bfca0b59eb489f7026c6b6ec21fb69be8cd4d764
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008, 2009 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include "symtab.h"
27 #include "frame.h"
28 #include "inferior.h"
29 #include "exceptions.h"
30 #include "breakpoint.h"
31 #include "gdb_wait.h"
32 #include "gdbcore.h"
33 #include "gdbcmd.h"
34 #include "cli/cli-script.h"
35 #include "target.h"
36 #include "gdbthread.h"
37 #include "annotate.h"
38 #include "symfile.h"
39 #include "top.h"
40 #include <signal.h>
41 #include "inf-loop.h"
42 #include "regcache.h"
43 #include "value.h"
44 #include "observer.h"
45 #include "language.h"
46 #include "solib.h"
47 #include "main.h"
48 #include "gdb_assert.h"
49 #include "mi/mi-common.h"
50 #include "event-top.h"
51 #include "record.h"
52
53 /* Prototypes for local functions */
54
55 static void signals_info (char *, int);
56
57 static void handle_command (char *, int);
58
59 static void sig_print_info (enum target_signal);
60
61 static void sig_print_header (void);
62
63 static void resume_cleanups (void *);
64
65 static int hook_stop_stub (void *);
66
67 static int restore_selected_frame (void *);
68
69 static void build_infrun (void);
70
71 static int follow_fork (void);
72
73 static void set_schedlock_func (char *args, int from_tty,
74 struct cmd_list_element *c);
75
76 static int currently_stepping (struct thread_info *tp);
77
78 static int currently_stepping_callback (struct thread_info *tp, void *data);
79
80 static void xdb_handle_command (char *args, int from_tty);
81
82 static int prepare_to_proceed (int);
83
84 void _initialize_infrun (void);
85
86 void nullify_last_target_wait_ptid (void);
87
88 /* When set, stop the 'step' command if we enter a function which has
89 no line number information. The normal behavior is that we step
90 over such function. */
91 int step_stop_if_no_debug = 0;
92 static void
93 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
94 struct cmd_list_element *c, const char *value)
95 {
96 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
97 }
98
99 /* In asynchronous mode, but simulating synchronous execution. */
100
101 int sync_execution = 0;
102
103 /* wait_for_inferior and normal_stop use this to notify the user
104 when the inferior stopped in a different thread than it had been
105 running in. */
106
107 static ptid_t previous_inferior_ptid;
108
109 int debug_displaced = 0;
110 static void
111 show_debug_displaced (struct ui_file *file, int from_tty,
112 struct cmd_list_element *c, const char *value)
113 {
114 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
115 }
116
117 static int debug_infrun = 0;
118 static void
119 show_debug_infrun (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121 {
122 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
123 }
124
125 /* If the program uses ELF-style shared libraries, then calls to
126 functions in shared libraries go through stubs, which live in a
127 table called the PLT (Procedure Linkage Table). The first time the
128 function is called, the stub sends control to the dynamic linker,
129 which looks up the function's real address, patches the stub so
130 that future calls will go directly to the function, and then passes
131 control to the function.
132
133 If we are stepping at the source level, we don't want to see any of
134 this --- we just want to skip over the stub and the dynamic linker.
135 The simple approach is to single-step until control leaves the
136 dynamic linker.
137
138 However, on some systems (e.g., Red Hat's 5.2 distribution) the
139 dynamic linker calls functions in the shared C library, so you
140 can't tell from the PC alone whether the dynamic linker is still
141 running. In this case, we use a step-resume breakpoint to get us
142 past the dynamic linker, as if we were using "next" to step over a
143 function call.
144
145 in_solib_dynsym_resolve_code() says whether we're in the dynamic
146 linker code or not. Normally, this means we single-step. However,
147 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
148 address where we can place a step-resume breakpoint to get past the
149 linker's symbol resolution function.
150
151 in_solib_dynsym_resolve_code() can generally be implemented in a
152 pretty portable way, by comparing the PC against the address ranges
153 of the dynamic linker's sections.
154
155 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
156 it depends on internal details of the dynamic linker. It's usually
157 not too hard to figure out where to put a breakpoint, but it
158 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
159 sanity checking. If it can't figure things out, returning zero and
160 getting the (possibly confusing) stepping behavior is better than
161 signalling an error, which will obscure the change in the
162 inferior's state. */
163
164 /* This function returns TRUE if pc is the address of an instruction
165 that lies within the dynamic linker (such as the event hook, or the
166 dld itself).
167
168 This function must be used only when a dynamic linker event has
169 been caught, and the inferior is being stepped out of the hook, or
170 undefined results are guaranteed. */
171
172 #ifndef SOLIB_IN_DYNAMIC_LINKER
173 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
174 #endif
175
176
177 /* Convert the #defines into values. This is temporary until wfi control
178 flow is completely sorted out. */
179
180 #ifndef CANNOT_STEP_HW_WATCHPOINTS
181 #define CANNOT_STEP_HW_WATCHPOINTS 0
182 #else
183 #undef CANNOT_STEP_HW_WATCHPOINTS
184 #define CANNOT_STEP_HW_WATCHPOINTS 1
185 #endif
186
187 /* Tables of how to react to signals; the user sets them. */
188
189 static unsigned char *signal_stop;
190 static unsigned char *signal_print;
191 static unsigned char *signal_program;
192
193 #define SET_SIGS(nsigs,sigs,flags) \
194 do { \
195 int signum = (nsigs); \
196 while (signum-- > 0) \
197 if ((sigs)[signum]) \
198 (flags)[signum] = 1; \
199 } while (0)
200
201 #define UNSET_SIGS(nsigs,sigs,flags) \
202 do { \
203 int signum = (nsigs); \
204 while (signum-- > 0) \
205 if ((sigs)[signum]) \
206 (flags)[signum] = 0; \
207 } while (0)
208
209 /* Value to pass to target_resume() to cause all threads to resume */
210
211 #define RESUME_ALL (pid_to_ptid (-1))
212
213 /* Command list pointer for the "stop" placeholder. */
214
215 static struct cmd_list_element *stop_command;
216
217 /* Function inferior was in as of last step command. */
218
219 static struct symbol *step_start_function;
220
221 /* Nonzero if we want to give control to the user when we're notified
222 of shared library events by the dynamic linker. */
223 static int stop_on_solib_events;
224 static void
225 show_stop_on_solib_events (struct ui_file *file, int from_tty,
226 struct cmd_list_element *c, const char *value)
227 {
228 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
229 value);
230 }
231
232 /* Nonzero means expecting a trace trap
233 and should stop the inferior and return silently when it happens. */
234
235 int stop_after_trap;
236
237 /* Save register contents here when executing a "finish" command or are
238 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
239 Thus this contains the return value from the called function (assuming
240 values are returned in a register). */
241
242 struct regcache *stop_registers;
243
244 /* Nonzero after stop if current stack frame should be printed. */
245
246 static int stop_print_frame;
247
248 /* This is a cached copy of the pid/waitstatus of the last event
249 returned by target_wait()/deprecated_target_wait_hook(). This
250 information is returned by get_last_target_status(). */
251 static ptid_t target_last_wait_ptid;
252 static struct target_waitstatus target_last_waitstatus;
253
254 static void context_switch (ptid_t ptid);
255
256 void init_thread_stepping_state (struct thread_info *tss);
257
258 void init_infwait_state (void);
259
260 static const char follow_fork_mode_child[] = "child";
261 static const char follow_fork_mode_parent[] = "parent";
262
263 static const char *follow_fork_mode_kind_names[] = {
264 follow_fork_mode_child,
265 follow_fork_mode_parent,
266 NULL
267 };
268
269 static const char *follow_fork_mode_string = follow_fork_mode_parent;
270 static void
271 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
272 struct cmd_list_element *c, const char *value)
273 {
274 fprintf_filtered (file, _("\
275 Debugger response to a program call of fork or vfork is \"%s\".\n"),
276 value);
277 }
278 \f
279
280 /* Tell the target to follow the fork we're stopped at. Returns true
281 if the inferior should be resumed; false, if the target for some
282 reason decided it's best not to resume. */
283
284 static int
285 follow_fork (void)
286 {
287 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
288 int should_resume = 1;
289 struct thread_info *tp;
290
291 /* Copy user stepping state to the new inferior thread. FIXME: the
292 followed fork child thread should have a copy of most of the
293 parent thread structure's run control related fields, not just these.
294 Initialized to avoid "may be used uninitialized" warnings from gcc. */
295 struct breakpoint *step_resume_breakpoint = NULL;
296 CORE_ADDR step_range_start = 0;
297 CORE_ADDR step_range_end = 0;
298 struct frame_id step_frame_id = { 0 };
299
300 if (!non_stop)
301 {
302 ptid_t wait_ptid;
303 struct target_waitstatus wait_status;
304
305 /* Get the last target status returned by target_wait(). */
306 get_last_target_status (&wait_ptid, &wait_status);
307
308 /* If not stopped at a fork event, then there's nothing else to
309 do. */
310 if (wait_status.kind != TARGET_WAITKIND_FORKED
311 && wait_status.kind != TARGET_WAITKIND_VFORKED)
312 return 1;
313
314 /* Check if we switched over from WAIT_PTID, since the event was
315 reported. */
316 if (!ptid_equal (wait_ptid, minus_one_ptid)
317 && !ptid_equal (inferior_ptid, wait_ptid))
318 {
319 /* We did. Switch back to WAIT_PTID thread, to tell the
320 target to follow it (in either direction). We'll
321 afterwards refuse to resume, and inform the user what
322 happened. */
323 switch_to_thread (wait_ptid);
324 should_resume = 0;
325 }
326 }
327
328 tp = inferior_thread ();
329
330 /* If there were any forks/vforks that were caught and are now to be
331 followed, then do so now. */
332 switch (tp->pending_follow.kind)
333 {
334 case TARGET_WAITKIND_FORKED:
335 case TARGET_WAITKIND_VFORKED:
336 {
337 ptid_t parent, child;
338
339 /* If the user did a next/step, etc, over a fork call,
340 preserve the stepping state in the fork child. */
341 if (follow_child && should_resume)
342 {
343 step_resume_breakpoint
344 = clone_momentary_breakpoint (tp->step_resume_breakpoint);
345 step_range_start = tp->step_range_start;
346 step_range_end = tp->step_range_end;
347 step_frame_id = tp->step_frame_id;
348
349 /* For now, delete the parent's sr breakpoint, otherwise,
350 parent/child sr breakpoints are considered duplicates,
351 and the child version will not be installed. Remove
352 this when the breakpoints module becomes aware of
353 inferiors and address spaces. */
354 delete_step_resume_breakpoint (tp);
355 tp->step_range_start = 0;
356 tp->step_range_end = 0;
357 tp->step_frame_id = null_frame_id;
358 }
359
360 parent = inferior_ptid;
361 child = tp->pending_follow.value.related_pid;
362
363 /* Tell the target to do whatever is necessary to follow
364 either parent or child. */
365 if (target_follow_fork (follow_child))
366 {
367 /* Target refused to follow, or there's some other reason
368 we shouldn't resume. */
369 should_resume = 0;
370 }
371 else
372 {
373 /* This pending follow fork event is now handled, one way
374 or another. The previous selected thread may be gone
375 from the lists by now, but if it is still around, need
376 to clear the pending follow request. */
377 tp = find_thread_pid (parent);
378 if (tp)
379 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
380
381 /* This makes sure we don't try to apply the "Switched
382 over from WAIT_PID" logic above. */
383 nullify_last_target_wait_ptid ();
384
385 /* If we followed the child, switch to it... */
386 if (follow_child)
387 {
388 switch_to_thread (child);
389
390 /* ... and preserve the stepping state, in case the
391 user was stepping over the fork call. */
392 if (should_resume)
393 {
394 tp = inferior_thread ();
395 tp->step_resume_breakpoint = step_resume_breakpoint;
396 tp->step_range_start = step_range_start;
397 tp->step_range_end = step_range_end;
398 tp->step_frame_id = step_frame_id;
399 }
400 else
401 {
402 /* If we get here, it was because we're trying to
403 resume from a fork catchpoint, but, the user
404 has switched threads away from the thread that
405 forked. In that case, the resume command
406 issued is most likely not applicable to the
407 child, so just warn, and refuse to resume. */
408 warning (_("\
409 Not resuming: switched threads before following fork child.\n"));
410 }
411
412 /* Reset breakpoints in the child as appropriate. */
413 follow_inferior_reset_breakpoints ();
414 }
415 else
416 switch_to_thread (parent);
417 }
418 }
419 break;
420 case TARGET_WAITKIND_SPURIOUS:
421 /* Nothing to follow. */
422 break;
423 default:
424 internal_error (__FILE__, __LINE__,
425 "Unexpected pending_follow.kind %d\n",
426 tp->pending_follow.kind);
427 break;
428 }
429
430 return should_resume;
431 }
432
433 void
434 follow_inferior_reset_breakpoints (void)
435 {
436 struct thread_info *tp = inferior_thread ();
437
438 /* Was there a step_resume breakpoint? (There was if the user
439 did a "next" at the fork() call.) If so, explicitly reset its
440 thread number.
441
442 step_resumes are a form of bp that are made to be per-thread.
443 Since we created the step_resume bp when the parent process
444 was being debugged, and now are switching to the child process,
445 from the breakpoint package's viewpoint, that's a switch of
446 "threads". We must update the bp's notion of which thread
447 it is for, or it'll be ignored when it triggers. */
448
449 if (tp->step_resume_breakpoint)
450 breakpoint_re_set_thread (tp->step_resume_breakpoint);
451
452 /* Reinsert all breakpoints in the child. The user may have set
453 breakpoints after catching the fork, in which case those
454 were never set in the child, but only in the parent. This makes
455 sure the inserted breakpoints match the breakpoint list. */
456
457 breakpoint_re_set ();
458 insert_breakpoints ();
459 }
460
461 /* EXECD_PATHNAME is assumed to be non-NULL. */
462
463 static void
464 follow_exec (ptid_t pid, char *execd_pathname)
465 {
466 struct target_ops *tgt;
467 struct thread_info *th = inferior_thread ();
468
469 /* This is an exec event that we actually wish to pay attention to.
470 Refresh our symbol table to the newly exec'd program, remove any
471 momentary bp's, etc.
472
473 If there are breakpoints, they aren't really inserted now,
474 since the exec() transformed our inferior into a fresh set
475 of instructions.
476
477 We want to preserve symbolic breakpoints on the list, since
478 we have hopes that they can be reset after the new a.out's
479 symbol table is read.
480
481 However, any "raw" breakpoints must be removed from the list
482 (e.g., the solib bp's), since their address is probably invalid
483 now.
484
485 And, we DON'T want to call delete_breakpoints() here, since
486 that may write the bp's "shadow contents" (the instruction
487 value that was overwritten witha TRAP instruction). Since
488 we now have a new a.out, those shadow contents aren't valid. */
489 update_breakpoints_after_exec ();
490
491 /* If there was one, it's gone now. We cannot truly step-to-next
492 statement through an exec(). */
493 th->step_resume_breakpoint = NULL;
494 th->step_range_start = 0;
495 th->step_range_end = 0;
496
497 /* What is this a.out's name? */
498 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
499
500 /* We've followed the inferior through an exec. Therefore, the
501 inferior has essentially been killed & reborn. */
502
503 gdb_flush (gdb_stdout);
504
505 breakpoint_init_inferior (inf_execd);
506
507 if (gdb_sysroot && *gdb_sysroot)
508 {
509 char *name = alloca (strlen (gdb_sysroot)
510 + strlen (execd_pathname)
511 + 1);
512 strcpy (name, gdb_sysroot);
513 strcat (name, execd_pathname);
514 execd_pathname = name;
515 }
516
517 /* That a.out is now the one to use. */
518 exec_file_attach (execd_pathname, 0);
519
520 /* Reset the shared library package. This ensures that we get a
521 shlib event when the child reaches "_start", at which point the
522 dld will have had a chance to initialize the child. */
523 /* Also, loading a symbol file below may trigger symbol lookups, and
524 we don't want those to be satisfied by the libraries of the
525 previous incarnation of this process. */
526 no_shared_libraries (NULL, 0);
527
528 /* Load the main file's symbols. */
529 symbol_file_add_main (execd_pathname, 0);
530
531 #ifdef SOLIB_CREATE_INFERIOR_HOOK
532 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
533 #else
534 solib_create_inferior_hook ();
535 #endif
536
537 /* Reinsert all breakpoints. (Those which were symbolic have
538 been reset to the proper address in the new a.out, thanks
539 to symbol_file_command...) */
540 insert_breakpoints ();
541
542 /* The next resume of this inferior should bring it to the shlib
543 startup breakpoints. (If the user had also set bp's on
544 "main" from the old (parent) process, then they'll auto-
545 matically get reset there in the new process.) */
546 }
547
548 /* Non-zero if we just simulating a single-step. This is needed
549 because we cannot remove the breakpoints in the inferior process
550 until after the `wait' in `wait_for_inferior'. */
551 static int singlestep_breakpoints_inserted_p = 0;
552
553 /* The thread we inserted single-step breakpoints for. */
554 static ptid_t singlestep_ptid;
555
556 /* PC when we started this single-step. */
557 static CORE_ADDR singlestep_pc;
558
559 /* If another thread hit the singlestep breakpoint, we save the original
560 thread here so that we can resume single-stepping it later. */
561 static ptid_t saved_singlestep_ptid;
562 static int stepping_past_singlestep_breakpoint;
563
564 /* If not equal to null_ptid, this means that after stepping over breakpoint
565 is finished, we need to switch to deferred_step_ptid, and step it.
566
567 The use case is when one thread has hit a breakpoint, and then the user
568 has switched to another thread and issued 'step'. We need to step over
569 breakpoint in the thread which hit the breakpoint, but then continue
570 stepping the thread user has selected. */
571 static ptid_t deferred_step_ptid;
572 \f
573 /* Displaced stepping. */
574
575 /* In non-stop debugging mode, we must take special care to manage
576 breakpoints properly; in particular, the traditional strategy for
577 stepping a thread past a breakpoint it has hit is unsuitable.
578 'Displaced stepping' is a tactic for stepping one thread past a
579 breakpoint it has hit while ensuring that other threads running
580 concurrently will hit the breakpoint as they should.
581
582 The traditional way to step a thread T off a breakpoint in a
583 multi-threaded program in all-stop mode is as follows:
584
585 a0) Initially, all threads are stopped, and breakpoints are not
586 inserted.
587 a1) We single-step T, leaving breakpoints uninserted.
588 a2) We insert breakpoints, and resume all threads.
589
590 In non-stop debugging, however, this strategy is unsuitable: we
591 don't want to have to stop all threads in the system in order to
592 continue or step T past a breakpoint. Instead, we use displaced
593 stepping:
594
595 n0) Initially, T is stopped, other threads are running, and
596 breakpoints are inserted.
597 n1) We copy the instruction "under" the breakpoint to a separate
598 location, outside the main code stream, making any adjustments
599 to the instruction, register, and memory state as directed by
600 T's architecture.
601 n2) We single-step T over the instruction at its new location.
602 n3) We adjust the resulting register and memory state as directed
603 by T's architecture. This includes resetting T's PC to point
604 back into the main instruction stream.
605 n4) We resume T.
606
607 This approach depends on the following gdbarch methods:
608
609 - gdbarch_max_insn_length and gdbarch_displaced_step_location
610 indicate where to copy the instruction, and how much space must
611 be reserved there. We use these in step n1.
612
613 - gdbarch_displaced_step_copy_insn copies a instruction to a new
614 address, and makes any necessary adjustments to the instruction,
615 register contents, and memory. We use this in step n1.
616
617 - gdbarch_displaced_step_fixup adjusts registers and memory after
618 we have successfuly single-stepped the instruction, to yield the
619 same effect the instruction would have had if we had executed it
620 at its original address. We use this in step n3.
621
622 - gdbarch_displaced_step_free_closure provides cleanup.
623
624 The gdbarch_displaced_step_copy_insn and
625 gdbarch_displaced_step_fixup functions must be written so that
626 copying an instruction with gdbarch_displaced_step_copy_insn,
627 single-stepping across the copied instruction, and then applying
628 gdbarch_displaced_insn_fixup should have the same effects on the
629 thread's memory and registers as stepping the instruction in place
630 would have. Exactly which responsibilities fall to the copy and
631 which fall to the fixup is up to the author of those functions.
632
633 See the comments in gdbarch.sh for details.
634
635 Note that displaced stepping and software single-step cannot
636 currently be used in combination, although with some care I think
637 they could be made to. Software single-step works by placing
638 breakpoints on all possible subsequent instructions; if the
639 displaced instruction is a PC-relative jump, those breakpoints
640 could fall in very strange places --- on pages that aren't
641 executable, or at addresses that are not proper instruction
642 boundaries. (We do generally let other threads run while we wait
643 to hit the software single-step breakpoint, and they might
644 encounter such a corrupted instruction.) One way to work around
645 this would be to have gdbarch_displaced_step_copy_insn fully
646 simulate the effect of PC-relative instructions (and return NULL)
647 on architectures that use software single-stepping.
648
649 In non-stop mode, we can have independent and simultaneous step
650 requests, so more than one thread may need to simultaneously step
651 over a breakpoint. The current implementation assumes there is
652 only one scratch space per process. In this case, we have to
653 serialize access to the scratch space. If thread A wants to step
654 over a breakpoint, but we are currently waiting for some other
655 thread to complete a displaced step, we leave thread A stopped and
656 place it in the displaced_step_request_queue. Whenever a displaced
657 step finishes, we pick the next thread in the queue and start a new
658 displaced step operation on it. See displaced_step_prepare and
659 displaced_step_fixup for details. */
660
661 /* If this is not null_ptid, this is the thread carrying out a
662 displaced single-step. This thread's state will require fixing up
663 once it has completed its step. */
664 static ptid_t displaced_step_ptid;
665
666 struct displaced_step_request
667 {
668 ptid_t ptid;
669 struct displaced_step_request *next;
670 };
671
672 /* A queue of pending displaced stepping requests. */
673 struct displaced_step_request *displaced_step_request_queue;
674
675 /* The architecture the thread had when we stepped it. */
676 static struct gdbarch *displaced_step_gdbarch;
677
678 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
679 for post-step cleanup. */
680 static struct displaced_step_closure *displaced_step_closure;
681
682 /* The address of the original instruction, and the copy we made. */
683 static CORE_ADDR displaced_step_original, displaced_step_copy;
684
685 /* Saved contents of copy area. */
686 static gdb_byte *displaced_step_saved_copy;
687
688 /* Enum strings for "set|show displaced-stepping". */
689
690 static const char can_use_displaced_stepping_auto[] = "auto";
691 static const char can_use_displaced_stepping_on[] = "on";
692 static const char can_use_displaced_stepping_off[] = "off";
693 static const char *can_use_displaced_stepping_enum[] =
694 {
695 can_use_displaced_stepping_auto,
696 can_use_displaced_stepping_on,
697 can_use_displaced_stepping_off,
698 NULL,
699 };
700
701 /* If ON, and the architecture supports it, GDB will use displaced
702 stepping to step over breakpoints. If OFF, or if the architecture
703 doesn't support it, GDB will instead use the traditional
704 hold-and-step approach. If AUTO (which is the default), GDB will
705 decide which technique to use to step over breakpoints depending on
706 which of all-stop or non-stop mode is active --- displaced stepping
707 in non-stop mode; hold-and-step in all-stop mode. */
708
709 static const char *can_use_displaced_stepping =
710 can_use_displaced_stepping_auto;
711
712 static void
713 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
714 struct cmd_list_element *c,
715 const char *value)
716 {
717 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
718 fprintf_filtered (file, _("\
719 Debugger's willingness to use displaced stepping to step over \
720 breakpoints is %s (currently %s).\n"),
721 value, non_stop ? "on" : "off");
722 else
723 fprintf_filtered (file, _("\
724 Debugger's willingness to use displaced stepping to step over \
725 breakpoints is %s.\n"), value);
726 }
727
728 /* Return non-zero if displaced stepping can/should be used to step
729 over breakpoints. */
730
731 static int
732 use_displaced_stepping (struct gdbarch *gdbarch)
733 {
734 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
735 && non_stop)
736 || can_use_displaced_stepping == can_use_displaced_stepping_on)
737 && gdbarch_displaced_step_copy_insn_p (gdbarch)
738 && !RECORD_IS_USED);
739 }
740
741 /* Clean out any stray displaced stepping state. */
742 static void
743 displaced_step_clear (void)
744 {
745 /* Indicate that there is no cleanup pending. */
746 displaced_step_ptid = null_ptid;
747
748 if (displaced_step_closure)
749 {
750 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
751 displaced_step_closure);
752 displaced_step_closure = NULL;
753 }
754 }
755
756 static void
757 cleanup_displaced_step_closure (void *ptr)
758 {
759 struct displaced_step_closure *closure = ptr;
760
761 gdbarch_displaced_step_free_closure (current_gdbarch, closure);
762 }
763
764 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
765 void
766 displaced_step_dump_bytes (struct ui_file *file,
767 const gdb_byte *buf,
768 size_t len)
769 {
770 int i;
771
772 for (i = 0; i < len; i++)
773 fprintf_unfiltered (file, "%02x ", buf[i]);
774 fputs_unfiltered ("\n", file);
775 }
776
777 /* Prepare to single-step, using displaced stepping.
