Force to insert software single step breakpoint
[deliverable/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2016 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdb_wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "cli/cli-script.h"
32 #include "target.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include <signal.h>
38 #include "inf-loop.h"
39 #include "regcache.h"
40 #include "value.h"
41 #include "observer.h"
42 #include "language.h"
43 #include "solib.h"
44 #include "main.h"
45 #include "dictionary.h"
46 #include "block.h"
47 #include "mi/mi-common.h"
48 #include "event-top.h"
49 #include "record.h"
50 #include "record-full.h"
51 #include "inline-frame.h"
52 #include "jit.h"
53 #include "tracepoint.h"
54 #include "continuations.h"
55 #include "interps.h"
56 #include "skip.h"
57 #include "probe.h"
58 #include "objfiles.h"
59 #include "completer.h"
60 #include "target-descriptions.h"
61 #include "target-dcache.h"
62 #include "terminal.h"
63 #include "solist.h"
64 #include "event-loop.h"
65 #include "thread-fsm.h"
66 #include "common/enum-flags.h"
67
68 /* Prototypes for local functions */
69
70 static void signals_info (char *, int);
71
72 static void handle_command (char *, int);
73
74 static void sig_print_info (enum gdb_signal);
75
76 static void sig_print_header (void);
77
78 static void resume_cleanups (void *);
79
80 static int hook_stop_stub (void *);
81
82 static int restore_selected_frame (void *);
83
84 static int follow_fork (void);
85
86 static int follow_fork_inferior (int follow_child, int detach_fork);
87
88 static void follow_inferior_reset_breakpoints (void);
89
90 static void set_schedlock_func (char *args, int from_tty,
91 struct cmd_list_element *c);
92
93 static int currently_stepping (struct thread_info *tp);
94
95 void _initialize_infrun (void);
96
97 void nullify_last_target_wait_ptid (void);
98
99 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
100
101 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
102
103 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
104
105 static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
106
107 /* Asynchronous signal handler registered as event loop source for
108 when we have pending events ready to be passed to the core. */
109 static struct async_event_handler *infrun_async_inferior_event_token;
110
111 /* Stores whether infrun_async was previously enabled or disabled.
112 Starts off as -1, indicating "never enabled/disabled". */
113 static int infrun_is_async = -1;
114
115 /* See infrun.h. */
116
117 void
118 infrun_async (int enable)
119 {
120 if (infrun_is_async != enable)
121 {
122 infrun_is_async = enable;
123
124 if (debug_infrun)
125 fprintf_unfiltered (gdb_stdlog,
126 "infrun: infrun_async(%d)\n",
127 enable);
128
129 if (enable)
130 mark_async_event_handler (infrun_async_inferior_event_token);
131 else
132 clear_async_event_handler (infrun_async_inferior_event_token);
133 }
134 }
135
136 /* See infrun.h. */
137
138 void
139 mark_infrun_async_event_handler (void)
140 {
141 mark_async_event_handler (infrun_async_inferior_event_token);
142 }
143
144 /* When set, stop the 'step' command if we enter a function which has
145 no line number information. The normal behavior is that we step
146 over such function. */
147 int step_stop_if_no_debug = 0;
148 static void
149 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151 {
152 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
153 }
154
155 /* In asynchronous mode, but simulating synchronous execution. */
156
157 int sync_execution = 0;
158
159 /* proceed and normal_stop use this to notify the user when the
160 inferior stopped in a different thread than it had been running
161 in. */
162
163 static ptid_t previous_inferior_ptid;
164
165 /* If set (default for legacy reasons), when following a fork, GDB
166 will detach from one of the fork branches, child or parent.
167 Exactly which branch is detached depends on 'set follow-fork-mode'
168 setting. */
169
170 static int detach_fork = 1;
171
172 int debug_displaced = 0;
173 static void
174 show_debug_displaced (struct ui_file *file, int from_tty,
175 struct cmd_list_element *c, const char *value)
176 {
177 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
178 }
179
180 unsigned int debug_infrun = 0;
181 static void
182 show_debug_infrun (struct ui_file *file, int from_tty,
183 struct cmd_list_element *c, const char *value)
184 {
185 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
186 }
187
188
189 /* Support for disabling address space randomization. */
190
191 int disable_randomization = 1;
192
193 static void
194 show_disable_randomization (struct ui_file *file, int from_tty,
195 struct cmd_list_element *c, const char *value)
196 {
197 if (target_supports_disable_randomization ())
198 fprintf_filtered (file,
199 _("Disabling randomization of debuggee's "
200 "virtual address space is %s.\n"),
201 value);
202 else
203 fputs_filtered (_("Disabling randomization of debuggee's "
204 "virtual address space is unsupported on\n"
205 "this platform.\n"), file);
206 }
207
208 static void
209 set_disable_randomization (char *args, int from_tty,
210 struct cmd_list_element *c)
211 {
212 if (!target_supports_disable_randomization ())
213 error (_("Disabling randomization of debuggee's "
214 "virtual address space is unsupported on\n"
215 "this platform."));
216 }
217
218 /* User interface for non-stop mode. */
219
220 int non_stop = 0;
221 static int non_stop_1 = 0;
222
223 static void
224 set_non_stop (char *args, int from_tty,
225 struct cmd_list_element *c)
226 {
227 if (target_has_execution)
228 {
229 non_stop_1 = non_stop;
230 error (_("Cannot change this setting while the inferior is running."));
231 }
232
233 non_stop = non_stop_1;
234 }
235
236 static void
237 show_non_stop (struct ui_file *file, int from_tty,
238 struct cmd_list_element *c, const char *value)
239 {
240 fprintf_filtered (file,
241 _("Controlling the inferior in non-stop mode is %s.\n"),
242 value);
243 }
244
245 /* "Observer mode" is somewhat like a more extreme version of
246 non-stop, in which all GDB operations that might affect the
247 target's execution have been disabled. */
248
249 int observer_mode = 0;
250 static int observer_mode_1 = 0;
251
252 static void
253 set_observer_mode (char *args, int from_tty,
254 struct cmd_list_element *c)
255 {
256 if (target_has_execution)
257 {
258 observer_mode_1 = observer_mode;
259 error (_("Cannot change this setting while the inferior is running."));
260 }
261
262 observer_mode = observer_mode_1;
263
264 may_write_registers = !observer_mode;
265 may_write_memory = !observer_mode;
266 may_insert_breakpoints = !observer_mode;
267 may_insert_tracepoints = !observer_mode;
268 /* We can insert fast tracepoints in or out of observer mode,
269 but enable them if we're going into this mode. */
270 if (observer_mode)
271 may_insert_fast_tracepoints = 1;
272 may_stop = !observer_mode;
273 update_target_permissions ();
274
275 /* Going *into* observer mode we must force non-stop, then
276 going out we leave it that way. */
277 if (observer_mode)
278 {
279 pagination_enabled = 0;
280 non_stop = non_stop_1 = 1;
281 }
282
283 if (from_tty)
284 printf_filtered (_("Observer mode is now %s.\n"),
285 (observer_mode ? "on" : "off"));
286 }
287
288 static void
289 show_observer_mode (struct ui_file *file, int from_tty,
290 struct cmd_list_element *c, const char *value)
291 {
292 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
293 }
294
295 /* This updates the value of observer mode based on changes in
296 permissions. Note that we are deliberately ignoring the values of
297 may-write-registers and may-write-memory, since the user may have
298 reason to enable these during a session, for instance to turn on a
299 debugging-related global. */
300
301 void
302 update_observer_mode (void)
303 {
304 int newval;
305
306 newval = (!may_insert_breakpoints
307 && !may_insert_tracepoints
308 && may_insert_fast_tracepoints
309 && !may_stop
310 && non_stop);
311
312 /* Let the user know if things change. */
313 if (newval != observer_mode)
314 printf_filtered (_("Observer mode is now %s.\n"),
315 (newval ? "on" : "off"));
316
317 observer_mode = observer_mode_1 = newval;
318 }
319
320 /* Tables of how to react to signals; the user sets them. */
321
322 static unsigned char *signal_stop;
323 static unsigned char *signal_print;
324 static unsigned char *signal_program;
325
326 /* Table of signals that are registered with "catch signal". A
327 non-zero entry indicates that the signal is caught by some "catch
328 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
329 signals. */
330 static unsigned char *signal_catch;
331
332 /* Table of signals that the target may silently handle.
333 This is automatically determined from the flags above,
334 and simply cached here. */
335 static unsigned char *signal_pass;
336
337 #define SET_SIGS(nsigs,sigs,flags) \
338 do { \
339 int signum = (nsigs); \
340 while (signum-- > 0) \
341 if ((sigs)[signum]) \
342 (flags)[signum] = 1; \
343 } while (0)
344
345 #define UNSET_SIGS(nsigs,sigs,flags) \
346 do { \
347 int signum = (nsigs); \
348 while (signum-- > 0) \
349 if ((sigs)[signum]) \
350 (flags)[signum] = 0; \
351 } while (0)
352
353 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
354 this function is to avoid exporting `signal_program'. */
355
356 void
357 update_signals_program_target (void)
358 {
359 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
360 }
361
362 /* Value to pass to target_resume() to cause all threads to resume. */
363
364 #define RESUME_ALL minus_one_ptid
365
366 /* Command list pointer for the "stop" placeholder. */
367
368 static struct cmd_list_element *stop_command;
369
370 /* Nonzero if we want to give control to the user when we're notified
371 of shared library events by the dynamic linker. */
372 int stop_on_solib_events;
373
374 /* Enable or disable optional shared library event breakpoints
375 as appropriate when the above flag is changed. */
376
377 static void
378 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
379 {
380 update_solib_breakpoints ();
381 }
382
383 static void
384 show_stop_on_solib_events (struct ui_file *file, int from_tty,
385 struct cmd_list_element *c, const char *value)
386 {
387 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
388 value);
389 }
390
391 /* Nonzero after stop if current stack frame should be printed. */
392
393 static int stop_print_frame;
394
395 /* This is a cached copy of the pid/waitstatus of the last event
396 returned by target_wait()/deprecated_target_wait_hook(). This
397 information is returned by get_last_target_status(). */
398 static ptid_t target_last_wait_ptid;
399 static struct target_waitstatus target_last_waitstatus;
400
401 static void context_switch (ptid_t ptid);
402
403 void init_thread_stepping_state (struct thread_info *tss);
404
405 static const char follow_fork_mode_child[] = "child";
406 static const char follow_fork_mode_parent[] = "parent";
407
408 static const char *const follow_fork_mode_kind_names[] = {
409 follow_fork_mode_child,
410 follow_fork_mode_parent,
411 NULL
412 };
413
414 static const char *follow_fork_mode_string = follow_fork_mode_parent;
415 static void
416 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
417 struct cmd_list_element *c, const char *value)
418 {
419 fprintf_filtered (file,
420 _("Debugger response to a program "
421 "call of fork or vfork is \"%s\".\n"),
422 value);
423 }
424 \f
425
426 /* Handle changes to the inferior list based on the type of fork,
427 which process is being followed, and whether the other process
428 should be detached. On entry inferior_ptid must be the ptid of
429 the fork parent. At return inferior_ptid is the ptid of the
430 followed inferior. */
431
432 static int
433 follow_fork_inferior (int follow_child, int detach_fork)
434 {
435 int has_vforked;
436 ptid_t parent_ptid, child_ptid;
437
438 has_vforked = (inferior_thread ()->pending_follow.kind
439 == TARGET_WAITKIND_VFORKED);
440 parent_ptid = inferior_ptid;
441 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
442
443 if (has_vforked
444 && !non_stop /* Non-stop always resumes both branches. */
445 && (!target_is_async_p () || sync_execution)
446 && !(follow_child || detach_fork || sched_multi))
447 {
448 /* The parent stays blocked inside the vfork syscall until the
449 child execs or exits. If we don't let the child run, then
450 the parent stays blocked. If we're telling the parent to run
451 in the foreground, the user will not be able to ctrl-c to get
452 back the terminal, effectively hanging the debug session. */
453 fprintf_filtered (gdb_stderr, _("\
454 Can not resume the parent process over vfork in the foreground while\n\
455 holding the child stopped. Try \"set detach-on-fork\" or \
456 \"set schedule-multiple\".\n"));
457 /* FIXME output string > 80 columns. */
458 return 1;
459 }
460
461 if (!follow_child)
462 {
463 /* Detach new forked process? */
464 if (detach_fork)
465 {
466 struct cleanup *old_chain;
467
468 /* Before detaching from the child, remove all breakpoints
469 from it. If we forked, then this has already been taken
470 care of by infrun.c. If we vforked however, any
471 breakpoint inserted in the parent is visible in the
472 child, even those added while stopped in a vfork
473 catchpoint. This will remove the breakpoints from the
474 parent also, but they'll be reinserted below. */
475 if (has_vforked)
476 {
477 /* Keep breakpoints list in sync. */
478 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
479 }
480
481 if (info_verbose || debug_infrun)
482 {
483 /* Ensure that we have a process ptid. */
484 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
485
486 target_terminal_ours_for_output ();
487 fprintf_filtered (gdb_stdlog,
488 _("Detaching after %s from child %s.\n"),
489 has_vforked ? "vfork" : "fork",
490 target_pid_to_str (process_ptid));
491 }
492 }
493 else
494 {
495 struct inferior *parent_inf, *child_inf;
496 struct cleanup *old_chain;
497
498 /* Add process to GDB's tables. */
499 child_inf = add_inferior (ptid_get_pid (child_ptid));
500
501 parent_inf = current_inferior ();
502 child_inf->attach_flag = parent_inf->attach_flag;
503 copy_terminal_info (child_inf, parent_inf);
504 child_inf->gdbarch = parent_inf->gdbarch;
505 copy_inferior_target_desc_info (child_inf, parent_inf);
506
507 old_chain = save_inferior_ptid ();
508 save_current_program_space ();
509
510 inferior_ptid = child_ptid;
511 add_thread (inferior_ptid);
512 child_inf->symfile_flags = SYMFILE_NO_READ;
513
514 /* If this is a vfork child, then the address-space is
515 shared with the parent. */
516 if (has_vforked)
517 {
518 child_inf->pspace = parent_inf->pspace;
519 child_inf->aspace = parent_inf->aspace;
520
521 /* The parent will be frozen until the child is done
522 with the shared region. Keep track of the
523 parent. */
524 child_inf->vfork_parent = parent_inf;
525 child_inf->pending_detach = 0;
526 parent_inf->vfork_child = child_inf;
527 parent_inf->pending_detach = 0;
528 }
529 else
530 {
531 child_inf->aspace = new_address_space ();
532 child_inf->pspace = add_program_space (child_inf->aspace);
533 child_inf->removable = 1;
534 set_current_program_space (child_inf->pspace);
535 clone_program_space (child_inf->pspace, parent_inf->pspace);
536
537 /* Let the shared library layer (e.g., solib-svr4) learn
538 about this new process, relocate the cloned exec, pull
539 in shared libraries, and install the solib event
540 breakpoint. If a "cloned-VM" event was propagated
541 better throughout the core, this wouldn't be
542 required. */
543 solib_create_inferior_hook (0);
544 }
545
546 do_cleanups (old_chain);
547 }
548
549 if (has_vforked)
550 {
551 struct inferior *parent_inf;
552
553 parent_inf = current_inferior ();
554
555 /* If we detached from the child, then we have to be careful
556 to not insert breakpoints in the parent until the child
557 is done with the shared memory region. However, if we're
558 staying attached to the child, then we can and should
559 insert breakpoints, so that we can debug it. A
560 subsequent child exec or exit is enough to know when does
561 the child stops using the parent's address space. */
562 parent_inf->waiting_for_vfork_done = detach_fork;
563 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
564 }
565 }
566 else
567 {
568 /* Follow the child. */
569 struct inferior *parent_inf, *child_inf;
570 struct program_space *parent_pspace;
571
572 if (info_verbose || debug_infrun)
573 {
574 target_terminal_ours_for_output ();
575 fprintf_filtered (gdb_stdlog,
576 _("Attaching after %s %s to child %s.\n"),
577 target_pid_to_str (parent_ptid),
578 has_vforked ? "vfork" : "fork",
579 target_pid_to_str (child_ptid));
580 }
581
582 /* Add the new inferior first, so that the target_detach below
583 doesn't unpush the target. */
584
585 child_inf = add_inferior (ptid_get_pid (child_ptid));
586
587 parent_inf = current_inferior ();
588 child_inf->attach_flag = parent_inf->attach_flag;
589 copy_terminal_info (child_inf, parent_inf);
590 child_inf->gdbarch = parent_inf->gdbarch;
591 copy_inferior_target_desc_info (child_inf, parent_inf);
592
593 parent_pspace = parent_inf->pspace;
594
595 /* If we're vforking, we want to hold on to the parent until the
596 child exits or execs. At child exec or exit time we can
597 remove the old breakpoints from the parent and detach or
598 resume debugging it. Otherwise, detach the parent now; we'll
599 want to reuse it's program/address spaces, but we can't set
600 them to the child before removing breakpoints from the
601 parent, otherwise, the breakpoints module could decide to
602 remove breakpoints from the wrong process (since they'd be
603 assigned to the same address space). */
604
605 if (has_vforked)
606 {
607 gdb_assert (child_inf->vfork_parent == NULL);
608 gdb_assert (parent_inf->vfork_child == NULL);
609 child_inf->vfork_parent = parent_inf;
610 child_inf->pending_detach = 0;
611 parent_inf->vfork_child = child_inf;
612 parent_inf->pending_detach = detach_fork;
613 parent_inf->waiting_for_vfork_done = 0;
614 }
615 else if (detach_fork)
616 {
617 if (info_verbose || debug_infrun)
618 {
619 /* Ensure that we have a process ptid. */
620 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
621
622 target_terminal_ours_for_output ();
623 fprintf_filtered (gdb_stdlog,
624 _("Detaching after fork from "
625 "child %s.\n"),
626 target_pid_to_str (process_ptid));
627 }
628
629 target_detach (NULL, 0);
630 }
631
632 /* Note that the detach above makes PARENT_INF dangling. */
633
634 /* Add the child thread to the appropriate lists, and switch to
635 this new thread, before cloning the program space, and
636 informing the solib layer about this new process. */
637
638 inferior_ptid = child_ptid;
639 add_thread (inferior_ptid);
640
641 /* If this is a vfork child, then the address-space is shared
642 with the parent. If we detached from the parent, then we can
643 reuse the parent's program/address spaces. */
644 if (has_vforked || detach_fork)
645 {
646 child_inf->pspace = parent_pspace;
647 child_inf->aspace = child_inf->pspace->aspace;
648 }
649 else
650 {
651 child_inf->aspace = new_address_space ();
652 child_inf->pspace = add_program_space (child_inf->aspace);
653 child_inf->removable = 1;
654 child_inf->symfile_flags = SYMFILE_NO_READ;
655 set_current_program_space (child_inf->pspace);
656 clone_program_space (child_inf->pspace, parent_pspace);
657
658 /* Let the shared library layer (e.g., solib-svr4) learn
659 about this new process, relocate the cloned exec, pull in
660 shared libraries, and install the solib event breakpoint.
661 If a "cloned-VM" event was propagated better throughout
662 the core, this wouldn't be required. */
663 solib_create_inferior_hook (0);
664 }
665 }
666
667 return target_follow_fork (follow_child, detach_fork);
668 }
669
670 /* Tell the target to follow the fork we're stopped at. Returns true
671 if the inferior should be resumed; false, if the target for some
672 reason decided it's best not to resume. */
673
674 static int
675 follow_fork (void)
676 {
677 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
678 int should_resume = 1;
679 struct thread_info *tp;
680
681 /* Copy user stepping state to the new inferior thread. FIXME: the
682 followed fork child thread should have a copy of most of the
683 parent thread structure's run control related fields, not just these.
684 Initialized to avoid "may be used uninitialized" warnings from gcc. */
685 struct breakpoint *step_resume_breakpoint = NULL;
686 struct breakpoint *exception_resume_breakpoint = NULL;
687 CORE_ADDR step_range_start = 0;
688 CORE_ADDR step_range_end = 0;
689 struct frame_id step_frame_id = { 0 };
690 struct interp *command_interp = NULL;
691
692 if (!non_stop)
693 {
694 ptid_t wait_ptid;
695 struct target_waitstatus wait_status;
696
697 /* Get the last target status returned by target_wait(). */
698 get_last_target_status (&wait_ptid, &wait_status);
699
700 /* If not stopped at a fork event, then there's nothing else to
701 do. */
702 if (wait_status.kind != TARGET_WAITKIND_FORKED
703 && wait_status.kind != TARGET_WAITKIND_VFORKED)
704 return 1;
705
706 /* Check if we switched over from WAIT_PTID, since the event was
707 reported. */
708 if (!ptid_equal (wait_ptid, minus_one_ptid)
709 && !ptid_equal (inferior_ptid, wait_ptid))
710 {
711 /* We did. Switch back to WAIT_PTID thread, to tell the
712 target to follow it (in either direction). We'll
713 afterwards refuse to resume, and inform the user what
714 happened. */
715 switch_to_thread (wait_ptid);
716 should_resume = 0;
717 }
718 }
719
720 tp = inferior_thread ();
721
722 /* If there were any forks/vforks that were caught and are now to be
723 followed, then do so now. */
724 switch (tp->pending_follow.kind)
725 {
726 case TARGET_WAITKIND_FORKED:
727 case TARGET_WAITKIND_VFORKED:
728 {
729 ptid_t parent, child;
730
731 /* If the user did a next/step, etc, over a fork call,
732 preserve the stepping state in the fork child. */
733 if (follow_child && should_resume)
734 {
735 step_resume_breakpoint = clone_momentary_breakpoint
736 (tp->control.step_resume_breakpoint);
737 step_range_start = tp->control.step_range_start;
738 step_range_end = tp->control.step_range_end;
739 step_frame_id = tp->control.step_frame_id;
740 exception_resume_breakpoint
741 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
742 command_interp = tp->control.command_interp;
743
744 /* For now, delete the parent's sr breakpoint, otherwise,
745 parent/child sr breakpoints are considered duplicates,
746 and the child version will not be installed. Remove
747 this when the breakpoints module becomes aware of
748 inferiors and address spaces. */
749 delete_step_resume_breakpoint (tp);
750 tp->control.step_range_start = 0;
751 tp->control.step_range_end = 0;
752 tp->control.step_frame_id = null_frame_id;
753 delete_exception_resume_breakpoint (tp);
754 tp->control.command_interp = NULL;
755 }
756
757 parent = inferior_ptid;
758 child = tp->pending_follow.value.related_pid;
759
760 /* Set up inferior(s) as specified by the caller, and tell the
761 target to do whatever is necessary to follow either parent
762 or child. */
763 if (follow_fork_inferior (follow_child, detach_fork))
764 {
765 /* Target refused to follow, or there's some other reason
766 we shouldn't resume. */
767 should_resume = 0;
768 }
769 else
770 {
771 /* This pending follow fork event is now handled, one way
772 or another. The previous selected thread may be gone
773 from the lists by now, but if it is still around, need
774 to clear the pending follow request. */
775 tp = find_thread_ptid (parent);
776 if (tp)
777 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
778
779 /* This makes sure we don't try to apply the "Switched
780 over from WAIT_PID" logic above. */
781 nullify_last_target_wait_ptid ();
782
783 /* If we followed the child, switch to it... */
784 if (follow_child)
785 {
786 switch_to_thread (child);
787
788 /* ... and preserve the stepping state, in case the
789 user was stepping over the fork call. */
790 if (should_resume)
791 {
792 tp = inferior_thread ();
793 tp->control.step_resume_breakpoint
794 = step_resume_breakpoint;
795 tp->control.step_range_start = step_range_start;
796 tp->control.step_range_end = step_range_end;
797 tp->control.step_frame_id = step_frame_id;
798 tp->control.exception_resume_breakpoint
799 = exception_resume_breakpoint;
800 tp->control.command_interp = command_interp;
801 }
802 else
803 {
804 /* If we get here, it was because we're trying to
805 resume from a fork catchpoint, but, the user
806 has switched threads away from the thread that
807 forked. In that case, the resume command
808 issued is most likely not applicable to the
809 child, so just warn, and refuse to resume. */
810 warning (_("Not resuming: switched threads "
811 "before following fork child."));
812 }
813
814 /* Reset breakpoints in the child as appropriate. */
815 follow_inferior_reset_breakpoints ();
816 }
817 else
818 switch_to_thread (parent);
819 }
820 }
821 break;
822 case TARGET_WAITKIND_SPURIOUS:
823 /* Nothing to follow. */
824 break;
825 default:
826 internal_error (__FILE__, __LINE__,
827 "Unexpected pending_follow.kind %d\n",
828 tp->pending_follow.kind);
829 break;
830 }
831
832 return should_resume;
833 }
834
835 static void
836 follow_inferior_reset_breakpoints (void)
837 {
838 struct thread_info *tp = inferior_thread ();
839
840 /* Was there a step_resume breakpoint? (There was if the user
841 did a "next" at the fork() call.) If so, explicitly reset its
842 thread number. Cloned step_resume breakpoints are disabled on
843 creation, so enable it here now that it is associated with the
844 correct thread.
845
846 step_resumes are a form of bp that are made to be per-thread.
