_child)
447 {
448 /* Detach new forked process? */
449 if (detach_fork)
450 {
451 /* Before detaching from the child, remove all breakpoints
452 from it. If we forked, then this has already been taken
453 care of by infrun.c. If we vforked however, any
454 breakpoint inserted in the parent is visible in the
455 child, even those added while stopped in a vfork
456 catchpoint. This will remove the breakpoints from the
457 parent also, but they'll be reinserted below. */
458 if (has_vforked)
459 {
460 /* Keep breakpoints list in sync. */
461 remove_breakpoints_inf (current_inferior ());
462 }
463
464 if (print_inferior_events)
465 {
466 /* Ensure that we have a process ptid. */
467 ptid_t process_ptid = ptid_t (child_ptid.pid ());
468
469 target_terminal::ours_for_output ();
470 fprintf_filtered (gdb_stdlog,
471 _("[Detaching after %s from child %s]\n"),
472 has_vforked ? "vfork" : "fork",
473 target_pid_to_str (process_ptid));
474 }
475 }
476 else
477 {
478 struct inferior *parent_inf, *child_inf;
479
480 /* Add process to GDB's tables. */
481 child_inf = add_inferior (child_ptid.pid ());
482
483 parent_inf = current_inferior ();
484 child_inf->attach_flag = parent_inf->attach_flag;
485 copy_terminal_info (child_inf, parent_inf);
486 child_inf->gdbarch = parent_inf->gdbarch;
487 copy_inferior_target_desc_info (child_inf, parent_inf);
488
489 scoped_restore_current_pspace_and_thread restore_pspace_thread;
490
491 inferior_ptid = child_ptid;
492 add_thread_silent (inferior_ptid);
493 set_current_inferior (child_inf);
494 child_inf->symfile_flags = SYMFILE_NO_READ;
495
496 /* If this is a vfork child, then the address-space is
497 shared with the parent. */
498 if (has_vforked)
499 {
500 child_inf->pspace = parent_inf->pspace;
501 child_inf->aspace = parent_inf->aspace;
502
503 /* The parent will be frozen until the child is done
504 with the shared region. Keep track of the
505 parent. */
506 child_inf->vfork_parent = parent_inf;
507 child_inf->pending_detach = 0;
508 parent_inf->vfork_child = child_inf;
509 parent_inf->pending_detach = 0;
510 }
511 else
512 {
513 child_inf->aspace = new_address_space ();
514 child_inf->pspace = new program_space (child_inf->aspace);
515 child_inf->removable = 1;
516 set_current_program_space (child_inf->pspace);
517 clone_program_space (child_inf->pspace, parent_inf->pspace);
518
519 /* Let the shared library layer (e.g., solib-svr4) learn
520 about this new process, relocate the cloned exec, pull
521 in shared libraries, and install the solib event
522 breakpoint. If a "cloned-VM" event was propagated
523 better throughout the core, this wouldn't be
524 required. */
525 solib_create_inferior_hook (0);
526 }
527 }
528
529 if (has_vforked)
530 {
531 struct inferior *parent_inf;
532
533 parent_inf = current_inferior ();
534
535 /* If we detached from the child, then we have to be careful
536 to not insert breakpoints in the parent until the child
537 is done with the shared memory region. However, if we're
538 staying attached to the child, then we can and should
539 insert breakpoints, so that we can debug it. A
540 subsequent child exec or exit is enough to know when does
541 the child stops using the parent's address space. */
542 parent_inf->waiting_for_vfork_done = detach_fork;
543 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
544 }
545 }
546 else
547 {
548 /* Follow the child. */
549 struct inferior *parent_inf, *child_inf;
550 struct program_space *parent_pspace;
551
552 if (print_inferior_events)
553 {
554 std::string parent_pid = target_pid_to_str (parent_ptid);
555 std::string child_pid = target_pid_to_str (child_ptid);
556
557 target_terminal::ours_for_output ();
558 fprintf_filtered (gdb_stdlog,
559 _("[Attaching after %s %s to child %s]\n"),
560 parent_pid.c_str (),
561 has_vforked ? "vfork" : "fork",
562 child_pid.c_str ());
563 }
564
565 /* Add the new inferior first, so that the target_detach below
566 doesn't unpush the target. */
567
568 child_inf = add_inferior (child_ptid.pid ());
569
570 parent_inf = current_inferior ();
571 child_inf->attach_flag = parent_inf->attach_flag;
572 copy_terminal_info (child_inf, parent_inf);
573 child_inf->gdbarch = parent_inf->gdbarch;
574 copy_inferior_target_desc_info (child_inf, parent_inf);
575
576 parent_pspace = parent_inf->pspace;
577
578 /* If we're vforking, we want to hold on to the parent until the
579 child exits or execs. At child exec or exit time we can
580 remove the old breakpoints from the parent and detach or
581 resume debugging it. Otherwise, detach the parent now; we'll
582 want to reuse it's program/address spaces, but we can't set
583 them to the child before removing breakpoints from the
584 parent, otherwise, the breakpoints module could decide to
585 remove breakpoints from the wrong process (since they'd be
586 assigned to the same address space). */
587
588 if (has_vforked)
589 {
590 gdb_assert (child_inf->vfork_parent == NULL);
591 gdb_assert (parent_inf->vfork_child == NULL);
592 child_inf->vfork_parent = parent_inf;
593 child_inf->pending_detach = 0;
594 parent_inf->vfork_child = child_inf;
595 parent_inf->pending_detach = detach_fork;
596 parent_inf->waiting_for_vfork_done = 0;
597 }
598 else if (detach_fork)
599 {
600 if (print_inferior_events)
601 {
602 /* Ensure that we have a process ptid. */
603 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
604
605 target_terminal::ours_for_output ();
606 fprintf_filtered (gdb_stdlog,
607 _("[Detaching after fork from "
608 "parent %s]\n"),
609 target_pid_to_str (process_ptid));
610 }
611
612 target_detach (parent_inf, 0);
613 }
614
615 /* Note that the detach above makes PARENT_INF dangling. */
616
617 /* Add the child thread to the appropriate lists, and switch to
618 this new thread, before cloning the program space, and
619 informing the solib layer about this new process. */
620
621 inferior_ptid = child_ptid;
622 add_thread_silent (inferior_ptid);
623 set_current_inferior (child_inf);
624
625 /* If this is a vfork child, then the address-space is shared
626 with the parent. If we detached from the parent, then we can
627 reuse the parent's program/address spaces. */
628 if (has_vforked || detach_fork)
629 {
630 child_inf->pspace = parent_pspace;
631 child_inf->aspace = child_inf->pspace->aspace;
632 }
633 else
634 {
635 child_inf->aspace = new_address_space ();
636 child_inf->pspace = new program_space (child_inf->aspace);
637 child_inf->removable = 1;
638 child_inf->symfile_flags = SYMFILE_NO_READ;
639 set_current_program_space (child_inf->pspace);
640 clone_program_space (child_inf->pspace, parent_pspace);
641
642 /* Let the shared library layer (e.g., solib-svr4) learn
643 about this new process, relocate the cloned exec, pull in
644 shared libraries, and install the solib event breakpoint.
645 If a "cloned-VM" event was propagated better throughout
646 the core, this wouldn't be required. */
647 solib_create_inferior_hook (0);
648 }
649 }
650
651 return target_follow_fork (follow_child, detach_fork);
652 }
653
654 /* Tell the target to follow the fork we're stopped at. Returns true
655 if the inferior should be resumed; false, if the target for some
656 reason decided it's best not to resume. */
657
658 static int
659 follow_fork (void)
660 {
661 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
662 int should_resume = 1;
663 struct thread_info *tp;
664
665 /* Copy user stepping state to the new inferior thread. FIXME: the
666 followed fork child thread should have a copy of most of the
667 parent thread structure's run control related fields, not just these.
668 Initialized to avoid "may be used uninitialized" warnings from gcc. */
669 struct breakpoint *step_resume_breakpoint = NULL;
670 struct breakpoint *exception_resume_breakpoint = NULL;
671 CORE_ADDR step_range_start = 0;
672 CORE_ADDR step_range_end = 0;
673 struct frame_id step_frame_id = { 0 };
674 struct thread_fsm *thread_fsm = NULL;
675
676 if (!non_stop)
677 {
678 ptid_t wait_ptid;
679 struct target_waitstatus wait_status;
680
681 /* Get the last target status returned by target_wait(). */
682 get_last_target_status (&wait_ptid, &wait_status);
683
684 /* If not stopped at a fork event, then there's nothing else to
685 do. */
686 if (wait_status.kind != TARGET_WAITKIND_FORKED
687 && wait_status.kind != TARGET_WAITKIND_VFORKED)
688 return 1;
689
690 /* Check if we switched over from WAIT_PTID, since the event was
691 reported. */
692 if (wait_ptid != minus_one_ptid
693 && inferior_ptid != wait_ptid)
694 {
695 /* We did. Switch back to WAIT_PTID thread, to tell the
696 target to follow it (in either direction). We'll
697 afterwards refuse to resume, and inform the user what
698 happened. */
699 thread_info *wait_thread
700 = find_thread_ptid (wait_ptid);
701 switch_to_thread (wait_thread);
702 should_resume = 0;
703 }
704 }
705
706 tp = inferior_thread ();
707
708 /* If there were any forks/vforks that were caught and are now to be
709 followed, then do so now. */
710 switch (tp->pending_follow.kind)
711 {
712 case TARGET_WAITKIND_FORKED:
713 case TARGET_WAITKIND_VFORKED:
714 {
715 ptid_t parent, child;
716
717 /* If the user did a next/step, etc, over a fork call,
718 preserve the stepping state in the fork child. */
719 if (follow_child && should_resume)
720 {
721 step_resume_breakpoint = clone_momentary_breakpoint
722 (tp->control.step_resume_breakpoint);
723 step_range_start = tp->control.step_range_start;
724 step_range_end = tp->control.step_range_end;
725 step_frame_id = tp->control.step_frame_id;
726 exception_resume_breakpoint
727 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
728 thread_fsm = tp->thread_fsm;
729
730 /* For now, delete the parent's sr breakpoint, otherwise,
731 parent/child sr breakpoints are considered duplicates,
732 and the child version will not be installed. Remove
733 this when the breakpoints module becomes aware of
734 inferiors and address spaces. */
735 delete_step_resume_breakpoint (tp);
736 tp->control.step_range_start = 0;
737 tp->control.step_range_end = 0;
738 tp->control.step_frame_id = null_frame_id;
739 delete_exception_resume_breakpoint (tp);
740 tp->thread_fsm = NULL;
741 }
742
743 parent = inferior_ptid;
744 child = tp->pending_follow.value.related_pid;
745
746 /* Set up inferior(s) as specified by the caller, and tell the
747 target to do whatever is necessary to follow either parent
748 or child. */
749 if (follow_fork_inferior (follow_child, detach_fork))
750 {
751 /* Target refused to follow, or there's some other reason
752 we shouldn't resume. */
753 should_resume = 0;
754 }
755 else
756 {
757 /* This pending follow fork event is now handled, one way
758 or another. The previous selected thread may be gone
759 from the lists by now, but if it is still around, need
760 to clear the pending follow request. */
761 tp = find_thread_ptid (parent);
762 if (tp)
763 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
764
765 /* This makes sure we don't try to apply the "Switched
766 over from WAIT_PID" logic above. */
767 nullify_last_target_wait_ptid ();
768
769 /* If we followed the child, switch to it... */
770 if (follow_child)
771 {
772 thread_info *child_thr = find_thread_ptid (child);
773 switch_to_thread (child_thr);
774
775 /* ... and preserve the stepping state, in case the
776 user was stepping over the fork call. */
777 if (should_resume)
778 {
779 tp = inferior_thread ();
780 tp->control.step_resume_breakpoint
781 = step_resume_breakpoint;
782 tp->control.step_range_start = step_range_start;
783 tp->control.step_range_end = step_range_end;
784 tp->control.step_frame_id = step_frame_id;
785 tp->control.exception_resume_breakpoint
786 = exception_resume_breakpoint;
787 tp->thread_fsm = thread_fsm;
788 }
789 else
790 {
791 /* If we get here, it was because we're trying to
792 resume from a fork catchpoint, but, the user
793 has switched threads away from the thread that
794 forked. In that case, the resume command
795 issued is most likely not applicable to the
796 child, so just warn, and refuse to resume. */
797 warning (_("Not resuming: switched threads "
798 "before following fork child."));
799 }
800
801 /* Reset breakpoints in the child as appropriate. */
802 follow_inferior_reset_breakpoints ();
803 }
804 }
805 }
806 break;
807 case TARGET_WAITKIND_SPURIOUS:
808 /* Nothing to follow. */
809 break;
810 default:
811 internal_error (__FILE__, __LINE__,
812 "Unexpected pending_follow.kind %d\n",
813 tp->pending_follow.kind);
814 break;
815 }
816
817 return should_resume;
818 }
819
820 static void
821 follow_inferior_reset_breakpoints (void)
822 {
823 struct thread_info *tp = inferior_thread ();
824
825 /* Was there a step_resume breakpoint? (There was if the user
826 did a "next" at the fork() call.) If so, explicitly reset its
827 thread number. Cloned step_resume breakpoints are disabled on
828 creation, so enable it here now that it is associated with the
829 correct thread.
830
831 step_resumes are a form of bp that are made to be per-thread.
832 Since we created the step_resume bp when the parent process
833 was being debugged, and now are switching to the child process,
834 from the breakpoint package's viewpoint, that's a switch of
835 "threads". We must update the bp's notion of which thread
836 it is for, or it'll be ignored when it triggers. */
837
838 if (tp->control.step_resume_breakpoint)
839 {
840 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
841 tp->control.step_resume_breakpoint->loc->enabled = 1;
842 }
843
844 /* Treat exception_resume breakpoints like step_resume breakpoints. */
845 if (tp->control.exception_resume_breakpoint)
846 {
847 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
848 tp->control.exception_resume_breakpoint->loc->enabled = 1;
849 }
850
851 /* Reinsert all breakpoints in the child. The user may have set
852 breakpoints after catching the fork, in which case those
853 were never set in the child, but only in the parent. This makes
854 sure the inserted breakpoints match the breakpoint list. */
855
856 breakpoint_re_set ();
857 insert_breakpoints ();
858 }
859
860 /* The child has exited or execed: resume threads of the parent the
861 user wanted to be executing. */
862
863 static int
864 proceed_after_vfork_done (struct thread_info *thread,
865 void *arg)
866 {
867 int pid = * (int *) arg;
868
869 if (thread->ptid.pid () == pid
870 && thread->state == THREAD_RUNNING
871 && !thread->executing
872 && !thread->stop_requested
873 && thread->suspend.stop_signal == GDB_SIGNAL_0)
874 {
875 if (debug_infrun)
876 fprintf_unfiltered (gdb_stdlog,
877 "infrun: resuming vfork parent thread %s\n",
878 target_pid_to_str (thread->ptid));
879
880 switch_to_thread (thread);
881 clear_proceed_status (0);
882 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
883 }
884
885 return 0;
886 }
887
888 /* Save/restore inferior_ptid, current program space and current
889 inferior. Only use this if the current context points at an exited
890 inferior (and therefore there's no current thread to save). */
891 class scoped_restore_exited_inferior
892 {
893 public:
894 scoped_restore_exited_inferior ()
895 : m_saved_ptid (&inferior_ptid)
896 {}
897
898 private:
899 scoped_restore_tmpl<ptid_t> m_saved_ptid;
900 scoped_restore_current_program_space m_pspace;
901 scoped_restore_current_inferior m_inferior;
902 };
903
904 /* Called whenever we notice an exec or exit event, to handle
905 detaching or resuming a vfork parent. */
906
907 static void
908 handle_vfork_child_exec_or_exit (int exec)
909 {
910 struct inferior *inf = current_inferior ();
911
912 if (inf->vfork_parent)
913 {
914 int resume_parent = -1;
915
916 /* This exec or exit marks the end of the shared memory region
917 between the parent and the child. If the user wanted to
918 detach from the parent, now is the time. */
919
920 if (inf->vfork_parent->pending_detach)
921 {
922 struct thread_info *tp;
923 struct program_space *pspace;
924 struct address_space *aspace;
925
926 /* follow-fork child, detach-on-fork on. */
927
928 inf->vfork_parent->pending_detach = 0;
929
930 gdb::optional<scoped_restore_exited_inferior>
931 maybe_restore_inferior;
932 gdb::optional<scoped_restore_current_pspace_and_thread>
933 maybe_restore_thread;
934
935 /* If we're handling a child exit, then inferior_ptid points
936 at the inferior's pid, not to a thread. */
937 if (!exec)
938 maybe_restore_inferior.emplace ();
939 else
940 maybe_restore_thread.emplace ();
941
942 /* We're letting loose of the parent. */
943 tp = any_live_thread_of_inferior (inf->vfork_parent);
944 switch_to_thread (tp);
945
946 /* We're about to detach from the parent, which implicitly
947 removes breakpoints from its address space. There's a
948 catch here: we want to reuse the spaces for the child,
949 but, parent/child are still sharing the pspace at this
950 point, although the exec in reality makes the kernel give
951 the child a fresh set of new pages. The problem here is
952 that the breakpoints module being unaware of this, would
953 likely chose the child process to write to the parent
954 address space. Swapping the child temporarily away from
955 the spaces has the desired effect. Yes, this is "sort
956 of" a hack. */
957
958 pspace = inf->pspace;
959 aspace = inf->aspace;
960 inf->aspace = NULL;
961 inf->pspace = NULL;
962
963 if (print_inferior_events)
964 {
965 const char *pidstr
966 = target_pid_to_str (ptid_t (inf->vfork_parent->pid));
967
968 target_terminal::ours_for_output ();
969
970 if (exec)
971 {
972 fprintf_filtered (gdb_stdlog,
973 _("[Detaching vfork parent %s "
974 "after child exec]\n"), pidstr);
975 }
976 else
977 {
978 fprintf_filtered (gdb_stdlog,
979 _("[Detaching vfork parent %s "
980 "after child exit]\n"), pidstr);
981 }
982 }
983
984 target_detach (inf->vfork_parent, 0);
985
986 /* Put it back. */
987 inf->pspace = pspace;
988 inf->aspace = aspace;
989 }
990 else if (exec)
991 {
992 /* We're staying attached to the parent, so, really give the
993 child a new address space. */
994 inf->pspace = new program_space (maybe_new_address_space ());
995 inf->aspace = inf->pspace->aspace;
996 inf->removable = 1;
997 set_current_program_space (inf->pspace);
998
999 resume_parent = inf->vfork_parent->pid;
1000
1001 /* Break the bonds. */
1002 inf->vfork_parent->vfork_child = NULL;
1003 }
1004 else
1005 {
1006 struct program_space *pspace;
1007
1008 /* If this is a vfork child exiting, then the pspace and
1009 aspaces were shared with the parent. Since we're
1010 reporting the process exit, we'll be mourning all that is
1011 found in the address space, and switching to null_ptid,
1012 preparing to start a new inferior. But, since we don't
1013 want to clobber the parent's address/program spaces, we
1014 go ahead and create a new one for this exiting
1015 inferior. */
1016
1017 /* Switch to null_ptid while running clone_program_space, so
1018 that clone_program_space doesn't want to read the
1019 selected frame of a dead process. */
1020 scoped_restore restore_ptid
1021 = make_scoped_restore (&inferior_ptid, null_ptid);
1022
1023 /* This inferior is dead, so avoid giving the breakpoints
1024 module the option to write through to it (cloning a
1025 program space resets breakpoints). */
1026 inf->aspace = NULL;
1027 inf->pspace = NULL;
1028 pspace = new program_space (maybe_new_address_space ());
1029 set_current_program_space (pspace);
1030 inf->removable = 1;
1031 inf->symfile_flags = SYMFILE_NO_READ;
1032 clone_program_space (pspace, inf->vfork_parent->pspace);
1033 inf->pspace = pspace;
1034 inf->aspace = pspace->aspace;
1035
1036 resume_parent = inf->vfork_parent->pid;
1037 /* Break the bonds. */
1038 inf->vfork_parent->vfork_child = NULL;
1039 }
1040
1041 inf->vfork_parent = NULL;
1042
1043 gdb_assert (current_program_space == inf->pspace);
1044
1045 if (non_stop && resume_parent != -1)
1046 {
1047 /* If the user wanted the parent to be running, let it go
1048 free now. */
1049 scoped_restore_current_thread restore_thread;
1050
1051 if (debug_infrun)
1052 fprintf_unfiltered (gdb_stdlog,
1053 "infrun: resuming vfork parent process %d\n",
1054 resume_parent);
1055
1056 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1057 }
1058 }
1059 }
1060
1061 /* Enum strings for "set|show follow-exec-mode". */
1062
1063 static const char follow_exec_mode_new[] = "new";
1064 static const char follow_exec_mode_same[] = "same";
1065 static const char *const follow_exec_mode_names[] =
1066 {
1067 follow_exec_mode_new,
1068 follow_exec_mode_same,
1069 NULL,
1070 };
1071
1072 static const char *follow_exec_mode_string = follow_exec_mode_same;
1073 static void
1074 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1075 struct cmd_list_element *c, const char *value)
1076 {
1077 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1078 }
1079
1080 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1081
1082 static void
1083 follow_exec (ptid_t ptid, char *exec_file_target)
1084 {
1085 struct thread_info *th, *tmp;
1086 struct inferior *inf = current_inferior ();
1087 int pid = ptid.pid ();
1088 ptid_t process_ptid;
1089
1090 /* This is an exec event that we actually wish to pay attention to.
1091 Refresh our symbol table to the newly exec'd program, remove any
1092 momentary bp's, etc.
1093
1094 If there are breakpoints, they aren't really inserted now,
1095 since the exec() transformed our inferior into a fresh set
1096 of instructions.
1097
1098 We want to preserve symbolic breakpoints on the list, since
1099 we have hopes that they can be reset after the new a.out's
1100 symbol table is read.
1101
1102 However, any "raw" breakpoints must be removed from the list
1103 (e.g., the solib bp's), since their address is probably invalid
1104 now.
1105
1106 And, we DON'T want to call delete_breakpoints() here, since
1107 that may write the bp's "shadow contents" (the instruction
1108 value that was overwritten witha TRAP instruction). Since
1109 we now have a new a.out, those shadow contents aren't valid. */
1110
1111 mark_breakpoints_out ();
1112
1113 /* The target reports the exec event to the main thread, even if
1114 some other thread does the exec, and even if the main thread was
1115 stopped or already gone. We may still have non-leader threads of
1116 the process on our list. E.g., on targets that don't have thread
1117 exit events (like remote); or on native Linux in non-stop mode if
1118 there were only two threads in the inferior and the non-leader
1119 one is the one that execs (and nothing forces an update of the
1120 thread list up to here). When debugging remotely, it's best to
1121 avoid extra traffic, when possible, so avoid syncing the thread
1122 list with the target, and instead go ahead and delete all threads
1123 of the process but one that reported the event. Note this must
1124 be done before calling update_breakpoints_after_exec, as
1125 otherwise clearing the threads' resources would reference stale
1126 thread breakpoints -- it may have been one of these threads that
1127 stepped across the exec. We could just clear their stepping
1128 states, but as long as we're iterating, might as well delete
1129 them. Deleting them now rather than at the next user-visible
1130 stop provides a nicer sequence of events for user and MI
1131 notifications. */
1132 ALL_THREADS_SAFE (th, tmp)
1133 if (th->ptid.pid () == pid && th->ptid != ptid)
1134 delete_thread (th);
1135
1136 /* We also need to clear any left over stale state for the
1137 leader/event thread. E.g., if there was any step-resume
1138 breakpoint or similar, it's gone now. We cannot truly
1139 step-to-next statement through an exec(). */
1140 th = inferior_thread ();
1141 th->control.step_resume_breakpoint = NULL;
1142 th->control.exception_resume_breakpoint = NULL;
1143 th->control.single_step_breakpoints = NULL;
1144 th->control.step_range_start = 0;
1145 th->control.step_range_end = 0;
1146
1147 /* The user may have had the main thread held stopped in the
1148 previous image (e.g., schedlock on, or non-stop). Release
1149 it now. */
1150 th->stop_requested = 0;
1151
1152 update_breakpoints_after_exec ();
1153
1154 /* What is this a.out's name? */
1155 process_ptid = ptid_t (pid);
1156 printf_unfiltered (_("%s is executing new program: %s\n"),
1157 target_pid_to_str (process_ptid),
1158 exec_file_target);
1159
1160 /* We've followed the inferior through an exec. Therefore, the
1161 inferior has essentially been killed & reborn. */
1162
1163 gdb_flush (gdb_stdout);
1164
1165 breakpoint_init_inferior (inf_execd);
1166
1167 gdb::unique_xmalloc_ptr<char> exec_file_host
1168 = exec_file_find (exec_file_target, NULL);
1169
1170 /* If we were unable to map the executable target pathname onto a host
1171 pathname, tell the user that. Otherwise GDB's subsequent behavior
1172 is confusing. Maybe it would even be better to stop at this point
1173 so that the user can specify a file manually before continuing. */
1174 if (exec_file_host == NULL)
1175 warning (_("Could not load symbols for executable %s.\n"
1176 "Do you need \"set sysroot\"?"),
1177 exec_file_target);
1178
1179 /* Reset the shared library package. This ensures that we get a
1180 shlib event when the child reaches "_start", at which point the
1181 dld will have had a chance to initialize the child. */
1182 /* Also, loading a symbol file below may trigger symbol lookups, and
1183 we don't want those to be satisfied by the libraries of the
1184 previous incarnation of this process. */
1185 no_shared_libraries (NULL, 0);
1186
1187 if (follow_exec_mode_string == follow_exec_mode_new)
1188 {
1189 /* The user wants to keep the old inferior and program spaces
1190 around. Create a new fresh one, and switch to it. */
1191
1192 /* Do exit processing for the original inferior before adding
1193 the new inferior so we don't have two active inferiors with
1194 the same ptid, which can confuse find_inferior_ptid. */
1195 exit_inferior_silent (current_inferior ());
1196
1197 inf = add_inferior_with_spaces ();
1198 inf->pid = pid;
1199 target_follow_exec (inf, exec_file_target);
1200
1201 set_current_inferior (inf);
1202 set_current_program_space (inf->pspace);
1203 }
1204 else
1205 {
1206 /* The old description may no longer be fit for the new image.
1207 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1208 old description; we'll read a new one below. No need to do
1209 this on "follow-exec-mode new", as the old inferior stays
1210 around (its description is later cleared/refetched on
1211 restart). */
1212 target_clear_description ();
1213 }
1214
1215 gdb_assert (current_program_space == inf->pspace);
1216
1217 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1218 because the proper displacement for a PIE (Position Independent
1219 Executable) main symbol file will only be computed by
1220 solib_create_inferior_hook below. breakpoint_re_set would fail
1221 to insert the breakpoints with the zero displacement. */
1222 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1223
1224 /* If the target can specify a description, read it. Must do this
1225 after flipping to the new executable (because the target supplied
1226 description must be compatible with the executable's
1227 architecture, and the old executable may e.g., be 32-bit, while
1228 the new one 64-bit), and before anything involving memory or
1229 registers. */
1230 target_find_description ();
1231
1232 /* The add_thread call ends up reading registers, so do it after updating the
1233 target description. */
1234 if (follow_exec_mode_string == follow_exec_mode_new)
1235 add_thread (ptid);
1236
1237 solib_create_inferior_hook (0);
1238
1239 jit_inferior_created_hook ();
1240
1241 breakpoint_re_set ();
1242
1243 /* Reinsert all breakpoints. (Those which were symbolic have
1244 been reset to the proper address in the new a.out, thanks
1245 to symbol_file_command...). */
1246 insert_breakpoints ();
1247
1248 /* The next resume of this inferior should bring it to the shlib
1249 startup breakpoints. (If the user had also set bp's on
1250 "main" from the old (parent) process, then they'll auto-
1251 matically get reset there in the new process.). */
1252 }
1253
1254 /* The queue of threads that need to do a step-over operation to get
1255 past e.g., a breakpoint. What technique is used to step over the
1256 breakpoint/watchpoint does not matter -- all threads end up in the
1257 same queue, to maintain rough temporal order of execution, in order
1258 to avoid starvation, otherwise, we could e.g., find ourselves
1259 constantly stepping the same couple threads past their breakpoints
1260 over and over, if the single-step finish fast enough. */
1261 struct thread_info *step_over_queue_head;
1262
1263 /* Bit flags indicating what the thread needs to step over. */
1264
1265 enum step_over_what_flag
1266 {
1267 /* Step over a breakpoint. */
1268 STEP_OVER_BREAKPOINT = 1,
1269
1270 /* Step past a non-continuable watchpoint, in order to let the
1271 instruction execute so we can evaluate the watchpoint
1272 expression. */
1273 STEP_OVER_WATCHPOINT = 2
1274 };
1275 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1276
1277 /* Info about an instruction that is being stepped over. */
1278
1279 struct step_over_info
1280 {
1281 /* If we're stepping past a breakpoint, this is the address space
1282 and address of the instruction the breakpoint is set at. We'll
1283 skip inserting all breakpoints here. Valid iff ASPACE is
1284 non-NULL. */
1285 const address_space *aspace;
1286 CORE_ADDR address;
1287
1288 /* The instruction being stepped over triggers a nonsteppable
1289 watchpoint. If true, we'll skip inserting watchpoints. */
1290 int nonsteppable_watchpoint_p;
1291
1292 /* The thread's global number. */
1293 int thread;
1294 };
1295
1296 /* The step-over info of the location that is being stepped over.
1297
1298 Note that with async/breakpoint always-inserted mode, a user might
1299 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1300 being stepped over. As setting a new breakpoint inserts all
1301 breakpoints, we need to make sure the breakpoint being stepped over
1302 isn't inserted then. We do that by only clearing the step-over
1303 info when the step-over is actually finished (or aborted).
1304
1305 Presently GDB can only step over one breakpoint at any given time.
1306 Given threads that can't run code in the same address space as the
1307 breakpoint's can't really miss the breakpoint, GDB could be taught
1308 to step-over at most one breakpoint per address space (so this info
1309 could move to the address space object if/when GDB is extended).
1310 The set of breakpoints being stepped over will normally be much
1311 smaller than the set of all breakpoints, so a flag in the
1312 breakpoint location structure would be wasteful. A separate list
1313 also saves complexity and run-time, as otherwise we'd have to go
1314 through all breakpoint locations clearing their flag whenever we
1315 start a new sequence. Similar considerations weigh against storing
1316 this info in the thread object. Plus, not all step overs actually
1317 have breakpoint locations -- e.g., stepping past a single-step
1318 breakpoint, or stepping to complete a non-continuable
1319 watchpoint. */
1320 static struct step_over_info step_over_info;
1321
1322 /* Record the address of the breakpoint/instruction we're currently
1323 stepping over.
1324 N.B. We record the aspace and address now, instead of say just the thread,
1325 because when we need the info later the thread may be running. */
1326
1327 static void
1328 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1329 int nonsteppable_watchpoint_p,
1330 int thread)
1331 {
1332 step_over_info.aspace = aspace;
1333 step_over_info.address = address;
1334 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1335 step_over_info.thread = thread;
1336 }
1337
1338 /* Called when we're not longer stepping over a breakpoint / an
1339 instruction, so all breakpoints are free to be (re)inserted. */
1340
1341 static void
1342 clear_step_over_info (void)
1343 {
1344 if (debug_infrun)
1345 fprintf_unfiltered (gdb_stdlog,
1346 "infrun: clear_step_over_info\n");
1347 step_over_info.aspace = NULL;
1348 step_over_info.address = 0;
1349 step_over_info.nonsteppable_watchpoint_p = 0;
1350 step_over_info.thread = -1;
1351 }
1352
1353 /* See infrun.h. */
1354
1355 int
1356 stepping_past_instruction_at (struct address_space *aspace,
1357 CORE_ADDR address)
1358 {
1359 return (step_over_info.aspace != NULL
1360 && breakpoint_address_match (aspace, address,
1361 step_over_info.aspace,
1362 step_over_info.address));
1363 }
1364
1365 /* See infrun.h. */
1366
1367 int
1368 thread_is_stepping_over_breakpoint (int thread)
1369 {
1370 return (step_over_info.thread != -1
1371 && thread == step_over_info.thread);
1372 }
1373
1374 /* See infrun.h. */
1375
1376 int
1377 stepping_past_nonsteppable_watchpoint (void)
1378 {
1379 return step_over_info.nonsteppable_watchpoint_p;
1380 }
1381
1382 /* Returns true if step-over info is valid. */
1383
1384 static int
1385 step_over_info_valid_p (void)
1386 {
1387 return (step_over_info.aspace != NULL
1388 || stepping_past_nonsteppable_watchpoint ());
1389 }
1390
1391 \f
1392 /* Displaced stepping. */
1393
1394 /* In non-stop debugging mode, we must take special care to manage
1395 breakpoints properly; in particular, the traditional strategy for
1396 stepping a thread past a breakpoint it has hit is unsuitable.
1397 'Displaced stepping' is a tactic for stepping one thread past a
1398 breakpoint it has hit while ensuring that other threads running
1399 concurrently will hit the breakpoint as they should.
1400
1401 The traditional way to step a thread T off a breakpoint in a
1402 multi-threaded program in all-stop mode is as follows:
1403
1404 a0) Initially, all threads are stopped, and breakpoints are not
1405 inserted.
1406 a1) We single-step T, leaving breakpoints uninserted.
1407 a2) We insert breakpoints, and resume all threads.
1408
1409 In non-stop debugging, however, this strategy is unsuitable: we
1410 don't want to have to stop all threads in the system in order to
1411 continue or step T past a breakpoint. Instead, we use displaced
1412 stepping:
1413
1414 n0) Initially, T is stopped, other threads are running, and
1415 breakpoints are inserted.
1416 n1) We copy the instruction "under" the breakpoint to a separate
1417 location, outside the main code stream, making any adjustments
1418 to the instruction, register, and memory state as directed by
1419 T's architecture.
1420 n2) We single-step T over the instruction at its new location.
1421 n3) We adjust the resulting register and memory state as directed
1422 by T's architecture. This includes resetting T's PC to point
1423 back into the main instruction stream.
1424 n4) We resume T.
1425
1426 This approach depends on the following gdbarch methods:
1427
1428 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1429 indicate where to copy the instruction, and how much space must
1430 be reserved there. We use these in step n1.
1431
1432 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1433 address, and makes any necessary adjustments to the instruction,
1434 register contents, and memory. We use this in step n1.
1435
1436 - gdbarch_displaced_step_fixup adjusts registers and memory after
1437 we have successfuly single-stepped the instruction, to yield the
1438 same effect the instruction would have had if we had executed it
1439 at its original address. We use this in step n3.
1440
1441 The gdbarch_displaced_step_copy_insn and
1442 gdbarch_displaced_step_fixup functions must be written so that
1443 copying an instruction with gdbarch_displaced_step_copy_insn,
1444 single-stepping across the copied instruction, and then applying
1445 gdbarch_displaced_insn_fixup should have the same effects on the
1446 thread's memory and registers as stepping the instruction in place
1447 would have. Exactly which responsibilities fall to the copy and
1448 which fall to the fixup is up to the author of those functions.
1449
1450 See the comments in gdbarch.sh for details.
1451
1452 Note that displaced stepping and software single-step cannot
1453 currently be used in combination, although with some care I think
1454 they could be made to. Software single-step works by placing
1455 breakpoints on all possible subsequent instructions; if the
1456 displaced instruction is a PC-relative jump, those breakpoints
1457 could fall in very strange places --- on pages that aren't
1458 executable, or at addresses that are not proper instruction
1459 boundaries. (We do generally let other threads run while we wait
1460 to hit the software single-step breakpoint, and they might
1461 encounter such a corrupted instruction.) One way to work around
1462 this would be to have gdbarch_displaced_step_copy_insn fully
1463 simulate the effect of PC-relative instructions (and return NULL)
1464 on architectures that use software single-stepping.