778
779 Note that we cannot use displaced stepping when we have a signal to
780 deliver. If we have a signal to deliver and an instruction to step
781 over, then after the step, there will be no indication from the
782 target whether the thread entered a signal handler or ignored the
783 signal and stepped over the instruction successfully --- both cases
784 result in a simple SIGTRAP. In the first case we mustn't do a
785 fixup, and in the second case we must --- but we can't tell which.
786 Comments in the code for 'random signals' in handle_inferior_event
787 explain how we handle this case instead.
788
789 Returns 1 if preparing was successful -- this thread is going to be
790 stepped now; or 0 if displaced stepping this thread got queued. */
791 static int
792 displaced_step_prepare (ptid_t ptid)
793 {
794 struct cleanup *old_cleanups, *ignore_cleanups;
795 struct regcache *regcache = get_thread_regcache (ptid);
796 struct gdbarch *gdbarch = get_regcache_arch (regcache);
797 CORE_ADDR original, copy;
798 ULONGEST len;
799 struct displaced_step_closure *closure;
800
801 /* We should never reach this function if the architecture does not
802 support displaced stepping. */
803 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
804
805 /* For the first cut, we're displaced stepping one thread at a
806 time. */
807
808 if (!ptid_equal (displaced_step_ptid, null_ptid))
809 {
810 /* Already waiting for a displaced step to finish. Defer this
811 request and place in queue. */
812 struct displaced_step_request *req, *new_req;
813
814 if (debug_displaced)
815 fprintf_unfiltered (gdb_stdlog,
816 "displaced: defering step of %s\n",
817 target_pid_to_str (ptid));
818
819 new_req = xmalloc (sizeof (*new_req));
820 new_req->ptid = ptid;
821 new_req->next = NULL;
822
823 if (displaced_step_request_queue)
824 {
825 for (req = displaced_step_request_queue;
826 req && req->next;
827 req = req->next)
828 ;
829 req->next = new_req;
830 }
831 else
832 displaced_step_request_queue = new_req;
833
834 return 0;
835 }
836 else
837 {
838 if (debug_displaced)
839 fprintf_unfiltered (gdb_stdlog,
840 "displaced: stepping %s now\n",
841 target_pid_to_str (ptid));
842 }
843
844 displaced_step_clear ();
845
846 old_cleanups = save_inferior_ptid ();
847 inferior_ptid = ptid;
848
849 original = regcache_read_pc (regcache);
850
851 copy = gdbarch_displaced_step_location (gdbarch);
852 len = gdbarch_max_insn_length (gdbarch);
853
854 /* Save the original contents of the copy area. */
855 displaced_step_saved_copy = xmalloc (len);
856 ignore_cleanups = make_cleanup (free_current_contents,
857 &displaced_step_saved_copy);
858 read_memory (copy, displaced_step_saved_copy, len);
859 if (debug_displaced)
860 {
861 fprintf_unfiltered (gdb_stdlog, "displaced: saved 0x%s: ",
862 paddr_nz (copy));
863 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
864 };
865
866 closure = gdbarch_displaced_step_copy_insn (gdbarch,
867 original, copy, regcache);
868
869 /* We don't support the fully-simulated case at present. */
870 gdb_assert (closure);
871
872 make_cleanup (cleanup_displaced_step_closure, closure);
873
874 /* Resume execution at the copy. */
875 regcache_write_pc (regcache, copy);
876
877 discard_cleanups (ignore_cleanups);
878
879 do_cleanups (old_cleanups);
880
881 if (debug_displaced)
882 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to 0x%s\n",
883 paddr_nz (copy));
884
885 /* Save the information we need to fix things up if the step
886 succeeds. */
887 displaced_step_ptid = ptid;
888 displaced_step_gdbarch = gdbarch;
889 displaced_step_closure = closure;
890 displaced_step_original = original;
891 displaced_step_copy = copy;
892 return 1;
893 }
894
895 static void
896 displaced_step_clear_cleanup (void *ignore)
897 {
898 displaced_step_clear ();
899 }
900
901 static void
902 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
903 {
904 struct cleanup *ptid_cleanup = save_inferior_ptid ();
905 inferior_ptid = ptid;
906 write_memory (memaddr, myaddr, len);
907 do_cleanups (ptid_cleanup);
908 }
909
910 static void
911 displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
912 {
913 struct cleanup *old_cleanups;
914
915 /* Was this event for the pid we displaced? */
916 if (ptid_equal (displaced_step_ptid, null_ptid)
917 || ! ptid_equal (displaced_step_ptid, event_ptid))
918 return;
919
920 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
921
922 /* Restore the contents of the copy area. */
923 {
924 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
925 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
926 displaced_step_saved_copy, len);
927 if (debug_displaced)
928 fprintf_unfiltered (gdb_stdlog, "displaced: restored 0x%s\n",
929 paddr_nz (displaced_step_copy));
930 }
931
932 /* Did the instruction complete successfully? */
933 if (signal == TARGET_SIGNAL_TRAP)
934 {
935 /* Fix up the resulting state. */
936 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
937 displaced_step_closure,
938 displaced_step_original,
939 displaced_step_copy,
940 get_thread_regcache (displaced_step_ptid));
941 }
942 else
943 {
944 /* Since the instruction didn't complete, all we can do is
945 relocate the PC. */
946 struct regcache *regcache = get_thread_regcache (event_ptid);
947 CORE_ADDR pc = regcache_read_pc (regcache);
948 pc = displaced_step_original + (pc - displaced_step_copy);
949 regcache_write_pc (regcache, pc);
950 }
951
952 do_cleanups (old_cleanups);
953
954 displaced_step_ptid = null_ptid;
955
956 /* Are there any pending displaced stepping requests? If so, run
957 one now. */
958 while (displaced_step_request_queue)
959 {
960 struct displaced_step_request *head;
961 ptid_t ptid;
962 CORE_ADDR actual_pc;
963
964 head = displaced_step_request_queue;
965 ptid = head->ptid;
966 displaced_step_request_queue = head->next;
967 xfree (head);
968
969 context_switch (ptid);
970
971 actual_pc = regcache_read_pc (get_thread_regcache (ptid));
972
973 if (breakpoint_here_p (actual_pc))
974 {
975 if (debug_displaced)
976 fprintf_unfiltered (gdb_stdlog,
977 "displaced: stepping queued %s now\n",
978 target_pid_to_str (ptid));
979
980 displaced_step_prepare (ptid);
981
982 if (debug_displaced)
983 {
984 gdb_byte buf[4];
985
986 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
987 paddr_nz (actual_pc));
988 read_memory (actual_pc, buf, sizeof (buf));
989 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
990 }
991
992 target_resume (ptid, 1, TARGET_SIGNAL_0);
993
994 /* Done, we're stepping a thread. */
995 break;
996 }
997 else
998 {
999 int step;
1000 struct thread_info *tp = inferior_thread ();
1001
1002 /* The breakpoint we were sitting under has since been
1003 removed. */
1004 tp->trap_expected = 0;
1005
1006 /* Go back to what we were trying to do. */
1007 step = currently_stepping (tp);
1008
1009 if (debug_displaced)
1010 fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n",
1011 target_pid_to_str (tp->ptid), step);
1012
1013 target_resume (ptid, step, TARGET_SIGNAL_0);
1014 tp->stop_signal = TARGET_SIGNAL_0;
1015
1016 /* This request was discarded. See if there's any other
1017 thread waiting for its turn. */
1018 }
1019 }
1020 }
1021
1022 /* Update global variables holding ptids to hold NEW_PTID if they were
1023 holding OLD_PTID. */
1024 static void
1025 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1026 {
1027 struct displaced_step_request *it;
1028
1029 if (ptid_equal (inferior_ptid, old_ptid))
1030 inferior_ptid = new_ptid;
1031
1032 if (ptid_equal (singlestep_ptid, old_ptid))
1033 singlestep_ptid = new_ptid;
1034
1035 if (ptid_equal (displaced_step_ptid, old_ptid))
1036 displaced_step_ptid = new_ptid;
1037
1038 if (ptid_equal (deferred_step_ptid, old_ptid))
1039 deferred_step_ptid = new_ptid;
1040
1041 for (it = displaced_step_request_queue; it; it = it->next)
1042 if (ptid_equal (it->ptid, old_ptid))
1043 it->ptid = new_ptid;
1044 }
1045
1046 \f
1047 /* Resuming. */
1048
1049 /* Things to clean up if we QUIT out of resume (). */
1050 static void
1051 resume_cleanups (void *ignore)
1052 {
1053 normal_stop ();
1054 }
1055
1056 static const char schedlock_off[] = "off";
1057 static const char schedlock_on[] = "on";
1058 static const char schedlock_step[] = "step";
1059 static const char *scheduler_enums[] = {
1060 schedlock_off,
1061 schedlock_on,
1062 schedlock_step,
1063 NULL
1064 };
1065 static const char *scheduler_mode = schedlock_off;
1066 static void
1067 show_scheduler_mode (struct ui_file *file, int from_tty,
1068 struct cmd_list_element *c, const char *value)
1069 {
1070 fprintf_filtered (file, _("\
1071 Mode for locking scheduler during execution is \"%s\".\n"),
1072 value);
1073 }
1074
1075 static void
1076 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1077 {
1078 if (!target_can_lock_scheduler)
1079 {
1080 scheduler_mode = schedlock_off;
1081 error (_("Target '%s' cannot support this command."), target_shortname);
1082 }
1083 }
1084
1085 /* Try to setup for software single stepping over the specified location.
1086 Return 1 if target_resume() should use hardware single step.
1087
1088 GDBARCH the current gdbarch.
1089 PC the location to step over. */
1090
1091 static int
1092 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1093 {
1094 int hw_step = 1;
1095
1096 if (gdbarch_software_single_step_p (gdbarch)
1097 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1098 {
1099 hw_step = 0;
1100 /* Do not pull these breakpoints until after a `wait' in
1101 `wait_for_inferior' */
1102 singlestep_breakpoints_inserted_p = 1;
1103 singlestep_ptid = inferior_ptid;
1104 singlestep_pc = pc;
1105 }
1106 return hw_step;
1107 }
1108
1109 /* Resume the inferior, but allow a QUIT. This is useful if the user
1110 wants to interrupt some lengthy single-stepping operation
1111 (for child processes, the SIGINT goes to the inferior, and so
1112 we get a SIGINT random_signal, but for remote debugging and perhaps
1113 other targets, that's not true).
1114
1115 STEP nonzero if we should step (zero to continue instead).
1116 SIG is the signal to give the inferior (zero for none). */
1117 void
1118 resume (int step, enum target_signal sig)
1119 {
1120 int should_resume = 1;
1121 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1122 struct regcache *regcache = get_current_regcache ();
1123 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1124 struct thread_info *tp = inferior_thread ();
1125 CORE_ADDR pc = regcache_read_pc (regcache);
1126
1127 QUIT;
1128
1129 if (debug_infrun)
1130 fprintf_unfiltered (gdb_stdlog,
1131 "infrun: resume (step=%d, signal=%d), "
1132 "trap_expected=%d\n",
1133 step, sig, tp->trap_expected);
1134
1135 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
1136 over an instruction that causes a page fault without triggering
1137 a hardware watchpoint. The kernel properly notices that it shouldn't
1138 stop, because the hardware watchpoint is not triggered, but it forgets
1139 the step request and continues the program normally.
1140 Work around the problem by removing hardware watchpoints if a step is
1141 requested, GDB will check for a hardware watchpoint trigger after the
1142 step anyway. */
1143 if (CANNOT_STEP_HW_WATCHPOINTS && step)
1144 remove_hw_watchpoints ();
1145
1146
1147 /* Normally, by the time we reach `resume', the breakpoints are either
1148 removed or inserted, as appropriate. The exception is if we're sitting
1149 at a permanent breakpoint; we need to step over it, but permanent
1150 breakpoints can't be removed. So we have to test for it here. */
1151 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
1152 {
1153 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1154 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1155 else
1156 error (_("\
1157 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1158 how to step past a permanent breakpoint on this architecture. Try using\n\
1159 a command like `return' or `jump' to continue execution."));
1160 }
1161
1162 /* If enabled, step over breakpoints by executing a copy of the
1163 instruction at a different address.
1164
1165 We can't use displaced stepping when we have a signal to deliver;
1166 the comments for displaced_step_prepare explain why. The
1167 comments in the handle_inferior event for dealing with 'random
1168 signals' explain what we do instead. */
1169 if (use_displaced_stepping (gdbarch)
1170 && tp->trap_expected
1171 && sig == TARGET_SIGNAL_0)
1172 {
1173 if (!displaced_step_prepare (inferior_ptid))
1174 {
1175 /* Got placed in displaced stepping queue. Will be resumed
1176 later when all the currently queued displaced stepping
1177 requests finish. The thread is not executing at this point,
1178 and the call to set_executing will be made later. But we
1179 need to call set_running here, since from frontend point of view,
1180 the thread is running. */
1181 set_running (inferior_ptid, 1);
1182 discard_cleanups (old_cleanups);
1183 return;
1184 }
1185 }
1186
1187 /* Do we need to do it the hard way, w/temp breakpoints? */
1188 if (step)
1189 step = maybe_software_singlestep (gdbarch, pc);
1190
1191 if (should_resume)
1192 {
1193 ptid_t resume_ptid;
1194
1195 resume_ptid = RESUME_ALL; /* Default */
1196
1197 /* If STEP is set, it's a request to use hardware stepping
1198 facilities. But in that case, we should never
1199 use singlestep breakpoint. */
1200 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1201
1202 if (singlestep_breakpoints_inserted_p
1203 && stepping_past_singlestep_breakpoint)
1204 {
1205 /* The situation here is as follows. In thread T1 we wanted to
1206 single-step. Lacking hardware single-stepping we've
1207 set breakpoint at the PC of the next instruction -- call it
1208 P. After resuming, we've hit that breakpoint in thread T2.
1209 Now we've removed original breakpoint, inserted breakpoint
1210 at P+1, and try to step to advance T2 past breakpoint.
1211 We need to step only T2, as if T1 is allowed to freely run,
1212 it can run past P, and if other threads are allowed to run,
1213 they can hit breakpoint at P+1, and nested hits of single-step
1214 breakpoints is not something we'd want -- that's complicated
1215 to support, and has no value. */
1216 resume_ptid = inferior_ptid;
1217 }
1218
1219 if ((step || singlestep_breakpoints_inserted_p)
1220 && tp->trap_expected)
1221 {
1222 /* We're allowing a thread to run past a breakpoint it has
1223 hit, by single-stepping the thread with the breakpoint
1224 removed. In which case, we need to single-step only this
1225 thread, and keep others stopped, as they can miss this
1226 breakpoint if allowed to run.
1227
1228 The current code actually removes all breakpoints when
1229 doing this, not just the one being stepped over, so if we
1230 let other threads run, we can actually miss any
1231 breakpoint, not just the one at PC. */
1232 resume_ptid = inferior_ptid;
1233 }
1234
1235 if (non_stop)
1236 {
1237 /* With non-stop mode on, threads are always handled
1238 individually. */
1239 resume_ptid = inferior_ptid;
1240 }
1241 else if ((scheduler_mode == schedlock_on)
1242 || (scheduler_mode == schedlock_step
1243 && (step || singlestep_breakpoints_inserted_p)))
1244 {
1245 /* User-settable 'scheduler' mode requires solo thread resume. */
1246 resume_ptid = inferior_ptid;
1247 }
1248
1249 if (gdbarch_cannot_step_breakpoint (gdbarch))
1250 {
1251 /* Most targets can step a breakpoint instruction, thus
1252 executing it normally. But if this one cannot, just
1253 continue and we will hit it anyway. */
1254 if (step && breakpoint_inserted_here_p (pc))
1255 step = 0;
1256 }
1257
1258 if (debug_displaced
1259 && use_displaced_stepping (gdbarch)
1260 && tp->trap_expected)
1261 {
1262 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1263 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1264 gdb_byte buf[4];
1265
1266 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
1267 paddr_nz (actual_pc));
1268 read_memory (actual_pc, buf, sizeof (buf));
1269 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1270 }
1271
1272 /* Install inferior's terminal modes. */
1273 target_terminal_inferior ();
1274
1275 /* Avoid confusing the next resume, if the next stop/resume
1276 happens to apply to another thread. */
1277 tp->stop_signal = TARGET_SIGNAL_0;
1278
1279 target_resume (resume_ptid, step, sig);
1280 }
1281
1282 discard_cleanups (old_cleanups);
1283 }
1284 \f
1285 /* Proceeding. */
1286
1287 /* Clear out all variables saying what to do when inferior is continued.
1288 First do this, then set the ones you want, then call `proceed'. */
1289
1290 static void
1291 clear_proceed_status_thread (struct thread_info *tp)
1292 {
1293 if (debug_infrun)
1294 fprintf_unfiltered (gdb_stdlog,
1295 "infrun: clear_proceed_status_thread (%s)\n",
1296 target_pid_to_str (tp->ptid));
1297
1298 tp->trap_expected = 0;
1299 tp->step_range_start = 0;
1300 tp->step_range_end = 0;
1301 tp->step_frame_id = null_frame_id;
1302 tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
1303 tp->stop_requested = 0;
1304
1305 tp->stop_step = 0;
1306
1307 tp->proceed_to_finish = 0;
1308
1309 /* Discard any remaining commands or status from previous stop. */
1310 bpstat_clear (&tp->stop_bpstat);
1311 }
1312
1313 static int
1314 clear_proceed_status_callback (struct thread_info *tp, void *data)
1315 {
1316 if (is_exited (tp->ptid))
1317 return 0;
1318
1319 clear_proceed_status_thread (tp);
1320 return 0;
1321 }
1322
1323 void
1324 clear_proceed_status (void)
1325 {
1326 if (!ptid_equal (inferior_ptid, null_ptid))
1327 {
1328 struct inferior *inferior;
1329
1330 if (non_stop)
1331 {
1332 /* If in non-stop mode, only delete the per-thread status
1333 of the current thread. */
1334 clear_proceed_status_thread (inferior_thread ());
1335 }
1336 else
1337 {
1338 /* In all-stop mode, delete the per-thread status of
1339 *all* threads. */
1340 iterate_over_threads (clear_proceed_status_callback, NULL);
1341 }
1342
1343 inferior = current_inferior ();
1344 inferior->stop_soon = NO_STOP_QUIETLY;
1345 }
1346
1347 stop_after_trap = 0;
1348
1349 observer_notify_about_to_proceed ();
1350
1351 if (stop_registers)
1352 {
1353 regcache_xfree (stop_registers);
1354 stop_registers = NULL;
1355 }
1356 }
1357
1358 /* This should be suitable for any targets that support threads. */
1359
1360 static int
1361 prepare_to_proceed (int step)
1362 {
1363 ptid_t wait_ptid;
1364 struct target_waitstatus wait_status;
1365
1366 /* Get the last target status returned by target_wait(). */
1367 get_last_target_status (&wait_ptid, &wait_status);
1368
1369 /* Make sure we were stopped at a breakpoint. */
1370 if (wait_status.kind != TARGET_WAITKIND_STOPPED
1371 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
1372 {
1373 return 0;
1374 }
1375
1376 /* Switched over from WAIT_PID. */
1377 if (!ptid_equal (wait_ptid, minus_one_ptid)
1378 && !ptid_equal (inferior_ptid, wait_ptid))
1379 {
1380 struct regcache *regcache = get_thread_regcache (wait_ptid);
1381
1382 if (breakpoint_here_p (regcache_read_pc (regcache)))
1383 {
1384 /* If stepping, remember current thread to switch back to. */
1385 if (step)
1386 deferred_step_ptid = inferior_ptid;
1387
1388 /* Switch back to WAIT_PID thread. */
1389 switch_to_thread (wait_ptid);
1390
1391 /* We return 1 to indicate that there is a breakpoint here,
1392 so we need to step over it before continuing to avoid
1393 hitting it straight away. */
1394 return 1;
1395 }
1396 }
1397
1398 return 0;
1399 }
1400
1401 /* Basic routine for continuing the program in various fashions.
1402
1403 ADDR is the address to resume at, or -1 for resume where stopped.
1404 SIGGNAL is the signal to give it, or 0 for none,
1405 or -1 for act according to how it stopped.
1406 STEP is nonzero if should trap after one instruction.
1407 -1 means return after that and print nothing.
1408 You should probably set various step_... variables
1409 before calling here, if you are stepping.
1410
1411 You should call clear_proceed_status before calling proceed. */
1412
1413 void
1414 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
1415 {
1416 struct regcache *regcache;
1417 struct gdbarch *gdbarch;
1418 struct thread_info *tp;
1419 CORE_ADDR pc;
1420 int oneproc = 0;
1421
1422 /* If we're stopped at a fork/vfork, follow the branch set by the
1423 "set follow-fork-mode" command; otherwise, we'll just proceed
1424 resuming the current thread. */
1425 if (!follow_fork ())
1426 {
1427 /* The target for some reason decided not to resume. */
1428 normal_stop ();
1429 return;
1430 }
1431
1432 regcache = get_current_regcache ();
1433 gdbarch = get_regcache_arch (regcache);
1434 pc = regcache_read_pc (regcache);
1435
1436 if (step > 0)
1437 step_start_function = find_pc_function (pc);
1438 if (step < 0)
1439 stop_after_trap = 1;
1440
1441 if (addr == (CORE_ADDR) -1)
1442 {
1443 if (pc == stop_pc && breakpoint_here_p (pc)
1444 && execution_direction != EXEC_REVERSE)
1445 /* There is a breakpoint at the address we will resume at,
1446 step one instruction before inserting breakpoints so that
1447 we do not stop right away (and report a second hit at this
1448 breakpoint).
1449
1450 Note, we don't do this in reverse, because we won't
1451 actually be executing the breakpoint insn anyway.
1452 We'll be (un-)executing the previous instruction. */
1453
1454 oneproc = 1;
1455 else if (gdbarch_single_step_through_delay_p (gdbarch)
1456 && gdbarch_single_step_through_delay (gdbarch,
1457 get_current_frame ()))
1458 /* We stepped onto an instruction that needs to be stepped
1459 again before re-inserting the breakpoint, do so. */
1460 oneproc = 1;
1461 }
1462 else
1463 {
1464 regcache_write_pc (regcache, addr);
1465 }
1466
1467 if (debug_infrun)
1468 fprintf_unfiltered (gdb_stdlog,
1469 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
1470 paddr_nz (addr), siggnal, step);
1471
1472 if (non_stop)
1473 /* In non-stop, each thread is handled individually. The context
1474 must already be set to the right thread here. */
1475 ;
1476 else
1477 {
1478 /* In a multi-threaded task we may select another thread and
1479 then continue or step.
1480
1481 But if the old thread was stopped at a breakpoint, it will
1482 immediately cause another breakpoint stop without any
1483 execution (i.e. it will report a breakpoint hit incorrectly).