847 Since we created the step_resume bp when the parent process
848 was being debugged, and now are switching to the child process,
849 from the breakpoint package's viewpoint, that's a switch of
850 "threads". We must update the bp's notion of which thread
851 it is for, or it'll be ignored when it triggers. */
852
853 if (tp->control.step_resume_breakpoint)
854 {
855 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
856 tp->control.step_resume_breakpoint->loc->enabled = 1;
857 }
858
859 /* Treat exception_resume breakpoints like step_resume breakpoints. */
860 if (tp->control.exception_resume_breakpoint)
861 {
862 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
863 tp->control.exception_resume_breakpoint->loc->enabled = 1;
864 }
865
866 /* Reinsert all breakpoints in the child. The user may have set
867 breakpoints after catching the fork, in which case those
868 were never set in the child, but only in the parent. This makes
869 sure the inserted breakpoints match the breakpoint list. */
870
871 breakpoint_re_set ();
872 insert_breakpoints ();
873 }
874
875 /* The child has exited or execed: resume threads of the parent the
876 user wanted to be executing. */
877
878 static int
879 proceed_after_vfork_done (struct thread_info *thread,
880 void *arg)
881 {
882 int pid = * (int *) arg;
883
884 if (ptid_get_pid (thread->ptid) == pid
885 && is_running (thread->ptid)
886 && !is_executing (thread->ptid)
887 && !thread->stop_requested
888 && thread->suspend.stop_signal == GDB_SIGNAL_0)
889 {
890 if (debug_infrun)
891 fprintf_unfiltered (gdb_stdlog,
892 "infrun: resuming vfork parent thread %s\n",
893 target_pid_to_str (thread->ptid));
894
895 switch_to_thread (thread->ptid);
896 clear_proceed_status (0);
897 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
898 }
899
900 return 0;
901 }
902
903 /* Called whenever we notice an exec or exit event, to handle
904 detaching or resuming a vfork parent. */
905
906 static void
907 handle_vfork_child_exec_or_exit (int exec)
908 {
909 struct inferior *inf = current_inferior ();
910
911 if (inf->vfork_parent)
912 {
913 int resume_parent = -1;
914
915 /* This exec or exit marks the end of the shared memory region
916 between the parent and the child. If the user wanted to
917 detach from the parent, now is the time. */
918
919 if (inf->vfork_parent->pending_detach)
920 {
921 struct thread_info *tp;
922 struct cleanup *old_chain;
923 struct program_space *pspace;
924 struct address_space *aspace;
925
926 /* follow-fork child, detach-on-fork on. */
927
928 inf->vfork_parent->pending_detach = 0;
929
930 if (!exec)
931 {
932 /* If we're handling a child exit, then inferior_ptid
933 points at the inferior's pid, not to a thread. */
934 old_chain = save_inferior_ptid ();
935 save_current_program_space ();
936 save_current_inferior ();
937 }
938 else
939 old_chain = save_current_space_and_thread ();
940
941 /* We're letting loose of the parent. */
942 tp = any_live_thread_of_process (inf->vfork_parent->pid);
943 switch_to_thread (tp->ptid);
944
945 /* We're about to detach from the parent, which implicitly
946 removes breakpoints from its address space. There's a
947 catch here: we want to reuse the spaces for the child,
948 but, parent/child are still sharing the pspace at this
949 point, although the exec in reality makes the kernel give
950 the child a fresh set of new pages. The problem here is
951 that the breakpoints module being unaware of this, would
952 likely chose the child process to write to the parent
953 address space. Swapping the child temporarily away from
954 the spaces has the desired effect. Yes, this is "sort
955 of" a hack. */
956
957 pspace = inf->pspace;
958 aspace = inf->aspace;
959 inf->aspace = NULL;
960 inf->pspace = NULL;
961
962 if (debug_infrun || info_verbose)
963 {
964 target_terminal_ours_for_output ();
965
966 if (exec)
967 {
968 fprintf_filtered (gdb_stdlog,
969 _("Detaching vfork parent process "
970 "%d after child exec.\n"),
971 inf->vfork_parent->pid);
972 }
973 else
974 {
975 fprintf_filtered (gdb_stdlog,
976 _("Detaching vfork parent process "
977 "%d after child exit.\n"),
978 inf->vfork_parent->pid);
979 }
980 }
981
982 target_detach (NULL, 0);
983
984 /* Put it back. */
985 inf->pspace = pspace;
986 inf->aspace = aspace;
987
988 do_cleanups (old_chain);
989 }
990 else if (exec)
991 {
992 /* We're staying attached to the parent, so, really give the
993 child a new address space. */
994 inf->pspace = add_program_space (maybe_new_address_space ());
995 inf->aspace = inf->pspace->aspace;
996 inf->removable = 1;
997 set_current_program_space (inf->pspace);
998
999 resume_parent = inf->vfork_parent->pid;
1000
1001 /* Break the bonds. */
1002 inf->vfork_parent->vfork_child = NULL;
1003 }
1004 else
1005 {
1006 struct cleanup *old_chain;
1007 struct program_space *pspace;
1008
1009 /* If this is a vfork child exiting, then the pspace and
1010 aspaces were shared with the parent. Since we're
1011 reporting the process exit, we'll be mourning all that is
1012 found in the address space, and switching to null_ptid,
1013 preparing to start a new inferior. But, since we don't
1014 want to clobber the parent's address/program spaces, we
1015 go ahead and create a new one for this exiting
1016 inferior. */
1017
1018 /* Switch to null_ptid, so that clone_program_space doesn't want
1019 to read the selected frame of a dead process. */
1020 old_chain = save_inferior_ptid ();
1021 inferior_ptid = null_ptid;
1022
1023 /* This inferior is dead, so avoid giving the breakpoints
1024 module the option to write through to it (cloning a
1025 program space resets breakpoints). */
1026 inf->aspace = NULL;
1027 inf->pspace = NULL;
1028 pspace = add_program_space (maybe_new_address_space ());
1029 set_current_program_space (pspace);
1030 inf->removable = 1;
1031 inf->symfile_flags = SYMFILE_NO_READ;
1032 clone_program_space (pspace, inf->vfork_parent->pspace);
1033 inf->pspace = pspace;
1034 inf->aspace = pspace->aspace;
1035
1036 /* Put back inferior_ptid. We'll continue mourning this
1037 inferior. */
1038 do_cleanups (old_chain);
1039
1040 resume_parent = inf->vfork_parent->pid;
1041 /* Break the bonds. */
1042 inf->vfork_parent->vfork_child = NULL;
1043 }
1044
1045 inf->vfork_parent = NULL;
1046
1047 gdb_assert (current_program_space == inf->pspace);
1048
1049 if (non_stop && resume_parent != -1)
1050 {
1051 /* If the user wanted the parent to be running, let it go
1052 free now. */
1053 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1054
1055 if (debug_infrun)
1056 fprintf_unfiltered (gdb_stdlog,
1057 "infrun: resuming vfork parent process %d\n",
1058 resume_parent);
1059
1060 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1061
1062 do_cleanups (old_chain);
1063 }
1064 }
1065 }
1066
1067 /* Enum strings for "set|show follow-exec-mode". */
1068
1069 static const char follow_exec_mode_new[] = "new";
1070 static const char follow_exec_mode_same[] = "same";
1071 static const char *const follow_exec_mode_names[] =
1072 {
1073 follow_exec_mode_new,
1074 follow_exec_mode_same,
1075 NULL,
1076 };
1077
1078 static const char *follow_exec_mode_string = follow_exec_mode_same;
1079 static void
1080 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1081 struct cmd_list_element *c, const char *value)
1082 {
1083 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1084 }
1085
1086 /* EXECD_PATHNAME is assumed to be non-NULL. */
1087
1088 static void
1089 follow_exec (ptid_t ptid, char *execd_pathname)
1090 {
1091 struct thread_info *th, *tmp;
1092 struct inferior *inf = current_inferior ();
1093 int pid = ptid_get_pid (ptid);
1094 ptid_t process_ptid;
1095
1096 /* This is an exec event that we actually wish to pay attention to.
1097 Refresh our symbol table to the newly exec'd program, remove any
1098 momentary bp's, etc.
1099
1100 If there are breakpoints, they aren't really inserted now,
1101 since the exec() transformed our inferior into a fresh set
1102 of instructions.
1103
1104 We want to preserve symbolic breakpoints on the list, since
1105 we have hopes that they can be reset after the new a.out's
1106 symbol table is read.
1107
1108 However, any "raw" breakpoints must be removed from the list
1109 (e.g., the solib bp's), since their address is probably invalid
1110 now.
1111
1112 And, we DON'T want to call delete_breakpoints() here, since
1113 that may write the bp's "shadow contents" (the instruction
1114 value that was overwritten witha TRAP instruction). Since
1115 we now have a new a.out, those shadow contents aren't valid. */
1116
1117 mark_breakpoints_out ();
1118
1119 /* The target reports the exec event to the main thread, even if
1120 some other thread does the exec, and even if the main thread was
1121 stopped or already gone. We may still have non-leader threads of
1122 the process on our list. E.g., on targets that don't have thread
1123 exit events (like remote); or on native Linux in non-stop mode if
1124 there were only two threads in the inferior and the non-leader
1125 one is the one that execs (and nothing forces an update of the
1126 thread list up to here). When debugging remotely, it's best to
1127 avoid extra traffic, when possible, so avoid syncing the thread
1128 list with the target, and instead go ahead and delete all threads
1129 of the process but one that reported the event. Note this must
1130 be done before calling update_breakpoints_after_exec, as
1131 otherwise clearing the threads' resources would reference stale
1132 thread breakpoints -- it may have been one of these threads that
1133 stepped across the exec. We could just clear their stepping
1134 states, but as long as we're iterating, might as well delete
1135 them. Deleting them now rather than at the next user-visible
1136 stop provides a nicer sequence of events for user and MI
1137 notifications. */
1138 ALL_THREADS_SAFE (th, tmp)
1139 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1140 delete_thread (th->ptid);
1141
1142 /* We also need to clear any left over stale state for the
1143 leader/event thread. E.g., if there was any step-resume
1144 breakpoint or similar, it's gone now. We cannot truly
1145 step-to-next statement through an exec(). */
1146 th = inferior_thread ();
1147 th->control.step_resume_breakpoint = NULL;
1148 th->control.exception_resume_breakpoint = NULL;
1149 th->control.single_step_breakpoints = NULL;
1150 th->control.step_range_start = 0;
1151 th->control.step_range_end = 0;
1152
1153 /* The user may have had the main thread held stopped in the
1154 previous image (e.g., schedlock on, or non-stop). Release
1155 it now. */
1156 th->stop_requested = 0;
1157
1158 update_breakpoints_after_exec ();
1159
1160 /* What is this a.out's name? */
1161 process_ptid = pid_to_ptid (pid);
1162 printf_unfiltered (_("%s is executing new program: %s\n"),
1163 target_pid_to_str (process_ptid),
1164 execd_pathname);
1165
1166 /* We've followed the inferior through an exec. Therefore, the
1167 inferior has essentially been killed & reborn. */
1168
1169 gdb_flush (gdb_stdout);
1170
1171 breakpoint_init_inferior (inf_execd);
1172
1173 if (*gdb_sysroot != '\0')
1174 {
1175 char *name = exec_file_find (execd_pathname, NULL);
1176
1177 execd_pathname = (char *) alloca (strlen (name) + 1);
1178 strcpy (execd_pathname, name);
1179 xfree (name);
1180 }
1181
1182 /* Reset the shared library package. This ensures that we get a
1183 shlib event when the child reaches "_start", at which point the
1184 dld will have had a chance to initialize the child. */
1185 /* Also, loading a symbol file below may trigger symbol lookups, and
1186 we don't want those to be satisfied by the libraries of the
1187 previous incarnation of this process. */
1188 no_shared_libraries (NULL, 0);
1189
1190 if (follow_exec_mode_string == follow_exec_mode_new)
1191 {
1192 /* The user wants to keep the old inferior and program spaces
1193 around. Create a new fresh one, and switch to it. */
1194
1195 /* Do exit processing for the original inferior before adding
1196 the new inferior so we don't have two active inferiors with
1197 the same ptid, which can confuse find_inferior_ptid. */
1198 exit_inferior_num_silent (current_inferior ()->num);
1199
1200 inf = add_inferior_with_spaces ();
1201 inf->pid = pid;
1202 target_follow_exec (inf, execd_pathname);
1203
1204 set_current_inferior (inf);
1205 set_current_program_space (inf->pspace);
1206 add_thread (ptid);
1207 }
1208 else
1209 {
1210 /* The old description may no longer be fit for the new image.
1211 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1212 old description; we'll read a new one below. No need to do
1213 this on "follow-exec-mode new", as the old inferior stays
1214 around (its description is later cleared/refetched on
1215 restart). */
1216 target_clear_description ();
1217 }
1218
1219 gdb_assert (current_program_space == inf->pspace);
1220
1221 /* That a.out is now the one to use. */
1222 exec_file_attach (execd_pathname, 0);
1223
1224 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1225 (Position Independent Executable) main symbol file will get applied by
1226 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1227 the breakpoints with the zero displacement. */
1228
1229 symbol_file_add (execd_pathname,
1230 (inf->symfile_flags
1231 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
1232 NULL, 0);
1233
1234 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1235 set_initial_language ();
1236
1237 /* If the target can specify a description, read it. Must do this
1238 after flipping to the new executable (because the target supplied
1239 description must be compatible with the executable's
1240 architecture, and the old executable may e.g., be 32-bit, while
1241 the new one 64-bit), and before anything involving memory or
1242 registers. */
1243 target_find_description ();
1244
1245 solib_create_inferior_hook (0);
1246
1247 jit_inferior_created_hook ();
1248
1249 breakpoint_re_set ();
1250
1251 /* Reinsert all breakpoints. (Those which were symbolic have
1252 been reset to the proper address in the new a.out, thanks
1253 to symbol_file_command...). */
1254 insert_breakpoints ();
1255
1256 /* The next resume of this inferior should bring it to the shlib
1257 startup breakpoints. (If the user had also set bp's on
1258 "main" from the old (parent) process, then they'll auto-
1259 matically get reset there in the new process.). */
1260 }
1261
1262 /* The queue of threads that need to do a step-over operation to get
1263 past e.g., a breakpoint. What technique is used to step over the
1264 breakpoint/watchpoint does not matter -- all threads end up in the
1265 same queue, to maintain rough temporal order of execution, in order
1266 to avoid starvation, otherwise, we could e.g., find ourselves
1267 constantly stepping the same couple threads past their breakpoints
1268 over and over, if the single-step finish fast enough. */
1269 struct thread_info *step_over_queue_head;
1270
1271 /* Bit flags indicating what the thread needs to step over. */
1272
1273 enum step_over_what_flag
1274 {
1275 /* Step over a breakpoint. */
1276 STEP_OVER_BREAKPOINT = 1,
1277
1278 /* Step past a non-continuable watchpoint, in order to let the
1279 instruction execute so we can evaluate the watchpoint
1280 expression. */
1281 STEP_OVER_WATCHPOINT = 2
1282 };
1283 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1284
1285 /* Info about an instruction that is being stepped over. */
1286
1287 struct step_over_info
1288 {
1289 /* If we're stepping past a breakpoint, this is the address space
1290 and address of the instruction the breakpoint is set at. We'll
1291 skip inserting all breakpoints here. Valid iff ASPACE is
1292 non-NULL. */
1293 struct address_space *aspace;
1294 CORE_ADDR address;
1295
1296 /* The instruction being stepped over triggers a nonsteppable
1297 watchpoint. If true, we'll skip inserting watchpoints. */
1298 int nonsteppable_watchpoint_p;
1299
1300 /* The thread's global number. */
1301 int thread;
1302 };
1303
1304 /* The step-over info of the location that is being stepped over.
1305
1306 Note that with async/breakpoint always-inserted mode, a user might
1307 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1308 being stepped over. As setting a new breakpoint inserts all
1309 breakpoints, we need to make sure the breakpoint being stepped over
1310 isn't inserted then. We do that by only clearing the step-over
1311 info when the step-over is actually finished (or aborted).
1312
1313 Presently GDB can only step over one breakpoint at any given time.
1314 Given threads that can't run code in the same address space as the
1315 breakpoint's can't really miss the breakpoint, GDB could be taught
1316 to step-over at most one breakpoint per address space (so this info
1317 could move to the address space object if/when GDB is extended).
1318 The set of breakpoints being stepped over will normally be much
1319 smaller than the set of all breakpoints, so a flag in the
1320 breakpoint location structure would be wasteful. A separate list
1321 also saves complexity and run-time, as otherwise we'd have to go
1322 through all breakpoint locations clearing their flag whenever we
1323 start a new sequence. Similar considerations weigh against storing
1324 this info in the thread object. Plus, not all step overs actually
1325 have breakpoint locations -- e.g., stepping past a single-step
1326 breakpoint, or stepping to complete a non-continuable
1327 watchpoint. */
1328 static struct step_over_info step_over_info;
1329
1330 /* Record the address of the breakpoint/instruction we're currently
1331 stepping over. */
1332
1333 static void
1334 set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1335 int nonsteppable_watchpoint_p,
1336 int thread)
1337 {
1338 step_over_info.aspace = aspace;
1339 step_over_info.address = address;
1340 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1341 step_over_info.thread = thread;
1342 }
1343
1344 /* Called when we're not longer stepping over a breakpoint / an
1345 instruction, so all breakpoints are free to be (re)inserted. */
1346
1347 static void
1348 clear_step_over_info (void)
1349 {
1350 if (debug_infrun)
1351 fprintf_unfiltered (gdb_stdlog,
1352 "infrun: clear_step_over_info\n");
1353 step_over_info.aspace = NULL;
1354 step_over_info.address = 0;
1355 step_over_info.nonsteppable_watchpoint_p = 0;
1356 step_over_info.thread = -1;
1357 }
1358
1359 /* See infrun.h. */
1360
1361 int
1362 stepping_past_instruction_at (struct address_space *aspace,
1363 CORE_ADDR address)
1364 {
1365 return (step_over_info.aspace != NULL
1366 && breakpoint_address_match (aspace, address,
1367 step_over_info.aspace,
1368 step_over_info.address));
1369 }
1370
1371 /* See infrun.h. */
1372
1373 int
1374 thread_is_stepping_over_breakpoint (int thread)
1375 {
1376 return (step_over_info.thread != -1
1377 && thread == step_over_info.thread);
1378 }
1379
1380 /* See infrun.h. */
1381
1382 int
1383 stepping_past_nonsteppable_watchpoint (void)
1384 {
1385 return step_over_info.nonsteppable_watchpoint_p;
1386 }
1387
1388 /* Returns true if step-over info is valid. */
1389
1390 static int
1391 step_over_info_valid_p (void)
1392 {
1393 return (step_over_info.aspace != NULL
1394 || stepping_past_nonsteppable_watchpoint ());
1395 }
1396
1397 \f
1398 /* Displaced stepping. */
1399
1400 /* In non-stop debugging mode, we must take special care to manage
1401 breakpoints properly; in particular, the traditional strategy for
1402 stepping a thread past a breakpoint it has hit is unsuitable.
1403 'Displaced stepping' is a tactic for stepping one thread past a
1404 breakpoint it has hit while ensuring that other threads running
1405 concurrently will hit the breakpoint as they should.
1406
1407 The traditional way to step a thread T off a breakpoint in a
1408 multi-threaded program in all-stop mode is as follows:
1409
1410 a0) Initially, all threads are stopped, and breakpoints are not
1411 inserted.
1412 a1) We single-step T, leaving breakpoints uninserted.
1413 a2) We insert breakpoints, and resume all threads.
1414
1415 In non-stop debugging, however, this strategy is unsuitable: we
1416 don't want to have to stop all threads in the system in order to
1417 continue or step T past a breakpoint. Instead, we use displaced
1418 stepping:
1419
1420 n0) Initially, T is stopped, other threads are running, and
1421 breakpoints are inserted.
1422 n1) We copy the instruction "under" the breakpoint to a separate
1423 location, outside the main code stream, making any adjustments
1424 to the instruction, register, and memory state as directed by
1425 T's architecture.
1426 n2) We single-step T over the instruction at its new location.
1427 n3) We adjust the resulting register and memory state as directed
1428 by T's architecture. This includes resetting T's PC to point
1429 back into the main instruction stream.
1430 n4) We resume T.
1431
1432 This approach depends on the following gdbarch methods:
1433
1434 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1435 indicate where to copy the instruction, and how much space must
1436 be reserved there. We use these in step n1.
1437
1438 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1439 address, and makes any necessary adjustments to the instruction,
1440 register contents, and memory. We use this in step n1.
1441
1442 - gdbarch_displaced_step_fixup adjusts registers and memory after
1443 we have successfuly single-stepped the instruction, to yield the
1444 same effect the instruction would have had if we had executed it
1445 at its original address. We use this in step n3.
1446
1447 - gdbarch_displaced_step_free_closure provides cleanup.
1448
1449 The gdbarch_displaced_step_copy_insn and
1450 gdbarch_displaced_step_fixup functions must be written so that
1451 copying an instruction with gdbarch_displaced_step_copy_insn,
1452 single-stepping across the copied instruction, and then applying
1453 gdbarch_displaced_insn_fixup should have the same effects on the
1454 thread's memory and registers as stepping the instruction in place
1455 would have. Exactly which responsibilities fall to the copy and
1456 which fall to the fixup is up to the author of those functions.
1457
1458 See the comments in gdbarch.sh for details.
1459
1460 Note that displaced stepping and software single-step cannot
1461 currently be used in combination, although with some care I think
1462 they could be made to. Software single-step works by placing
1463 breakpoints on all possible subsequent instructions; if the
1464 displaced instruction is a PC-relative jump, those breakpoints
1465 could fall in very strange places --- on pages that aren't
1466 executable, or at addresses that are not proper instruction
1467 boundaries. (We do generally let other threads run while we wait
1468 to hit the software single-step breakpoint, and they might
1469 encounter such a corrupted instruction.) One way to work around
1470 this would be to have gdbarch_displaced_step_copy_insn fully
1471 simulate the effect of PC-relative instructions (and return NULL)
1472 on architectures that use software single-stepping.
1473
1474 In non-stop mode, we can have independent and simultaneous step
1475 requests, so more than one thread may need to simultaneously step
1476 over a breakpoint. The current implementation assumes there is
1477 only one scratch space per process. In this case, we have to
1478 serialize access to the scratch space. If thread A wants to step
1479 over a breakpoint, but we are currently waiting for some other
1480 thread to complete a displaced step, we leave thread A stopped and
1481 place it in the displaced_step_request_queue. Whenever a displaced
1482 step finishes, we pick the next thread in the queue and start a new
1483 displaced step operation on it. See displaced_step_prepare and
1484 displaced_step_fixup for details. */
1485
1486 /* Per-inferior displaced stepping state. */
1487 struct displaced_step_inferior_state
1488 {
1489 /* Pointer to next in linked list. */
1490 struct displaced_step_inferior_state *next;
1491
1492 /* The process this displaced step state refers to. */
1493 int pid;
1494
1495 /* True if preparing a displaced step ever failed. If so, we won't
1496 try displaced stepping for this inferior again. */
1497 int failed_before;
1498
1499 /* If this is not null_ptid, this is the thread carrying out a
1500 displaced single-step in process PID. This thread's state will
1501 require fixing up once it has completed its step. */
1502 ptid_t step_ptid;
1503
1504 /* The architecture the thread had when we stepped it. */
1505 struct gdbarch *step_gdbarch;
1506
1507 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1508 for post-step cleanup. */
1509 struct displaced_step_closure *step_closure;
1510
1511 /* The address of the original instruction, and the copy we
1512 made. */
1513 CORE_ADDR step_original, step_copy;
1514
1515 /* Saved contents of copy area. */
1516 gdb_byte *step_saved_copy;
1517 };
1518
1519 /* The list of states of processes involved in displaced stepping
1520 presently. */
1521 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1522
1523 /* Get the displaced stepping state of process PID. */
1524
1525 static struct displaced_step_inferior_state *
1526 get_displaced_stepping_state (int pid)
1527 {
1528 struct displaced_step_inferior_state *state;
1529
1530 for (state = displaced_step_inferior_states;
1531 state != NULL;
1532 state = state->next)
1533 if (state->pid == pid)
1534 return state;
1535
1536 return NULL;
1537 }
1538
1539 /* Returns true if any inferior has a thread doing a displaced
1540 step. */
1541
1542 static int
1543 displaced_step_in_progress_any_inferior (void)
1544 {
1545 struct displaced_step_inferior_state *state;
1546
1547 for (state = displaced_step_inferior_states;
1548 state != NULL;
1549 state = state->next)
1550 if (!ptid_equal (state->step_ptid, null_ptid))
1551 return 1;
1552
1553 return 0;
1554 }
1555
1556 /* Return true if thread represented by PTID is doing a displaced
1557 step. */
1558
1559 static int
1560 displaced_step_in_progress_thread (ptid_t ptid)
1561 {
1562 struct displaced_step_inferior_state *displaced;
1563
1564 gdb_assert (!ptid_equal (ptid, null_ptid));
1565
1566 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1567
1568 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1569 }
1570
1571 /* Return true if process PID has a thread doing a displaced step. */
1572
1573 static int
1574 displaced_step_in_progress (int pid)
1575 {
1576 struct displaced_step_inferior_state *displaced;
1577
1578 displaced = get_displaced_stepping_state (pid);
1579 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1580 return 1;
1581
1582 return 0;
1583 }
1584
1585 /* Add a new displaced stepping state for process PID to the displaced
1586 stepping state list, or return a pointer to an already existing
1587 entry, if it already exists. Never returns NULL. */
1588
1589 static struct displaced_step_inferior_state *
1590 add_displaced_stepping_state (int pid)
1591 {
1592 struct displaced_step_inferior_state *state;
1593
1594 for (state = displaced_step_inferior_states;
1595 state != NULL;
1596 state = state->next)
1597 if (state->pid == pid)
1598 return state;
1599
1600 state = XCNEW (struct displaced_step_inferior_state);
1601 state->pid = pid;
1602 state->next = displaced_step_inferior_states;
1603 displaced_step_inferior_states = state;
1604
1605 return state;
1606 }
1607
1608 /* If inferior is in displaced stepping, and ADDR equals to starting address
1609 of copy area, return corresponding displaced_step_closure. Otherwise,
1610 return NULL. */
1611
1612 struct displaced_step_closure*
1613 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1614 {
1615 struct displaced_step_inferior_state *displaced
1616 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1617
1618 /* If checking the mode of displaced instruction in copy area. */
1619 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1620 && (displaced->step_copy == addr))
1621 return displaced->step_closure;
1622
1623 return NULL;
1624 }
1625
1626 /* Remove the displaced stepping state of process PID. */
1627
1628 static void
1629 remove_displaced_stepping_state (int pid)
1630 {
1631 struct displaced_step_inferior_state *it, **prev_next_p;
1632
1633 gdb_assert (pid != 0);
1634
1635 it = displaced_step_inferior_states;
1636 prev_next_p = &displaced_step_inferior_states;
1637 while (it)
1638 {
1639 if (it->pid == pid)
1640 {
1641 *prev_next_p = it->next;
1642 xfree (it);
1643 return;
1644 }
1645
1646 prev_next_p = &it->next;
1647 it = *prev_next_p;
1648 }
1649 }
1650
1651 static void
1652 infrun_inferior_exit (struct inferior *inf)
1653 {
1654 remove_displaced_stepping_state (inf->pid);
1655 }
1656
1657 /* If ON, and the architecture supports it, GDB will use displaced
1658 stepping to step over breakpoints. If OFF, or if the architecture
1659 doesn't support it, GDB will instead use the traditional
1660 hold-and-step approach. If AUTO (which is the default), GDB will
1661 decide which technique to use to step over breakpoints depending on
1662 which of all-stop or non-stop mode is active --- displaced stepping
1663 in non-stop mode; hold-and-step in all-stop mode. */
1664
1665 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1666
1667 static void
1668 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1669 struct cmd_list_element *c,
1670 const char *value)
1671 {
1672 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1673 fprintf_filtered (file,
1674 _("Debugger's willingness to use displaced stepping "
1675 "to step over breakpoints is %s (currently %s).\n"),
1676 value, target_is_non_stop_p () ? "on" : "off");
1677 else
1678 fprintf_filtered (file,
1679 _("Debugger's willingness to use displaced stepping "
1680 "to step over breakpoints is %s.\n"), value);
1681 }
1682
1683 /* Return non-zero if displaced stepping can/should be used to step
1684 over breakpoints of thread TP. */
1685
1686 static int
1687 use_displaced_stepping (struct thread_info *tp)
1688 {
1689 struct regcache *regcache = get_thread_regcache (tp->ptid);
1690 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1691 struct displaced_step_inferior_state *displaced_state;
1692
1693 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1694
1695 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1696 && target_is_non_stop_p ())
1697 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1698 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1699 && find_record_target () == NULL
1700 && (displaced_state == NULL
1701 || !displaced_state->failed_before));
1702 }
1703
1704 /* Clean out any stray displaced stepping state. */
1705 static void
1706 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1707 {
1708 /* Indicate that there is no cleanup pending. */
1709 displaced->step_ptid = null_ptid;
1710
1711 if (displaced->step_closure)
1712 {
1713 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1714 displaced->step_closure);
1715 displaced->step_closure = NULL;
1716 }
1717 }
1718
1719 static void
1720 displaced_step_clear_cleanup (void *arg)
1721 {
1722 struct displaced_step_inferior_state *state
1723 = (struct displaced_step_inferior_state *) arg;
1724
1725 displaced_step_clear (state);
1726 }
1727
1728 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1729 void
1730 displaced_step_dump_bytes (struct ui_file *file,
1731 const gdb_byte *buf,
1732 size_t len)
1733 {
1734 int i;
1735
1736 for (i = 0; i < len; i++)
1737 fprintf_unfiltered (file, "%02x ", buf[i]);
1738 fputs_unfiltered ("\n", file);
1739 }
1740
1741 /* Prepare to single-step, using displaced stepping.