1465
1466 In non-stop mode, we can have independent and simultaneous step
1467 requests, so more than one thread may need to simultaneously step
1468 over a breakpoint. The current implementation assumes there is
1469 only one scratch space per process. In this case, we have to
1470 serialize access to the scratch space. If thread A wants to step
1471 over a breakpoint, but we are currently waiting for some other
1472 thread to complete a displaced step, we leave thread A stopped and
1473 place it in the displaced_step_request_queue. Whenever a displaced
1474 step finishes, we pick the next thread in the queue and start a new
1475 displaced step operation on it. See displaced_step_prepare and
1476 displaced_step_fixup for details. */
1477
1478 /* Default destructor for displaced_step_closure. */
1479
1480 displaced_step_closure::~displaced_step_closure () = default;
1481
1482 /* Per-inferior displaced stepping state. */
1483 struct displaced_step_inferior_state
1484 {
1485 /* Pointer to next in linked list. */
1486 struct displaced_step_inferior_state *next;
1487
1488 /* The process this displaced step state refers to. */
1489 inferior *inf;
1490
1491 /* True if preparing a displaced step ever failed. If so, we won't
1492 try displaced stepping for this inferior again. */
1493 int failed_before;
1494
1495 /* If this is not nullptr, this is the thread carrying out a
1496 displaced single-step in process PID. This thread's state will
1497 require fixing up once it has completed its step. */
1498 thread_info *step_thread;
1499
1500 /* The architecture the thread had when we stepped it. */
1501 struct gdbarch *step_gdbarch;
1502
1503 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1504 for post-step cleanup. */
1505 struct displaced_step_closure *step_closure;
1506
1507 /* The address of the original instruction, and the copy we
1508 made. */
1509 CORE_ADDR step_original, step_copy;
1510
1511 /* Saved contents of copy area. */
1512 gdb_byte *step_saved_copy;
1513 };
1514
1515 /* The list of states of processes involved in displaced stepping
1516 presently. */
1517 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1518
1519 /* Get the displaced stepping state of process PID. */
1520
1521 static struct displaced_step_inferior_state *
1522 get_displaced_stepping_state (inferior *inf)
1523 {
1524 struct displaced_step_inferior_state *state;
1525
1526 for (state = displaced_step_inferior_states;
1527 state != NULL;
1528 state = state->next)
1529 if (state->inf == inf)
1530 return state;
1531
1532 return NULL;
1533 }
1534
1535 /* Returns true if any inferior has a thread doing a displaced
1536 step. */
1537
1538 static int
1539 displaced_step_in_progress_any_inferior (void)
1540 {
1541 struct displaced_step_inferior_state *state;
1542
1543 for (state = displaced_step_inferior_states;
1544 state != NULL;
1545 state = state->next)
1546 if (state->step_thread != nullptr)
1547 return 1;
1548
1549 return 0;
1550 }
1551
1552 /* Return true if thread represented by PTID is doing a displaced
1553 step. */
1554
1555 static int
1556 displaced_step_in_progress_thread (thread_info *thread)
1557 {
1558 struct displaced_step_inferior_state *displaced;
1559
1560 gdb_assert (thread != NULL);
1561
1562 displaced = get_displaced_stepping_state (thread->inf);
1563
1564 return (displaced != NULL && displaced->step_thread == thread);
1565 }
1566
1567 /* Return true if process PID has a thread doing a displaced step. */
1568
1569 static int
1570 displaced_step_in_progress (inferior *inf)
1571 {
1572 struct displaced_step_inferior_state *displaced;
1573
1574 displaced = get_displaced_stepping_state (inf);
1575 if (displaced != NULL && displaced->step_thread != nullptr)
1576 return 1;
1577
1578 return 0;
1579 }
1580
1581 /* Add a new displaced stepping state for process PID to the displaced
1582 stepping state list, or return a pointer to an already existing
1583 entry, if it already exists. Never returns NULL. */
1584
1585 static struct displaced_step_inferior_state *
1586 add_displaced_stepping_state (inferior *inf)
1587 {
1588 struct displaced_step_inferior_state *state;
1589
1590 for (state = displaced_step_inferior_states;
1591 state != NULL;
1592 state = state->next)
1593 if (state->inf == inf)
1594 return state;
1595
1596 state = XCNEW (struct displaced_step_inferior_state);
1597 state->inf = inf;
1598 state->next = displaced_step_inferior_states;
1599 displaced_step_inferior_states = state;
1600
1601 return state;
1602 }
1603
1604 /* If inferior is in displaced stepping, and ADDR equals to starting address
1605 of copy area, return corresponding displaced_step_closure. Otherwise,
1606 return NULL. */
1607
1608 struct displaced_step_closure*
1609 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1610 {
1611 struct displaced_step_inferior_state *displaced
1612 = get_displaced_stepping_state (current_inferior ());
1613
1614 /* If checking the mode of displaced instruction in copy area. */
1615 if (displaced != NULL
1616 && displaced->step_thread != nullptr
1617 && displaced->step_copy == addr)
1618 return displaced->step_closure;
1619
1620 return NULL;
1621 }
1622
1623 /* Remove the displaced stepping state of process PID. */
1624
1625 static void
1626 remove_displaced_stepping_state (inferior *inf)
1627 {
1628 struct displaced_step_inferior_state *it, **prev_next_p;
1629
1630 gdb_assert (inf != nullptr);
1631
1632 it = displaced_step_inferior_states;
1633 prev_next_p = &displaced_step_inferior_states;
1634 while (it)
1635 {
1636 if (it->inf == inf)
1637 {
1638 *prev_next_p = it->next;
1639 xfree (it);
1640 return;
1641 }
1642
1643 prev_next_p = &it->next;
1644 it = *prev_next_p;
1645 }
1646 }
1647
1648 static void
1649 infrun_inferior_exit (struct inferior *inf)
1650 {
1651 remove_displaced_stepping_state (inf);
1652 }
1653
1654 /* If ON, and the architecture supports it, GDB will use displaced
1655 stepping to step over breakpoints. If OFF, or if the architecture
1656 doesn't support it, GDB will instead use the traditional
1657 hold-and-step approach. If AUTO (which is the default), GDB will
1658 decide which technique to use to step over breakpoints depending on
1659 which of all-stop or non-stop mode is active --- displaced stepping
1660 in non-stop mode; hold-and-step in all-stop mode. */
1661
1662 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1663
1664 static void
1665 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1666 struct cmd_list_element *c,
1667 const char *value)
1668 {
1669 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1670 fprintf_filtered (file,
1671 _("Debugger's willingness to use displaced stepping "
1672 "to step over breakpoints is %s (currently %s).\n"),
1673 value, target_is_non_stop_p () ? "on" : "off");
1674 else
1675 fprintf_filtered (file,
1676 _("Debugger's willingness to use displaced stepping "
1677 "to step over breakpoints is %s.\n"), value);
1678 }
1679
1680 /* Return non-zero if displaced stepping can/should be used to step
1681 over breakpoints of thread TP. */
1682
1683 static int
1684 use_displaced_stepping (struct thread_info *tp)
1685 {
1686 struct regcache *regcache = get_thread_regcache (tp);
1687 struct gdbarch *gdbarch = regcache->arch ();
1688 struct displaced_step_inferior_state *displaced_state;
1689
1690 displaced_state = get_displaced_stepping_state (tp->inf);
1691
1692 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1693 && target_is_non_stop_p ())
1694 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1695 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1696 && find_record_target () == NULL
1697 && (displaced_state == NULL
1698 || !displaced_state->failed_before));
1699 }
1700
1701 /* Clean out any stray displaced stepping state. */
1702 static void
1703 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1704 {
1705 /* Indicate that there is no cleanup pending. */
1706 displaced->step_thread = nullptr;
1707
1708 delete displaced->step_closure;
1709 displaced->step_closure = NULL;
1710 }
1711
1712 static void
1713 displaced_step_clear_cleanup (void *arg)
1714 {
1715 struct displaced_step_inferior_state *state
1716 = (struct displaced_step_inferior_state *) arg;
1717
1718 displaced_step_clear (state);
1719 }
1720
1721 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1722 void
1723 displaced_step_dump_bytes (struct ui_file *file,
1724 const gdb_byte *buf,
1725 size_t len)
1726 {
1727 int i;
1728
1729 for (i = 0; i < len; i++)
1730 fprintf_unfiltered (file, "%02x ", buf[i]);
1731 fputs_unfiltered ("\n", file);
1732 }
1733
1734 /* Prepare to single-step, using displaced stepping.
1735
1736 Note that we cannot use displaced stepping when we have a signal to
1737 deliver. If we have a signal to deliver and an instruction to step
1738 over, then after the step, there will be no indication from the
1739 target whether the thread entered a signal handler or ignored the
1740 signal and stepped over the instruction successfully --- both cases
1741 result in a simple SIGTRAP. In the first case we mustn't do a
1742 fixup, and in the second case we must --- but we can't tell which.
1743 Comments in the code for 'random signals' in handle_inferior_event
1744 explain how we handle this case instead.
1745
1746 Returns 1 if preparing was successful -- this thread is going to be
1747 stepped now; 0 if displaced stepping this thread got queued; or -1
1748 if this instruction can't be displaced stepped. */
1749
1750 static int
1751 displaced_step_prepare_throw (thread_info *tp)
1752 {
1753 struct cleanup *ignore_cleanups;
1754 regcache *regcache = get_thread_regcache (tp);
1755 struct gdbarch *gdbarch = regcache->arch ();
1756 const address_space *aspace = regcache->aspace ();
1757 CORE_ADDR original, copy;
1758 ULONGEST len;
1759 struct displaced_step_closure *closure;
1760 struct displaced_step_inferior_state *displaced;
1761 int status;
1762
1763 /* We should never reach this function if the architecture does not
1764 support displaced stepping. */
1765 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1766
1767 /* Nor if the thread isn't meant to step over a breakpoint. */
1768 gdb_assert (tp->control.trap_expected);
1769
1770 /* Disable range stepping while executing in the scratch pad. We
1771 want a single-step even if executing the displaced instruction in
1772 the scratch buffer lands within the stepping range (e.g., a
1773 jump/branch). */
1774 tp->control.may_range_step = 0;
1775
1776 /* We have to displaced step one thread at a time, as we only have
1777 access to a single scratch space per inferior. */
1778
1779 displaced = add_displaced_stepping_state (tp->inf);
1780
1781 if (displaced->step_thread != nullptr)
1782 {
1783 /* Already waiting for a displaced step to finish. Defer this
1784 request and place in queue. */
1785
1786 if (debug_displaced)
1787 fprintf_unfiltered (gdb_stdlog,
1788 "displaced: deferring step of %s\n",
1789 target_pid_to_str (tp->ptid));
1790
1791 thread_step_over_chain_enqueue (tp);
1792 return 0;
1793 }
1794 else
1795 {
1796 if (debug_displaced)
1797 fprintf_unfiltered (gdb_stdlog,
1798 "displaced: stepping %s now\n",
1799 target_pid_to_str (tp->ptid));
1800 }
1801
1802 displaced_step_clear (displaced);
1803
1804 scoped_restore_current_thread restore_thread;
1805
1806 switch_to_thread (tp);
1807
1808 original = regcache_read_pc (regcache);
1809
1810 copy = gdbarch_displaced_step_location (gdbarch);
1811 len = gdbarch_max_insn_length (gdbarch);
1812
1813 if (breakpoint_in_range_p (aspace, copy, len))
1814 {
1815 /* There's a breakpoint set in the scratch pad location range
1816 (which is usually around the entry point). We'd either
1817 install it before resuming, which would overwrite/corrupt the
1818 scratch pad, or if it was already inserted, this displaced
1819 step would overwrite it. The latter is OK in the sense that
1820 we already assume that no thread is going to execute the code
1821 in the scratch pad range (after initial startup) anyway, but
1822 the former is unacceptable. Simply punt and fallback to
1823 stepping over this breakpoint in-line. */
1824 if (debug_displaced)
1825 {
1826 fprintf_unfiltered (gdb_stdlog,
1827 "displaced: breakpoint set in scratch pad. "
1828 "Stepping over breakpoint in-line instead.\n");
1829 }
1830
1831 return -1;
1832 }
1833
1834 /* Save the original contents of the copy area. */
1835 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
1836 ignore_cleanups = make_cleanup (free_current_contents,
1837 &displaced->step_saved_copy);
1838 status = target_read_memory (copy, displaced->step_saved_copy, len);
1839 if (status != 0)
1840 throw_error (MEMORY_ERROR,
1841 _("Error accessing memory address %s (%s) for "
1842 "displaced-stepping scratch space."),
1843 paddress (gdbarch, copy), safe_strerror (status));
1844 if (debug_displaced)
1845 {
1846 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1847 paddress (gdbarch, copy));
1848 displaced_step_dump_bytes (gdb_stdlog,
1849 displaced->step_saved_copy,
1850 len);
1851 };
1852
1853 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1854 original, copy, regcache);
1855 if (closure == NULL)
1856 {
1857 /* The architecture doesn't know how or want to displaced step
1858 this instruction or instruction sequence. Fallback to
1859 stepping over the breakpoint in-line. */
1860 do_cleanups (ignore_cleanups);
1861 return -1;
1862 }
1863
1864 /* Save the information we need to fix things up if the step
1865 succeeds. */
1866 displaced->step_thread = tp;
1867 displaced->step_gdbarch = gdbarch;
1868 displaced->step_closure = closure;
1869 displaced->step_original = original;
1870 displaced->step_copy = copy;
1871
1872 make_cleanup (displaced_step_clear_cleanup, displaced);
1873
1874 /* Resume execution at the copy. */
1875 regcache_write_pc (regcache, copy);
1876
1877 discard_cleanups (ignore_cleanups);
1878
1879 if (debug_displaced)
1880 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1881 paddress (gdbarch, copy));
1882
1883 return 1;
1884 }
1885
1886 /* Wrapper for displaced_step_prepare_throw that disabled further
1887 attempts at displaced stepping if we get a memory error. */
1888
1889 static int
1890 displaced_step_prepare (thread_info *thread)
1891 {
1892 int prepared = -1;
1893
1894 TRY
1895 {
1896 prepared = displaced_step_prepare_throw (thread);
1897 }
1898 CATCH (ex, RETURN_MASK_ERROR)
1899 {
1900 struct displaced_step_inferior_state *displaced_state;
1901
1902 if (ex.error != MEMORY_ERROR
1903 && ex.error != NOT_SUPPORTED_ERROR)
1904 throw_exception (ex);
1905
1906 if (debug_infrun)
1907 {
1908 fprintf_unfiltered (gdb_stdlog,
1909 "infrun: disabling displaced stepping: %s\n",
1910 ex.message);
1911 }
1912
1913 /* Be verbose if "set displaced-stepping" is "on", silent if
1914 "auto". */
1915 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1916 {
1917 warning (_("disabling displaced stepping: %s"),
1918 ex.message);
1919 }
1920
1921 /* Disable further displaced stepping attempts. */
1922 displaced_state
1923 = get_displaced_stepping_state (thread->inf);
1924 displaced_state->failed_before = 1;
1925 }
1926 END_CATCH
1927
1928 return prepared;
1929 }
1930
1931 static void
1932 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1933 const gdb_byte *myaddr, int len)
1934 {
1935 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1936
1937 inferior_ptid = ptid;
1938 write_memory (memaddr, myaddr, len);
1939 }
1940
1941 /* Restore the contents of the copy area for thread PTID. */
1942
1943 static void
1944 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1945 ptid_t ptid)
1946 {
1947 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1948
1949 write_memory_ptid (ptid, displaced->step_copy,
1950 displaced->step_saved_copy, len);
1951 if (debug_displaced)
1952 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1953 target_pid_to_str (ptid),
1954 paddress (displaced->step_gdbarch,
1955 displaced->step_copy));
1956 }
1957
1958 /* If we displaced stepped an instruction successfully, adjust
1959 registers and memory to yield the same effect the instruction would
1960 have had if we had executed it at its original address, and return
1961 1. If the instruction didn't complete, relocate the PC and return
1962 -1. If the thread wasn't displaced stepping, return 0. */
1963
1964 static int
1965 displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
1966 {
1967 struct cleanup *old_cleanups;
1968 struct displaced_step_inferior_state *displaced
1969 = get_displaced_stepping_state (event_thread->inf);
1970 int ret;
1971
1972 /* Was any thread of this process doing a displaced step? */
1973 if (displaced == NULL)
1974 return 0;
1975
1976 /* Was this event for the thread we displaced? */
1977 if (displaced->step_thread != event_thread)
1978 return 0;
1979
1980 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1981
1982 displaced_step_restore (displaced, displaced->step_thread->ptid);
1983
1984 /* Fixup may need to read memory/registers. Switch to the thread
1985 that we're fixing up. Also, target_stopped_by_watchpoint checks
1986 the current thread. */
1987 switch_to_thread (event_thread);
1988
1989 /* Did the instruction complete successfully? */
1990 if (signal == GDB_SIGNAL_TRAP
1991 && !(target_stopped_by_watchpoint ()
1992 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1993 || target_have_steppable_watchpoint)))
1994 {
1995 /* Fix up the resulting state. */
1996 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1997 displaced->step_closure,
1998 displaced->step_original,
1999 displaced->step_copy,
2000 get_thread_regcache (displaced->step_thread));
2001 ret = 1;
2002 }
2003 else
2004 {
2005 /* Since the instruction didn't complete, all we can do is
2006 relocate the PC. */
2007 struct regcache *regcache = get_thread_regcache (event_thread);
2008 CORE_ADDR pc = regcache_read_pc (regcache);
2009
2010 pc = displaced->step_original + (pc - displaced->step_copy);
2011 regcache_write_pc (regcache, pc);
2012 ret = -1;
2013 }
2014
2015 do_cleanups (old_cleanups);
2016
2017 displaced->step_thread = nullptr;
2018
2019 return ret;
2020 }
2021
2022 /* Data to be passed around while handling an event. This data is
2023 discarded between events. */
2024 struct execution_control_state
2025 {
2026 ptid_t ptid;
2027 /* The thread that got the event, if this was a thread event; NULL
2028 otherwise. */
2029 struct thread_info *event_thread;
2030
2031 struct target_waitstatus ws;
2032 int stop_func_filled_in;
2033 CORE_ADDR stop_func_start;
2034 CORE_ADDR stop_func_end;
2035 const char *stop_func_name;
2036 int wait_some_more;
2037
2038 /* True if the event thread hit the single-step breakpoint of
2039 another thread. Thus the event doesn't cause a stop, the thread
2040 needs to be single-stepped past the single-step breakpoint before
2041 we can switch back to the original stepping thread. */
2042 int hit_singlestep_breakpoint;
2043 };
2044
2045 /* Clear ECS and set it to point at TP. */
2046
2047 static void
2048 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2049 {
2050 memset (ecs, 0, sizeof (*ecs));
2051 ecs->event_thread = tp;
2052 ecs->ptid = tp->ptid;
2053 }
2054
2055 static void keep_going_pass_signal (struct execution_control_state *ecs);
2056 static void prepare_to_wait (struct execution_control_state *ecs);
2057 static int keep_going_stepped_thread (struct thread_info *tp);
2058 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
2059
2060 /* Are there any pending step-over requests? If so, run all we can
2061 now and return true. Otherwise, return false. */
2062
2063 static int
2064 start_step_over (void)
2065 {
2066 struct thread_info *tp, *next;
2067
2068 /* Don't start a new step-over if we already have an in-line
2069 step-over operation ongoing. */
2070 if (step_over_info_valid_p ())
2071 return 0;
2072
2073 for (tp = step_over_queue_head; tp != NULL; tp = next)
2074 {
2075 struct execution_control_state ecss;
2076 struct execution_control_state *ecs = &ecss;
2077 step_over_what step_what;
2078 int must_be_in_line;
2079
2080 gdb_assert (!tp->stop_requested);
2081
2082 next = thread_step_over_chain_next (tp);
2083
2084 /* If this inferior already has a displaced step in process,
2085 don't start a new one. */
2086 if (displaced_step_in_progress (tp->inf))
2087 continue;
2088
2089 step_what = thread_still_needs_step_over (tp);
2090 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2091 || ((step_what & STEP_OVER_BREAKPOINT)
2092 && !use_displaced_stepping (tp)));
2093
2094 /* We currently stop all threads of all processes to step-over
2095 in-line. If we need to start a new in-line step-over, let
2096 any pending displaced steps finish first. */
2097 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2098 return 0;
2099
2100 thread_step_over_chain_remove (tp);
2101
2102 if (step_over_queue_head == NULL)
2103 {
2104 if (debug_infrun)
2105 fprintf_unfiltered (gdb_stdlog,
2106 "infrun: step-over queue now empty\n");
2107 }
2108
2109 if (tp->control.trap_expected
2110 || tp->resumed
2111 || tp->executing)
2112 {
2113 internal_error (__FILE__, __LINE__,
2114 "[%s] has inconsistent state: "
2115 "trap_expected=%d, resumed=%d, executing=%d\n",
2116 target_pid_to_str (tp->ptid),
2117 tp->control.trap_expected,
2118 tp->resumed,
2119 tp->executing);
2120 }
2121
2122 if (debug_infrun)
2123 fprintf_unfiltered (gdb_stdlog,
2124 "infrun: resuming [%s] for step-over\n",
2125 target_pid_to_str (tp->ptid));
2126
2127 /* keep_going_pass_signal skips the step-over if the breakpoint
2128 is no longer inserted. In all-stop, we want to keep looking
2129 for a thread that needs a step-over instead of resuming TP,
2130 because we wouldn't be able to resume anything else until the
2131 target stops again. In non-stop, the resume always resumes
2132 only TP, so it's OK to let the thread resume freely. */
2133 if (!target_is_non_stop_p () && !step_what)
2134 continue;
2135
2136 switch_to_thread (tp);
2137 reset_ecs (ecs, tp);
2138 keep_going_pass_signal (ecs);
2139
2140 if (!ecs->wait_some_more)
2141 error (_("Command aborted."));
2142
2143 gdb_assert (tp->resumed);
2144
2145 /* If we started a new in-line step-over, we're done. */
2146 if (step_over_info_valid_p ())
2147 {
2148 gdb_assert (tp->control.trap_expected);
2149 return 1;
2150 }
2151
2152 if (!target_is_non_stop_p ())
2153 {
2154 /* On all-stop, shouldn't have resumed unless we needed a
2155 step over. */
2156 gdb_assert (tp->control.trap_expected
2157 || tp->step_after_step_resume_breakpoint);
2158
2159 /* With remote targets (at least), in all-stop, we can't
2160 issue any further remote commands until the program stops
2161 again. */
2162 return 1;
2163 }
2164
2165 /* Either the thread no longer needed a step-over, or a new
2166 displaced stepping sequence started. Even in the latter
2167 case, continue looking. Maybe we can also start another
2168 displaced step on a thread of other process. */
2169 }
2170
2171 return 0;
2172 }
2173
2174 /* Update global variables holding ptids to hold NEW_PTID if they were
2175 holding OLD_PTID. */
2176 static void
2177 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2178 {
2179 if (inferior_ptid == old_ptid)
2180 inferior_ptid = new_ptid;
2181 }
2182
2183 \f
2184
2185 static const char schedlock_off[] = "off";
2186 static const char schedlock_on[] = "on";
2187 static const char schedlock_step[] = "step";
2188 static const char schedlock_replay[] = "replay";
2189 static const char *const scheduler_enums[] = {
2190 schedlock_off,
2191 schedlock_on,
2192 schedlock_step,
2193 schedlock_replay,
2194 NULL
2195 };
2196 static const char *scheduler_mode = schedlock_replay;
2197 static void
2198 show_scheduler_mode (struct ui_file *file, int from_tty,
2199 struct cmd_list_element *c, const char *value)
2200 {
2201 fprintf_filtered (file,
2202 _("Mode for locking scheduler "
2203 "during execution is \"%s\".\n"),
2204 value);
2205 }
2206
2207 static void
2208 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2209 {
2210 if (!target_can_lock_scheduler)
2211 {
2212 scheduler_mode = schedlock_off;
2213 error (_("Target '%s' cannot support this command."), target_shortname);
2214 }
2215 }
2216
2217 /* True if execution commands resume all threads of all processes by
2218 default; otherwise, resume only threads of the current inferior
2219 process. */
2220 int sched_multi = 0;
2221
2222 /* Try to setup for software single stepping over the specified location.
2223 Return 1 if target_resume() should use hardware single step.
2224
2225 GDBARCH the current gdbarch.
2226 PC the location to step over. */
2227
2228 static int
2229 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2230 {
2231 int hw_step = 1;
2232
2233 if (execution_direction == EXEC_FORWARD
2234 && gdbarch_software_single_step_p (gdbarch))
2235 hw_step = !insert_single_step_breakpoints (gdbarch);
2236
2237 return hw_step;
2238 }
2239
2240 /* See infrun.h. */
2241
2242 ptid_t
2243 user_visible_resume_ptid (int step)
2244 {
2245 ptid_t resume_ptid;
2246
2247 if (non_stop)
2248 {
2249 /* With non-stop mode on, threads are always handled
2250 individually. */
2251 resume_ptid = inferior_ptid;
2252 }
2253 else if ((scheduler_mode == schedlock_on)
2254 || (scheduler_mode == schedlock_step && step))
2255 {
2256 /* User-settable 'scheduler' mode requires solo thread
2257 resume. */
2258 resume_ptid = inferior_ptid;
2259 }
2260 else if ((scheduler_mode == schedlock_replay)
2261 && target_record_will_replay (minus_one_ptid, execution_direction))
2262 {
2263 /* User-settable 'scheduler' mode requires solo thread resume in replay
2264 mode. */
2265 resume_ptid = inferior_ptid;
2266 }
2267 else if (!sched_multi && target_supports_multi_process ())
2268 {
2269 /* Resume all threads of the current process (and none of other
2270 processes). */
2271 resume_ptid = ptid_t (inferior_ptid.pid ());
2272 }
2273 else
2274 {
2275 /* Resume all threads of all processes. */
2276 resume_ptid = RESUME_ALL;
2277 }
2278
2279 return resume_ptid;
2280 }
2281
2282 /* Return a ptid representing the set of threads that we will resume,
2283 in the perspective of the target, assuming run control handling
2284 does not require leaving some threads stopped (e.g., stepping past
2285 breakpoint). USER_STEP indicates whether we're about to start the
2286 target for a stepping command. */
2287
2288 static ptid_t
2289 internal_resume_ptid (int user_step)
2290 {
2291 /* In non-stop, we always control threads individually. Note that
2292 the target may always work in non-stop mode even with "set
2293 non-stop off", in which case user_visible_resume_ptid could
2294 return a wildcard ptid. */
2295 if (target_is_non_stop_p ())
2296 return inferior_ptid;
2297 else
2298 return user_visible_resume_ptid (user_step);
2299 }
2300
2301 /* Wrapper for target_resume, that handles infrun-specific
2302 bookkeeping. */
2303
2304 static void
2305 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2306 {
2307 struct thread_info *tp = inferior_thread ();
2308
2309 gdb_assert (!tp->stop_requested);
2310
2311 /* Install inferior's terminal modes. */
2312 target_terminal::inferior ();
2313
2314 /* Avoid confusing the next resume, if the next stop/resume
2315 happens to apply to another thread. */
2316 tp->suspend.stop_signal = GDB_SIGNAL_0;
2317
2318 /* Advise target which signals may be handled silently.
2319
2320 If we have removed breakpoints because we are stepping over one
2321 in-line (in any thread), we need to receive all signals to avoid
2322 accidentally skipping a breakpoint during execution of a signal
2323 handler.
2324
2325 Likewise if we're displaced stepping, otherwise a trap for a
2326 breakpoint in a signal handler might be confused with the
2327 displaced step finishing. We don't make the displaced_step_fixup
2328 step distinguish the cases instead, because:
2329
2330 - a backtrace while stopped in the signal handler would show the
2331 scratch pad as frame older than the signal handler, instead of
2332 the real mainline code.
2333
2334 - when the thread is later resumed, the signal handler would
2335 return to the scratch pad area, which would no longer be
2336 valid. */
2337 if (step_over_info_valid_p ()
2338 || displaced_step_in_progress (tp->inf))
2339 target_pass_signals (0, NULL);
2340 else
2341 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2342
2343 target_resume (resume_ptid, step, sig);
2344
2345 target_commit_resume ();
2346 }
2347
2348 /* Resume the inferior. SIG is the signal to give the inferior
2349 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2350 call 'resume', which handles exceptions. */
2351
2352 static void
2353 resume_1 (enum gdb_signal sig)
2354 {
2355 struct regcache *regcache = get_current_regcache ();
2356 struct gdbarch *gdbarch = regcache->arch ();
2357 struct thread_info *tp = inferior_thread ();
2358 CORE_ADDR pc = regcache_read_pc (regcache);
2359 const address_space *aspace = regcache->aspace ();
2360 ptid_t resume_ptid;
2361 /* This represents the user's step vs continue request. When
2362 deciding whether "set scheduler-locking step" applies, it's the
2363 user's intention that counts. */
2364 const int user_step = tp->control.stepping_command;
2365 /* This represents what we'll actually request the target to do.
2366 This can decay from a step to a continue, if e.g., we need to
2367 implement single-stepping with breakpoints (software
2368 single-step). */
2369 int step;
2370
2371 gdb_assert (!tp->stop_requested);
2372 gdb_assert (!thread_is_in_step_over_chain (tp));
2373
2374 if (tp->suspend.waitstatus_pending_p)
2375 {
2376 if (debug_infrun)
2377 {
2378 std::string statstr
2379 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2380
2381 fprintf_unfiltered (gdb_stdlog,
2382 "infrun: resume: thread %s has pending wait "
2383 "status %s (currently_stepping=%d).\n",
2384 target_pid_to_str (tp->ptid), statstr.c_str (),
2385 currently_stepping (tp));
2386 }
2387
2388 tp->resumed = 1;
2389
2390 /* FIXME: What should we do if we are supposed to resume this
2391 thread with a signal? Maybe we should maintain a queue of
2392 pending signals to deliver. */
2393 if (sig != GDB_SIGNAL_0)
2394 {
2395 warning (_("Couldn't deliver signal %s to %s."),
2396 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2397 }
2398
2399 tp->suspend.stop_signal = GDB_SIGNAL_0;
2400
2401 if (target_can_async_p ())
2402 {
2403 target_async (1);
2404 /* Tell the event loop we have an event to process. */
2405 mark_async_event_handler (infrun_async_inferior_event_token);
2406 }
2407 return;
2408 }
2409
2410 tp->stepped_breakpoint = 0;
2411
2412 /* Depends on stepped_breakpoint. */
2413 step = currently_stepping (tp);
2414
2415 if (current_inferior ()->waiting_for_vfork_done)
2416 {
2417 /* Don't try to single-step a vfork parent that is waiting for
2418 the child to get out of the shared memory region (by exec'ing
2419 or exiting). This is particularly important on software
2420 single-step archs, as the child process would trip on the
2421 software single step breakpoint inserted for the parent
2422 process. Since the parent will not actually execute any
2423 instruction until the child is out of the shared region (such
2424 are vfork's semantics), it is safe to simply continue it.
2425 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2426 the parent, and tell it to `keep_going', which automatically
2427 re-sets it stepping. */
2428 if (debug_infrun)
2429 fprintf_unfiltered (gdb_stdlog,
2430 "infrun: resume : clear step\n");
2431 step = 0;
2432 }
2433
2434 if (debug_infrun)
2435 fprintf_unfiltered (gdb_stdlog,
2436 "infrun: resume (step=%d, signal=%s), "
2437 "trap_expected=%d, current thread [%s] at %s\n",
2438 step, gdb_signal_to_symbol_string (sig),
2439 tp->control.trap_expected,
2440 target_pid_to_str (inferior_ptid),
2441 paddress (gdbarch, pc));
2442
2443 /* Normally, by the time we reach `resume', the breakpoints are either
2444 removed or inserted, as appropriate. The exception is if we're sitting
2445 at a permanent breakpoint; we need to step over it, but permanent
2446 breakpoints can't be removed. So we have to test for it here. */
2447 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2448 {
2449 if (sig != GDB_SIGNAL_0)
2450 {
2451 /* We have a signal to pass to the inferior. The resume
2452 may, or may not take us to the signal handler. If this
2453 is a step, we'll need to stop in the signal handler, if
2454 there's one, (if the target supports stepping into
2455 handlers), or in the next mainline instruction, if
2456 there's no handler. If this is a continue, we need to be
2457 sure to run the handler with all breakpoints inserted.
2458 In all cases, set a breakpoint at the current address
2459 (where the handler returns to), and once that breakpoint
2460 is hit, resume skipping the permanent breakpoint. If
2461 that breakpoint isn't hit, then we've stepped into the
2462 signal handler (or hit some other event). We'll delete
2463 the step-resume breakpoint then. */
2464
2465 if (debug_infrun)
2466 fprintf_unfiltered (gdb_stdlog,
2467 "infrun: resume: skipping permanent breakpoint, "
2468 "deliver signal first\n");
2469
2470 clear_step_over_info ();
2471 tp->control.trap_expected = 0;
2472
2473 if (tp->control.step_resume_breakpoint == NULL)
2474 {
2475 /* Set a "high-priority" step-resume, as we don't want
2476 user breakpoints at PC to trigger (again) when this
2477 hits. */
2478 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2479 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2480
2481 tp->step_after_step_resume_breakpoint = step;
2482 }
2483
2484 insert_breakpoints ();
2485 }
2486 else
2487 {
2488 /* There's no signal to pass, we can go ahead and skip the
2489 permanent breakpoint manually. */
2490 if (debug_infrun)
2491 fprintf_unfiltered (gdb_stdlog,
2492 "infrun: resume: skipping permanent breakpoint\n");
2493 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2494 /* Update pc to reflect the new address from which we will
2495 execute instructions. */
2496 pc = regcache_read_pc (regcache);
2497
2498 if (step)
2499 {
2500 /* We've already advanced the PC, so the stepping part
2501 is done. Now we need to arrange for a trap to be
2502 reported to handle_inferior_event. Set a breakpoint
2503 at the current PC, and run to it. Don't update
2504 prev_pc, because if we end in
2505 switch_back_to_stepped_thread, we want the "expected
2506 thread advanced also" branch to be taken. IOW, we
2507 don't want this thread to step further from PC
2508 (overstep). */
2509 gdb_assert (!step_over_info_valid_p ());
2510 insert_single_step_breakpoint (gdbarch, aspace, pc);
2511 insert_breakpoints ();
2512
2513 resume_ptid = internal_resume_ptid (user_step);
2514 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2515 tp->resumed = 1;
2516 return;
2517 }
2518 }
2519 }
2520
2521 /* If we have a breakpoint to step over, make sure to do a single
2522 step only. Same if we have software watchpoints. */
2523 if (tp->control.trap_expected || bpstat_should_step ())
2524 tp->control.may_range_step = 0;
2525
2526 /* If enabled, step over breakpoints by executing a copy of the
2527 instruction at a different address.
2528
2529 We can't use displaced stepping when we have a signal to deliver;
2530 the comments for displaced_step_prepare explain why. The
2531 comments in the handle_inferior event for dealing with 'random
2532 signals' explain what we do instead.
2533
2534 We can't use displaced stepping when we are waiting for vfork_done
2535 event, displaced stepping breaks the vfork child similarly as single
2536 step software breakpoint. */
2537 if (tp->control.trap_expected
2538 && use_displaced_stepping (tp)
2539 && !step_over_info_valid_p ()
2540 && sig == GDB_SIGNAL_0
2541 && !current_inferior ()->waiting_for_vfork_done)
2542 {
2543 int prepared = displaced_step_prepare (tp);
2544
2545 if (prepared == 0)
2546 {
2547 if (debug_infrun)
2548 fprintf_unfiltered (gdb_stdlog,
2549 "Got placed in step-over queue\n");
2550
2551 tp->control.trap_expected = 0;
2552 return;
2553 }
2554 else if (prepared < 0)
2555 {
2556 /* Fallback to stepping over the breakpoint in-line. */
2557
2558 if (target_is_non_stop_p ())
2559 stop_all_threads ();
2560
2561 set_step_over_info (regcache->aspace (),
2562 regcache_read_pc (regcache), 0, tp->global_num);
2563
2564 step = maybe_software_singlestep (gdbarch, pc);
2565
2566 insert_breakpoints ();
2567 }
2568 else if (prepared > 0)
2569 {
2570 struct displaced_step_inferior_state *displaced;
2571
2572 /* Update pc to reflect the new address from which we will
2573 execute instructions due to displaced stepping. */
2574 pc = regcache_read_pc (get_thread_regcache (tp));
2575
2576 displaced = get_displaced_stepping_state (tp->inf);
2577 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2578 displaced->step_closure);
2579 }
2580 }
2581
2582 /* Do we need to do it the hard way, w/temp breakpoints? */
2583 else if (step)
2584 step = maybe_software_singlestep (gdbarch, pc);
2585
2586 /* Currently, our software single-step implementation leads to different
2587 results than hardware single-stepping in one situation: when stepping
2588 into delivering a signal which has an associated signal handler,
2589 hardware single-step will stop at the first instruction of the handler,
2590 while software single-step will simply skip execution of the handler.
2591
2592 For now, this difference in behavior is accepted since there is no
2593 easy way to actually implement single-stepping into a signal handler
2594 without kernel support.
2595
2596 However, there is one scenario where this difference leads to follow-on
2597 problems: if we're stepping off a breakpoint by removing all breakpoints
2598 and then single-stepping. In this case, the software single-step
2599 behavior means that even if there is a *breakpoint* in the signal
2600 handler, GDB still would not stop.