1484 So we must step over it first.
1485
1486 prepare_to_proceed checks the current thread against the
1487 thread that reported the most recent event. If a step-over
1488 is required it returns TRUE and sets the current thread to
1489 the old thread. */
1490 if (prepare_to_proceed (step))
1491 oneproc = 1;
1492 }
1493
1494 /* prepare_to_proceed may change the current thread. */
1495 tp = inferior_thread ();
1496
1497 if (oneproc)
1498 {
1499 tp->trap_expected = 1;
1500 /* If displaced stepping is enabled, we can step over the
1501 breakpoint without hitting it, so leave all breakpoints
1502 inserted. Otherwise we need to disable all breakpoints, step
1503 one instruction, and then re-add them when that step is
1504 finished. */
1505 if (!use_displaced_stepping (gdbarch))
1506 remove_breakpoints ();
1507 }
1508
1509 /* We can insert breakpoints if we're not trying to step over one,
1510 or if we are stepping over one but we're using displaced stepping
1511 to do so. */
1512 if (! tp->trap_expected || use_displaced_stepping (gdbarch))
1513 insert_breakpoints ();
1514
1515 if (!non_stop)
1516 {
1517 /* Pass the last stop signal to the thread we're resuming,
1518 irrespective of whether the current thread is the thread that
1519 got the last event or not. This was historically GDB's
1520 behaviour before keeping a stop_signal per thread. */
1521
1522 struct thread_info *last_thread;
1523 ptid_t last_ptid;
1524 struct target_waitstatus last_status;
1525
1526 get_last_target_status (&last_ptid, &last_status);
1527 if (!ptid_equal (inferior_ptid, last_ptid)
1528 && !ptid_equal (last_ptid, null_ptid)
1529 && !ptid_equal (last_ptid, minus_one_ptid))
1530 {
1531 last_thread = find_thread_pid (last_ptid);
1532 if (last_thread)
1533 {
1534 tp->stop_signal = last_thread->stop_signal;
1535 last_thread->stop_signal = TARGET_SIGNAL_0;
1536 }
1537 }
1538 }
1539
1540 if (siggnal != TARGET_SIGNAL_DEFAULT)
1541 tp->stop_signal = siggnal;
1542 /* If this signal should not be seen by program,
1543 give it zero. Used for debugging signals. */
1544 else if (!signal_program[tp->stop_signal])
1545 tp->stop_signal = TARGET_SIGNAL_0;
1546
1547 annotate_starting ();
1548
1549 /* Make sure that output from GDB appears before output from the
1550 inferior. */
1551 gdb_flush (gdb_stdout);
1552
1553 /* Refresh prev_pc value just prior to resuming. This used to be
1554 done in stop_stepping, however, setting prev_pc there did not handle
1555 scenarios such as inferior function calls or returning from
1556 a function via the return command. In those cases, the prev_pc
1557 value was not set properly for subsequent commands. The prev_pc value
1558 is used to initialize the starting line number in the ecs. With an
1559 invalid value, the gdb next command ends up stopping at the position
1560 represented by the next line table entry past our start position.
1561 On platforms that generate one line table entry per line, this
1562 is not a problem. However, on the ia64, the compiler generates
1563 extraneous line table entries that do not increase the line number.
1564 When we issue the gdb next command on the ia64 after an inferior call
1565 or a return command, we often end up a few instructions forward, still
1566 within the original line we started.
1567
1568 An attempt was made to have init_execution_control_state () refresh
1569 the prev_pc value before calculating the line number. This approach
1570 did not work because on platforms that use ptrace, the pc register
1571 cannot be read unless the inferior is stopped. At that point, we
1572 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
1573 call can fail. Setting the prev_pc value here ensures the value is
1574 updated correctly when the inferior is stopped. */
1575 tp->prev_pc = regcache_read_pc (get_current_regcache ());
1576
1577 /* Fill in with reasonable starting values. */
1578 init_thread_stepping_state (tp);
1579
1580 /* Reset to normal state. */
1581 init_infwait_state ();
1582
1583 /* Resume inferior. */
1584 resume (oneproc || step || bpstat_should_step (), tp->stop_signal);
1585
1586 /* Wait for it to stop (if not standalone)
1587 and in any case decode why it stopped, and act accordingly. */
1588 /* Do this only if we are not using the event loop, or if the target
1589 does not support asynchronous execution. */
1590 if (!target_can_async_p ())
1591 {
1592 wait_for_inferior (0);
1593 normal_stop ();
1594 }
1595 }
1596 \f
1597
1598 /* Start remote-debugging of a machine over a serial link. */
1599
1600 void
1601 start_remote (int from_tty)
1602 {
1603 struct inferior *inferior;
1604 init_wait_for_inferior ();
1605
1606 inferior = current_inferior ();
1607 inferior->stop_soon = STOP_QUIETLY_REMOTE;
1608
1609 /* Always go on waiting for the target, regardless of the mode. */
1610 /* FIXME: cagney/1999-09-23: At present it isn't possible to
1611 indicate to wait_for_inferior that a target should timeout if
1612 nothing is returned (instead of just blocking). Because of this,
1613 targets expecting an immediate response need to, internally, set
1614 things up so that the target_wait() is forced to eventually
1615 timeout. */
1616 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1617 differentiate to its caller what the state of the target is after
1618 the initial open has been performed. Here we're assuming that
1619 the target has stopped. It should be possible to eventually have
1620 target_open() return to the caller an indication that the target
1621 is currently running and GDB state should be set to the same as
1622 for an async run. */
1623 wait_for_inferior (0);
1624
1625 /* Now that the inferior has stopped, do any bookkeeping like
1626 loading shared libraries. We want to do this before normal_stop,
1627 so that the displayed frame is up to date. */
1628 post_create_inferior (&current_target, from_tty);
1629
1630 normal_stop ();
1631 }
1632
1633 /* Initialize static vars when a new inferior begins. */
1634
1635 void
1636 init_wait_for_inferior (void)
1637 {
1638 /* These are meaningless until the first time through wait_for_inferior. */
1639
1640 breakpoint_init_inferior (inf_starting);
1641
1642 clear_proceed_status ();
1643
1644 stepping_past_singlestep_breakpoint = 0;
1645 deferred_step_ptid = null_ptid;
1646
1647 target_last_wait_ptid = minus_one_ptid;
1648
1649 previous_inferior_ptid = null_ptid;
1650 init_infwait_state ();
1651
1652 displaced_step_clear ();
1653 }
1654
1655 \f
1656 /* This enum encodes possible reasons for doing a target_wait, so that
1657 wfi can call target_wait in one place. (Ultimately the call will be
1658 moved out of the infinite loop entirely.) */
1659
1660 enum infwait_states
1661 {
1662 infwait_normal_state,
1663 infwait_thread_hop_state,
1664 infwait_step_watch_state,
1665 infwait_nonstep_watch_state
1666 };
1667
1668 /* Why did the inferior stop? Used to print the appropriate messages
1669 to the interface from within handle_inferior_event(). */
1670 enum inferior_stop_reason
1671 {
1672 /* Step, next, nexti, stepi finished. */
1673 END_STEPPING_RANGE,
1674 /* Inferior terminated by signal. */
1675 SIGNAL_EXITED,
1676 /* Inferior exited. */
1677 EXITED,
1678 /* Inferior received signal, and user asked to be notified. */
1679 SIGNAL_RECEIVED,
1680 /* Reverse execution -- target ran out of history info. */
1681 NO_HISTORY
1682 };
1683
1684 /* The PTID we'll do a target_wait on.*/
1685 ptid_t waiton_ptid;
1686
1687 /* Current inferior wait state. */
1688 enum infwait_states infwait_state;
1689
1690 /* Data to be passed around while handling an event. This data is
1691 discarded between events. */
1692 struct execution_control_state
1693 {
1694 ptid_t ptid;
1695 /* The thread that got the event, if this was a thread event; NULL
1696 otherwise. */
1697 struct thread_info *event_thread;
1698
1699 struct target_waitstatus ws;
1700 int random_signal;
1701 CORE_ADDR stop_func_start;
1702 CORE_ADDR stop_func_end;
1703 char *stop_func_name;
1704 int new_thread_event;
1705 int wait_some_more;
1706 };
1707
1708 void init_execution_control_state (struct execution_control_state *ecs);
1709
1710 void handle_inferior_event (struct execution_control_state *ecs);
1711
1712 static void handle_step_into_function (struct execution_control_state *ecs);
1713 static void handle_step_into_function_backward (struct execution_control_state *ecs);
1714 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
1715 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
1716 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
1717 struct frame_id sr_id);
1718 static void insert_longjmp_resume_breakpoint (CORE_ADDR);
1719
1720 static void stop_stepping (struct execution_control_state *ecs);
1721 static void prepare_to_wait (struct execution_control_state *ecs);
1722 static void keep_going (struct execution_control_state *ecs);
1723 static void print_stop_reason (enum inferior_stop_reason stop_reason,
1724 int stop_info);
1725
1726 /* Callback for iterate over threads. If the thread is stopped, but
1727 the user/frontend doesn't know about that yet, go through
1728 normal_stop, as if the thread had just stopped now. ARG points at
1729 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
1730 ptid_is_pid(PTID) is true, applies to all threads of the process
1731 pointed at by PTID. Otherwise, apply only to the thread pointed by
1732 PTID. */
1733
1734 static int
1735 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
1736 {
1737 ptid_t ptid = * (ptid_t *) arg;
1738
1739 if ((ptid_equal (info->ptid, ptid)
1740 || ptid_equal (minus_one_ptid, ptid)
1741 || (ptid_is_pid (ptid)
1742 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
1743 && is_running (info->ptid)
1744 && !is_executing (info->ptid))
1745 {
1746 struct cleanup *old_chain;
1747 struct execution_control_state ecss;
1748 struct execution_control_state *ecs = &ecss;
1749
1750 memset (ecs, 0, sizeof (*ecs));
1751
1752 old_chain = make_cleanup_restore_current_thread ();
1753
1754 switch_to_thread (info->ptid);
1755
1756 /* Go through handle_inferior_event/normal_stop, so we always
1757 have consistent output as if the stop event had been
1758 reported. */
1759 ecs->ptid = info->ptid;
1760 ecs->event_thread = find_thread_pid (info->ptid);
1761 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1762 ecs->ws.value.sig = TARGET_SIGNAL_0;
1763
1764 handle_inferior_event (ecs);
1765
1766 if (!ecs->wait_some_more)
1767 {
1768 struct thread_info *tp;
1769
1770 normal_stop ();
1771
1772 /* Finish off the continuations. The continations
1773 themselves are responsible for realising the thread
1774 didn't finish what it was supposed to do. */
1775 tp = inferior_thread ();
1776 do_all_intermediate_continuations_thread (tp);
1777 do_all_continuations_thread (tp);
1778 }
1779
1780 do_cleanups (old_chain);
1781 }
1782
1783 return 0;
1784 }
1785
1786 /* This function is attached as a "thread_stop_requested" observer.
1787 Cleanup local state that assumed the PTID was to be resumed, and
1788 report the stop to the frontend. */
1789
1790 static void
1791 infrun_thread_stop_requested (ptid_t ptid)
1792 {
1793 struct displaced_step_request *it, *next, *prev = NULL;
1794
1795 /* PTID was requested to stop. Remove it from the displaced
1796 stepping queue, so we don't try to resume it automatically. */
1797 for (it = displaced_step_request_queue; it; it = next)
1798 {
1799 next = it->next;
1800
1801 if (ptid_equal (it->ptid, ptid)
1802 || ptid_equal (minus_one_ptid, ptid)
1803 || (ptid_is_pid (ptid)
1804 && ptid_get_pid (ptid) == ptid_get_pid (it->ptid)))
1805 {
1806 if (displaced_step_request_queue == it)
1807 displaced_step_request_queue = it->next;
1808 else
1809 prev->next = it->next;
1810
1811 xfree (it);
1812 }
1813 else
1814 prev = it;
1815 }
1816
1817 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
1818 }
1819
1820 static void
1821 infrun_thread_thread_exit (struct thread_info *tp, int silent)
1822 {
1823 if (ptid_equal (target_last_wait_ptid, tp->ptid))
1824 nullify_last_target_wait_ptid ();
1825 }
1826
1827 /* Callback for iterate_over_threads. */
1828
1829 static int
1830 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
1831 {
1832 if (is_exited (info->ptid))
1833 return 0;
1834
1835 delete_step_resume_breakpoint (info);
1836 return 0;
1837 }
1838
1839 /* In all-stop, delete the step resume breakpoint of any thread that
1840 had one. In non-stop, delete the step resume breakpoint of the
1841 thread that just stopped. */
1842
1843 static void
1844 delete_step_thread_step_resume_breakpoint (void)
1845 {
1846 if (!target_has_execution
1847 || ptid_equal (inferior_ptid, null_ptid))
1848 /* If the inferior has exited, we have already deleted the step
1849 resume breakpoints out of GDB's lists. */
1850 return;
1851
1852 if (non_stop)
1853 {
1854 /* If in non-stop mode, only delete the step-resume or
1855 longjmp-resume breakpoint of the thread that just stopped
1856 stepping. */
1857 struct thread_info *tp = inferior_thread ();
1858 delete_step_resume_breakpoint (tp);
1859 }
1860 else
1861 /* In all-stop mode, delete all step-resume and longjmp-resume
1862 breakpoints of any thread that had them. */
1863 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
1864 }
1865
1866 /* A cleanup wrapper. */
1867
1868 static void
1869 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
1870 {
1871 delete_step_thread_step_resume_breakpoint ();
1872 }
1873
1874 /* Pretty print the results of target_wait, for debugging purposes. */
1875
1876 static void
1877 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
1878 const struct target_waitstatus *ws)
1879 {
1880 char *status_string = target_waitstatus_to_string (ws);
1881 struct ui_file *tmp_stream = mem_fileopen ();
1882 char *text;
1883 long len;
1884
1885 /* The text is split over several lines because it was getting too long.
1886 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
1887 output as a unit; we want only one timestamp printed if debug_timestamp
1888 is set. */
1889
1890 fprintf_unfiltered (tmp_stream,
1891 "infrun: target_wait (%d", PIDGET (waiton_ptid));
1892 if (PIDGET (waiton_ptid) != -1)
1893 fprintf_unfiltered (tmp_stream,
1894 " [%s]", target_pid_to_str (waiton_ptid));
1895 fprintf_unfiltered (tmp_stream, ", status) =\n");
1896 fprintf_unfiltered (tmp_stream,
1897 "infrun: %d [%s],\n",
1898 PIDGET (result_ptid), target_pid_to_str (result_ptid));
1899 fprintf_unfiltered (tmp_stream,
1900 "infrun: %s\n",
1901 status_string);
1902
1903 text = ui_file_xstrdup (tmp_stream, &len);
1904
1905 /* This uses %s in part to handle %'s in the text, but also to avoid
1906 a gcc error: the format attribute requires a string literal. */
1907 fprintf_unfiltered (gdb_stdlog, "%s", text);
1908
1909 xfree (status_string);
1910 xfree (text);
1911 ui_file_delete (tmp_stream);
1912 }
1913
1914 /* Wait for control to return from inferior to debugger.
1915
1916 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1917 as if they were SIGTRAP signals. This can be useful during
1918 the startup sequence on some targets such as HP/UX, where
1919 we receive an EXEC event instead of the expected SIGTRAP.
1920
1921 If inferior gets a signal, we may decide to start it up again
1922 instead of returning. That is why there is a loop in this function.
1923 When this function actually returns it means the inferior
1924 should be left stopped and GDB should read more commands. */
1925
1926 void
1927 wait_for_inferior (int treat_exec_as_sigtrap)
1928 {
1929 struct cleanup *old_cleanups;
1930 struct execution_control_state ecss;
1931 struct execution_control_state *ecs;
1932
1933 if (debug_infrun)
1934 fprintf_unfiltered
1935 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1936 treat_exec_as_sigtrap);
1937
1938 old_cleanups =
1939 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
1940
1941 ecs = &ecss;
1942 memset (ecs, 0, sizeof (*ecs));
1943
1944 overlay_cache_invalid = 1;
1945
1946 /* We'll update this if & when we switch to a new thread. */
1947 previous_inferior_ptid = inferior_ptid;
1948
1949 /* We have to invalidate the registers BEFORE calling target_wait
1950 because they can be loaded from the target while in target_wait.
1951 This makes remote debugging a bit more efficient for those
1952 targets that provide critical registers as part of their normal
1953 status mechanism. */
1954
1955 registers_changed ();
1956
1957 while (1)
1958 {
1959 struct cleanup *old_chain;
1960
1961 if (deprecated_target_wait_hook)
1962 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
1963 else
1964 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
1965
1966 if (debug_infrun)
1967 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
1968
1969 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1970 {
1971 xfree (ecs->ws.value.execd_pathname);
1972 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1973 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1974 }
1975
1976 /* If an error happens while handling the event, propagate GDB's
1977 knowledge of the executing state to the frontend/user running
1978 state. */
1979 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
1980
1981 /* Now figure out what to do with the result of the result. */
1982 handle_inferior_event (ecs);
1983
1984 /* No error, don't finish the state yet. */
1985 discard_cleanups (old_chain);
1986
1987 if (!ecs->wait_some_more)
1988 break;
1989 }
1990
1991 do_cleanups (old_cleanups);
1992 }
1993
1994 /* Asynchronous version of wait_for_inferior. It is called by the
1995 event loop whenever a change of state is detected on the file
1996 descriptor corresponding to the target. It can be called more than
1997 once to complete a single execution command. In such cases we need
1998 to keep the state in a global variable ECSS. If it is the last time
1999 that this function is called for a single execution command, then
2000 report to the user that the inferior has stopped, and do the
2001 necessary cleanups. */
2002
2003 void
2004 fetch_inferior_event (void *client_data)
2005 {
2006 struct execution_control_state ecss;
2007 struct execution_control_state *ecs = &ecss;
2008 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2009 struct cleanup *ts_old_chain;
2010 int was_sync = sync_execution;
2011
2012 memset (ecs, 0, sizeof (*ecs));
2013
2014 overlay_cache_invalid = 1;
2015
2016 /* We can only rely on wait_for_more being correct before handling
2017 the event in all-stop, but previous_inferior_ptid isn't used in
2018 non-stop. */
2019 if (!ecs->wait_some_more)
2020 /* We'll update this if & when we switch to a new thread. */
2021 previous_inferior_ptid = inferior_ptid;
2022
2023 if (non_stop)
2024 /* In non-stop mode, the user/frontend should not notice a thread
2025 switch due to internal events. Make sure we reverse to the
2026 user selected thread and frame after handling the event and
2027 running any breakpoint commands. */
2028 make_cleanup_restore_current_thread ();
2029
2030 /* We have to invalidate the registers BEFORE calling target_wait
2031 because they can be loaded from the target while in target_wait.
2032 This makes remote debugging a bit more efficient for those
2033 targets that provide critical registers as part of their normal
2034 status mechanism. */
2035
2036 registers_changed ();
2037
2038 if (deprecated_target_wait_hook)
2039 ecs->ptid =
2040 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2041 else
2042 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2043
2044 if (debug_infrun)
2045 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2046
2047 if (non_stop
2048 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2049 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2050 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2051 /* In non-stop mode, each thread is handled individually. Switch
2052 early, so the global state is set correctly for this
2053 thread. */
2054 context_switch (ecs->ptid);
2055
2056 /* If an error happens while handling the event, propagate GDB's
2057 knowledge of the executing state to the frontend/user running
2058 state. */
2059 if (!non_stop)
2060 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2061 else
2062 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2063
2064 /* Now figure out what to do with the result of the result. */
2065 handle_inferior_event (ecs);
2066
2067 if (!ecs->wait_some_more)
2068 {
2069 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2070
2071 delete_step_thread_step_resume_breakpoint ();
2072
2073 /* We may not find an inferior if this was a process exit. */
2074 if (inf == NULL || inf->stop_soon == NO_STOP_QUIETLY)
2075 normal_stop ();
2076
2077 if (target_has_execution
2078 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2079 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2080 && ecs->event_thread->step_multi
2081 && ecs->event_thread->stop_step)
2082 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2083 else
2084 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2085 }
2086
2087 /* No error, don't finish the thread states yet. */
2088 discard_cleanups (ts_old_chain);
2089
2090 /* Revert thread and frame. */
2091 do_cleanups (old_chain);
2092
2093 /* If the inferior was in sync execution mode, and now isn't,
2094 restore the prompt. */
2095 if (was_sync && !sync_execution)
2096 display_gdb_prompt (0);
2097 }
2098
2099 /* Prepare an execution control state for looping through a
2100 wait_for_inferior-type loop. */
2101
2102 void
2103 init_execution_control_state (struct execution_control_state *ecs)
2104 {
2105 ecs->random_signal = 0;
2106 }
2107
2108 /* Clear context switchable stepping state. */
2109
2110 void
2111 init_thread_stepping_state (struct thread_info *tss)
2112 {
2113 struct symtab_and_line sal;
2114
2115 tss->stepping_over_breakpoint = 0;
2116 tss->step_after_step_resume_breakpoint = 0;
2117 tss->stepping_through_solib_after_catch = 0;
2118 tss->stepping_through_solib_catchpoints = NULL;
2119
2120 sal = find_pc_line (tss->prev_pc, 0);
2121 tss->current_line = sal.line;
2122 tss->current_symtab = sal.symtab;
2123 }
2124
2125 /* Return the cached copy of the last pid/waitstatus returned by
2126 target_wait()/deprecated_target_wait_hook(). The data is actually
2127 cached by handle_inferior_event(), which gets called immediately
2128 after target_wait()/deprecated_target_wait_hook(). */
2129
2130 void
2131 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2132 {
2133 *ptidp = target_last_wait_ptid;
2134 *status = target_last_waitstatus;
2135 }
2136
2137 void
2138 nullify_last_target_wait_ptid (void)
2139 {
2140 target_last_wait_ptid = minus_one_ptid;
2141 }
2142
2143 /* Switch thread contexts. */
2144
2145 static void
2146 context_switch (ptid_t ptid)
2147 {
2148 if (debug_infrun)
2149 {
2150 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2151 target_pid_to_str (inferior_ptid));
2152 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2153 target_pid_to_str (ptid));
2154 }
2155
2156 switch_to_thread (ptid);
2157 }
2158
2159 static void
2160 adjust_pc_after_break (struct execution_control_state *ecs)
2161 {
2162 struct regcache *regcache;
2163 struct gdbarch *gdbarch;
2164 CORE_ADDR breakpoint_pc;
2165
2166 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2167 we aren't, just return.
2168
2169 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2170 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2171 implemented by software breakpoints should be handled through the normal
2172 breakpoint layer.
2173
2174 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2175 different signals (SIGILL or SIGEMT for instance), but it is less
2176 clear where the PC is pointing afterwards. It may not match
2177 gdbarch_decr_pc_after_break. I don't know any specific target that
2178 generates these signals at breakpoints (the code has been in GDB since at
2179 least 1992) so I can not guess how to handle them here.
2180
2181 In earlier versions of GDB, a target with
2182 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2183 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2184 target with both of these set in GDB history, and it seems unlikely to be
2185 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2186
2187 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2188 return;
2189
2190 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2191 return;
2192
2193 /* In reverse execution, when a breakpoint is hit, the instruction
2194 under it has already been de-executed. The reported PC always
2195 points at the breakpoint address, so adjusting it further would
2196 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2197 architecture:
2198
2199 B1 0x08000000 : INSN1
2200 B2 0x08000001 : INSN2
2201 0x08000002 : INSN3
2202 PC -> 0x08000003 : INSN4
2203
2204 Say you're stopped at 0x08000003 as above. Reverse continuing
2205 from that point should hit B2 as below. Reading the PC when the
2206 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2207 been de-executed already.
2208
2209 B1 0x08000000 : INSN1
2210 B2 PC -> 0x08000001 : INSN2
2211 0x08000002 : INSN3
2212 0x08000003 : INSN4
2213
2214 We can't apply the same logic as for forward execution, because
2215 we would wrongly adjust the PC to 0x08000000, since there's a
2216 breakpoint at PC - 1. We'd then report a hit on B1, although
2217 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2218 behaviour. */
2219 if (execution_direction == EXEC_REVERSE)
2220 return;
2221
2222 /* If this target does not decrement the PC after breakpoints, then
2223 we have nothing to do. */
2224 regcache = get_thread_regcache (ecs->ptid);
2225 gdbarch = get_regcache_arch (regcache);
2226 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2227 return;
2228
2229 /* Find the location where (if we've hit a breakpoint) the
2230 breakpoint would be. */
2231 breakpoint_pc = regcache_read_pc (regcache)
2232 - gdbarch_decr_pc_after_break (gdbarch);
2233
2234 /* Check whether there actually is a software breakpoint inserted at
2235 that location.