1742
1743 Note that we cannot use displaced stepping when we have a signal to
1744 deliver. If we have a signal to deliver and an instruction to step
1745 over, then after the step, there will be no indication from the
1746 target whether the thread entered a signal handler or ignored the
1747 signal and stepped over the instruction successfully --- both cases
1748 result in a simple SIGTRAP. In the first case we mustn't do a
1749 fixup, and in the second case we must --- but we can't tell which.
1750 Comments in the code for 'random signals' in handle_inferior_event
1751 explain how we handle this case instead.
1752
1753 Returns 1 if preparing was successful -- this thread is going to be
1754 stepped now; 0 if displaced stepping this thread got queued; or -1
1755 if this instruction can't be displaced stepped. */
1756
1757 static int
1758 displaced_step_prepare_throw (ptid_t ptid)
1759 {
1760 struct cleanup *old_cleanups, *ignore_cleanups;
1761 struct thread_info *tp = find_thread_ptid (ptid);
1762 struct regcache *regcache = get_thread_regcache (ptid);
1763 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1764 struct address_space *aspace = get_regcache_aspace (regcache);
1765 CORE_ADDR original, copy;
1766 ULONGEST len;
1767 struct displaced_step_closure *closure;
1768 struct displaced_step_inferior_state *displaced;
1769 int status;
1770
1771 /* We should never reach this function if the architecture does not
1772 support displaced stepping. */
1773 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1774
1775 /* Nor if the thread isn't meant to step over a breakpoint. */
1776 gdb_assert (tp->control.trap_expected);
1777
1778 /* Disable range stepping while executing in the scratch pad. We
1779 want a single-step even if executing the displaced instruction in
1780 the scratch buffer lands within the stepping range (e.g., a
1781 jump/branch). */
1782 tp->control.may_range_step = 0;
1783
1784 /* We have to displaced step one thread at a time, as we only have
1785 access to a single scratch space per inferior. */
1786
1787 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1788
1789 if (!ptid_equal (displaced->step_ptid, null_ptid))
1790 {
1791 /* Already waiting for a displaced step to finish. Defer this
1792 request and place in queue. */
1793
1794 if (debug_displaced)
1795 fprintf_unfiltered (gdb_stdlog,
1796 "displaced: deferring step of %s\n",
1797 target_pid_to_str (ptid));
1798
1799 thread_step_over_chain_enqueue (tp);
1800 return 0;
1801 }
1802 else
1803 {
1804 if (debug_displaced)
1805 fprintf_unfiltered (gdb_stdlog,
1806 "displaced: stepping %s now\n",
1807 target_pid_to_str (ptid));
1808 }
1809
1810 displaced_step_clear (displaced);
1811
1812 old_cleanups = save_inferior_ptid ();
1813 inferior_ptid = ptid;
1814
1815 original = regcache_read_pc (regcache);
1816
1817 copy = gdbarch_displaced_step_location (gdbarch);
1818 len = gdbarch_max_insn_length (gdbarch);
1819
1820 if (breakpoint_in_range_p (aspace, copy, len))
1821 {
1822 /* There's a breakpoint set in the scratch pad location range
1823 (which is usually around the entry point). We'd either
1824 install it before resuming, which would overwrite/corrupt the
1825 scratch pad, or if it was already inserted, this displaced
1826 step would overwrite it. The latter is OK in the sense that
1827 we already assume that no thread is going to execute the code
1828 in the scratch pad range (after initial startup) anyway, but
1829 the former is unacceptable. Simply punt and fallback to
1830 stepping over this breakpoint in-line. */
1831 if (debug_displaced)
1832 {
1833 fprintf_unfiltered (gdb_stdlog,
1834 "displaced: breakpoint set in scratch pad. "
1835 "Stepping over breakpoint in-line instead.\n");
1836 }
1837
1838 do_cleanups (old_cleanups);
1839 return -1;
1840 }
1841
1842 /* Save the original contents of the copy area. */
1843 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
1844 ignore_cleanups = make_cleanup (free_current_contents,
1845 &displaced->step_saved_copy);
1846 status = target_read_memory (copy, displaced->step_saved_copy, len);
1847 if (status != 0)
1848 throw_error (MEMORY_ERROR,
1849 _("Error accessing memory address %s (%s) for "
1850 "displaced-stepping scratch space."),
1851 paddress (gdbarch, copy), safe_strerror (status));
1852 if (debug_displaced)
1853 {
1854 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1855 paddress (gdbarch, copy));
1856 displaced_step_dump_bytes (gdb_stdlog,
1857 displaced->step_saved_copy,
1858 len);
1859 };
1860
1861 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1862 original, copy, regcache);
1863 if (closure == NULL)
1864 {
1865 /* The architecture doesn't know how or want to displaced step
1866 this instruction or instruction sequence. Fallback to
1867 stepping over the breakpoint in-line. */
1868 do_cleanups (old_cleanups);
1869 return -1;
1870 }
1871
1872 /* Save the information we need to fix things up if the step
1873 succeeds. */
1874 displaced->step_ptid = ptid;
1875 displaced->step_gdbarch = gdbarch;
1876 displaced->step_closure = closure;
1877 displaced->step_original = original;
1878 displaced->step_copy = copy;
1879
1880 make_cleanup (displaced_step_clear_cleanup, displaced);
1881
1882 /* Resume execution at the copy. */
1883 regcache_write_pc (regcache, copy);
1884
1885 discard_cleanups (ignore_cleanups);
1886
1887 do_cleanups (old_cleanups);
1888
1889 if (debug_displaced)
1890 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1891 paddress (gdbarch, copy));
1892
1893 return 1;
1894 }
1895
1896 /* Wrapper for displaced_step_prepare_throw that disabled further
1897 attempts at displaced stepping if we get a memory error. */
1898
1899 static int
1900 displaced_step_prepare (ptid_t ptid)
1901 {
1902 int prepared = -1;
1903
1904 TRY
1905 {
1906 prepared = displaced_step_prepare_throw (ptid);
1907 }
1908 CATCH (ex, RETURN_MASK_ERROR)
1909 {
1910 struct displaced_step_inferior_state *displaced_state;
1911
1912 if (ex.error != MEMORY_ERROR
1913 && ex.error != NOT_SUPPORTED_ERROR)
1914 throw_exception (ex);
1915
1916 if (debug_infrun)
1917 {
1918 fprintf_unfiltered (gdb_stdlog,
1919 "infrun: disabling displaced stepping: %s\n",
1920 ex.message);
1921 }
1922
1923 /* Be verbose if "set displaced-stepping" is "on", silent if
1924 "auto". */
1925 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1926 {
1927 warning (_("disabling displaced stepping: %s"),
1928 ex.message);
1929 }
1930
1931 /* Disable further displaced stepping attempts. */
1932 displaced_state
1933 = get_displaced_stepping_state (ptid_get_pid (ptid));
1934 displaced_state->failed_before = 1;
1935 }
1936 END_CATCH
1937
1938 return prepared;
1939 }
1940
1941 static void
1942 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1943 const gdb_byte *myaddr, int len)
1944 {
1945 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1946
1947 inferior_ptid = ptid;
1948 write_memory (memaddr, myaddr, len);
1949 do_cleanups (ptid_cleanup);
1950 }
1951
1952 /* Restore the contents of the copy area for thread PTID. */
1953
1954 static void
1955 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1956 ptid_t ptid)
1957 {
1958 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1959
1960 write_memory_ptid (ptid, displaced->step_copy,
1961 displaced->step_saved_copy, len);
1962 if (debug_displaced)
1963 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1964 target_pid_to_str (ptid),
1965 paddress (displaced->step_gdbarch,
1966 displaced->step_copy));
1967 }
1968
1969 /* If we displaced stepped an instruction successfully, adjust
1970 registers and memory to yield the same effect the instruction would
1971 have had if we had executed it at its original address, and return
1972 1. If the instruction didn't complete, relocate the PC and return
1973 -1. If the thread wasn't displaced stepping, return 0. */
1974
1975 static int
1976 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1977 {
1978 struct cleanup *old_cleanups;
1979 struct displaced_step_inferior_state *displaced
1980 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1981 int ret;
1982
1983 /* Was any thread of this process doing a displaced step? */
1984 if (displaced == NULL)
1985 return 0;
1986
1987 /* Was this event for the pid we displaced? */
1988 if (ptid_equal (displaced->step_ptid, null_ptid)
1989 || ! ptid_equal (displaced->step_ptid, event_ptid))
1990 return 0;
1991
1992 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1993
1994 displaced_step_restore (displaced, displaced->step_ptid);
1995
1996 /* Fixup may need to read memory/registers. Switch to the thread
1997 that we're fixing up. Also, target_stopped_by_watchpoint checks
1998 the current thread. */
1999 switch_to_thread (event_ptid);
2000
2001 /* Did the instruction complete successfully? */
2002 if (signal == GDB_SIGNAL_TRAP
2003 && !(target_stopped_by_watchpoint ()
2004 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
2005 || target_have_steppable_watchpoint)))
2006 {
2007 /* Fix up the resulting state. */
2008 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
2009 displaced->step_closure,
2010 displaced->step_original,
2011 displaced->step_copy,
2012 get_thread_regcache (displaced->step_ptid));
2013 ret = 1;
2014 }
2015 else
2016 {
2017 /* Since the instruction didn't complete, all we can do is
2018 relocate the PC. */
2019 struct regcache *regcache = get_thread_regcache (event_ptid);
2020 CORE_ADDR pc = regcache_read_pc (regcache);
2021
2022 pc = displaced->step_original + (pc - displaced->step_copy);
2023 regcache_write_pc (regcache, pc);
2024 ret = -1;
2025 }
2026
2027 do_cleanups (old_cleanups);
2028
2029 displaced->step_ptid = null_ptid;
2030
2031 return ret;
2032 }
2033
2034 /* Data to be passed around while handling an event. This data is
2035 discarded between events. */
2036 struct execution_control_state
2037 {
2038 ptid_t ptid;
2039 /* The thread that got the event, if this was a thread event; NULL
2040 otherwise. */
2041 struct thread_info *event_thread;
2042
2043 struct target_waitstatus ws;
2044 int stop_func_filled_in;
2045 CORE_ADDR stop_func_start;
2046 CORE_ADDR stop_func_end;
2047 const char *stop_func_name;
2048 int wait_some_more;
2049
2050 /* True if the event thread hit the single-step breakpoint of
2051 another thread. Thus the event doesn't cause a stop, the thread
2052 needs to be single-stepped past the single-step breakpoint before
2053 we can switch back to the original stepping thread. */
2054 int hit_singlestep_breakpoint;
2055 };
2056
2057 /* Clear ECS and set it to point at TP. */
2058
2059 static void
2060 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2061 {
2062 memset (ecs, 0, sizeof (*ecs));
2063 ecs->event_thread = tp;
2064 ecs->ptid = tp->ptid;
2065 }
2066
2067 static void keep_going_pass_signal (struct execution_control_state *ecs);
2068 static void prepare_to_wait (struct execution_control_state *ecs);
2069 static int keep_going_stepped_thread (struct thread_info *tp);
2070 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
2071
2072 /* Are there any pending step-over requests? If so, run all we can
2073 now and return true. Otherwise, return false. */
2074
2075 static int
2076 start_step_over (void)
2077 {
2078 struct thread_info *tp, *next;
2079
2080 /* Don't start a new step-over if we already have an in-line
2081 step-over operation ongoing. */
2082 if (step_over_info_valid_p ())
2083 return 0;
2084
2085 for (tp = step_over_queue_head; tp != NULL; tp = next)
2086 {
2087 struct execution_control_state ecss;
2088 struct execution_control_state *ecs = &ecss;
2089 step_over_what step_what;
2090 int must_be_in_line;
2091
2092 next = thread_step_over_chain_next (tp);
2093
2094 /* If this inferior already has a displaced step in process,
2095 don't start a new one. */
2096 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2097 continue;
2098
2099 step_what = thread_still_needs_step_over (tp);
2100 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2101 || ((step_what & STEP_OVER_BREAKPOINT)
2102 && !use_displaced_stepping (tp)));
2103
2104 /* We currently stop all threads of all processes to step-over
2105 in-line. If we need to start a new in-line step-over, let
2106 any pending displaced steps finish first. */
2107 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2108 return 0;
2109
2110 thread_step_over_chain_remove (tp);
2111
2112 if (step_over_queue_head == NULL)
2113 {
2114 if (debug_infrun)
2115 fprintf_unfiltered (gdb_stdlog,
2116 "infrun: step-over queue now empty\n");
2117 }
2118
2119 if (tp->control.trap_expected
2120 || tp->resumed
2121 || tp->executing)
2122 {
2123 internal_error (__FILE__, __LINE__,
2124 "[%s] has inconsistent state: "
2125 "trap_expected=%d, resumed=%d, executing=%d\n",
2126 target_pid_to_str (tp->ptid),
2127 tp->control.trap_expected,
2128 tp->resumed,
2129 tp->executing);
2130 }
2131
2132 if (debug_infrun)
2133 fprintf_unfiltered (gdb_stdlog,
2134 "infrun: resuming [%s] for step-over\n",
2135 target_pid_to_str (tp->ptid));
2136
2137 /* keep_going_pass_signal skips the step-over if the breakpoint
2138 is no longer inserted. In all-stop, we want to keep looking
2139 for a thread that needs a step-over instead of resuming TP,
2140 because we wouldn't be able to resume anything else until the
2141 target stops again. In non-stop, the resume always resumes
2142 only TP, so it's OK to let the thread resume freely. */
2143 if (!target_is_non_stop_p () && !step_what)
2144 continue;
2145
2146 switch_to_thread (tp->ptid);
2147 reset_ecs (ecs, tp);
2148 keep_going_pass_signal (ecs);
2149
2150 if (!ecs->wait_some_more)
2151 error (_("Command aborted."));
2152
2153 gdb_assert (tp->resumed);
2154
2155 /* If we started a new in-line step-over, we're done. */
2156 if (step_over_info_valid_p ())
2157 {
2158 gdb_assert (tp->control.trap_expected);
2159 return 1;
2160 }
2161
2162 if (!target_is_non_stop_p ())
2163 {
2164 /* On all-stop, shouldn't have resumed unless we needed a
2165 step over. */
2166 gdb_assert (tp->control.trap_expected
2167 || tp->step_after_step_resume_breakpoint);
2168
2169 /* With remote targets (at least), in all-stop, we can't
2170 issue any further remote commands until the program stops
2171 again. */
2172 return 1;
2173 }
2174
2175 /* Either the thread no longer needed a step-over, or a new
2176 displaced stepping sequence started. Even in the latter
2177 case, continue looking. Maybe we can also start another
2178 displaced step on a thread of other process. */
2179 }
2180
2181 return 0;
2182 }
2183
2184 /* Update global variables holding ptids to hold NEW_PTID if they were
2185 holding OLD_PTID. */
2186 static void
2187 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2188 {
2189 struct displaced_step_request *it;
2190 struct displaced_step_inferior_state *displaced;
2191
2192 if (ptid_equal (inferior_ptid, old_ptid))
2193 inferior_ptid = new_ptid;
2194
2195 for (displaced = displaced_step_inferior_states;
2196 displaced;
2197 displaced = displaced->next)
2198 {
2199 if (ptid_equal (displaced->step_ptid, old_ptid))
2200 displaced->step_ptid = new_ptid;
2201 }
2202 }
2203
2204 \f
2205 /* Resuming. */
2206
2207 /* Things to clean up if we QUIT out of resume (). */
2208 static void
2209 resume_cleanups (void *ignore)
2210 {
2211 if (!ptid_equal (inferior_ptid, null_ptid))
2212 delete_single_step_breakpoints (inferior_thread ());
2213
2214 normal_stop ();
2215 }
2216
2217 static const char schedlock_off[] = "off";
2218 static const char schedlock_on[] = "on";
2219 static const char schedlock_step[] = "step";
2220 static const char schedlock_replay[] = "replay";
2221 static const char *const scheduler_enums[] = {
2222 schedlock_off,
2223 schedlock_on,
2224 schedlock_step,
2225 schedlock_replay,
2226 NULL
2227 };
2228 static const char *scheduler_mode = schedlock_replay;
2229 static void
2230 show_scheduler_mode (struct ui_file *file, int from_tty,
2231 struct cmd_list_element *c, const char *value)
2232 {
2233 fprintf_filtered (file,
2234 _("Mode for locking scheduler "
2235 "during execution is \"%s\".\n"),
2236 value);
2237 }
2238
2239 static void
2240 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
2241 {
2242 if (!target_can_lock_scheduler)
2243 {
2244 scheduler_mode = schedlock_off;
2245 error (_("Target '%s' cannot support this command."), target_shortname);
2246 }
2247 }
2248
2249 /* True if execution commands resume all threads of all processes by
2250 default; otherwise, resume only threads of the current inferior
2251 process. */
2252 int sched_multi = 0;
2253
2254 /* Try to setup for software single stepping over the specified location.
2255 Return 1 if target_resume() should use hardware single step.
2256
2257 GDBARCH the current gdbarch.
2258 PC the location to step over. */
2259
2260 static int
2261 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2262 {
2263 int hw_step = 1;
2264
2265 if (execution_direction == EXEC_FORWARD
2266 && gdbarch_software_single_step_p (gdbarch)
2267 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2268 {
2269 hw_step = 0;
2270 }
2271 return hw_step;
2272 }
2273
2274 /* See infrun.h. */
2275
2276 ptid_t
2277 user_visible_resume_ptid (int step)
2278 {
2279 ptid_t resume_ptid;
2280
2281 if (non_stop)
2282 {
2283 /* With non-stop mode on, threads are always handled
2284 individually. */
2285 resume_ptid = inferior_ptid;
2286 }
2287 else if ((scheduler_mode == schedlock_on)
2288 || (scheduler_mode == schedlock_step && step))
2289 {
2290 /* User-settable 'scheduler' mode requires solo thread
2291 resume. */
2292 resume_ptid = inferior_ptid;
2293 }
2294 else if ((scheduler_mode == schedlock_replay)
2295 && target_record_will_replay (minus_one_ptid, execution_direction))
2296 {
2297 /* User-settable 'scheduler' mode requires solo thread resume in replay
2298 mode. */
2299 resume_ptid = inferior_ptid;
2300 }
2301 else if (!sched_multi && target_supports_multi_process ())
2302 {
2303 /* Resume all threads of the current process (and none of other
2304 processes). */
2305 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2306 }
2307 else
2308 {
2309 /* Resume all threads of all processes. */
2310 resume_ptid = RESUME_ALL;
2311 }
2312
2313 return resume_ptid;
2314 }
2315
2316 /* Return a ptid representing the set of threads that we will resume,
2317 in the perspective of the target, assuming run control handling
2318 does not require leaving some threads stopped (e.g., stepping past
2319 breakpoint). USER_STEP indicates whether we're about to start the
2320 target for a stepping command. */
2321
2322 static ptid_t
2323 internal_resume_ptid (int user_step)
2324 {
2325 /* In non-stop, we always control threads individually. Note that
2326 the target may always work in non-stop mode even with "set
2327 non-stop off", in which case user_visible_resume_ptid could
2328 return a wildcard ptid. */
2329 if (target_is_non_stop_p ())
2330 return inferior_ptid;
2331 else
2332 return user_visible_resume_ptid (user_step);
2333 }
2334
2335 /* Wrapper for target_resume, that handles infrun-specific
2336 bookkeeping. */
2337
2338 static void
2339 do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2340 {
2341 struct thread_info *tp = inferior_thread ();
2342
2343 /* Install inferior's terminal modes. */
2344 target_terminal_inferior ();
2345
2346 /* Avoid confusing the next resume, if the next stop/resume
2347 happens to apply to another thread. */
2348 tp->suspend.stop_signal = GDB_SIGNAL_0;
2349
2350 /* Advise target which signals may be handled silently.
2351
2352 If we have removed breakpoints because we are stepping over one
2353 in-line (in any thread), we need to receive all signals to avoid
2354 accidentally skipping a breakpoint during execution of a signal
2355 handler.
2356
2357 Likewise if we're displaced stepping, otherwise a trap for a
2358 breakpoint in a signal handler might be confused with the
2359 displaced step finishing. We don't make the displaced_step_fixup
2360 step distinguish the cases instead, because:
2361
2362 - a backtrace while stopped in the signal handler would show the
2363 scratch pad as frame older than the signal handler, instead of
2364 the real mainline code.
2365
2366 - when the thread is later resumed, the signal handler would
2367 return to the scratch pad area, which would no longer be
2368 valid. */
2369 if (step_over_info_valid_p ()
2370 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
2371 target_pass_signals (0, NULL);
2372 else
2373 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2374
2375 target_resume (resume_ptid, step, sig);
2376 }
2377
2378 /* Resume the inferior, but allow a QUIT. This is useful if the user
2379 wants to interrupt some lengthy single-stepping operation
2380 (for child processes, the SIGINT goes to the inferior, and so
2381 we get a SIGINT random_signal, but for remote debugging and perhaps
2382 other targets, that's not true).
2383
2384 SIG is the signal to give the inferior (zero for none). */
2385 void
2386 resume (enum gdb_signal sig)
2387 {
2388 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
2389 struct regcache *regcache = get_current_regcache ();
2390 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2391 struct thread_info *tp = inferior_thread ();
2392 CORE_ADDR pc = regcache_read_pc (regcache);
2393 struct address_space *aspace = get_regcache_aspace (regcache);
2394 ptid_t resume_ptid;
2395 /* This represents the user's step vs continue request. When
2396 deciding whether "set scheduler-locking step" applies, it's the
2397 user's intention that counts. */
2398 const int user_step = tp->control.stepping_command;
2399 /* This represents what we'll actually request the target to do.
2400 This can decay from a step to a continue, if e.g., we need to
2401 implement single-stepping with breakpoints (software
2402 single-step). */
2403 int step;
2404
2405 gdb_assert (!thread_is_in_step_over_chain (tp));
2406
2407 QUIT;
2408
2409 if (tp->suspend.waitstatus_pending_p)
2410 {
2411 if (debug_infrun)
2412 {
2413 char *statstr;
2414
2415 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2416 fprintf_unfiltered (gdb_stdlog,
2417 "infrun: resume: thread %s has pending wait status %s "
2418 "(currently_stepping=%d).\n",
2419 target_pid_to_str (tp->ptid), statstr,
2420 currently_stepping (tp));
2421 xfree (statstr);
2422 }
2423
2424 tp->resumed = 1;
2425
2426 /* FIXME: What should we do if we are supposed to resume this
2427 thread with a signal? Maybe we should maintain a queue of
2428 pending signals to deliver. */
2429 if (sig != GDB_SIGNAL_0)
2430 {
2431 warning (_("Couldn't deliver signal %s to %s."),
2432 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2433 }
2434
2435 tp->suspend.stop_signal = GDB_SIGNAL_0;
2436 discard_cleanups (old_cleanups);
2437
2438 if (target_can_async_p ())
2439 target_async (1);
2440 return;
2441 }
2442
2443 tp->stepped_breakpoint = 0;
2444
2445 /* Depends on stepped_breakpoint. */
2446 step = currently_stepping (tp);
2447
2448 if (current_inferior ()->waiting_for_vfork_done)
2449 {
2450 /* Don't try to single-step a vfork parent that is waiting for
2451 the child to get out of the shared memory region (by exec'ing
2452 or exiting). This is particularly important on software
2453 single-step archs, as the child process would trip on the
2454 software single step breakpoint inserted for the parent
2455 process. Since the parent will not actually execute any
2456 instruction until the child is out of the shared region (such
2457 are vfork's semantics), it is safe to simply continue it.
2458 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2459 the parent, and tell it to `keep_going', which automatically
2460 re-sets it stepping. */
2461 if (debug_infrun)
2462 fprintf_unfiltered (gdb_stdlog,
2463 "infrun: resume : clear step\n");
2464 step = 0;
2465 }
2466
2467 if (debug_infrun)
2468 fprintf_unfiltered (gdb_stdlog,
2469 "infrun: resume (step=%d, signal=%s), "
2470 "trap_expected=%d, current thread [%s] at %s\n",
2471 step, gdb_signal_to_symbol_string (sig),
2472 tp->control.trap_expected,
2473 target_pid_to_str (inferior_ptid),
2474 paddress (gdbarch, pc));
2475
2476 /* Normally, by the time we reach `resume', the breakpoints are either
2477 removed or inserted, as appropriate. The exception is if we're sitting
2478 at a permanent breakpoint; we need to step over it, but permanent
2479 breakpoints can't be removed. So we have to test for it here. */
2480 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2481 {
2482 if (sig != GDB_SIGNAL_0)
2483 {
2484 /* We have a signal to pass to the inferior. The resume
2485 may, or may not take us to the signal handler. If this
2486 is a step, we'll need to stop in the signal handler, if
2487 there's one, (if the target supports stepping into
2488 handlers), or in the next mainline instruction, if
2489 there's no handler. If this is a continue, we need to be
2490 sure to run the handler with all breakpoints inserted.