2601
2602 Fortunately, we can at least fix this particular issue. We detect
2603 here the case where we are about to deliver a signal while software
2604 single-stepping with breakpoints removed. In this situation, we
2605 revert the decisions to remove all breakpoints and insert single-
2606 step breakpoints, and instead we install a step-resume breakpoint
2607 at the current address, deliver the signal without stepping, and
2608 once we arrive back at the step-resume breakpoint, actually step
2609 over the breakpoint we originally wanted to step over. */
2610 if (thread_has_single_step_breakpoints_set (tp)
2611 && sig != GDB_SIGNAL_0
2612 && step_over_info_valid_p ())
2613 {
2614 /* If we have nested signals or a pending signal is delivered
2615 immediately after a handler returns, might might already have
2616 a step-resume breakpoint set on the earlier handler. We cannot
2617 set another step-resume breakpoint; just continue on until the
2618 original breakpoint is hit. */
2619 if (tp->control.step_resume_breakpoint == NULL)
2620 {
2621 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2622 tp->step_after_step_resume_breakpoint = 1;
2623 }
2624
2625 delete_single_step_breakpoints (tp);
2626
2627 clear_step_over_info ();
2628 tp->control.trap_expected = 0;
2629
2630 insert_breakpoints ();
2631 }
2632
2633 /* If STEP is set, it's a request to use hardware stepping
2634 facilities. But in that case, we should never
2635 use singlestep breakpoint. */
2636 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2637
2638 /* Decide the set of threads to ask the target to resume. */
2639 if (tp->control.trap_expected)
2640 {
2641 /* We're allowing a thread to run past a breakpoint it has
2642 hit, either by single-stepping the thread with the breakpoint
2643 removed, or by displaced stepping, with the breakpoint inserted.
2644 In the former case, we need to single-step only this thread,
2645 and keep others stopped, as they can miss this breakpoint if
2646 allowed to run. That's not really a problem for displaced
2647 stepping, but, we still keep other threads stopped, in case
2648 another thread is also stopped for a breakpoint waiting for
2649 its turn in the displaced stepping queue. */
2650 resume_ptid = inferior_ptid;
2651 }
2652 else
2653 resume_ptid = internal_resume_ptid (user_step);
2654
2655 if (execution_direction != EXEC_REVERSE
2656 && step && breakpoint_inserted_here_p (aspace, pc))
2657 {
2658 /* There are two cases where we currently need to step a
2659 breakpoint instruction when we have a signal to deliver:
2660
2661 - See handle_signal_stop where we handle random signals that
2662 could take out us out of the stepping range. Normally, in
2663 that case we end up continuing (instead of stepping) over the
2664 signal handler with a breakpoint at PC, but there are cases
2665 where we should _always_ single-step, even if we have a
2666 step-resume breakpoint, like when a software watchpoint is
2667 set. Assuming single-stepping and delivering a signal at the
2668 same time would takes us to the signal handler, then we could
2669 have removed the breakpoint at PC to step over it. However,
2670 some hardware step targets (like e.g., Mac OS) can't step
2671 into signal handlers, and for those, we need to leave the
2672 breakpoint at PC inserted, as otherwise if the handler
2673 recurses and executes PC again, it'll miss the breakpoint.
2674 So we leave the breakpoint inserted anyway, but we need to
2675 record that we tried to step a breakpoint instruction, so
2676 that adjust_pc_after_break doesn't end up confused.
2677
2678 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2679 in one thread after another thread that was stepping had been
2680 momentarily paused for a step-over. When we re-resume the
2681 stepping thread, it may be resumed from that address with a
2682 breakpoint that hasn't trapped yet. Seen with
2683 gdb.threads/non-stop-fair-events.exp, on targets that don't
2684 do displaced stepping. */
2685
2686 if (debug_infrun)
2687 fprintf_unfiltered (gdb_stdlog,
2688 "infrun: resume: [%s] stepped breakpoint\n",
2689 target_pid_to_str (tp->ptid));
2690
2691 tp->stepped_breakpoint = 1;
2692
2693 /* Most targets can step a breakpoint instruction, thus
2694 executing it normally. But if this one cannot, just
2695 continue and we will hit it anyway. */
2696 if (gdbarch_cannot_step_breakpoint (gdbarch))
2697 step = 0;
2698 }
2699
2700 if (debug_displaced
2701 && tp->control.trap_expected
2702 && use_displaced_stepping (tp)
2703 && !step_over_info_valid_p ())
2704 {
2705 struct regcache *resume_regcache = get_thread_regcache (tp);
2706 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2707 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2708 gdb_byte buf[4];
2709
2710 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2711 paddress (resume_gdbarch, actual_pc));
2712 read_memory (actual_pc, buf, sizeof (buf));
2713 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2714 }
2715
2716 if (tp->control.may_range_step)
2717 {
2718 /* If we're resuming a thread with the PC out of the step
2719 range, then we're doing some nested/finer run control
2720 operation, like stepping the thread out of the dynamic
2721 linker or the displaced stepping scratch pad. We
2722 shouldn't have allowed a range step then. */
2723 gdb_assert (pc_in_thread_step_range (pc, tp));
2724 }
2725
2726 do_target_resume (resume_ptid, step, sig);
2727 tp->resumed = 1;
2728 }
2729
2730 /* Resume the inferior. SIG is the signal to give the inferior
2731 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2732 rolls back state on error. */
2733
2734 static void
2735 resume (gdb_signal sig)
2736 {
2737 TRY
2738 {
2739 resume_1 (sig);
2740 }
2741 CATCH (ex, RETURN_MASK_ALL)
2742 {
2743 /* If resuming is being aborted for any reason, delete any
2744 single-step breakpoint resume_1 may have created, to avoid
2745 confusing the following resumption, and to avoid leaving
2746 single-step breakpoints perturbing other threads, in case
2747 we're running in non-stop mode. */
2748 if (inferior_ptid != null_ptid)
2749 delete_single_step_breakpoints (inferior_thread ());
2750 throw_exception (ex);
2751 }
2752 END_CATCH
2753 }
2754
2755 \f
2756 /* Proceeding. */
2757
2758 /* See infrun.h. */
2759
2760 /* Counter that tracks number of user visible stops. This can be used
2761 to tell whether a command has proceeded the inferior past the
2762 current location. This allows e.g., inferior function calls in
2763 breakpoint commands to not interrupt the command list. When the
2764 call finishes successfully, the inferior is standing at the same
2765 breakpoint as if nothing happened (and so we don't call
2766 normal_stop). */
2767 static ULONGEST current_stop_id;
2768
2769 /* See infrun.h. */
2770
2771 ULONGEST
2772 get_stop_id (void)
2773 {
2774 return current_stop_id;
2775 }
2776
2777 /* Called when we report a user visible stop. */
2778
2779 static void
2780 new_stop_id (void)
2781 {
2782 current_stop_id++;
2783 }
2784
2785 /* Clear out all variables saying what to do when inferior is continued.
2786 First do this, then set the ones you want, then call `proceed'. */
2787
2788 static void
2789 clear_proceed_status_thread (struct thread_info *tp)
2790 {
2791 if (debug_infrun)
2792 fprintf_unfiltered (gdb_stdlog,
2793 "infrun: clear_proceed_status_thread (%s)\n",
2794 target_pid_to_str (tp->ptid));
2795
2796 /* If we're starting a new sequence, then the previous finished
2797 single-step is no longer relevant. */
2798 if (tp->suspend.waitstatus_pending_p)
2799 {
2800 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2801 {
2802 if (debug_infrun)
2803 fprintf_unfiltered (gdb_stdlog,
2804 "infrun: clear_proceed_status: pending "
2805 "event of %s was a finished step. "
2806 "Discarding.\n",
2807 target_pid_to_str (tp->ptid));
2808
2809 tp->suspend.waitstatus_pending_p = 0;
2810 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2811 }
2812 else if (debug_infrun)
2813 {
2814 std::string statstr
2815 = target_waitstatus_to_string (&tp->suspend.waitstatus);
2816
2817 fprintf_unfiltered (gdb_stdlog,
2818 "infrun: clear_proceed_status_thread: thread %s "
2819 "has pending wait status %s "
2820 "(currently_stepping=%d).\n",
2821 target_pid_to_str (tp->ptid), statstr.c_str (),
2822 currently_stepping (tp));
2823 }
2824 }
2825
2826 /* If this signal should not be seen by program, give it zero.
2827 Used for debugging signals. */
2828 if (!signal_pass_state (tp->suspend.stop_signal))
2829 tp->suspend.stop_signal = GDB_SIGNAL_0;
2830
2831 thread_fsm_delete (tp->thread_fsm);
2832 tp->thread_fsm = NULL;
2833
2834 tp->control.trap_expected = 0;
2835 tp->control.step_range_start = 0;
2836 tp->control.step_range_end = 0;
2837 tp->control.may_range_step = 0;
2838 tp->control.step_frame_id = null_frame_id;
2839 tp->control.step_stack_frame_id = null_frame_id;
2840 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2841 tp->control.step_start_function = NULL;
2842 tp->stop_requested = 0;
2843
2844 tp->control.stop_step = 0;
2845
2846 tp->control.proceed_to_finish = 0;
2847
2848 tp->control.stepping_command = 0;
2849
2850 /* Discard any remaining commands or status from previous stop. */
2851 bpstat_clear (&tp->control.stop_bpstat);
2852 }
2853
2854 void
2855 clear_proceed_status (int step)
2856 {
2857 /* With scheduler-locking replay, stop replaying other threads if we're
2858 not replaying the user-visible resume ptid.
2859
2860 This is a convenience feature to not require the user to explicitly
2861 stop replaying the other threads. We're assuming that the user's
2862 intent is to resume tracing the recorded process. */
2863 if (!non_stop && scheduler_mode == schedlock_replay
2864 && target_record_is_replaying (minus_one_ptid)
2865 && !target_record_will_replay (user_visible_resume_ptid (step),
2866 execution_direction))
2867 target_record_stop_replaying ();
2868
2869 if (!non_stop)
2870 {
2871 struct thread_info *tp;
2872 ptid_t resume_ptid;
2873
2874 resume_ptid = user_visible_resume_ptid (step);
2875
2876 /* In all-stop mode, delete the per-thread status of all threads
2877 we're about to resume, implicitly and explicitly. */
2878 ALL_NON_EXITED_THREADS (tp)
2879 {
2880 if (!tp->ptid.matches (resume_ptid))
2881 continue;
2882 clear_proceed_status_thread (tp);
2883 }
2884 }
2885
2886 if (inferior_ptid != null_ptid)
2887 {
2888 struct inferior *inferior;
2889
2890 if (non_stop)
2891 {
2892 /* If in non-stop mode, only delete the per-thread status of
2893 the current thread. */
2894 clear_proceed_status_thread (inferior_thread ());
2895 }
2896
2897 inferior = current_inferior ();
2898 inferior->control.stop_soon = NO_STOP_QUIETLY;
2899 }
2900
2901 gdb::observers::about_to_proceed.notify ();
2902 }
2903
2904 /* Returns true if TP is still stopped at a breakpoint that needs
2905 stepping-over in order to make progress. If the breakpoint is gone
2906 meanwhile, we can skip the whole step-over dance. */
2907
2908 static int
2909 thread_still_needs_step_over_bp (struct thread_info *tp)
2910 {
2911 if (tp->stepping_over_breakpoint)
2912 {
2913 struct regcache *regcache = get_thread_regcache (tp);
2914
2915 if (breakpoint_here_p (regcache->aspace (),
2916 regcache_read_pc (regcache))
2917 == ordinary_breakpoint_here)
2918 return 1;
2919
2920 tp->stepping_over_breakpoint = 0;
2921 }
2922
2923 return 0;
2924 }
2925
2926 /* Check whether thread TP still needs to start a step-over in order
2927 to make progress when resumed. Returns an bitwise or of enum
2928 step_over_what bits, indicating what needs to be stepped over. */
2929
2930 static step_over_what
2931 thread_still_needs_step_over (struct thread_info *tp)
2932 {
2933 step_over_what what = 0;
2934
2935 if (thread_still_needs_step_over_bp (tp))
2936 what |= STEP_OVER_BREAKPOINT;
2937
2938 if (tp->stepping_over_watchpoint
2939 && !target_have_steppable_watchpoint)
2940 what |= STEP_OVER_WATCHPOINT;
2941
2942 return what;
2943 }
2944
2945 /* Returns true if scheduler locking applies. STEP indicates whether
2946 we're about to do a step/next-like command to a thread. */
2947
2948 static int
2949 schedlock_applies (struct thread_info *tp)
2950 {
2951 return (scheduler_mode == schedlock_on
2952 || (scheduler_mode == schedlock_step
2953 && tp->control.stepping_command)
2954 || (scheduler_mode == schedlock_replay
2955 && target_record_will_replay (minus_one_ptid,
2956 execution_direction)));
2957 }
2958
2959 /* Basic routine for continuing the program in various fashions.
2960
2961 ADDR is the address to resume at, or -1 for resume where stopped.
2962 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2963 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
2964
2965 You should call clear_proceed_status before calling proceed. */
2966
2967 void
2968 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2969 {
2970 struct regcache *regcache;
2971 struct gdbarch *gdbarch;
2972 struct thread_info *tp;
2973 CORE_ADDR pc;
2974 ptid_t resume_ptid;
2975 struct execution_control_state ecss;
2976 struct execution_control_state *ecs = &ecss;
2977 int started;
2978
2979 /* If we're stopped at a fork/vfork, follow the branch set by the
2980 "set follow-fork-mode" command; otherwise, we'll just proceed
2981 resuming the current thread. */
2982 if (!follow_fork ())
2983 {
2984 /* The target for some reason decided not to resume. */
2985 normal_stop ();
2986 if (target_can_async_p ())
2987 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2988 return;
2989 }
2990
2991 /* We'll update this if & when we switch to a new thread. */
2992 previous_inferior_ptid = inferior_ptid;
2993
2994 regcache = get_current_regcache ();
2995 gdbarch = regcache->arch ();
2996 const address_space *aspace = regcache->aspace ();
2997
2998 pc = regcache_read_pc (regcache);
2999 tp = inferior_thread ();
3000
3001 /* Fill in with reasonable starting values. */
3002 init_thread_stepping_state (tp);
3003
3004 gdb_assert (!thread_is_in_step_over_chain (tp));
3005
3006 if (addr == (CORE_ADDR) -1)
3007 {
3008 if (pc == tp->suspend.stop_pc
3009 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
3010 && execution_direction != EXEC_REVERSE)
3011 /* There is a breakpoint at the address we will resume at,
3012 step one instruction before inserting breakpoints so that
3013 we do not stop right away (and report a second hit at this
3014 breakpoint).
3015
3016 Note, we don't do this in reverse, because we won't
3017 actually be executing the breakpoint insn anyway.
3018 We'll be (un-)executing the previous instruction. */
3019 tp->stepping_over_breakpoint = 1;
3020 else if (gdbarch_single_step_through_delay_p (gdbarch)
3021 && gdbarch_single_step_through_delay (gdbarch,
3022 get_current_frame ()))
3023 /* We stepped onto an instruction that needs to be stepped
3024 again before re-inserting the breakpoint, do so. */
3025 tp->stepping_over_breakpoint = 1;
3026 }
3027 else
3028 {
3029 regcache_write_pc (regcache, addr);
3030 }
3031
3032 if (siggnal != GDB_SIGNAL_DEFAULT)
3033 tp->suspend.stop_signal = siggnal;
3034
3035 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3036
3037 /* If an exception is thrown from this point on, make sure to
3038 propagate GDB's knowledge of the executing state to the
3039 frontend/user running state. */
3040 scoped_finish_thread_state finish_state (resume_ptid);
3041
3042 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3043 threads (e.g., we might need to set threads stepping over
3044 breakpoints first), from the user/frontend's point of view, all
3045 threads in RESUME_PTID are now running. Unless we're calling an
3046 inferior function, as in that case we pretend the inferior
3047 doesn't run at all. */
3048 if (!tp->control.in_infcall)
3049 set_running (resume_ptid, 1);
3050
3051 if (debug_infrun)
3052 fprintf_unfiltered (gdb_stdlog,
3053 "infrun: proceed (addr=%s, signal=%s)\n",
3054 paddress (gdbarch, addr),
3055 gdb_signal_to_symbol_string (siggnal));
3056
3057 annotate_starting ();
3058
3059 /* Make sure that output from GDB appears before output from the
3060 inferior. */
3061 gdb_flush (gdb_stdout);
3062
3063 /* Since we've marked the inferior running, give it the terminal. A
3064 QUIT/Ctrl-C from here on is forwarded to the target (which can
3065 still detect attempts to unblock a stuck connection with repeated
3066 Ctrl-C from within target_pass_ctrlc). */
3067 target_terminal::inferior ();
3068
3069 /* In a multi-threaded task we may select another thread and
3070 then continue or step.
3071
3072 But if a thread that we're resuming had stopped at a breakpoint,
3073 it will immediately cause another breakpoint stop without any
3074 execution (i.e. it will report a breakpoint hit incorrectly). So
3075 we must step over it first.
3076
3077 Look for threads other than the current (TP) that reported a
3078 breakpoint hit and haven't been resumed yet since. */
3079
3080 /* If scheduler locking applies, we can avoid iterating over all
3081 threads. */
3082 if (!non_stop && !schedlock_applies (tp))
3083 {
3084 struct thread_info *current = tp;
3085
3086 ALL_NON_EXITED_THREADS (tp)
3087 {
3088 /* Ignore the current thread here. It's handled
3089 afterwards. */
3090 if (tp == current)
3091 continue;
3092
3093 /* Ignore threads of processes we're not resuming. */
3094 if (!tp->ptid.matches (resume_ptid))
3095 continue;
3096
3097 if (!thread_still_needs_step_over (tp))
3098 continue;
3099
3100 gdb_assert (!thread_is_in_step_over_chain (tp));
3101
3102 if (debug_infrun)
3103 fprintf_unfiltered (gdb_stdlog,
3104 "infrun: need to step-over [%s] first\n",
3105 target_pid_to_str (tp->ptid));
3106
3107 thread_step_over_chain_enqueue (tp);
3108 }
3109
3110 tp = current;
3111 }
3112
3113 /* Enqueue the current thread last, so that we move all other
3114 threads over their breakpoints first. */
3115 if (tp->stepping_over_breakpoint)
3116 thread_step_over_chain_enqueue (tp);
3117
3118 /* If the thread isn't started, we'll still need to set its prev_pc,
3119 so that switch_back_to_stepped_thread knows the thread hasn't
3120 advanced. Must do this before resuming any thread, as in
3121 all-stop/remote, once we resume we can't send any other packet
3122 until the target stops again. */
3123 tp->prev_pc = regcache_read_pc (regcache);
3124
3125 {
3126 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
3127
3128 started = start_step_over ();
3129
3130 if (step_over_info_valid_p ())
3131 {
3132 /* Either this thread started a new in-line step over, or some
3133 other thread was already doing one. In either case, don't
3134 resume anything else until the step-over is finished. */
3135 }
3136 else if (started && !target_is_non_stop_p ())
3137 {
3138 /* A new displaced stepping sequence was started. In all-stop,
3139 we can't talk to the target anymore until it next stops. */
3140 }
3141 else if (!non_stop && target_is_non_stop_p ())
3142 {
3143 /* In all-stop, but the target is always in non-stop mode.
3144 Start all other threads that are implicitly resumed too. */
3145 ALL_NON_EXITED_THREADS (tp)
3146 {
3147 /* Ignore threads of processes we're not resuming. */
3148 if (!tp->ptid.matches (resume_ptid))
3149 continue;
3150
3151 if (tp->resumed)
3152 {
3153 if (debug_infrun)
3154 fprintf_unfiltered (gdb_stdlog,
3155 "infrun: proceed: [%s] resumed\n",
3156 target_pid_to_str (tp->ptid));
3157 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3158 continue;
3159 }
3160
3161 if (thread_is_in_step_over_chain (tp))
3162 {
3163 if (debug_infrun)
3164 fprintf_unfiltered (gdb_stdlog,
3165 "infrun: proceed: [%s] needs step-over\n",
3166 target_pid_to_str (tp->ptid));
3167 continue;
3168 }
3169
3170 if (debug_infrun)
3171 fprintf_unfiltered (gdb_stdlog,
3172 "infrun: proceed: resuming %s\n",
3173 target_pid_to_str (tp->ptid));
3174
3175 reset_ecs (ecs, tp);
3176 switch_to_thread (tp);
3177 keep_going_pass_signal (ecs);
3178 if (!ecs->wait_some_more)
3179 error (_("Command aborted."));
3180 }
3181 }
3182 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3183 {
3184 /* The thread wasn't started, and isn't queued, run it now. */
3185 reset_ecs (ecs, tp);
3186 switch_to_thread (tp);
3187 keep_going_pass_signal (ecs);
3188 if (!ecs->wait_some_more)
3189 error (_("Command aborted."));
3190 }
3191 }
3192
3193 target_commit_resume ();
3194
3195 finish_state.release ();
3196
3197 /* Tell the event loop to wait for it to stop. If the target
3198 supports asynchronous execution, it'll do this from within
3199 target_resume. */
3200 if (!target_can_async_p ())
3201 mark_async_event_handler (infrun_async_inferior_event_token);
3202 }
3203 \f
3204
3205 /* Start remote-debugging of a machine over a serial link. */
3206
3207 void
3208 start_remote (int from_tty)
3209 {
3210 struct inferior *inferior;
3211
3212 inferior = current_inferior ();
3213 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3214
3215 /* Always go on waiting for the target, regardless of the mode. */
3216 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3217 indicate to wait_for_inferior that a target should timeout if
3218 nothing is returned (instead of just blocking). Because of this,
3219 targets expecting an immediate response need to, internally, set
3220 things up so that the target_wait() is forced to eventually
3221 timeout. */
3222 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3223 differentiate to its caller what the state of the target is after
3224 the initial open has been performed. Here we're assuming that
3225 the target has stopped. It should be possible to eventually have
3226 target_open() return to the caller an indication that the target
3227 is currently running and GDB state should be set to the same as
3228 for an async run. */
3229 wait_for_inferior ();
3230
3231 /* Now that the inferior has stopped, do any bookkeeping like
3232 loading shared libraries. We want to do this before normal_stop,
3233 so that the displayed frame is up to date. */
3234 post_create_inferior (current_top_target (), from_tty);
3235
3236 normal_stop ();
3237 }
3238
3239 /* Initialize static vars when a new inferior begins. */
3240
3241 void
3242 init_wait_for_inferior (void)
3243 {
3244 /* These are meaningless until the first time through wait_for_inferior. */
3245
3246 breakpoint_init_inferior (inf_starting);
3247
3248 clear_proceed_status (0);
3249
3250 target_last_wait_ptid = minus_one_ptid;
3251
3252 previous_inferior_ptid = inferior_ptid;
3253
3254 /* Discard any skipped inlined frames. */
3255 clear_inline_frame_state (minus_one_ptid);
3256 }
3257
3258 \f
3259
3260 static void handle_inferior_event (struct execution_control_state *ecs);
3261
3262 static void handle_step_into_function (struct gdbarch *gdbarch,
3263 struct execution_control_state *ecs);
3264 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3265 struct execution_control_state *ecs);
3266 static void handle_signal_stop (struct execution_control_state *ecs);
3267 static void check_exception_resume (struct execution_control_state *,
3268 struct frame_info *);
3269
3270 static void end_stepping_range (struct execution_control_state *ecs);
3271 static void stop_waiting (struct execution_control_state *ecs);
3272 static void keep_going (struct execution_control_state *ecs);
3273 static void process_event_stop_test (struct execution_control_state *ecs);
3274 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3275
3276 /* This function is attached as a "thread_stop_requested" observer.
3277 Cleanup local state that assumed the PTID was to be resumed, and
3278 report the stop to the frontend. */
3279
3280 static void
3281 infrun_thread_stop_requested (ptid_t ptid)
3282 {
3283 struct thread_info *tp;
3284
3285 /* PTID was requested to stop. If the thread was already stopped,
3286 but the user/frontend doesn't know about that yet (e.g., the
3287 thread had been temporarily paused for some step-over), set up
3288 for reporting the stop now. */
3289 ALL_NON_EXITED_THREADS (tp)
3290 if (tp->ptid.matches (ptid))
3291 {
3292 if (tp->state != THREAD_RUNNING)
3293 continue;
3294 if (tp->executing)
3295 continue;
3296
3297 /* Remove matching threads from the step-over queue, so
3298 start_step_over doesn't try to resume them
3299 automatically. */
3300 if (thread_is_in_step_over_chain (tp))
3301 thread_step_over_chain_remove (tp);
3302
3303 /* If the thread is stopped, but the user/frontend doesn't
3304 know about that yet, queue a pending event, as if the
3305 thread had just stopped now. Unless the thread already had
3306 a pending event. */
3307 if (!tp->suspend.waitstatus_pending_p)
3308 {
3309 tp->suspend.waitstatus_pending_p = 1;
3310 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3311 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3312 }
3313
3314 /* Clear the inline-frame state, since we're re-processing the
3315 stop. */
3316 clear_inline_frame_state (tp->ptid);
3317
3318 /* If this thread was paused because some other thread was
3319 doing an inline-step over, let that finish first. Once
3320 that happens, we'll restart all threads and consume pending
3321 stop events then. */
3322 if (step_over_info_valid_p ())
3323 continue;
3324
3325 /* Otherwise we can process the (new) pending event now. Set
3326 it so this pending event is considered by
3327 do_target_wait. */
3328 tp->resumed = 1;
3329 }
3330 }
3331
3332 static void
3333 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3334 {
3335 if (target_last_wait_ptid == tp->ptid)
3336 nullify_last_target_wait_ptid ();
3337 }
3338
3339 /* Delete the step resume, single-step and longjmp/exception resume
3340 breakpoints of TP. */
3341
3342 static void
3343 delete_thread_infrun_breakpoints (struct thread_info *tp)
3344 {
3345 delete_step_resume_breakpoint (tp);
3346 delete_exception_resume_breakpoint (tp);
3347 delete_single_step_breakpoints (tp);
3348 }
3349
3350 /* If the target still has execution, call FUNC for each thread that
3351 just stopped. In all-stop, that's all the non-exited threads; in
3352 non-stop, that's the current thread, only. */
3353
3354 typedef void (*for_each_just_stopped_thread_callback_func)
3355 (struct thread_info *tp);
3356
3357 static void
3358 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3359 {
3360 if (!target_has_execution || inferior_ptid == null_ptid)
3361 return;
3362
3363 if (target_is_non_stop_p ())
3364 {
3365 /* If in non-stop mode, only the current thread stopped. */
3366 func (inferior_thread ());
3367 }
3368 else
3369 {
3370 struct thread_info *tp;
3371
3372 /* In all-stop mode, all threads have stopped. */
3373 ALL_NON_EXITED_THREADS (tp)
3374 {
3375 func (tp);
3376 }
3377 }
3378 }
3379
3380 /* Delete the step resume and longjmp/exception resume breakpoints of
3381 the threads that just stopped. */
3382
3383 static void
3384 delete_just_stopped_threads_infrun_breakpoints (void)
3385 {
3386 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3387 }
3388
3389 /* Delete the single-step breakpoints of the threads that just
3390 stopped. */
3391
3392 static void
3393 delete_just_stopped_threads_single_step_breakpoints (void)
3394 {
3395 for_each_just_stopped_thread (delete_single_step_breakpoints);
3396 }
3397
3398 /* A cleanup wrapper. */
3399
3400 static void
3401 delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
3402 {
3403 delete_just_stopped_threads_infrun_breakpoints ();
3404 }
3405
3406 /* See infrun.h. */
3407
3408 void
3409 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3410 const struct target_waitstatus *ws)
3411 {
3412 std::string status_string = target_waitstatus_to_string (ws);
3413 string_file stb;
3414
3415 /* The text is split over several lines because it was getting too long.
3416 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3417 output as a unit; we want only one timestamp printed if debug_timestamp
3418 is set. */
3419
3420 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3421 waiton_ptid.pid (),
3422 waiton_ptid.lwp (),
3423 waiton_ptid.tid ());
3424 if (waiton_ptid.pid () != -1)
3425 stb.printf (" [%s]", target_pid_to_str (waiton_ptid));
3426 stb.printf (", status) =\n");
3427 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3428 result_ptid.pid (),
3429 result_ptid.lwp (),
3430 result_ptid.tid (),
3431 target_pid_to_str (result_ptid));
3432 stb.printf ("infrun: %s\n", status_string.c_str ());
3433
3434 /* This uses %s in part to handle %'s in the text, but also to avoid
3435 a gcc error: the format attribute requires a string literal. */
3436 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3437 }
3438
3439 /* Select a thread at random, out of those which are resumed and have
3440 had events. */
3441
3442 static struct thread_info *
3443 random_pending_event_thread (ptid_t waiton_ptid)
3444 {
3445 struct thread_info *event_tp;
3446 int num_events = 0;
3447 int random_selector;
3448
3449 /* First see how many events we have. Count only resumed threads
3450 that have an event pending. */
3451 ALL_NON_EXITED_THREADS (event_tp)
3452 if (event_tp->ptid.matches (waiton_ptid)
3453 && event_tp->resumed
3454 && event_tp->suspend.waitstatus_pending_p)
3455 num_events++;
3456
3457 if (num_events == 0)
3458 return NULL;
3459
3460 /* Now randomly pick a thread out of those that have had events. */
3461 random_selector = (int)
3462 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3463
3464 if (debug_infrun && num_events > 1)
3465 fprintf_unfiltered (gdb_stdlog,
3466 "infrun: Found %d events, selecting #%d\n",
3467 num_events, random_selector);
3468
3469 /* Select the Nth thread that has had an event. */
3470 ALL_NON_EXITED_THREADS (event_tp)
3471 if (event_tp->ptid.matches (waiton_ptid)
3472 && event_tp->resumed
3473 && event_tp->suspend.waitstatus_pending_p)
3474 if (random_selector-- == 0)
3475 break;
3476
3477 return event_tp;
3478 }
3479
3480 /* Wrapper for target_wait that first checks whether threads have
3481 pending statuses to report before actually asking the target for
3482 more events. */
3483
3484 static ptid_t
3485 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3486 {
3487 ptid_t event_ptid;
3488 struct thread_info *tp;
3489
3490 /* First check if there is a resumed thread with a wait status
3491 pending. */
3492 if (ptid == minus_one_ptid || ptid.is_pid ())
3493 {
3494 tp = random_pending_event_thread (ptid);
3495 }
3496 else
3497 {
3498 if (debug_infrun)
3499 fprintf_unfiltered (gdb_stdlog,
3500 "infrun: Waiting for specific thread %s.\n",
3501 target_pid_to_str (ptid));
3502
3503 /* We have a specific thread to check. */
3504 tp = find_thread_ptid (ptid);
3505 gdb_assert (tp != NULL);
3506 if (!tp->suspend.waitstatus_pending_p)
3507 tp = NULL;
3508 }
3509
3510 if (tp != NULL
3511 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3512 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3513 {
3514 struct regcache *regcache = get_thread_regcache (tp);
3515 struct gdbarch *gdbarch = regcache->arch ();
3516 CORE_ADDR pc;
3517 int discard = 0;
3518
3519 pc = regcache_read_pc (regcache);
3520
3521 if (pc != tp->suspend.stop_pc)
3522 {
3523 if (debug_infrun)
3524 fprintf_unfiltered (gdb_stdlog,
3525 "infrun: PC of %s changed. was=%s, now=%s\n",
3526 target_pid_to_str (tp->ptid),
3527 paddress (gdbarch, tp->suspend.stop_pc),
3528 paddress (gdbarch, pc));
3529 discard = 1;
3530 }
3531 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3532 {
3533 if (debug_infrun)
3534 fprintf_unfiltered (gdb_stdlog,
3535 "infrun: previous breakpoint of %s, at %s gone\n",
3536 target_pid_to_str (tp->ptid),
3537 paddress (gdbarch, pc));
3538
3539 discard = 1;
3540 }
3541
3542 if (discard)
3543 {
3544 if (debug_infrun)
3545 fprintf_unfiltered (gdb_stdlog,
3546 "infrun: pending event of %s cancelled.\n",
3547 target_pid_to_str (tp->ptid));
3548
3549 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3550 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3551 }
3552 }
3553
3554 if (tp != NULL)
3555 {
3556 if (debug_infrun)
3557 {
3558 std::string statstr
3559 = target_waitstatus_to_string (&tp->suspend.waitstatus);
3560
3561 fprintf_unfiltered (gdb_stdlog,
3562 "infrun: Using pending wait status %s for %s.\n",
3563 statstr.c_str (),
3564 target_pid_to_str (tp->ptid));
3565 }
3566
3567 /* Now that we've selected our final event LWP, un-adjust its PC
3568 if it was a software breakpoint (and the target doesn't
3569 always adjust the PC itself). */
3570 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3571 && !target_supports_stopped_by_sw_breakpoint ())
3572 {
3573 struct regcache *regcache;
3574 struct gdbarch *gdbarch;
3575 int decr_pc;
3576
3577 regcache = get_thread_regcache (tp);
3578 gdbarch = regcache->arch ();
3579
3580 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3581 if (decr_pc != 0)
3582 {
3583 CORE_ADDR pc;
3584
3585 pc = regcache_read_pc (regcache);
3586 regcache_write_pc (regcache, pc + decr_pc);
3587 }
3588 }
3589
3590 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3591 *status = tp->suspend.waitstatus;
3592 tp->suspend.waitstatus_pending_p = 0;
3593
3594 /* Wake up the event loop again, until all pending events are
3595 processed. */
3596 if (target_is_async_p ())
3597 mark_async_event_handler (infrun_async_inferior_event_token);
3598 return tp->ptid;
3599 }
3600
3601 /* But if we don't find one, we'll have to wait. */
3602
3603 if (deprecated_target_wait_hook)
3604 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3605 else
3606 event_ptid = target_wait (ptid, status, options);
3607
3608 return event_ptid;
3609 }
3610
3611 /* Prepare and stabilize the inferior for detaching it. E.g.,
3612 detaching while a thread is displaced stepping is a recipe for
3613 crashing it, as nothing would readjust the PC out of the scratch
3614 pad. */
3615
3616 void
3617 prepare_for_detach (void)
3618 {
3619 struct inferior *inf = current_inferior ();
3620 ptid_t pid_ptid = ptid_t (inf->pid);
3621
3622 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
3623
3624 /* Is any thread of this process displaced stepping? If not,
3625 there's nothing else to do. */
3626 if (displaced == NULL || displaced->step_thread == nullptr)
3627 return;
3628
3629 if (debug_infrun)
3630 fprintf_unfiltered (gdb_stdlog,
3631 "displaced-stepping in-process while detaching");
3632
3633 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3634
3635 while (displaced->step_thread != nullptr)
3636 {
3637 struct execution_control_state ecss;
3638 struct execution_control_state *ecs;
3639
3640 ecs = &ecss;
3641 memset (ecs, 0, sizeof (*ecs));
3642
3643 overlay_cache_invalid = 1;
3644 /* Flush target cache before starting to handle each event.
3645 Target was running and cache could be stale. This is just a
3646 heuristic. Running threads may modify target memory, but we
3647 don't get any event. */
3648 target_dcache_invalidate ();
3649
3650 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3651
3652 if (debug_infrun)
3653 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3654
3655 /* If an error happens while handling the event, propagate GDB's
3656 knowledge of the executing state to the frontend/user running
3657 state. */
3658 scoped_finish_thread_state finish_state (minus_one_ptid);
3659
3660 /* Now figure out what to do with the result of the result. */
3661 handle_inferior_event (ecs);
3662
3663 /* No error, don't finish the state yet. */
3664 finish_state.release ();
3665
3666 /* Breakpoints and watchpoints are not installed on the target
3667 at this point, and signals are passed directly to the
3668 inferior, so this must mean the process is gone. */
3669 if (!ecs->wait_some_more)
3670 {
3671 restore_detaching.release ();
3672 error (_("Program exited while detaching"));
3673 }
3674 }
3675
3676 restore_detaching.release ();
3677 }
3678
3679 /* Wait for control to return from inferior to debugger.
3680
3681 If inferior gets a signal, we may decide to start it up again
3682 instead of returning. That is why there is a loop in this function.
3683 When this function actually returns it means the inferior
3684 should be left stopped and GDB should read more commands. */
3685
3686 void
3687 wait_for_inferior (void)
3688 {
3689 struct cleanup *old_cleanups;
3690
3691 if (debug_infrun)
3692 fprintf_unfiltered
3693 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3694
3695 old_cleanups
3696 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3697 NULL);
3698
3699 /* If an error happens while handling the event, propagate GDB's
3700 knowledge of the executing state to the frontend/user running
3701 state. */
3702 scoped_finish_thread_state finish_state (minus_one_ptid);
3703
3704 while (1)
3705 {
3706 struct execution_control_state ecss;
3707 struct execution_control_state *ecs = &ecss;
3708 ptid_t waiton_ptid = minus_one_ptid;
3709
3710 memset (ecs, 0, sizeof (*ecs));
3711
3712 overlay_cache_invalid = 1;
3713
3714 /* Flush target cache before starting to handle each event.