2236
2237 If in non-stop mode, a race condition is possible where we've
2238 removed a breakpoint, but stop events for that breakpoint were
2239 already queued and arrive later. To suppress those spurious
2240 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2241 and retire them after a number of stop events are reported. */
2242 if (software_breakpoint_inserted_here_p (breakpoint_pc)
2243 || (non_stop && moribund_breakpoint_here_p (breakpoint_pc)))
2244 {
2245 struct cleanup *old_cleanups = NULL;
2246 if (RECORD_IS_USED)
2247 old_cleanups = record_gdb_operation_disable_set ();
2248
2249 /* When using hardware single-step, a SIGTRAP is reported for both
2250 a completed single-step and a software breakpoint. Need to
2251 differentiate between the two, as the latter needs adjusting
2252 but the former does not.
2253
2254 The SIGTRAP can be due to a completed hardware single-step only if
2255 - we didn't insert software single-step breakpoints
2256 - the thread to be examined is still the current thread
2257 - this thread is currently being stepped
2258
2259 If any of these events did not occur, we must have stopped due
2260 to hitting a software breakpoint, and have to back up to the
2261 breakpoint address.
2262
2263 As a special case, we could have hardware single-stepped a
2264 software breakpoint. In this case (prev_pc == breakpoint_pc),
2265 we also need to back up to the breakpoint address. */
2266
2267 if (singlestep_breakpoints_inserted_p
2268 || !ptid_equal (ecs->ptid, inferior_ptid)
2269 || !currently_stepping (ecs->event_thread)
2270 || ecs->event_thread->prev_pc == breakpoint_pc)
2271 regcache_write_pc (regcache, breakpoint_pc);
2272
2273 if (RECORD_IS_USED)
2274 do_cleanups (old_cleanups);
2275 }
2276 }
2277
2278 void
2279 init_infwait_state (void)
2280 {
2281 waiton_ptid = pid_to_ptid (-1);
2282 infwait_state = infwait_normal_state;
2283 }
2284
2285 void
2286 error_is_running (void)
2287 {
2288 error (_("\
2289 Cannot execute this command while the selected thread is running."));
2290 }
2291
2292 void
2293 ensure_not_running (void)
2294 {
2295 if (is_running (inferior_ptid))
2296 error_is_running ();
2297 }
2298
2299 /* Given an execution control state that has been freshly filled in
2300 by an event from the inferior, figure out what it means and take
2301 appropriate action. */
2302
2303 void
2304 handle_inferior_event (struct execution_control_state *ecs)
2305 {
2306 int sw_single_step_trap_p = 0;
2307 int stopped_by_watchpoint;
2308 int stepped_after_stopped_by_watchpoint = 0;
2309 struct symtab_and_line stop_pc_sal;
2310 enum stop_kind stop_soon;
2311
2312 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2313 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2314 && ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2315 {
2316 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2317 gdb_assert (inf);
2318 stop_soon = inf->stop_soon;
2319 }
2320 else
2321 stop_soon = NO_STOP_QUIETLY;
2322
2323 /* Cache the last pid/waitstatus. */
2324 target_last_wait_ptid = ecs->ptid;
2325 target_last_waitstatus = ecs->ws;
2326
2327 /* Always clear state belonging to the previous time we stopped. */
2328 stop_stack_dummy = 0;
2329
2330 /* If it's a new process, add it to the thread database */
2331
2332 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
2333 && !ptid_equal (ecs->ptid, minus_one_ptid)
2334 && !in_thread_list (ecs->ptid));
2335
2336 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
2337 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
2338 add_thread (ecs->ptid);
2339
2340 ecs->event_thread = find_thread_pid (ecs->ptid);
2341
2342 /* Dependent on valid ECS->EVENT_THREAD. */
2343 adjust_pc_after_break (ecs);
2344
2345 /* Dependent on the current PC value modified by adjust_pc_after_break. */
2346 reinit_frame_cache ();
2347
2348 if (ecs->ws.kind != TARGET_WAITKIND_IGNORE)
2349 {
2350 breakpoint_retire_moribund ();
2351
2352 /* Mark the non-executing threads accordingly. In all-stop, all
2353 threads of all processes are stopped when we get any event
2354 reported. In non-stop mode, only the event thread stops. If
2355 we're handling a process exit in non-stop mode, there's
2356 nothing to do, as threads of the dead process are gone, and
2357 threads of any other process were left running. */
2358 if (!non_stop)
2359 set_executing (minus_one_ptid, 0);
2360 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2361 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
2362 set_executing (inferior_ptid, 0);
2363 }
2364
2365 switch (infwait_state)
2366 {
2367 case infwait_thread_hop_state:
2368 if (debug_infrun)
2369 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
2370 /* Cancel the waiton_ptid. */
2371 waiton_ptid = pid_to_ptid (-1);
2372 break;
2373
2374 case infwait_normal_state:
2375 if (debug_infrun)
2376 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
2377 break;
2378
2379 case infwait_step_watch_state:
2380 if (debug_infrun)
2381 fprintf_unfiltered (gdb_stdlog,
2382 "infrun: infwait_step_watch_state\n");
2383
2384 stepped_after_stopped_by_watchpoint = 1;
2385 break;
2386
2387 case infwait_nonstep_watch_state:
2388 if (debug_infrun)
2389 fprintf_unfiltered (gdb_stdlog,
2390 "infrun: infwait_nonstep_watch_state\n");
2391 insert_breakpoints ();
2392
2393 /* FIXME-maybe: is this cleaner than setting a flag? Does it
2394 handle things like signals arriving and other things happening
2395 in combination correctly? */
2396 stepped_after_stopped_by_watchpoint = 1;
2397 break;
2398
2399 default:
2400 internal_error (__FILE__, __LINE__, _("bad switch"));
2401 }
2402 infwait_state = infwait_normal_state;
2403
2404 switch (ecs->ws.kind)
2405 {
2406 case TARGET_WAITKIND_LOADED:
2407 if (debug_infrun)
2408 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
2409 /* Ignore gracefully during startup of the inferior, as it might
2410 be the shell which has just loaded some objects, otherwise
2411 add the symbols for the newly loaded objects. Also ignore at
2412 the beginning of an attach or remote session; we will query
2413 the full list of libraries once the connection is
2414 established. */
2415 if (stop_soon == NO_STOP_QUIETLY)
2416 {
2417 /* Check for any newly added shared libraries if we're
2418 supposed to be adding them automatically. Switch
2419 terminal for any messages produced by
2420 breakpoint_re_set. */
2421 target_terminal_ours_for_output ();
2422 /* NOTE: cagney/2003-11-25: Make certain that the target
2423 stack's section table is kept up-to-date. Architectures,
2424 (e.g., PPC64), use the section table to perform
2425 operations such as address => section name and hence
2426 require the table to contain all sections (including
2427 those found in shared libraries). */
2428 /* NOTE: cagney/2003-11-25: Pass current_target and not
2429 exec_ops to SOLIB_ADD. This is because current GDB is
2430 only tooled to propagate section_table changes out from
2431 the "current_target" (see target_resize_to_sections), and
2432 not up from the exec stratum. This, of course, isn't
2433 right. "infrun.c" should only interact with the
2434 exec/process stratum, instead relying on the target stack
2435 to propagate relevant changes (stop, section table
2436 changed, ...) up to other layers. */
2437 #ifdef SOLIB_ADD
2438 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2439 #else
2440 solib_add (NULL, 0, &current_target, auto_solib_add);
2441 #endif
2442 target_terminal_inferior ();
2443
2444 /* If requested, stop when the dynamic linker notifies
2445 gdb of events. This allows the user to get control
2446 and place breakpoints in initializer routines for
2447 dynamically loaded objects (among other things). */
2448 if (stop_on_solib_events)
2449 {
2450 stop_stepping (ecs);
2451 return;
2452 }
2453
2454 /* NOTE drow/2007-05-11: This might be a good place to check
2455 for "catch load". */
2456 }
2457
2458 /* If we are skipping through a shell, or through shared library
2459 loading that we aren't interested in, resume the program. If
2460 we're running the program normally, also resume. But stop if
2461 we're attaching or setting up a remote connection. */
2462 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
2463 {
2464 /* Loading of shared libraries might have changed breakpoint
2465 addresses. Make sure new breakpoints are inserted. */
2466 if (stop_soon == NO_STOP_QUIETLY
2467 && !breakpoints_always_inserted_mode ())
2468 insert_breakpoints ();
2469 resume (0, TARGET_SIGNAL_0);
2470 prepare_to_wait (ecs);
2471 return;
2472 }
2473
2474 break;
2475
2476 case TARGET_WAITKIND_SPURIOUS:
2477 if (debug_infrun)
2478 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
2479 resume (0, TARGET_SIGNAL_0);
2480 prepare_to_wait (ecs);
2481 return;
2482
2483 case TARGET_WAITKIND_EXITED:
2484 if (debug_infrun)
2485 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
2486 inferior_ptid = ecs->ptid;
2487 target_terminal_ours (); /* Must do this before mourn anyway */
2488 print_stop_reason (EXITED, ecs->ws.value.integer);
2489
2490 /* Record the exit code in the convenience variable $_exitcode, so
2491 that the user can inspect this again later. */
2492 set_internalvar (lookup_internalvar ("_exitcode"),
2493 value_from_longest (builtin_type_int32,
2494 (LONGEST) ecs->ws.value.integer));
2495 gdb_flush (gdb_stdout);
2496 target_mourn_inferior ();
2497 singlestep_breakpoints_inserted_p = 0;
2498 stop_print_frame = 0;
2499 stop_stepping (ecs);
2500 return;
2501
2502 case TARGET_WAITKIND_SIGNALLED:
2503 if (debug_infrun)
2504 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
2505 inferior_ptid = ecs->ptid;
2506 stop_print_frame = 0;
2507 target_terminal_ours (); /* Must do this before mourn anyway */
2508
2509 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2510 reach here unless the inferior is dead. However, for years
2511 target_kill() was called here, which hints that fatal signals aren't
2512 really fatal on some systems. If that's true, then some changes
2513 may be needed. */
2514 target_mourn_inferior ();
2515
2516 print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig);
2517 singlestep_breakpoints_inserted_p = 0;
2518 stop_stepping (ecs);
2519 return;
2520
2521 /* The following are the only cases in which we keep going;
2522 the above cases end in a continue or goto. */
2523 case TARGET_WAITKIND_FORKED:
2524 case TARGET_WAITKIND_VFORKED:
2525 if (debug_infrun)
2526 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
2527
2528 if (!ptid_equal (ecs->ptid, inferior_ptid))
2529 {
2530 context_switch (ecs->ptid);
2531 reinit_frame_cache ();
2532 }
2533
2534 /* Immediately detach breakpoints from the child before there's
2535 any chance of letting the user delete breakpoints from the
2536 breakpoint lists. If we don't do this early, it's easy to
2537 leave left over traps in the child, vis: "break foo; catch
2538 fork; c; <fork>; del; c; <child calls foo>". We only follow
2539 the fork on the last `continue', and by that time the
2540 breakpoint at "foo" is long gone from the breakpoint table.
2541 If we vforked, then we don't need to unpatch here, since both
2542 parent and child are sharing the same memory pages; we'll
2543 need to unpatch at follow/detach time instead to be certain
2544 that new breakpoints added between catchpoint hit time and
2545 vfork follow are detached. */
2546 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
2547 {
2548 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
2549
2550 /* This won't actually modify the breakpoint list, but will
2551 physically remove the breakpoints from the child. */
2552 detach_breakpoints (child_pid);
2553 }
2554
2555 /* In case the event is caught by a catchpoint, remember that
2556 the event is to be followed at the next resume of the thread,
2557 and not immediately. */
2558 ecs->event_thread->pending_follow = ecs->ws;
2559
2560 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2561
2562 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2563
2564 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2565
2566 /* If no catchpoint triggered for this, then keep going. */
2567 if (ecs->random_signal)
2568 {
2569 int should_resume;
2570
2571 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2572
2573 should_resume = follow_fork ();
2574
2575 ecs->event_thread = inferior_thread ();
2576 ecs->ptid = inferior_ptid;
2577
2578 if (should_resume)
2579 keep_going (ecs);
2580 else
2581 stop_stepping (ecs);
2582 return;
2583 }
2584 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2585 goto process_event_stop_test;
2586
2587 case TARGET_WAITKIND_EXECD:
2588 if (debug_infrun)
2589 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
2590
2591 if (!ptid_equal (ecs->ptid, inferior_ptid))
2592 {
2593 context_switch (ecs->ptid);
2594 reinit_frame_cache ();
2595 }
2596
2597 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2598
2599 /* This causes the eventpoints and symbol table to be reset.
2600 Must do this now, before trying to determine whether to
2601 stop. */
2602 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
2603
2604 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2605 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2606
2607 /* Note that this may be referenced from inside
2608 bpstat_stop_status above, through inferior_has_execd. */
2609 xfree (ecs->ws.value.execd_pathname);
2610 ecs->ws.value.execd_pathname = NULL;
2611
2612 /* If no catchpoint triggered for this, then keep going. */
2613 if (ecs->random_signal)
2614 {
2615 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2616 keep_going (ecs);
2617 return;
2618 }
2619 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
2620 goto process_event_stop_test;
2621
2622 /* Be careful not to try to gather much state about a thread
2623 that's in a syscall. It's frequently a losing proposition. */
2624 case TARGET_WAITKIND_SYSCALL_ENTRY:
2625 if (debug_infrun)
2626 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
2627 resume (0, TARGET_SIGNAL_0);
2628 prepare_to_wait (ecs);
2629 return;
2630
2631 /* Before examining the threads further, step this thread to
2632 get it entirely out of the syscall. (We get notice of the
2633 event when the thread is just on the verge of exiting a
2634 syscall. Stepping one instruction seems to get it back
2635 into user code.) */
2636 case TARGET_WAITKIND_SYSCALL_RETURN:
2637 if (debug_infrun)
2638 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
2639 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
2640 prepare_to_wait (ecs);
2641 return;
2642
2643 case TARGET_WAITKIND_STOPPED:
2644 if (debug_infrun)
2645 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2646 ecs->event_thread->stop_signal = ecs->ws.value.sig;
2647 break;
2648
2649 case TARGET_WAITKIND_NO_HISTORY:
2650 /* Reverse execution: target ran out of history info. */
2651 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2652 print_stop_reason (NO_HISTORY, 0);
2653 stop_stepping (ecs);
2654 return;
2655
2656 /* We had an event in the inferior, but we are not interested
2657 in handling it at this level. The lower layers have already
2658 done what needs to be done, if anything.
2659
2660 One of the possible circumstances for this is when the
2661 inferior produces output for the console. The inferior has
2662 not stopped, and we are ignoring the event. Another possible
2663 circumstance is any event which the lower level knows will be
2664 reported multiple times without an intervening resume. */
2665 case TARGET_WAITKIND_IGNORE:
2666 if (debug_infrun)
2667 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
2668 prepare_to_wait (ecs);
2669 return;
2670 }
2671
2672 if (ecs->new_thread_event)
2673 {
2674 if (non_stop)
2675 /* Non-stop assumes that the target handles adding new threads
2676 to the thread list. */
2677 internal_error (__FILE__, __LINE__, "\
2678 targets should add new threads to the thread list themselves in non-stop mode.");
2679
2680 /* We may want to consider not doing a resume here in order to
2681 give the user a chance to play with the new thread. It might
2682 be good to make that a user-settable option. */
2683
2684 /* At this point, all threads are stopped (happens automatically
2685 in either the OS or the native code). Therefore we need to
2686 continue all threads in order to make progress. */
2687
2688 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2689 prepare_to_wait (ecs);
2690 return;
2691 }
2692
2693 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
2694 {
2695 /* Do we need to clean up the state of a thread that has
2696 completed a displaced single-step? (Doing so usually affects
2697 the PC, so do it here, before we set stop_pc.) */
2698 displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal);
2699
2700 /* If we either finished a single-step or hit a breakpoint, but
2701 the user wanted this thread to be stopped, pretend we got a
2702 SIG0 (generic unsignaled stop). */
2703
2704 if (ecs->event_thread->stop_requested
2705 && ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2706 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2707 }
2708
2709 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
2710
2711 if (debug_infrun)
2712 {
2713 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n",
2714 paddr_nz (stop_pc));
2715 if (target_stopped_by_watchpoint ())
2716 {
2717 CORE_ADDR addr;
2718 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2719
2720 if (target_stopped_data_address (&current_target, &addr))
2721 fprintf_unfiltered (gdb_stdlog,
2722 "infrun: stopped data address = 0x%s\n",
2723 paddr_nz (addr));
2724 else
2725 fprintf_unfiltered (gdb_stdlog,
2726 "infrun: (no data address available)\n");
2727 }
2728 }
2729
2730 if (stepping_past_singlestep_breakpoint)
2731 {
2732 gdb_assert (singlestep_breakpoints_inserted_p);
2733 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2734 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2735
2736 stepping_past_singlestep_breakpoint = 0;
2737
2738 /* We've either finished single-stepping past the single-step
2739 breakpoint, or stopped for some other reason. It would be nice if
2740 we could tell, but we can't reliably. */
2741 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2742 {
2743 if (debug_infrun)
2744 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
2745 /* Pull the single step breakpoints out of the target. */
2746 remove_single_step_breakpoints ();
2747 singlestep_breakpoints_inserted_p = 0;
2748
2749 ecs->random_signal = 0;
2750
2751 context_switch (saved_singlestep_ptid);
2752 if (deprecated_context_hook)
2753 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2754
2755 resume (1, TARGET_SIGNAL_0);
2756 prepare_to_wait (ecs);
2757 return;
2758 }
2759 }
2760
2761 if (!ptid_equal (deferred_step_ptid, null_ptid))
2762 {
2763 /* In non-stop mode, there's never a deferred_step_ptid set. */
2764 gdb_assert (!non_stop);
2765
2766 /* If we stopped for some other reason than single-stepping, ignore
2767 the fact that we were supposed to switch back. */
2768 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2769 {
2770 if (debug_infrun)
2771 fprintf_unfiltered (gdb_stdlog,
2772 "infrun: handling deferred step\n");
2773
2774 /* Pull the single step breakpoints out of the target. */
2775 if (singlestep_breakpoints_inserted_p)
2776 {
2777 remove_single_step_breakpoints ();
2778 singlestep_breakpoints_inserted_p = 0;
2779 }
2780
2781 /* Note: We do not call context_switch at this point, as the
2782 context is already set up for stepping the original thread. */
2783 switch_to_thread (deferred_step_ptid);
2784 deferred_step_ptid = null_ptid;
2785 /* Suppress spurious "Switching to ..." message. */
2786 previous_inferior_ptid = inferior_ptid;
2787
2788 resume (1, TARGET_SIGNAL_0);
2789 prepare_to_wait (ecs);
2790 return;
2791 }
2792
2793 deferred_step_ptid = null_ptid;
2794 }
2795
2796 /* See if a thread hit a thread-specific breakpoint that was meant for
2797 another thread. If so, then step that thread past the breakpoint,
2798 and continue it. */
2799
2800 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
2801 {
2802 int thread_hop_needed = 0;
2803
2804 /* Check if a regular breakpoint has been hit before checking
2805 for a potential single step breakpoint. Otherwise, GDB will
2806 not see this breakpoint hit when stepping onto breakpoints. */
2807 if (regular_breakpoint_inserted_here_p (stop_pc))
2808 {
2809 ecs->random_signal = 0;
2810 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
2811 thread_hop_needed = 1;
2812 }
2813 else if (singlestep_breakpoints_inserted_p)
2814 {
2815 /* We have not context switched yet, so this should be true
2816 no matter which thread hit the singlestep breakpoint. */
2817 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2818 if (debug_infrun)
2819 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2820 "trap for %s\n",
2821 target_pid_to_str (ecs->ptid));
2822
2823 ecs->random_signal = 0;
2824 /* The call to in_thread_list is necessary because PTIDs sometimes
2825 change when we go from single-threaded to multi-threaded. If
2826 the singlestep_ptid is still in the list, assume that it is
2827 really different from ecs->ptid. */
2828 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2829 && in_thread_list (singlestep_ptid))
2830 {
2831 /* If the PC of the thread we were trying to single-step
2832 has changed, discard this event (which we were going
2833 to ignore anyway), and pretend we saw that thread
2834 trap. This prevents us continuously moving the
2835 single-step breakpoint forward, one instruction at a
2836 time. If the PC has changed, then the thread we were
2837 trying to single-step has trapped or been signalled,
2838 but the event has not been reported to GDB yet.
2839
2840 There might be some cases where this loses signal
2841 information, if a signal has arrived at exactly the
2842 same time that the PC changed, but this is the best
2843 we can do with the information available. Perhaps we
2844 should arrange to report all events for all threads
2845 when they stop, or to re-poll the remote looking for
2846 this particular thread (i.e. temporarily enable
2847 schedlock). */
2848
2849 CORE_ADDR new_singlestep_pc
2850 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2851
2852 if (new_singlestep_pc != singlestep_pc)
2853 {
2854 enum target_signal stop_signal;
2855
2856 if (debug_infrun)
2857 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2858 " but expected thread advanced also\n");
2859
2860 /* The current context still belongs to
2861 singlestep_ptid. Don't swap here, since that's
2862 the context we want to use. Just fudge our
2863 state and continue. */
2864 stop_signal = ecs->event_thread->stop_signal;
2865 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
2866 ecs->ptid = singlestep_ptid;
2867 ecs->event_thread = find_thread_pid (ecs->ptid);
2868 ecs->event_thread->stop_signal = stop_signal;
2869 stop_pc = new_singlestep_pc;
2870 }
2871 else
2872 {
2873 if (debug_infrun)
2874 fprintf_unfiltered (gdb_stdlog,
2875 "infrun: unexpected thread\n");
2876
2877 thread_hop_needed = 1;
2878 stepping_past_singlestep_breakpoint = 1;
2879 saved_singlestep_ptid = singlestep_ptid;
2880 }
2881 }
2882 }
2883
2884 if (thread_hop_needed)
2885 {
2886 int remove_status = 0;
2887
2888 if (debug_infrun)
2889 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
2890
2891 /* Saw a breakpoint, but it was hit by the wrong thread.
2892 Just continue. */
2893
2894 if (singlestep_breakpoints_inserted_p)
2895 {
2896 /* Pull the single step breakpoints out of the target. */
2897 remove_single_step_breakpoints ();
2898 singlestep_breakpoints_inserted_p = 0;
2899 }
2900
2901 /* If the arch can displace step, don't remove the
2902 breakpoints. */
2903 if (!use_displaced_stepping (current_gdbarch))
2904 remove_status = remove_breakpoints ();
2905
2906 /* Did we fail to remove breakpoints? If so, try
2907 to set the PC past the bp. (There's at least
2908 one situation in which we can fail to remove
2909 the bp's: On HP-UX's that use ttrace, we can't
2910 change the address space of a vforking child
2911 process until the child exits (well, okay, not
2912 then either :-) or execs. */
2913 if (remove_status != 0)
2914 error (_("Cannot step over breakpoint hit in wrong thread"));
2915 else
2916 { /* Single step */
2917 if (!ptid_equal (inferior_ptid, ecs->ptid))
2918 context_switch (ecs->ptid);
2919
2920 if (!non_stop)
2921 {
2922 /* Only need to require the next event from this
2923 thread in all-stop mode. */
2924 waiton_ptid = ecs->ptid;
2925 infwait_state = infwait_thread_hop_state;
2926 }
2927
2928 ecs->event_thread->stepping_over_breakpoint = 1;
2929 keep_going (ecs);
2930 registers_changed ();
2931 return;
2932 }
2933 }
2934 else if (singlestep_breakpoints_inserted_p)
2935 {
2936 sw_single_step_trap_p = 1;
2937 ecs->random_signal = 0;
2938 }
2939 }
2940 else
2941 ecs->random_signal = 1;
2942
2943 /* See if something interesting happened to the non-current thread. If
2944 so, then switch to that thread. */
2945 if (!ptid_equal (ecs->ptid, inferior_ptid))
2946 {
2947 if (debug_infrun)
2948 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
2949
2950 context_switch (ecs->ptid);
2951
2952 if (deprecated_context_hook)
2953 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
2954 }
2955
2956 if (singlestep_breakpoints_inserted_p)
2957 {
2958 /* Pull the single step breakpoints out of the target. */
2959 remove_single_step_breakpoints ();
2960 singlestep_breakpoints_inserted_p = 0;
2961 }
2962
2963 if (stepped_after_stopped_by_watchpoint)
2964 stopped_by_watchpoint = 0;
2965 else
2966 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
2967
2968 /* If necessary, step over this watchpoint. We'll be back to display
2969 it in a moment. */
2970 if (stopped_by_watchpoint
2971 && (target_have_steppable_watchpoint
2972 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
2973 {
2974 /* At this point, we are stopped at an instruction which has
2975 attempted to write to a piece of memory under control of
2976 a watchpoint. The instruction hasn't actually executed
2977 yet. If we were to evaluate the watchpoint expression
2978 now, we would get the old value, and therefore no change
2979 would seem to have occurred.