2491 In all cases, set a breakpoint at the current address
2492 (where the handler returns to), and once that breakpoint
2493 is hit, resume skipping the permanent breakpoint. If
2494 that breakpoint isn't hit, then we've stepped into the
2495 signal handler (or hit some other event). We'll delete
2496 the step-resume breakpoint then. */
2497
2498 if (debug_infrun)
2499 fprintf_unfiltered (gdb_stdlog,
2500 "infrun: resume: skipping permanent breakpoint, "
2501 "deliver signal first\n");
2502
2503 clear_step_over_info ();
2504 tp->control.trap_expected = 0;
2505
2506 if (tp->control.step_resume_breakpoint == NULL)
2507 {
2508 /* Set a "high-priority" step-resume, as we don't want
2509 user breakpoints at PC to trigger (again) when this
2510 hits. */
2511 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2512 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2513
2514 tp->step_after_step_resume_breakpoint = step;
2515 }
2516
2517 insert_breakpoints ();
2518 }
2519 else
2520 {
2521 /* There's no signal to pass, we can go ahead and skip the
2522 permanent breakpoint manually. */
2523 if (debug_infrun)
2524 fprintf_unfiltered (gdb_stdlog,
2525 "infrun: resume: skipping permanent breakpoint\n");
2526 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2527 /* Update pc to reflect the new address from which we will
2528 execute instructions. */
2529 pc = regcache_read_pc (regcache);
2530
2531 if (step)
2532 {
2533 /* We've already advanced the PC, so the stepping part
2534 is done. Now we need to arrange for a trap to be
2535 reported to handle_inferior_event. Set a breakpoint
2536 at the current PC, and run to it. Don't update
2537 prev_pc, because if we end in
2538 switch_back_to_stepped_thread, we want the "expected
2539 thread advanced also" branch to be taken. IOW, we
2540 don't want this thread to step further from PC
2541 (overstep). */
2542 gdb_assert (!step_over_info_valid_p ());
2543 insert_single_step_breakpoint (gdbarch, aspace, pc);
2544 insert_breakpoints ();
2545
2546 resume_ptid = internal_resume_ptid (user_step);
2547 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2548 discard_cleanups (old_cleanups);
2549 tp->resumed = 1;
2550 return;
2551 }
2552 }
2553 }
2554
2555 /* If we have a breakpoint to step over, make sure to do a single
2556 step only. Same if we have software watchpoints. */
2557 if (tp->control.trap_expected || bpstat_should_step ())
2558 tp->control.may_range_step = 0;
2559
2560 /* If enabled, step over breakpoints by executing a copy of the
2561 instruction at a different address.
2562
2563 We can't use displaced stepping when we have a signal to deliver;
2564 the comments for displaced_step_prepare explain why. The
2565 comments in the handle_inferior event for dealing with 'random
2566 signals' explain what we do instead.
2567
2568 We can't use displaced stepping when we are waiting for vfork_done
2569 event, displaced stepping breaks the vfork child similarly as single
2570 step software breakpoint. */
2571 if (tp->control.trap_expected
2572 && use_displaced_stepping (tp)
2573 && !step_over_info_valid_p ()
2574 && sig == GDB_SIGNAL_0
2575 && !current_inferior ()->waiting_for_vfork_done)
2576 {
2577 int prepared = displaced_step_prepare (inferior_ptid);
2578
2579 if (prepared == 0)
2580 {
2581 if (debug_infrun)
2582 fprintf_unfiltered (gdb_stdlog,
2583 "Got placed in step-over queue\n");
2584
2585 tp->control.trap_expected = 0;
2586 discard_cleanups (old_cleanups);
2587 return;
2588 }
2589 else if (prepared < 0)
2590 {
2591 /* Fallback to stepping over the breakpoint in-line. */
2592
2593 if (target_is_non_stop_p ())
2594 stop_all_threads ();
2595
2596 set_step_over_info (get_regcache_aspace (regcache),
2597 regcache_read_pc (regcache), 0, tp->global_num);
2598
2599 step = maybe_software_singlestep (gdbarch, pc);
2600
2601 insert_breakpoints ();
2602 }
2603 else if (prepared > 0)
2604 {
2605 struct displaced_step_inferior_state *displaced;
2606
2607 /* Update pc to reflect the new address from which we will
2608 execute instructions due to displaced stepping. */
2609 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2610
2611 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2612 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2613 displaced->step_closure);
2614 }
2615 }
2616
2617 /* Do we need to do it the hard way, w/temp breakpoints? */
2618 else if (step)
2619 step = maybe_software_singlestep (gdbarch, pc);
2620
2621 /* Currently, our software single-step implementation leads to different
2622 results than hardware single-stepping in one situation: when stepping
2623 into delivering a signal which has an associated signal handler,
2624 hardware single-step will stop at the first instruction of the handler,
2625 while software single-step will simply skip execution of the handler.
2626
2627 For now, this difference in behavior is accepted since there is no
2628 easy way to actually implement single-stepping into a signal handler
2629 without kernel support.
2630
2631 However, there is one scenario where this difference leads to follow-on
2632 problems: if we're stepping off a breakpoint by removing all breakpoints
2633 and then single-stepping. In this case, the software single-step
2634 behavior means that even if there is a *breakpoint* in the signal
2635 handler, GDB still would not stop.
2636
2637 Fortunately, we can at least fix this particular issue. We detect
2638 here the case where we are about to deliver a signal while software
2639 single-stepping with breakpoints removed. In this situation, we
2640 revert the decisions to remove all breakpoints and insert single-
2641 step breakpoints, and instead we install a step-resume breakpoint
2642 at the current address, deliver the signal without stepping, and
2643 once we arrive back at the step-resume breakpoint, actually step
2644 over the breakpoint we originally wanted to step over. */
2645 if (thread_has_single_step_breakpoints_set (tp)
2646 && sig != GDB_SIGNAL_0
2647 && step_over_info_valid_p ())
2648 {
2649 /* If we have nested signals or a pending signal is delivered
2650 immediately after a handler returns, might might already have
2651 a step-resume breakpoint set on the earlier handler. We cannot
2652 set another step-resume breakpoint; just continue on until the
2653 original breakpoint is hit. */
2654 if (tp->control.step_resume_breakpoint == NULL)
2655 {
2656 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2657 tp->step_after_step_resume_breakpoint = 1;
2658 }
2659
2660 delete_single_step_breakpoints (tp);
2661
2662 clear_step_over_info ();
2663 tp->control.trap_expected = 0;
2664
2665 insert_breakpoints ();
2666 }
2667
2668 /* If STEP is set, it's a request to use hardware stepping
2669 facilities. But in that case, we should never
2670 use singlestep breakpoint. */
2671 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2672
2673 /* Decide the set of threads to ask the target to resume. */
2674 if (tp->control.trap_expected)
2675 {
2676 /* We're allowing a thread to run past a breakpoint it has
2677 hit, either by single-stepping the thread with the breakpoint
2678 removed, or by displaced stepping, with the breakpoint inserted.
2679 In the former case, we need to single-step only this thread,
2680 and keep others stopped, as they can miss this breakpoint if
2681 allowed to run. That's not really a problem for displaced
2682 stepping, but, we still keep other threads stopped, in case
2683 another thread is also stopped for a breakpoint waiting for
2684 its turn in the displaced stepping queue. */
2685 resume_ptid = inferior_ptid;
2686 }
2687 else
2688 resume_ptid = internal_resume_ptid (user_step);
2689
2690 if (execution_direction != EXEC_REVERSE
2691 && step && breakpoint_inserted_here_p (aspace, pc))
2692 {
2693 /* There are two cases where we currently need to step a
2694 breakpoint instruction when we have a signal to deliver:
2695
2696 - See handle_signal_stop where we handle random signals that
2697 could take out us out of the stepping range. Normally, in
2698 that case we end up continuing (instead of stepping) over the
2699 signal handler with a breakpoint at PC, but there are cases
2700 where we should _always_ single-step, even if we have a
2701 step-resume breakpoint, like when a software watchpoint is
2702 set. Assuming single-stepping and delivering a signal at the
2703 same time would takes us to the signal handler, then we could
2704 have removed the breakpoint at PC to step over it. However,
2705 some hardware step targets (like e.g., Mac OS) can't step
2706 into signal handlers, and for those, we need to leave the
2707 breakpoint at PC inserted, as otherwise if the handler
2708 recurses and executes PC again, it'll miss the breakpoint.
2709 So we leave the breakpoint inserted anyway, but we need to
2710 record that we tried to step a breakpoint instruction, so
2711 that adjust_pc_after_break doesn't end up confused.
2712
2713 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2714 in one thread after another thread that was stepping had been
2715 momentarily paused for a step-over. When we re-resume the
2716 stepping thread, it may be resumed from that address with a
2717 breakpoint that hasn't trapped yet. Seen with
2718 gdb.threads/non-stop-fair-events.exp, on targets that don't
2719 do displaced stepping. */
2720
2721 if (debug_infrun)
2722 fprintf_unfiltered (gdb_stdlog,
2723 "infrun: resume: [%s] stepped breakpoint\n",
2724 target_pid_to_str (tp->ptid));
2725
2726 tp->stepped_breakpoint = 1;
2727
2728 /* Most targets can step a breakpoint instruction, thus
2729 executing it normally. But if this one cannot, just
2730 continue and we will hit it anyway. */
2731 if (gdbarch_cannot_step_breakpoint (gdbarch))
2732 step = 0;
2733 }
2734
2735 if (debug_displaced
2736 && tp->control.trap_expected
2737 && use_displaced_stepping (tp)
2738 && !step_over_info_valid_p ())
2739 {
2740 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
2741 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2742 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2743 gdb_byte buf[4];
2744
2745 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2746 paddress (resume_gdbarch, actual_pc));
2747 read_memory (actual_pc, buf, sizeof (buf));
2748 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2749 }
2750
2751 if (tp->control.may_range_step)
2752 {
2753 /* If we're resuming a thread with the PC out of the step
2754 range, then we're doing some nested/finer run control
2755 operation, like stepping the thread out of the dynamic
2756 linker or the displaced stepping scratch pad. We
2757 shouldn't have allowed a range step then. */
2758 gdb_assert (pc_in_thread_step_range (pc, tp));
2759 }
2760
2761 do_target_resume (resume_ptid, step, sig);
2762 tp->resumed = 1;
2763 discard_cleanups (old_cleanups);
2764 }
2765 \f
2766 /* Proceeding. */
2767
2768 /* See infrun.h. */
2769
2770 /* Counter that tracks number of user visible stops. This can be used
2771 to tell whether a command has proceeded the inferior past the
2772 current location. This allows e.g., inferior function calls in
2773 breakpoint commands to not interrupt the command list. When the
2774 call finishes successfully, the inferior is standing at the same
2775 breakpoint as if nothing happened (and so we don't call
2776 normal_stop). */
2777 static ULONGEST current_stop_id;
2778
2779 /* See infrun.h. */
2780
2781 ULONGEST
2782 get_stop_id (void)
2783 {
2784 return current_stop_id;
2785 }
2786
2787 /* Called when we report a user visible stop. */
2788
2789 static void
2790 new_stop_id (void)
2791 {
2792 current_stop_id++;
2793 }
2794
2795 /* Clear out all variables saying what to do when inferior is continued.
2796 First do this, then set the ones you want, then call `proceed'. */
2797
2798 static void
2799 clear_proceed_status_thread (struct thread_info *tp)
2800 {
2801 if (debug_infrun)
2802 fprintf_unfiltered (gdb_stdlog,
2803 "infrun: clear_proceed_status_thread (%s)\n",
2804 target_pid_to_str (tp->ptid));
2805
2806 /* If we're starting a new sequence, then the previous finished
2807 single-step is no longer relevant. */
2808 if (tp->suspend.waitstatus_pending_p)
2809 {
2810 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2811 {
2812 if (debug_infrun)
2813 fprintf_unfiltered (gdb_stdlog,
2814 "infrun: clear_proceed_status: pending "
2815 "event of %s was a finished step. "
2816 "Discarding.\n",
2817 target_pid_to_str (tp->ptid));
2818
2819 tp->suspend.waitstatus_pending_p = 0;
2820 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2821 }
2822 else if (debug_infrun)
2823 {
2824 char *statstr;
2825
2826 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2827 fprintf_unfiltered (gdb_stdlog,
2828 "infrun: clear_proceed_status_thread: thread %s "
2829 "has pending wait status %s "
2830 "(currently_stepping=%d).\n",
2831 target_pid_to_str (tp->ptid), statstr,
2832 currently_stepping (tp));
2833 xfree (statstr);
2834 }
2835 }
2836
2837 /* If this signal should not be seen by program, give it zero.
2838 Used for debugging signals. */
2839 if (!signal_pass_state (tp->suspend.stop_signal))
2840 tp->suspend.stop_signal = GDB_SIGNAL_0;
2841
2842 thread_fsm_delete (tp->thread_fsm);
2843 tp->thread_fsm = NULL;
2844
2845 tp->control.trap_expected = 0;
2846 tp->control.step_range_start = 0;
2847 tp->control.step_range_end = 0;
2848 tp->control.may_range_step = 0;
2849 tp->control.step_frame_id = null_frame_id;
2850 tp->control.step_stack_frame_id = null_frame_id;
2851 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2852 tp->control.step_start_function = NULL;
2853 tp->stop_requested = 0;
2854
2855 tp->control.stop_step = 0;
2856
2857 tp->control.proceed_to_finish = 0;
2858
2859 tp->control.command_interp = NULL;
2860 tp->control.stepping_command = 0;
2861
2862 /* Discard any remaining commands or status from previous stop. */
2863 bpstat_clear (&tp->control.stop_bpstat);
2864 }
2865
2866 void
2867 clear_proceed_status (int step)
2868 {
2869 /* With scheduler-locking replay, stop replaying other threads if we're
2870 not replaying the user-visible resume ptid.
2871
2872 This is a convenience feature to not require the user to explicitly
2873 stop replaying the other threads. We're assuming that the user's
2874 intent is to resume tracing the recorded process. */
2875 if (!non_stop && scheduler_mode == schedlock_replay
2876 && target_record_is_replaying (minus_one_ptid)
2877 && !target_record_will_replay (user_visible_resume_ptid (step),
2878 execution_direction))
2879 target_record_stop_replaying ();
2880
2881 if (!non_stop)
2882 {
2883 struct thread_info *tp;
2884 ptid_t resume_ptid;
2885
2886 resume_ptid = user_visible_resume_ptid (step);
2887
2888 /* In all-stop mode, delete the per-thread status of all threads
2889 we're about to resume, implicitly and explicitly. */
2890 ALL_NON_EXITED_THREADS (tp)
2891 {
2892 if (!ptid_match (tp->ptid, resume_ptid))
2893 continue;
2894 clear_proceed_status_thread (tp);
2895 }
2896 }
2897
2898 if (!ptid_equal (inferior_ptid, null_ptid))
2899 {
2900 struct inferior *inferior;
2901
2902 if (non_stop)
2903 {
2904 /* If in non-stop mode, only delete the per-thread status of
2905 the current thread. */
2906 clear_proceed_status_thread (inferior_thread ());
2907 }
2908
2909 inferior = current_inferior ();
2910 inferior->control.stop_soon = NO_STOP_QUIETLY;
2911 }
2912
2913 observer_notify_about_to_proceed ();
2914 }
2915
2916 /* Returns true if TP is still stopped at a breakpoint that needs
2917 stepping-over in order to make progress. If the breakpoint is gone
2918 meanwhile, we can skip the whole step-over dance. */
2919
2920 static int
2921 thread_still_needs_step_over_bp (struct thread_info *tp)
2922 {
2923 if (tp->stepping_over_breakpoint)
2924 {
2925 struct regcache *regcache = get_thread_regcache (tp->ptid);
2926
2927 if (breakpoint_here_p (get_regcache_aspace (regcache),
2928 regcache_read_pc (regcache))
2929 == ordinary_breakpoint_here)
2930 return 1;
2931
2932 tp->stepping_over_breakpoint = 0;
2933 }
2934
2935 return 0;
2936 }
2937
2938 /* Check whether thread TP still needs to start a step-over in order
2939 to make progress when resumed. Returns an bitwise or of enum
2940 step_over_what bits, indicating what needs to be stepped over. */
2941
2942 static step_over_what
2943 thread_still_needs_step_over (struct thread_info *tp)
2944 {
2945 struct inferior *inf = find_inferior_ptid (tp->ptid);
2946 step_over_what what = 0;
2947
2948 if (thread_still_needs_step_over_bp (tp))
2949 what |= STEP_OVER_BREAKPOINT;
2950
2951 if (tp->stepping_over_watchpoint
2952 && !target_have_steppable_watchpoint)
2953 what |= STEP_OVER_WATCHPOINT;
2954
2955 return what;
2956 }
2957
2958 /* Returns true if scheduler locking applies. STEP indicates whether
2959 we're about to do a step/next-like command to a thread. */
2960
2961 static int
2962 schedlock_applies (struct thread_info *tp)
2963 {
2964 return (scheduler_mode == schedlock_on
2965 || (scheduler_mode == schedlock_step
2966 && tp->control.stepping_command)
2967 || (scheduler_mode == schedlock_replay
2968 && target_record_will_replay (minus_one_ptid,
2969 execution_direction)));
2970 }
2971
2972 /* Basic routine for continuing the program in various fashions.
2973
2974 ADDR is the address to resume at, or -1 for resume where stopped.
2975 SIGGNAL is the signal to give it, or 0 for none,
2976 or -1 for act according to how it stopped.
2977 STEP is nonzero if should trap after one instruction.
2978 -1 means return after that and print nothing.
2979 You should probably set various step_... variables
2980 before calling here, if you are stepping.
2981
2982 You should call clear_proceed_status before calling proceed. */
2983
2984 void
2985 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2986 {
2987 struct regcache *regcache;
2988 struct gdbarch *gdbarch;
2989 struct thread_info *tp;
2990 CORE_ADDR pc;
2991 struct address_space *aspace;
2992 ptid_t resume_ptid;
2993 struct execution_control_state ecss;
2994 struct execution_control_state *ecs = &ecss;
2995 struct cleanup *old_chain;
2996 int started;
2997
2998 /* If we're stopped at a fork/vfork, follow the branch set by the
2999 "set follow-fork-mode" command; otherwise, we'll just proceed
3000 resuming the current thread. */
3001 if (!follow_fork ())
3002 {
3003 /* The target for some reason decided not to resume. */
3004 normal_stop ();
3005 if (target_can_async_p ())
3006 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3007 return;
3008 }
3009
3010 /* We'll update this if & when we switch to a new thread. */
3011 previous_inferior_ptid = inferior_ptid;
3012
3013 regcache = get_current_regcache ();
3014 gdbarch = get_regcache_arch (regcache);
3015 aspace = get_regcache_aspace (regcache);
3016 pc = regcache_read_pc (regcache);
3017 tp = inferior_thread ();
3018
3019 /* Fill in with reasonable starting values. */
3020 init_thread_stepping_state (tp);
3021
3022 gdb_assert (!thread_is_in_step_over_chain (tp));
3023
3024 if (addr == (CORE_ADDR) -1)
3025 {
3026 if (pc == stop_pc
3027 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
3028 && execution_direction != EXEC_REVERSE)
3029 /* There is a breakpoint at the address we will resume at,
3030 step one instruction before inserting breakpoints so that
3031 we do not stop right away (and report a second hit at this
3032 breakpoint).
3033
3034 Note, we don't do this in reverse, because we won't
3035 actually be executing the breakpoint insn anyway.
3036 We'll be (un-)executing the previous instruction. */
3037 tp->stepping_over_breakpoint = 1;
3038 else if (gdbarch_single_step_through_delay_p (gdbarch)
3039 && gdbarch_single_step_through_delay (gdbarch,
3040 get_current_frame ()))
3041 /* We stepped onto an instruction that needs to be stepped
3042 again before re-inserting the breakpoint, do so. */
3043 tp->stepping_over_breakpoint = 1;
3044 }
3045 else
3046 {
3047 regcache_write_pc (regcache, addr);
3048 }
3049
3050 if (siggnal != GDB_SIGNAL_DEFAULT)
3051 tp->suspend.stop_signal = siggnal;
3052
3053 /* Record the interpreter that issued the execution command that
3054 caused this thread to resume. If the top level interpreter is
3055 MI/async, and the execution command was a CLI command
3056 (next/step/etc.), we'll want to print stop event output to the MI
3057 console channel (the stepped-to line, etc.), as if the user
3058 entered the execution command on a real GDB console. */
3059 tp->control.command_interp = command_interp ();
3060
3061 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3062
3063 /* If an exception is thrown from this point on, make sure to
3064 propagate GDB's knowledge of the executing state to the
3065 frontend/user running state. */
3066 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3067
3068 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3069 threads (e.g., we might need to set threads stepping over
3070 breakpoints first), from the user/frontend's point of view, all
3071 threads in RESUME_PTID are now running. Unless we're calling an
3072 inferior function, as in that case we pretend the inferior
3073 doesn't run at all. */
3074 if (!tp->control.in_infcall)
3075 set_running (resume_ptid, 1);
3076
3077 if (debug_infrun)
3078 fprintf_unfiltered (gdb_stdlog,
3079 "infrun: proceed (addr=%s, signal=%s)\n",
3080 paddress (gdbarch, addr),
3081 gdb_signal_to_symbol_string (siggnal));
3082
3083 annotate_starting ();
3084
3085 /* Make sure that output from GDB appears before output from the
3086 inferior. */
3087 gdb_flush (gdb_stdout);
3088
3089 /* In a multi-threaded task we may select another thread and
3090 then continue or step.
3091
3092 But if a thread that we're resuming had stopped at a breakpoint,
3093 it will immediately cause another breakpoint stop without any
3094 execution (i.e. it will report a breakpoint hit incorrectly). So
3095 we must step over it first.
3096
3097 Look for threads other than the current (TP) that reported a
3098 breakpoint hit and haven't been resumed yet since. */
3099
3100 /* If scheduler locking applies, we can avoid iterating over all
3101 threads. */
3102 if (!non_stop && !schedlock_applies (tp))
3103 {
3104 struct thread_info *current = tp;
3105
3106 ALL_NON_EXITED_THREADS (tp)
3107 {
3108 /* Ignore the current thread here. It's handled
3109 afterwards. */
3110 if (tp == current)
3111 continue;
3112
3113 /* Ignore threads of processes we're not resuming. */
3114 if (!ptid_match (tp->ptid, resume_ptid))
3115 continue;
3116
3117 if (!thread_still_needs_step_over (tp))
3118 continue;
3119
3120 gdb_assert (!thread_is_in_step_over_chain (tp));
3121
3122 if (debug_infrun)
3123 fprintf_unfiltered (gdb_stdlog,
3124 "infrun: need to step-over [%s] first\n",
3125 target_pid_to_str (tp->ptid));
3126
3127 thread_step_over_chain_enqueue (tp);
3128 }
3129
3130 tp = current;
3131 }
3132
3133 /* Enqueue the current thread last, so that we move all other
3134 threads over their breakpoints first. */
3135 if (tp->stepping_over_breakpoint)
3136 thread_step_over_chain_enqueue (tp);
3137
3138 /* If the thread isn't started, we'll still need to set its prev_pc,
3139 so that switch_back_to_stepped_thread knows the thread hasn't
3140 advanced. Must do this before resuming any thread, as in
3141 all-stop/remote, once we resume we can't send any other packet
3142 until the target stops again. */
3143 tp->prev_pc = regcache_read_pc (regcache);
3144
3145 started = start_step_over ();
3146
3147 if (step_over_info_valid_p ())
3148 {
3149 /* Either this thread started a new in-line step over, or some
3150 other thread was already doing one. In either case, don't
3151 resume anything else until the step-over is finished. */
3152 }
3153 else if (started && !target_is_non_stop_p ())
3154 {
3155 /* A new displaced stepping sequence was started. In all-stop,
3156 we can't talk to the target anymore until it next stops. */
3157 }
3158 else if (!non_stop && target_is_non_stop_p ())
3159 {
3160 /* In all-stop, but the target is always in non-stop mode.