3715 Target was running and cache could be stale. This is just a
3716 heuristic. Running threads may modify target memory, but we
3717 don't get any event. */
3718 target_dcache_invalidate ();
3719
3720 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3721
3722 if (debug_infrun)
3723 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3724
3725 /* Now figure out what to do with the result of the result. */
3726 handle_inferior_event (ecs);
3727
3728 if (!ecs->wait_some_more)
3729 break;
3730 }
3731
3732 /* No error, don't finish the state yet. */
3733 finish_state.release ();
3734
3735 do_cleanups (old_cleanups);
3736 }
3737
3738 /* Cleanup that reinstalls the readline callback handler, if the
3739 target is running in the background. If while handling the target
3740 event something triggered a secondary prompt, like e.g., a
3741 pagination prompt, we'll have removed the callback handler (see
3742 gdb_readline_wrapper_line). Need to do this as we go back to the
3743 event loop, ready to process further input. Note this has no
3744 effect if the handler hasn't actually been removed, because calling
3745 rl_callback_handler_install resets the line buffer, thus losing
3746 input. */
3747
3748 static void
3749 reinstall_readline_callback_handler_cleanup (void *arg)
3750 {
3751 struct ui *ui = current_ui;
3752
3753 if (!ui->async)
3754 {
3755 /* We're not going back to the top level event loop yet. Don't
3756 install the readline callback, as it'd prep the terminal,
3757 readline-style (raw, noecho) (e.g., --batch). We'll install
3758 it the next time the prompt is displayed, when we're ready
3759 for input. */
3760 return;
3761 }
3762
3763 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3764 gdb_rl_callback_handler_reinstall ();
3765 }
3766
3767 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3768 that's just the event thread. In all-stop, that's all threads. */
3769
3770 static void
3771 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3772 {
3773 struct thread_info *thr = ecs->event_thread;
3774
3775 if (thr != NULL && thr->thread_fsm != NULL)
3776 thread_fsm_clean_up (thr->thread_fsm, thr);
3777
3778 if (!non_stop)
3779 {
3780 ALL_NON_EXITED_THREADS (thr)
3781 {
3782 if (thr->thread_fsm == NULL)
3783 continue;
3784 if (thr == ecs->event_thread)
3785 continue;
3786
3787 switch_to_thread (thr);
3788 thread_fsm_clean_up (thr->thread_fsm, thr);
3789 }
3790
3791 if (ecs->event_thread != NULL)
3792 switch_to_thread (ecs->event_thread);
3793 }
3794 }
3795
3796 /* Helper for all_uis_check_sync_execution_done that works on the
3797 current UI. */
3798
3799 static void
3800 check_curr_ui_sync_execution_done (void)
3801 {
3802 struct ui *ui = current_ui;
3803
3804 if (ui->prompt_state == PROMPT_NEEDED
3805 && ui->async
3806 && !gdb_in_secondary_prompt_p (ui))
3807 {
3808 target_terminal::ours ();
3809 gdb::observers::sync_execution_done.notify ();
3810 ui_register_input_event_handler (ui);
3811 }
3812 }
3813
3814 /* See infrun.h. */
3815
3816 void
3817 all_uis_check_sync_execution_done (void)
3818 {
3819 SWITCH_THRU_ALL_UIS ()
3820 {
3821 check_curr_ui_sync_execution_done ();
3822 }
3823 }
3824
3825 /* See infrun.h. */
3826
3827 void
3828 all_uis_on_sync_execution_starting (void)
3829 {
3830 SWITCH_THRU_ALL_UIS ()
3831 {
3832 if (current_ui->prompt_state == PROMPT_NEEDED)
3833 async_disable_stdin ();
3834 }
3835 }
3836
3837 /* Asynchronous version of wait_for_inferior. It is called by the
3838 event loop whenever a change of state is detected on the file
3839 descriptor corresponding to the target. It can be called more than
3840 once to complete a single execution command. In such cases we need
3841 to keep the state in a global variable ECSS. If it is the last time
3842 that this function is called for a single execution command, then
3843 report to the user that the inferior has stopped, and do the
3844 necessary cleanups. */
3845
3846 void
3847 fetch_inferior_event (void *client_data)
3848 {
3849 struct execution_control_state ecss;
3850 struct execution_control_state *ecs = &ecss;
3851 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3852 int cmd_done = 0;
3853 ptid_t waiton_ptid = minus_one_ptid;
3854
3855 memset (ecs, 0, sizeof (*ecs));
3856
3857 /* Events are always processed with the main UI as current UI. This
3858 way, warnings, debug output, etc. are always consistently sent to
3859 the main console. */
3860 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3861
3862 /* End up with readline processing input, if necessary. */
3863 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3864
3865 /* We're handling a live event, so make sure we're doing live
3866 debugging. If we're looking at traceframes while the target is
3867 running, we're going to need to get back to that mode after
3868 handling the event. */
3869 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3870 if (non_stop)
3871 {
3872 maybe_restore_traceframe.emplace ();
3873 set_current_traceframe (-1);
3874 }
3875
3876 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3877
3878 if (non_stop)
3879 /* In non-stop mode, the user/frontend should not notice a thread
3880 switch due to internal events. Make sure we reverse to the
3881 user selected thread and frame after handling the event and
3882 running any breakpoint commands. */
3883 maybe_restore_thread.emplace ();
3884
3885 overlay_cache_invalid = 1;
3886 /* Flush target cache before starting to handle each event. Target
3887 was running and cache could be stale. This is just a heuristic.
3888 Running threads may modify target memory, but we don't get any
3889 event. */
3890 target_dcache_invalidate ();
3891
3892 scoped_restore save_exec_dir
3893 = make_scoped_restore (&execution_direction, target_execution_direction ());
3894
3895 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3896 target_can_async_p () ? TARGET_WNOHANG : 0);
3897
3898 if (debug_infrun)
3899 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3900
3901 /* If an error happens while handling the event, propagate GDB's
3902 knowledge of the executing state to the frontend/user running
3903 state. */
3904 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3905 scoped_finish_thread_state finish_state (finish_ptid);
3906
3907 /* Get executed before make_cleanup_restore_current_thread above to apply
3908 still for the thread which has thrown the exception. */
3909 struct cleanup *ts_old_chain = make_bpstat_clear_actions_cleanup ();
3910
3911 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3912
3913 /* Now figure out what to do with the result of the result. */
3914 handle_inferior_event (ecs);
3915
3916 if (!ecs->wait_some_more)
3917 {
3918 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3919 int should_stop = 1;
3920 struct thread_info *thr = ecs->event_thread;
3921
3922 delete_just_stopped_threads_infrun_breakpoints ();
3923
3924 if (thr != NULL)
3925 {
3926 struct thread_fsm *thread_fsm = thr->thread_fsm;
3927
3928 if (thread_fsm != NULL)
3929 should_stop = thread_fsm_should_stop (thread_fsm, thr);
3930 }
3931
3932 if (!should_stop)
3933 {
3934 keep_going (ecs);
3935 }
3936 else
3937 {
3938 int should_notify_stop = 1;
3939 int proceeded = 0;
3940
3941 clean_up_just_stopped_threads_fsms (ecs);
3942
3943 if (thr != NULL && thr->thread_fsm != NULL)
3944 {
3945 should_notify_stop
3946 = thread_fsm_should_notify_stop (thr->thread_fsm);
3947 }
3948
3949 if (should_notify_stop)
3950 {
3951 /* We may not find an inferior if this was a process exit. */
3952 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3953 proceeded = normal_stop ();
3954 }
3955
3956 if (!proceeded)
3957 {
3958 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3959 cmd_done = 1;
3960 }
3961 }
3962 }
3963
3964 discard_cleanups (ts_old_chain);
3965
3966 /* No error, don't finish the thread states yet. */
3967 finish_state.release ();
3968
3969 /* Revert thread and frame. */
3970 do_cleanups (old_chain);
3971
3972 /* If a UI was in sync execution mode, and now isn't, restore its
3973 prompt (a synchronous execution command has finished, and we're
3974 ready for input). */
3975 all_uis_check_sync_execution_done ();
3976
3977 if (cmd_done
3978 && exec_done_display_p
3979 && (inferior_ptid == null_ptid
3980 || inferior_thread ()->state != THREAD_RUNNING))
3981 printf_unfiltered (_("completed.\n"));
3982 }
3983
3984 /* Record the frame and location we're currently stepping through. */
3985 void
3986 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3987 {
3988 struct thread_info *tp = inferior_thread ();
3989
3990 tp->control.step_frame_id = get_frame_id (frame);
3991 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
3992
3993 tp->current_symtab = sal.symtab;
3994 tp->current_line = sal.line;
3995 }
3996
3997 /* Clear context switchable stepping state. */
3998
3999 void
4000 init_thread_stepping_state (struct thread_info *tss)
4001 {
4002 tss->stepped_breakpoint = 0;
4003 tss->stepping_over_breakpoint = 0;
4004 tss->stepping_over_watchpoint = 0;
4005 tss->step_after_step_resume_breakpoint = 0;
4006 }
4007
4008 /* Set the cached copy of the last ptid/waitstatus. */
4009
4010 void
4011 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4012 {
4013 target_last_wait_ptid = ptid;
4014 target_last_waitstatus = status;
4015 }
4016
4017 /* Return the cached copy of the last pid/waitstatus returned by
4018 target_wait()/deprecated_target_wait_hook(). The data is actually
4019 cached by handle_inferior_event(), which gets called immediately
4020 after target_wait()/deprecated_target_wait_hook(). */
4021
4022 void
4023 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
4024 {
4025 *ptidp = target_last_wait_ptid;
4026 *status = target_last_waitstatus;
4027 }
4028
4029 void
4030 nullify_last_target_wait_ptid (void)
4031 {
4032 target_last_wait_ptid = minus_one_ptid;
4033 }
4034
4035 /* Switch thread contexts. */
4036
4037 static void
4038 context_switch (execution_control_state *ecs)
4039 {
4040 if (debug_infrun
4041 && ecs->ptid != inferior_ptid
4042 && ecs->event_thread != inferior_thread ())
4043 {
4044 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4045 target_pid_to_str (inferior_ptid));
4046 fprintf_unfiltered (gdb_stdlog, "to %s\n",
4047 target_pid_to_str (ecs->ptid));
4048 }
4049
4050 switch_to_thread (ecs->event_thread);
4051 }
4052
4053 /* If the target can't tell whether we've hit breakpoints
4054 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4055 check whether that could have been caused by a breakpoint. If so,
4056 adjust the PC, per gdbarch_decr_pc_after_break. */
4057
4058 static void
4059 adjust_pc_after_break (struct thread_info *thread,
4060 struct target_waitstatus *ws)
4061 {
4062 struct regcache *regcache;
4063 struct gdbarch *gdbarch;
4064 CORE_ADDR breakpoint_pc, decr_pc;
4065
4066 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4067 we aren't, just return.
4068
4069 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4070 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4071 implemented by software breakpoints should be handled through the normal
4072 breakpoint layer.
4073
4074 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4075 different signals (SIGILL or SIGEMT for instance), but it is less
4076 clear where the PC is pointing afterwards. It may not match
4077 gdbarch_decr_pc_after_break. I don't know any specific target that
4078 generates these signals at breakpoints (the code has been in GDB since at
4079 least 1992) so I can not guess how to handle them here.
4080
4081 In earlier versions of GDB, a target with
4082 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4083 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4084 target with both of these set in GDB history, and it seems unlikely to be
4085 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4086
4087 if (ws->kind != TARGET_WAITKIND_STOPPED)
4088 return;
4089
4090 if (ws->value.sig != GDB_SIGNAL_TRAP)
4091 return;
4092
4093 /* In reverse execution, when a breakpoint is hit, the instruction
4094 under it has already been de-executed. The reported PC always
4095 points at the breakpoint address, so adjusting it further would
4096 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4097 architecture:
4098
4099 B1 0x08000000 : INSN1
4100 B2 0x08000001 : INSN2
4101 0x08000002 : INSN3
4102 PC -> 0x08000003 : INSN4
4103
4104 Say you're stopped at 0x08000003 as above. Reverse continuing
4105 from that point should hit B2 as below. Reading the PC when the
4106 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4107 been de-executed already.
4108
4109 B1 0x08000000 : INSN1
4110 B2 PC -> 0x08000001 : INSN2
4111 0x08000002 : INSN3
4112 0x08000003 : INSN4
4113
4114 We can't apply the same logic as for forward execution, because
4115 we would wrongly adjust the PC to 0x08000000, since there's a
4116 breakpoint at PC - 1. We'd then report a hit on B1, although
4117 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4118 behaviour. */
4119 if (execution_direction == EXEC_REVERSE)
4120 return;
4121
4122 /* If the target can tell whether the thread hit a SW breakpoint,
4123 trust it. Targets that can tell also adjust the PC
4124 themselves. */
4125 if (target_supports_stopped_by_sw_breakpoint ())
4126 return;
4127
4128 /* Note that relying on whether a breakpoint is planted in memory to
4129 determine this can fail. E.g,. the breakpoint could have been
4130 removed since. Or the thread could have been told to step an
4131 instruction the size of a breakpoint instruction, and only
4132 _after_ was a breakpoint inserted at its address. */
4133
4134 /* If this target does not decrement the PC after breakpoints, then
4135 we have nothing to do. */
4136 regcache = get_thread_regcache (thread);
4137 gdbarch = regcache->arch ();
4138
4139 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4140 if (decr_pc == 0)
4141 return;
4142
4143 const address_space *aspace = regcache->aspace ();
4144
4145 /* Find the location where (if we've hit a breakpoint) the
4146 breakpoint would be. */
4147 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4148
4149 /* If the target can't tell whether a software breakpoint triggered,
4150 fallback to figuring it out based on breakpoints we think were
4151 inserted in the target, and on whether the thread was stepped or
4152 continued. */
4153
4154 /* Check whether there actually is a software breakpoint inserted at
4155 that location.
4156
4157 If in non-stop mode, a race condition is possible where we've
4158 removed a breakpoint, but stop events for that breakpoint were
4159 already queued and arrive later. To suppress those spurious
4160 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4161 and retire them after a number of stop events are reported. Note
4162 this is an heuristic and can thus get confused. The real fix is
4163 to get the "stopped by SW BP and needs adjustment" info out of
4164 the target/kernel (and thus never reach here; see above). */
4165 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4166 || (target_is_non_stop_p ()
4167 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4168 {
4169 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4170
4171 if (record_full_is_used ())
4172 restore_operation_disable.emplace
4173 (record_full_gdb_operation_disable_set ());
4174
4175 /* When using hardware single-step, a SIGTRAP is reported for both
4176 a completed single-step and a software breakpoint. Need to
4177 differentiate between the two, as the latter needs adjusting
4178 but the former does not.
4179
4180 The SIGTRAP can be due to a completed hardware single-step only if
4181 - we didn't insert software single-step breakpoints
4182 - this thread is currently being stepped
4183
4184 If any of these events did not occur, we must have stopped due
4185 to hitting a software breakpoint, and have to back up to the
4186 breakpoint address.
4187
4188 As a special case, we could have hardware single-stepped a
4189 software breakpoint. In this case (prev_pc == breakpoint_pc),
4190 we also need to back up to the breakpoint address. */
4191
4192 if (thread_has_single_step_breakpoints_set (thread)
4193 || !currently_stepping (thread)
4194 || (thread->stepped_breakpoint
4195 && thread->prev_pc == breakpoint_pc))
4196 regcache_write_pc (regcache, breakpoint_pc);
4197 }
4198 }
4199
4200 static int
4201 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4202 {
4203 for (frame = get_prev_frame (frame);
4204 frame != NULL;
4205 frame = get_prev_frame (frame))
4206 {
4207 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4208 return 1;
4209 if (get_frame_type (frame) != INLINE_FRAME)
4210 break;
4211 }
4212
4213 return 0;
4214 }
4215
4216 /* If the event thread has the stop requested flag set, pretend it
4217 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4218 target_stop). */
4219
4220 static bool
4221 handle_stop_requested (struct execution_control_state *ecs)
4222 {
4223 if (ecs->event_thread->stop_requested)
4224 {
4225 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4226 ecs->ws.value.sig = GDB_SIGNAL_0;
4227 handle_signal_stop (ecs);
4228 return true;
4229 }
4230 return false;
4231 }
4232
4233 /* Auxiliary function that handles syscall entry/return events.
4234 It returns 1 if the inferior should keep going (and GDB
4235 should ignore the event), or 0 if the event deserves to be
4236 processed. */
4237
4238 static int
4239 handle_syscall_event (struct execution_control_state *ecs)
4240 {
4241 struct regcache *regcache;
4242 int syscall_number;
4243
4244 context_switch (ecs);
4245
4246 regcache = get_thread_regcache (ecs->event_thread);
4247 syscall_number = ecs->ws.value.syscall_number;
4248 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4249
4250 if (catch_syscall_enabled () > 0
4251 && catching_syscall_number (syscall_number) > 0)
4252 {
4253 if (debug_infrun)
4254 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4255 syscall_number);
4256
4257 ecs->event_thread->control.stop_bpstat
4258 = bpstat_stop_status (regcache->aspace (),
4259 ecs->event_thread->suspend.stop_pc,
4260 ecs->event_thread, &ecs->ws);
4261
4262 if (handle_stop_requested (ecs))
4263 return 0;
4264
4265 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4266 {
4267 /* Catchpoint hit. */
4268 return 0;
4269 }
4270 }
4271
4272 if (handle_stop_requested (ecs))
4273 return 0;
4274
4275 /* If no catchpoint triggered for this, then keep going. */
4276 keep_going (ecs);
4277 return 1;
4278 }
4279
4280 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4281
4282 static void
4283 fill_in_stop_func (struct gdbarch *gdbarch,
4284 struct execution_control_state *ecs)
4285 {
4286 if (!ecs->stop_func_filled_in)
4287 {
4288 /* Don't care about return value; stop_func_start and stop_func_name
4289 will both be 0 if it doesn't work. */
4290 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4291 &ecs->stop_func_name,
4292 &ecs->stop_func_start, &ecs->stop_func_end);
4293 ecs->stop_func_start
4294 += gdbarch_deprecated_function_start_offset (gdbarch);
4295
4296 if (gdbarch_skip_entrypoint_p (gdbarch))
4297 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4298 ecs->stop_func_start);
4299
4300 ecs->stop_func_filled_in = 1;
4301 }
4302 }
4303
4304
4305 /* Return the STOP_SOON field of the inferior pointed at by ECS. */
4306
4307 static enum stop_kind
4308 get_inferior_stop_soon (execution_control_state *ecs)
4309 {
4310 struct inferior *inf = find_inferior_ptid (ecs->ptid);
4311
4312 gdb_assert (inf != NULL);
4313 return inf->control.stop_soon;
4314 }
4315
4316 /* Wait for one event. Store the resulting waitstatus in WS, and
4317 return the event ptid. */
4318
4319 static ptid_t
4320 wait_one (struct target_waitstatus *ws)
4321 {
4322 ptid_t event_ptid;
4323 ptid_t wait_ptid = minus_one_ptid;
4324
4325 overlay_cache_invalid = 1;
4326
4327 /* Flush target cache before starting to handle each event.
4328 Target was running and cache could be stale. This is just a
4329 heuristic. Running threads may modify target memory, but we
4330 don't get any event. */
4331 target_dcache_invalidate ();
4332
4333 if (deprecated_target_wait_hook)
4334 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4335 else
4336 event_ptid = target_wait (wait_ptid, ws, 0);
4337
4338 if (debug_infrun)
4339 print_target_wait_results (wait_ptid, event_ptid, ws);
4340
4341 return event_ptid;
4342 }
4343
4344 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4345 instead of the current thread. */
4346 #define THREAD_STOPPED_BY(REASON) \
4347 static int \
4348 thread_stopped_by_ ## REASON (ptid_t ptid) \
4349 { \
4350 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
4351 inferior_ptid = ptid; \
4352 \
4353 return target_stopped_by_ ## REASON (); \
4354 }
4355
4356 /* Generate thread_stopped_by_watchpoint. */
4357 THREAD_STOPPED_BY (watchpoint)
4358 /* Generate thread_stopped_by_sw_breakpoint. */
4359 THREAD_STOPPED_BY (sw_breakpoint)
4360 /* Generate thread_stopped_by_hw_breakpoint. */
4361 THREAD_STOPPED_BY (hw_breakpoint)
4362
4363 /* Save the thread's event and stop reason to process it later. */
4364
4365 static void
4366 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4367 {
4368 if (debug_infrun)
4369 {
4370 std::string statstr = target_waitstatus_to_string (ws);
4371
4372 fprintf_unfiltered (gdb_stdlog,
4373 "infrun: saving status %s for %d.%ld.%ld\n",
4374 statstr.c_str (),
4375 tp->ptid.pid (),
4376 tp->ptid.lwp (),
4377 tp->ptid.tid ());
4378 }
4379
4380 /* Record for later. */
4381 tp->suspend.waitstatus = *ws;
4382 tp->suspend.waitstatus_pending_p = 1;
4383
4384 struct regcache *regcache = get_thread_regcache (tp);
4385 const address_space *aspace = regcache->aspace ();
4386
4387 if (ws->kind == TARGET_WAITKIND_STOPPED
4388 && ws->value.sig == GDB_SIGNAL_TRAP)
4389 {
4390 CORE_ADDR pc = regcache_read_pc (regcache);
4391
4392 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4393
4394 if (thread_stopped_by_watchpoint (tp->ptid))
4395 {
4396 tp->suspend.stop_reason
4397 = TARGET_STOPPED_BY_WATCHPOINT;
4398 }
4399 else if (target_supports_stopped_by_sw_breakpoint ()
4400 && thread_stopped_by_sw_breakpoint (tp->ptid))
4401 {
4402 tp->suspend.stop_reason
4403 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4404 }
4405 else if (target_supports_stopped_by_hw_breakpoint ()
4406 && thread_stopped_by_hw_breakpoint (tp->ptid))
4407 {
4408 tp->suspend.stop_reason
4409 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4410 }
4411 else if (!target_supports_stopped_by_hw_breakpoint ()
4412 && hardware_breakpoint_inserted_here_p (aspace,
4413 pc))
4414 {
4415 tp->suspend.stop_reason
4416 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4417 }
4418 else if (!target_supports_stopped_by_sw_breakpoint ()
4419 && software_breakpoint_inserted_here_p (aspace,
4420 pc))
4421 {
4422 tp->suspend.stop_reason
4423 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4424 }
4425 else if (!thread_has_single_step_breakpoints_set (tp)
4426 && currently_stepping (tp))
4427 {
4428 tp->suspend.stop_reason
4429 = TARGET_STOPPED_BY_SINGLE_STEP;
4430 }
4431 }
4432 }
4433
4434 /* A cleanup that disables thread create/exit events. */
4435
4436 static void
4437 disable_thread_events (void *arg)
4438 {
4439 target_thread_events (0);
4440 }
4441
4442 /* See infrun.h. */
4443
4444 void
4445 stop_all_threads (void)
4446 {
4447 /* We may need multiple passes to discover all threads. */
4448 int pass;
4449 int iterations = 0;
4450 struct cleanup *old_chain;
4451
4452 gdb_assert (target_is_non_stop_p ());
4453
4454 if (debug_infrun)
4455 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4456
4457 scoped_restore_current_thread restore_thread;
4458
4459 target_thread_events (1);
4460 old_chain = make_cleanup (disable_thread_events, NULL);
4461
4462 /* Request threads to stop, and then wait for the stops. Because
4463 threads we already know about can spawn more threads while we're
4464 trying to stop them, and we only learn about new threads when we
4465 update the thread list, do this in a loop, and keep iterating
4466 until two passes find no threads that need to be stopped. */
4467 for (pass = 0; pass < 2; pass++, iterations++)
4468 {
4469 if (debug_infrun)
4470 fprintf_unfiltered (gdb_stdlog,
4471 "infrun: stop_all_threads, pass=%d, "
4472 "iterations=%d\n", pass, iterations);
4473 while (1)
4474 {
4475 ptid_t event_ptid;
4476 struct target_waitstatus ws;
4477 int need_wait = 0;
4478 struct thread_info *t;
4479
4480 update_thread_list ();
4481
4482 /* Go through all threads looking for threads that we need
4483 to tell the target to stop. */
4484 ALL_NON_EXITED_THREADS (t)
4485 {
4486 if (t->executing)
4487 {
4488 /* If already stopping, don't request a stop again.
4489 We just haven't seen the notification yet. */
4490 if (!t->stop_requested)
4491 {
4492 if (debug_infrun)
4493 fprintf_unfiltered (gdb_stdlog,
4494 "infrun: %s executing, "
4495 "need stop\n",
4496 target_pid_to_str (t->ptid));
4497 target_stop (t->ptid);
4498 t->stop_requested = 1;
4499 }
4500 else
4501 {
4502 if (debug_infrun)
4503 fprintf_unfiltered (gdb_stdlog,
4504 "infrun: %s executing, "
4505 "already stopping\n",
4506 target_pid_to_str (t->ptid));
4507 }
4508
4509 if (t->stop_requested)
4510 need_wait = 1;
4511 }
4512 else
4513 {
4514 if (debug_infrun)
4515 fprintf_unfiltered (gdb_stdlog,
4516 "infrun: %s not executing\n",
4517 target_pid_to_str (t->ptid));
4518
4519 /* The thread may be not executing, but still be
4520 resumed with a pending status to process. */
4521 t->resumed = 0;
4522 }
4523 }
4524
4525 if (!need_wait)
4526 break;
4527
4528 /* If we find new threads on the second iteration, restart
4529 over. We want to see two iterations in a row with all
4530 threads stopped. */
4531 if (pass > 0)
4532 pass = -1;
4533
4534 event_ptid = wait_one (&ws);
4535
4536 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4537 {
4538 /* All resumed threads exited. */
4539 }
4540 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4541 || ws.kind == TARGET_WAITKIND_EXITED
4542 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4543 {
4544 if (debug_infrun)
4545 {
4546 ptid_t ptid = ptid_t (ws.value.integer);
4547
4548 fprintf_unfiltered (gdb_stdlog,
4549 "infrun: %s exited while "
4550 "stopping threads\n",
4551 target_pid_to_str (ptid));
4552 }
4553 }
4554 else
4555 {
4556 inferior *inf;
4557
4558 t = find_thread_ptid (event_ptid);
4559 if (t == NULL)
4560 t = add_thread (event_ptid);
4561
4562 t->stop_requested = 0;
4563 t->executing = 0;
4564 t->resumed = 0;
4565 t->control.may_range_step = 0;
4566
4567 /* This may be the first time we see the inferior report
4568 a stop. */
4569 inf = find_inferior_ptid (event_ptid);
4570 if (inf->needs_setup)
4571 {
4572 switch_to_thread_no_regs (t);
4573 setup_inferior (0);
4574 }
4575
4576 if (ws.kind == TARGET_WAITKIND_STOPPED
4577 && ws.value.sig == GDB_SIGNAL_0)
4578 {
4579 /* We caught the event that we intended to catch, so
4580 there's no event pending. */
4581 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4582 t->suspend.waitstatus_pending_p = 0;
4583
4584 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
4585 {
4586 /* Add it back to the step-over queue. */
4587 if (debug_infrun)
4588 {
4589 fprintf_unfiltered (gdb_stdlog,
4590 "infrun: displaced-step of %s "
4591 "canceled: adding back to the "
4592 "step-over queue\n",
4593 target_pid_to_str (t->ptid));
4594 }
4595 t->control.trap_expected = 0;
4596 thread_step_over_chain_enqueue (t);
4597 }
4598 }
4599 else
4600 {
4601 enum gdb_signal sig;
4602 struct regcache *regcache;
4603
4604 if (debug_infrun)
4605 {
4606 std::string statstr = target_waitstatus_to_string (&ws);
4607
4608 fprintf_unfiltered (gdb_stdlog,
4609 "infrun: target_wait %s, saving "
4610 "status for %d.%ld.%ld\n",
4611 statstr.c_str (),
4612 t->ptid.pid (),
4613 t->ptid.lwp (),
4614 t->ptid.tid ());
4615 }
4616
4617 /* Record for later. */
4618 save_waitstatus (t, &ws);
4619
4620 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4621 ? ws.value.sig : GDB_SIGNAL_0);
4622
4623 if (displaced_step_fixup (t, sig) < 0)
4624 {
4625 /* Add it back to the step-over queue. */
4626 t->control.trap_expected = 0;
4627 thread_step_over_chain_enqueue (t);
4628 }
4629
4630 regcache = get_thread_regcache (t);
4631 t->suspend.stop_pc = regcache_read_pc (regcache);
4632
4633 if (debug_infrun)
4634 {
4635 fprintf_unfiltered (gdb_stdlog,
4636 "infrun: saved stop_pc=%s for %s "
4637 "(currently_stepping=%d)\n",
4638 paddress (target_gdbarch (),
4639 t->suspend.stop_pc),
4640 target_pid_to_str (t->ptid),
4641 currently_stepping (t));
4642 }
4643 }
4644 }
4645 }
4646 }
4647
4648 do_cleanups (old_chain);
4649
4650 if (debug_infrun)
4651 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4652 }
4653
4654 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4655
4656 static int
4657 handle_no_resumed (struct execution_control_state *ecs)
4658 {
4659 struct inferior *inf;
4660 struct thread_info *thread;
4661
4662 if (target_can_async_p ())
4663 {
4664 struct ui *ui;
4665 int any_sync = 0;
4666
4667 ALL_UIS (ui)
4668 {
4669 if (ui->prompt_state == PROMPT_BLOCKED)
4670 {
4671 any_sync = 1;
4672 break;
4673 }
4674 }
4675 if (!any_sync)
4676 {
4677 /* There were no unwaited-for children left in the target, but,
4678 we're not synchronously waiting for events either. Just
4679 ignore. */
4680
4681 if (debug_infrun)
4682 fprintf_unfiltered (gdb_stdlog,
4683 "infrun: TARGET_WAITKIND_NO_RESUMED "
4684 "(ignoring: bg)\n");
4685 prepare_to_wait (ecs);
4686 return 1;
4687 }
4688 }
4689
4690 /* Otherwise, if we were running a synchronous execution command, we
4691 may need to cancel it and give the user back the terminal.
4692
4693 In non-stop mode, the target can't tell whether we've already
4694 consumed previous stop events, so it can end up sending us a
4695 no-resumed event like so:
4696
4697 #0 - thread 1 is left stopped
4698
4699 #1 - thread 2 is resumed and hits breakpoint
4700 -> TARGET_WAITKIND_STOPPED
4701
4702 #2 - thread 3 is resumed and exits
4703 this is the last resumed thread, so
4704 -> TARGET_WAITKIND_NO_RESUMED
4705
4706 #3 - gdb processes stop for thread 2 and decides to re-resume
4707 it.
4708
4709 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4710 thread 2 is now resumed, so the event should be ignored.
4711
4712 IOW, if the stop for thread 2 doesn't end a foreground command,
4713 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4714 event. But it could be that the event meant that thread 2 itself
4715 (or whatever other thread was the last resumed thread) exited.
4716
4717 To address this we refresh the thread list and check whether we
4718 have resumed threads _now_. In the example above, this removes
4719 thread 3 from the thread list. If thread 2 was re-resumed, we
4720 ignore this event. If we find no thread resumed, then we cancel
4721 the synchronous command show "no unwaited-for " to the user. */
4722 update_thread_list ();
4723
4724 ALL_NON_EXITED_THREADS (thread)
4725 {
4726 if (thread->executing
4727 || thread->suspend.waitstatus_pending_p)
4728 {
4729 /* There were no unwaited-for children left in the target at
4730 some point, but there are now. Just ignore. */
4731 if (debug_infrun)
4732 fprintf_unfiltered (gdb_stdlog,
4733 "infrun: TARGET_WAITKIND_NO_RESUMED "
4734 "(ignoring: found resumed)\n");
4735 prepare_to_wait (ecs);
4736 return 1;
4737 }
4738 }
4739
4740 /* Note however that we may find no resumed thread because the whole
4741 process exited meanwhile (thus updating the thread list results
4742 in an empty thread list). In this case we know we'll be getting
4743 a process exit event shortly. */
4744 ALL_INFERIORS (inf)
4745 {
4746 if (inf->pid == 0)
4747 continue;
4748
4749 thread_info *thread = any_live_thread_of_inferior (inf);
4750 if (thread == NULL)
4751 {
4752 if (debug_infrun)
4753 fprintf_unfiltered (gdb_stdlog,
4754 "infrun: TARGET_WAITKIND_NO_RESUMED "
4755 "(expect process exit)\n");
4756 prepare_to_wait (ecs);
4757 return 1;
4758 }
4759 }
4760
4761 /* Go ahead and report the event. */
4762 return 0;
4763 }
4764
4765 /* Given an execution control state that has been freshly filled in by
4766 an event from the inferior, figure out what it means and take
4767 appropriate action.
4768
4769 The alternatives are:
4770
4771 1) stop_waiting and return; to really stop and return to the
4772 debugger.
4773
4774 2) keep_going and return; to wait for the next event (set
4775 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4776 once). */
4777
4778 static void
4779 handle_inferior_event_1 (struct execution_control_state *ecs)
4780 {
4781 enum stop_kind stop_soon;
4782
4783 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4784 {
4785 /* We had an event in the inferior, but we are not interested in
4786 handling it at this level. The lower layers have already
4787 done what needs to be done, if anything.