2980
2981 In order to make watchpoints work `right', we really need
2982 to complete the memory write, and then evaluate the
2983 watchpoint expression. We do this by single-stepping the
2984 target.
2985
2986 It may not be necessary to disable the watchpoint to stop over
2987 it. For example, the PA can (with some kernel cooperation)
2988 single step over a watchpoint without disabling the watchpoint.
2989
2990 It is far more common to need to disable a watchpoint to step
2991 the inferior over it. If we have non-steppable watchpoints,
2992 we must disable the current watchpoint; it's simplest to
2993 disable all watchpoints and breakpoints. */
2994 int hw_step = 1;
2995
2996 if (!target_have_steppable_watchpoint)
2997 remove_breakpoints ();
2998 /* Single step */
2999 hw_step = maybe_software_singlestep (current_gdbarch, stop_pc);
3000 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
3001 registers_changed ();
3002 waiton_ptid = ecs->ptid;
3003 if (target_have_steppable_watchpoint)
3004 infwait_state = infwait_step_watch_state;
3005 else
3006 infwait_state = infwait_nonstep_watch_state;
3007 prepare_to_wait (ecs);
3008 return;
3009 }
3010
3011 ecs->stop_func_start = 0;
3012 ecs->stop_func_end = 0;
3013 ecs->stop_func_name = 0;
3014 /* Don't care about return value; stop_func_start and stop_func_name
3015 will both be 0 if it doesn't work. */
3016 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3017 &ecs->stop_func_start, &ecs->stop_func_end);
3018 ecs->stop_func_start
3019 += gdbarch_deprecated_function_start_offset (current_gdbarch);
3020 ecs->event_thread->stepping_over_breakpoint = 0;
3021 bpstat_clear (&ecs->event_thread->stop_bpstat);
3022 ecs->event_thread->stop_step = 0;
3023 stop_print_frame = 1;
3024 ecs->random_signal = 0;
3025 stopped_by_random_signal = 0;
3026
3027 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3028 && ecs->event_thread->trap_expected
3029 && gdbarch_single_step_through_delay_p (current_gdbarch)
3030 && currently_stepping (ecs->event_thread))
3031 {
3032 /* We're trying to step off a breakpoint. Turns out that we're
3033 also on an instruction that needs to be stepped multiple
3034 times before it's been fully executing. E.g., architectures
3035 with a delay slot. It needs to be stepped twice, once for
3036 the instruction and once for the delay slot. */
3037 int step_through_delay
3038 = gdbarch_single_step_through_delay (current_gdbarch,
3039 get_current_frame ());
3040 if (debug_infrun && step_through_delay)
3041 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
3042 if (ecs->event_thread->step_range_end == 0 && step_through_delay)
3043 {
3044 /* The user issued a continue when stopped at a breakpoint.
3045 Set up for another trap and get out of here. */
3046 ecs->event_thread->stepping_over_breakpoint = 1;
3047 keep_going (ecs);
3048 return;
3049 }
3050 else if (step_through_delay)
3051 {
3052 /* The user issued a step when stopped at a breakpoint.
3053 Maybe we should stop, maybe we should not - the delay
3054 slot *might* correspond to a line of source. In any
3055 case, don't decide that here, just set
3056 ecs->stepping_over_breakpoint, making sure we
3057 single-step again before breakpoints are re-inserted. */
3058 ecs->event_thread->stepping_over_breakpoint = 1;
3059 }
3060 }
3061
3062 /* Look at the cause of the stop, and decide what to do.
3063 The alternatives are:
3064 1) stop_stepping and return; to really stop and return to the debugger,
3065 2) keep_going and return to start up again
3066 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
3067 3) set ecs->random_signal to 1, and the decision between 1 and 2
3068 will be made according to the signal handling tables. */
3069
3070 /* First, distinguish signals caused by the debugger from signals
3071 that have to do with the program's own actions. Note that
3072 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3073 on the operating system version. Here we detect when a SIGILL or
3074 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3075 something similar for SIGSEGV, since a SIGSEGV will be generated
3076 when we're trying to execute a breakpoint instruction on a
3077 non-executable stack. This happens for call dummy breakpoints
3078 for architectures like SPARC that place call dummies on the
3079 stack.
3080
3081 If we're doing a displaced step past a breakpoint, then the
3082 breakpoint is always inserted at the original instruction;
3083 non-standard signals can't be explained by the breakpoint. */
3084 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3085 || (! ecs->event_thread->trap_expected
3086 && breakpoint_inserted_here_p (stop_pc)
3087 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_ILL
3088 || ecs->event_thread->stop_signal == TARGET_SIGNAL_SEGV
3089 || ecs->event_thread->stop_signal == TARGET_SIGNAL_EMT))
3090 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
3091 || stop_soon == STOP_QUIETLY_REMOTE)
3092 {
3093 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
3094 {
3095 if (debug_infrun)
3096 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
3097 stop_print_frame = 0;
3098 stop_stepping (ecs);
3099 return;
3100 }
3101
3102 /* This is originated from start_remote(), start_inferior() and
3103 shared libraries hook functions. */
3104 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
3105 {
3106 if (debug_infrun)
3107 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
3108 stop_stepping (ecs);
3109 return;
3110 }
3111
3112 /* This originates from attach_command(). We need to overwrite
3113 the stop_signal here, because some kernels don't ignore a
3114 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
3115 See more comments in inferior.h. On the other hand, if we
3116 get a non-SIGSTOP, report it to the user - assume the backend
3117 will handle the SIGSTOP if it should show up later.
3118
3119 Also consider that the attach is complete when we see a
3120 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
3121 target extended-remote report it instead of a SIGSTOP
3122 (e.g. gdbserver). We already rely on SIGTRAP being our
3123 signal, so this is no exception.
3124
3125 Also consider that the attach is complete when we see a
3126 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
3127 the target to stop all threads of the inferior, in case the
3128 low level attach operation doesn't stop them implicitly. If
3129 they weren't stopped implicitly, then the stub will report a
3130 TARGET_SIGNAL_0, meaning: stopped for no particular reason
3131 other than GDB's request. */
3132 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3133 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP
3134 || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3135 || ecs->event_thread->stop_signal == TARGET_SIGNAL_0))
3136 {
3137 stop_stepping (ecs);
3138 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3139 return;
3140 }
3141
3142 /* See if there is a breakpoint at the current PC. */
3143 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
3144
3145 /* Following in case break condition called a
3146 function. */
3147 stop_print_frame = 1;
3148
3149 /* NOTE: cagney/2003-03-29: These two checks for a random signal
3150 at one stage in the past included checks for an inferior
3151 function call's call dummy's return breakpoint. The original
3152 comment, that went with the test, read:
3153
3154 ``End of a stack dummy. Some systems (e.g. Sony news) give
3155 another signal besides SIGTRAP, so check here as well as
3156 above.''
3157
3158 If someone ever tries to get call dummys on a
3159 non-executable stack to work (where the target would stop
3160 with something like a SIGSEGV), then those tests might need
3161 to be re-instated. Given, however, that the tests were only
3162 enabled when momentary breakpoints were not being used, I
3163 suspect that it won't be the case.
3164
3165 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
3166 be necessary for call dummies on a non-executable stack on
3167 SPARC. */
3168
3169 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
3170 ecs->random_signal
3171 = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
3172 || ecs->event_thread->trap_expected
3173 || (ecs->event_thread->step_range_end
3174 && ecs->event_thread->step_resume_breakpoint == NULL));
3175 else
3176 {
3177 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
3178 if (!ecs->random_signal)
3179 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
3180 }
3181 }
3182
3183 /* When we reach this point, we've pretty much decided
3184 that the reason for stopping must've been a random
3185 (unexpected) signal. */
3186
3187 else
3188 ecs->random_signal = 1;
3189
3190 process_event_stop_test:
3191 /* For the program's own signals, act according to
3192 the signal handling tables. */
3193
3194 if (ecs->random_signal)
3195 {
3196 /* Signal not for debugging purposes. */
3197 int printed = 0;
3198
3199 if (debug_infrun)
3200 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
3201 ecs->event_thread->stop_signal);
3202
3203 stopped_by_random_signal = 1;
3204
3205 if (signal_print[ecs->event_thread->stop_signal])
3206 {
3207 printed = 1;
3208 target_terminal_ours_for_output ();
3209 print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal);
3210 }
3211 /* Always stop on signals if we're either just gaining control
3212 of the program, or the user explicitly requested this thread
3213 to remain stopped. */
3214 if (stop_soon != NO_STOP_QUIETLY
3215 || ecs->event_thread->stop_requested
3216 || signal_stop_state (ecs->event_thread->stop_signal))
3217 {
3218 stop_stepping (ecs);
3219 return;
3220 }
3221 /* If not going to stop, give terminal back
3222 if we took it away. */
3223 else if (printed)
3224 target_terminal_inferior ();
3225
3226 /* Clear the signal if it should not be passed. */
3227 if (signal_program[ecs->event_thread->stop_signal] == 0)
3228 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
3229
3230 if (ecs->event_thread->prev_pc == stop_pc
3231 && ecs->event_thread->trap_expected
3232 && ecs->event_thread->step_resume_breakpoint == NULL)
3233 {
3234 /* We were just starting a new sequence, attempting to
3235 single-step off of a breakpoint and expecting a SIGTRAP.
3236 Instead this signal arrives. This signal will take us out
3237 of the stepping range so GDB needs to remember to, when
3238 the signal handler returns, resume stepping off that
3239 breakpoint. */
3240 /* To simplify things, "continue" is forced to use the same
3241 code paths as single-step - set a breakpoint at the
3242 signal return address and then, once hit, step off that
3243 breakpoint. */
3244 if (debug_infrun)
3245 fprintf_unfiltered (gdb_stdlog,
3246 "infrun: signal arrived while stepping over "
3247 "breakpoint\n");
3248
3249 insert_step_resume_breakpoint_at_frame (get_current_frame ());
3250 ecs->event_thread->step_after_step_resume_breakpoint = 1;
3251 keep_going (ecs);
3252 return;
3253 }
3254
3255 if (ecs->event_thread->step_range_end != 0
3256 && ecs->event_thread->stop_signal != TARGET_SIGNAL_0
3257 && (ecs->event_thread->step_range_start <= stop_pc
3258 && stop_pc < ecs->event_thread->step_range_end)
3259 && frame_id_eq (get_frame_id (get_current_frame ()),
3260 ecs->event_thread->step_frame_id)
3261 && ecs->event_thread->step_resume_breakpoint == NULL)
3262 {
3263 /* The inferior is about to take a signal that will take it
3264 out of the single step range. Set a breakpoint at the
3265 current PC (which is presumably where the signal handler
3266 will eventually return) and then allow the inferior to
3267 run free.
3268
3269 Note that this is only needed for a signal delivered
3270 while in the single-step range. Nested signals aren't a
3271 problem as they eventually all return. */
3272 if (debug_infrun)
3273 fprintf_unfiltered (gdb_stdlog,
3274 "infrun: signal may take us out of "
3275 "single-step range\n");
3276
3277 insert_step_resume_breakpoint_at_frame (get_current_frame ());
3278 keep_going (ecs);
3279 return;
3280 }
3281
3282 /* Note: step_resume_breakpoint may be non-NULL. This occures
3283 when either there's a nested signal, or when there's a
3284 pending signal enabled just as the signal handler returns
3285 (leaving the inferior at the step-resume-breakpoint without
3286 actually executing it). Either way continue until the
3287 breakpoint is really hit. */
3288 keep_going (ecs);
3289 return;
3290 }
3291
3292 /* Handle cases caused by hitting a breakpoint. */
3293 {
3294 CORE_ADDR jmp_buf_pc;
3295 struct bpstat_what what;
3296
3297 what = bpstat_what (ecs->event_thread->stop_bpstat);
3298
3299 if (what.call_dummy)
3300 {
3301 stop_stack_dummy = 1;
3302 }
3303
3304 switch (what.main_action)
3305 {
3306 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
3307 /* If we hit the breakpoint at longjmp while stepping, we
3308 install a momentary breakpoint at the target of the
3309 jmp_buf. */
3310
3311 if (debug_infrun)
3312 fprintf_unfiltered (gdb_stdlog,
3313 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
3314
3315 ecs->event_thread->stepping_over_breakpoint = 1;
3316
3317 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
3318 || !gdbarch_get_longjmp_target (current_gdbarch,
3319 get_current_frame (), &jmp_buf_pc))
3320 {
3321 if (debug_infrun)
3322 fprintf_unfiltered (gdb_stdlog, "\
3323 infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
3324 keep_going (ecs);
3325 return;
3326 }
3327
3328 /* We're going to replace the current step-resume breakpoint
3329 with a longjmp-resume breakpoint. */
3330 delete_step_resume_breakpoint (ecs->event_thread);
3331
3332 /* Insert a breakpoint at resume address. */
3333 insert_longjmp_resume_breakpoint (jmp_buf_pc);
3334
3335 keep_going (ecs);
3336 return;
3337
3338 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
3339 if (debug_infrun)
3340 fprintf_unfiltered (gdb_stdlog,
3341 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
3342
3343 gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
3344 delete_step_resume_breakpoint (ecs->event_thread);
3345
3346 ecs->event_thread->stop_step = 1;
3347 print_stop_reason (END_STEPPING_RANGE, 0);
3348 stop_stepping (ecs);
3349 return;
3350
3351 case BPSTAT_WHAT_SINGLE:
3352 if (debug_infrun)
3353 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
3354 ecs->event_thread->stepping_over_breakpoint = 1;
3355 /* Still need to check other stuff, at least the case
3356 where we are stepping and step out of the right range. */
3357 break;
3358
3359 case BPSTAT_WHAT_STOP_NOISY:
3360 if (debug_infrun)
3361 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
3362 stop_print_frame = 1;
3363
3364 /* We are about to nuke the step_resume_breakpointt via the
3365 cleanup chain, so no need to worry about it here. */
3366
3367 stop_stepping (ecs);
3368 return;
3369
3370 case BPSTAT_WHAT_STOP_SILENT:
3371 if (debug_infrun)
3372 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
3373 stop_print_frame = 0;
3374
3375 /* We are about to nuke the step_resume_breakpoin via the
3376 cleanup chain, so no need to worry about it here. */
3377
3378 stop_stepping (ecs);
3379 return;
3380
3381 case BPSTAT_WHAT_STEP_RESUME:
3382 if (debug_infrun)
3383 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
3384
3385 delete_step_resume_breakpoint (ecs->event_thread);
3386 if (ecs->event_thread->step_after_step_resume_breakpoint)
3387 {
3388 /* Back when the step-resume breakpoint was inserted, we
3389 were trying to single-step off a breakpoint. Go back
3390 to doing that. */
3391 ecs->event_thread->step_after_step_resume_breakpoint = 0;
3392 ecs->event_thread->stepping_over_breakpoint = 1;
3393 keep_going (ecs);
3394 return;
3395 }
3396 if (stop_pc == ecs->stop_func_start
3397 && execution_direction == EXEC_REVERSE)
3398 {
3399 /* We are stepping over a function call in reverse, and
3400 just hit the step-resume breakpoint at the start
3401 address of the function. Go back to single-stepping,
3402 which should take us back to the function call. */
3403 ecs->event_thread->stepping_over_breakpoint = 1;
3404 keep_going (ecs);
3405 return;
3406 }
3407 break;
3408
3409 case BPSTAT_WHAT_CHECK_SHLIBS:
3410 {
3411 if (debug_infrun)
3412 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
3413
3414 /* Check for any newly added shared libraries if we're
3415 supposed to be adding them automatically. Switch
3416 terminal for any messages produced by
3417 breakpoint_re_set. */
3418 target_terminal_ours_for_output ();
3419 /* NOTE: cagney/2003-11-25: Make certain that the target
3420 stack's section table is kept up-to-date. Architectures,
3421 (e.g., PPC64), use the section table to perform
3422 operations such as address => section name and hence
3423 require the table to contain all sections (including
3424 those found in shared libraries). */
3425 /* NOTE: cagney/2003-11-25: Pass current_target and not
3426 exec_ops to SOLIB_ADD. This is because current GDB is
3427 only tooled to propagate section_table changes out from
3428 the "current_target" (see target_resize_to_sections), and
3429 not up from the exec stratum. This, of course, isn't
3430 right. "infrun.c" should only interact with the
3431 exec/process stratum, instead relying on the target stack
3432 to propagate relevant changes (stop, section table
3433 changed, ...) up to other layers. */
3434 #ifdef SOLIB_ADD
3435 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
3436 #else
3437 solib_add (NULL, 0, &current_target, auto_solib_add);
3438 #endif
3439 target_terminal_inferior ();
3440
3441 /* If requested, stop when the dynamic linker notifies
3442 gdb of events. This allows the user to get control
3443 and place breakpoints in initializer routines for
3444 dynamically loaded objects (among other things). */
3445 if (stop_on_solib_events || stop_stack_dummy)
3446 {
3447 stop_stepping (ecs);
3448 return;
3449 }
3450 else
3451 {
3452 /* We want to step over this breakpoint, then keep going. */
3453 ecs->event_thread->stepping_over_breakpoint = 1;
3454 break;
3455 }
3456 }
3457 break;
3458
3459 case BPSTAT_WHAT_LAST:
3460 /* Not a real code, but listed here to shut up gcc -Wall. */
3461
3462 case BPSTAT_WHAT_KEEP_CHECKING:
3463 break;
3464 }
3465 }
3466
3467 /* We come here if we hit a breakpoint but should not
3468 stop for it. Possibly we also were stepping
3469 and should stop for that. So fall through and
3470 test for stepping. But, if not stepping,
3471 do not stop. */
3472
3473 /* In all-stop mode, if we're currently stepping but have stopped in
3474 some other thread, we need to switch back to the stepped thread. */
3475 if (!non_stop)
3476 {
3477 struct thread_info *tp;
3478 tp = iterate_over_threads (currently_stepping_callback,
3479 ecs->event_thread);
3480 if (tp)
3481 {
3482 /* However, if the current thread is blocked on some internal
3483 breakpoint, and we simply need to step over that breakpoint
3484 to get it going again, do that first. */
3485 if ((ecs->event_thread->trap_expected
3486 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
3487 || ecs->event_thread->stepping_over_breakpoint)
3488 {
3489 keep_going (ecs);
3490 return;
3491 }
3492
3493 /* Otherwise, we no longer expect a trap in the current thread.
3494 Clear the trap_expected flag before switching back -- this is
3495 what keep_going would do as well, if we called it. */
3496 ecs->event_thread->trap_expected = 0;
3497
3498 if (debug_infrun)
3499 fprintf_unfiltered (gdb_stdlog,
3500 "infrun: switching back to stepped thread\n");
3501
3502 ecs->event_thread = tp;
3503 ecs->ptid = tp->ptid;
3504 context_switch (ecs->ptid);
3505 keep_going (ecs);
3506 return;
3507 }
3508 }
3509
3510 /* Are we stepping to get the inferior out of the dynamic linker's
3511 hook (and possibly the dld itself) after catching a shlib
3512 event? */
3513 if (ecs->event_thread->stepping_through_solib_after_catch)
3514 {
3515 #if defined(SOLIB_ADD)
3516 /* Have we reached our destination? If not, keep going. */
3517 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
3518 {
3519 if (debug_infrun)
3520 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
3521 ecs->event_thread->stepping_over_breakpoint = 1;
3522 keep_going (ecs);
3523 return;
3524 }
3525 #endif
3526 if (debug_infrun)
3527 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
3528 /* Else, stop and report the catchpoint(s) whose triggering
3529 caused us to begin stepping. */
3530 ecs->event_thread->stepping_through_solib_after_catch = 0;
3531 bpstat_clear (&ecs->event_thread->stop_bpstat);
3532 ecs->event_thread->stop_bpstat
3533 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
3534 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
3535 stop_print_frame = 1;
3536 stop_stepping (ecs);
3537 return;
3538 }
3539
3540 if (ecs->event_thread->step_resume_breakpoint)
3541 {
3542 if (debug_infrun)
3543 fprintf_unfiltered (gdb_stdlog,
3544 "infrun: step-resume breakpoint is inserted\n");
3545
3546 /* Having a step-resume breakpoint overrides anything
3547 else having to do with stepping commands until
3548 that breakpoint is reached. */
3549 keep_going (ecs);
3550 return;
3551 }
3552
3553 if (ecs->event_thread->step_range_end == 0)
3554 {
3555 if (debug_infrun)
3556 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
3557 /* Likewise if we aren't even stepping. */
3558 keep_going (ecs);
3559 return;
3560 }
3561
3562 /* If stepping through a line, keep going if still within it.
3563
3564 Note that step_range_end is the address of the first instruction
3565 beyond the step range, and NOT the address of the last instruction
3566 within it! */
3567 if (stop_pc >= ecs->event_thread->step_range_start
3568 && stop_pc < ecs->event_thread->step_range_end)
3569 {
3570 if (debug_infrun)
3571 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
3572 paddr_nz (ecs->event_thread->step_range_start),
3573 paddr_nz (ecs->event_thread->step_range_end));
3574
3575 /* When stepping backward, stop at beginning of line range
3576 (unless it's the function entry point, in which case
3577 keep going back to the call point). */
3578 if (stop_pc == ecs->event_thread->step_range_start
3579 && stop_pc != ecs->stop_func_start
3580 && execution_direction == EXEC_REVERSE)
3581 {
3582 ecs->event_thread->stop_step = 1;
3583 print_stop_reason (END_STEPPING_RANGE, 0);
3584 stop_stepping (ecs);
3585 }
3586 else
3587 keep_going (ecs);
3588
3589 return;
3590 }
3591
3592 /* We stepped out of the stepping range. */
3593
3594 /* If we are stepping at the source level and entered the runtime
3595 loader dynamic symbol resolution code, we keep on single stepping
3596 until we exit the run time loader code and reach the callee's
3597 address. */
3598 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3599 && in_solib_dynsym_resolve_code (stop_pc))
3600 {
3601 CORE_ADDR pc_after_resolver =
3602 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
3603
3604 if (debug_infrun)
3605 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
3606
3607 if (pc_after_resolver)
3608 {
3609 /* Set up a step-resume breakpoint at the address
3610 indicated by SKIP_SOLIB_RESOLVER. */
3611 struct symtab_and_line sr_sal;
3612 init_sal (&sr_sal);
3613 sr_sal.pc = pc_after_resolver;
3614
3615 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3616 }
3617
3618 keep_going (ecs);
3619 return;
3620 }
3621
3622 if (ecs->event_thread->step_range_end != 1
3623 && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3624 || ecs->event_thread->step_over_calls == STEP_OVER_ALL)
3625 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
3626 {
3627 if (debug_infrun)
3628 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
3629 /* The inferior, while doing a "step" or "next", has ended up in
3630 a signal trampoline (either by a signal being delivered or by
3631 the signal handler returning). Just single-step until the
3632 inferior leaves the trampoline (either by calling the handler
3633 or returning). */
3634 keep_going (ecs);
3635 return;
3636 }
3637
3638 /* Check for subroutine calls. The check for the current frame
3639 equalling the step ID is not necessary - the check of the
3640 previous frame's ID is sufficient - but it is a common case and
3641 cheaper than checking the previous frame's ID.