3161 Start all other threads that are implicitly resumed too. */
3162 ALL_NON_EXITED_THREADS (tp)
3163 {
3164 /* Ignore threads of processes we're not resuming. */
3165 if (!ptid_match (tp->ptid, resume_ptid))
3166 continue;
3167
3168 if (tp->resumed)
3169 {
3170 if (debug_infrun)
3171 fprintf_unfiltered (gdb_stdlog,
3172 "infrun: proceed: [%s] resumed\n",
3173 target_pid_to_str (tp->ptid));
3174 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3175 continue;
3176 }
3177
3178 if (thread_is_in_step_over_chain (tp))
3179 {
3180 if (debug_infrun)
3181 fprintf_unfiltered (gdb_stdlog,
3182 "infrun: proceed: [%s] needs step-over\n",
3183 target_pid_to_str (tp->ptid));
3184 continue;
3185 }
3186
3187 if (debug_infrun)
3188 fprintf_unfiltered (gdb_stdlog,
3189 "infrun: proceed: resuming %s\n",
3190 target_pid_to_str (tp->ptid));
3191
3192 reset_ecs (ecs, tp);
3193 switch_to_thread (tp->ptid);
3194 keep_going_pass_signal (ecs);
3195 if (!ecs->wait_some_more)
3196 error (_("Command aborted."));
3197 }
3198 }
3199 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3200 {
3201 /* The thread wasn't started, and isn't queued, run it now. */
3202 reset_ecs (ecs, tp);
3203 switch_to_thread (tp->ptid);
3204 keep_going_pass_signal (ecs);
3205 if (!ecs->wait_some_more)
3206 error (_("Command aborted."));
3207 }
3208
3209 discard_cleanups (old_chain);
3210
3211 /* Tell the event loop to wait for it to stop. If the target
3212 supports asynchronous execution, it'll do this from within
3213 target_resume. */
3214 if (!target_can_async_p ())
3215 mark_async_event_handler (infrun_async_inferior_event_token);
3216 }
3217 \f
3218
3219 /* Start remote-debugging of a machine over a serial link. */
3220
3221 void
3222 start_remote (int from_tty)
3223 {
3224 struct inferior *inferior;
3225
3226 inferior = current_inferior ();
3227 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
3228
3229 /* Always go on waiting for the target, regardless of the mode. */
3230 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3231 indicate to wait_for_inferior that a target should timeout if
3232 nothing is returned (instead of just blocking). Because of this,
3233 targets expecting an immediate response need to, internally, set
3234 things up so that the target_wait() is forced to eventually
3235 timeout. */
3236 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3237 differentiate to its caller what the state of the target is after
3238 the initial open has been performed. Here we're assuming that
3239 the target has stopped. It should be possible to eventually have
3240 target_open() return to the caller an indication that the target
3241 is currently running and GDB state should be set to the same as
3242 for an async run. */
3243 wait_for_inferior ();
3244
3245 /* Now that the inferior has stopped, do any bookkeeping like
3246 loading shared libraries. We want to do this before normal_stop,
3247 so that the displayed frame is up to date. */
3248 post_create_inferior (&current_target, from_tty);
3249
3250 normal_stop ();
3251 }
3252
3253 /* Initialize static vars when a new inferior begins. */
3254
3255 void
3256 init_wait_for_inferior (void)
3257 {
3258 /* These are meaningless until the first time through wait_for_inferior. */
3259
3260 breakpoint_init_inferior (inf_starting);
3261
3262 clear_proceed_status (0);
3263
3264 target_last_wait_ptid = minus_one_ptid;
3265
3266 previous_inferior_ptid = inferior_ptid;
3267
3268 /* Discard any skipped inlined frames. */
3269 clear_inline_frame_state (minus_one_ptid);
3270 }
3271
3272 \f
3273
3274 static void handle_inferior_event (struct execution_control_state *ecs);
3275
3276 static void handle_step_into_function (struct gdbarch *gdbarch,
3277 struct execution_control_state *ecs);
3278 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3279 struct execution_control_state *ecs);
3280 static void handle_signal_stop (struct execution_control_state *ecs);
3281 static void check_exception_resume (struct execution_control_state *,
3282 struct frame_info *);
3283
3284 static void end_stepping_range (struct execution_control_state *ecs);
3285 static void stop_waiting (struct execution_control_state *ecs);
3286 static void keep_going (struct execution_control_state *ecs);
3287 static void process_event_stop_test (struct execution_control_state *ecs);
3288 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
3289
3290 /* Callback for iterate over threads. If the thread is stopped, but
3291 the user/frontend doesn't know about that yet, go through
3292 normal_stop, as if the thread had just stopped now. ARG points at
3293 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
3294 ptid_is_pid(PTID) is true, applies to all threads of the process
3295 pointed at by PTID. Otherwise, apply only to the thread pointed by
3296 PTID. */
3297
3298 static int
3299 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
3300 {
3301 ptid_t ptid = * (ptid_t *) arg;
3302
3303 if ((ptid_equal (info->ptid, ptid)
3304 || ptid_equal (minus_one_ptid, ptid)
3305 || (ptid_is_pid (ptid)
3306 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
3307 && is_running (info->ptid)
3308 && !is_executing (info->ptid))
3309 {
3310 struct cleanup *old_chain;
3311 struct execution_control_state ecss;
3312 struct execution_control_state *ecs = &ecss;
3313
3314 memset (ecs, 0, sizeof (*ecs));
3315
3316 old_chain = make_cleanup_restore_current_thread ();
3317
3318 overlay_cache_invalid = 1;
3319 /* Flush target cache before starting to handle each event.
3320 Target was running and cache could be stale. This is just a
3321 heuristic. Running threads may modify target memory, but we
3322 don't get any event. */
3323 target_dcache_invalidate ();
3324
3325 /* Go through handle_inferior_event/normal_stop, so we always
3326 have consistent output as if the stop event had been
3327 reported. */
3328 ecs->ptid = info->ptid;
3329 ecs->event_thread = info;
3330 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
3331 ecs->ws.value.sig = GDB_SIGNAL_0;
3332
3333 handle_inferior_event (ecs);
3334
3335 if (!ecs->wait_some_more)
3336 {
3337 /* Cancel any running execution command. */
3338 thread_cancel_execution_command (info);
3339
3340 normal_stop ();
3341 }
3342
3343 do_cleanups (old_chain);
3344 }
3345
3346 return 0;
3347 }
3348
3349 /* This function is attached as a "thread_stop_requested" observer.
3350 Cleanup local state that assumed the PTID was to be resumed, and
3351 report the stop to the frontend. */
3352
3353 static void
3354 infrun_thread_stop_requested (ptid_t ptid)
3355 {
3356 struct thread_info *tp;
3357
3358 /* PTID was requested to stop. Remove matching threads from the
3359 step-over queue, so we don't try to resume them
3360 automatically. */
3361 ALL_NON_EXITED_THREADS (tp)
3362 if (ptid_match (tp->ptid, ptid))
3363 {
3364 if (thread_is_in_step_over_chain (tp))
3365 thread_step_over_chain_remove (tp);
3366 }
3367
3368 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
3369 }
3370
3371 static void
3372 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3373 {
3374 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3375 nullify_last_target_wait_ptid ();
3376 }
3377
3378 /* Delete the step resume, single-step and longjmp/exception resume
3379 breakpoints of TP. */
3380
3381 static void
3382 delete_thread_infrun_breakpoints (struct thread_info *tp)
3383 {
3384 delete_step_resume_breakpoint (tp);
3385 delete_exception_resume_breakpoint (tp);
3386 delete_single_step_breakpoints (tp);
3387 }
3388
3389 /* If the target still has execution, call FUNC for each thread that
3390 just stopped. In all-stop, that's all the non-exited threads; in
3391 non-stop, that's the current thread, only. */
3392
3393 typedef void (*for_each_just_stopped_thread_callback_func)
3394 (struct thread_info *tp);
3395
3396 static void
3397 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3398 {
3399 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
3400 return;
3401
3402 if (target_is_non_stop_p ())
3403 {
3404 /* If in non-stop mode, only the current thread stopped. */
3405 func (inferior_thread ());
3406 }
3407 else
3408 {
3409 struct thread_info *tp;
3410
3411 /* In all-stop mode, all threads have stopped. */
3412 ALL_NON_EXITED_THREADS (tp)
3413 {
3414 func (tp);
3415 }
3416 }
3417 }
3418
3419 /* Delete the step resume and longjmp/exception resume breakpoints of
3420 the threads that just stopped. */
3421
3422 static void
3423 delete_just_stopped_threads_infrun_breakpoints (void)
3424 {
3425 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3426 }
3427
3428 /* Delete the single-step breakpoints of the threads that just
3429 stopped. */
3430
3431 static void
3432 delete_just_stopped_threads_single_step_breakpoints (void)
3433 {
3434 for_each_just_stopped_thread (delete_single_step_breakpoints);
3435 }
3436
3437 /* A cleanup wrapper. */
3438
3439 static void
3440 delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
3441 {
3442 delete_just_stopped_threads_infrun_breakpoints ();
3443 }
3444
3445 /* See infrun.h. */
3446
3447 void
3448 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3449 const struct target_waitstatus *ws)
3450 {
3451 char *status_string = target_waitstatus_to_string (ws);
3452 struct ui_file *tmp_stream = mem_fileopen ();
3453 char *text;
3454
3455 /* The text is split over several lines because it was getting too long.
3456 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3457 output as a unit; we want only one timestamp printed if debug_timestamp
3458 is set. */
3459
3460 fprintf_unfiltered (tmp_stream,
3461 "infrun: target_wait (%d.%ld.%ld",
3462 ptid_get_pid (waiton_ptid),
3463 ptid_get_lwp (waiton_ptid),
3464 ptid_get_tid (waiton_ptid));
3465 if (ptid_get_pid (waiton_ptid) != -1)
3466 fprintf_unfiltered (tmp_stream,
3467 " [%s]", target_pid_to_str (waiton_ptid));
3468 fprintf_unfiltered (tmp_stream, ", status) =\n");
3469 fprintf_unfiltered (tmp_stream,
3470 "infrun: %d.%ld.%ld [%s],\n",
3471 ptid_get_pid (result_ptid),
3472 ptid_get_lwp (result_ptid),
3473 ptid_get_tid (result_ptid),
3474 target_pid_to_str (result_ptid));
3475 fprintf_unfiltered (tmp_stream,
3476 "infrun: %s\n",
3477 status_string);
3478
3479 text = ui_file_xstrdup (tmp_stream, NULL);
3480
3481 /* This uses %s in part to handle %'s in the text, but also to avoid
3482 a gcc error: the format attribute requires a string literal. */
3483 fprintf_unfiltered (gdb_stdlog, "%s", text);
3484
3485 xfree (status_string);
3486 xfree (text);
3487 ui_file_delete (tmp_stream);
3488 }
3489
3490 /* Select a thread at random, out of those which are resumed and have
3491 had events. */
3492
3493 static struct thread_info *
3494 random_pending_event_thread (ptid_t waiton_ptid)
3495 {
3496 struct thread_info *event_tp;
3497 int num_events = 0;
3498 int random_selector;
3499
3500 /* First see how many events we have. Count only resumed threads
3501 that have an event pending. */
3502 ALL_NON_EXITED_THREADS (event_tp)
3503 if (ptid_match (event_tp->ptid, waiton_ptid)
3504 && event_tp->resumed
3505 && event_tp->suspend.waitstatus_pending_p)
3506 num_events++;
3507
3508 if (num_events == 0)
3509 return NULL;
3510
3511 /* Now randomly pick a thread out of those that have had events. */
3512 random_selector = (int)
3513 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3514
3515 if (debug_infrun && num_events > 1)
3516 fprintf_unfiltered (gdb_stdlog,
3517 "infrun: Found %d events, selecting #%d\n",
3518 num_events, random_selector);
3519
3520 /* Select the Nth thread that has had an event. */
3521 ALL_NON_EXITED_THREADS (event_tp)
3522 if (ptid_match (event_tp->ptid, waiton_ptid)
3523 && event_tp->resumed
3524 && event_tp->suspend.waitstatus_pending_p)
3525 if (random_selector-- == 0)
3526 break;
3527
3528 return event_tp;
3529 }
3530
3531 /* Wrapper for target_wait that first checks whether threads have
3532 pending statuses to report before actually asking the target for
3533 more events. */
3534
3535 static ptid_t
3536 do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3537 {
3538 ptid_t event_ptid;
3539 struct thread_info *tp;
3540
3541 /* First check if there is a resumed thread with a wait status
3542 pending. */
3543 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3544 {
3545 tp = random_pending_event_thread (ptid);
3546 }
3547 else
3548 {
3549 if (debug_infrun)
3550 fprintf_unfiltered (gdb_stdlog,
3551 "infrun: Waiting for specific thread %s.\n",
3552 target_pid_to_str (ptid));
3553
3554 /* We have a specific thread to check. */
3555 tp = find_thread_ptid (ptid);
3556 gdb_assert (tp != NULL);
3557 if (!tp->suspend.waitstatus_pending_p)
3558 tp = NULL;
3559 }
3560
3561 if (tp != NULL
3562 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3563 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3564 {
3565 struct regcache *regcache = get_thread_regcache (tp->ptid);
3566 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3567 CORE_ADDR pc;
3568 int discard = 0;
3569
3570 pc = regcache_read_pc (regcache);
3571
3572 if (pc != tp->suspend.stop_pc)
3573 {
3574 if (debug_infrun)
3575 fprintf_unfiltered (gdb_stdlog,
3576 "infrun: PC of %s changed. was=%s, now=%s\n",
3577 target_pid_to_str (tp->ptid),
3578 paddress (gdbarch, tp->prev_pc),
3579 paddress (gdbarch, pc));
3580 discard = 1;
3581 }
3582 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3583 {
3584 if (debug_infrun)
3585 fprintf_unfiltered (gdb_stdlog,
3586 "infrun: previous breakpoint of %s, at %s gone\n",
3587 target_pid_to_str (tp->ptid),
3588 paddress (gdbarch, pc));
3589
3590 discard = 1;
3591 }
3592
3593 if (discard)
3594 {
3595 if (debug_infrun)
3596 fprintf_unfiltered (gdb_stdlog,
3597 "infrun: pending event of %s cancelled.\n",
3598 target_pid_to_str (tp->ptid));
3599
3600 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3601 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3602 }
3603 }
3604
3605 if (tp != NULL)
3606 {
3607 if (debug_infrun)
3608 {
3609 char *statstr;
3610
3611 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3612 fprintf_unfiltered (gdb_stdlog,
3613 "infrun: Using pending wait status %s for %s.\n",
3614 statstr,
3615 target_pid_to_str (tp->ptid));
3616 xfree (statstr);
3617 }
3618
3619 /* Now that we've selected our final event LWP, un-adjust its PC
3620 if it was a software breakpoint (and the target doesn't
3621 always adjust the PC itself). */
3622 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3623 && !target_supports_stopped_by_sw_breakpoint ())
3624 {
3625 struct regcache *regcache;
3626 struct gdbarch *gdbarch;
3627 int decr_pc;
3628
3629 regcache = get_thread_regcache (tp->ptid);
3630 gdbarch = get_regcache_arch (regcache);
3631
3632 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3633 if (decr_pc != 0)
3634 {
3635 CORE_ADDR pc;
3636
3637 pc = regcache_read_pc (regcache);
3638 regcache_write_pc (regcache, pc + decr_pc);
3639 }
3640 }
3641
3642 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3643 *status = tp->suspend.waitstatus;
3644 tp->suspend.waitstatus_pending_p = 0;
3645
3646 /* Wake up the event loop again, until all pending events are
3647 processed. */
3648 if (target_is_async_p ())
3649 mark_async_event_handler (infrun_async_inferior_event_token);
3650 return tp->ptid;
3651 }
3652
3653 /* But if we don't find one, we'll have to wait. */
3654
3655 if (deprecated_target_wait_hook)
3656 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3657 else
3658 event_ptid = target_wait (ptid, status, options);
3659
3660 return event_ptid;
3661 }
3662
3663 /* Prepare and stabilize the inferior for detaching it. E.g.,
3664 detaching while a thread is displaced stepping is a recipe for
3665 crashing it, as nothing would readjust the PC out of the scratch
3666 pad. */
3667
3668 void
3669 prepare_for_detach (void)
3670 {
3671 struct inferior *inf = current_inferior ();
3672 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3673 struct cleanup *old_chain_1;
3674 struct displaced_step_inferior_state *displaced;
3675
3676 displaced = get_displaced_stepping_state (inf->pid);
3677
3678 /* Is any thread of this process displaced stepping? If not,
3679 there's nothing else to do. */
3680 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3681 return;
3682
3683 if (debug_infrun)
3684 fprintf_unfiltered (gdb_stdlog,
3685 "displaced-stepping in-process while detaching");
3686
3687 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3688 inf->detaching = 1;
3689
3690 while (!ptid_equal (displaced->step_ptid, null_ptid))
3691 {
3692 struct cleanup *old_chain_2;
3693 struct execution_control_state ecss;
3694 struct execution_control_state *ecs;
3695
3696 ecs = &ecss;
3697 memset (ecs, 0, sizeof (*ecs));
3698
3699 overlay_cache_invalid = 1;
3700 /* Flush target cache before starting to handle each event.
3701 Target was running and cache could be stale. This is just a
3702 heuristic. Running threads may modify target memory, but we
3703 don't get any event. */
3704 target_dcache_invalidate ();
3705
3706 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
3707
3708 if (debug_infrun)
3709 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3710
3711 /* If an error happens while handling the event, propagate GDB's
3712 knowledge of the executing state to the frontend/user running
3713 state. */
3714 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3715 &minus_one_ptid);
3716
3717 /* Now figure out what to do with the result of the result. */
3718 handle_inferior_event (ecs);
3719
3720 /* No error, don't finish the state yet. */
3721 discard_cleanups (old_chain_2);
3722
3723 /* Breakpoints and watchpoints are not installed on the target
3724 at this point, and signals are passed directly to the
3725 inferior, so this must mean the process is gone. */
3726 if (!ecs->wait_some_more)
3727 {
3728 discard_cleanups (old_chain_1);
3729 error (_("Program exited while detaching"));
3730 }
3731 }
3732
3733 discard_cleanups (old_chain_1);
3734 }
3735
3736 /* Wait for control to return from inferior to debugger.
3737
3738 If inferior gets a signal, we may decide to start it up again
3739 instead of returning. That is why there is a loop in this function.
3740 When this function actually returns it means the inferior
3741 should be left stopped and GDB should read more commands. */
3742
3743 void
3744 wait_for_inferior (void)
3745 {
3746 struct cleanup *old_cleanups;
3747 struct cleanup *thread_state_chain;
3748
3749 if (debug_infrun)
3750 fprintf_unfiltered
3751 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
3752
3753 old_cleanups
3754 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3755 NULL);
3756
3757 /* If an error happens while handling the event, propagate GDB's
3758 knowledge of the executing state to the frontend/user running
3759 state. */
3760 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3761
3762 while (1)
3763 {
3764 struct execution_control_state ecss;
3765 struct execution_control_state *ecs = &ecss;
3766 ptid_t waiton_ptid = minus_one_ptid;
3767
3768 memset (ecs, 0, sizeof (*ecs));
3769
3770 overlay_cache_invalid = 1;
3771
3772 /* Flush target cache before starting to handle each event.
3773 Target was running and cache could be stale. This is just a
3774 heuristic. Running threads may modify target memory, but we
3775 don't get any event. */
3776 target_dcache_invalidate ();
3777
3778 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
3779
3780 if (debug_infrun)
3781 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3782
3783 /* Now figure out what to do with the result of the result. */
3784 handle_inferior_event (ecs);
3785
3786 if (!ecs->wait_some_more)
3787 break;
3788 }
3789
3790 /* No error, don't finish the state yet. */
3791 discard_cleanups (thread_state_chain);
3792
3793 do_cleanups (old_cleanups);
3794 }
3795
3796 /* Cleanup that reinstalls the readline callback handler, if the
3797 target is running in the background. If while handling the target
3798 event something triggered a secondary prompt, like e.g., a
3799 pagination prompt, we'll have removed the callback handler (see
3800 gdb_readline_wrapper_line). Need to do this as we go back to the
3801 event loop, ready to process further input. Note this has no
3802 effect if the handler hasn't actually been removed, because calling
3803 rl_callback_handler_install resets the line buffer, thus losing
3804 input. */
3805
3806 static void
3807 reinstall_readline_callback_handler_cleanup (void *arg)
3808 {
3809 if (!interpreter_async)
3810 {
3811 /* We're not going back to the top level event loop yet. Don't
3812 install the readline callback, as it'd prep the terminal,
3813 readline-style (raw, noecho) (e.g., --batch). We'll install
3814 it the next time the prompt is displayed, when we're ready
3815 for input. */
3816 return;
3817 }
3818
3819 if (async_command_editing_p && !sync_execution)
3820 gdb_rl_callback_handler_reinstall ();
3821 }
3822
3823 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3824 that's just the event thread. In all-stop, that's all threads. */
3825
3826 static void
3827 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3828 {
3829 struct thread_info *thr = ecs->event_thread;
3830
3831 if (thr != NULL && thr->thread_fsm != NULL)
3832 thread_fsm_clean_up (thr->thread_fsm);
3833
3834 if (!non_stop)
3835 {
3836 ALL_NON_EXITED_THREADS (thr)
3837 {
3838 if (thr->thread_fsm == NULL)
3839 continue;
3840 if (thr == ecs->event_thread)
3841 continue;
3842
3843 switch_to_thread (thr->ptid);
3844 thread_fsm_clean_up (thr->thread_fsm);
3845 }
3846
3847 if (ecs->event_thread != NULL)
3848 switch_to_thread (ecs->event_thread->ptid);
3849 }
3850 }
3851
3852 /* A cleanup that restores the execution direction to the value saved
3853 in *ARG. */
3854
3855 static void
3856 restore_execution_direction (void *arg)
3857 {
3858 enum exec_direction_kind *save_exec_dir = (enum exec_direction_kind *) arg;
3859
3860 execution_direction = *save_exec_dir;
3861 }
3862
3863 /* Asynchronous version of wait_for_inferior. It is called by the
3864 event loop whenever a change of state is detected on the file
3865 descriptor corresponding to the target. It can be called more than
3866 once to complete a single execution command. In such cases we need
3867 to keep the state in a global variable ECSS. If it is the last time
3868 that this function is called for a single execution command, then
3869 report to the user that the inferior has stopped, and do the
3870 necessary cleanups. */
3871
3872 void
3873 fetch_inferior_event (void *client_data)
3874 {
3875 struct execution_control_state ecss;
3876 struct execution_control_state *ecs = &ecss;
3877 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3878 struct cleanup *ts_old_chain;
3879 int was_sync = sync_execution;
3880 enum exec_direction_kind save_exec_dir = execution_direction;
3881 int cmd_done = 0;
3882 ptid_t waiton_ptid = minus_one_ptid;
3883
3884 memset (ecs, 0, sizeof (*ecs));
3885
3886 /* End up with readline processing input, if necessary. */
3887 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3888
3889 /* We're handling a live event, so make sure we're doing live
3890 debugging. If we're looking at traceframes while the target is
3891 running, we're going to need to get back to that mode after
3892 handling the event. */
3893 if (non_stop)
3894 {
3895 make_cleanup_restore_current_traceframe ();
3896 set_current_traceframe (-1);
3897 }
3898
3899 if (non_stop)
3900 /* In non-stop mode, the user/frontend should not notice a thread
3901 switch due to internal events. Make sure we reverse to the
3902 user selected thread and frame after handling the event and
3903 running any breakpoint commands. */
3904 make_cleanup_restore_current_thread ();
3905
3906 overlay_cache_invalid = 1;
3907 /* Flush target cache before starting to handle each event. Target
3908 was running and cache could be stale. This is just a heuristic.
3909 Running threads may modify target memory, but we don't get any
3910 event. */
3911 target_dcache_invalidate ();
3912
3913 make_cleanup (restore_execution_direction, &save_exec_dir);
3914 execution_direction = target_execution_direction ();
3915
3916 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3917 target_can_async_p () ? TARGET_WNOHANG : 0);
3918
3919 if (debug_infrun)
3920 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3921
3922 /* If an error happens while handling the event, propagate GDB's
3923 knowledge of the executing state to the frontend/user running
3924 state. */
3925 if (!target_is_non_stop_p ())
3926 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3927 else
3928 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3929
3930 /* Get executed before make_cleanup_restore_current_thread above to apply
3931 still for the thread which has thrown the exception. */
3932 make_bpstat_clear_actions_cleanup ();
3933
3934 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3935
3936 /* Now figure out what to do with the result of the result. */
3937 handle_inferior_event (ecs);
3938
3939 if (!ecs->wait_some_more)
3940 {
3941 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3942 int should_stop = 1;
3943 struct thread_info *thr = ecs->event_thread;
3944 int should_notify_stop = 1;
3945
3946 delete_just_stopped_threads_infrun_breakpoints ();
3947
3948 if (thr != NULL)
3949 {
3950 struct thread_fsm *thread_fsm = thr->thread_fsm;
3951
3952 if (thread_fsm != NULL)
3953 should_stop = thread_fsm_should_stop (thread_fsm);
3954 }
3955
3956 if (!should_stop)
3957 {
3958 keep_going (ecs);
3959 }
3960 else
3961 {
3962 clean_up_just_stopped_threads_fsms (ecs);
3963
3964 if (thr != NULL && thr->thread_fsm != NULL)
3965 {
3966 should_notify_stop
3967 = thread_fsm_should_notify_stop (thr->thread_fsm);
3968 }
3969
3970 if (should_notify_stop)
3971 {
3972 int proceeded = 0;
3973
3974 /* We may not find an inferior if this was a process exit. */
3975 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3976 proceeded = normal_stop ();
3977
3978 if (!proceeded)
3979 {
3980 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3981 cmd_done = 1;
3982 }
3983 }
3984 }
3985 }
3986
3987 /* No error, don't finish the thread states yet. */
3988 discard_cleanups (ts_old_chain);
3989
3990 /* Revert thread and frame. */
3991 do_cleanups (old_chain);
3992
3993 /* If the inferior was in sync execution mode, and now isn't,
3994 restore the prompt (a synchronous execution command has finished,
3995 and we're ready for input). */
3996 if (interpreter_async && was_sync && !sync_execution)
3997 observer_notify_sync_execution_done ();
3998
3999 if (cmd_done
4000 && !was_sync
4001 && exec_done_display_p
4002 && (ptid_equal (inferior_ptid, null_ptid)
4003 || !is_running (inferior_ptid)))
4004 printf_unfiltered (_("completed.\n"));
4005 }
4006
4007 /* Record the frame and location we're currently stepping through. */
4008 void
4009 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
4010 {
4011 struct thread_info *tp = inferior_thread ();
4012
4013 tp->control.step_frame_id = get_frame_id (frame);
4014 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4015
4016 tp->current_symtab = sal.symtab;
4017 tp->current_line = sal.line;
4018 }
4019
4020 /* Clear context switchable stepping state. */
4021
4022 void
4023 init_thread_stepping_state (struct thread_info *tss)
4024 {
4025 tss->stepped_breakpoint = 0;
4026 tss->stepping_over_breakpoint = 0;
4027 tss->stepping_over_watchpoint = 0;
4028 tss->step_after_step_resume_breakpoint = 0;
4029 }
4030
4031 /* Set the cached copy of the last ptid/waitstatus. */
4032
4033 void
4034 set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4035 {
4036 target_last_wait_ptid = ptid;
4037 target_last_waitstatus = status;
4038 }
4039
4040 /* Return the cached copy of the last pid/waitstatus returned by
4041 target_wait()/deprecated_target_wait_hook(). The data is actually
4042 cached by handle_inferior_event(), which gets called immediately
4043 after target_wait()/deprecated_target_wait_hook(). */
4044
4045 void
4046 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
4047 {
4048 *ptidp = target_last_wait_ptid;
4049 *status = target_last_waitstatus;
4050 }
4051
4052 void
4053 nullify_last_target_wait_ptid (void)
4054 {
4055 target_last_wait_ptid = minus_one_ptid;
4056 }
4057
4058 /* Switch thread contexts. */
4059
4060 static void
4061 context_switch (ptid_t ptid)
4062 {
4063 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
4064 {
4065 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4066 target_pid_to_str (inferior_ptid));
4067 fprintf_unfiltered (gdb_stdlog, "to %s\n",
4068 target_pid_to_str (ptid));
4069 }
4070
4071 switch_to_thread (ptid);
4072 }
4073
4074 /* If the target can't tell whether we've hit breakpoints
4075 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4076 check whether that could have been caused by a breakpoint. If so,
4077 adjust the PC, per gdbarch_decr_pc_after_break. */
4078
4079 static void
4080 adjust_pc_after_break (struct thread_info *thread,
4081 struct target_waitstatus *ws)
4082 {
4083 struct regcache *regcache;
4084 struct gdbarch *gdbarch;
4085 struct address_space *aspace;
4086 CORE_ADDR breakpoint_pc, decr_pc;
4087
4088 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4089 we aren't, just return.