4788
4789 One of the possible circumstances for this is when the
4790 inferior produces output for the console. The inferior has
4791 not stopped, and we are ignoring the event. Another possible
4792 circumstance is any event which the lower level knows will be
4793 reported multiple times without an intervening resume. */
4794 if (debug_infrun)
4795 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4796 prepare_to_wait (ecs);
4797 return;
4798 }
4799
4800 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4801 {
4802 if (debug_infrun)
4803 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4804 prepare_to_wait (ecs);
4805 return;
4806 }
4807
4808 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4809 && handle_no_resumed (ecs))
4810 return;
4811
4812 /* Cache the last pid/waitstatus. */
4813 set_last_target_status (ecs->ptid, ecs->ws);
4814
4815 /* Always clear state belonging to the previous time we stopped. */
4816 stop_stack_dummy = STOP_NONE;
4817
4818 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4819 {
4820 /* No unwaited-for children left. IOW, all resumed children
4821 have exited. */
4822 if (debug_infrun)
4823 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4824
4825 stop_print_frame = 0;
4826 stop_waiting (ecs);
4827 return;
4828 }
4829
4830 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4831 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4832 {
4833 ecs->event_thread = find_thread_ptid (ecs->ptid);
4834 /* If it's a new thread, add it to the thread database. */
4835 if (ecs->event_thread == NULL)
4836 ecs->event_thread = add_thread (ecs->ptid);
4837
4838 /* Disable range stepping. If the next step request could use a
4839 range, this will be end up re-enabled then. */
4840 ecs->event_thread->control.may_range_step = 0;
4841 }
4842
4843 /* Dependent on valid ECS->EVENT_THREAD. */
4844 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4845
4846 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4847 reinit_frame_cache ();
4848
4849 breakpoint_retire_moribund ();
4850
4851 /* First, distinguish signals caused by the debugger from signals
4852 that have to do with the program's own actions. Note that
4853 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4854 on the operating system version. Here we detect when a SIGILL or
4855 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4856 something similar for SIGSEGV, since a SIGSEGV will be generated
4857 when we're trying to execute a breakpoint instruction on a
4858 non-executable stack. This happens for call dummy breakpoints
4859 for architectures like SPARC that place call dummies on the
4860 stack. */
4861 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4862 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4863 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4864 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4865 {
4866 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
4867
4868 if (breakpoint_inserted_here_p (regcache->aspace (),
4869 regcache_read_pc (regcache)))
4870 {
4871 if (debug_infrun)
4872 fprintf_unfiltered (gdb_stdlog,
4873 "infrun: Treating signal as SIGTRAP\n");
4874 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4875 }
4876 }
4877
4878 /* Mark the non-executing threads accordingly. In all-stop, all
4879 threads of all processes are stopped when we get any event
4880 reported. In non-stop mode, only the event thread stops. */
4881 {
4882 ptid_t mark_ptid;
4883
4884 if (!target_is_non_stop_p ())
4885 mark_ptid = minus_one_ptid;
4886 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4887 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4888 {
4889 /* If we're handling a process exit in non-stop mode, even
4890 though threads haven't been deleted yet, one would think
4891 that there is nothing to do, as threads of the dead process
4892 will be soon deleted, and threads of any other process were
4893 left running. However, on some targets, threads survive a
4894 process exit event. E.g., for the "checkpoint" command,
4895 when the current checkpoint/fork exits, linux-fork.c
4896 automatically switches to another fork from within
4897 target_mourn_inferior, by associating the same
4898 inferior/thread to another fork. We haven't mourned yet at
4899 this point, but we must mark any threads left in the
4900 process as not-executing so that finish_thread_state marks
4901 them stopped (in the user's perspective) if/when we present
4902 the stop to the user. */
4903 mark_ptid = ptid_t (ecs->ptid.pid ());
4904 }
4905 else
4906 mark_ptid = ecs->ptid;
4907
4908 set_executing (mark_ptid, 0);
4909
4910 /* Likewise the resumed flag. */
4911 set_resumed (mark_ptid, 0);
4912 }
4913
4914 switch (ecs->ws.kind)
4915 {
4916 case TARGET_WAITKIND_LOADED:
4917 if (debug_infrun)
4918 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
4919 context_switch (ecs);
4920 /* Ignore gracefully during startup of the inferior, as it might
4921 be the shell which has just loaded some objects, otherwise
4922 add the symbols for the newly loaded objects. Also ignore at
4923 the beginning of an attach or remote session; we will query
4924 the full list of libraries once the connection is
4925 established. */
4926
4927 stop_soon = get_inferior_stop_soon (ecs);
4928 if (stop_soon == NO_STOP_QUIETLY)
4929 {
4930 struct regcache *regcache;
4931
4932 regcache = get_thread_regcache (ecs->event_thread);
4933
4934 handle_solib_event ();
4935
4936 ecs->event_thread->control.stop_bpstat
4937 = bpstat_stop_status (regcache->aspace (),
4938 ecs->event_thread->suspend.stop_pc,
4939 ecs->event_thread, &ecs->ws);
4940
4941 if (handle_stop_requested (ecs))
4942 return;
4943
4944 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4945 {
4946 /* A catchpoint triggered. */
4947 process_event_stop_test (ecs);
4948 return;
4949 }
4950
4951 /* If requested, stop when the dynamic linker notifies
4952 gdb of events. This allows the user to get control
4953 and place breakpoints in initializer routines for
4954 dynamically loaded objects (among other things). */
4955 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4956 if (stop_on_solib_events)
4957 {
4958 /* Make sure we print "Stopped due to solib-event" in
4959 normal_stop. */
4960 stop_print_frame = 1;
4961
4962 stop_waiting (ecs);
4963 return;
4964 }
4965 }
4966
4967 /* If we are skipping through a shell, or through shared library
4968 loading that we aren't interested in, resume the program. If
4969 we're running the program normally, also resume. */
4970 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4971 {
4972 /* Loading of shared libraries might have changed breakpoint
4973 addresses. Make sure new breakpoints are inserted. */
4974 if (stop_soon == NO_STOP_QUIETLY)
4975 insert_breakpoints ();
4976 resume (GDB_SIGNAL_0);
4977 prepare_to_wait (ecs);
4978 return;
4979 }
4980
4981 /* But stop if we're attaching or setting up a remote
4982 connection. */
4983 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4984 || stop_soon == STOP_QUIETLY_REMOTE)
4985 {
4986 if (debug_infrun)
4987 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4988 stop_waiting (ecs);
4989 return;
4990 }
4991
4992 internal_error (__FILE__, __LINE__,
4993 _("unhandled stop_soon: %d"), (int) stop_soon);
4994
4995 case TARGET_WAITKIND_SPURIOUS:
4996 if (debug_infrun)
4997 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
4998 if (handle_stop_requested (ecs))
4999 return;
5000 context_switch (ecs);
5001 resume (GDB_SIGNAL_0);
5002 prepare_to_wait (ecs);
5003 return;
5004
5005 case TARGET_WAITKIND_THREAD_CREATED:
5006 if (debug_infrun)
5007 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
5008 if (handle_stop_requested (ecs))
5009 return;
5010 context_switch (ecs);
5011 if (!switch_back_to_stepped_thread (ecs))
5012 keep_going (ecs);
5013 return;
5014
5015 case TARGET_WAITKIND_EXITED:
5016 case TARGET_WAITKIND_SIGNALLED:
5017 if (debug_infrun)
5018 {
5019 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5020 fprintf_unfiltered (gdb_stdlog,
5021 "infrun: TARGET_WAITKIND_EXITED\n");
5022 else
5023 fprintf_unfiltered (gdb_stdlog,
5024 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5025 }
5026
5027 inferior_ptid = ecs->ptid;
5028 set_current_inferior (find_inferior_ptid (ecs->ptid));
5029 set_current_program_space (current_inferior ()->pspace);
5030 handle_vfork_child_exec_or_exit (0);
5031 target_terminal::ours (); /* Must do this before mourn anyway. */
5032
5033 /* Clearing any previous state of convenience variables. */
5034 clear_exit_convenience_vars ();
5035
5036 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5037 {
5038 /* Record the exit code in the convenience variable $_exitcode, so
5039 that the user can inspect this again later. */
5040 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5041 (LONGEST) ecs->ws.value.integer);
5042
5043 /* Also record this in the inferior itself. */
5044 current_inferior ()->has_exit_code = 1;
5045 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5046
5047 /* Support the --return-child-result option. */
5048 return_child_result_value = ecs->ws.value.integer;
5049
5050 gdb::observers::exited.notify (ecs->ws.value.integer);
5051 }
5052 else
5053 {
5054 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
5055
5056 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5057 {
5058 /* Set the value of the internal variable $_exitsignal,
5059 which holds the signal uncaught by the inferior. */
5060 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5061 gdbarch_gdb_signal_to_target (gdbarch,
5062 ecs->ws.value.sig));
5063 }
5064 else
5065 {
5066 /* We don't have access to the target's method used for
5067 converting between signal numbers (GDB's internal
5068 representation <-> target's representation).
5069 Therefore, we cannot do a good job at displaying this
5070 information to the user. It's better to just warn
5071 her about it (if infrun debugging is enabled), and
5072 give up. */
5073 if (debug_infrun)
5074 fprintf_filtered (gdb_stdlog, _("\
5075 Cannot fill $_exitsignal with the correct signal number.\n"));
5076 }
5077
5078 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
5079 }
5080
5081 gdb_flush (gdb_stdout);
5082 target_mourn_inferior (inferior_ptid);
5083 stop_print_frame = 0;
5084 stop_waiting (ecs);
5085 return;
5086
5087 /* The following are the only cases in which we keep going;
5088 the above cases end in a continue or goto. */
5089 case TARGET_WAITKIND_FORKED:
5090 case TARGET_WAITKIND_VFORKED:
5091 if (debug_infrun)
5092 {
5093 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5094 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5095 else
5096 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5097 }
5098
5099 /* Check whether the inferior is displaced stepping. */
5100 {
5101 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5102 struct gdbarch *gdbarch = regcache->arch ();
5103
5104 /* If checking displaced stepping is supported, and thread
5105 ecs->ptid is displaced stepping. */
5106 if (displaced_step_in_progress_thread (ecs->event_thread))
5107 {
5108 struct inferior *parent_inf
5109 = find_inferior_ptid (ecs->ptid);
5110 struct regcache *child_regcache;
5111 CORE_ADDR parent_pc;
5112
5113 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5114 indicating that the displaced stepping of syscall instruction
5115 has been done. Perform cleanup for parent process here. Note
5116 that this operation also cleans up the child process for vfork,
5117 because their pages are shared. */
5118 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
5119 /* Start a new step-over in another thread if there's one
5120 that needs it. */
5121 start_step_over ();
5122
5123 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5124 {
5125 struct displaced_step_inferior_state *displaced
5126 = get_displaced_stepping_state (parent_inf);
5127
5128 /* Restore scratch pad for child process. */
5129 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5130 }
5131
5132 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5133 the child's PC is also within the scratchpad. Set the child's PC
5134 to the parent's PC value, which has already been fixed up.
5135 FIXME: we use the parent's aspace here, although we're touching
5136 the child, because the child hasn't been added to the inferior
5137 list yet at this point. */
5138
5139 child_regcache
5140 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5141 gdbarch,
5142 parent_inf->aspace);
5143 /* Read PC value of parent process. */
5144 parent_pc = regcache_read_pc (regcache);
5145
5146 if (debug_displaced)
5147 fprintf_unfiltered (gdb_stdlog,
5148 "displaced: write child pc from %s to %s\n",
5149 paddress (gdbarch,
5150 regcache_read_pc (child_regcache)),
5151 paddress (gdbarch, parent_pc));
5152
5153 regcache_write_pc (child_regcache, parent_pc);
5154 }
5155 }
5156
5157 context_switch (ecs);
5158
5159 /* Immediately detach breakpoints from the child before there's
5160 any chance of letting the user delete breakpoints from the
5161 breakpoint lists. If we don't do this early, it's easy to
5162 leave left over traps in the child, vis: "break foo; catch
5163 fork; c; <fork>; del; c; <child calls foo>". We only follow
5164 the fork on the last `continue', and by that time the
5165 breakpoint at "foo" is long gone from the breakpoint table.
5166 If we vforked, then we don't need to unpatch here, since both
5167 parent and child are sharing the same memory pages; we'll
5168 need to unpatch at follow/detach time instead to be certain
5169 that new breakpoints added between catchpoint hit time and
5170 vfork follow are detached. */
5171 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5172 {
5173 /* This won't actually modify the breakpoint list, but will
5174 physically remove the breakpoints from the child. */
5175 detach_breakpoints (ecs->ws.value.related_pid);
5176 }
5177
5178 delete_just_stopped_threads_single_step_breakpoints ();
5179
5180 /* In case the event is caught by a catchpoint, remember that
5181 the event is to be followed at the next resume of the thread,
5182 and not immediately. */
5183 ecs->event_thread->pending_follow = ecs->ws;
5184
5185 ecs->event_thread->suspend.stop_pc
5186 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5187
5188 ecs->event_thread->control.stop_bpstat
5189 = bpstat_stop_status (get_current_regcache ()->aspace (),
5190 ecs->event_thread->suspend.stop_pc,
5191 ecs->event_thread, &ecs->ws);
5192
5193 if (handle_stop_requested (ecs))
5194 return;
5195
5196 /* If no catchpoint triggered for this, then keep going. Note
5197 that we're interested in knowing the bpstat actually causes a
5198 stop, not just if it may explain the signal. Software
5199 watchpoints, for example, always appear in the bpstat. */
5200 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5201 {
5202 int should_resume;
5203 int follow_child
5204 = (follow_fork_mode_string == follow_fork_mode_child);
5205
5206 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5207
5208 should_resume = follow_fork ();
5209
5210 thread_info *parent = ecs->event_thread;
5211 thread_info *child = find_thread_ptid (ecs->ws.value.related_pid);
5212
5213 /* At this point, the parent is marked running, and the
5214 child is marked stopped. */
5215
5216 /* If not resuming the parent, mark it stopped. */
5217 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5218 parent->set_running (false);
5219
5220 /* If resuming the child, mark it running. */
5221 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5222 child->set_running (true);
5223
5224 /* In non-stop mode, also resume the other branch. */
5225 if (!detach_fork && (non_stop
5226 || (sched_multi && target_is_non_stop_p ())))
5227 {
5228 if (follow_child)
5229 switch_to_thread (parent);
5230 else
5231 switch_to_thread (child);
5232
5233 ecs->event_thread = inferior_thread ();
5234 ecs->ptid = inferior_ptid;
5235 keep_going (ecs);
5236 }
5237
5238 if (follow_child)
5239 switch_to_thread (child);
5240 else
5241 switch_to_thread (parent);
5242
5243 ecs->event_thread = inferior_thread ();
5244 ecs->ptid = inferior_ptid;
5245
5246 if (should_resume)
5247 keep_going (ecs);
5248 else
5249 stop_waiting (ecs);
5250 return;
5251 }
5252 process_event_stop_test (ecs);
5253 return;
5254
5255 case TARGET_WAITKIND_VFORK_DONE:
5256 /* Done with the shared memory region. Re-insert breakpoints in
5257 the parent, and keep going. */
5258
5259 if (debug_infrun)
5260 fprintf_unfiltered (gdb_stdlog,
5261 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
5262
5263 context_switch (ecs);
5264
5265 current_inferior ()->waiting_for_vfork_done = 0;
5266 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5267
5268 if (handle_stop_requested (ecs))
5269 return;
5270
5271 /* This also takes care of reinserting breakpoints in the
5272 previously locked inferior. */
5273 keep_going (ecs);
5274 return;
5275
5276 case TARGET_WAITKIND_EXECD:
5277 if (debug_infrun)
5278 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
5279
5280 /* Note we can't read registers yet (the stop_pc), because we
5281 don't yet know the inferior's post-exec architecture.
5282 'stop_pc' is explicitly read below instead. */
5283 switch_to_thread_no_regs (ecs->event_thread);
5284
5285 /* Do whatever is necessary to the parent branch of the vfork. */
5286 handle_vfork_child_exec_or_exit (1);
5287
5288 /* This causes the eventpoints and symbol table to be reset.
5289 Must do this now, before trying to determine whether to
5290 stop. */
5291 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5292
5293 /* In follow_exec we may have deleted the original thread and
5294 created a new one. Make sure that the event thread is the
5295 execd thread for that case (this is a nop otherwise). */
5296 ecs->event_thread = inferior_thread ();
5297
5298 ecs->event_thread->suspend.stop_pc
5299 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5300
5301 ecs->event_thread->control.stop_bpstat
5302 = bpstat_stop_status (get_current_regcache ()->aspace (),
5303 ecs->event_thread->suspend.stop_pc,
5304 ecs->event_thread, &ecs->ws);
5305
5306 /* Note that this may be referenced from inside
5307 bpstat_stop_status above, through inferior_has_execd. */
5308 xfree (ecs->ws.value.execd_pathname);
5309 ecs->ws.value.execd_pathname = NULL;
5310
5311 if (handle_stop_requested (ecs))
5312 return;
5313
5314 /* If no catchpoint triggered for this, then keep going. */
5315 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5316 {
5317 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5318 keep_going (ecs);
5319 return;
5320 }
5321 process_event_stop_test (ecs);
5322 return;
5323
5324 /* Be careful not to try to gather much state about a thread
5325 that's in a syscall. It's frequently a losing proposition. */
5326 case TARGET_WAITKIND_SYSCALL_ENTRY:
5327 if (debug_infrun)
5328 fprintf_unfiltered (gdb_stdlog,
5329 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
5330 /* Getting the current syscall number. */
5331 if (handle_syscall_event (ecs) == 0)
5332 process_event_stop_test (ecs);
5333 return;
5334
5335 /* Before examining the threads further, step this thread to
5336 get it entirely out of the syscall. (We get notice of the
5337 event when the thread is just on the verge of exiting a
5338 syscall. Stepping one instruction seems to get it back
5339 into user code.) */
5340 case TARGET_WAITKIND_SYSCALL_RETURN:
5341 if (debug_infrun)
5342 fprintf_unfiltered (gdb_stdlog,
5343 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
5344 if (handle_syscall_event (ecs) == 0)
5345 process_event_stop_test (ecs);
5346 return;
5347
5348 case TARGET_WAITKIND_STOPPED:
5349 if (debug_infrun)
5350 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
5351 handle_signal_stop (ecs);
5352 return;
5353
5354 case TARGET_WAITKIND_NO_HISTORY:
5355 if (debug_infrun)
5356 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
5357 /* Reverse execution: target ran out of history info. */
5358
5359 /* Switch to the stopped thread. */
5360 context_switch (ecs);
5361 if (debug_infrun)
5362 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5363
5364 delete_just_stopped_threads_single_step_breakpoints ();
5365 ecs->event_thread->suspend.stop_pc
5366 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5367
5368 if (handle_stop_requested (ecs))
5369 return;
5370
5371 gdb::observers::no_history.notify ();
5372 stop_waiting (ecs);
5373 return;
5374 }
5375 }
5376
5377 /* A wrapper around handle_inferior_event_1, which also makes sure
5378 that all temporary struct value objects that were created during
5379 the handling of the event get deleted at the end. */
5380
5381 static void
5382 handle_inferior_event (struct execution_control_state *ecs)
5383 {
5384 struct value *mark = value_mark ();
5385
5386 handle_inferior_event_1 (ecs);
5387 /* Purge all temporary values created during the event handling,
5388 as it could be a long time before we return to the command level
5389 where such values would otherwise be purged. */
5390 value_free_to_mark (mark);
5391 }
5392
5393 /* Restart threads back to what they were trying to do back when we
5394 paused them for an in-line step-over. The EVENT_THREAD thread is
5395 ignored. */
5396
5397 static void
5398 restart_threads (struct thread_info *event_thread)
5399 {
5400 struct thread_info *tp;
5401
5402 /* In case the instruction just stepped spawned a new thread. */
5403 update_thread_list ();
5404
5405 ALL_NON_EXITED_THREADS (tp)
5406 {
5407 if (tp == event_thread)
5408 {
5409 if (debug_infrun)
5410 fprintf_unfiltered (gdb_stdlog,
5411 "infrun: restart threads: "
5412 "[%s] is event thread\n",
5413 target_pid_to_str (tp->ptid));
5414 continue;
5415 }
5416
5417 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5418 {
5419 if (debug_infrun)
5420 fprintf_unfiltered (gdb_stdlog,
5421 "infrun: restart threads: "
5422 "[%s] not meant to be running\n",
5423 target_pid_to_str (tp->ptid));
5424 continue;
5425 }
5426
5427 if (tp->resumed)
5428 {
5429 if (debug_infrun)
5430 fprintf_unfiltered (gdb_stdlog,
5431 "infrun: restart threads: [%s] resumed\n",
5432 target_pid_to_str (tp->ptid));
5433 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5434 continue;
5435 }
5436
5437 if (thread_is_in_step_over_chain (tp))
5438 {
5439 if (debug_infrun)
5440 fprintf_unfiltered (gdb_stdlog,
5441 "infrun: restart threads: "
5442 "[%s] needs step-over\n",
5443 target_pid_to_str (tp->ptid));
5444 gdb_assert (!tp->resumed);
5445 continue;
5446 }
5447
5448
5449 if (tp->suspend.waitstatus_pending_p)
5450 {
5451 if (debug_infrun)
5452 fprintf_unfiltered (gdb_stdlog,
5453 "infrun: restart threads: "
5454 "[%s] has pending status\n",
5455 target_pid_to_str (tp->ptid));
5456 tp->resumed = 1;
5457 continue;
5458 }
5459
5460 gdb_assert (!tp->stop_requested);
5461
5462 /* If some thread needs to start a step-over at this point, it
5463 should still be in the step-over queue, and thus skipped
5464 above. */
5465 if (thread_still_needs_step_over (tp))
5466 {
5467 internal_error (__FILE__, __LINE__,
5468 "thread [%s] needs a step-over, but not in "
5469 "step-over queue\n",
5470 target_pid_to_str (tp->ptid));
5471 }
5472
5473 if (currently_stepping (tp))
5474 {
5475 if (debug_infrun)
5476 fprintf_unfiltered (gdb_stdlog,
5477 "infrun: restart threads: [%s] was stepping\n",
5478 target_pid_to_str (tp->ptid));
5479 keep_going_stepped_thread (tp);
5480 }
5481 else
5482 {
5483 struct execution_control_state ecss;
5484 struct execution_control_state *ecs = &ecss;
5485
5486 if (debug_infrun)
5487 fprintf_unfiltered (gdb_stdlog,
5488 "infrun: restart threads: [%s] continuing\n",
5489 target_pid_to_str (tp->ptid));
5490 reset_ecs (ecs, tp);
5491 switch_to_thread (tp);
5492 keep_going_pass_signal (ecs);
5493 }
5494 }
5495 }
5496
5497 /* Callback for iterate_over_threads. Find a resumed thread that has
5498 a pending waitstatus. */
5499
5500 static int
5501 resumed_thread_with_pending_status (struct thread_info *tp,
5502 void *arg)
5503 {
5504 return (tp->resumed
5505 && tp->suspend.waitstatus_pending_p);
5506 }
5507
5508 /* Called when we get an event that may finish an in-line or
5509 out-of-line (displaced stepping) step-over started previously.
5510 Return true if the event is processed and we should go back to the
5511 event loop; false if the caller should continue processing the
5512 event. */
5513
5514 static int
5515 finish_step_over (struct execution_control_state *ecs)
5516 {
5517 int had_step_over_info;
5518
5519 displaced_step_fixup (ecs->event_thread,
5520 ecs->event_thread->suspend.stop_signal);
5521
5522 had_step_over_info = step_over_info_valid_p ();
5523
5524 if (had_step_over_info)
5525 {
5526 /* If we're stepping over a breakpoint with all threads locked,
5527 then only the thread that was stepped should be reporting
5528 back an event. */
5529 gdb_assert (ecs->event_thread->control.trap_expected);
5530
5531 clear_step_over_info ();
5532 }
5533
5534 if (!target_is_non_stop_p ())
5535 return 0;
5536
5537 /* Start a new step-over in another thread if there's one that
5538 needs it. */
5539 start_step_over ();
5540
5541 /* If we were stepping over a breakpoint before, and haven't started
5542 a new in-line step-over sequence, then restart all other threads
5543 (except the event thread). We can't do this in all-stop, as then
5544 e.g., we wouldn't be able to issue any other remote packet until
5545 these other threads stop. */
5546 if (had_step_over_info && !step_over_info_valid_p ())
5547 {
5548 struct thread_info *pending;
5549
5550 /* If we only have threads with pending statuses, the restart
5551 below won't restart any thread and so nothing re-inserts the
5552 breakpoint we just stepped over. But we need it inserted
5553 when we later process the pending events, otherwise if
5554 another thread has a pending event for this breakpoint too,
5555 we'd discard its event (because the breakpoint that
5556 originally caused the event was no longer inserted). */
5557 context_switch (ecs);
5558 insert_breakpoints ();
5559
5560 restart_threads (ecs->event_thread);
5561
5562 /* If we have events pending, go through handle_inferior_event
5563 again, picking up a pending event at random. This avoids
5564 thread starvation. */
5565
5566 /* But not if we just stepped over a watchpoint in order to let
5567 the instruction execute so we can evaluate its expression.
5568 The set of watchpoints that triggered is recorded in the
5569 breakpoint objects themselves (see bp->watchpoint_triggered).
5570 If we processed another event first, that other event could
5571 clobber this info. */
5572 if (ecs->event_thread->stepping_over_watchpoint)
5573 return 0;
5574
5575 pending = iterate_over_threads (resumed_thread_with_pending_status,
5576 NULL);
5577 if (pending != NULL)
5578 {
5579 struct thread_info *tp = ecs->event_thread;
5580 struct regcache *regcache;
5581
5582 if (debug_infrun)
5583 {
5584 fprintf_unfiltered (gdb_stdlog,
5585 "infrun: found resumed threads with "
5586 "pending events, saving status\n");
5587 }
5588
5589 gdb_assert (pending != tp);
5590
5591 /* Record the event thread's event for later. */
5592 save_waitstatus (tp, &ecs->ws);
5593 /* This was cleared early, by handle_inferior_event. Set it
5594 so this pending event is considered by
5595 do_target_wait. */
5596 tp->resumed = 1;
5597
5598 gdb_assert (!tp->executing);
5599
5600 regcache = get_thread_regcache (tp);
5601 tp->suspend.stop_pc = regcache_read_pc (regcache);
5602
5603 if (debug_infrun)
5604 {
5605 fprintf_unfiltered (gdb_stdlog,
5606 "infrun: saved stop_pc=%s for %s "
5607 "(currently_stepping=%d)\n",
5608 paddress (target_gdbarch (),
5609 tp->suspend.stop_pc),
5610 target_pid_to_str (tp->ptid),
5611 currently_stepping (tp));
5612 }
5613
5614 /* This in-line step-over finished; clear this so we won't
5615 start a new one. This is what handle_signal_stop would
5616 do, if we returned false. */
5617 tp->stepping_over_breakpoint = 0;
5618
5619 /* Wake up the event loop again. */
5620 mark_async_event_handler (infrun_async_inferior_event_token);
5621
5622 prepare_to_wait (ecs);
5623 return 1;
5624 }
5625 }
5626
5627 return 0;
5628 }
5629
5630 /* Come here when the program has stopped with a signal. */
5631
5632 static void
5633 handle_signal_stop (struct execution_control_state *ecs)
5634 {
5635 struct frame_info *frame;
5636 struct gdbarch *gdbarch;
5637 int stopped_by_watchpoint;
5638 enum stop_kind stop_soon;
5639 int random_signal;
5640
5641 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5642
5643 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5644
5645 /* Do we need to clean up the state of a thread that has
5646 completed a displaced single-step? (Doing so usually affects
5647 the PC, so do it here, before we set stop_pc.) */
5648 if (finish_step_over (ecs))
5649 return;
5650
5651 /* If we either finished a single-step or hit a breakpoint, but
5652 the user wanted this thread to be stopped, pretend we got a
5653 SIG0 (generic unsignaled stop). */
5654 if (ecs->event_thread->stop_requested
5655 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5656 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5657
5658 ecs->event_thread->suspend.stop_pc
5659 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5660
5661 if (debug_infrun)
5662 {
5663 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5664 struct gdbarch *gdbarch = regcache->arch ();
5665 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
5666
5667 inferior_ptid = ecs->ptid;
5668
5669 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5670 paddress (gdbarch,
5671 ecs->event_thread->suspend.stop_pc));
5672 if (target_stopped_by_watchpoint ())
5673 {
5674 CORE_ADDR addr;
5675
5676 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5677
5678 if (target_stopped_data_address (current_top_target (), &addr))
5679 fprintf_unfiltered (gdb_stdlog,
5680 "infrun: stopped data address = %s\n",
5681 paddress (gdbarch, addr));
5682 else
5683 fprintf_unfiltered (gdb_stdlog,
5684 "infrun: (no data address available)\n");
5685 }
5686 }
5687
5688 /* This is originated from start_remote(), start_inferior() and
5689 shared libraries hook functions. */
5690 stop_soon = get_inferior_stop_soon (ecs);
5691 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5692 {
5693 context_switch (ecs);
5694 if (debug_infrun)
5695 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5696 stop_print_frame = 1;
5697 stop_waiting (ecs);
5698 return;
5699 }
5700
5701 /* This originates from attach_command(). We need to overwrite
5702 the stop_signal here, because some kernels don't ignore a
5703 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5704 See more comments in inferior.h. On the other hand, if we
5705 get a non-SIGSTOP, report it to the user - assume the backend
5706 will handle the SIGSTOP if it should show up later.
5707
5708 Also consider that the attach is complete when we see a
5709 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5710 target extended-remote report it instead of a SIGSTOP
5711 (e.g. gdbserver). We already rely on SIGTRAP being our
5712 signal, so this is no exception.
5713
5714 Also consider that the attach is complete when we see a
5715 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5716 the target to stop all threads of the inferior, in case the
5717 low level attach operation doesn't stop them implicitly. If
5718 they weren't stopped implicitly, then the stub will report a
5719 GDB_SIGNAL_0, meaning: stopped for no particular reason
5720 other than GDB's request. */
5721 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5722 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5723 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5724 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5725 {
5726 stop_print_frame = 1;
5727 stop_waiting (ecs);
5728 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5729 return;
5730 }
5731
5732 /* See if something interesting happened to the non-current thread. If
5733 so, then switch to that thread. */
5734 if (ecs->ptid != inferior_ptid)
5735 {
5736 if (debug_infrun)
5737 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5738
5739 context_switch (ecs);
5740
5741 if (deprecated_context_hook)
5742 deprecated_context_hook (ecs->event_thread->global_num);
5743 }
5744
5745 /* At this point, get hold of the now-current thread's frame. */
5746 frame = get_current_frame ();
5747 gdbarch = get_frame_arch (frame);
5748
5749 /* Pull the single step breakpoints out of the target. */
5750 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5751 {
5752 struct regcache *regcache;
5753 CORE_ADDR pc;
5754
5755 regcache = get_thread_regcache (ecs->event_thread);
5756 const address_space *aspace = regcache->aspace ();
5757
5758 pc = regcache_read_pc (regcache);
5759
5760 /* However, before doing so, if this single-step breakpoint was
5761 actually for another thread, set this thread up for moving
5762 past it. */
5763 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5764 aspace, pc))
5765 {
5766 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5767 {
5768 if (debug_infrun)
5769 {
5770 fprintf_unfiltered (gdb_stdlog,
5771 "infrun: [%s] hit another thread's "
5772 "single-step breakpoint\n",
5773 target_pid_to_str (ecs->ptid));
5774 }
5775 ecs->hit_singlestep_breakpoint = 1;
5776 }
5777 }
5778 else
5779 {
5780 if (debug_infrun)
5781 {
5782 fprintf_unfiltered (gdb_stdlog,
5783 "infrun: [%s] hit its "
5784 "single-step breakpoint\n",
5785 target_pid_to_str (ecs->ptid));
5786 }
5787 }
5788 }
5789 delete_just_stopped_threads_single_step_breakpoints ();
5790
5791 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5792 && ecs->event_thread->control.trap_expected
5793 && ecs->event_thread->stepping_over_watchpoint)
5794 stopped_by_watchpoint = 0;
5795 else
5796 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5797
5798 /* If necessary, step over this watchpoint. We'll be back to display
5799 it in a moment. */
5800 if (stopped_by_watchpoint
5801 && (target_have_steppable_watchpoint
5802 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5803 {
5804 /* At this point, we are stopped at an instruction which has
5805 attempted to write to a piece of memory under control of
5806 a watchpoint. The instruction hasn't actually executed
5807 yet. If we were to evaluate the watchpoint expression
5808 now, we would get the old value, and therefore no change
5809 would seem to have occurred.
5810
5811 In order to make watchpoints work `right', we really need
5812 to complete the memory write, and then evaluate the
5813 watchpoint expression. We do this by single-stepping the
5814 target.
5815
5816 It may not be necessary to disable the watchpoint to step over
5817 it. For example, the PA can (with some kernel cooperation)
5818 single step over a watchpoint without disabling the watchpoint.
5819
5820 It is far more common to need to disable a watchpoint to step
5821 the inferior over it. If we have non-steppable watchpoints,
5822 we must disable the current watchpoint; it's simplest to
5823 disable all watchpoints.
5824
5825 Any breakpoint at PC must also be stepped over -- if there's
5826 one, it will have already triggered before the watchpoint
5827 triggered, and we either already reported it to the user, or
5828 it didn't cause a stop and we called keep_going. In either
5829 case, if there was a breakpoint at PC, we must be trying to
5830 step past it. */
5831 ecs->event_thread->stepping_over_watchpoint = 1;
5832 keep_going (ecs);
5833 return;
5834 }
5835
5836 ecs->event_thread->stepping_over_breakpoint = 0;
5837 ecs->event_thread->stepping_over_watchpoint = 0;
5838 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5839 ecs->event_thread->control.stop_step = 0;
5840 stop_print_frame = 1;
5841 stopped_by_random_signal = 0;
5842 bpstat stop_chain = NULL;
5843
5844 /* Hide inlined functions starting here, unless we just performed stepi or
5845 nexti. After stepi and nexti, always show the innermost frame (not any
5846 inline function call sites). */
5847 if (ecs->event_thread->control.step_range_end != 1)
5848 {
5849 const address_space *aspace
5850 = get_thread_regcache (ecs->event_thread)->aspace ();
5851
5852 /* skip_inline_frames is expensive, so we avoid it if we can
5853 determine that the address is one where functions cannot have
5854 been inlined. This improves performance with inferiors that
5855 load a lot of shared libraries, because the solib event
5856 breakpoint is defined as the address of a function (i.e. not
5857 inline). Note that we have to check the previous PC as well
5858 as the current one to catch cases when we have just
5859 single-stepped off a breakpoint prior to reinstating it.
5860 Note that we're assuming that the code we single-step to is
5861 not inline, but that's not definitive: there's nothing
5862 preventing the event breakpoint function from containing
5863 inlined code, and the single-step ending up there. If the
5864 user had set a breakpoint on that inlined code, the missing
5865 skip_inline_frames call would break things. Fortunately
5866 that's an extremely unlikely scenario. */
5867 if (!pc_at_non_inline_function (aspace,
5868 ecs->event_thread->suspend.stop_pc,
5869 &ecs->ws)
5870 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5871 && ecs->event_thread->control.trap_expected
5872 && pc_at_non_inline_function (aspace,
5873 ecs->event_thread->prev_pc,
5874 &ecs->ws)))
5875 {
5876 stop_chain = build_bpstat_chain (aspace,
5877 ecs->event_thread->suspend.stop_pc,
5878 &ecs->ws);
5879 skip_inline_frames (ecs->event_thread, stop_chain);
5880
5881 /* Re-fetch current thread's frame in case that invalidated
5882 the frame cache. */
5883 frame = get_current_frame ();
5884 gdbarch = get_frame_arch (frame);
5885 }
5886 }
5887
5888 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5889 && ecs->event_thread->control.trap_expected
5890 && gdbarch_single_step_through_delay_p (gdbarch)
5891 && currently_stepping (ecs->event_thread))
5892 {
5893 /* We're trying to step off a breakpoint. Turns out that we're
5894 also on an instruction that needs to be stepped multiple
5895 times before it's been fully executing. E.g., architectures
5896 with a delay slot. It needs to be stepped twice, once for
5897 the instruction and once for the delay slot. */
5898 int step_through_delay
5899 = gdbarch_single_step_through_delay (gdbarch, frame);
5900
5901 if (debug_infrun && step_through_delay)
5902 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5903 if (ecs->event_thread->control.step_range_end == 0
5904 && step_through_delay)
5905 {
5906 /* The user issued a continue when stopped at a breakpoint.
5907 Set up for another trap and get out of here. */
5908 ecs->event_thread->stepping_over_breakpoint = 1;
5909 keep_going (ecs);
5910 return;
5911 }
5912 else if (step_through_delay)
5913 {
5914 /* The user issued a step when stopped at a breakpoint.
5915 Maybe we should stop, maybe we should not - the delay
5916 slot *might* correspond to a line of source. In any
5917 case, don't decide that here, just set
5918 ecs->stepping_over_breakpoint, making sure we
5919 single-step again before breakpoints are re-inserted. */
5920 ecs->event_thread->stepping_over_breakpoint = 1;
5921 }
5922 }
5923
5924 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5925 handles this event. */
5926 ecs->event_thread->control.stop_bpstat
5927 = bpstat_stop_status (get_current_regcache ()->aspace (),
5928 ecs->event_thread->suspend.stop_pc,
5929 ecs->event_thread, &ecs->ws, stop_chain);
5930
5931 /* Following in case break condition called a
5932 function. */
5933 stop_print_frame = 1;
5934
5935 /* This is where we handle "moribund" watchpoints. Unlike
5936 software breakpoints traps, hardware watchpoint traps are
5937 always distinguishable from random traps. If no high-level
5938 watchpoint is associated with the reported stop data address
5939 anymore, then the bpstat does not explain the signal ---
5940 simply make sure to ignore it if `stopped_by_watchpoint' is
5941 set. */
5942
5943 if (debug_infrun
5944 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5945 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5946 GDB_SIGNAL_TRAP)
5947 && stopped_by_watchpoint)
5948 fprintf_unfiltered (gdb_stdlog,
5949 "infrun: no user watchpoint explains "
5950 "watchpoint SIGTRAP, ignoring\n");
5951
5952 /* NOTE: cagney/2003-03-29: These checks for a random signal
5953 at one stage in the past included checks for an inferior
5954 function call's call dummy's return breakpoint. The original
5955 comment, that went with the test, read:
5956
5957 ``End of a stack dummy. Some systems (e.g. Sony news) give
5958 another signal besides SIGTRAP, so check here as well as
5959 above.''
5960
5961 If someone ever tries to get call dummys on a
5962 non-executable stack to work (where the target would stop
5963 with something like a SIGSEGV), then those tests might need
5964 to be re-instated. Given, however, that the tests were only
5965 enabled when momentary breakpoints were not being used, I
5966 suspect that it won't be the case.