3642
3643 NOTE: frame_id_eq will never report two invalid frame IDs as
3644 being equal, so to get into this block, both the current and
3645 previous frame must have valid frame IDs. */
3646 if (!frame_id_eq (get_frame_id (get_current_frame ()),
3647 ecs->event_thread->step_frame_id)
3648 && (frame_id_eq (frame_unwind_id (get_current_frame ()),
3649 ecs->event_thread->step_frame_id)
3650 || execution_direction == EXEC_REVERSE))
3651 {
3652 CORE_ADDR real_stop_pc;
3653
3654 if (debug_infrun)
3655 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
3656
3657 if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
3658 || ((ecs->event_thread->step_range_end == 1)
3659 && in_prologue (ecs->event_thread->prev_pc,
3660 ecs->stop_func_start)))
3661 {
3662 /* I presume that step_over_calls is only 0 when we're
3663 supposed to be stepping at the assembly language level
3664 ("stepi"). Just stop. */
3665 /* Also, maybe we just did a "nexti" inside a prolog, so we
3666 thought it was a subroutine call but it was not. Stop as
3667 well. FENN */
3668 ecs->event_thread->stop_step = 1;
3669 print_stop_reason (END_STEPPING_RANGE, 0);
3670 stop_stepping (ecs);
3671 return;
3672 }
3673
3674 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
3675 {
3676 /* We're doing a "next".
3677
3678 Normal (forward) execution: set a breakpoint at the
3679 callee's return address (the address at which the caller
3680 will resume).
3681
3682 Reverse (backward) execution. set the step-resume
3683 breakpoint at the start of the function that we just
3684 stepped into (backwards), and continue to there. When we
3685 get there, we'll need to single-step back to the caller. */
3686
3687 if (execution_direction == EXEC_REVERSE)
3688 {
3689 struct symtab_and_line sr_sal;
3690
3691 if (ecs->stop_func_start == 0
3692 && in_solib_dynsym_resolve_code (stop_pc))
3693 {
3694 /* Stepped into runtime loader dynamic symbol
3695 resolution code. Since we're in reverse,
3696 we have already backed up through the runtime
3697 loader and the dynamic function. This is just
3698 the trampoline (jump table).
3699
3700 Just keep stepping, we'll soon be home.
3701 */
3702 keep_going (ecs);
3703 return;
3704 }
3705 /* Normal (staticly linked) function call return. */
3706 init_sal (&sr_sal);
3707 sr_sal.pc = ecs->stop_func_start;
3708 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3709 }
3710 else
3711 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3712
3713 keep_going (ecs);
3714 return;
3715 }
3716
3717 /* If we are in a function call trampoline (a stub between the
3718 calling routine and the real function), locate the real
3719 function. That's what tells us (a) whether we want to step
3720 into it at all, and (b) what prologue we want to run to the
3721 end of, if we do step into it. */
3722 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
3723 if (real_stop_pc == 0)
3724 real_stop_pc = gdbarch_skip_trampoline_code
3725 (current_gdbarch, get_current_frame (), stop_pc);
3726 if (real_stop_pc != 0)
3727 ecs->stop_func_start = real_stop_pc;
3728
3729 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
3730 {
3731 struct symtab_and_line sr_sal;
3732 init_sal (&sr_sal);
3733 sr_sal.pc = ecs->stop_func_start;
3734
3735 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3736 keep_going (ecs);
3737 return;
3738 }
3739
3740 /* If we have line number information for the function we are
3741 thinking of stepping into, step into it.
3742
3743 If there are several symtabs at that PC (e.g. with include
3744 files), just want to know whether *any* of them have line
3745 numbers. find_pc_line handles this. */
3746 {
3747 struct symtab_and_line tmp_sal;
3748
3749 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
3750 if (tmp_sal.line != 0)
3751 {
3752 if (execution_direction == EXEC_REVERSE)
3753 handle_step_into_function_backward (ecs);
3754 else
3755 handle_step_into_function (ecs);
3756 return;
3757 }
3758 }
3759
3760 /* If we have no line number and the step-stop-if-no-debug is
3761 set, we stop the step so that the user has a chance to switch
3762 in assembly mode. */
3763 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3764 && step_stop_if_no_debug)
3765 {
3766 ecs->event_thread->stop_step = 1;
3767 print_stop_reason (END_STEPPING_RANGE, 0);
3768 stop_stepping (ecs);
3769 return;
3770 }
3771
3772 if (execution_direction == EXEC_REVERSE)
3773 {
3774 /* Set a breakpoint at callee's start address.
3775 From there we can step once and be back in the caller. */
3776 struct symtab_and_line sr_sal;
3777 init_sal (&sr_sal);
3778 sr_sal.pc = ecs->stop_func_start;
3779 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3780 }
3781 else
3782 /* Set a breakpoint at callee's return address (the address
3783 at which the caller will resume). */
3784 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3785
3786 keep_going (ecs);
3787 return;
3788 }
3789
3790 /* If we're in the return path from a shared library trampoline,
3791 we want to proceed through the trampoline when stepping. */
3792 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
3793 stop_pc, ecs->stop_func_name))
3794 {
3795 /* Determine where this trampoline returns. */
3796 CORE_ADDR real_stop_pc;
3797 real_stop_pc = gdbarch_skip_trampoline_code
3798 (current_gdbarch, get_current_frame (), stop_pc);
3799
3800 if (debug_infrun)
3801 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
3802
3803 /* Only proceed through if we know where it's going. */
3804 if (real_stop_pc)
3805 {
3806 /* And put the step-breakpoint there and go until there. */
3807 struct symtab_and_line sr_sal;
3808
3809 init_sal (&sr_sal); /* initialize to zeroes */
3810 sr_sal.pc = real_stop_pc;
3811 sr_sal.section = find_pc_overlay (sr_sal.pc);
3812
3813 /* Do not specify what the fp should be when we stop since
3814 on some machines the prologue is where the new fp value
3815 is established. */
3816 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3817
3818 /* Restart without fiddling with the step ranges or
3819 other state. */
3820 keep_going (ecs);
3821 return;
3822 }
3823 }
3824
3825 stop_pc_sal = find_pc_line (stop_pc, 0);
3826
3827 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3828 the trampoline processing logic, however, there are some trampolines
3829 that have no names, so we should do trampoline handling first. */
3830 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3831 && ecs->stop_func_name == NULL
3832 && stop_pc_sal.line == 0)
3833 {
3834 if (debug_infrun)
3835 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
3836
3837 /* The inferior just stepped into, or returned to, an
3838 undebuggable function (where there is no debugging information
3839 and no line number corresponding to the address where the
3840 inferior stopped). Since we want to skip this kind of code,
3841 we keep going until the inferior returns from this
3842 function - unless the user has asked us not to (via
3843 set step-mode) or we no longer know how to get back
3844 to the call site. */
3845 if (step_stop_if_no_debug
3846 || !frame_id_p (frame_unwind_id (get_current_frame ())))
3847 {
3848 /* If we have no line number and the step-stop-if-no-debug
3849 is set, we stop the step so that the user has a chance to
3850 switch in assembly mode. */
3851 ecs->event_thread->stop_step = 1;
3852 print_stop_reason (END_STEPPING_RANGE, 0);
3853 stop_stepping (ecs);
3854 return;
3855 }
3856 else
3857 {
3858 /* Set a breakpoint at callee's return address (the address
3859 at which the caller will resume). */
3860 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3861 keep_going (ecs);
3862 return;
3863 }
3864 }
3865
3866 if (ecs->event_thread->step_range_end == 1)
3867 {
3868 /* It is stepi or nexti. We always want to stop stepping after
3869 one instruction. */
3870 if (debug_infrun)
3871 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
3872 ecs->event_thread->stop_step = 1;
3873 print_stop_reason (END_STEPPING_RANGE, 0);
3874 stop_stepping (ecs);
3875 return;
3876 }
3877
3878 if (stop_pc_sal.line == 0)
3879 {
3880 /* We have no line number information. That means to stop
3881 stepping (does this always happen right after one instruction,
3882 when we do "s" in a function with no line numbers,
3883 or can this happen as a result of a return or longjmp?). */
3884 if (debug_infrun)
3885 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
3886 ecs->event_thread->stop_step = 1;
3887 print_stop_reason (END_STEPPING_RANGE, 0);
3888 stop_stepping (ecs);
3889 return;
3890 }
3891
3892 if ((stop_pc == stop_pc_sal.pc)
3893 && (ecs->event_thread->current_line != stop_pc_sal.line
3894 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
3895 {
3896 /* We are at the start of a different line. So stop. Note that
3897 we don't stop if we step into the middle of a different line.
3898 That is said to make things like for (;;) statements work
3899 better. */
3900 if (debug_infrun)
3901 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
3902 ecs->event_thread->stop_step = 1;
3903 print_stop_reason (END_STEPPING_RANGE, 0);
3904 stop_stepping (ecs);
3905 return;
3906 }
3907
3908 /* We aren't done stepping.
3909
3910 Optimize by setting the stepping range to the line.
3911 (We might not be in the original line, but if we entered a
3912 new line in mid-statement, we continue stepping. This makes
3913 things like for(;;) statements work better.) */
3914
3915 ecs->event_thread->step_range_start = stop_pc_sal.pc;
3916 ecs->event_thread->step_range_end = stop_pc_sal.end;
3917 ecs->event_thread->step_frame_id = get_frame_id (get_current_frame ());
3918 ecs->event_thread->current_line = stop_pc_sal.line;
3919 ecs->event_thread->current_symtab = stop_pc_sal.symtab;
3920
3921 if (debug_infrun)
3922 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
3923 keep_going (ecs);
3924 }
3925
3926 /* Are we in the middle of stepping? */
3927
3928 static int
3929 currently_stepping_thread (struct thread_info *tp)
3930 {
3931 return (tp->step_range_end && tp->step_resume_breakpoint == NULL)
3932 || tp->trap_expected
3933 || tp->stepping_through_solib_after_catch;
3934 }
3935
3936 static int
3937 currently_stepping_callback (struct thread_info *tp, void *data)
3938 {
3939 /* Return true if any thread *but* the one passed in "data" is
3940 in the middle of stepping. */
3941 return tp != data && currently_stepping_thread (tp);
3942 }
3943
3944 static int
3945 currently_stepping (struct thread_info *tp)
3946 {
3947 return currently_stepping_thread (tp) || bpstat_should_step ();
3948 }
3949
3950 /* Inferior has stepped into a subroutine call with source code that
3951 we should not step over. Do step to the first line of code in
3952 it. */
3953
3954 static void
3955 handle_step_into_function (struct execution_control_state *ecs)
3956 {
3957 struct symtab *s;
3958 struct symtab_and_line stop_func_sal, sr_sal;
3959
3960 s = find_pc_symtab (stop_pc);
3961 if (s && s->language != language_asm)
3962 ecs->stop_func_start = gdbarch_skip_prologue (current_gdbarch,
3963 ecs->stop_func_start);
3964
3965 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
3966 /* Use the step_resume_break to step until the end of the prologue,
3967 even if that involves jumps (as it seems to on the vax under
3968 4.2). */
3969 /* If the prologue ends in the middle of a source line, continue to
3970 the end of that source line (if it is still within the function).
3971 Otherwise, just go to end of prologue. */
3972 if (stop_func_sal.end
3973 && stop_func_sal.pc != ecs->stop_func_start
3974 && stop_func_sal.end < ecs->stop_func_end)
3975 ecs->stop_func_start = stop_func_sal.end;
3976
3977 /* Architectures which require breakpoint adjustment might not be able
3978 to place a breakpoint at the computed address. If so, the test
3979 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
3980 ecs->stop_func_start to an address at which a breakpoint may be
3981 legitimately placed.
3982
3983 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
3984 made, GDB will enter an infinite loop when stepping through
3985 optimized code consisting of VLIW instructions which contain
3986 subinstructions corresponding to different source lines. On
3987 FR-V, it's not permitted to place a breakpoint on any but the
3988 first subinstruction of a VLIW instruction. When a breakpoint is
3989 set, GDB will adjust the breakpoint address to the beginning of
3990 the VLIW instruction. Thus, we need to make the corresponding
3991 adjustment here when computing the stop address. */
3992
3993 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
3994 {
3995 ecs->stop_func_start
3996 = gdbarch_adjust_breakpoint_address (current_gdbarch,
3997 ecs->stop_func_start);
3998 }
3999
4000 if (ecs->stop_func_start == stop_pc)
4001 {
4002 /* We are already there: stop now. */
4003 ecs->event_thread->stop_step = 1;
4004 print_stop_reason (END_STEPPING_RANGE, 0);
4005 stop_stepping (ecs);
4006 return;
4007 }
4008 else
4009 {
4010 /* Put the step-breakpoint there and go until there. */
4011 init_sal (&sr_sal); /* initialize to zeroes */
4012 sr_sal.pc = ecs->stop_func_start;
4013 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
4014
4015 /* Do not specify what the fp should be when we stop since on
4016 some machines the prologue is where the new fp value is
4017 established. */
4018 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
4019
4020 /* And make sure stepping stops right away then. */
4021 ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
4022 }
4023 keep_going (ecs);
4024 }
4025
4026 /* Inferior has stepped backward into a subroutine call with source
4027 code that we should not step over. Do step to the beginning of the
4028 last line of code in it. */
4029
4030 static void
4031 handle_step_into_function_backward (struct execution_control_state *ecs)
4032 {
4033 struct symtab *s;
4034 struct symtab_and_line stop_func_sal, sr_sal;
4035
4036 s = find_pc_symtab (stop_pc);
4037 if (s && s->language != language_asm)
4038 ecs->stop_func_start = gdbarch_skip_prologue (current_gdbarch,
4039 ecs->stop_func_start);
4040
4041 stop_func_sal = find_pc_line (stop_pc, 0);
4042
4043 /* OK, we're just going to keep stepping here. */
4044 if (stop_func_sal.pc == stop_pc)
4045 {
4046 /* We're there already. Just stop stepping now. */
4047 ecs->event_thread->stop_step = 1;
4048 print_stop_reason (END_STEPPING_RANGE, 0);
4049 stop_stepping (ecs);
4050 }
4051 else
4052 {
4053 /* Else just reset the step range and keep going.
4054 No step-resume breakpoint, they don't work for
4055 epilogues, which can have multiple entry paths. */
4056 ecs->event_thread->step_range_start = stop_func_sal.pc;
4057 ecs->event_thread->step_range_end = stop_func_sal.end;
4058 keep_going (ecs);
4059 }
4060 return;
4061 }
4062
4063 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
4064 This is used to both functions and to skip over code. */
4065
4066 static void
4067 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
4068 struct frame_id sr_id)
4069 {
4070 /* There should never be more than one step-resume or longjmp-resume
4071 breakpoint per thread, so we should never be setting a new
4072 step_resume_breakpoint when one is already active. */
4073 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
4074
4075 if (debug_infrun)
4076 fprintf_unfiltered (gdb_stdlog,
4077 "infrun: inserting step-resume breakpoint at 0x%s\n",
4078 paddr_nz (sr_sal.pc));
4079
4080 inferior_thread ()->step_resume_breakpoint
4081 = set_momentary_breakpoint (sr_sal, sr_id, bp_step_resume);
4082 }
4083
4084 /* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
4085 to skip a potential signal handler.
4086
4087 This is called with the interrupted function's frame. The signal
4088 handler, when it returns, will resume the interrupted function at
4089 RETURN_FRAME.pc. */
4090
4091 static void
4092 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
4093 {
4094 struct symtab_and_line sr_sal;
4095
4096 gdb_assert (return_frame != NULL);
4097 init_sal (&sr_sal); /* initialize to zeros */
4098
4099 sr_sal.pc = gdbarch_addr_bits_remove
4100 (current_gdbarch, get_frame_pc (return_frame));
4101 sr_sal.section = find_pc_overlay (sr_sal.pc);
4102
4103 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
4104 }
4105
4106 /* Similar to insert_step_resume_breakpoint_at_frame, except
4107 but a breakpoint at the previous frame's PC. This is used to
4108 skip a function after stepping into it (for "next" or if the called
4109 function has no debugging information).
4110
4111 The current function has almost always been reached by single
4112 stepping a call or return instruction. NEXT_FRAME belongs to the
4113 current function, and the breakpoint will be set at the caller's
4114 resume address.
4115
4116 This is a separate function rather than reusing
4117 insert_step_resume_breakpoint_at_frame in order to avoid
4118 get_prev_frame, which may stop prematurely (see the implementation
4119 of frame_unwind_id for an example). */
4120
4121 static void
4122 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
4123 {
4124 struct symtab_and_line sr_sal;
4125
4126 /* We shouldn't have gotten here if we don't know where the call site
4127 is. */
4128 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
4129
4130 init_sal (&sr_sal); /* initialize to zeros */
4131
4132 sr_sal.pc = gdbarch_addr_bits_remove
4133 (current_gdbarch, frame_pc_unwind (next_frame));
4134 sr_sal.section = find_pc_overlay (sr_sal.pc);
4135
4136 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
4137 }
4138
4139 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
4140 new breakpoint at the target of a jmp_buf. The handling of
4141 longjmp-resume uses the same mechanisms used for handling
4142 "step-resume" breakpoints. */
4143
4144 static void
4145 insert_longjmp_resume_breakpoint (CORE_ADDR pc)
4146 {
4147 /* There should never be more than one step-resume or longjmp-resume
4148 breakpoint per thread, so we should never be setting a new
4149 longjmp_resume_breakpoint when one is already active. */
4150 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
4151
4152 if (debug_infrun)
4153 fprintf_unfiltered (gdb_stdlog,
4154 "infrun: inserting longjmp-resume breakpoint at 0x%s\n",
4155 paddr_nz (pc));
4156
4157 inferior_thread ()->step_resume_breakpoint =
4158 set_momentary_breakpoint_at_pc (pc, bp_longjmp_resume);
4159 }
4160
4161 static void
4162 stop_stepping (struct execution_control_state *ecs)
4163 {
4164 if (debug_infrun)
4165 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
4166
4167 /* Let callers know we don't want to wait for the inferior anymore. */
4168 ecs->wait_some_more = 0;
4169 }
4170
4171 /* This function handles various cases where we need to continue
4172 waiting for the inferior. */
4173 /* (Used to be the keep_going: label in the old wait_for_inferior) */
4174
4175 static void
4176 keep_going (struct execution_control_state *ecs)
4177 {
4178 /* Save the pc before execution, to compare with pc after stop. */
4179 ecs->event_thread->prev_pc
4180 = regcache_read_pc (get_thread_regcache (ecs->ptid));
4181
4182 /* If we did not do break;, it means we should keep running the
4183 inferior and not return to debugger. */
4184
4185 if (ecs->event_thread->trap_expected
4186 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
4187 {
4188 /* We took a signal (which we are supposed to pass through to
4189 the inferior, else we'd not get here) and we haven't yet
4190 gotten our trap. Simply continue. */
4191 resume (currently_stepping (ecs->event_thread),
4192 ecs->event_thread->stop_signal);
4193 }
4194 else
4195 {
4196 /* Either the trap was not expected, but we are continuing
4197 anyway (the user asked that this signal be passed to the
4198 child)
4199 -- or --
4200 The signal was SIGTRAP, e.g. it was our signal, but we
4201 decided we should resume from it.
4202
4203 We're going to run this baby now!
4204
4205 Note that insert_breakpoints won't try to re-insert
4206 already inserted breakpoints. Therefore, we don't
4207 care if breakpoints were already inserted, or not. */
4208
4209 if (ecs->event_thread->stepping_over_breakpoint)
4210 {
4211 if (! use_displaced_stepping (current_gdbarch))
4212 /* Since we can't do a displaced step, we have to remove
4213 the breakpoint while we step it. To keep things
4214 simple, we remove them all. */
4215 remove_breakpoints ();
4216 }
4217 else
4218 {
4219 struct gdb_exception e;
4220 /* Stop stepping when inserting breakpoints
4221 has failed. */
4222 TRY_CATCH (e, RETURN_MASK_ERROR)
4223 {
4224 insert_breakpoints ();
4225 }
4226 if (e.reason < 0)
4227 {
4228 stop_stepping (ecs);
4229 return;
4230 }
4231 }
4232
4233 ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
4234
4235 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
4236 specifies that such a signal should be delivered to the
4237 target program).
4238
4239 Typically, this would occure when a user is debugging a
4240 target monitor on a simulator: the target monitor sets a
4241 breakpoint; the simulator encounters this break-point and
4242 halts the simulation handing control to GDB; GDB, noteing
4243 that the break-point isn't valid, returns control back to the
4244 simulator; the simulator then delivers the hardware
4245 equivalent of a SIGNAL_TRAP to the program being debugged. */
4246
4247 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4248 && !signal_program[ecs->event_thread->stop_signal])
4249 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
4250
4251 resume (currently_stepping (ecs->event_thread),
4252 ecs->event_thread->stop_signal);
4253 }
4254
4255 prepare_to_wait (ecs);
4256 }
4257
4258 /* This function normally comes after a resume, before
4259 handle_inferior_event exits. It takes care of any last bits of
4260 housekeeping, and sets the all-important wait_some_more flag. */
4261
4262 static void
4263 prepare_to_wait (struct execution_control_state *ecs)
4264 {
4265 if (debug_infrun)
4266 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
4267 if (infwait_state == infwait_normal_state)
4268 {
4269 overlay_cache_invalid = 1;
4270
4271 /* We have to invalidate the registers BEFORE calling
4272 target_wait because they can be loaded from the target while
4273 in target_wait. This makes remote debugging a bit more
4274 efficient for those targets that provide critical registers
4275 as part of their normal status mechanism. */
4276
4277 registers_changed ();
4278 waiton_ptid = pid_to_ptid (-1);
4279 }
4280 /* This is the old end of the while loop. Let everybody know we
4281 want to wait for the inferior some more and get called again
4282 soon. */
4283 ecs->wait_some_more = 1;
4284 }
4285
4286 /* Print why the inferior has stopped. We always print something when
4287 the inferior exits, or receives a signal. The rest of the cases are
4288 dealt with later on in normal_stop() and print_it_typical(). Ideally
4289 there should be a call to this function from handle_inferior_event()
4290 each time stop_stepping() is called.*/
4291 static void
4292 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
4293 {
4294 switch (stop_reason)
4295 {
4296 case END_STEPPING_RANGE:
4297 /* We are done with a step/next/si/ni command. */
4298 /* For now print nothing. */
4299 /* Print a message only if not in the middle of doing a "step n"
4300 operation for n > 1 */
4301 if (!inferior_thread ()->step_multi
4302 || !inferior_thread ()->stop_step)
4303 if (ui_out_is_mi_like_p (uiout))
4304 ui_out_field_string
4305 (uiout, "reason",
4306 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
4307 break;
4308 case SIGNAL_EXITED:
4309 /* The inferior was terminated by a signal. */
4310 annotate_signalled ();
4311 if (ui_out_is_mi_like_p (uiout))
4312 ui_out_field_string
4313 (uiout, "reason",
4314 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
4315 ui_out_text (uiout, "\nProgram terminated with signal ");
4316 annotate_signal_name ();
4317 ui_out_field_string (uiout, "signal-name",
4318 target_signal_to_name (stop_info));
4319 annotate_signal_name_end ();
4320 ui_out_text (uiout, ", ");
4321 annotate_signal_string ();
4322 ui_out_field_string (uiout, "signal-meaning",
4323 target_signal_to_string (stop_info));
4324 annotate_signal_string_end ();
4325 ui_out_text (uiout, ".\n");
4326 ui_out_text (uiout, "The program no longer exists.\n");
4327 break;
4328 case EXITED:
4329 /* The inferior program is finished. */
4330 annotate_exited (stop_info);
4331 if (stop_info)
4332 {
4333 if (ui_out_is_mi_like_p (uiout))
4334 ui_out_field_string (uiout, "reason",
4335 async_reason_lookup (EXEC_ASYNC_EXITED));
4336 ui_out_text (uiout, "\nProgram exited with code ");
4337 ui_out_field_fmt (uiout, "exit-code", "0%o",
4338 (unsigned int) stop_info);
4339 ui_out_text (uiout, ".\n");
4340 }
4341 else
4342 {
4343 if (ui_out_is_mi_like_p (uiout))
4344 ui_out_field_string
4345 (uiout, "reason",
4346 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
4347 ui_out_text (uiout, "\nProgram exited normally.\n");
4348 }
4349 /* Support the --return-child-result option. */
4350 return_child_result_value = stop_info;
4351 break;
4352 case SIGNAL_RECEIVED:
4353 /* Signal received. The signal table tells us to print about
4354 it. */
4355 annotate_signal ();
4356
4357 if (stop_info == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
4358 {
4359 struct thread_info *t = inferior_thread ();
4360
4361 ui_out_text (uiout, "\n[");
4362 ui_out_field_string (uiout, "thread-name",
4363 target_pid_to_str (t->ptid));
4364 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
4365 ui_out_text (uiout, " stopped");
4366 }
4367 else
4368 {
4369 ui_out_text (uiout, "\nProgram received signal ");
4370 annotate_signal_name ();
4371 if (ui_out_is_mi_like_p (uiout))
4372 ui_out_field_string
4373 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
4374 ui_out_field_string (uiout, "signal-name",
4375 target_signal_to_name (stop_info));
4376 annotate_signal_name_end ();
4377 ui_out_text (uiout, ", ");
4378 annotate_signal_string ();
4379 ui_out_field_string (uiout, "signal-meaning",
4380 target_signal_to_string (stop_info));
4381 annotate_signal_string_end ();
4382 }
4383 ui_out_text (uiout, ".\n");
4384 break;
4385 case NO_HISTORY:
4386 /* Reverse execution: target ran out of history info. */
4387 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
4388 break;
4389 default:
4390 internal_error (__FILE__, __LINE__,
4391 _("print_stop_reason: unrecognized enum value"));
4392 break;
4393 }
4394 }
4395 \f
4396
4397 /* Here to return control to GDB when the inferior stops for real.