4090
4091 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4092 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4093 implemented by software breakpoints should be handled through the normal
4094 breakpoint layer.
4095
4096 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4097 different signals (SIGILL or SIGEMT for instance), but it is less
4098 clear where the PC is pointing afterwards. It may not match
4099 gdbarch_decr_pc_after_break. I don't know any specific target that
4100 generates these signals at breakpoints (the code has been in GDB since at
4101 least 1992) so I can not guess how to handle them here.
4102
4103 In earlier versions of GDB, a target with
4104 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4105 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4106 target with both of these set in GDB history, and it seems unlikely to be
4107 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4108
4109 if (ws->kind != TARGET_WAITKIND_STOPPED)
4110 return;
4111
4112 if (ws->value.sig != GDB_SIGNAL_TRAP)
4113 return;
4114
4115 /* In reverse execution, when a breakpoint is hit, the instruction
4116 under it has already been de-executed. The reported PC always
4117 points at the breakpoint address, so adjusting it further would
4118 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4119 architecture:
4120
4121 B1 0x08000000 : INSN1
4122 B2 0x08000001 : INSN2
4123 0x08000002 : INSN3
4124 PC -> 0x08000003 : INSN4
4125
4126 Say you're stopped at 0x08000003 as above. Reverse continuing
4127 from that point should hit B2 as below. Reading the PC when the
4128 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4129 been de-executed already.
4130
4131 B1 0x08000000 : INSN1
4132 B2 PC -> 0x08000001 : INSN2
4133 0x08000002 : INSN3
4134 0x08000003 : INSN4
4135
4136 We can't apply the same logic as for forward execution, because
4137 we would wrongly adjust the PC to 0x08000000, since there's a
4138 breakpoint at PC - 1. We'd then report a hit on B1, although
4139 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4140 behaviour. */
4141 if (execution_direction == EXEC_REVERSE)
4142 return;
4143
4144 /* If the target can tell whether the thread hit a SW breakpoint,
4145 trust it. Targets that can tell also adjust the PC
4146 themselves. */
4147 if (target_supports_stopped_by_sw_breakpoint ())
4148 return;
4149
4150 /* Note that relying on whether a breakpoint is planted in memory to
4151 determine this can fail. E.g,. the breakpoint could have been
4152 removed since. Or the thread could have been told to step an
4153 instruction the size of a breakpoint instruction, and only
4154 _after_ was a breakpoint inserted at its address. */
4155
4156 /* If this target does not decrement the PC after breakpoints, then
4157 we have nothing to do. */
4158 regcache = get_thread_regcache (thread->ptid);
4159 gdbarch = get_regcache_arch (regcache);
4160
4161 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4162 if (decr_pc == 0)
4163 return;
4164
4165 aspace = get_regcache_aspace (regcache);
4166
4167 /* Find the location where (if we've hit a breakpoint) the
4168 breakpoint would be. */
4169 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4170
4171 /* If the target can't tell whether a software breakpoint triggered,
4172 fallback to figuring it out based on breakpoints we think were
4173 inserted in the target, and on whether the thread was stepped or
4174 continued. */
4175
4176 /* Check whether there actually is a software breakpoint inserted at
4177 that location.
4178
4179 If in non-stop mode, a race condition is possible where we've
4180 removed a breakpoint, but stop events for that breakpoint were
4181 already queued and arrive later. To suppress those spurious
4182 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4183 and retire them after a number of stop events are reported. Note
4184 this is an heuristic and can thus get confused. The real fix is
4185 to get the "stopped by SW BP and needs adjustment" info out of
4186 the target/kernel (and thus never reach here; see above). */
4187 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4188 || (target_is_non_stop_p ()
4189 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4190 {
4191 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
4192
4193 if (record_full_is_used ())
4194 record_full_gdb_operation_disable_set ();
4195
4196 /* When using hardware single-step, a SIGTRAP is reported for both
4197 a completed single-step and a software breakpoint. Need to
4198 differentiate between the two, as the latter needs adjusting
4199 but the former does not.
4200
4201 The SIGTRAP can be due to a completed hardware single-step only if
4202 - we didn't insert software single-step breakpoints
4203 - this thread is currently being stepped
4204
4205 If any of these events did not occur, we must have stopped due
4206 to hitting a software breakpoint, and have to back up to the
4207 breakpoint address.
4208
4209 As a special case, we could have hardware single-stepped a
4210 software breakpoint. In this case (prev_pc == breakpoint_pc),
4211 we also need to back up to the breakpoint address. */
4212
4213 if (thread_has_single_step_breakpoints_set (thread)
4214 || !currently_stepping (thread)
4215 || (thread->stepped_breakpoint
4216 && thread->prev_pc == breakpoint_pc))
4217 regcache_write_pc (regcache, breakpoint_pc);
4218
4219 do_cleanups (old_cleanups);
4220 }
4221 }
4222
4223 static int
4224 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4225 {
4226 for (frame = get_prev_frame (frame);
4227 frame != NULL;
4228 frame = get_prev_frame (frame))
4229 {
4230 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4231 return 1;
4232 if (get_frame_type (frame) != INLINE_FRAME)
4233 break;
4234 }
4235
4236 return 0;
4237 }
4238
4239 /* Auxiliary function that handles syscall entry/return events.
4240 It returns 1 if the inferior should keep going (and GDB
4241 should ignore the event), or 0 if the event deserves to be
4242 processed. */
4243
4244 static int
4245 handle_syscall_event (struct execution_control_state *ecs)
4246 {
4247 struct regcache *regcache;
4248 int syscall_number;
4249
4250 if (!ptid_equal (ecs->ptid, inferior_ptid))
4251 context_switch (ecs->ptid);
4252
4253 regcache = get_thread_regcache (ecs->ptid);
4254 syscall_number = ecs->ws.value.syscall_number;
4255 stop_pc = regcache_read_pc (regcache);
4256
4257 if (catch_syscall_enabled () > 0
4258 && catching_syscall_number (syscall_number) > 0)
4259 {
4260 if (debug_infrun)
4261 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4262 syscall_number);
4263
4264 ecs->event_thread->control.stop_bpstat
4265 = bpstat_stop_status (get_regcache_aspace (regcache),
4266 stop_pc, ecs->ptid, &ecs->ws);
4267
4268 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4269 {
4270 /* Catchpoint hit. */
4271 return 0;
4272 }
4273 }
4274
4275 /* If no catchpoint triggered for this, then keep going. */
4276 keep_going (ecs);
4277 return 1;
4278 }
4279
4280 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4281
4282 static void
4283 fill_in_stop_func (struct gdbarch *gdbarch,
4284 struct execution_control_state *ecs)
4285 {
4286 if (!ecs->stop_func_filled_in)
4287 {
4288 /* Don't care about return value; stop_func_start and stop_func_name
4289 will both be 0 if it doesn't work. */
4290 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4291 &ecs->stop_func_start, &ecs->stop_func_end);
4292 ecs->stop_func_start
4293 += gdbarch_deprecated_function_start_offset (gdbarch);
4294
4295 if (gdbarch_skip_entrypoint_p (gdbarch))
4296 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4297 ecs->stop_func_start);
4298
4299 ecs->stop_func_filled_in = 1;
4300 }
4301 }
4302
4303
4304 /* Return the STOP_SOON field of the inferior pointed at by PTID. */
4305
4306 static enum stop_kind
4307 get_inferior_stop_soon (ptid_t ptid)
4308 {
4309 struct inferior *inf = find_inferior_ptid (ptid);
4310
4311 gdb_assert (inf != NULL);
4312 return inf->control.stop_soon;
4313 }
4314
4315 /* Wait for one event. Store the resulting waitstatus in WS, and
4316 return the event ptid. */
4317
4318 static ptid_t
4319 wait_one (struct target_waitstatus *ws)
4320 {
4321 ptid_t event_ptid;
4322 ptid_t wait_ptid = minus_one_ptid;
4323
4324 overlay_cache_invalid = 1;
4325
4326 /* Flush target cache before starting to handle each event.
4327 Target was running and cache could be stale. This is just a
4328 heuristic. Running threads may modify target memory, but we
4329 don't get any event. */
4330 target_dcache_invalidate ();
4331
4332 if (deprecated_target_wait_hook)
4333 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4334 else
4335 event_ptid = target_wait (wait_ptid, ws, 0);
4336
4337 if (debug_infrun)
4338 print_target_wait_results (wait_ptid, event_ptid, ws);
4339
4340 return event_ptid;
4341 }
4342
4343 /* Generate a wrapper for target_stopped_by_REASON that works on PTID
4344 instead of the current thread. */
4345 #define THREAD_STOPPED_BY(REASON) \
4346 static int \
4347 thread_stopped_by_ ## REASON (ptid_t ptid) \
4348 { \
4349 struct cleanup *old_chain; \
4350 int res; \
4351 \
4352 old_chain = save_inferior_ptid (); \
4353 inferior_ptid = ptid; \
4354 \
4355 res = target_stopped_by_ ## REASON (); \
4356 \
4357 do_cleanups (old_chain); \
4358 \
4359 return res; \
4360 }
4361
4362 /* Generate thread_stopped_by_watchpoint. */
4363 THREAD_STOPPED_BY (watchpoint)
4364 /* Generate thread_stopped_by_sw_breakpoint. */
4365 THREAD_STOPPED_BY (sw_breakpoint)
4366 /* Generate thread_stopped_by_hw_breakpoint. */
4367 THREAD_STOPPED_BY (hw_breakpoint)
4368
4369 /* Cleanups that switches to the PTID pointed at by PTID_P. */
4370
4371 static void
4372 switch_to_thread_cleanup (void *ptid_p)
4373 {
4374 ptid_t ptid = *(ptid_t *) ptid_p;
4375
4376 switch_to_thread (ptid);
4377 }
4378
4379 /* Save the thread's event and stop reason to process it later. */
4380
4381 static void
4382 save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4383 {
4384 struct regcache *regcache;
4385 struct address_space *aspace;
4386
4387 if (debug_infrun)
4388 {
4389 char *statstr;
4390
4391 statstr = target_waitstatus_to_string (ws);
4392 fprintf_unfiltered (gdb_stdlog,
4393 "infrun: saving status %s for %d.%ld.%ld\n",
4394 statstr,
4395 ptid_get_pid (tp->ptid),
4396 ptid_get_lwp (tp->ptid),
4397 ptid_get_tid (tp->ptid));
4398 xfree (statstr);
4399 }
4400
4401 /* Record for later. */
4402 tp->suspend.waitstatus = *ws;
4403 tp->suspend.waitstatus_pending_p = 1;
4404
4405 regcache = get_thread_regcache (tp->ptid);
4406 aspace = get_regcache_aspace (regcache);
4407
4408 if (ws->kind == TARGET_WAITKIND_STOPPED
4409 && ws->value.sig == GDB_SIGNAL_TRAP)
4410 {
4411 CORE_ADDR pc = regcache_read_pc (regcache);
4412
4413 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4414
4415 if (thread_stopped_by_watchpoint (tp->ptid))
4416 {
4417 tp->suspend.stop_reason
4418 = TARGET_STOPPED_BY_WATCHPOINT;
4419 }
4420 else if (target_supports_stopped_by_sw_breakpoint ()
4421 && thread_stopped_by_sw_breakpoint (tp->ptid))
4422 {
4423 tp->suspend.stop_reason
4424 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4425 }
4426 else if (target_supports_stopped_by_hw_breakpoint ()
4427 && thread_stopped_by_hw_breakpoint (tp->ptid))
4428 {
4429 tp->suspend.stop_reason
4430 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4431 }
4432 else if (!target_supports_stopped_by_hw_breakpoint ()
4433 && hardware_breakpoint_inserted_here_p (aspace,
4434 pc))
4435 {
4436 tp->suspend.stop_reason
4437 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4438 }
4439 else if (!target_supports_stopped_by_sw_breakpoint ()
4440 && software_breakpoint_inserted_here_p (aspace,
4441 pc))
4442 {
4443 tp->suspend.stop_reason
4444 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4445 }
4446 else if (!thread_has_single_step_breakpoints_set (tp)
4447 && currently_stepping (tp))
4448 {
4449 tp->suspend.stop_reason
4450 = TARGET_STOPPED_BY_SINGLE_STEP;
4451 }
4452 }
4453 }
4454
4455 /* A cleanup that disables thread create/exit events. */
4456
4457 static void
4458 disable_thread_events (void *arg)
4459 {
4460 target_thread_events (0);
4461 }
4462
4463 /* See infrun.h. */
4464
4465 void
4466 stop_all_threads (void)
4467 {
4468 /* We may need multiple passes to discover all threads. */
4469 int pass;
4470 int iterations = 0;
4471 ptid_t entry_ptid;
4472 struct cleanup *old_chain;
4473
4474 gdb_assert (target_is_non_stop_p ());
4475
4476 if (debug_infrun)
4477 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4478
4479 entry_ptid = inferior_ptid;
4480 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4481
4482 target_thread_events (1);
4483 make_cleanup (disable_thread_events, NULL);
4484
4485 /* Request threads to stop, and then wait for the stops. Because
4486 threads we already know about can spawn more threads while we're
4487 trying to stop them, and we only learn about new threads when we
4488 update the thread list, do this in a loop, and keep iterating
4489 until two passes find no threads that need to be stopped. */
4490 for (pass = 0; pass < 2; pass++, iterations++)
4491 {
4492 if (debug_infrun)
4493 fprintf_unfiltered (gdb_stdlog,
4494 "infrun: stop_all_threads, pass=%d, "
4495 "iterations=%d\n", pass, iterations);
4496 while (1)
4497 {
4498 ptid_t event_ptid;
4499 struct target_waitstatus ws;
4500 int need_wait = 0;
4501 struct thread_info *t;
4502
4503 update_thread_list ();
4504
4505 /* Go through all threads looking for threads that we need
4506 to tell the target to stop. */
4507 ALL_NON_EXITED_THREADS (t)
4508 {
4509 if (t->executing)
4510 {
4511 /* If already stopping, don't request a stop again.
4512 We just haven't seen the notification yet. */
4513 if (!t->stop_requested)
4514 {
4515 if (debug_infrun)
4516 fprintf_unfiltered (gdb_stdlog,
4517 "infrun: %s executing, "
4518 "need stop\n",
4519 target_pid_to_str (t->ptid));
4520 target_stop (t->ptid);
4521 t->stop_requested = 1;
4522 }
4523 else
4524 {
4525 if (debug_infrun)
4526 fprintf_unfiltered (gdb_stdlog,
4527 "infrun: %s executing, "
4528 "already stopping\n",
4529 target_pid_to_str (t->ptid));
4530 }
4531
4532 if (t->stop_requested)
4533 need_wait = 1;
4534 }
4535 else
4536 {
4537 if (debug_infrun)
4538 fprintf_unfiltered (gdb_stdlog,
4539 "infrun: %s not executing\n",
4540 target_pid_to_str (t->ptid));
4541
4542 /* The thread may be not executing, but still be
4543 resumed with a pending status to process. */
4544 t->resumed = 0;
4545 }
4546 }
4547
4548 if (!need_wait)
4549 break;
4550
4551 /* If we find new threads on the second iteration, restart
4552 over. We want to see two iterations in a row with all
4553 threads stopped. */
4554 if (pass > 0)
4555 pass = -1;
4556
4557 event_ptid = wait_one (&ws);
4558 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4559 {
4560 /* All resumed threads exited. */
4561 }
4562 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4563 || ws.kind == TARGET_WAITKIND_EXITED
4564 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4565 {
4566 if (debug_infrun)
4567 {
4568 ptid_t ptid = pid_to_ptid (ws.value.integer);
4569
4570 fprintf_unfiltered (gdb_stdlog,
4571 "infrun: %s exited while "
4572 "stopping threads\n",
4573 target_pid_to_str (ptid));
4574 }
4575 }
4576 else
4577 {
4578 struct inferior *inf;
4579
4580 t = find_thread_ptid (event_ptid);
4581 if (t == NULL)
4582 t = add_thread (event_ptid);
4583
4584 t->stop_requested = 0;
4585 t->executing = 0;
4586 t->resumed = 0;
4587 t->control.may_range_step = 0;
4588
4589 /* This may be the first time we see the inferior report
4590 a stop. */
4591 inf = find_inferior_ptid (event_ptid);
4592 if (inf->needs_setup)
4593 {
4594 switch_to_thread_no_regs (t);
4595 setup_inferior (0);
4596 }
4597
4598 if (ws.kind == TARGET_WAITKIND_STOPPED
4599 && ws.value.sig == GDB_SIGNAL_0)
4600 {
4601 /* We caught the event that we intended to catch, so
4602 there's no event pending. */
4603 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4604 t->suspend.waitstatus_pending_p = 0;
4605
4606 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4607 {
4608 /* Add it back to the step-over queue. */
4609 if (debug_infrun)
4610 {
4611 fprintf_unfiltered (gdb_stdlog,
4612 "infrun: displaced-step of %s "
4613 "canceled: adding back to the "
4614 "step-over queue\n",
4615 target_pid_to_str (t->ptid));
4616 }
4617 t->control.trap_expected = 0;
4618 thread_step_over_chain_enqueue (t);
4619 }
4620 }
4621 else
4622 {
4623 enum gdb_signal sig;
4624 struct regcache *regcache;
4625 struct address_space *aspace;
4626
4627 if (debug_infrun)
4628 {
4629 char *statstr;
4630
4631 statstr = target_waitstatus_to_string (&ws);
4632 fprintf_unfiltered (gdb_stdlog,
4633 "infrun: target_wait %s, saving "
4634 "status for %d.%ld.%ld\n",
4635 statstr,
4636 ptid_get_pid (t->ptid),
4637 ptid_get_lwp (t->ptid),
4638 ptid_get_tid (t->ptid));
4639 xfree (statstr);
4640 }
4641
4642 /* Record for later. */
4643 save_waitstatus (t, &ws);
4644
4645 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4646 ? ws.value.sig : GDB_SIGNAL_0);
4647
4648 if (displaced_step_fixup (t->ptid, sig) < 0)
4649 {
4650 /* Add it back to the step-over queue. */
4651 t->control.trap_expected = 0;
4652 thread_step_over_chain_enqueue (t);
4653 }
4654
4655 regcache = get_thread_regcache (t->ptid);
4656 t->suspend.stop_pc = regcache_read_pc (regcache);
4657
4658 if (debug_infrun)
4659 {
4660 fprintf_unfiltered (gdb_stdlog,
4661 "infrun: saved stop_pc=%s for %s "
4662 "(currently_stepping=%d)\n",
4663 paddress (target_gdbarch (),
4664 t->suspend.stop_pc),
4665 target_pid_to_str (t->ptid),
4666 currently_stepping (t));
4667 }
4668 }
4669 }
4670 }
4671 }
4672
4673 do_cleanups (old_chain);
4674
4675 if (debug_infrun)
4676 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4677 }
4678
4679 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4680
4681 static int
4682 handle_no_resumed (struct execution_control_state *ecs)
4683 {
4684 struct inferior *inf;
4685 struct thread_info *thread;
4686
4687 if (target_can_async_p () && !sync_execution)
4688 {
4689 /* There were no unwaited-for children left in the target, but,
4690 we're not synchronously waiting for events either. Just
4691 ignore. */
4692
4693 if (debug_infrun)
4694 fprintf_unfiltered (gdb_stdlog,
4695 "infrun: TARGET_WAITKIND_NO_RESUMED " "(ignoring: bg)\n");
4696 prepare_to_wait (ecs);
4697 return 1;
4698 }
4699
4700 /* Otherwise, if we were running a synchronous execution command, we
4701 may need to cancel it and give the user back the terminal.
4702
4703 In non-stop mode, the target can't tell whether we've already
4704 consumed previous stop events, so it can end up sending us a
4705 no-resumed event like so:
4706
4707 #0 - thread 1 is left stopped
4708
4709 #1 - thread 2 is resumed and hits breakpoint
4710 -> TARGET_WAITKIND_STOPPED
4711
4712 #2 - thread 3 is resumed and exits
4713 this is the last resumed thread, so
4714 -> TARGET_WAITKIND_NO_RESUMED
4715
4716 #3 - gdb processes stop for thread 2 and decides to re-resume
4717 it.
4718
4719 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4720 thread 2 is now resumed, so the event should be ignored.
4721
4722 IOW, if the stop for thread 2 doesn't end a foreground command,
4723 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4724 event. But it could be that the event meant that thread 2 itself
4725 (or whatever other thread was the last resumed thread) exited.
4726
4727 To address this we refresh the thread list and check whether we
4728 have resumed threads _now_. In the example above, this removes
4729 thread 3 from the thread list. If thread 2 was re-resumed, we
4730 ignore this event. If we find no thread resumed, then we cancel
4731 the synchronous command show "no unwaited-for " to the user. */
4732 update_thread_list ();
4733
4734 ALL_NON_EXITED_THREADS (thread)
4735 {
4736 if (thread->executing
4737 || thread->suspend.waitstatus_pending_p)
4738 {
4739 /* There were no unwaited-for children left in the target at
4740 some point, but there are now. Just ignore. */
4741 if (debug_infrun)
4742 fprintf_unfiltered (gdb_stdlog,
4743 "infrun: TARGET_WAITKIND_NO_RESUMED "
4744 "(ignoring: found resumed)\n");
4745 prepare_to_wait (ecs);
4746 return 1;
4747 }
4748 }
4749
4750 /* Note however that we may find no resumed thread because the whole
4751 process exited meanwhile (thus updating the thread list results
4752 in an empty thread list). In this case we know we'll be getting
4753 a process exit event shortly. */
4754 ALL_INFERIORS (inf)
4755 {
4756 if (inf->pid == 0)
4757 continue;
4758
4759 thread = any_live_thread_of_process (inf->pid);
4760 if (thread == NULL)
4761 {
4762 if (debug_infrun)
4763 fprintf_unfiltered (gdb_stdlog,
4764 "infrun: TARGET_WAITKIND_NO_RESUMED "
4765 "(expect process exit)\n");
4766 prepare_to_wait (ecs);
4767 return 1;
4768 }
4769 }
4770
4771 /* Go ahead and report the event. */
4772 return 0;
4773 }
4774
4775 /* Given an execution control state that has been freshly filled in by
4776 an event from the inferior, figure out what it means and take
4777 appropriate action.
4778
4779 The alternatives are:
4780
4781 1) stop_waiting and return; to really stop and return to the
4782 debugger.
4783
4784 2) keep_going and return; to wait for the next event (set
4785 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4786 once). */
4787
4788 static void
4789 handle_inferior_event_1 (struct execution_control_state *ecs)
4790 {
4791 enum stop_kind stop_soon;
4792
4793 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4794 {
4795 /* We had an event in the inferior, but we are not interested in
4796 handling it at this level. The lower layers have already
4797 done what needs to be done, if anything.