5967
5968 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5969 be necessary for call dummies on a non-executable stack on
5970 SPARC. */
5971
5972 /* See if the breakpoints module can explain the signal. */
5973 random_signal
5974 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5975 ecs->event_thread->suspend.stop_signal);
5976
5977 /* Maybe this was a trap for a software breakpoint that has since
5978 been removed. */
5979 if (random_signal && target_stopped_by_sw_breakpoint ())
5980 {
5981 if (program_breakpoint_here_p (gdbarch,
5982 ecs->event_thread->suspend.stop_pc))
5983 {
5984 struct regcache *regcache;
5985 int decr_pc;
5986
5987 /* Re-adjust PC to what the program would see if GDB was not
5988 debugging it. */
5989 regcache = get_thread_regcache (ecs->event_thread);
5990 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
5991 if (decr_pc != 0)
5992 {
5993 gdb::optional<scoped_restore_tmpl<int>>
5994 restore_operation_disable;
5995
5996 if (record_full_is_used ())
5997 restore_operation_disable.emplace
5998 (record_full_gdb_operation_disable_set ());
5999
6000 regcache_write_pc (regcache,
6001 ecs->event_thread->suspend.stop_pc + decr_pc);
6002 }
6003 }
6004 else
6005 {
6006 /* A delayed software breakpoint event. Ignore the trap. */
6007 if (debug_infrun)
6008 fprintf_unfiltered (gdb_stdlog,
6009 "infrun: delayed software breakpoint "
6010 "trap, ignoring\n");
6011 random_signal = 0;
6012 }
6013 }
6014
6015 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6016 has since been removed. */
6017 if (random_signal && target_stopped_by_hw_breakpoint ())
6018 {
6019 /* A delayed hardware breakpoint event. Ignore the trap. */
6020 if (debug_infrun)
6021 fprintf_unfiltered (gdb_stdlog,
6022 "infrun: delayed hardware breakpoint/watchpoint "
6023 "trap, ignoring\n");
6024 random_signal = 0;
6025 }
6026
6027 /* If not, perhaps stepping/nexting can. */
6028 if (random_signal)
6029 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6030 && currently_stepping (ecs->event_thread));
6031
6032 /* Perhaps the thread hit a single-step breakpoint of _another_
6033 thread. Single-step breakpoints are transparent to the
6034 breakpoints module. */
6035 if (random_signal)
6036 random_signal = !ecs->hit_singlestep_breakpoint;
6037
6038 /* No? Perhaps we got a moribund watchpoint. */
6039 if (random_signal)
6040 random_signal = !stopped_by_watchpoint;
6041
6042 /* Always stop if the user explicitly requested this thread to
6043 remain stopped. */
6044 if (ecs->event_thread->stop_requested)
6045 {
6046 random_signal = 1;
6047 if (debug_infrun)
6048 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6049 }
6050
6051 /* For the program's own signals, act according to
6052 the signal handling tables. */
6053
6054 if (random_signal)
6055 {
6056 /* Signal not for debugging purposes. */
6057 struct inferior *inf = find_inferior_ptid (ecs->ptid);
6058 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6059
6060 if (debug_infrun)
6061 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6062 gdb_signal_to_symbol_string (stop_signal));
6063
6064 stopped_by_random_signal = 1;
6065
6066 /* Always stop on signals if we're either just gaining control
6067 of the program, or the user explicitly requested this thread
6068 to remain stopped. */
6069 if (stop_soon != NO_STOP_QUIETLY
6070 || ecs->event_thread->stop_requested
6071 || (!inf->detaching
6072 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6073 {
6074 stop_waiting (ecs);
6075 return;
6076 }
6077
6078 /* Notify observers the signal has "handle print" set. Note we
6079 returned early above if stopping; normal_stop handles the
6080 printing in that case. */
6081 if (signal_print[ecs->event_thread->suspend.stop_signal])
6082 {
6083 /* The signal table tells us to print about this signal. */
6084 target_terminal::ours_for_output ();
6085 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
6086 target_terminal::inferior ();
6087 }
6088
6089 /* Clear the signal if it should not be passed. */
6090 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6091 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6092
6093 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
6094 && ecs->event_thread->control.trap_expected
6095 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6096 {
6097 /* We were just starting a new sequence, attempting to
6098 single-step off of a breakpoint and expecting a SIGTRAP.
6099 Instead this signal arrives. This signal will take us out
6100 of the stepping range so GDB needs to remember to, when
6101 the signal handler returns, resume stepping off that
6102 breakpoint. */
6103 /* To simplify things, "continue" is forced to use the same
6104 code paths as single-step - set a breakpoint at the
6105 signal return address and then, once hit, step off that
6106 breakpoint. */
6107 if (debug_infrun)
6108 fprintf_unfiltered (gdb_stdlog,
6109 "infrun: signal arrived while stepping over "
6110 "breakpoint\n");
6111
6112 insert_hp_step_resume_breakpoint_at_frame (frame);
6113 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6114 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6115 ecs->event_thread->control.trap_expected = 0;
6116
6117 /* If we were nexting/stepping some other thread, switch to
6118 it, so that we don't continue it, losing control. */
6119 if (!switch_back_to_stepped_thread (ecs))
6120 keep_going (ecs);
6121 return;
6122 }
6123
6124 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6125 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6126 ecs->event_thread)
6127 || ecs->event_thread->control.step_range_end == 1)
6128 && frame_id_eq (get_stack_frame_id (frame),
6129 ecs->event_thread->control.step_stack_frame_id)
6130 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6131 {
6132 /* The inferior is about to take a signal that will take it
6133 out of the single step range. Set a breakpoint at the
6134 current PC (which is presumably where the signal handler
6135 will eventually return) and then allow the inferior to
6136 run free.
6137
6138 Note that this is only needed for a signal delivered
6139 while in the single-step range. Nested signals aren't a
6140 problem as they eventually all return. */
6141 if (debug_infrun)
6142 fprintf_unfiltered (gdb_stdlog,
6143 "infrun: signal may take us out of "
6144 "single-step range\n");
6145
6146 clear_step_over_info ();
6147 insert_hp_step_resume_breakpoint_at_frame (frame);
6148 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6149 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6150 ecs->event_thread->control.trap_expected = 0;
6151 keep_going (ecs);
6152 return;
6153 }
6154
6155 /* Note: step_resume_breakpoint may be non-NULL. This occures
6156 when either there's a nested signal, or when there's a
6157 pending signal enabled just as the signal handler returns
6158 (leaving the inferior at the step-resume-breakpoint without
6159 actually executing it). Either way continue until the
6160 breakpoint is really hit. */
6161
6162 if (!switch_back_to_stepped_thread (ecs))
6163 {
6164 if (debug_infrun)
6165 fprintf_unfiltered (gdb_stdlog,
6166 "infrun: random signal, keep going\n");
6167
6168 keep_going (ecs);
6169 }
6170 return;
6171 }
6172
6173 process_event_stop_test (ecs);
6174 }
6175
6176 /* Come here when we've got some debug event / signal we can explain
6177 (IOW, not a random signal), and test whether it should cause a
6178 stop, or whether we should resume the inferior (transparently).
6179 E.g., could be a breakpoint whose condition evaluates false; we
6180 could be still stepping within the line; etc. */
6181
6182 static void
6183 process_event_stop_test (struct execution_control_state *ecs)
6184 {
6185 struct symtab_and_line stop_pc_sal;
6186 struct frame_info *frame;
6187 struct gdbarch *gdbarch;
6188 CORE_ADDR jmp_buf_pc;
6189 struct bpstat_what what;
6190
6191 /* Handle cases caused by hitting a breakpoint. */
6192
6193 frame = get_current_frame ();
6194 gdbarch = get_frame_arch (frame);
6195
6196 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6197
6198 if (what.call_dummy)
6199 {
6200 stop_stack_dummy = what.call_dummy;
6201 }
6202
6203 /* A few breakpoint types have callbacks associated (e.g.,
6204 bp_jit_event). Run them now. */
6205 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6206
6207 /* If we hit an internal event that triggers symbol changes, the
6208 current frame will be invalidated within bpstat_what (e.g., if we
6209 hit an internal solib event). Re-fetch it. */
6210 frame = get_current_frame ();
6211 gdbarch = get_frame_arch (frame);
6212
6213 switch (what.main_action)
6214 {
6215 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6216 /* If we hit the breakpoint at longjmp while stepping, we
6217 install a momentary breakpoint at the target of the
6218 jmp_buf. */
6219
6220 if (debug_infrun)
6221 fprintf_unfiltered (gdb_stdlog,
6222 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6223
6224 ecs->event_thread->stepping_over_breakpoint = 1;
6225
6226 if (what.is_longjmp)
6227 {
6228 struct value *arg_value;
6229
6230 /* If we set the longjmp breakpoint via a SystemTap probe,
6231 then use it to extract the arguments. The destination PC
6232 is the third argument to the probe. */
6233 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6234 if (arg_value)
6235 {
6236 jmp_buf_pc = value_as_address (arg_value);
6237 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6238 }
6239 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6240 || !gdbarch_get_longjmp_target (gdbarch,
6241 frame, &jmp_buf_pc))
6242 {
6243 if (debug_infrun)
6244 fprintf_unfiltered (gdb_stdlog,
6245 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6246 "(!gdbarch_get_longjmp_target)\n");
6247 keep_going (ecs);
6248 return;
6249 }
6250
6251 /* Insert a breakpoint at resume address. */
6252 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6253 }
6254 else
6255 check_exception_resume (ecs, frame);
6256 keep_going (ecs);
6257 return;
6258
6259 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6260 {
6261 struct frame_info *init_frame;
6262
6263 /* There are several cases to consider.
6264
6265 1. The initiating frame no longer exists. In this case we
6266 must stop, because the exception or longjmp has gone too
6267 far.
6268
6269 2. The initiating frame exists, and is the same as the
6270 current frame. We stop, because the exception or longjmp
6271 has been caught.
6272
6273 3. The initiating frame exists and is different from the
6274 current frame. This means the exception or longjmp has
6275 been caught beneath the initiating frame, so keep going.
6276
6277 4. longjmp breakpoint has been placed just to protect
6278 against stale dummy frames and user is not interested in
6279 stopping around longjmps. */
6280
6281 if (debug_infrun)
6282 fprintf_unfiltered (gdb_stdlog,
6283 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6284
6285 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6286 != NULL);
6287 delete_exception_resume_breakpoint (ecs->event_thread);
6288
6289 if (what.is_longjmp)
6290 {
6291 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6292
6293 if (!frame_id_p (ecs->event_thread->initiating_frame))
6294 {
6295 /* Case 4. */
6296 keep_going (ecs);
6297 return;
6298 }
6299 }
6300
6301 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6302
6303 if (init_frame)
6304 {
6305 struct frame_id current_id
6306 = get_frame_id (get_current_frame ());
6307 if (frame_id_eq (current_id,
6308 ecs->event_thread->initiating_frame))
6309 {
6310 /* Case 2. Fall through. */
6311 }
6312 else
6313 {
6314 /* Case 3. */
6315 keep_going (ecs);
6316 return;
6317 }
6318 }
6319
6320 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6321 exists. */
6322 delete_step_resume_breakpoint (ecs->event_thread);
6323
6324 end_stepping_range (ecs);
6325 }
6326 return;
6327
6328 case BPSTAT_WHAT_SINGLE:
6329 if (debug_infrun)
6330 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6331 ecs->event_thread->stepping_over_breakpoint = 1;
6332 /* Still need to check other stuff, at least the case where we
6333 are stepping and step out of the right range. */
6334 break;
6335
6336 case BPSTAT_WHAT_STEP_RESUME:
6337 if (debug_infrun)
6338 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6339
6340 delete_step_resume_breakpoint (ecs->event_thread);
6341 if (ecs->event_thread->control.proceed_to_finish
6342 && execution_direction == EXEC_REVERSE)
6343 {
6344 struct thread_info *tp = ecs->event_thread;
6345
6346 /* We are finishing a function in reverse, and just hit the
6347 step-resume breakpoint at the start address of the
6348 function, and we're almost there -- just need to back up
6349 by one more single-step, which should take us back to the
6350 function call. */
6351 tp->control.step_range_start = tp->control.step_range_end = 1;
6352 keep_going (ecs);
6353 return;
6354 }
6355 fill_in_stop_func (gdbarch, ecs);
6356 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6357 && execution_direction == EXEC_REVERSE)
6358 {
6359 /* We are stepping over a function call in reverse, and just
6360 hit the step-resume breakpoint at the start address of
6361 the function. Go back to single-stepping, which should
6362 take us back to the function call. */
6363 ecs->event_thread->stepping_over_breakpoint = 1;
6364 keep_going (ecs);
6365 return;
6366 }
6367 break;
6368
6369 case BPSTAT_WHAT_STOP_NOISY:
6370 if (debug_infrun)
6371 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6372 stop_print_frame = 1;
6373
6374 /* Assume the thread stopped for a breapoint. We'll still check
6375 whether a/the breakpoint is there when the thread is next
6376 resumed. */
6377 ecs->event_thread->stepping_over_breakpoint = 1;
6378
6379 stop_waiting (ecs);
6380 return;
6381
6382 case BPSTAT_WHAT_STOP_SILENT:
6383 if (debug_infrun)
6384 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6385 stop_print_frame = 0;
6386
6387 /* Assume the thread stopped for a breapoint. We'll still check
6388 whether a/the breakpoint is there when the thread is next
6389 resumed. */
6390 ecs->event_thread->stepping_over_breakpoint = 1;
6391 stop_waiting (ecs);
6392 return;
6393
6394 case BPSTAT_WHAT_HP_STEP_RESUME:
6395 if (debug_infrun)
6396 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6397
6398 delete_step_resume_breakpoint (ecs->event_thread);
6399 if (ecs->event_thread->step_after_step_resume_breakpoint)
6400 {
6401 /* Back when the step-resume breakpoint was inserted, we
6402 were trying to single-step off a breakpoint. Go back to
6403 doing that. */
6404 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6405 ecs->event_thread->stepping_over_breakpoint = 1;
6406 keep_going (ecs);
6407 return;
6408 }
6409 break;
6410
6411 case BPSTAT_WHAT_KEEP_CHECKING:
6412 break;
6413 }
6414
6415 /* If we stepped a permanent breakpoint and we had a high priority
6416 step-resume breakpoint for the address we stepped, but we didn't
6417 hit it, then we must have stepped into the signal handler. The
6418 step-resume was only necessary to catch the case of _not_
6419 stepping into the handler, so delete it, and fall through to
6420 checking whether the step finished. */
6421 if (ecs->event_thread->stepped_breakpoint)
6422 {
6423 struct breakpoint *sr_bp
6424 = ecs->event_thread->control.step_resume_breakpoint;
6425
6426 if (sr_bp != NULL
6427 && sr_bp->loc->permanent
6428 && sr_bp->type == bp_hp_step_resume
6429 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6430 {
6431 if (debug_infrun)
6432 fprintf_unfiltered (gdb_stdlog,
6433 "infrun: stepped permanent breakpoint, stopped in "
6434 "handler\n");
6435 delete_step_resume_breakpoint (ecs->event_thread);
6436 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6437 }
6438 }
6439
6440 /* We come here if we hit a breakpoint but should not stop for it.
6441 Possibly we also were stepping and should stop for that. So fall
6442 through and test for stepping. But, if not stepping, do not
6443 stop. */
6444
6445 /* In all-stop mode, if we're currently stepping but have stopped in
6446 some other thread, we need to switch back to the stepped thread. */
6447 if (switch_back_to_stepped_thread (ecs))
6448 return;
6449
6450 if (ecs->event_thread->control.step_resume_breakpoint)
6451 {
6452 if (debug_infrun)
6453 fprintf_unfiltered (gdb_stdlog,
6454 "infrun: step-resume breakpoint is inserted\n");
6455
6456 /* Having a step-resume breakpoint overrides anything
6457 else having to do with stepping commands until
6458 that breakpoint is reached. */
6459 keep_going (ecs);
6460 return;
6461 }
6462
6463 if (ecs->event_thread->control.step_range_end == 0)
6464 {
6465 if (debug_infrun)
6466 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6467 /* Likewise if we aren't even stepping. */
6468 keep_going (ecs);
6469 return;
6470 }
6471
6472 /* Re-fetch current thread's frame in case the code above caused
6473 the frame cache to be re-initialized, making our FRAME variable
6474 a dangling pointer. */
6475 frame = get_current_frame ();
6476 gdbarch = get_frame_arch (frame);
6477 fill_in_stop_func (gdbarch, ecs);
6478
6479 /* If stepping through a line, keep going if still within it.
6480
6481 Note that step_range_end is the address of the first instruction
6482 beyond the step range, and NOT the address of the last instruction
6483 within it!
6484
6485 Note also that during reverse execution, we may be stepping
6486 through a function epilogue and therefore must detect when
6487 the current-frame changes in the middle of a line. */
6488
6489 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6490 ecs->event_thread)
6491 && (execution_direction != EXEC_REVERSE
6492 || frame_id_eq (get_frame_id (frame),
6493 ecs->event_thread->control.step_frame_id)))
6494 {
6495 if (debug_infrun)
6496 fprintf_unfiltered
6497 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6498 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6499 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6500
6501 /* Tentatively re-enable range stepping; `resume' disables it if
6502 necessary (e.g., if we're stepping over a breakpoint or we
6503 have software watchpoints). */
6504 ecs->event_thread->control.may_range_step = 1;
6505
6506 /* When stepping backward, stop at beginning of line range
6507 (unless it's the function entry point, in which case
6508 keep going back to the call point). */
6509 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6510 if (stop_pc == ecs->event_thread->control.step_range_start
6511 && stop_pc != ecs->stop_func_start
6512 && execution_direction == EXEC_REVERSE)
6513 end_stepping_range (ecs);
6514 else
6515 keep_going (ecs);
6516
6517 return;
6518 }
6519
6520 /* We stepped out of the stepping range. */
6521
6522 /* If we are stepping at the source level and entered the runtime
6523 loader dynamic symbol resolution code...
6524
6525 EXEC_FORWARD: we keep on single stepping until we exit the run
6526 time loader code and reach the callee's address.
6527
6528 EXEC_REVERSE: we've already executed the callee (backward), and
6529 the runtime loader code is handled just like any other
6530 undebuggable function call. Now we need only keep stepping
6531 backward through the trampoline code, and that's handled further
6532 down, so there is nothing for us to do here. */
6533
6534 if (execution_direction != EXEC_REVERSE
6535 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6536 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6537 {
6538 CORE_ADDR pc_after_resolver =
6539 gdbarch_skip_solib_resolver (gdbarch,
6540 ecs->event_thread->suspend.stop_pc);
6541
6542 if (debug_infrun)
6543 fprintf_unfiltered (gdb_stdlog,
6544 "infrun: stepped into dynsym resolve code\n");
6545
6546 if (pc_after_resolver)
6547 {
6548 /* Set up a step-resume breakpoint at the address
6549 indicated by SKIP_SOLIB_RESOLVER. */
6550 symtab_and_line sr_sal;
6551 sr_sal.pc = pc_after_resolver;
6552 sr_sal.pspace = get_frame_program_space (frame);
6553
6554 insert_step_resume_breakpoint_at_sal (gdbarch,
6555 sr_sal, null_frame_id);
6556 }
6557
6558 keep_going (ecs);
6559 return;
6560 }
6561
6562 /* Step through an indirect branch thunk. */
6563 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6564 && gdbarch_in_indirect_branch_thunk (gdbarch,
6565 ecs->event_thread->suspend.stop_pc))
6566 {
6567 if (debug_infrun)
6568 fprintf_unfiltered (gdb_stdlog,
6569 "infrun: stepped into indirect branch thunk\n");
6570 keep_going (ecs);
6571 return;
6572 }
6573
6574 if (ecs->event_thread->control.step_range_end != 1
6575 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6576 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6577 && get_frame_type (frame) == SIGTRAMP_FRAME)
6578 {
6579 if (debug_infrun)
6580 fprintf_unfiltered (gdb_stdlog,
6581 "infrun: stepped into signal trampoline\n");
6582 /* The inferior, while doing a "step" or "next", has ended up in
6583 a signal trampoline (either by a signal being delivered or by
6584 the signal handler returning). Just single-step until the
6585 inferior leaves the trampoline (either by calling the handler
6586 or returning). */
6587 keep_going (ecs);
6588 return;
6589 }
6590
6591 /* If we're in the return path from a shared library trampoline,
6592 we want to proceed through the trampoline when stepping. */
6593 /* macro/2012-04-25: This needs to come before the subroutine
6594 call check below as on some targets return trampolines look
6595 like subroutine calls (MIPS16 return thunks). */
6596 if (gdbarch_in_solib_return_trampoline (gdbarch,
6597 ecs->event_thread->suspend.stop_pc,
6598 ecs->stop_func_name)
6599 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6600 {
6601 /* Determine where this trampoline returns. */
6602 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6603 CORE_ADDR real_stop_pc
6604 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6605
6606 if (debug_infrun)
6607 fprintf_unfiltered (gdb_stdlog,
6608 "infrun: stepped into solib return tramp\n");
6609
6610 /* Only proceed through if we know where it's going. */
6611 if (real_stop_pc)
6612 {
6613 /* And put the step-breakpoint there and go until there. */
6614 symtab_and_line sr_sal;
6615 sr_sal.pc = real_stop_pc;
6616 sr_sal.section = find_pc_overlay (sr_sal.pc);
6617 sr_sal.pspace = get_frame_program_space (frame);
6618
6619 /* Do not specify what the fp should be when we stop since
6620 on some machines the prologue is where the new fp value
6621 is established. */
6622 insert_step_resume_breakpoint_at_sal (gdbarch,
6623 sr_sal, null_frame_id);
6624
6625 /* Restart without fiddling with the step ranges or
6626 other state. */
6627 keep_going (ecs);
6628 return;
6629 }
6630 }
6631
6632 /* Check for subroutine calls. The check for the current frame
6633 equalling the step ID is not necessary - the check of the
6634 previous frame's ID is sufficient - but it is a common case and
6635 cheaper than checking the previous frame's ID.
6636
6637 NOTE: frame_id_eq will never report two invalid frame IDs as
6638 being equal, so to get into this block, both the current and
6639 previous frame must have valid frame IDs. */
6640 /* The outer_frame_id check is a heuristic to detect stepping
6641 through startup code. If we step over an instruction which
6642 sets the stack pointer from an invalid value to a valid value,
6643 we may detect that as a subroutine call from the mythical
6644 "outermost" function. This could be fixed by marking
6645 outermost frames as !stack_p,code_p,special_p. Then the
6646 initial outermost frame, before sp was valid, would
6647 have code_addr == &_start. See the comment in frame_id_eq
6648 for more. */
6649 if (!frame_id_eq (get_stack_frame_id (frame),
6650 ecs->event_thread->control.step_stack_frame_id)
6651 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6652 ecs->event_thread->control.step_stack_frame_id)
6653 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6654 outer_frame_id)
6655 || (ecs->event_thread->control.step_start_function
6656 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6657 {
6658 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6659 CORE_ADDR real_stop_pc;
6660
6661 if (debug_infrun)
6662 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6663
6664 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6665 {
6666 /* I presume that step_over_calls is only 0 when we're
6667 supposed to be stepping at the assembly language level
6668 ("stepi"). Just stop. */
6669 /* And this works the same backward as frontward. MVS */
6670 end_stepping_range (ecs);
6671 return;
6672 }
6673
6674 /* Reverse stepping through solib trampolines. */
6675
6676 if (execution_direction == EXEC_REVERSE
6677 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6678 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6679 || (ecs->stop_func_start == 0
6680 && in_solib_dynsym_resolve_code (stop_pc))))
6681 {
6682 /* Any solib trampoline code can be handled in reverse
6683 by simply continuing to single-step. We have already
6684 executed the solib function (backwards), and a few
6685 steps will take us back through the trampoline to the
6686 caller. */
6687 keep_going (ecs);
6688 return;
6689 }
6690
6691 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6692 {
6693 /* We're doing a "next".
6694
6695 Normal (forward) execution: set a breakpoint at the
6696 callee's return address (the address at which the caller
6697 will resume).
6698
6699 Reverse (backward) execution. set the step-resume
6700 breakpoint at the start of the function that we just
6701 stepped into (backwards), and continue to there. When we
6702 get there, we'll need to single-step back to the caller. */
6703
6704 if (execution_direction == EXEC_REVERSE)
6705 {
6706 /* If we're already at the start of the function, we've either
6707 just stepped backward into a single instruction function,
6708 or stepped back out of a signal handler to the first instruction
6709 of the function. Just keep going, which will single-step back
6710 to the caller. */
6711 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6712 {
6713 /* Normal function call return (static or dynamic). */
6714 symtab_and_line sr_sal;
6715 sr_sal.pc = ecs->stop_func_start;
6716 sr_sal.pspace = get_frame_program_space (frame);
6717 insert_step_resume_breakpoint_at_sal (gdbarch,
6718 sr_sal, null_frame_id);
6719 }
6720 }
6721 else
6722 insert_step_resume_breakpoint_at_caller (frame);
6723
6724 keep_going (ecs);
6725 return;
6726 }
6727
6728 /* If we are in a function call trampoline (a stub between the
6729 calling routine and the real function), locate the real
6730 function. That's what tells us (a) whether we want to step
6731 into it at all, and (b) what prologue we want to run to the
6732 end of, if we do step into it. */
6733 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6734 if (real_stop_pc == 0)
6735 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6736 if (real_stop_pc != 0)
6737 ecs->stop_func_start = real_stop_pc;
6738
6739 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6740 {
6741 symtab_and_line sr_sal;
6742 sr_sal.pc = ecs->stop_func_start;
6743 sr_sal.pspace = get_frame_program_space (frame);
6744
6745 insert_step_resume_breakpoint_at_sal (gdbarch,
6746 sr_sal, null_frame_id);
6747 keep_going (ecs);
6748 return;
6749 }
6750
6751 /* If we have line number information for the function we are
6752 thinking of stepping into and the function isn't on the skip
6753 list, step into it.
6754
6755 If there are several symtabs at that PC (e.g. with include
6756 files), just want to know whether *any* of them have line
6757 numbers. find_pc_line handles this. */
6758 {
6759 struct symtab_and_line tmp_sal;
6760
6761 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6762 if (tmp_sal.line != 0
6763 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6764 tmp_sal))
6765 {
6766 if (execution_direction == EXEC_REVERSE)
6767 handle_step_into_function_backward (gdbarch, ecs);
6768 else
6769 handle_step_into_function (gdbarch, ecs);
6770 return;
6771 }
6772 }
6773
6774 /* If we have no line number and the step-stop-if-no-debug is
6775 set, we stop the step so that the user has a chance to switch
6776 in assembly mode. */
6777 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6778 && step_stop_if_no_debug)
6779 {
6780 end_stepping_range (ecs);
6781 return;
6782 }
6783
6784 if (execution_direction == EXEC_REVERSE)
6785 {
6786 /* If we're already at the start of the function, we've either just
6787 stepped backward into a single instruction function without line
6788 number info, or stepped back out of a signal handler to the first
6789 instruction of the function without line number info. Just keep
6790 going, which will single-step back to the caller. */
6791 if (ecs->stop_func_start != stop_pc)
6792 {
6793 /* Set a breakpoint at callee's start address.
6794 From there we can step once and be back in the caller. */
6795 symtab_and_line sr_sal;
6796 sr_sal.pc = ecs->stop_func_start;
6797 sr_sal.pspace = get_frame_program_space (frame);
6798 insert_step_resume_breakpoint_at_sal (gdbarch,
6799 sr_sal, null_frame_id);
6800 }
6801 }
6802 else
6803 /* Set a breakpoint at callee's return address (the address
6804 at which the caller will resume). */
6805 insert_step_resume_breakpoint_at_caller (frame);
6806
6807 keep_going (ecs);
6808 return;
6809 }
6810
6811 /* Reverse stepping through solib trampolines. */
6812
6813 if (execution_direction == EXEC_REVERSE
6814 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6815 {
6816 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6817
6818 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6819 || (ecs->stop_func_start == 0
6820 && in_solib_dynsym_resolve_code (stop_pc)))
6821 {
6822 /* Any solib trampoline code can be handled in reverse
6823 by simply continuing to single-step. We have already
6824 executed the solib function (backwards), and a few
6825 steps will take us back through the trampoline to the
6826 caller. */
6827 keep_going (ecs);
6828 return;
6829 }
6830 else if (in_solib_dynsym_resolve_code (stop_pc))
6831 {
6832 /* Stepped backward into the solib dynsym resolver.
6833 Set a breakpoint at its start and continue, then
6834 one more step will take us out. */
6835 symtab_and_line sr_sal;
6836 sr_sal.pc = ecs->stop_func_start;
6837 sr_sal.pspace = get_frame_program_space (frame);
6838 insert_step_resume_breakpoint_at_sal (gdbarch,
6839 sr_sal, null_frame_id);
6840 keep_going (ecs);
6841 return;
6842 }
6843 }
6844
6845 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
6846
6847 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6848 the trampoline processing logic, however, there are some trampolines
6849 that have no names, so we should do trampoline handling first. */
6850 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6851 && ecs->stop_func_name == NULL
6852 && stop_pc_sal.line == 0)
6853 {
6854 if (debug_infrun)
6855 fprintf_unfiltered (gdb_stdlog,
6856 "infrun: stepped into undebuggable function\n");
6857
6858 /* The inferior just stepped into, or returned to, an
6859 undebuggable function (where there is no debugging information
6860 and no line number corresponding to the address where the
6861 inferior stopped). Since we want to skip this kind of code,
6862 we keep going until the inferior returns from this
6863 function - unless the user has asked us not to (via
6864 set step-mode) or we no longer know how to get back
6865 to the call site. */
6866 if (step_stop_if_no_debug
6867 || !frame_id_p (frame_unwind_caller_id (frame)))
6868 {
6869 /* If we have no line number and the step-stop-if-no-debug
6870 is set, we stop the step so that the user has a chance to
6871 switch in assembly mode. */
6872 end_stepping_range (ecs);
6873 return;
6874 }
6875 else
6876 {
6877 /* Set a breakpoint at callee's return address (the address
6878 at which the caller will resume). */
6879 insert_step_resume_breakpoint_at_caller (frame);
6880 keep_going (ecs);
6881 return;
6882 }
6883 }
6884
6885 if (ecs->event_thread->control.step_range_end == 1)
6886 {
6887 /* It is stepi or nexti. We always want to stop stepping after
6888 one instruction. */
6889 if (debug_infrun)
6890 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6891 end_stepping_range (ecs);
6892 return;
6893 }
6894
6895 if (stop_pc_sal.line == 0)
6896 {
6897 /* We have no line number information. That means to stop
6898 stepping (does this always happen right after one instruction,
6899 when we do "s" in a function with no line numbers,
6900 or can this happen as a result of a return or longjmp?). */
6901 if (debug_infrun)
6902 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6903 end_stepping_range (ecs);
6904 return;
6905 }
6906
6907 /* Look for "calls" to inlined functions, part one. If the inline
6908 frame machinery detected some skipped call sites, we have entered
6909 a new inline function. */
6910
6911 if (frame_id_eq (get_frame_id (get_current_frame ()),
6912 ecs->event_thread->control.step_frame_id)
6913 && inline_skipped_frames (ecs->event_thread))
6914 {
6915 if (debug_infrun)
6916 fprintf_unfiltered (gdb_stdlog,
6917 "infrun: stepped into inlined function\n");
6918
6919 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
6920
6921 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6922 {
6923 /* For "step", we're going to stop. But if the call site
6924 for this inlined function is on the same source line as
6925 we were previously stepping, go down into the function
6926 first. Otherwise stop at the call site. */
6927
6928 if (call_sal.line == ecs->event_thread->current_line
6929 && call_sal.symtab == ecs->event_thread->current_symtab)
6930 step_into_inline_frame (ecs->event_thread);
6931
6932 end_stepping_range (ecs);
6933 return;
6934 }
6935 else
6936 {
6937 /* For "next", we should stop at the call site if it is on a
6938 different source line. Otherwise continue through the
6939 inlined function. */
6940 if (call_sal.line == ecs->event_thread->current_line
6941 && call_sal.symtab == ecs->event_thread->current_symtab)
6942 keep_going (ecs);
6943 else
6944 end_stepping_range (ecs);
6945 return;
6946 }
6947 }
6948
6949 /* Look for "calls" to inlined functions, part two. If we are still
6950 in the same real function we were stepping through, but we have
6951 to go further up to find the exact frame ID, we are stepping
6952 through a more inlined call beyond its call site. */
6953
6954 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6955 && !frame_id_eq (get_frame_id (get_current_frame ()),
6956 ecs->event_thread->control.step_frame_id)
6957 && stepped_in_from (get_current_frame (),
6958 ecs->event_thread->control.step_frame_id))
6959 {
6960 if (debug_infrun)
6961 fprintf_unfiltered (gdb_stdlog,
6962 "infrun: stepping through inlined function\n");
6963
6964 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6965 keep_going (ecs);
6966 else
6967 end_stepping_range (ecs);
6968 return;
6969 }
6970
6971 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
6972 && (ecs->event_thread->current_line != stop_pc_sal.line
6973 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
6974 {
6975 /* We are at the start of a different line. So stop. Note that
6976 we don't stop if we step into the middle of a different line.
6977 That is said to make things like for (;;) statements work
6978 better. */
6979 if (debug_infrun)
6980 fprintf_unfiltered (gdb_stdlog,
6981 "infrun: stepped to a different line\n");
6982 end_stepping_range (ecs);
6983 return;
6984 }
6985
6986 /* We aren't done stepping.
6987
6988 Optimize by setting the stepping range to the line.
6989 (We might not be in the original line, but if we entered a
6990 new line in mid-statement, we continue stepping. This makes
6991 things like for(;;) statements work better.) */
6992
6993 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6994 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
6995 ecs->event_thread->control.may_range_step = 1;
6996 set_step_info (frame, stop_pc_sal);
6997
6998 if (debug_infrun)
6999 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
7000 keep_going (ecs);
7001 }
7002
7003 /* In all-stop mode, if we're currently stepping but have stopped in
7004 some other thread, we may need to switch back to the stepped
7005 thread. Returns true we set the inferior running, false if we left
7006 it stopped (and the event needs further processing). */
7007
7008 static int
7009 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7010 {
7011 if (!target_is_non_stop_p ())
7012 {
7013 struct thread_info *tp;
7014 struct thread_info *stepping_thread;
7015
7016 /* If any thread is blocked on some internal breakpoint, and we
7017 simply need to step over that breakpoint to get it going
7018 again, do that first. */
7019
7020 /* However, if we see an event for the stepping thread, then we
7021 know all other threads have been moved past their breakpoints
7022 already. Let the caller check whether the step is finished,
7023 etc., before deciding to move it past a breakpoint. */
7024 if (ecs->event_thread->control.step_range_end != 0)
7025 return 0;
7026
7027 /* Check if the current thread is blocked on an incomplete
7028 step-over, interrupted by a random signal. */
7029 if (ecs->event_thread->control.trap_expected
7030 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7031 {
7032 if (debug_infrun)
7033 {
7034 fprintf_unfiltered (gdb_stdlog,
7035 "infrun: need to finish step-over of [%s]\n",
7036 target_pid_to_str (ecs->event_thread->ptid));
7037 }
7038 keep_going (ecs);
7039 return 1;
7040 }
7041
7042 /* Check if the current thread is blocked by a single-step
7043 breakpoint of another thread. */
7044 if (ecs->hit_singlestep_breakpoint)
7045 {
7046 if (debug_infrun)
7047 {
7048 fprintf_unfiltered (gdb_stdlog,
7049 "infrun: need to step [%s] over single-step "
7050 "breakpoint\n",
7051 target_pid_to_str (ecs->ptid));
7052 }
7053 keep_going (ecs);
7054 return 1;
7055 }
7056
7057 /* If this thread needs yet another step-over (e.g., stepping
7058 through a delay slot), do it first before moving on to
7059 another thread. */
7060 if (thread_still_needs_step_over (ecs->event_thread))
7061 {
7062 if (debug_infrun)
7063 {
7064 fprintf_unfiltered (gdb_stdlog,
7065 "infrun: thread [%s] still needs step-over\n",
7066 target_pid_to_str (ecs->event_thread->ptid));
7067 }
7068 keep_going (ecs);
7069 return 1;
7070 }
7071
7072 /* If scheduler locking applies even if not stepping, there's no
7073 need to walk over threads. Above we've checked whether the
7074 current thread is stepping. If some other thread not the
7075 event thread is stepping, then it must be that scheduler
7076 locking is not in effect. */
7077 if (schedlock_applies (ecs->event_thread))
7078 return 0;
7079
7080 /* Otherwise, we no longer expect a trap in the current thread.
7081 Clear the trap_expected flag before switching back -- this is
7082 what keep_going does as well, if we call it. */
7083 ecs->event_thread->control.trap_expected = 0;
7084
7085 /* Likewise, clear the signal if it should not be passed. */
7086 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7087 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7088
7089 /* Do all pending step-overs before actually proceeding with
7090 step/next/etc. */
7091 if (start_step_over ())
7092 {
7093 prepare_to_wait (ecs);
7094 return 1;
7095 }
7096
7097 /* Look for the stepping/nexting thread. */
7098 stepping_thread = NULL;
7099
7100 ALL_NON_EXITED_THREADS (tp)
7101 {
7102 /* Ignore threads of processes the caller is not
7103 resuming. */
7104 if (!sched_multi
7105 && tp->ptid.pid () != ecs->ptid.pid ())
7106 continue;
7107
7108 /* When stepping over a breakpoint, we lock all threads
7109 except the one that needs to move past the breakpoint.
7110 If a non-event thread has this set, the "incomplete
7111 step-over" check above should have caught it earlier. */
7112 if (tp->control.trap_expected)
7113 {
7114 internal_error (__FILE__, __LINE__,
7115 "[%s] has inconsistent state: "
7116 "trap_expected=%d\n",
7117 target_pid_to_str (tp->ptid),
7118 tp->control.trap_expected);
7119 }
7120
7121 /* Did we find the stepping thread? */
7122 if (tp->control.step_range_end)
7123 {
7124 /* Yep. There should only one though. */
7125 gdb_assert (stepping_thread == NULL);
7126
7127 /* The event thread is handled at the top, before we
7128 enter this loop. */
7129 gdb_assert (tp != ecs->event_thread);
7130
7131 /* If some thread other than the event thread is
7132 stepping, then scheduler locking can't be in effect,
7133 otherwise we wouldn't have resumed the current event
7134 thread in the first place. */
7135 gdb_assert (!schedlock_applies (tp));
7136
7137 stepping_thread = tp;
7138 }
7139 }
7140
7141 if (stepping_thread != NULL)
7142 {
7143 if (debug_infrun)
7144 fprintf_unfiltered (gdb_stdlog,
7145 "infrun: switching back to stepped thread\n");
7146
7147 if (keep_going_stepped_thread (stepping_thread))
7148 {
7149 prepare_to_wait (ecs);
7150 return 1;
7151 }
7152 }
7153 }
7154
7155 return 0;
7156 }
7157
7158 /* Set a previously stepped thread back to stepping. Returns true on
7159 success, false if the resume is not possible (e.g., the thread
7160 vanished). */
7161
7162 static int
7163 keep_going_stepped_thread (struct thread_info *tp)
7164 {
7165 struct frame_info *frame;
7166 struct execution_control_state ecss;
7167 struct execution_control_state *ecs = &ecss;
7168
7169 /* If the stepping thread exited, then don't try to switch back and
7170 resume it, which could fail in several different ways depending
7171 on the target. Instead, just keep going.