4398 Print appropriate messages, remove breakpoints, give terminal our modes.
4399
4400 STOP_PRINT_FRAME nonzero means print the executing frame
4401 (pc, function, args, file, line number and line text).
4402 BREAKPOINTS_FAILED nonzero means stop was due to error
4403 attempting to insert breakpoints. */
4404
4405 void
4406 normal_stop (void)
4407 {
4408 struct target_waitstatus last;
4409 ptid_t last_ptid;
4410 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
4411
4412 get_last_target_status (&last_ptid, &last);
4413
4414 /* If an exception is thrown from this point on, make sure to
4415 propagate GDB's knowledge of the executing state to the
4416 frontend/user running state. A QUIT is an easy exception to see
4417 here, so do this before any filtered output. */
4418 if (target_has_execution)
4419 {
4420 if (!non_stop)
4421 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
4422 else if (last.kind != TARGET_WAITKIND_SIGNALLED
4423 && last.kind != TARGET_WAITKIND_EXITED)
4424 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
4425 }
4426
4427 /* In non-stop mode, we don't want GDB to switch threads behind the
4428 user's back, to avoid races where the user is typing a command to
4429 apply to thread x, but GDB switches to thread y before the user
4430 finishes entering the command. */
4431
4432 /* As with the notification of thread events, we want to delay
4433 notifying the user that we've switched thread context until
4434 the inferior actually stops.
4435
4436 There's no point in saying anything if the inferior has exited.
4437 Note that SIGNALLED here means "exited with a signal", not
4438 "received a signal". */
4439 if (!non_stop
4440 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
4441 && target_has_execution
4442 && last.kind != TARGET_WAITKIND_SIGNALLED
4443 && last.kind != TARGET_WAITKIND_EXITED)
4444 {
4445 target_terminal_ours_for_output ();
4446 printf_filtered (_("[Switching to %s]\n"),
4447 target_pid_to_str (inferior_ptid));
4448 annotate_thread_changed ();
4449 previous_inferior_ptid = inferior_ptid;
4450 }
4451
4452 if (!breakpoints_always_inserted_mode () && target_has_execution)
4453 {
4454 if (remove_breakpoints ())
4455 {
4456 target_terminal_ours_for_output ();
4457 printf_filtered (_("\
4458 Cannot remove breakpoints because program is no longer writable.\n\
4459 Further execution is probably impossible.\n"));
4460 }
4461 }
4462
4463 /* If an auto-display called a function and that got a signal,
4464 delete that auto-display to avoid an infinite recursion. */
4465
4466 if (stopped_by_random_signal)
4467 disable_current_display ();
4468
4469 /* Don't print a message if in the middle of doing a "step n"
4470 operation for n > 1 */
4471 if (target_has_execution
4472 && last.kind != TARGET_WAITKIND_SIGNALLED
4473 && last.kind != TARGET_WAITKIND_EXITED
4474 && inferior_thread ()->step_multi
4475 && inferior_thread ()->stop_step)
4476 goto done;
4477
4478 target_terminal_ours ();
4479
4480 /* Set the current source location. This will also happen if we
4481 display the frame below, but the current SAL will be incorrect
4482 during a user hook-stop function. */
4483 if (has_stack_frames () && !stop_stack_dummy)
4484 set_current_sal_from_frame (get_current_frame (), 1);
4485
4486 /* Let the user/frontend see the threads as stopped. */
4487 do_cleanups (old_chain);
4488
4489 /* Look up the hook_stop and run it (CLI internally handles problem
4490 of stop_command's pre-hook not existing). */
4491 if (stop_command)
4492 catch_errors (hook_stop_stub, stop_command,
4493 "Error while running hook_stop:\n", RETURN_MASK_ALL);
4494
4495 if (!has_stack_frames ())
4496 goto done;
4497
4498 if (last.kind == TARGET_WAITKIND_SIGNALLED
4499 || last.kind == TARGET_WAITKIND_EXITED)
4500 goto done;
4501
4502 /* Select innermost stack frame - i.e., current frame is frame 0,
4503 and current location is based on that.
4504 Don't do this on return from a stack dummy routine,
4505 or if the program has exited. */
4506
4507 if (!stop_stack_dummy)
4508 {
4509 select_frame (get_current_frame ());
4510
4511 /* Print current location without a level number, if
4512 we have changed functions or hit a breakpoint.
4513 Print source line if we have one.
4514 bpstat_print() contains the logic deciding in detail
4515 what to print, based on the event(s) that just occurred. */
4516
4517 /* If --batch-silent is enabled then there's no need to print the current
4518 source location, and to try risks causing an error message about
4519 missing source files. */
4520 if (stop_print_frame && !batch_silent)
4521 {
4522 int bpstat_ret;
4523 int source_flag;
4524 int do_frame_printing = 1;
4525 struct thread_info *tp = inferior_thread ();
4526
4527 bpstat_ret = bpstat_print (tp->stop_bpstat);
4528 switch (bpstat_ret)
4529 {
4530 case PRINT_UNKNOWN:
4531 /* If we had hit a shared library event breakpoint,
4532 bpstat_print would print out this message. If we hit
4533 an OS-level shared library event, do the same
4534 thing. */
4535 if (last.kind == TARGET_WAITKIND_LOADED)
4536 {
4537 printf_filtered (_("Stopped due to shared library event\n"));
4538 source_flag = SRC_LINE; /* something bogus */
4539 do_frame_printing = 0;
4540 break;
4541 }
4542
4543 /* FIXME: cagney/2002-12-01: Given that a frame ID does
4544 (or should) carry around the function and does (or
4545 should) use that when doing a frame comparison. */
4546 if (tp->stop_step
4547 && frame_id_eq (tp->step_frame_id,
4548 get_frame_id (get_current_frame ()))
4549 && step_start_function == find_pc_function (stop_pc))
4550 source_flag = SRC_LINE; /* finished step, just print source line */
4551 else
4552 source_flag = SRC_AND_LOC; /* print location and source line */
4553 break;
4554 case PRINT_SRC_AND_LOC:
4555 source_flag = SRC_AND_LOC; /* print location and source line */
4556 break;
4557 case PRINT_SRC_ONLY:
4558 source_flag = SRC_LINE;
4559 break;
4560 case PRINT_NOTHING:
4561 source_flag = SRC_LINE; /* something bogus */
4562 do_frame_printing = 0;
4563 break;
4564 default:
4565 internal_error (__FILE__, __LINE__, _("Unknown value."));
4566 }
4567
4568 /* The behavior of this routine with respect to the source
4569 flag is:
4570 SRC_LINE: Print only source line
4571 LOCATION: Print only location
4572 SRC_AND_LOC: Print location and source line */
4573 if (do_frame_printing)
4574 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
4575
4576 /* Display the auto-display expressions. */
4577 do_displays ();
4578 }
4579 }
4580
4581 /* Save the function value return registers, if we care.
4582 We might be about to restore their previous contents. */
4583 if (inferior_thread ()->proceed_to_finish)
4584 {
4585 /* This should not be necessary. */
4586 if (stop_registers)
4587 regcache_xfree (stop_registers);
4588
4589 /* NB: The copy goes through to the target picking up the value of
4590 all the registers. */
4591 stop_registers = regcache_dup (get_current_regcache ());
4592 }
4593
4594 if (stop_stack_dummy)
4595 {
4596 /* Pop the empty frame that contains the stack dummy.
4597 This also restores inferior state prior to the call
4598 (struct inferior_thread_state). */
4599 struct frame_info *frame = get_current_frame ();
4600 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
4601 frame_pop (frame);
4602 /* frame_pop() calls reinit_frame_cache as the last thing it does
4603 which means there's currently no selected frame. We don't need
4604 to re-establish a selected frame if the dummy call returns normally,
4605 that will be done by restore_inferior_status. However, we do have
4606 to handle the case where the dummy call is returning after being
4607 stopped (e.g. the dummy call previously hit a breakpoint). We
4608 can't know which case we have so just always re-establish a
4609 selected frame here. */
4610 select_frame (get_current_frame ());
4611 }
4612
4613 done:
4614 annotate_stopped ();
4615
4616 /* Suppress the stop observer if we're in the middle of:
4617
4618 - a step n (n > 1), as there still more steps to be done.
4619
4620 - a "finish" command, as the observer will be called in
4621 finish_command_continuation, so it can include the inferior
4622 function's return value.
4623
4624 - calling an inferior function, as we pretend we inferior didn't
4625 run at all. The return value of the call is handled by the
4626 expression evaluator, through call_function_by_hand. */
4627
4628 if (!target_has_execution
4629 || last.kind == TARGET_WAITKIND_SIGNALLED
4630 || last.kind == TARGET_WAITKIND_EXITED
4631 || (!inferior_thread ()->step_multi
4632 && !(inferior_thread ()->stop_bpstat
4633 && inferior_thread ()->proceed_to_finish)
4634 && !inferior_thread ()->in_infcall))
4635 {
4636 if (!ptid_equal (inferior_ptid, null_ptid))
4637 observer_notify_normal_stop (inferior_thread ()->stop_bpstat,
4638 stop_print_frame);
4639 else
4640 observer_notify_normal_stop (NULL, stop_print_frame);
4641 }
4642
4643 if (target_has_execution)
4644 {
4645 if (last.kind != TARGET_WAITKIND_SIGNALLED
4646 && last.kind != TARGET_WAITKIND_EXITED)
4647 /* Delete the breakpoint we stopped at, if it wants to be deleted.
4648 Delete any breakpoint that is to be deleted at the next stop. */
4649 breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
4650 }
4651 }
4652
4653 static int
4654 hook_stop_stub (void *cmd)
4655 {
4656 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
4657 return (0);
4658 }
4659 \f
4660 int
4661 signal_stop_state (int signo)
4662 {
4663 return signal_stop[signo];
4664 }
4665
4666 int
4667 signal_print_state (int signo)
4668 {
4669 return signal_print[signo];
4670 }
4671
4672 int
4673 signal_pass_state (int signo)
4674 {
4675 return signal_program[signo];
4676 }
4677
4678 int
4679 signal_stop_update (int signo, int state)
4680 {
4681 int ret = signal_stop[signo];
4682 signal_stop[signo] = state;
4683 return ret;
4684 }
4685
4686 int
4687 signal_print_update (int signo, int state)
4688 {
4689 int ret = signal_print[signo];
4690 signal_print[signo] = state;
4691 return ret;
4692 }
4693
4694 int
4695 signal_pass_update (int signo, int state)
4696 {
4697 int ret = signal_program[signo];
4698 signal_program[signo] = state;
4699 return ret;
4700 }
4701
4702 static void
4703 sig_print_header (void)
4704 {
4705 printf_filtered (_("\
4706 Signal Stop\tPrint\tPass to program\tDescription\n"));
4707 }
4708
4709 static void
4710 sig_print_info (enum target_signal oursig)
4711 {
4712 const char *name = target_signal_to_name (oursig);
4713 int name_padding = 13 - strlen (name);
4714
4715 if (name_padding <= 0)
4716 name_padding = 0;
4717
4718 printf_filtered ("%s", name);
4719 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
4720 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
4721 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
4722 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
4723 printf_filtered ("%s\n", target_signal_to_string (oursig));
4724 }
4725
4726 /* Specify how various signals in the inferior should be handled. */
4727
4728 static void
4729 handle_command (char *args, int from_tty)
4730 {
4731 char **argv;
4732 int digits, wordlen;
4733 int sigfirst, signum, siglast;
4734 enum target_signal oursig;
4735 int allsigs;
4736 int nsigs;
4737 unsigned char *sigs;
4738 struct cleanup *old_chain;
4739
4740 if (args == NULL)
4741 {
4742 error_no_arg (_("signal to handle"));
4743 }
4744
4745 /* Allocate and zero an array of flags for which signals to handle. */
4746
4747 nsigs = (int) TARGET_SIGNAL_LAST;
4748 sigs = (unsigned char *) alloca (nsigs);
4749 memset (sigs, 0, nsigs);
4750
4751 /* Break the command line up into args. */
4752
4753 argv = gdb_buildargv (args);
4754 old_chain = make_cleanup_freeargv (argv);
4755
4756 /* Walk through the args, looking for signal oursigs, signal names, and
4757 actions. Signal numbers and signal names may be interspersed with
4758 actions, with the actions being performed for all signals cumulatively
4759 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
4760
4761 while (*argv != NULL)
4762 {
4763 wordlen = strlen (*argv);
4764 for (digits = 0; isdigit ((*argv)[digits]); digits++)
4765 {;
4766 }
4767 allsigs = 0;
4768 sigfirst = siglast = -1;
4769
4770 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
4771 {
4772 /* Apply action to all signals except those used by the
4773 debugger. Silently skip those. */
4774 allsigs = 1;
4775 sigfirst = 0;
4776 siglast = nsigs - 1;
4777 }
4778 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
4779 {
4780 SET_SIGS (nsigs, sigs, signal_stop);
4781 SET_SIGS (nsigs, sigs, signal_print);
4782 }
4783 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
4784 {
4785 UNSET_SIGS (nsigs, sigs, signal_program);
4786 }
4787 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
4788 {
4789 SET_SIGS (nsigs, sigs, signal_print);
4790 }
4791 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
4792 {
4793 SET_SIGS (nsigs, sigs, signal_program);
4794 }
4795 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
4796 {
4797 UNSET_SIGS (nsigs, sigs, signal_stop);
4798 }
4799 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
4800 {
4801 SET_SIGS (nsigs, sigs, signal_program);
4802 }
4803 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
4804 {
4805 UNSET_SIGS (nsigs, sigs, signal_print);
4806 UNSET_SIGS (nsigs, sigs, signal_stop);
4807 }
4808 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
4809 {
4810 UNSET_SIGS (nsigs, sigs, signal_program);
4811 }
4812 else if (digits > 0)
4813 {
4814 /* It is numeric. The numeric signal refers to our own
4815 internal signal numbering from target.h, not to host/target
4816 signal number. This is a feature; users really should be
4817 using symbolic names anyway, and the common ones like
4818 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
4819
4820 sigfirst = siglast = (int)
4821 target_signal_from_command (atoi (*argv));
4822 if ((*argv)[digits] == '-')
4823 {
4824 siglast = (int)
4825 target_signal_from_command (atoi ((*argv) + digits + 1));
4826 }
4827 if (sigfirst > siglast)
4828 {
4829 /* Bet he didn't figure we'd think of this case... */
4830 signum = sigfirst;
4831 sigfirst = siglast;
4832 siglast = signum;
4833 }
4834 }
4835 else
4836 {
4837 oursig = target_signal_from_name (*argv);
4838 if (oursig != TARGET_SIGNAL_UNKNOWN)
4839 {
4840 sigfirst = siglast = (int) oursig;
4841 }
4842 else
4843 {
4844 /* Not a number and not a recognized flag word => complain. */
4845 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
4846 }
4847 }
4848
4849 /* If any signal numbers or symbol names were found, set flags for
4850 which signals to apply actions to. */
4851
4852 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
4853 {
4854 switch ((enum target_signal) signum)
4855 {
4856 case TARGET_SIGNAL_TRAP:
4857 case TARGET_SIGNAL_INT:
4858 if (!allsigs && !sigs[signum])
4859 {
4860 if (query (_("%s is used by the debugger.\n\
4861 Are you sure you want to change it? "), target_signal_to_name ((enum target_signal) signum)))
4862 {
4863 sigs[signum] = 1;
4864 }
4865 else
4866 {
4867 printf_unfiltered (_("Not confirmed, unchanged.\n"));
4868 gdb_flush (gdb_stdout);
4869 }
4870 }
4871 break;
4872 case TARGET_SIGNAL_0:
4873 case TARGET_SIGNAL_DEFAULT:
4874 case TARGET_SIGNAL_UNKNOWN:
4875 /* Make sure that "all" doesn't print these. */
4876 break;
4877 default:
4878 sigs[signum] = 1;
4879 break;
4880 }
4881 }
4882
4883 argv++;
4884 }
4885
4886 for (signum = 0; signum < nsigs; signum++)
4887 if (sigs[signum])
4888 {
4889 target_notice_signals (inferior_ptid);
4890
4891 if (from_tty)
4892 {
4893 /* Show the results. */
4894 sig_print_header ();
4895 for (; signum < nsigs; signum++)
4896 if (sigs[signum])
4897 sig_print_info (signum);
4898 }
4899
4900 break;
4901 }
4902
4903 do_cleanups (old_chain);
4904 }
4905
4906 static void
4907 xdb_handle_command (char *args, int from_tty)
4908 {
4909 char **argv;
4910 struct cleanup *old_chain;
4911
4912 if (args == NULL)
4913 error_no_arg (_("xdb command"));
4914
4915 /* Break the command line up into args. */
4916
4917 argv = gdb_buildargv (args);
4918 old_chain = make_cleanup_freeargv (argv);
4919 if (argv[1] != (char *) NULL)
4920 {
4921 char *argBuf;
4922 int bufLen;
4923
4924 bufLen = strlen (argv[0]) + 20;
4925 argBuf = (char *) xmalloc (bufLen);
4926 if (argBuf)
4927 {
4928 int validFlag = 1;
4929 enum target_signal oursig;
4930
4931 oursig = target_signal_from_name (argv[0]);
4932 memset (argBuf, 0, bufLen);
4933 if (strcmp (argv[1], "Q") == 0)
4934 sprintf (argBuf, "%s %s", argv[0], "noprint");
4935 else
4936 {
4937 if (strcmp (argv[1], "s") == 0)
4938 {
4939 if (!signal_stop[oursig])
4940 sprintf (argBuf, "%s %s", argv[0], "stop");
4941 else
4942 sprintf (argBuf, "%s %s", argv[0], "nostop");
4943 }
4944 else if (strcmp (argv[1], "i") == 0)
4945 {
4946 if (!signal_program[oursig])
4947 sprintf (argBuf, "%s %s", argv[0], "pass");
4948 else
4949 sprintf (argBuf, "%s %s", argv[0], "nopass");
4950 }
4951 else if (strcmp (argv[1], "r") == 0)
4952 {
4953 if (!signal_print[oursig])
4954 sprintf (argBuf, "%s %s", argv[0], "print");
4955 else
4956 sprintf (argBuf, "%s %s", argv[0], "noprint");
4957 }
4958 else
4959 validFlag = 0;
4960 }
4961 if (validFlag)
4962 handle_command (argBuf, from_tty);
4963 else
4964 printf_filtered (_("Invalid signal handling flag.\n"));
4965 if (argBuf)
4966 xfree (argBuf);
4967 }
4968 }
4969 do_cleanups (old_chain);
4970 }
4971
4972 /* Print current contents of the tables set by the handle command.
4973 It is possible we should just be printing signals actually used
4974 by the current target (but for things to work right when switching
4975 targets, all signals should be in the signal tables). */
4976
4977 static void
4978 signals_info (char *signum_exp, int from_tty)
4979 {
4980 enum target_signal oursig;
4981 sig_print_header ();
4982
4983 if (signum_exp)
4984 {
4985 /* First see if this is a symbol name. */
4986 oursig = target_signal_from_name (signum_exp);
4987 if (oursig == TARGET_SIGNAL_UNKNOWN)
4988 {
4989 /* No, try numeric. */
4990 oursig =
4991 target_signal_from_command (parse_and_eval_long (signum_exp));
4992 }
4993 sig_print_info (oursig);
4994 return;
4995 }
4996
4997 printf_filtered ("\n");
4998 /* These ugly casts brought to you by the native VAX compiler. */
4999 for (oursig = TARGET_SIGNAL_FIRST;
5000 (int) oursig < (int) TARGET_SIGNAL_LAST;
5001 oursig = (enum target_signal) ((int) oursig + 1))
5002 {
5003 QUIT;
5004
5005 if (oursig != TARGET_SIGNAL_UNKNOWN
5006 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
5007 sig_print_info (oursig);
5008 }
5009
5010 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
5011 }
5012
5013 /* The $_siginfo convenience variable is a bit special. We don't know
5014 for sure the type of the value until we actually have a chance to
5015 fetch the data. The type can change depending on gdbarch, so it it
5016 also dependent on which thread you have selected.
5017
5018 1. making $_siginfo be an internalvar that creates a new value on
5019 access.
5020
5021 2. making the value of $_siginfo be an lval_computed value. */
5022
5023 /* This function implements the lval_computed support for reading a
5024 $_siginfo value. */
5025
5026 static void
5027 siginfo_value_read (struct value *v)
5028 {
5029 LONGEST transferred;
5030
5031 transferred =
5032 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
5033 NULL,
5034 value_contents_all_raw (v),
5035 value_offset (v),
5036 TYPE_LENGTH (value_type (v)));
5037
5038 if (transferred != TYPE_LENGTH (value_type (v)))
5039 error (_("Unable to read siginfo"));
5040 }
5041
5042 /* This function implements the lval_computed support for writing a
5043 $_siginfo value. */
5044
5045 static void
5046 siginfo_value_write (struct value *v, struct value *fromval)
5047 {
5048 LONGEST transferred;
5049
5050 transferred = target_write (&current_target,
5051 TARGET_OBJECT_SIGNAL_INFO,
5052 NULL,
5053 value_contents_all_raw (fromval),
5054 value_offset (v),
5055 TYPE_LENGTH (value_type (fromval)));
5056
5057 if (transferred != TYPE_LENGTH (value_type (fromval)))
5058 error (_("Unable to write siginfo"));
5059 }
5060
5061 static struct lval_funcs siginfo_value_funcs =
5062 {
5063 siginfo_value_read,
5064 siginfo_value_write
5065 };
5066
5067 /* Return a new value with the correct type for the siginfo object of
5068 the current thread. Return a void value if there's no object
5069 available. */
5070
5071 static struct value *
5072 siginfo_make_value (struct internalvar *var)
5073 {
5074 struct type *type;
5075 struct gdbarch *gdbarch;
5076
5077 if (target_has_stack
5078 && !ptid_equal (inferior_ptid, null_ptid))
5079 {
5080 gdbarch = get_frame_arch (get_current_frame ());
5081
5082 if (gdbarch_get_siginfo_type_p (gdbarch))
5083 {
5084 type = gdbarch_get_siginfo_type (gdbarch);
5085
5086 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
5087 }
5088 }
5089
5090 return allocate_value (builtin_type_void);
5091 }
5092
5093 \f
5094 /* Inferior thread state.
5095 These are details related to the inferior itself, and don't include
5096 things like what frame the user had selected or what gdb was doing
5097 with the target at the time.