4798
4799 One of the possible circumstances for this is when the
4800 inferior produces output for the console. The inferior has
4801 not stopped, and we are ignoring the event. Another possible
4802 circumstance is any event which the lower level knows will be
4803 reported multiple times without an intervening resume. */
4804 if (debug_infrun)
4805 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4806 prepare_to_wait (ecs);
4807 return;
4808 }
4809
4810 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4811 {
4812 if (debug_infrun)
4813 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4814 prepare_to_wait (ecs);
4815 return;
4816 }
4817
4818 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4819 && handle_no_resumed (ecs))
4820 return;
4821
4822 /* Cache the last pid/waitstatus. */
4823 set_last_target_status (ecs->ptid, ecs->ws);
4824
4825 /* Always clear state belonging to the previous time we stopped. */
4826 stop_stack_dummy = STOP_NONE;
4827
4828 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4829 {
4830 /* No unwaited-for children left. IOW, all resumed children
4831 have exited. */
4832 if (debug_infrun)
4833 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4834
4835 stop_print_frame = 0;
4836 stop_waiting (ecs);
4837 return;
4838 }
4839
4840 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
4841 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
4842 {
4843 ecs->event_thread = find_thread_ptid (ecs->ptid);
4844 /* If it's a new thread, add it to the thread database. */
4845 if (ecs->event_thread == NULL)
4846 ecs->event_thread = add_thread (ecs->ptid);
4847
4848 /* Disable range stepping. If the next step request could use a
4849 range, this will be end up re-enabled then. */
4850 ecs->event_thread->control.may_range_step = 0;
4851 }
4852
4853 /* Dependent on valid ECS->EVENT_THREAD. */
4854 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
4855
4856 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4857 reinit_frame_cache ();
4858
4859 breakpoint_retire_moribund ();
4860
4861 /* First, distinguish signals caused by the debugger from signals
4862 that have to do with the program's own actions. Note that
4863 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4864 on the operating system version. Here we detect when a SIGILL or
4865 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4866 something similar for SIGSEGV, since a SIGSEGV will be generated
4867 when we're trying to execute a breakpoint instruction on a
4868 non-executable stack. This happens for call dummy breakpoints
4869 for architectures like SPARC that place call dummies on the
4870 stack. */
4871 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
4872 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4873 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4874 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
4875 {
4876 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4877
4878 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4879 regcache_read_pc (regcache)))
4880 {
4881 if (debug_infrun)
4882 fprintf_unfiltered (gdb_stdlog,
4883 "infrun: Treating signal as SIGTRAP\n");
4884 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
4885 }
4886 }
4887
4888 /* Mark the non-executing threads accordingly. In all-stop, all
4889 threads of all processes are stopped when we get any event
4890 reported. In non-stop mode, only the event thread stops. */
4891 {
4892 ptid_t mark_ptid;
4893
4894 if (!target_is_non_stop_p ())
4895 mark_ptid = minus_one_ptid;
4896 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4897 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4898 {
4899 /* If we're handling a process exit in non-stop mode, even
4900 though threads haven't been deleted yet, one would think
4901 that there is nothing to do, as threads of the dead process
4902 will be soon deleted, and threads of any other process were
4903 left running. However, on some targets, threads survive a
4904 process exit event. E.g., for the "checkpoint" command,
4905 when the current checkpoint/fork exits, linux-fork.c
4906 automatically switches to another fork from within
4907 target_mourn_inferior, by associating the same
4908 inferior/thread to another fork. We haven't mourned yet at
4909 this point, but we must mark any threads left in the
4910 process as not-executing so that finish_thread_state marks
4911 them stopped (in the user's perspective) if/when we present
4912 the stop to the user. */
4913 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4914 }
4915 else
4916 mark_ptid = ecs->ptid;
4917
4918 set_executing (mark_ptid, 0);
4919
4920 /* Likewise the resumed flag. */
4921 set_resumed (mark_ptid, 0);
4922 }
4923
4924 switch (ecs->ws.kind)
4925 {
4926 case TARGET_WAITKIND_LOADED:
4927 if (debug_infrun)
4928 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
4929 if (!ptid_equal (ecs->ptid, inferior_ptid))
4930 context_switch (ecs->ptid);
4931 /* Ignore gracefully during startup of the inferior, as it might
4932 be the shell which has just loaded some objects, otherwise
4933 add the symbols for the newly loaded objects. Also ignore at
4934 the beginning of an attach or remote session; we will query
4935 the full list of libraries once the connection is
4936 established. */
4937
4938 stop_soon = get_inferior_stop_soon (ecs->ptid);
4939 if (stop_soon == NO_STOP_QUIETLY)
4940 {
4941 struct regcache *regcache;
4942
4943 regcache = get_thread_regcache (ecs->ptid);
4944
4945 handle_solib_event ();
4946
4947 ecs->event_thread->control.stop_bpstat
4948 = bpstat_stop_status (get_regcache_aspace (regcache),
4949 stop_pc, ecs->ptid, &ecs->ws);
4950
4951 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4952 {
4953 /* A catchpoint triggered. */
4954 process_event_stop_test (ecs);
4955 return;
4956 }
4957
4958 /* If requested, stop when the dynamic linker notifies
4959 gdb of events. This allows the user to get control
4960 and place breakpoints in initializer routines for
4961 dynamically loaded objects (among other things). */
4962 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4963 if (stop_on_solib_events)
4964 {
4965 /* Make sure we print "Stopped due to solib-event" in
4966 normal_stop. */
4967 stop_print_frame = 1;
4968
4969 stop_waiting (ecs);
4970 return;
4971 }
4972 }
4973
4974 /* If we are skipping through a shell, or through shared library
4975 loading that we aren't interested in, resume the program. If
4976 we're running the program normally, also resume. */
4977 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4978 {
4979 /* Loading of shared libraries might have changed breakpoint
4980 addresses. Make sure new breakpoints are inserted. */
4981 if (stop_soon == NO_STOP_QUIETLY)
4982 insert_breakpoints ();
4983 resume (GDB_SIGNAL_0);
4984 prepare_to_wait (ecs);
4985 return;
4986 }
4987
4988 /* But stop if we're attaching or setting up a remote
4989 connection. */
4990 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4991 || stop_soon == STOP_QUIETLY_REMOTE)
4992 {
4993 if (debug_infrun)
4994 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4995 stop_waiting (ecs);
4996 return;
4997 }
4998
4999 internal_error (__FILE__, __LINE__,
5000 _("unhandled stop_soon: %d"), (int) stop_soon);
5001
5002 case TARGET_WAITKIND_SPURIOUS:
5003 if (debug_infrun)
5004 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
5005 if (!ptid_equal (ecs->ptid, inferior_ptid))
5006 context_switch (ecs->ptid);
5007 resume (GDB_SIGNAL_0);
5008 prepare_to_wait (ecs);
5009 return;
5010
5011 case TARGET_WAITKIND_THREAD_CREATED:
5012 if (debug_infrun)
5013 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
5014 if (!ptid_equal (ecs->ptid, inferior_ptid))
5015 context_switch (ecs->ptid);
5016 if (!switch_back_to_stepped_thread (ecs))
5017 keep_going (ecs);
5018 return;
5019
5020 case TARGET_WAITKIND_EXITED:
5021 case TARGET_WAITKIND_SIGNALLED:
5022 if (debug_infrun)
5023 {
5024 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5025 fprintf_unfiltered (gdb_stdlog,
5026 "infrun: TARGET_WAITKIND_EXITED\n");
5027 else
5028 fprintf_unfiltered (gdb_stdlog,
5029 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5030 }
5031
5032 inferior_ptid = ecs->ptid;
5033 set_current_inferior (find_inferior_ptid (ecs->ptid));
5034 set_current_program_space (current_inferior ()->pspace);
5035 handle_vfork_child_exec_or_exit (0);
5036 target_terminal_ours (); /* Must do this before mourn anyway. */
5037
5038 /* Clearing any previous state of convenience variables. */
5039 clear_exit_convenience_vars ();
5040
5041 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5042 {
5043 /* Record the exit code in the convenience variable $_exitcode, so
5044 that the user can inspect this again later. */
5045 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5046 (LONGEST) ecs->ws.value.integer);
5047
5048 /* Also record this in the inferior itself. */
5049 current_inferior ()->has_exit_code = 1;
5050 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5051
5052 /* Support the --return-child-result option. */
5053 return_child_result_value = ecs->ws.value.integer;
5054
5055 observer_notify_exited (ecs->ws.value.integer);
5056 }
5057 else
5058 {
5059 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5060 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5061
5062 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5063 {
5064 /* Set the value of the internal variable $_exitsignal,
5065 which holds the signal uncaught by the inferior. */
5066 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5067 gdbarch_gdb_signal_to_target (gdbarch,
5068 ecs->ws.value.sig));
5069 }
5070 else
5071 {
5072 /* We don't have access to the target's method used for
5073 converting between signal numbers (GDB's internal
5074 representation <-> target's representation).
5075 Therefore, we cannot do a good job at displaying this
5076 information to the user. It's better to just warn
5077 her about it (if infrun debugging is enabled), and
5078 give up. */
5079 if (debug_infrun)
5080 fprintf_filtered (gdb_stdlog, _("\
5081 Cannot fill $_exitsignal with the correct signal number.\n"));
5082 }
5083
5084 observer_notify_signal_exited (ecs->ws.value.sig);
5085 }
5086
5087 gdb_flush (gdb_stdout);
5088 target_mourn_inferior ();
5089 stop_print_frame = 0;
5090 stop_waiting (ecs);
5091 return;
5092
5093 /* The following are the only cases in which we keep going;
5094 the above cases end in a continue or goto. */
5095 case TARGET_WAITKIND_FORKED:
5096 case TARGET_WAITKIND_VFORKED:
5097 if (debug_infrun)
5098 {
5099 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5100 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5101 else
5102 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5103 }
5104
5105 /* Check whether the inferior is displaced stepping. */
5106 {
5107 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5108 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5109
5110 /* If checking displaced stepping is supported, and thread
5111 ecs->ptid is displaced stepping. */
5112 if (displaced_step_in_progress_thread (ecs->ptid))
5113 {
5114 struct inferior *parent_inf
5115 = find_inferior_ptid (ecs->ptid);
5116 struct regcache *child_regcache;
5117 CORE_ADDR parent_pc;
5118
5119 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5120 indicating that the displaced stepping of syscall instruction
5121 has been done. Perform cleanup for parent process here. Note
5122 that this operation also cleans up the child process for vfork,
5123 because their pages are shared. */
5124 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
5125 /* Start a new step-over in another thread if there's one
5126 that needs it. */
5127 start_step_over ();
5128
5129 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5130 {
5131 struct displaced_step_inferior_state *displaced
5132 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5133
5134 /* Restore scratch pad for child process. */
5135 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5136 }
5137
5138 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5139 the child's PC is also within the scratchpad. Set the child's PC
5140 to the parent's PC value, which has already been fixed up.
5141 FIXME: we use the parent's aspace here, although we're touching
5142 the child, because the child hasn't been added to the inferior
5143 list yet at this point. */
5144
5145 child_regcache
5146 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5147 gdbarch,
5148 parent_inf->aspace);
5149 /* Read PC value of parent process. */
5150 parent_pc = regcache_read_pc (regcache);
5151
5152 if (debug_displaced)
5153 fprintf_unfiltered (gdb_stdlog,
5154 "displaced: write child pc from %s to %s\n",
5155 paddress (gdbarch,
5156 regcache_read_pc (child_regcache)),
5157 paddress (gdbarch, parent_pc));
5158
5159 regcache_write_pc (child_regcache, parent_pc);
5160 }
5161 }
5162
5163 if (!ptid_equal (ecs->ptid, inferior_ptid))
5164 context_switch (ecs->ptid);
5165
5166 /* Immediately detach breakpoints from the child before there's
5167 any chance of letting the user delete breakpoints from the
5168 breakpoint lists. If we don't do this early, it's easy to
5169 leave left over traps in the child, vis: "break foo; catch
5170 fork; c; <fork>; del; c; <child calls foo>". We only follow
5171 the fork on the last `continue', and by that time the
5172 breakpoint at "foo" is long gone from the breakpoint table.
5173 If we vforked, then we don't need to unpatch here, since both
5174 parent and child are sharing the same memory pages; we'll
5175 need to unpatch at follow/detach time instead to be certain
5176 that new breakpoints added between catchpoint hit time and
5177 vfork follow are detached. */
5178 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5179 {
5180 /* This won't actually modify the breakpoint list, but will
5181 physically remove the breakpoints from the child. */
5182 detach_breakpoints (ecs->ws.value.related_pid);
5183 }
5184
5185 delete_just_stopped_threads_single_step_breakpoints ();
5186
5187 /* In case the event is caught by a catchpoint, remember that
5188 the event is to be followed at the next resume of the thread,
5189 and not immediately. */
5190 ecs->event_thread->pending_follow = ecs->ws;
5191
5192 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5193
5194 ecs->event_thread->control.stop_bpstat
5195 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5196 stop_pc, ecs->ptid, &ecs->ws);
5197
5198 /* If no catchpoint triggered for this, then keep going. Note
5199 that we're interested in knowing the bpstat actually causes a
5200 stop, not just if it may explain the signal. Software
5201 watchpoints, for example, always appear in the bpstat. */
5202 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5203 {
5204 ptid_t parent;
5205 ptid_t child;
5206 int should_resume;
5207 int follow_child
5208 = (follow_fork_mode_string == follow_fork_mode_child);
5209
5210 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5211
5212 should_resume = follow_fork ();
5213
5214 parent = ecs->ptid;
5215 child = ecs->ws.value.related_pid;
5216
5217 /* At this point, the parent is marked running, and the
5218 child is marked stopped. */
5219
5220 /* If not resuming the parent, mark it stopped. */
5221 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5222 set_running (parent, 0);
5223
5224 /* If resuming the child, mark it running. */
5225 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5226 set_running (child, 1);
5227
5228 /* In non-stop mode, also resume the other branch. */
5229 if (!detach_fork && (non_stop
5230 || (sched_multi && target_is_non_stop_p ())))
5231 {
5232 if (follow_child)
5233 switch_to_thread (parent);
5234 else
5235 switch_to_thread (child);
5236
5237 ecs->event_thread = inferior_thread ();
5238 ecs->ptid = inferior_ptid;
5239 keep_going (ecs);
5240 }
5241
5242 if (follow_child)
5243 switch_to_thread (child);
5244 else
5245 switch_to_thread (parent);
5246
5247 ecs->event_thread = inferior_thread ();
5248 ecs->ptid = inferior_ptid;
5249
5250 if (should_resume)
5251 keep_going (ecs);
5252 else
5253 stop_waiting (ecs);
5254 return;
5255 }
5256 process_event_stop_test (ecs);
5257 return;
5258
5259 case TARGET_WAITKIND_VFORK_DONE:
5260 /* Done with the shared memory region. Re-insert breakpoints in
5261 the parent, and keep going. */
5262
5263 if (debug_infrun)
5264 fprintf_unfiltered (gdb_stdlog,
5265 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
5266
5267 if (!ptid_equal (ecs->ptid, inferior_ptid))
5268 context_switch (ecs->ptid);
5269
5270 current_inferior ()->waiting_for_vfork_done = 0;
5271 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5272 /* This also takes care of reinserting breakpoints in the
5273 previously locked inferior. */
5274 keep_going (ecs);
5275 return;
5276
5277 case TARGET_WAITKIND_EXECD:
5278 if (debug_infrun)
5279 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
5280
5281 if (!ptid_equal (ecs->ptid, inferior_ptid))
5282 context_switch (ecs->ptid);
5283
5284 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5285
5286 /* Do whatever is necessary to the parent branch of the vfork. */
5287 handle_vfork_child_exec_or_exit (1);
5288
5289 /* This causes the eventpoints and symbol table to be reset.
5290 Must do this now, before trying to determine whether to
5291 stop. */
5292 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5293
5294 /* In follow_exec we may have deleted the original thread and
5295 created a new one. Make sure that the event thread is the
5296 execd thread for that case (this is a nop otherwise). */
5297 ecs->event_thread = inferior_thread ();
5298
5299 ecs->event_thread->control.stop_bpstat
5300 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5301 stop_pc, ecs->ptid, &ecs->ws);
5302
5303 /* Note that this may be referenced from inside
5304 bpstat_stop_status above, through inferior_has_execd. */
5305 xfree (ecs->ws.value.execd_pathname);
5306 ecs->ws.value.execd_pathname = NULL;
5307
5308 /* If no catchpoint triggered for this, then keep going. */
5309 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5310 {
5311 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5312 keep_going (ecs);
5313 return;
5314 }
5315 process_event_stop_test (ecs);
5316 return;
5317
5318 /* Be careful not to try to gather much state about a thread
5319 that's in a syscall. It's frequently a losing proposition. */
5320 case TARGET_WAITKIND_SYSCALL_ENTRY:
5321 if (debug_infrun)
5322 fprintf_unfiltered (gdb_stdlog,
5323 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
5324 /* Getting the current syscall number. */
5325 if (handle_syscall_event (ecs) == 0)
5326 process_event_stop_test (ecs);
5327 return;
5328
5329 /* Before examining the threads further, step this thread to
5330 get it entirely out of the syscall. (We get notice of the
5331 event when the thread is just on the verge of exiting a
5332 syscall. Stepping one instruction seems to get it back
5333 into user code.) */
5334 case TARGET_WAITKIND_SYSCALL_RETURN:
5335 if (debug_infrun)
5336 fprintf_unfiltered (gdb_stdlog,
5337 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
5338 if (handle_syscall_event (ecs) == 0)
5339 process_event_stop_test (ecs);
5340 return;
5341
5342 case TARGET_WAITKIND_STOPPED:
5343 if (debug_infrun)
5344 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
5345 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5346 handle_signal_stop (ecs);
5347 return;
5348
5349 case TARGET_WAITKIND_NO_HISTORY:
5350 if (debug_infrun)
5351 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
5352 /* Reverse execution: target ran out of history info. */
5353
5354 /* Switch to the stopped thread. */
5355 if (!ptid_equal (ecs->ptid, inferior_ptid))
5356 context_switch (ecs->ptid);
5357 if (debug_infrun)
5358 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5359
5360 delete_just_stopped_threads_single_step_breakpoints ();
5361 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
5362 observer_notify_no_history ();
5363 stop_waiting (ecs);
5364 return;
5365 }
5366 }
5367
5368 /* A wrapper around handle_inferior_event_1, which also makes sure
5369 that all temporary struct value objects that were created during
5370 the handling of the event get deleted at the end. */
5371
5372 static void
5373 handle_inferior_event (struct execution_control_state *ecs)
5374 {
5375 struct value *mark = value_mark ();
5376
5377 handle_inferior_event_1 (ecs);
5378 /* Purge all temporary values created during the event handling,
5379 as it could be a long time before we return to the command level
5380 where such values would otherwise be purged. */
5381 value_free_to_mark (mark);
5382 }
5383
5384 /* Restart threads back to what they were trying to do back when we
5385 paused them for an in-line step-over. The EVENT_THREAD thread is
5386 ignored. */
5387
5388 static void
5389 restart_threads (struct thread_info *event_thread)
5390 {
5391 struct thread_info *tp;
5392 struct thread_info *step_over = NULL;
5393
5394 /* In case the instruction just stepped spawned a new thread. */
5395 update_thread_list ();
5396
5397 ALL_NON_EXITED_THREADS (tp)
5398 {
5399 if (tp == event_thread)
5400 {
5401 if (debug_infrun)
5402 fprintf_unfiltered (gdb_stdlog,
5403 "infrun: restart threads: "
5404 "[%s] is event thread\n",
5405 target_pid_to_str (tp->ptid));
5406 continue;
5407 }
5408
5409 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5410 {
5411 if (debug_infrun)
5412 fprintf_unfiltered (gdb_stdlog,
5413 "infrun: restart threads: "
5414 "[%s] not meant to be running\n",
5415 target_pid_to_str (tp->ptid));
5416 continue;
5417 }
5418
5419 if (tp->resumed)
5420 {
5421 if (debug_infrun)
5422 fprintf_unfiltered (gdb_stdlog,
5423 "infrun: restart threads: [%s] resumed\n",
5424 target_pid_to_str (tp->ptid));
5425 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5426 continue;
5427 }
5428
5429 if (thread_is_in_step_over_chain (tp))
5430 {
5431 if (debug_infrun)
5432 fprintf_unfiltered (gdb_stdlog,
5433 "infrun: restart threads: "
5434 "[%s] needs step-over\n",
5435 target_pid_to_str (tp->ptid));
5436 gdb_assert (!tp->resumed);
5437 continue;
5438 }
5439
5440
5441 if (tp->suspend.waitstatus_pending_p)
5442 {
5443 if (debug_infrun)
5444 fprintf_unfiltered (gdb_stdlog,
5445 "infrun: restart threads: "
5446 "[%s] has pending status\n",
5447 target_pid_to_str (tp->ptid));
5448 tp->resumed = 1;
5449 continue;
5450 }
5451
5452 /* If some thread needs to start a step-over at this point, it
5453 should still be in the step-over queue, and thus skipped
5454 above. */
5455 if (thread_still_needs_step_over (tp))
5456 {
5457 internal_error (__FILE__, __LINE__,
5458 "thread [%s] needs a step-over, but not in "
5459 "step-over queue\n",
5460 target_pid_to_str (tp->ptid));
5461 }
5462
5463 if (currently_stepping (tp))
5464 {
5465 if (debug_infrun)
5466 fprintf_unfiltered (gdb_stdlog,
5467 "infrun: restart threads: [%s] was stepping\n",
5468 target_pid_to_str (tp->ptid));
5469 keep_going_stepped_thread (tp);
5470 }
5471 else
5472 {
5473 struct execution_control_state ecss;
5474 struct execution_control_state *ecs = &ecss;
5475
5476 if (debug_infrun)
5477 fprintf_unfiltered (gdb_stdlog,
5478 "infrun: restart threads: [%s] continuing\n",
5479 target_pid_to_str (tp->ptid));
5480 reset_ecs (ecs, tp);
5481 switch_to_thread (tp->ptid);
5482 keep_going_pass_signal (ecs);
5483 }
5484 }
5485 }
5486
5487 /* Callback for iterate_over_threads. Find a resumed thread that has
5488 a pending waitstatus. */
5489
5490 static int
5491 resumed_thread_with_pending_status (struct thread_info *tp,
5492 void *arg)
5493 {
5494 return (tp->resumed
5495 && tp->suspend.waitstatus_pending_p);
5496 }
5497
5498 /* Called when we get an event that may finish an in-line or
5499 out-of-line (displaced stepping) step-over started previously.
5500 Return true if the event is processed and we should go back to the
5501 event loop; false if the caller should continue processing the
5502 event. */
5503
5504 static int
5505 finish_step_over (struct execution_control_state *ecs)
5506 {
5507 int had_step_over_info;
5508
5509 displaced_step_fixup (ecs->ptid,
5510 ecs->event_thread->suspend.stop_signal);
5511
5512 had_step_over_info = step_over_info_valid_p ();
5513
5514 if (had_step_over_info)
5515 {
5516 /* If we're stepping over a breakpoint with all threads locked,
5517 then only the thread that was stepped should be reporting
5518 back an event. */
5519 gdb_assert (ecs->event_thread->control.trap_expected);
5520
5521 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5522 clear_step_over_info ();
5523 }
5524
5525 if (!target_is_non_stop_p ())
5526 return 0;
5527
5528 /* Start a new step-over in another thread if there's one that
5529 needs it. */
5530 start_step_over ();
5531
5532 /* If we were stepping over a breakpoint before, and haven't started
5533 a new in-line step-over sequence, then restart all other threads
5534 (except the event thread). We can't do this in all-stop, as then
5535 e.g., we wouldn't be able to issue any other remote packet until
5536 these other threads stop. */
5537 if (had_step_over_info && !step_over_info_valid_p ())
5538 {
5539 struct thread_info *pending;
5540
5541 /* If we only have threads with pending statuses, the restart
5542 below won't restart any thread and so nothing re-inserts the
5543 breakpoint we just stepped over. But we need it inserted
5544 when we later process the pending events, otherwise if
5545 another thread has a pending event for this breakpoint too,
5546 we'd discard its event (because the breakpoint that
5547 originally caused the event was no longer inserted). */
5548 context_switch (ecs->ptid);
5549 insert_breakpoints ();
5550
5551 restart_threads (ecs->event_thread);
5552
5553 /* If we have events pending, go through handle_inferior_event
5554 again, picking up a pending event at random. This avoids
5555 thread starvation. */
5556
5557 /* But not if we just stepped over a watchpoint in order to let
5558 the instruction execute so we can evaluate its expression.
5559 The set of watchpoints that triggered is recorded in the
5560 breakpoint objects themselves (see bp->watchpoint_triggered).
5561 If we processed another event first, that other event could
5562 clobber this info. */
5563 if (ecs->event_thread->stepping_over_watchpoint)
5564 return 0;
5565
5566 pending = iterate_over_threads (resumed_thread_with_pending_status,
5567 NULL);
5568 if (pending != NULL)
5569 {
5570 struct thread_info *tp = ecs->event_thread;
5571 struct regcache *regcache;
5572
5573 if (debug_infrun)
5574 {
5575 fprintf_unfiltered (gdb_stdlog,
5576 "infrun: found resumed threads with "
5577 "pending events, saving status\n");
5578 }
5579
5580 gdb_assert (pending != tp);
5581
5582 /* Record the event thread's event for later. */
5583 save_waitstatus (tp, &ecs->ws);
5584 /* This was cleared early, by handle_inferior_event. Set it
5585 so this pending event is considered by
5586 do_target_wait. */
5587 tp->resumed = 1;
5588
5589 gdb_assert (!tp->executing);
5590
5591 regcache = get_thread_regcache (tp->ptid);
5592 tp->suspend.stop_pc = regcache_read_pc (regcache);
5593
5594 if (debug_infrun)
5595 {
5596 fprintf_unfiltered (gdb_stdlog,
5597 "infrun: saved stop_pc=%s for %s "
5598 "(currently_stepping=%d)\n",
5599 paddress (target_gdbarch (),
5600 tp->suspend.stop_pc),
5601 target_pid_to_str (tp->ptid),
5602 currently_stepping (tp));
5603 }
5604
5605 /* This in-line step-over finished; clear this so we won't
5606 start a new one. This is what handle_signal_stop would
5607 do, if we returned false. */
5608 tp->stepping_over_breakpoint = 0;
5609
5610 /* Wake up the event loop again. */
5611 mark_async_event_handler (infrun_async_inferior_event_token);
5612
5613 prepare_to_wait (ecs);
5614 return 1;
5615 }
5616 }
5617
5618 return 0;
5619 }
5620
5621 /* Come here when the program has stopped with a signal. */
5622
5623 static void
5624 handle_signal_stop (struct execution_control_state *ecs)
5625 {
5626 struct frame_info *frame;
5627 struct gdbarch *gdbarch;
5628 int stopped_by_watchpoint;
5629 enum stop_kind stop_soon;
5630 int random_signal;
5631
5632 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5633
5634 /* Do we need to clean up the state of a thread that has
5635 completed a displaced single-step? (Doing so usually affects
5636 the PC, so do it here, before we set stop_pc.) */
5637 if (finish_step_over (ecs))
5638 return;
5639
5640 /* If we either finished a single-step or hit a breakpoint, but
5641 the user wanted this thread to be stopped, pretend we got a
5642 SIG0 (generic unsignaled stop). */
5643 if (ecs->event_thread->stop_requested
5644 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5645 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5646
5647 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5648
5649 if (debug_infrun)
5650 {
5651 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5652 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5653 struct cleanup *old_chain = save_inferior_ptid ();
5654
5655 inferior_ptid = ecs->ptid;
5656
5657 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5658 paddress (gdbarch, stop_pc));
5659 if (target_stopped_by_watchpoint ())
5660 {
5661 CORE_ADDR addr;
5662
5663 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5664
5665 if (target_stopped_data_address (&current_target, &addr))
5666 fprintf_unfiltered (gdb_stdlog,
5667 "infrun: stopped data address = %s\n",
5668 paddress (gdbarch, addr));
5669 else
5670 fprintf_unfiltered (gdb_stdlog,
5671 "infrun: (no data address available)\n");
5672 }
5673
5674 do_cleanups (old_chain);
5675 }
5676
5677 /* This is originated from start_remote(), start_inferior() and
5678 shared libraries hook functions. */
5679 stop_soon = get_inferior_stop_soon (ecs->ptid);
5680 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5681 {
5682 if (!ptid_equal (ecs->ptid, inferior_ptid))
5683 context_switch (ecs->ptid);
5684 if (debug_infrun)
5685 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5686 stop_print_frame = 1;
5687 stop_waiting (ecs);
5688 return;
5689 }
5690
5691 /* This originates from attach_command(). We need to overwrite
5692 the stop_signal here, because some kernels don't ignore a
5693 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5694 See more comments in inferior.h. On the other hand, if we
5695 get a non-SIGSTOP, report it to the user - assume the backend
5696 will handle the SIGSTOP if it should show up later.
5697
5698 Also consider that the attach is complete when we see a
5699 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5700 target extended-remote report it instead of a SIGSTOP
5701 (e.g. gdbserver). We already rely on SIGTRAP being our
5702 signal, so this is no exception.