7172
7173 We can find a stepping dead thread in the thread list in two
7174 cases:
7175
7176 - The target supports thread exit events, and when the target
7177 tries to delete the thread from the thread list, inferior_ptid
7178 pointed at the exiting thread. In such case, calling
7179 delete_thread does not really remove the thread from the list;
7180 instead, the thread is left listed, with 'exited' state.
7181
7182 - The target's debug interface does not support thread exit
7183 events, and so we have no idea whatsoever if the previously
7184 stepping thread is still alive. For that reason, we need to
7185 synchronously query the target now. */
7186
7187 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
7188 {
7189 if (debug_infrun)
7190 fprintf_unfiltered (gdb_stdlog,
7191 "infrun: not resuming previously "
7192 "stepped thread, it has vanished\n");
7193
7194 delete_thread (tp);
7195 return 0;
7196 }
7197
7198 if (debug_infrun)
7199 fprintf_unfiltered (gdb_stdlog,
7200 "infrun: resuming previously stepped thread\n");
7201
7202 reset_ecs (ecs, tp);
7203 switch_to_thread (tp);
7204
7205 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
7206 frame = get_current_frame ();
7207
7208 /* If the PC of the thread we were trying to single-step has
7209 changed, then that thread has trapped or been signaled, but the
7210 event has not been reported to GDB yet. Re-poll the target
7211 looking for this particular thread's event (i.e. temporarily
7212 enable schedlock) by:
7213
7214 - setting a break at the current PC
7215 - resuming that particular thread, only (by setting trap
7216 expected)
7217
7218 This prevents us continuously moving the single-step breakpoint
7219 forward, one instruction at a time, overstepping. */
7220
7221 if (tp->suspend.stop_pc != tp->prev_pc)
7222 {
7223 ptid_t resume_ptid;
7224
7225 if (debug_infrun)
7226 fprintf_unfiltered (gdb_stdlog,
7227 "infrun: expected thread advanced also (%s -> %s)\n",
7228 paddress (target_gdbarch (), tp->prev_pc),
7229 paddress (target_gdbarch (), tp->suspend.stop_pc));
7230
7231 /* Clear the info of the previous step-over, as it's no longer
7232 valid (if the thread was trying to step over a breakpoint, it
7233 has already succeeded). It's what keep_going would do too,
7234 if we called it. Do this before trying to insert the sss
7235 breakpoint, otherwise if we were previously trying to step
7236 over this exact address in another thread, the breakpoint is
7237 skipped. */
7238 clear_step_over_info ();
7239 tp->control.trap_expected = 0;
7240
7241 insert_single_step_breakpoint (get_frame_arch (frame),
7242 get_frame_address_space (frame),
7243 tp->suspend.stop_pc);
7244
7245 tp->resumed = 1;
7246 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7247 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7248 }
7249 else
7250 {
7251 if (debug_infrun)
7252 fprintf_unfiltered (gdb_stdlog,
7253 "infrun: expected thread still hasn't advanced\n");
7254
7255 keep_going_pass_signal (ecs);
7256 }
7257 return 1;
7258 }
7259
7260 /* Is thread TP in the middle of (software or hardware)
7261 single-stepping? (Note the result of this function must never be
7262 passed directly as target_resume's STEP parameter.) */
7263
7264 static int
7265 currently_stepping (struct thread_info *tp)
7266 {
7267 return ((tp->control.step_range_end
7268 && tp->control.step_resume_breakpoint == NULL)
7269 || tp->control.trap_expected
7270 || tp->stepped_breakpoint
7271 || bpstat_should_step ());
7272 }
7273
7274 /* Inferior has stepped into a subroutine call with source code that
7275 we should not step over. Do step to the first line of code in
7276 it. */
7277
7278 static void
7279 handle_step_into_function (struct gdbarch *gdbarch,
7280 struct execution_control_state *ecs)
7281 {
7282 fill_in_stop_func (gdbarch, ecs);
7283
7284 compunit_symtab *cust
7285 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7286 if (cust != NULL && compunit_language (cust) != language_asm)
7287 ecs->stop_func_start
7288 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7289
7290 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7291 /* Use the step_resume_break to step until the end of the prologue,
7292 even if that involves jumps (as it seems to on the vax under
7293 4.2). */
7294 /* If the prologue ends in the middle of a source line, continue to
7295 the end of that source line (if it is still within the function).
7296 Otherwise, just go to end of prologue. */
7297 if (stop_func_sal.end
7298 && stop_func_sal.pc != ecs->stop_func_start
7299 && stop_func_sal.end < ecs->stop_func_end)
7300 ecs->stop_func_start = stop_func_sal.end;
7301
7302 /* Architectures which require breakpoint adjustment might not be able
7303 to place a breakpoint at the computed address. If so, the test
7304 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7305 ecs->stop_func_start to an address at which a breakpoint may be
7306 legitimately placed.
7307
7308 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7309 made, GDB will enter an infinite loop when stepping through
7310 optimized code consisting of VLIW instructions which contain
7311 subinstructions corresponding to different source lines. On
7312 FR-V, it's not permitted to place a breakpoint on any but the
7313 first subinstruction of a VLIW instruction. When a breakpoint is
7314 set, GDB will adjust the breakpoint address to the beginning of
7315 the VLIW instruction. Thus, we need to make the corresponding
7316 adjustment here when computing the stop address. */
7317
7318 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7319 {
7320 ecs->stop_func_start
7321 = gdbarch_adjust_breakpoint_address (gdbarch,
7322 ecs->stop_func_start);
7323 }
7324
7325 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7326 {
7327 /* We are already there: stop now. */
7328 end_stepping_range (ecs);
7329 return;
7330 }
7331 else
7332 {
7333 /* Put the step-breakpoint there and go until there. */
7334 symtab_and_line sr_sal;
7335 sr_sal.pc = ecs->stop_func_start;
7336 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7337 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7338
7339 /* Do not specify what the fp should be when we stop since on
7340 some machines the prologue is where the new fp value is
7341 established. */
7342 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7343
7344 /* And make sure stepping stops right away then. */
7345 ecs->event_thread->control.step_range_end
7346 = ecs->event_thread->control.step_range_start;
7347 }
7348 keep_going (ecs);
7349 }
7350
7351 /* Inferior has stepped backward into a subroutine call with source
7352 code that we should not step over. Do step to the beginning of the
7353 last line of code in it. */
7354
7355 static void
7356 handle_step_into_function_backward (struct gdbarch *gdbarch,
7357 struct execution_control_state *ecs)
7358 {
7359 struct compunit_symtab *cust;
7360 struct symtab_and_line stop_func_sal;
7361
7362 fill_in_stop_func (gdbarch, ecs);
7363
7364 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7365 if (cust != NULL && compunit_language (cust) != language_asm)
7366 ecs->stop_func_start
7367 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7368
7369 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7370
7371 /* OK, we're just going to keep stepping here. */
7372 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7373 {
7374 /* We're there already. Just stop stepping now. */
7375 end_stepping_range (ecs);
7376 }
7377 else
7378 {
7379 /* Else just reset the step range and keep going.
7380 No step-resume breakpoint, they don't work for
7381 epilogues, which can have multiple entry paths. */
7382 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7383 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7384 keep_going (ecs);
7385 }
7386 return;
7387 }
7388
7389 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7390 This is used to both functions and to skip over code. */
7391
7392 static void
7393 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7394 struct symtab_and_line sr_sal,
7395 struct frame_id sr_id,
7396 enum bptype sr_type)
7397 {
7398 /* There should never be more than one step-resume or longjmp-resume
7399 breakpoint per thread, so we should never be setting a new
7400 step_resume_breakpoint when one is already active. */
7401 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7402 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7403
7404 if (debug_infrun)
7405 fprintf_unfiltered (gdb_stdlog,
7406 "infrun: inserting step-resume breakpoint at %s\n",
7407 paddress (gdbarch, sr_sal.pc));
7408
7409 inferior_thread ()->control.step_resume_breakpoint
7410 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7411 }
7412
7413 void
7414 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7415 struct symtab_and_line sr_sal,
7416 struct frame_id sr_id)
7417 {
7418 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7419 sr_sal, sr_id,
7420 bp_step_resume);
7421 }
7422
7423 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7424 This is used to skip a potential signal handler.
7425
7426 This is called with the interrupted function's frame. The signal
7427 handler, when it returns, will resume the interrupted function at
7428 RETURN_FRAME.pc. */
7429
7430 static void
7431 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7432 {
7433 gdb_assert (return_frame != NULL);
7434
7435 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7436
7437 symtab_and_line sr_sal;
7438 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7439 sr_sal.section = find_pc_overlay (sr_sal.pc);
7440 sr_sal.pspace = get_frame_program_space (return_frame);
7441
7442 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7443 get_stack_frame_id (return_frame),
7444 bp_hp_step_resume);
7445 }
7446
7447 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7448 is used to skip a function after stepping into it (for "next" or if
7449 the called function has no debugging information).
7450
7451 The current function has almost always been reached by single
7452 stepping a call or return instruction. NEXT_FRAME belongs to the
7453 current function, and the breakpoint will be set at the caller's
7454 resume address.
7455
7456 This is a separate function rather than reusing
7457 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7458 get_prev_frame, which may stop prematurely (see the implementation
7459 of frame_unwind_caller_id for an example). */
7460
7461 static void
7462 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7463 {
7464 /* We shouldn't have gotten here if we don't know where the call site
7465 is. */
7466 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7467
7468 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7469
7470 symtab_and_line sr_sal;
7471 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7472 frame_unwind_caller_pc (next_frame));
7473 sr_sal.section = find_pc_overlay (sr_sal.pc);
7474 sr_sal.pspace = frame_unwind_program_space (next_frame);
7475
7476 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7477 frame_unwind_caller_id (next_frame));
7478 }
7479
7480 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7481 new breakpoint at the target of a jmp_buf. The handling of
7482 longjmp-resume uses the same mechanisms used for handling
7483 "step-resume" breakpoints. */
7484
7485 static void
7486 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7487 {
7488 /* There should never be more than one longjmp-resume breakpoint per
7489 thread, so we should never be setting a new
7490 longjmp_resume_breakpoint when one is already active. */
7491 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7492
7493 if (debug_infrun)
7494 fprintf_unfiltered (gdb_stdlog,
7495 "infrun: inserting longjmp-resume breakpoint at %s\n",
7496 paddress (gdbarch, pc));
7497
7498 inferior_thread ()->control.exception_resume_breakpoint =
7499 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7500 }
7501
7502 /* Insert an exception resume breakpoint. TP is the thread throwing
7503 the exception. The block B is the block of the unwinder debug hook
7504 function. FRAME is the frame corresponding to the call to this
7505 function. SYM is the symbol of the function argument holding the
7506 target PC of the exception. */
7507
7508 static void
7509 insert_exception_resume_breakpoint (struct thread_info *tp,
7510 const struct block *b,
7511 struct frame_info *frame,
7512 struct symbol *sym)
7513 {
7514 TRY
7515 {
7516 struct block_symbol vsym;
7517 struct value *value;
7518 CORE_ADDR handler;
7519 struct breakpoint *bp;
7520
7521 vsym = lookup_symbol_search_name (SYMBOL_SEARCH_NAME (sym),
7522 b, VAR_DOMAIN);
7523 value = read_var_value (vsym.symbol, vsym.block, frame);
7524 /* If the value was optimized out, revert to the old behavior. */
7525 if (! value_optimized_out (value))
7526 {
7527 handler = value_as_address (value);
7528
7529 if (debug_infrun)
7530 fprintf_unfiltered (gdb_stdlog,
7531 "infrun: exception resume at %lx\n",
7532 (unsigned long) handler);
7533
7534 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7535 handler,
7536 bp_exception_resume).release ();
7537
7538 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7539 frame = NULL;
7540
7541 bp->thread = tp->global_num;
7542 inferior_thread ()->control.exception_resume_breakpoint = bp;
7543 }
7544 }
7545 CATCH (e, RETURN_MASK_ERROR)
7546 {
7547 /* We want to ignore errors here. */
7548 }
7549 END_CATCH
7550 }
7551
7552 /* A helper for check_exception_resume that sets an
7553 exception-breakpoint based on a SystemTap probe. */
7554
7555 static void
7556 insert_exception_resume_from_probe (struct thread_info *tp,
7557 const struct bound_probe *probe,
7558 struct frame_info *frame)
7559 {
7560 struct value *arg_value;
7561 CORE_ADDR handler;
7562 struct breakpoint *bp;
7563
7564 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7565 if (!arg_value)
7566 return;
7567
7568 handler = value_as_address (arg_value);
7569
7570 if (debug_infrun)
7571 fprintf_unfiltered (gdb_stdlog,
7572 "infrun: exception resume at %s\n",
7573 paddress (get_objfile_arch (probe->objfile),
7574 handler));
7575
7576 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7577 handler, bp_exception_resume).release ();
7578 bp->thread = tp->global_num;
7579 inferior_thread ()->control.exception_resume_breakpoint = bp;
7580 }
7581
7582 /* This is called when an exception has been intercepted. Check to
7583 see whether the exception's destination is of interest, and if so,
7584 set an exception resume breakpoint there. */
7585
7586 static void
7587 check_exception_resume (struct execution_control_state *ecs,
7588 struct frame_info *frame)
7589 {
7590 struct bound_probe probe;
7591 struct symbol *func;
7592
7593 /* First see if this exception unwinding breakpoint was set via a
7594 SystemTap probe point. If so, the probe has two arguments: the
7595 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7596 set a breakpoint there. */
7597 probe = find_probe_by_pc (get_frame_pc (frame));
7598 if (probe.prob)
7599 {
7600 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7601 return;
7602 }
7603
7604 func = get_frame_function (frame);
7605 if (!func)
7606 return;
7607
7608 TRY
7609 {
7610 const struct block *b;
7611 struct block_iterator iter;
7612 struct symbol *sym;
7613 int argno = 0;
7614
7615 /* The exception breakpoint is a thread-specific breakpoint on
7616 the unwinder's debug hook, declared as:
7617
7618 void _Unwind_DebugHook (void *cfa, void *handler);
7619
7620 The CFA argument indicates the frame to which control is
7621 about to be transferred. HANDLER is the destination PC.
7622
7623 We ignore the CFA and set a temporary breakpoint at HANDLER.
7624 This is not extremely efficient but it avoids issues in gdb
7625 with computing the DWARF CFA, and it also works even in weird
7626 cases such as throwing an exception from inside a signal
7627 handler. */
7628
7629 b = SYMBOL_BLOCK_VALUE (func);
7630 ALL_BLOCK_SYMBOLS (b, iter, sym)
7631 {
7632 if (!SYMBOL_IS_ARGUMENT (sym))
7633 continue;
7634
7635 if (argno == 0)
7636 ++argno;
7637 else
7638 {
7639 insert_exception_resume_breakpoint (ecs->event_thread,
7640 b, frame, sym);
7641 break;
7642 }
7643 }
7644 }
7645 CATCH (e, RETURN_MASK_ERROR)
7646 {
7647 }
7648 END_CATCH
7649 }
7650
7651 static void
7652 stop_waiting (struct execution_control_state *ecs)
7653 {
7654 if (debug_infrun)
7655 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7656
7657 /* Let callers know we don't want to wait for the inferior anymore. */
7658 ecs->wait_some_more = 0;
7659
7660 /* If all-stop, but the target is always in non-stop mode, stop all
7661 threads now that we're presenting the stop to the user. */
7662 if (!non_stop && target_is_non_stop_p ())
7663 stop_all_threads ();
7664 }
7665
7666 /* Like keep_going, but passes the signal to the inferior, even if the
7667 signal is set to nopass. */
7668
7669 static void
7670 keep_going_pass_signal (struct execution_control_state *ecs)
7671 {
7672 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
7673 gdb_assert (!ecs->event_thread->resumed);
7674
7675 /* Save the pc before execution, to compare with pc after stop. */
7676 ecs->event_thread->prev_pc
7677 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
7678
7679 if (ecs->event_thread->control.trap_expected)
7680 {
7681 struct thread_info *tp = ecs->event_thread;
7682
7683 if (debug_infrun)
7684 fprintf_unfiltered (gdb_stdlog,
7685 "infrun: %s has trap_expected set, "
7686 "resuming to collect trap\n",
7687 target_pid_to_str (tp->ptid));
7688
7689 /* We haven't yet gotten our trap, and either: intercepted a
7690 non-signal event (e.g., a fork); or took a signal which we
7691 are supposed to pass through to the inferior. Simply
7692 continue. */
7693 resume (ecs->event_thread->suspend.stop_signal);
7694 }
7695 else if (step_over_info_valid_p ())
7696 {
7697 /* Another thread is stepping over a breakpoint in-line. If
7698 this thread needs a step-over too, queue the request. In
7699 either case, this resume must be deferred for later. */
7700 struct thread_info *tp = ecs->event_thread;
7701
7702 if (ecs->hit_singlestep_breakpoint
7703 || thread_still_needs_step_over (tp))
7704 {
7705 if (debug_infrun)
7706 fprintf_unfiltered (gdb_stdlog,
7707 "infrun: step-over already in progress: "
7708 "step-over for %s deferred\n",
7709 target_pid_to_str (tp->ptid));
7710 thread_step_over_chain_enqueue (tp);
7711 }
7712 else
7713 {
7714 if (debug_infrun)
7715 fprintf_unfiltered (gdb_stdlog,
7716 "infrun: step-over in progress: "
7717 "resume of %s deferred\n",
7718 target_pid_to_str (tp->ptid));
7719 }
7720 }
7721 else
7722 {
7723 struct regcache *regcache = get_current_regcache ();
7724 int remove_bp;
7725 int remove_wps;
7726 step_over_what step_what;
7727
7728 /* Either the trap was not expected, but we are continuing
7729 anyway (if we got a signal, the user asked it be passed to
7730 the child)
7731 -- or --
7732 We got our expected trap, but decided we should resume from
7733 it.
7734
7735 We're going to run this baby now!
7736
7737 Note that insert_breakpoints won't try to re-insert
7738 already inserted breakpoints. Therefore, we don't
7739 care if breakpoints were already inserted, or not. */
7740
7741 /* If we need to step over a breakpoint, and we're not using
7742 displaced stepping to do so, insert all breakpoints
7743 (watchpoints, etc.) but the one we're stepping over, step one
7744 instruction, and then re-insert the breakpoint when that step
7745 is finished. */
7746
7747 step_what = thread_still_needs_step_over (ecs->event_thread);
7748
7749 remove_bp = (ecs->hit_singlestep_breakpoint
7750 || (step_what & STEP_OVER_BREAKPOINT));
7751 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7752
7753 /* We can't use displaced stepping if we need to step past a
7754 watchpoint. The instruction copied to the scratch pad would
7755 still trigger the watchpoint. */
7756 if (remove_bp
7757 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7758 {
7759 set_step_over_info (regcache->aspace (),
7760 regcache_read_pc (regcache), remove_wps,
7761 ecs->event_thread->global_num);
7762 }
7763 else if (remove_wps)
7764 set_step_over_info (NULL, 0, remove_wps, -1);
7765
7766 /* If we now need to do an in-line step-over, we need to stop
7767 all other threads. Note this must be done before
7768 insert_breakpoints below, because that removes the breakpoint
7769 we're about to step over, otherwise other threads could miss
7770 it. */
7771 if (step_over_info_valid_p () && target_is_non_stop_p ())
7772 stop_all_threads ();
7773
7774 /* Stop stepping if inserting breakpoints fails. */
7775 TRY
7776 {
7777 insert_breakpoints ();
7778 }
7779 CATCH (e, RETURN_MASK_ERROR)
7780 {
7781 exception_print (gdb_stderr, e);
7782 stop_waiting (ecs);
7783 clear_step_over_info ();
7784 return;
7785 }
7786 END_CATCH
7787
7788 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7789
7790 resume (ecs->event_thread->suspend.stop_signal);
7791 }
7792
7793 prepare_to_wait (ecs);
7794 }
7795
7796 /* Called when we should continue running the inferior, because the
7797 current event doesn't cause a user visible stop. This does the
7798 resuming part; waiting for the next event is done elsewhere. */
7799
7800 static void
7801 keep_going (struct execution_control_state *ecs)
7802 {
7803 if (ecs->event_thread->control.trap_expected
7804 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7805 ecs->event_thread->control.trap_expected = 0;
7806
7807 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7808 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7809 keep_going_pass_signal (ecs);
7810 }
7811
7812 /* This function normally comes after a resume, before
7813 handle_inferior_event exits. It takes care of any last bits of
7814 housekeeping, and sets the all-important wait_some_more flag. */
7815
7816 static void
7817 prepare_to_wait (struct execution_control_state *ecs)
7818 {
7819 if (debug_infrun)
7820 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7821
7822 ecs->wait_some_more = 1;
7823
7824 if (!target_is_async_p ())
7825 mark_infrun_async_event_handler ();
7826 }
7827
7828 /* We are done with the step range of a step/next/si/ni command.
7829 Called once for each n of a "step n" operation. */
7830
7831 static void
7832 end_stepping_range (struct execution_control_state *ecs)
7833 {
7834 ecs->event_thread->control.stop_step = 1;
7835 stop_waiting (ecs);
7836 }
7837
7838 /* Several print_*_reason functions to print why the inferior has stopped.
7839 We always print something when the inferior exits, or receives a signal.
7840 The rest of the cases are dealt with later on in normal_stop and
7841 print_it_typical. Ideally there should be a call to one of these
7842 print_*_reason functions functions from handle_inferior_event each time
7843 stop_waiting is called.
7844
7845 Note that we don't call these directly, instead we delegate that to
7846 the interpreters, through observers. Interpreters then call these
7847 with whatever uiout is right. */
7848
7849 void
7850 print_end_stepping_range_reason (struct ui_out *uiout)
7851 {
7852 /* For CLI-like interpreters, print nothing. */
7853
7854 if (uiout->is_mi_like_p ())
7855 {
7856 uiout->field_string ("reason",
7857 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7858 }
7859 }
7860
7861 void
7862 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7863 {
7864 annotate_signalled ();
7865 if (uiout->is_mi_like_p ())
7866 uiout->field_string
7867 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7868 uiout->text ("\nProgram terminated with signal ");
7869 annotate_signal_name ();
7870 uiout->field_string ("signal-name",
7871 gdb_signal_to_name (siggnal));
7872 annotate_signal_name_end ();
7873 uiout->text (", ");
7874 annotate_signal_string ();
7875 uiout->field_string ("signal-meaning",
7876 gdb_signal_to_string (siggnal));
7877 annotate_signal_string_end ();
7878 uiout->text (".\n");
7879 uiout->text ("The program no longer exists.\n");
7880 }
7881
7882 void
7883 print_exited_reason (struct ui_out *uiout, int exitstatus)
7884 {
7885 struct inferior *inf = current_inferior ();
7886 const char *pidstr = target_pid_to_str (ptid_t (inf->pid));
7887
7888 annotate_exited (exitstatus);
7889 if (exitstatus)
7890 {
7891 if (uiout->is_mi_like_p ())
7892 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7893 uiout->text ("[Inferior ");
7894 uiout->text (plongest (inf->num));
7895 uiout->text (" (");
7896 uiout->text (pidstr);
7897 uiout->text (") exited with code ");
7898 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7899 uiout->text ("]\n");
7900 }
7901 else
7902 {
7903 if (uiout->is_mi_like_p ())
7904 uiout->field_string
7905 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7906 uiout->text ("[Inferior ");
7907 uiout->text (plongest (inf->num));
7908 uiout->text (" (");
7909 uiout->text (pidstr);
7910 uiout->text (") exited normally]\n");
7911 }
7912 }
7913
7914 /* Some targets/architectures can do extra processing/display of
7915 segmentation faults. E.g., Intel MPX boundary faults.
7916 Call the architecture dependent function to handle the fault. */
7917
7918 static void
7919 handle_segmentation_fault (struct ui_out *uiout)
7920 {
7921 struct regcache *regcache = get_current_regcache ();
7922 struct gdbarch *gdbarch = regcache->arch ();
7923
7924 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7925 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7926 }
7927
7928 void
7929 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7930 {
7931 struct thread_info *thr = inferior_thread ();
7932
7933 annotate_signal ();
7934
7935 if (uiout->is_mi_like_p ())
7936 ;
7937 else if (show_thread_that_caused_stop ())
7938 {
7939 const char *name;
7940
7941 uiout->text ("\nThread ");
7942 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
7943
7944 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7945 if (name != NULL)
7946 {
7947 uiout->text (" \"");
7948 uiout->field_fmt ("name", "%s", name);
7949 uiout->text ("\"");
7950 }
7951 }
7952 else
7953 uiout->text ("\nProgram");
7954
7955 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7956 uiout->text (" stopped");
7957 else
7958 {
7959 uiout->text (" received signal ");
7960 annotate_signal_name ();
7961 if (uiout->is_mi_like_p ())
7962 uiout->field_string
7963 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7964 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
7965 annotate_signal_name_end ();
7966 uiout->text (", ");
7967 annotate_signal_string ();
7968 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
7969
7970 if (siggnal == GDB_SIGNAL_SEGV)
7971 handle_segmentation_fault (uiout);
7972
7973 annotate_signal_string_end ();
7974 }
7975 uiout->text (".\n");
7976 }
7977
7978 void
7979 print_no_history_reason (struct ui_out *uiout)
7980 {
7981 uiout->text ("\nNo more reverse-execution history.\n");
7982 }
7983
7984 /* Print current location without a level number, if we have changed
7985 functions or hit a breakpoint. Print source line if we have one.
7986 bpstat_print contains the logic deciding in detail what to print,
7987 based on the event(s) that just occurred. */
7988
7989 static void
7990 print_stop_location (struct target_waitstatus *ws)
7991 {
7992 int bpstat_ret;
7993 enum print_what source_flag;
7994 int do_frame_printing = 1;
7995 struct thread_info *tp = inferior_thread ();
7996
7997 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7998 switch (bpstat_ret)
7999 {
8000 case PRINT_UNKNOWN:
8001 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8002 should) carry around the function and does (or should) use
8003 that when doing a frame comparison. */
8004 if (tp->control.stop_step
8005 && frame_id_eq (tp->control.step_frame_id,
8006 get_frame_id (get_current_frame ()))
8007 && (tp->control.step_start_function
8008 == find_pc_function (tp->suspend.stop_pc)))
8009 {
8010 /* Finished step, just print source line. */
8011 source_flag = SRC_LINE;
8012 }
8013 else
8014 {
8015 /* Print location and source line. */
8016 source_flag = SRC_AND_LOC;
8017 }
8018 break;
8019 case PRINT_SRC_AND_LOC:
8020 /* Print location and source line. */
8021 source_flag = SRC_AND_LOC;
8022 break;
8023 case PRINT_SRC_ONLY:
8024 source_flag = SRC_LINE;
8025 break;
8026 case PRINT_NOTHING:
8027 /* Something bogus. */
8028 source_flag = SRC_LINE;
8029 do_frame_printing = 0;
8030 break;
8031 default:
8032 internal_error (__FILE__, __LINE__, _("Unknown value."));
8033 }
8034
8035 /* The behavior of this routine with respect to the source
8036 flag is:
8037 SRC_LINE: Print only source line
8038 LOCATION: Print only location
8039 SRC_AND_LOC: Print location and source line. */
8040 if (do_frame_printing)
8041 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8042 }
8043
8044 /* See infrun.h. */
8045
8046 void
8047 print_stop_event (struct ui_out *uiout)
8048 {
8049 struct target_waitstatus last;
8050 ptid_t last_ptid;
8051 struct thread_info *tp;
8052
8053 get_last_target_status (&last_ptid, &last);
8054
8055 {
8056 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8057
8058 print_stop_location (&last);
8059
8060 /* Display the auto-display expressions. */
8061 do_displays ();
8062 }
8063
8064 tp = inferior_thread ();
8065 if (tp->thread_fsm != NULL
8066 && thread_fsm_finished_p (tp->thread_fsm))
8067 {
8068 struct return_value_info *rv;
8069
8070 rv = thread_fsm_return_value (tp->thread_fsm);
8071 if (rv != NULL)
8072 print_return_value (uiout, rv);
8073 }
8074 }
8075
8076 /* See infrun.h. */
8077
8078 void
8079 maybe_remove_breakpoints (void)
8080 {
8081 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8082 {
8083 if (remove_breakpoints ())
8084 {
8085 target_terminal::ours_for_output ();
8086 printf_filtered (_("Cannot remove breakpoints because "
8087 "program is no longer writable.\nFurther "
8088 "execution is probably impossible.\n"));
8089 }
8090 }
8091 }
8092
8093 /* The execution context that just caused a normal stop. */
8094
8095 struct stop_context
8096 {
8097 /* The stop ID. */
8098 ULONGEST stop_id;
8099
8100 /* The event PTID. */
8101
8102 ptid_t ptid;
8103
8104 /* If stopp for a thread event, this is the thread that caused the
8105 stop. */
8106 struct thread_info *thread;
8107
8108 /* The inferior that caused the stop. */
8109 int inf_num;
8110 };
8111
8112 /* Returns a new stop context. If stopped for a thread event, this
8113 takes a strong reference to the thread. */
8114
8115 static struct stop_context *
8116 save_stop_context (void)
8117 {
8118 struct stop_context *sc = XNEW (struct stop_context);
8119
8120 sc->stop_id = get_stop_id ();
8121 sc->ptid = inferior_ptid;
8122 sc->inf_num = current_inferior ()->num;
8123
8124 if (inferior_ptid != null_ptid)
8125 {
8126 /* Take a strong reference so that the thread can't be deleted
8127 yet. */
8128 sc->thread = inferior_thread ();
8129 sc->thread->incref ();
8130 }
8131 else
8132 sc->thread = NULL;
8133
8134 return sc;
8135 }
8136
8137 /* Release a stop context previously created with save_stop_context.
8138 Releases the strong reference to the thread as well. */
8139
8140 static void
8141 release_stop_context_cleanup (void *arg)
8142 {
8143 struct stop_context *sc = (struct stop_context *) arg;
8144
8145 if (sc->thread != NULL)
8146 sc->thread->decref ();
8147 xfree (sc);
8148 }
8149
8150 /* Return true if the current context no longer matches the saved stop
8151 context. */
8152
8153 static int
8154 stop_context_changed (struct stop_context *prev)
8155 {
8156 if (prev->ptid != inferior_ptid)
8157 return 1;
8158 if (prev->inf_num != current_inferior ()->num)
8159 return 1;
8160 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8161 return 1;
8162 if (get_stop_id () != prev->stop_id)
8163 return 1;
8164 return 0;
8165 }
8166
8167 /* See infrun.h. */
8168
8169 int
8170 normal_stop (void)
8171 {
8172 struct target_waitstatus last;
8173 ptid_t last_ptid;
8174
8175 get_last_target_status (&last_ptid, &last);
8176
8177 new_stop_id ();
8178
8179 /* If an exception is thrown from this point on, make sure to
8180 propagate GDB's knowledge of the executing state to the
8181 frontend/user running state. A QUIT is an easy exception to see
8182 here, so do this before any filtered output. */
8183
8184 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8185
8186 if (!non_stop)
8187 maybe_finish_thread_state.emplace (minus_one_ptid);
8188 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8189 || last.kind == TARGET_WAITKIND_EXITED)
8190 {
8191 /* On some targets, we may still have live threads in the
8192 inferior when we get a process exit event. E.g., for
8193 "checkpoint", when the current checkpoint/fork exits,
8194 linux-fork.c automatically switches to another fork from
8195 within target_mourn_inferior. */
8196 if (inferior_ptid != null_ptid)
8197 maybe_finish_thread_state.emplace (ptid_t (inferior_ptid.pid ()));
8198 }
8199 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8200 maybe_finish_thread_state.emplace (inferior_ptid);
8201
8202 /* As we're presenting a stop, and potentially removing breakpoints,
8203 update the thread list so we can tell whether there are threads
8204 running on the target. With target remote, for example, we can
8205 only learn about new threads when we explicitly update the thread
8206 list. Do this before notifying the interpreters about signal
8207 stops, end of stepping ranges, etc., so that the "new thread"
8208 output is emitted before e.g., "Program received signal FOO",
8209 instead of after. */
8210 update_thread_list ();
8211
8212 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8213 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
8214
8215 /* As with the notification of thread events, we want to delay
8216 notifying the user that we've switched thread context until
8217 the inferior actually stops.
8218
8219 There's no point in saying anything if the inferior has exited.
8220 Note that SIGNALLED here means "exited with a signal", not
8221 "received a signal".
8222
8223 Also skip saying anything in non-stop mode. In that mode, as we
8224 don't want GDB to switch threads behind the user's back, to avoid
8225 races where the user is typing a command to apply to thread x,
8226 but GDB switches to thread y before the user finishes entering
8227 the command, fetch_inferior_event installs a cleanup to restore
8228 the current thread back to the thread the user had selected right
8229 after this event is handled, so we're not really switching, only
8230 informing of a stop. */
8231 if (!non_stop
8232 && previous_inferior_ptid != inferior_ptid
8233 && target_has_execution
8234 && last.kind != TARGET_WAITKIND_SIGNALLED
8235 && last.kind != TARGET_WAITKIND_EXITED
8236 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8237 {
8238 SWITCH_THRU_ALL_UIS ()
8239 {
8240 target_terminal::ours_for_output ();
8241 printf_filtered (_("[Switching to %s]\n"),
8242 target_pid_to_str (inferior_ptid));
8243 annotate_thread_changed ();
8244 }
8245 previous_inferior_ptid = inferior_ptid;
8246 }
8247
8248 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8249 {
8250 SWITCH_THRU_ALL_UIS ()
8251 if (current_ui->prompt_state == PROMPT_BLOCKED)
8252 {
8253 target_terminal::ours_for_output ();
8254 printf_filtered (_("No unwaited-for children left.\n"));
8255 }
8256 }
8257
8258 /* Note: this depends on the update_thread_list call above. */
8259 maybe_remove_breakpoints ();
8260
8261 /* If an auto-display called a function and that got a signal,
8262 delete that auto-display to avoid an infinite recursion. */
8263
8264 if (stopped_by_random_signal)
8265 disable_current_display ();
8266
8267 SWITCH_THRU_ALL_UIS ()
8268 {
8269 async_enable_stdin ();
8270 }
8271
8272 /* Let the user/frontend see the threads as stopped. */
8273 maybe_finish_thread_state.reset ();
8274
8275 /* Select innermost stack frame - i.e., current frame is frame 0,
8276 and current location is based on that. Handle the case where the
8277 dummy call is returning after being stopped. E.g. the dummy call
8278 previously hit a breakpoint. (If the dummy call returns
8279 normally, we won't reach here.) Do this before the stop hook is
8280 run, so that it doesn't get to see the temporary dummy frame,
8281 which is not where we'll present the stop. */
8282 if (has_stack_frames ())
8283 {
8284 if (stop_stack_dummy == STOP_STACK_DUMMY)
8285 {
8286 /* Pop the empty frame that contains the stack dummy. This
8287 also restores inferior state prior to the call (struct
8288 infcall_suspend_state). */
8289 struct frame_info *frame = get_current_frame ();
8290
8291 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8292 frame_pop (frame);
8293 /* frame_pop calls reinit_frame_cache as the last thing it
8294 does which means there's now no selected frame. */
8295 }
8296
8297 select_frame (get_current_frame ());
8298
8299 /* Set the current source location. */
8300 set_current_sal_from_frame (get_current_frame ());
8301 }
8302
8303 /* Look up the hook_stop and run it (CLI internally handles problem
8304 of stop_command's pre-hook not existing). */
8305 if (stop_command != NULL)
8306 {
8307 struct stop_context *saved_context = save_stop_context ();
8308 struct cleanup *old_chain
8309 = make_cleanup (release_stop_context_cleanup, saved_context);
8310
8311 TRY
8312 {
8313 execute_cmd_pre_hook (stop_command);
8314 }
8315 CATCH (ex, RETURN_MASK_ALL)
8316 {
8317 exception_fprintf (gdb_stderr, ex,
8318 "Error while running hook_stop:\n");
8319 }
8320 END_CATCH
8321
8322 /* If the stop hook resumes the target, then there's no point in
8323 trying to notify about the previous stop; its context is
8324 gone. Likewise if the command switches thread or inferior --
8325 the observers would print a stop for the wrong
8326 thread/inferior. */
8327 if (stop_context_changed (saved_context))
8328 {
8329 do_cleanups (old_chain);
8330 return 1;
8331 }
8332 do_cleanups (old_chain);
8333 }
8334
8335 /* Notify observers about the stop. This is where the interpreters
8336 print the stop event. */
8337 if (inferior_ptid != null_ptid)
8338 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8339 stop_print_frame);
8340 else
8341 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8342
8343 annotate_stopped ();
8344
8345 if (target_has_execution)
8346 {
8347 if (last.kind != TARGET_WAITKIND_SIGNALLED
8348 && last.kind != TARGET_WAITKIND_EXITED)
8349 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8350 Delete any breakpoint that is to be deleted at the next stop. */
8351 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8352 }
8353
8354 /* Try to get rid of automatically added inferiors that are no
8355 longer needed. Keeping those around slows down things linearly.