5098 For inferior function calls these are things we want to restore
5099 regardless of whether the function call successfully completes
5100 or the dummy frame has to be manually popped. */
5101
5102 struct inferior_thread_state
5103 {
5104 enum target_signal stop_signal;
5105 CORE_ADDR stop_pc;
5106 struct regcache *registers;
5107 };
5108
5109 struct inferior_thread_state *
5110 save_inferior_thread_state (void)
5111 {
5112 struct inferior_thread_state *inf_state = XMALLOC (struct inferior_thread_state);
5113 struct thread_info *tp = inferior_thread ();
5114
5115 inf_state->stop_signal = tp->stop_signal;
5116 inf_state->stop_pc = stop_pc;
5117
5118 inf_state->registers = regcache_dup (get_current_regcache ());
5119
5120 return inf_state;
5121 }
5122
5123 /* Restore inferior session state to INF_STATE. */
5124
5125 void
5126 restore_inferior_thread_state (struct inferior_thread_state *inf_state)
5127 {
5128 struct thread_info *tp = inferior_thread ();
5129
5130 tp->stop_signal = inf_state->stop_signal;
5131 stop_pc = inf_state->stop_pc;
5132
5133 /* The inferior can be gone if the user types "print exit(0)"
5134 (and perhaps other times). */
5135 if (target_has_execution)
5136 /* NB: The register write goes through to the target. */
5137 regcache_cpy (get_current_regcache (), inf_state->registers);
5138 regcache_xfree (inf_state->registers);
5139 xfree (inf_state);
5140 }
5141
5142 static void
5143 do_restore_inferior_thread_state_cleanup (void *state)
5144 {
5145 restore_inferior_thread_state (state);
5146 }
5147
5148 struct cleanup *
5149 make_cleanup_restore_inferior_thread_state (struct inferior_thread_state *inf_state)
5150 {
5151 return make_cleanup (do_restore_inferior_thread_state_cleanup, inf_state);
5152 }
5153
5154 void
5155 discard_inferior_thread_state (struct inferior_thread_state *inf_state)
5156 {
5157 regcache_xfree (inf_state->registers);
5158 xfree (inf_state);
5159 }
5160
5161 struct regcache *
5162 get_inferior_thread_state_regcache (struct inferior_thread_state *inf_state)
5163 {
5164 return inf_state->registers;
5165 }
5166
5167 /* Session related state for inferior function calls.
5168 These are the additional bits of state that need to be restored
5169 when an inferior function call successfully completes. */
5170
5171 struct inferior_status
5172 {
5173 bpstat stop_bpstat;
5174 int stop_step;
5175 int stop_stack_dummy;
5176 int stopped_by_random_signal;
5177 int stepping_over_breakpoint;
5178 CORE_ADDR step_range_start;
5179 CORE_ADDR step_range_end;
5180 struct frame_id step_frame_id;
5181 enum step_over_calls_kind step_over_calls;
5182 CORE_ADDR step_resume_break_address;
5183 int stop_after_trap;
5184 int stop_soon;
5185
5186 /* ID if the selected frame when the inferior function call was made. */
5187 struct frame_id selected_frame_id;
5188
5189 int proceed_to_finish;
5190 int in_infcall;
5191 };
5192
5193 /* Save all of the information associated with the inferior<==>gdb
5194 connection. */
5195
5196 struct inferior_status *
5197 save_inferior_status (void)
5198 {
5199 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
5200 struct thread_info *tp = inferior_thread ();
5201 struct inferior *inf = current_inferior ();
5202
5203 inf_status->stop_step = tp->stop_step;
5204 inf_status->stop_stack_dummy = stop_stack_dummy;
5205 inf_status->stopped_by_random_signal = stopped_by_random_signal;
5206 inf_status->stepping_over_breakpoint = tp->trap_expected;
5207 inf_status->step_range_start = tp->step_range_start;
5208 inf_status->step_range_end = tp->step_range_end;
5209 inf_status->step_frame_id = tp->step_frame_id;
5210 inf_status->step_over_calls = tp->step_over_calls;
5211 inf_status->stop_after_trap = stop_after_trap;
5212 inf_status->stop_soon = inf->stop_soon;
5213 /* Save original bpstat chain here; replace it with copy of chain.
5214 If caller's caller is walking the chain, they'll be happier if we
5215 hand them back the original chain when restore_inferior_status is
5216 called. */
5217 inf_status->stop_bpstat = tp->stop_bpstat;
5218 tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
5219 inf_status->proceed_to_finish = tp->proceed_to_finish;
5220 inf_status->in_infcall = tp->in_infcall;
5221
5222 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
5223
5224 return inf_status;
5225 }
5226
5227 static int
5228 restore_selected_frame (void *args)
5229 {
5230 struct frame_id *fid = (struct frame_id *) args;
5231 struct frame_info *frame;
5232
5233 frame = frame_find_by_id (*fid);
5234
5235 /* If inf_status->selected_frame_id is NULL, there was no previously
5236 selected frame. */
5237 if (frame == NULL)
5238 {
5239 warning (_("Unable to restore previously selected frame."));
5240 return 0;
5241 }
5242
5243 select_frame (frame);
5244
5245 return (1);
5246 }
5247
5248 /* Restore inferior session state to INF_STATUS. */
5249
5250 void
5251 restore_inferior_status (struct inferior_status *inf_status)
5252 {
5253 struct thread_info *tp = inferior_thread ();
5254 struct inferior *inf = current_inferior ();
5255
5256 tp->stop_step = inf_status->stop_step;
5257 stop_stack_dummy = inf_status->stop_stack_dummy;
5258 stopped_by_random_signal = inf_status->stopped_by_random_signal;
5259 tp->trap_expected = inf_status->stepping_over_breakpoint;
5260 tp->step_range_start = inf_status->step_range_start;
5261 tp->step_range_end = inf_status->step_range_end;
5262 tp->step_frame_id = inf_status->step_frame_id;
5263 tp->step_over_calls = inf_status->step_over_calls;
5264 stop_after_trap = inf_status->stop_after_trap;
5265 inf->stop_soon = inf_status->stop_soon;
5266 bpstat_clear (&tp->stop_bpstat);
5267 tp->stop_bpstat = inf_status->stop_bpstat;
5268 inf_status->stop_bpstat = NULL;
5269 tp->proceed_to_finish = inf_status->proceed_to_finish;
5270 tp->in_infcall = inf_status->in_infcall;
5271
5272 if (target_has_stack)
5273 {
5274 /* The point of catch_errors is that if the stack is clobbered,
5275 walking the stack might encounter a garbage pointer and
5276 error() trying to dereference it. */
5277 if (catch_errors
5278 (restore_selected_frame, &inf_status->selected_frame_id,
5279 "Unable to restore previously selected frame:\n",
5280 RETURN_MASK_ERROR) == 0)
5281 /* Error in restoring the selected frame. Select the innermost
5282 frame. */
5283 select_frame (get_current_frame ());
5284 }
5285
5286 xfree (inf_status);
5287 }
5288
5289 static void
5290 do_restore_inferior_status_cleanup (void *sts)
5291 {
5292 restore_inferior_status (sts);
5293 }
5294
5295 struct cleanup *
5296 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
5297 {
5298 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
5299 }
5300
5301 void
5302 discard_inferior_status (struct inferior_status *inf_status)
5303 {
5304 /* See save_inferior_status for info on stop_bpstat. */
5305 bpstat_clear (&inf_status->stop_bpstat);
5306 xfree (inf_status);
5307 }
5308 \f
5309 int
5310 inferior_has_forked (ptid_t pid, ptid_t *child_pid)
5311 {
5312 struct target_waitstatus last;
5313 ptid_t last_ptid;
5314
5315 get_last_target_status (&last_ptid, &last);
5316
5317 if (last.kind != TARGET_WAITKIND_FORKED)
5318 return 0;
5319
5320 if (!ptid_equal (last_ptid, pid))
5321 return 0;
5322
5323 *child_pid = last.value.related_pid;
5324 return 1;
5325 }
5326
5327 int
5328 inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
5329 {
5330 struct target_waitstatus last;
5331 ptid_t last_ptid;
5332
5333 get_last_target_status (&last_ptid, &last);
5334
5335 if (last.kind != TARGET_WAITKIND_VFORKED)
5336 return 0;
5337
5338 if (!ptid_equal (last_ptid, pid))
5339 return 0;
5340
5341 *child_pid = last.value.related_pid;
5342 return 1;
5343 }
5344
5345 int
5346 inferior_has_execd (ptid_t pid, char **execd_pathname)
5347 {
5348 struct target_waitstatus last;
5349 ptid_t last_ptid;
5350
5351 get_last_target_status (&last_ptid, &last);
5352
5353 if (last.kind != TARGET_WAITKIND_EXECD)
5354 return 0;
5355
5356 if (!ptid_equal (last_ptid, pid))
5357 return 0;
5358
5359 *execd_pathname = xstrdup (last.value.execd_pathname);
5360 return 1;
5361 }
5362
5363 /* Oft used ptids */
5364 ptid_t null_ptid;
5365 ptid_t minus_one_ptid;
5366
5367 /* Create a ptid given the necessary PID, LWP, and TID components. */
5368
5369 ptid_t
5370 ptid_build (int pid, long lwp, long tid)
5371 {
5372 ptid_t ptid;
5373
5374 ptid.pid = pid;
5375 ptid.lwp = lwp;
5376 ptid.tid = tid;
5377 return ptid;
5378 }
5379
5380 /* Create a ptid from just a pid. */
5381
5382 ptid_t
5383 pid_to_ptid (int pid)
5384 {
5385 return ptid_build (pid, 0, 0);
5386 }
5387
5388 /* Fetch the pid (process id) component from a ptid. */
5389
5390 int
5391 ptid_get_pid (ptid_t ptid)
5392 {
5393 return ptid.pid;
5394 }
5395
5396 /* Fetch the lwp (lightweight process) component from a ptid. */
5397
5398 long
5399 ptid_get_lwp (ptid_t ptid)
5400 {
5401 return ptid.lwp;
5402 }
5403
5404 /* Fetch the tid (thread id) component from a ptid. */
5405
5406 long
5407 ptid_get_tid (ptid_t ptid)
5408 {
5409 return ptid.tid;
5410 }
5411
5412 /* ptid_equal() is used to test equality of two ptids. */
5413
5414 int
5415 ptid_equal (ptid_t ptid1, ptid_t ptid2)
5416 {
5417 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
5418 && ptid1.tid == ptid2.tid);
5419 }
5420
5421 /* Returns true if PTID represents a process. */
5422
5423 int
5424 ptid_is_pid (ptid_t ptid)
5425 {
5426 if (ptid_equal (minus_one_ptid, ptid))
5427 return 0;
5428 if (ptid_equal (null_ptid, ptid))
5429 return 0;
5430
5431 return (ptid_get_lwp (ptid) == 0 && ptid_get_tid (ptid) == 0);
5432 }
5433
5434 /* restore_inferior_ptid() will be used by the cleanup machinery
5435 to restore the inferior_ptid value saved in a call to
5436 save_inferior_ptid(). */
5437
5438 static void
5439 restore_inferior_ptid (void *arg)
5440 {
5441 ptid_t *saved_ptid_ptr = arg;
5442 inferior_ptid = *saved_ptid_ptr;
5443 xfree (arg);
5444 }
5445
5446 /* Save the value of inferior_ptid so that it may be restored by a
5447 later call to do_cleanups(). Returns the struct cleanup pointer
5448 needed for later doing the cleanup. */
5449
5450 struct cleanup *
5451 save_inferior_ptid (void)
5452 {
5453 ptid_t *saved_ptid_ptr;
5454
5455 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
5456 *saved_ptid_ptr = inferior_ptid;
5457 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
5458 }
5459 \f
5460
5461 /* User interface for reverse debugging:
5462 Set exec-direction / show exec-direction commands
5463 (returns error unless target implements to_set_exec_direction method). */
5464
5465 enum exec_direction_kind execution_direction = EXEC_FORWARD;
5466 static const char exec_forward[] = "forward";
5467 static const char exec_reverse[] = "reverse";
5468 static const char *exec_direction = exec_forward;
5469 static const char *exec_direction_names[] = {
5470 exec_forward,
5471 exec_reverse,
5472 NULL
5473 };
5474
5475 static void
5476 set_exec_direction_func (char *args, int from_tty,
5477 struct cmd_list_element *cmd)
5478 {
5479 if (target_can_execute_reverse)
5480 {
5481 if (!strcmp (exec_direction, exec_forward))
5482 execution_direction = EXEC_FORWARD;
5483 else if (!strcmp (exec_direction, exec_reverse))
5484 execution_direction = EXEC_REVERSE;
5485 }
5486 }
5487
5488 static void
5489 show_exec_direction_func (struct ui_file *out, int from_tty,
5490 struct cmd_list_element *cmd, const char *value)
5491 {
5492 switch (execution_direction) {
5493 case EXEC_FORWARD:
5494 fprintf_filtered (out, _("Forward.\n"));
5495 break;
5496 case EXEC_REVERSE:
5497 fprintf_filtered (out, _("Reverse.\n"));
5498 break;
5499 case EXEC_ERROR:
5500 default:
5501 fprintf_filtered (out,
5502 _("Forward (target `%s' does not support exec-direction).\n"),
5503 target_shortname);
5504 break;
5505 }
5506 }
5507
5508 /* User interface for non-stop mode. */
5509
5510 int non_stop = 0;
5511 static int non_stop_1 = 0;
5512
5513 static void
5514 set_non_stop (char *args, int from_tty,
5515 struct cmd_list_element *c)
5516 {
5517 if (target_has_execution)
5518 {
5519 non_stop_1 = non_stop;
5520 error (_("Cannot change this setting while the inferior is running."));
5521 }
5522
5523 non_stop = non_stop_1;
5524 }
5525
5526 static void
5527 show_non_stop (struct ui_file *file, int from_tty,
5528 struct cmd_list_element *c, const char *value)
5529 {
5530 fprintf_filtered (file,
5531 _("Controlling the inferior in non-stop mode is %s.\n"),
5532 value);
5533 }
5534
5535
5536 void
5537 _initialize_infrun (void)
5538 {
5539 int i;
5540 int numsigs;
5541 struct cmd_list_element *c;
5542
5543 add_info ("signals", signals_info, _("\
5544 What debugger does when program gets various signals.\n\
5545 Specify a signal as argument to print info on that signal only."));
5546 add_info_alias ("handle", "signals", 0);
5547
5548 add_com ("handle", class_run, handle_command, _("\
5549 Specify how to handle a signal.\n\
5550 Args are signals and actions to apply to those signals.\n\
5551 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5552 from 1-15 are allowed for compatibility with old versions of GDB.\n\
5553 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5554 The special arg \"all\" is recognized to mean all signals except those\n\
5555 used by the debugger, typically SIGTRAP and SIGINT.\n\
5556 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
5557 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
5558 Stop means reenter debugger if this signal happens (implies print).\n\
5559 Print means print a message if this signal happens.\n\
5560 Pass means let program see this signal; otherwise program doesn't know.\n\
5561 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
5562 Pass and Stop may be combined."));
5563 if (xdb_commands)
5564 {
5565 add_com ("lz", class_info, signals_info, _("\
5566 What debugger does when program gets various signals.\n\
5567 Specify a signal as argument to print info on that signal only."));
5568 add_com ("z", class_run, xdb_handle_command, _("\
5569 Specify how to handle a signal.\n\
5570 Args are signals and actions to apply to those signals.\n\
5571 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
5572 from 1-15 are allowed for compatibility with old versions of GDB.\n\
5573 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
5574 The special arg \"all\" is recognized to mean all signals except those\n\
5575 used by the debugger, typically SIGTRAP and SIGINT.\n\
5576 Recognized actions include \"s\" (toggles between stop and nostop), \n\
5577 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
5578 nopass), \"Q\" (noprint)\n\
5579 Stop means reenter debugger if this signal happens (implies print).\n\
5580 Print means print a message if this signal happens.\n\
5581 Pass means let program see this signal; otherwise program doesn't know.\n\
5582 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
5583 Pass and Stop may be combined."));
5584 }
5585
5586 if (!dbx_commands)
5587 stop_command = add_cmd ("stop", class_obscure,
5588 not_just_help_class_command, _("\
5589 There is no `stop' command, but you can set a hook on `stop'.\n\
5590 This allows you to set a list of commands to be run each time execution\n\
5591 of the program stops."), &cmdlist);
5592
5593 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
5594 Set inferior debugging."), _("\
5595 Show inferior debugging."), _("\
5596 When non-zero, inferior specific debugging is enabled."),
5597 NULL,
5598 show_debug_infrun,
5599 &setdebuglist, &showdebuglist);
5600
5601 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
5602 Set displaced stepping debugging."), _("\
5603 Show displaced stepping debugging."), _("\
5604 When non-zero, displaced stepping specific debugging is enabled."),
5605 NULL,
5606 show_debug_displaced,
5607 &setdebuglist, &showdebuglist);
5608
5609 add_setshow_boolean_cmd ("non-stop", no_class,
5610 &non_stop_1, _("\
5611 Set whether gdb controls the inferior in non-stop mode."), _("\
5612 Show whether gdb controls the inferior in non-stop mode."), _("\
5613 When debugging a multi-threaded program and this setting is\n\
5614 off (the default, also called all-stop mode), when one thread stops\n\
5615 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
5616 all other threads in the program while you interact with the thread of\n\
5617 interest. When you continue or step a thread, you can allow the other\n\
5618 threads to run, or have them remain stopped, but while you inspect any\n\
5619 thread's state, all threads stop.\n\
5620 \n\
5621 In non-stop mode, when one thread stops, other threads can continue\n\
5622 to run freely. You'll be able to step each thread independently,\n\
5623 leave it stopped or free to run as needed."),
5624 set_non_stop,
5625 show_non_stop,
5626 &setlist,
5627 &showlist);
5628
5629 numsigs = (int) TARGET_SIGNAL_LAST;
5630 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
5631 signal_print = (unsigned char *)
5632 xmalloc (sizeof (signal_print[0]) * numsigs);
5633 signal_program = (unsigned char *)
5634 xmalloc (sizeof (signal_program[0]) * numsigs);
5635 for (i = 0; i < numsigs; i++)
5636 {
5637 signal_stop[i] = 1;
5638 signal_print[i] = 1;
5639 signal_program[i] = 1;
5640 }
5641
5642 /* Signals caused by debugger's own actions
5643 should not be given to the program afterwards. */
5644 signal_program[TARGET_SIGNAL_TRAP] = 0;
5645 signal_program[TARGET_SIGNAL_INT] = 0;
5646
5647 /* Signals that are not errors should not normally enter the debugger. */
5648 signal_stop[TARGET_SIGNAL_ALRM] = 0;
5649 signal_print[TARGET_SIGNAL_ALRM] = 0;
5650 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
5651 signal_print[TARGET_SIGNAL_VTALRM] = 0;
5652 signal_stop[TARGET_SIGNAL_PROF] = 0;
5653 signal_print[TARGET_SIGNAL_PROF] = 0;
5654 signal_stop[TARGET_SIGNAL_CHLD] = 0;
5655 signal_print[TARGET_SIGNAL_CHLD] = 0;
5656 signal_stop[TARGET_SIGNAL_IO] = 0;
5657 signal_print[TARGET_SIGNAL_IO] = 0;
5658 signal_stop[TARGET_SIGNAL_POLL] = 0;
5659 signal_print[TARGET_SIGNAL_POLL] = 0;
5660 signal_stop[TARGET_SIGNAL_URG] = 0;
5661 signal_print[TARGET_SIGNAL_URG] = 0;
5662 signal_stop[TARGET_SIGNAL_WINCH] = 0;
5663 signal_print[TARGET_SIGNAL_WINCH] = 0;
5664
5665 /* These signals are used internally by user-level thread
5666 implementations. (See signal(5) on Solaris.) Like the above
5667 signals, a healthy program receives and handles them as part of
5668 its normal operation. */
5669 signal_stop[TARGET_SIGNAL_LWP] = 0;
5670 signal_print[TARGET_SIGNAL_LWP] = 0;
5671 signal_stop[TARGET_SIGNAL_WAITING] = 0;
5672 signal_print[TARGET_SIGNAL_WAITING] = 0;
5673 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
5674 signal_print[TARGET_SIGNAL_CANCEL] = 0;
5675
5676 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
5677 &stop_on_solib_events, _("\
5678 Set stopping for shared library events."), _("\
5679 Show stopping for shared library events."), _("\
5680 If nonzero, gdb will give control to the user when the dynamic linker\n\
5681 notifies gdb of shared library events. The most common event of interest\n\
5682 to the user would be loading/unloading of a new library."),
5683 NULL,
5684 show_stop_on_solib_events,
5685 &setlist, &showlist);
5686
5687 add_setshow_enum_cmd ("follow-fork-mode", class_run,
5688 follow_fork_mode_kind_names,
5689 &follow_fork_mode_string, _("\
5690 Set debugger response to a program call of fork or vfork."), _("\
5691 Show debugger response to a program call of fork or vfork."), _("\
5692 A fork or vfork creates a new process. follow-fork-mode can be:\n\
5693 parent - the original process is debugged after a fork\n\
5694 child - the new process is debugged after a fork\n\
5695 The unfollowed process will continue to run.\n\
5696 By default, the debugger will follow the parent process."),
5697 NULL,
5698 show_follow_fork_mode_string,
5699 &setlist, &showlist);
5700
5701 add_setshow_enum_cmd ("scheduler-locking", class_run,
5702 scheduler_enums, &scheduler_mode, _("\
5703 Set mode for locking scheduler during execution."), _("\
5704 Show mode for locking scheduler during execution."), _("\
5705 off == no locking (threads may preempt at any time)\n\
5706 on == full locking (no thread except the current thread may run)\n\
5707 step == scheduler locked during every single-step operation.\n\
5708 In this mode, no other thread may run during a step command.\n\
5709 Other threads may run while stepping over a function call ('next')."),
5710 set_schedlock_func, /* traps on target vector */
5711 show_scheduler_mode,
5712 &setlist, &showlist);
5713
5714 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
5715 Set mode of the step operation."), _("\
5716 Show mode of the step operation."), _("\
5717 When set, doing a step over a function without debug line information\n\
5718 will stop at the first instruction of that function. Otherwise, the\n\
5719 function is skipped and the step command stops at a different source line."),
5720 NULL,
5721 show_step_stop_if_no_debug,
5722 &setlist, &showlist);
5723
5724 add_setshow_enum_cmd ("displaced-stepping", class_run,
5725 can_use_displaced_stepping_enum,
5726 &can_use_displaced_stepping, _("\
5727 Set debugger's willingness to use displaced stepping."), _("\
5728 Show debugger's willingness to use displaced stepping."), _("\
5729 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
5730 supported by the target architecture. If off, gdb will not use displaced\n\
5731 stepping to step over breakpoints, even if such is supported by the target\n\
5732 architecture. If auto (which is the default), gdb will use displaced stepping\n\
5733 if the target architecture supports it and non-stop mode is active, but will not\n\
5734 use it in all-stop mode (see help set non-stop)."),
5735 NULL,
5736 show_can_use_displaced_stepping,
5737 &setlist, &showlist);
5738
5739 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
5740 &exec_direction, _("Set direction of execution.\n\
5741 Options are 'forward' or 'reverse'."),
5742 _("Show direction of execution (forward/reverse)."),
5743 _("Tells gdb whether to execute forward or backward."),
5744 set_exec_direction_func, show_exec_direction_func,
5745 &setlist, &showlist);
5746
5747 /* ptid initializations */
5748 null_ptid = ptid_build (0, 0, 0);
5749 minus_one_ptid = ptid_build (-1, 0, 0);
5750 inferior_ptid = null_ptid;
5751 target_last_wait_ptid = minus_one_ptid;
5752 displaced_step_ptid = null_ptid;
5753
5754 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
5755 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
5756 observer_attach_thread_exit (infrun_thread_thread_exit);
5757
5758 /* Explicitly create without lookup, since that tries to create a
5759 value with a void typed value, and when we get here, gdbarch
5760 isn't initialized yet. At this point, we're quite sure there
5761 isn't another convenience variable of the same name. */
5762 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
5763 }
This page took 0.194551 seconds and 4 git commands to generate.