8356 Note that this never removes the current inferior. */
8357 prune_inferiors ();
8358
8359 return 0;
8360 }
8361 \f
8362 int
8363 signal_stop_state (int signo)
8364 {
8365 return signal_stop[signo];
8366 }
8367
8368 int
8369 signal_print_state (int signo)
8370 {
8371 return signal_print[signo];
8372 }
8373
8374 int
8375 signal_pass_state (int signo)
8376 {
8377 return signal_program[signo];
8378 }
8379
8380 static void
8381 signal_cache_update (int signo)
8382 {
8383 if (signo == -1)
8384 {
8385 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8386 signal_cache_update (signo);
8387
8388 return;
8389 }
8390
8391 signal_pass[signo] = (signal_stop[signo] == 0
8392 && signal_print[signo] == 0
8393 && signal_program[signo] == 1
8394 && signal_catch[signo] == 0);
8395 }
8396
8397 int
8398 signal_stop_update (int signo, int state)
8399 {
8400 int ret = signal_stop[signo];
8401
8402 signal_stop[signo] = state;
8403 signal_cache_update (signo);
8404 return ret;
8405 }
8406
8407 int
8408 signal_print_update (int signo, int state)
8409 {
8410 int ret = signal_print[signo];
8411
8412 signal_print[signo] = state;
8413 signal_cache_update (signo);
8414 return ret;
8415 }
8416
8417 int
8418 signal_pass_update (int signo, int state)
8419 {
8420 int ret = signal_program[signo];
8421
8422 signal_program[signo] = state;
8423 signal_cache_update (signo);
8424 return ret;
8425 }
8426
8427 /* Update the global 'signal_catch' from INFO and notify the
8428 target. */
8429
8430 void
8431 signal_catch_update (const unsigned int *info)
8432 {
8433 int i;
8434
8435 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8436 signal_catch[i] = info[i] > 0;
8437 signal_cache_update (-1);
8438 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8439 }
8440
8441 static void
8442 sig_print_header (void)
8443 {
8444 printf_filtered (_("Signal Stop\tPrint\tPass "
8445 "to program\tDescription\n"));
8446 }
8447
8448 static void
8449 sig_print_info (enum gdb_signal oursig)
8450 {
8451 const char *name = gdb_signal_to_name (oursig);
8452 int name_padding = 13 - strlen (name);
8453
8454 if (name_padding <= 0)
8455 name_padding = 0;
8456
8457 printf_filtered ("%s", name);
8458 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8459 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8460 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8461 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8462 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8463 }
8464
8465 /* Specify how various signals in the inferior should be handled. */
8466
8467 static void
8468 handle_command (const char *args, int from_tty)
8469 {
8470 int digits, wordlen;
8471 int sigfirst, signum, siglast;
8472 enum gdb_signal oursig;
8473 int allsigs;
8474 int nsigs;
8475 unsigned char *sigs;
8476
8477 if (args == NULL)
8478 {
8479 error_no_arg (_("signal to handle"));
8480 }
8481
8482 /* Allocate and zero an array of flags for which signals to handle. */
8483
8484 nsigs = (int) GDB_SIGNAL_LAST;
8485 sigs = (unsigned char *) alloca (nsigs);
8486 memset (sigs, 0, nsigs);
8487
8488 /* Break the command line up into args. */
8489
8490 gdb_argv built_argv (args);
8491
8492 /* Walk through the args, looking for signal oursigs, signal names, and
8493 actions. Signal numbers and signal names may be interspersed with
8494 actions, with the actions being performed for all signals cumulatively
8495 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8496
8497 for (char *arg : built_argv)
8498 {
8499 wordlen = strlen (arg);
8500 for (digits = 0; isdigit (arg[digits]); digits++)
8501 {;
8502 }
8503 allsigs = 0;
8504 sigfirst = siglast = -1;
8505
8506 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8507 {
8508 /* Apply action to all signals except those used by the
8509 debugger. Silently skip those. */
8510 allsigs = 1;
8511 sigfirst = 0;
8512 siglast = nsigs - 1;
8513 }
8514 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8515 {
8516 SET_SIGS (nsigs, sigs, signal_stop);
8517 SET_SIGS (nsigs, sigs, signal_print);
8518 }
8519 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8520 {
8521 UNSET_SIGS (nsigs, sigs, signal_program);
8522 }
8523 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8524 {
8525 SET_SIGS (nsigs, sigs, signal_print);
8526 }
8527 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8528 {
8529 SET_SIGS (nsigs, sigs, signal_program);
8530 }
8531 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8532 {
8533 UNSET_SIGS (nsigs, sigs, signal_stop);
8534 }
8535 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8536 {
8537 SET_SIGS (nsigs, sigs, signal_program);
8538 }
8539 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8540 {
8541 UNSET_SIGS (nsigs, sigs, signal_print);
8542 UNSET_SIGS (nsigs, sigs, signal_stop);
8543 }
8544 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8545 {
8546 UNSET_SIGS (nsigs, sigs, signal_program);
8547 }
8548 else if (digits > 0)
8549 {
8550 /* It is numeric. The numeric signal refers to our own
8551 internal signal numbering from target.h, not to host/target
8552 signal number. This is a feature; users really should be
8553 using symbolic names anyway, and the common ones like
8554 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8555
8556 sigfirst = siglast = (int)
8557 gdb_signal_from_command (atoi (arg));
8558 if (arg[digits] == '-')
8559 {
8560 siglast = (int)
8561 gdb_signal_from_command (atoi (arg + digits + 1));
8562 }
8563 if (sigfirst > siglast)
8564 {
8565 /* Bet he didn't figure we'd think of this case... */
8566 signum = sigfirst;
8567 sigfirst = siglast;
8568 siglast = signum;
8569 }
8570 }
8571 else
8572 {
8573 oursig = gdb_signal_from_name (arg);
8574 if (oursig != GDB_SIGNAL_UNKNOWN)
8575 {
8576 sigfirst = siglast = (int) oursig;
8577 }
8578 else
8579 {
8580 /* Not a number and not a recognized flag word => complain. */
8581 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8582 }
8583 }
8584
8585 /* If any signal numbers or symbol names were found, set flags for
8586 which signals to apply actions to. */
8587
8588 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8589 {
8590 switch ((enum gdb_signal) signum)
8591 {
8592 case GDB_SIGNAL_TRAP:
8593 case GDB_SIGNAL_INT:
8594 if (!allsigs && !sigs[signum])
8595 {
8596 if (query (_("%s is used by the debugger.\n\
8597 Are you sure you want to change it? "),
8598 gdb_signal_to_name ((enum gdb_signal) signum)))
8599 {
8600 sigs[signum] = 1;
8601 }
8602 else
8603 {
8604 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8605 gdb_flush (gdb_stdout);
8606 }
8607 }
8608 break;
8609 case GDB_SIGNAL_0:
8610 case GDB_SIGNAL_DEFAULT:
8611 case GDB_SIGNAL_UNKNOWN:
8612 /* Make sure that "all" doesn't print these. */
8613 break;
8614 default:
8615 sigs[signum] = 1;
8616 break;
8617 }
8618 }
8619 }
8620
8621 for (signum = 0; signum < nsigs; signum++)
8622 if (sigs[signum])
8623 {
8624 signal_cache_update (-1);
8625 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8626 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
8627
8628 if (from_tty)
8629 {
8630 /* Show the results. */
8631 sig_print_header ();
8632 for (; signum < nsigs; signum++)
8633 if (sigs[signum])
8634 sig_print_info ((enum gdb_signal) signum);
8635 }
8636
8637 break;
8638 }
8639 }
8640
8641 /* Complete the "handle" command. */
8642
8643 static void
8644 handle_completer (struct cmd_list_element *ignore,
8645 completion_tracker &tracker,
8646 const char *text, const char *word)
8647 {
8648 static const char * const keywords[] =
8649 {
8650 "all",
8651 "stop",
8652 "ignore",
8653 "print",
8654 "pass",
8655 "nostop",
8656 "noignore",
8657 "noprint",
8658 "nopass",
8659 NULL,
8660 };
8661
8662 signal_completer (ignore, tracker, text, word);
8663 complete_on_enum (tracker, keywords, word, word);
8664 }
8665
8666 enum gdb_signal
8667 gdb_signal_from_command (int num)
8668 {
8669 if (num >= 1 && num <= 15)
8670 return (enum gdb_signal) num;
8671 error (_("Only signals 1-15 are valid as numeric signals.\n\
8672 Use \"info signals\" for a list of symbolic signals."));
8673 }
8674
8675 /* Print current contents of the tables set by the handle command.
8676 It is possible we should just be printing signals actually used
8677 by the current target (but for things to work right when switching
8678 targets, all signals should be in the signal tables). */
8679
8680 static void
8681 info_signals_command (const char *signum_exp, int from_tty)
8682 {
8683 enum gdb_signal oursig;
8684
8685 sig_print_header ();
8686
8687 if (signum_exp)
8688 {
8689 /* First see if this is a symbol name. */
8690 oursig = gdb_signal_from_name (signum_exp);
8691 if (oursig == GDB_SIGNAL_UNKNOWN)
8692 {
8693 /* No, try numeric. */
8694 oursig =
8695 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8696 }
8697 sig_print_info (oursig);
8698 return;
8699 }
8700
8701 printf_filtered ("\n");
8702 /* These ugly casts brought to you by the native VAX compiler. */
8703 for (oursig = GDB_SIGNAL_FIRST;
8704 (int) oursig < (int) GDB_SIGNAL_LAST;
8705 oursig = (enum gdb_signal) ((int) oursig + 1))
8706 {
8707 QUIT;
8708
8709 if (oursig != GDB_SIGNAL_UNKNOWN
8710 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8711 sig_print_info (oursig);
8712 }
8713
8714 printf_filtered (_("\nUse the \"handle\" command "
8715 "to change these tables.\n"));
8716 }
8717
8718 /* The $_siginfo convenience variable is a bit special. We don't know
8719 for sure the type of the value until we actually have a chance to
8720 fetch the data. The type can change depending on gdbarch, so it is
8721 also dependent on which thread you have selected.
8722
8723 1. making $_siginfo be an internalvar that creates a new value on
8724 access.
8725
8726 2. making the value of $_siginfo be an lval_computed value. */
8727
8728 /* This function implements the lval_computed support for reading a
8729 $_siginfo value. */
8730
8731 static void
8732 siginfo_value_read (struct value *v)
8733 {
8734 LONGEST transferred;
8735
8736 /* If we can access registers, so can we access $_siginfo. Likewise
8737 vice versa. */
8738 validate_registers_access ();
8739
8740 transferred =
8741 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
8742 NULL,
8743 value_contents_all_raw (v),
8744 value_offset (v),
8745 TYPE_LENGTH (value_type (v)));
8746
8747 if (transferred != TYPE_LENGTH (value_type (v)))
8748 error (_("Unable to read siginfo"));
8749 }
8750
8751 /* This function implements the lval_computed support for writing a
8752 $_siginfo value. */
8753
8754 static void
8755 siginfo_value_write (struct value *v, struct value *fromval)
8756 {
8757 LONGEST transferred;
8758
8759 /* If we can access registers, so can we access $_siginfo. Likewise
8760 vice versa. */
8761 validate_registers_access ();
8762
8763 transferred = target_write (current_top_target (),
8764 TARGET_OBJECT_SIGNAL_INFO,
8765 NULL,
8766 value_contents_all_raw (fromval),
8767 value_offset (v),
8768 TYPE_LENGTH (value_type (fromval)));
8769
8770 if (transferred != TYPE_LENGTH (value_type (fromval)))
8771 error (_("Unable to write siginfo"));
8772 }
8773
8774 static const struct lval_funcs siginfo_value_funcs =
8775 {
8776 siginfo_value_read,
8777 siginfo_value_write
8778 };
8779
8780 /* Return a new value with the correct type for the siginfo object of
8781 the current thread using architecture GDBARCH. Return a void value
8782 if there's no object available. */
8783
8784 static struct value *
8785 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8786 void *ignore)
8787 {
8788 if (target_has_stack
8789 && inferior_ptid != null_ptid
8790 && gdbarch_get_siginfo_type_p (gdbarch))
8791 {
8792 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8793
8794 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8795 }
8796
8797 return allocate_value (builtin_type (gdbarch)->builtin_void);
8798 }
8799
8800 \f
8801 /* infcall_suspend_state contains state about the program itself like its
8802 registers and any signal it received when it last stopped.
8803 This state must be restored regardless of how the inferior function call
8804 ends (either successfully, or after it hits a breakpoint or signal)
8805 if the program is to properly continue where it left off. */
8806
8807 struct infcall_suspend_state
8808 {
8809 struct thread_suspend_state thread_suspend;
8810
8811 /* Other fields: */
8812 readonly_detached_regcache *registers;
8813
8814 /* Format of SIGINFO_DATA or NULL if it is not present. */
8815 struct gdbarch *siginfo_gdbarch;
8816
8817 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8818 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8819 content would be invalid. */
8820 gdb_byte *siginfo_data;
8821 };
8822
8823 struct infcall_suspend_state *
8824 save_infcall_suspend_state (void)
8825 {
8826 struct infcall_suspend_state *inf_state;
8827 struct thread_info *tp = inferior_thread ();
8828 struct regcache *regcache = get_current_regcache ();
8829 struct gdbarch *gdbarch = regcache->arch ();
8830 gdb_byte *siginfo_data = NULL;
8831
8832 if (gdbarch_get_siginfo_type_p (gdbarch))
8833 {
8834 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8835 size_t len = TYPE_LENGTH (type);
8836 struct cleanup *back_to;
8837
8838 siginfo_data = (gdb_byte *) xmalloc (len);
8839 back_to = make_cleanup (xfree, siginfo_data);
8840
8841 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8842 siginfo_data, 0, len) == len)
8843 discard_cleanups (back_to);
8844 else
8845 {
8846 /* Errors ignored. */
8847 do_cleanups (back_to);
8848 siginfo_data = NULL;
8849 }
8850 }
8851
8852 inf_state = XCNEW (struct infcall_suspend_state);
8853
8854 if (siginfo_data)
8855 {
8856 inf_state->siginfo_gdbarch = gdbarch;
8857 inf_state->siginfo_data = siginfo_data;
8858 }
8859
8860 inf_state->thread_suspend = tp->suspend;
8861
8862 /* run_inferior_call will not use the signal due to its `proceed' call with
8863 GDB_SIGNAL_0 anyway. */
8864 tp->suspend.stop_signal = GDB_SIGNAL_0;
8865
8866 inf_state->registers = new readonly_detached_regcache (*regcache);
8867
8868 return inf_state;
8869 }
8870
8871 /* Restore inferior session state to INF_STATE. */
8872
8873 void
8874 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8875 {
8876 struct thread_info *tp = inferior_thread ();
8877 struct regcache *regcache = get_current_regcache ();
8878 struct gdbarch *gdbarch = regcache->arch ();
8879
8880 tp->suspend = inf_state->thread_suspend;
8881
8882 if (inf_state->siginfo_gdbarch == gdbarch)
8883 {
8884 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8885
8886 /* Errors ignored. */
8887 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8888 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
8889 }
8890
8891 /* The inferior can be gone if the user types "print exit(0)"
8892 (and perhaps other times). */
8893 if (target_has_execution)
8894 /* NB: The register write goes through to the target. */
8895 regcache->restore (inf_state->registers);
8896
8897 discard_infcall_suspend_state (inf_state);
8898 }
8899
8900 static void
8901 do_restore_infcall_suspend_state_cleanup (void *state)
8902 {
8903 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
8904 }
8905
8906 struct cleanup *
8907 make_cleanup_restore_infcall_suspend_state
8908 (struct infcall_suspend_state *inf_state)
8909 {
8910 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
8911 }
8912
8913 void
8914 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8915 {
8916 delete inf_state->registers;
8917 xfree (inf_state->siginfo_data);
8918 xfree (inf_state);
8919 }
8920
8921 readonly_detached_regcache *
8922 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8923 {
8924 return inf_state->registers;
8925 }
8926
8927 /* infcall_control_state contains state regarding gdb's control of the
8928 inferior itself like stepping control. It also contains session state like
8929 the user's currently selected frame. */
8930
8931 struct infcall_control_state
8932 {
8933 struct thread_control_state thread_control;
8934 struct inferior_control_state inferior_control;
8935
8936 /* Other fields: */
8937 enum stop_stack_kind stop_stack_dummy;
8938 int stopped_by_random_signal;
8939
8940 /* ID if the selected frame when the inferior function call was made. */
8941 struct frame_id selected_frame_id;
8942 };
8943
8944 /* Save all of the information associated with the inferior<==>gdb
8945 connection. */
8946
8947 struct infcall_control_state *
8948 save_infcall_control_state (void)
8949 {
8950 struct infcall_control_state *inf_status =
8951 XNEW (struct infcall_control_state);
8952 struct thread_info *tp = inferior_thread ();
8953 struct inferior *inf = current_inferior ();
8954
8955 inf_status->thread_control = tp->control;
8956 inf_status->inferior_control = inf->control;
8957
8958 tp->control.step_resume_breakpoint = NULL;
8959 tp->control.exception_resume_breakpoint = NULL;
8960
8961 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8962 chain. If caller's caller is walking the chain, they'll be happier if we
8963 hand them back the original chain when restore_infcall_control_state is
8964 called. */
8965 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
8966
8967 /* Other fields: */
8968 inf_status->stop_stack_dummy = stop_stack_dummy;
8969 inf_status->stopped_by_random_signal = stopped_by_random_signal;
8970
8971 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
8972
8973 return inf_status;
8974 }
8975
8976 static void
8977 restore_selected_frame (const frame_id &fid)
8978 {
8979 frame_info *frame = frame_find_by_id (fid);
8980
8981 /* If inf_status->selected_frame_id is NULL, there was no previously
8982 selected frame. */
8983 if (frame == NULL)
8984 {
8985 warning (_("Unable to restore previously selected frame."));
8986 return;
8987 }
8988
8989 select_frame (frame);
8990 }
8991
8992 /* Restore inferior session state to INF_STATUS. */
8993
8994 void
8995 restore_infcall_control_state (struct infcall_control_state *inf_status)
8996 {
8997 struct thread_info *tp = inferior_thread ();
8998 struct inferior *inf = current_inferior ();
8999
9000 if (tp->control.step_resume_breakpoint)
9001 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9002
9003 if (tp->control.exception_resume_breakpoint)
9004 tp->control.exception_resume_breakpoint->disposition
9005 = disp_del_at_next_stop;
9006
9007 /* Handle the bpstat_copy of the chain. */
9008 bpstat_clear (&tp->control.stop_bpstat);
9009
9010 tp->control = inf_status->thread_control;
9011 inf->control = inf_status->inferior_control;
9012
9013 /* Other fields: */
9014 stop_stack_dummy = inf_status->stop_stack_dummy;
9015 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9016
9017 if (target_has_stack)
9018 {
9019 /* The point of the try/catch is that if the stack is clobbered,
9020 walking the stack might encounter a garbage pointer and
9021 error() trying to dereference it. */
9022 TRY
9023 {
9024 restore_selected_frame (inf_status->selected_frame_id);
9025 }
9026 CATCH (ex, RETURN_MASK_ERROR)
9027 {
9028 exception_fprintf (gdb_stderr, ex,
9029 "Unable to restore previously selected frame:\n");
9030 /* Error in restoring the selected frame. Select the
9031 innermost frame. */
9032 select_frame (get_current_frame ());
9033 }
9034 END_CATCH
9035 }
9036
9037 xfree (inf_status);
9038 }
9039
9040 static void
9041 do_restore_infcall_control_state_cleanup (void *sts)
9042 {
9043 restore_infcall_control_state ((struct infcall_control_state *) sts);
9044 }
9045
9046 struct cleanup *
9047 make_cleanup_restore_infcall_control_state
9048 (struct infcall_control_state *inf_status)
9049 {
9050 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
9051 }
9052
9053 void
9054 discard_infcall_control_state (struct infcall_control_state *inf_status)
9055 {
9056 if (inf_status->thread_control.step_resume_breakpoint)
9057 inf_status->thread_control.step_resume_breakpoint->disposition
9058 = disp_del_at_next_stop;
9059
9060 if (inf_status->thread_control.exception_resume_breakpoint)
9061 inf_status->thread_control.exception_resume_breakpoint->disposition
9062 = disp_del_at_next_stop;
9063
9064 /* See save_infcall_control_state for info on stop_bpstat. */
9065 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9066
9067 xfree (inf_status);
9068 }
9069 \f
9070 /* See infrun.h. */
9071
9072 void
9073 clear_exit_convenience_vars (void)
9074 {
9075 clear_internalvar (lookup_internalvar ("_exitsignal"));
9076 clear_internalvar (lookup_internalvar ("_exitcode"));
9077 }
9078 \f
9079
9080 /* User interface for reverse debugging:
9081 Set exec-direction / show exec-direction commands
9082 (returns error unless target implements to_set_exec_direction method). */
9083
9084 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9085 static const char exec_forward[] = "forward";
9086 static const char exec_reverse[] = "reverse";
9087 static const char *exec_direction = exec_forward;
9088 static const char *const exec_direction_names[] = {
9089 exec_forward,
9090 exec_reverse,
9091 NULL
9092 };
9093
9094 static void
9095 set_exec_direction_func (const char *args, int from_tty,
9096 struct cmd_list_element *cmd)
9097 {
9098 if (target_can_execute_reverse)
9099 {
9100 if (!strcmp (exec_direction, exec_forward))
9101 execution_direction = EXEC_FORWARD;
9102 else if (!strcmp (exec_direction, exec_reverse))
9103 execution_direction = EXEC_REVERSE;
9104 }
9105 else
9106 {
9107 exec_direction = exec_forward;
9108 error (_("Target does not support this operation."));
9109 }
9110 }
9111
9112 static void
9113 show_exec_direction_func (struct ui_file *out, int from_tty,
9114 struct cmd_list_element *cmd, const char *value)
9115 {
9116 switch (execution_direction) {
9117 case EXEC_FORWARD:
9118 fprintf_filtered (out, _("Forward.\n"));
9119 break;
9120 case EXEC_REVERSE:
9121 fprintf_filtered (out, _("Reverse.\n"));
9122 break;
9123 default:
9124 internal_error (__FILE__, __LINE__,
9125 _("bogus execution_direction value: %d"),
9126 (int) execution_direction);
9127 }
9128 }
9129
9130 static void
9131 show_schedule_multiple (struct ui_file *file, int from_tty,
9132 struct cmd_list_element *c, const char *value)
9133 {
9134 fprintf_filtered (file, _("Resuming the execution of threads "
9135 "of all processes is %s.\n"), value);
9136 }
9137
9138 /* Implementation of `siginfo' variable. */
9139
9140 static const struct internalvar_funcs siginfo_funcs =
9141 {
9142 siginfo_make_value,
9143 NULL,
9144 NULL
9145 };
9146
9147 /* Callback for infrun's target events source. This is marked when a
9148 thread has a pending status to process. */
9149
9150 static void
9151 infrun_async_inferior_event_handler (gdb_client_data data)
9152 {
9153 inferior_event_handler (INF_REG_EVENT, NULL);
9154 }
9155
9156 void
9157 _initialize_infrun (void)
9158 {
9159 int i;
9160 int numsigs;
9161 struct cmd_list_element *c;
9162
9163 /* Register extra event sources in the event loop. */
9164 infrun_async_inferior_event_token
9165 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9166
9167 add_info ("signals", info_signals_command, _("\
9168 What debugger does when program gets various signals.\n\
9169 Specify a signal as argument to print info on that signal only."));
9170 add_info_alias ("handle", "signals", 0);
9171
9172 c = add_com ("handle", class_run, handle_command, _("\
9173 Specify how to handle signals.\n\
9174 Usage: handle SIGNAL [ACTIONS]\n\
9175 Args are signals and actions to apply to those signals.\n\
9176 If no actions are specified, the current settings for the specified signals\n\
9177 will be displayed instead.\n\
9178 \n\
9179 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9180 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9181 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9182 The special arg \"all\" is recognized to mean all signals except those\n\
9183 used by the debugger, typically SIGTRAP and SIGINT.\n\
9184 \n\
9185 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9186 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9187 Stop means reenter debugger if this signal happens (implies print).\n\
9188 Print means print a message if this signal happens.\n\
9189 Pass means let program see this signal; otherwise program doesn't know.\n\
9190 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9191 Pass and Stop may be combined.\n\
9192 \n\
9193 Multiple signals may be specified. Signal numbers and signal names\n\
9194 may be interspersed with actions, with the actions being performed for\n\
9195 all signals cumulatively specified."));
9196 set_cmd_completer (c, handle_completer);
9197
9198 if (!dbx_commands)
9199 stop_command = add_cmd ("stop", class_obscure,
9200 not_just_help_class_command, _("\
9201 There is no `stop' command, but you can set a hook on `stop'.\n\
9202 This allows you to set a list of commands to be run each time execution\n\
9203 of the program stops."), &cmdlist);
9204
9205 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9206 Set inferior debugging."), _("\
9207 Show inferior debugging."), _("\
9208 When non-zero, inferior specific debugging is enabled."),
9209 NULL,
9210 show_debug_infrun,
9211 &setdebuglist, &showdebuglist);
9212
9213 add_setshow_boolean_cmd ("displaced", class_maintenance,
9214 &debug_displaced, _("\
9215 Set displaced stepping debugging."), _("\
9216 Show displaced stepping debugging."), _("\
9217 When non-zero, displaced stepping specific debugging is enabled."),
9218 NULL,
9219 show_debug_displaced,
9220 &setdebuglist, &showdebuglist);
9221
9222 add_setshow_boolean_cmd ("non-stop", no_class,
9223 &non_stop_1, _("\
9224 Set whether gdb controls the inferior in non-stop mode."), _("\
9225 Show whether gdb controls the inferior in non-stop mode."), _("\
9226 When debugging a multi-threaded program and this setting is\n\
9227 off (the default, also called all-stop mode), when one thread stops\n\
9228 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9229 all other threads in the program while you interact with the thread of\n\
9230 interest. When you continue or step a thread, you can allow the other\n\
9231 threads to run, or have them remain stopped, but while you inspect any\n\
9232 thread's state, all threads stop.\n\
9233 \n\
9234 In non-stop mode, when one thread stops, other threads can continue\n\
9235 to run freely. You'll be able to step each thread independently,\n\
9236 leave it stopped or free to run as needed."),
9237 set_non_stop,
9238 show_non_stop,
9239 &setlist,
9240 &showlist);
9241
9242 numsigs = (int) GDB_SIGNAL_LAST;
9243 signal_stop = XNEWVEC (unsigned char, numsigs);
9244 signal_print = XNEWVEC (unsigned char, numsigs);
9245 signal_program = XNEWVEC (unsigned char, numsigs);
9246 signal_catch = XNEWVEC (unsigned char, numsigs);
9247 signal_pass = XNEWVEC (unsigned char, numsigs);
9248 for (i = 0; i < numsigs; i++)
9249 {
9250 signal_stop[i] = 1;
9251 signal_print[i] = 1;
9252 signal_program[i] = 1;
9253 signal_catch[i] = 0;
9254 }
9255
9256 /* Signals caused by debugger's own actions should not be given to
9257 the program afterwards.
9258
9259 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9260 explicitly specifies that it should be delivered to the target
9261 program. Typically, that would occur when a user is debugging a
9262 target monitor on a simulator: the target monitor sets a
9263 breakpoint; the simulator encounters this breakpoint and halts
9264 the simulation handing control to GDB; GDB, noting that the stop
9265 address doesn't map to any known breakpoint, returns control back
9266 to the simulator; the simulator then delivers the hardware
9267 equivalent of a GDB_SIGNAL_TRAP to the program being
9268 debugged. */
9269 signal_program[GDB_SIGNAL_TRAP] = 0;
9270 signal_program[GDB_SIGNAL_INT] = 0;
9271
9272 /* Signals that are not errors should not normally enter the debugger. */
9273 signal_stop[GDB_SIGNAL_ALRM] = 0;
9274 signal_print[GDB_SIGNAL_ALRM] = 0;
9275 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9276 signal_print[GDB_SIGNAL_VTALRM] = 0;
9277 signal_stop[GDB_SIGNAL_PROF] = 0;
9278 signal_print[GDB_SIGNAL_PROF] = 0;
9279 signal_stop[GDB_SIGNAL_CHLD] = 0;
9280 signal_print[GDB_SIGNAL_CHLD] = 0;
9281 signal_stop[GDB_SIGNAL_IO] = 0;
9282 signal_print[GDB_SIGNAL_IO] = 0;
9283 signal_stop[GDB_SIGNAL_POLL] = 0;
9284 signal_print[GDB_SIGNAL_POLL] = 0;
9285 signal_stop[GDB_SIGNAL_URG] = 0;
9286 signal_print[GDB_SIGNAL_URG] = 0;
9287 signal_stop[GDB_SIGNAL_WINCH] = 0;
9288 signal_print[GDB_SIGNAL_WINCH] = 0;
9289 signal_stop[GDB_SIGNAL_PRIO] = 0;
9290 signal_print[GDB_SIGNAL_PRIO] = 0;
9291
9292 /* These signals are used internally by user-level thread
9293 implementations. (See signal(5) on Solaris.) Like the above
9294 signals, a healthy program receives and handles them as part of
9295 its normal operation. */
9296 signal_stop[GDB_SIGNAL_LWP] = 0;
9297 signal_print[GDB_SIGNAL_LWP] = 0;
9298 signal_stop[GDB_SIGNAL_WAITING] = 0;
9299 signal_print[GDB_SIGNAL_WAITING] = 0;
9300 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9301 signal_print[GDB_SIGNAL_CANCEL] = 0;
9302 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9303 signal_print[GDB_SIGNAL_LIBRT] = 0;
9304
9305 /* Update cached state. */
9306 signal_cache_update (-1);
9307
9308 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9309 &stop_on_solib_events, _("\
9310 Set stopping for shared library events."), _("\
9311 Show stopping for shared library events."), _("\
9312 If nonzero, gdb will give control to the user when the dynamic linker\n\
9313 notifies gdb of shared library events. The most common event of interest\n\
9314 to the user would be loading/unloading of a new library."),
9315 set_stop_on_solib_events,
9316 show_stop_on_solib_events,
9317 &setlist, &showlist);
9318
9319 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9320 follow_fork_mode_kind_names,
9321 &follow_fork_mode_string, _("\
9322 Set debugger response to a program call of fork or vfork."), _("\
9323 Show debugger response to a program call of fork or vfork."), _("\
9324 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9325 parent - the original process is debugged after a fork\n\
9326 child - the new process is debugged after a fork\n\
9327 The unfollowed process will continue to run.\n\
9328 By default, the debugger will follow the parent process."),
9329 NULL,
9330 show_follow_fork_mode_string,
9331 &setlist, &showlist);
9332
9333 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9334 follow_exec_mode_names,
9335 &follow_exec_mode_string, _("\
9336 Set debugger response to a program call of exec."), _("\
9337 Show debugger response to a program call of exec."), _("\
9338 An exec call replaces the program image of a process.\n\
9339 \n\
9340 follow-exec-mode can be:\n\
9341 \n\
9342 new - the debugger creates a new inferior and rebinds the process\n\
9343 to this new inferior. The program the process was running before\n\
9344 the exec call can be restarted afterwards by restarting the original\n\
9345 inferior.\n\
9346 \n\
9347 same - the debugger keeps the process bound to the same inferior.\n\
9348 The new executable image replaces the previous executable loaded in\n\
9349 the inferior. Restarting the inferior after the exec call restarts\n\
9350 the executable the process was running after the exec call.\n\
9351 \n\
9352 By default, the debugger will use the same inferior."),
9353 NULL,
9354 show_follow_exec_mode_string,
9355 &setlist, &showlist);
9356
9357 add_setshow_enum_cmd ("scheduler-locking", class_run,
9358 scheduler_enums, &scheduler_mode, _("\
9359 Set mode for locking scheduler during execution."), _("\
9360 Show mode for locking scheduler during execution."), _("\
9361 off == no locking (threads may preempt at any time)\n\
9362 on == full locking (no thread except the current thread may run)\n\
9363 This applies to both normal execution and replay mode.\n\
9364 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9365 In this mode, other threads may run during other commands.\n\
9366 This applies to both normal execution and replay mode.\n\
9367 replay == scheduler locked in replay mode and unlocked during normal execution."),
9368 set_schedlock_func, /* traps on target vector */
9369 show_scheduler_mode,
9370 &setlist, &showlist);
9371
9372 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9373 Set mode for resuming threads of all processes."), _("\
9374 Show mode for resuming threads of all processes."), _("\
9375 When on, execution commands (such as 'continue' or 'next') resume all\n\
9376 threads of all processes. When off (which is the default), execution\n\
9377 commands only resume the threads of the current process. The set of\n\
9378 threads that are resumed is further refined by the scheduler-locking\n\
9379 mode (see help set scheduler-locking)."),
9380 NULL,
9381 show_schedule_multiple,
9382 &setlist, &showlist);
9383
9384 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9385 Set mode of the step operation."), _("\
9386 Show mode of the step operation."), _("\
9387 When set, doing a step over a function without debug line information\n\
9388 will stop at the first instruction of that function. Otherwise, the\n\
9389 function is skipped and the step command stops at a different source line."),
9390 NULL,
9391 show_step_stop_if_no_debug,
9392 &setlist, &showlist);
9393
9394 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9395 &can_use_displaced_stepping, _("\
9396 Set debugger's willingness to use displaced stepping."), _("\
9397 Show debugger's willingness to use displaced stepping."), _("\
9398 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9399 supported by the target architecture. If off, gdb will not use displaced\n\
9400 stepping to step over breakpoints, even if such is supported by the target\n\
9401 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9402 if the target architecture supports it and non-stop mode is active, but will not\n\
9403 use it in all-stop mode (see help set non-stop)."),
9404 NULL,
9405 show_can_use_displaced_stepping,
9406 &setlist, &showlist);
9407
9408 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9409 &exec_direction, _("Set direction of execution.\n\
9410 Options are 'forward' or 'reverse'."),
9411 _("Show direction of execution (forward/reverse)."),
9412 _("Tells gdb whether to execute forward or backward."),
9413 set_exec_direction_func, show_exec_direction_func,
9414 &setlist, &showlist);
9415
9416 /* Set/show detach-on-fork: user-settable mode. */
9417
9418 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9419 Set whether gdb will detach the child of a fork."), _("\
9420 Show whether gdb will detach the child of a fork."), _("\
9421 Tells gdb whether to detach the child of a fork."),
9422 NULL, NULL, &setlist, &showlist);
9423
9424 /* Set/show disable address space randomization mode. */
9425
9426 add_setshow_boolean_cmd ("disable-randomization", class_support,
9427 &disable_randomization, _("\
9428 Set disabling of debuggee's virtual address space randomization."), _("\
9429 Show disabling of debuggee's virtual address space randomization."), _("\
9430 When this mode is on (which is the default), randomization of the virtual\n\
9431 address space is disabled. Standalone programs run with the randomization\n\
9432 enabled by default on some platforms."),
9433 &set_disable_randomization,
9434 &show_disable_randomization,
9435 &setlist, &showlist);
9436
9437 /* ptid initializations */
9438 inferior_ptid = null_ptid;
9439 target_last_wait_ptid = minus_one_ptid;
9440
9441 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9442 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9443 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9444 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9445
9446 /* Explicitly create without lookup, since that tries to create a
9447 value with a void typed value, and when we get here, gdbarch
9448 isn't initialized yet. At this point, we're quite sure there
9449 isn't another convenience variable of the same name. */
9450 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9451
9452 add_setshow_boolean_cmd ("observer", no_class,
9453 &observer_mode_1, _("\
9454 Set whether gdb controls the inferior in observer mode."), _("\
9455 Show whether gdb controls the inferior in observer mode."), _("\
9456 In observer mode, GDB can get data from the inferior, but not\n\
9457 affect its execution. Registers and memory may not be changed,\n\
9458 breakpoints may not be set, and the program cannot be interrupted\n\
9459 or signalled."),
9460 set_observer_mode,
9461 show_observer_mode,
9462 &setlist,
9463 &showlist);
9464 }
This page took 0.343273 seconds and 3 git commands to generate.