5703
5704 Also consider that the attach is complete when we see a
5705 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5706 the target to stop all threads of the inferior, in case the
5707 low level attach operation doesn't stop them implicitly. If
5708 they weren't stopped implicitly, then the stub will report a
5709 GDB_SIGNAL_0, meaning: stopped for no particular reason
5710 other than GDB's request. */
5711 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5712 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5713 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5714 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5715 {
5716 stop_print_frame = 1;
5717 stop_waiting (ecs);
5718 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5719 return;
5720 }
5721
5722 /* See if something interesting happened to the non-current thread. If
5723 so, then switch to that thread. */
5724 if (!ptid_equal (ecs->ptid, inferior_ptid))
5725 {
5726 if (debug_infrun)
5727 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
5728
5729 context_switch (ecs->ptid);
5730
5731 if (deprecated_context_hook)
5732 deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid));
5733 }
5734
5735 /* At this point, get hold of the now-current thread's frame. */
5736 frame = get_current_frame ();
5737 gdbarch = get_frame_arch (frame);
5738
5739 /* Pull the single step breakpoints out of the target. */
5740 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5741 {
5742 struct regcache *regcache;
5743 struct address_space *aspace;
5744 CORE_ADDR pc;
5745
5746 regcache = get_thread_regcache (ecs->ptid);
5747 aspace = get_regcache_aspace (regcache);
5748 pc = regcache_read_pc (regcache);
5749
5750 /* However, before doing so, if this single-step breakpoint was
5751 actually for another thread, set this thread up for moving
5752 past it. */
5753 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5754 aspace, pc))
5755 {
5756 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5757 {
5758 if (debug_infrun)
5759 {
5760 fprintf_unfiltered (gdb_stdlog,
5761 "infrun: [%s] hit another thread's "
5762 "single-step breakpoint\n",
5763 target_pid_to_str (ecs->ptid));
5764 }
5765 ecs->hit_singlestep_breakpoint = 1;
5766 }
5767 }
5768 else
5769 {
5770 if (debug_infrun)
5771 {
5772 fprintf_unfiltered (gdb_stdlog,
5773 "infrun: [%s] hit its "
5774 "single-step breakpoint\n",
5775 target_pid_to_str (ecs->ptid));
5776 }
5777 }
5778 }
5779 delete_just_stopped_threads_single_step_breakpoints ();
5780
5781 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5782 && ecs->event_thread->control.trap_expected
5783 && ecs->event_thread->stepping_over_watchpoint)
5784 stopped_by_watchpoint = 0;
5785 else
5786 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5787
5788 /* If necessary, step over this watchpoint. We'll be back to display
5789 it in a moment. */
5790 if (stopped_by_watchpoint
5791 && (target_have_steppable_watchpoint
5792 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5793 {
5794 /* At this point, we are stopped at an instruction which has
5795 attempted to write to a piece of memory under control of
5796 a watchpoint. The instruction hasn't actually executed
5797 yet. If we were to evaluate the watchpoint expression
5798 now, we would get the old value, and therefore no change
5799 would seem to have occurred.
5800
5801 In order to make watchpoints work `right', we really need
5802 to complete the memory write, and then evaluate the
5803 watchpoint expression. We do this by single-stepping the
5804 target.
5805
5806 It may not be necessary to disable the watchpoint to step over
5807 it. For example, the PA can (with some kernel cooperation)
5808 single step over a watchpoint without disabling the watchpoint.
5809
5810 It is far more common to need to disable a watchpoint to step
5811 the inferior over it. If we have non-steppable watchpoints,
5812 we must disable the current watchpoint; it's simplest to
5813 disable all watchpoints.
5814
5815 Any breakpoint at PC must also be stepped over -- if there's
5816 one, it will have already triggered before the watchpoint
5817 triggered, and we either already reported it to the user, or
5818 it didn't cause a stop and we called keep_going. In either
5819 case, if there was a breakpoint at PC, we must be trying to
5820 step past it. */
5821 ecs->event_thread->stepping_over_watchpoint = 1;
5822 keep_going (ecs);
5823 return;
5824 }
5825
5826 ecs->event_thread->stepping_over_breakpoint = 0;
5827 ecs->event_thread->stepping_over_watchpoint = 0;
5828 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5829 ecs->event_thread->control.stop_step = 0;
5830 stop_print_frame = 1;
5831 stopped_by_random_signal = 0;
5832
5833 /* Hide inlined functions starting here, unless we just performed stepi or
5834 nexti. After stepi and nexti, always show the innermost frame (not any
5835 inline function call sites). */
5836 if (ecs->event_thread->control.step_range_end != 1)
5837 {
5838 struct address_space *aspace =
5839 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5840
5841 /* skip_inline_frames is expensive, so we avoid it if we can
5842 determine that the address is one where functions cannot have
5843 been inlined. This improves performance with inferiors that
5844 load a lot of shared libraries, because the solib event
5845 breakpoint is defined as the address of a function (i.e. not
5846 inline). Note that we have to check the previous PC as well
5847 as the current one to catch cases when we have just
5848 single-stepped off a breakpoint prior to reinstating it.
5849 Note that we're assuming that the code we single-step to is
5850 not inline, but that's not definitive: there's nothing
5851 preventing the event breakpoint function from containing
5852 inlined code, and the single-step ending up there. If the
5853 user had set a breakpoint on that inlined code, the missing
5854 skip_inline_frames call would break things. Fortunately
5855 that's an extremely unlikely scenario. */
5856 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
5857 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5858 && ecs->event_thread->control.trap_expected
5859 && pc_at_non_inline_function (aspace,
5860 ecs->event_thread->prev_pc,
5861 &ecs->ws)))
5862 {
5863 skip_inline_frames (ecs->ptid);
5864
5865 /* Re-fetch current thread's frame in case that invalidated
5866 the frame cache. */
5867 frame = get_current_frame ();
5868 gdbarch = get_frame_arch (frame);
5869 }
5870 }
5871
5872 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5873 && ecs->event_thread->control.trap_expected
5874 && gdbarch_single_step_through_delay_p (gdbarch)
5875 && currently_stepping (ecs->event_thread))
5876 {
5877 /* We're trying to step off a breakpoint. Turns out that we're
5878 also on an instruction that needs to be stepped multiple
5879 times before it's been fully executing. E.g., architectures
5880 with a delay slot. It needs to be stepped twice, once for
5881 the instruction and once for the delay slot. */
5882 int step_through_delay
5883 = gdbarch_single_step_through_delay (gdbarch, frame);
5884
5885 if (debug_infrun && step_through_delay)
5886 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
5887 if (ecs->event_thread->control.step_range_end == 0
5888 && step_through_delay)
5889 {
5890 /* The user issued a continue when stopped at a breakpoint.
5891 Set up for another trap and get out of here. */
5892 ecs->event_thread->stepping_over_breakpoint = 1;
5893 keep_going (ecs);
5894 return;
5895 }
5896 else if (step_through_delay)
5897 {
5898 /* The user issued a step when stopped at a breakpoint.
5899 Maybe we should stop, maybe we should not - the delay
5900 slot *might* correspond to a line of source. In any
5901 case, don't decide that here, just set
5902 ecs->stepping_over_breakpoint, making sure we
5903 single-step again before breakpoints are re-inserted. */
5904 ecs->event_thread->stepping_over_breakpoint = 1;
5905 }
5906 }
5907
5908 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5909 handles this event. */
5910 ecs->event_thread->control.stop_bpstat
5911 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5912 stop_pc, ecs->ptid, &ecs->ws);
5913
5914 /* Following in case break condition called a
5915 function. */
5916 stop_print_frame = 1;
5917
5918 /* This is where we handle "moribund" watchpoints. Unlike
5919 software breakpoints traps, hardware watchpoint traps are
5920 always distinguishable from random traps. If no high-level
5921 watchpoint is associated with the reported stop data address
5922 anymore, then the bpstat does not explain the signal ---
5923 simply make sure to ignore it if `stopped_by_watchpoint' is
5924 set. */
5925
5926 if (debug_infrun
5927 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5928 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5929 GDB_SIGNAL_TRAP)
5930 && stopped_by_watchpoint)
5931 fprintf_unfiltered (gdb_stdlog,
5932 "infrun: no user watchpoint explains "
5933 "watchpoint SIGTRAP, ignoring\n");
5934
5935 /* NOTE: cagney/2003-03-29: These checks for a random signal
5936 at one stage in the past included checks for an inferior
5937 function call's call dummy's return breakpoint. The original
5938 comment, that went with the test, read:
5939
5940 ``End of a stack dummy. Some systems (e.g. Sony news) give
5941 another signal besides SIGTRAP, so check here as well as
5942 above.''
5943
5944 If someone ever tries to get call dummys on a
5945 non-executable stack to work (where the target would stop
5946 with something like a SIGSEGV), then those tests might need
5947 to be re-instated. Given, however, that the tests were only
5948 enabled when momentary breakpoints were not being used, I
5949 suspect that it won't be the case.
5950
5951 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5952 be necessary for call dummies on a non-executable stack on
5953 SPARC. */
5954
5955 /* See if the breakpoints module can explain the signal. */
5956 random_signal
5957 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5958 ecs->event_thread->suspend.stop_signal);
5959
5960 /* Maybe this was a trap for a software breakpoint that has since
5961 been removed. */
5962 if (random_signal && target_stopped_by_sw_breakpoint ())
5963 {
5964 if (program_breakpoint_here_p (gdbarch, stop_pc))
5965 {
5966 struct regcache *regcache;
5967 int decr_pc;
5968
5969 /* Re-adjust PC to what the program would see if GDB was not
5970 debugging it. */
5971 regcache = get_thread_regcache (ecs->event_thread->ptid);
5972 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
5973 if (decr_pc != 0)
5974 {
5975 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
5976
5977 if (record_full_is_used ())
5978 record_full_gdb_operation_disable_set ();
5979
5980 regcache_write_pc (regcache, stop_pc + decr_pc);
5981
5982 do_cleanups (old_cleanups);
5983 }
5984 }
5985 else
5986 {
5987 /* A delayed software breakpoint event. Ignore the trap. */
5988 if (debug_infrun)
5989 fprintf_unfiltered (gdb_stdlog,
5990 "infrun: delayed software breakpoint "
5991 "trap, ignoring\n");
5992 random_signal = 0;
5993 }
5994 }
5995
5996 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5997 has since been removed. */
5998 if (random_signal && target_stopped_by_hw_breakpoint ())
5999 {
6000 /* A delayed hardware breakpoint event. Ignore the trap. */
6001 if (debug_infrun)
6002 fprintf_unfiltered (gdb_stdlog,
6003 "infrun: delayed hardware breakpoint/watchpoint "
6004 "trap, ignoring\n");
6005 random_signal = 0;
6006 }
6007
6008 /* If not, perhaps stepping/nexting can. */
6009 if (random_signal)
6010 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6011 && currently_stepping (ecs->event_thread));
6012
6013 /* Perhaps the thread hit a single-step breakpoint of _another_
6014 thread. Single-step breakpoints are transparent to the
6015 breakpoints module. */
6016 if (random_signal)
6017 random_signal = !ecs->hit_singlestep_breakpoint;
6018
6019 /* No? Perhaps we got a moribund watchpoint. */
6020 if (random_signal)
6021 random_signal = !stopped_by_watchpoint;
6022
6023 /* For the program's own signals, act according to
6024 the signal handling tables. */
6025
6026 if (random_signal)
6027 {
6028 /* Signal not for debugging purposes. */
6029 struct inferior *inf = find_inferior_ptid (ecs->ptid);
6030 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6031
6032 if (debug_infrun)
6033 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6034 gdb_signal_to_symbol_string (stop_signal));
6035
6036 stopped_by_random_signal = 1;
6037
6038 /* Always stop on signals if we're either just gaining control
6039 of the program, or the user explicitly requested this thread
6040 to remain stopped. */
6041 if (stop_soon != NO_STOP_QUIETLY
6042 || ecs->event_thread->stop_requested
6043 || (!inf->detaching
6044 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6045 {
6046 stop_waiting (ecs);
6047 return;
6048 }
6049
6050 /* Notify observers the signal has "handle print" set. Note we
6051 returned early above if stopping; normal_stop handles the
6052 printing in that case. */
6053 if (signal_print[ecs->event_thread->suspend.stop_signal])
6054 {
6055 /* The signal table tells us to print about this signal. */
6056 target_terminal_ours_for_output ();
6057 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
6058 target_terminal_inferior ();
6059 }
6060
6061 /* Clear the signal if it should not be passed. */
6062 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6063 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6064
6065 if (ecs->event_thread->prev_pc == stop_pc
6066 && ecs->event_thread->control.trap_expected
6067 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6068 {
6069 int was_in_line;
6070
6071 /* We were just starting a new sequence, attempting to
6072 single-step off of a breakpoint and expecting a SIGTRAP.
6073 Instead this signal arrives. This signal will take us out
6074 of the stepping range so GDB needs to remember to, when
6075 the signal handler returns, resume stepping off that
6076 breakpoint. */
6077 /* To simplify things, "continue" is forced to use the same
6078 code paths as single-step - set a breakpoint at the
6079 signal return address and then, once hit, step off that
6080 breakpoint. */
6081 if (debug_infrun)
6082 fprintf_unfiltered (gdb_stdlog,
6083 "infrun: signal arrived while stepping over "
6084 "breakpoint\n");
6085
6086 was_in_line = step_over_info_valid_p ();
6087 clear_step_over_info ();
6088 insert_hp_step_resume_breakpoint_at_frame (frame);
6089 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6090 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6091 ecs->event_thread->control.trap_expected = 0;
6092
6093 if (target_is_non_stop_p ())
6094 {
6095 /* Either "set non-stop" is "on", or the target is
6096 always in non-stop mode. In this case, we have a bit
6097 more work to do. Resume the current thread, and if
6098 we had paused all threads, restart them while the
6099 signal handler runs. */
6100 keep_going (ecs);
6101
6102 if (was_in_line)
6103 {
6104 restart_threads (ecs->event_thread);
6105 }
6106 else if (debug_infrun)
6107 {
6108 fprintf_unfiltered (gdb_stdlog,
6109 "infrun: no need to restart threads\n");
6110 }
6111 return;
6112 }
6113
6114 /* If we were nexting/stepping some other thread, switch to
6115 it, so that we don't continue it, losing control. */
6116 if (!switch_back_to_stepped_thread (ecs))
6117 keep_going (ecs);
6118 return;
6119 }
6120
6121 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6122 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6123 || ecs->event_thread->control.step_range_end == 1)
6124 && frame_id_eq (get_stack_frame_id (frame),
6125 ecs->event_thread->control.step_stack_frame_id)
6126 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6127 {
6128 /* The inferior is about to take a signal that will take it
6129 out of the single step range. Set a breakpoint at the
6130 current PC (which is presumably where the signal handler
6131 will eventually return) and then allow the inferior to
6132 run free.
6133
6134 Note that this is only needed for a signal delivered
6135 while in the single-step range. Nested signals aren't a
6136 problem as they eventually all return. */
6137 if (debug_infrun)
6138 fprintf_unfiltered (gdb_stdlog,
6139 "infrun: signal may take us out of "
6140 "single-step range\n");
6141
6142 clear_step_over_info ();
6143 insert_hp_step_resume_breakpoint_at_frame (frame);
6144 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6145 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6146 ecs->event_thread->control.trap_expected = 0;
6147 keep_going (ecs);
6148 return;
6149 }
6150
6151 /* Note: step_resume_breakpoint may be non-NULL. This occures
6152 when either there's a nested signal, or when there's a
6153 pending signal enabled just as the signal handler returns
6154 (leaving the inferior at the step-resume-breakpoint without
6155 actually executing it). Either way continue until the
6156 breakpoint is really hit. */
6157
6158 if (!switch_back_to_stepped_thread (ecs))
6159 {
6160 if (debug_infrun)
6161 fprintf_unfiltered (gdb_stdlog,
6162 "infrun: random signal, keep going\n");
6163
6164 keep_going (ecs);
6165 }
6166 return;
6167 }
6168
6169 process_event_stop_test (ecs);
6170 }
6171
6172 /* Come here when we've got some debug event / signal we can explain
6173 (IOW, not a random signal), and test whether it should cause a
6174 stop, or whether we should resume the inferior (transparently).
6175 E.g., could be a breakpoint whose condition evaluates false; we
6176 could be still stepping within the line; etc. */
6177
6178 static void
6179 process_event_stop_test (struct execution_control_state *ecs)
6180 {
6181 struct symtab_and_line stop_pc_sal;
6182 struct frame_info *frame;
6183 struct gdbarch *gdbarch;
6184 CORE_ADDR jmp_buf_pc;
6185 struct bpstat_what what;
6186
6187 /* Handle cases caused by hitting a breakpoint. */
6188
6189 frame = get_current_frame ();
6190 gdbarch = get_frame_arch (frame);
6191
6192 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6193
6194 if (what.call_dummy)
6195 {
6196 stop_stack_dummy = what.call_dummy;
6197 }
6198
6199 /* A few breakpoint types have callbacks associated (e.g.,
6200 bp_jit_event). Run them now. */
6201 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6202
6203 /* If we hit an internal event that triggers symbol changes, the
6204 current frame will be invalidated within bpstat_what (e.g., if we
6205 hit an internal solib event). Re-fetch it. */
6206 frame = get_current_frame ();
6207 gdbarch = get_frame_arch (frame);
6208
6209 switch (what.main_action)
6210 {
6211 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6212 /* If we hit the breakpoint at longjmp while stepping, we
6213 install a momentary breakpoint at the target of the
6214 jmp_buf. */
6215
6216 if (debug_infrun)
6217 fprintf_unfiltered (gdb_stdlog,
6218 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
6219
6220 ecs->event_thread->stepping_over_breakpoint = 1;
6221
6222 if (what.is_longjmp)
6223 {
6224 struct value *arg_value;
6225
6226 /* If we set the longjmp breakpoint via a SystemTap probe,
6227 then use it to extract the arguments. The destination PC
6228 is the third argument to the probe. */
6229 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6230 if (arg_value)
6231 {
6232 jmp_buf_pc = value_as_address (arg_value);
6233 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6234 }
6235 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6236 || !gdbarch_get_longjmp_target (gdbarch,
6237 frame, &jmp_buf_pc))
6238 {
6239 if (debug_infrun)
6240 fprintf_unfiltered (gdb_stdlog,
6241 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6242 "(!gdbarch_get_longjmp_target)\n");
6243 keep_going (ecs);
6244 return;
6245 }
6246
6247 /* Insert a breakpoint at resume address. */
6248 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6249 }
6250 else
6251 check_exception_resume (ecs, frame);
6252 keep_going (ecs);
6253 return;
6254
6255 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6256 {
6257 struct frame_info *init_frame;
6258
6259 /* There are several cases to consider.
6260
6261 1. The initiating frame no longer exists. In this case we
6262 must stop, because the exception or longjmp has gone too
6263 far.
6264
6265 2. The initiating frame exists, and is the same as the
6266 current frame. We stop, because the exception or longjmp
6267 has been caught.
6268
6269 3. The initiating frame exists and is different from the
6270 current frame. This means the exception or longjmp has
6271 been caught beneath the initiating frame, so keep going.
6272
6273 4. longjmp breakpoint has been placed just to protect
6274 against stale dummy frames and user is not interested in
6275 stopping around longjmps. */
6276
6277 if (debug_infrun)
6278 fprintf_unfiltered (gdb_stdlog,
6279 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
6280
6281 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6282 != NULL);
6283 delete_exception_resume_breakpoint (ecs->event_thread);
6284
6285 if (what.is_longjmp)
6286 {
6287 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6288
6289 if (!frame_id_p (ecs->event_thread->initiating_frame))
6290 {
6291 /* Case 4. */
6292 keep_going (ecs);
6293 return;
6294 }
6295 }
6296
6297 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6298
6299 if (init_frame)
6300 {
6301 struct frame_id current_id
6302 = get_frame_id (get_current_frame ());
6303 if (frame_id_eq (current_id,
6304 ecs->event_thread->initiating_frame))
6305 {
6306 /* Case 2. Fall through. */
6307 }
6308 else
6309 {
6310 /* Case 3. */
6311 keep_going (ecs);
6312 return;
6313 }
6314 }
6315
6316 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6317 exists. */
6318 delete_step_resume_breakpoint (ecs->event_thread);
6319
6320 end_stepping_range (ecs);
6321 }
6322 return;
6323
6324 case BPSTAT_WHAT_SINGLE:
6325 if (debug_infrun)
6326 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6327 ecs->event_thread->stepping_over_breakpoint = 1;
6328 /* Still need to check other stuff, at least the case where we
6329 are stepping and step out of the right range. */
6330 break;
6331
6332 case BPSTAT_WHAT_STEP_RESUME:
6333 if (debug_infrun)
6334 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
6335
6336 delete_step_resume_breakpoint (ecs->event_thread);
6337 if (ecs->event_thread->control.proceed_to_finish
6338 && execution_direction == EXEC_REVERSE)
6339 {
6340 struct thread_info *tp = ecs->event_thread;
6341
6342 /* We are finishing a function in reverse, and just hit the
6343 step-resume breakpoint at the start address of the
6344 function, and we're almost there -- just need to back up
6345 by one more single-step, which should take us back to the
6346 function call. */
6347 tp->control.step_range_start = tp->control.step_range_end = 1;
6348 keep_going (ecs);
6349 return;
6350 }
6351 fill_in_stop_func (gdbarch, ecs);
6352 if (stop_pc == ecs->stop_func_start
6353 && execution_direction == EXEC_REVERSE)
6354 {
6355 /* We are stepping over a function call in reverse, and just
6356 hit the step-resume breakpoint at the start address of
6357 the function. Go back to single-stepping, which should
6358 take us back to the function call. */
6359 ecs->event_thread->stepping_over_breakpoint = 1;
6360 keep_going (ecs);
6361 return;
6362 }
6363 break;
6364
6365 case BPSTAT_WHAT_STOP_NOISY:
6366 if (debug_infrun)
6367 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6368 stop_print_frame = 1;
6369
6370 /* Assume the thread stopped for a breapoint. We'll still check
6371 whether a/the breakpoint is there when the thread is next
6372 resumed. */
6373 ecs->event_thread->stepping_over_breakpoint = 1;
6374
6375 stop_waiting (ecs);
6376 return;
6377
6378 case BPSTAT_WHAT_STOP_SILENT:
6379 if (debug_infrun)
6380 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6381 stop_print_frame = 0;
6382
6383 /* Assume the thread stopped for a breapoint. We'll still check
6384 whether a/the breakpoint is there when the thread is next
6385 resumed. */
6386 ecs->event_thread->stepping_over_breakpoint = 1;
6387 stop_waiting (ecs);
6388 return;
6389
6390 case BPSTAT_WHAT_HP_STEP_RESUME:
6391 if (debug_infrun)
6392 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6393
6394 delete_step_resume_breakpoint (ecs->event_thread);
6395 if (ecs->event_thread->step_after_step_resume_breakpoint)
6396 {
6397 /* Back when the step-resume breakpoint was inserted, we
6398 were trying to single-step off a breakpoint. Go back to
6399 doing that. */
6400 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6401 ecs->event_thread->stepping_over_breakpoint = 1;
6402 keep_going (ecs);
6403 return;
6404 }
6405 break;
6406
6407 case BPSTAT_WHAT_KEEP_CHECKING:
6408 break;
6409 }
6410
6411 /* If we stepped a permanent breakpoint and we had a high priority
6412 step-resume breakpoint for the address we stepped, but we didn't
6413 hit it, then we must have stepped into the signal handler. The
6414 step-resume was only necessary to catch the case of _not_
6415 stepping into the handler, so delete it, and fall through to
6416 checking whether the step finished. */
6417 if (ecs->event_thread->stepped_breakpoint)
6418 {
6419 struct breakpoint *sr_bp
6420 = ecs->event_thread->control.step_resume_breakpoint;
6421
6422 if (sr_bp != NULL
6423 && sr_bp->loc->permanent
6424 && sr_bp->type == bp_hp_step_resume
6425 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6426 {
6427 if (debug_infrun)
6428 fprintf_unfiltered (gdb_stdlog,
6429 "infrun: stepped permanent breakpoint, stopped in "
6430 "handler\n");
6431 delete_step_resume_breakpoint (ecs->event_thread);
6432 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6433 }
6434 }
6435
6436 /* We come here if we hit a breakpoint but should not stop for it.
6437 Possibly we also were stepping and should stop for that. So fall
6438 through and test for stepping. But, if not stepping, do not
6439 stop. */
6440
6441 /* In all-stop mode, if we're currently stepping but have stopped in
6442 some other thread, we need to switch back to the stepped thread. */
6443 if (switch_back_to_stepped_thread (ecs))
6444 return;
6445
6446 if (ecs->event_thread->control.step_resume_breakpoint)
6447 {
6448 if (debug_infrun)
6449 fprintf_unfiltered (gdb_stdlog,
6450 "infrun: step-resume breakpoint is inserted\n");
6451
6452 /* Having a step-resume breakpoint overrides anything
6453 else having to do with stepping commands until
6454 that breakpoint is reached. */
6455 keep_going (ecs);
6456 return;
6457 }
6458
6459 if (ecs->event_thread->control.step_range_end == 0)
6460 {
6461 if (debug_infrun)
6462 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
6463 /* Likewise if we aren't even stepping. */
6464 keep_going (ecs);
6465 return;
6466 }
6467
6468 /* Re-fetch current thread's frame in case the code above caused
6469 the frame cache to be re-initialized, making our FRAME variable
6470 a dangling pointer. */
6471 frame = get_current_frame ();
6472 gdbarch = get_frame_arch (frame);
6473 fill_in_stop_func (gdbarch, ecs);
6474
6475 /* If stepping through a line, keep going if still within it.
6476
6477 Note that step_range_end is the address of the first instruction
6478 beyond the step range, and NOT the address of the last instruction
6479 within it!
6480
6481 Note also that during reverse execution, we may be stepping
6482 through a function epilogue and therefore must detect when
6483 the current-frame changes in the middle of a line. */
6484
6485 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6486 && (execution_direction != EXEC_REVERSE
6487 || frame_id_eq (get_frame_id (frame),
6488 ecs->event_thread->control.step_frame_id)))
6489 {
6490 if (debug_infrun)
6491 fprintf_unfiltered
6492 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
6493 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6494 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6495
6496 /* Tentatively re-enable range stepping; `resume' disables it if
6497 necessary (e.g., if we're stepping over a breakpoint or we
6498 have software watchpoints). */
6499 ecs->event_thread->control.may_range_step = 1;
6500
6501 /* When stepping backward, stop at beginning of line range
6502 (unless it's the function entry point, in which case
6503 keep going back to the call point). */
6504 if (stop_pc == ecs->event_thread->control.step_range_start
6505 && stop_pc != ecs->stop_func_start
6506 && execution_direction == EXEC_REVERSE)
6507 end_stepping_range (ecs);
6508 else
6509 keep_going (ecs);
6510
6511 return;
6512 }
6513
6514 /* We stepped out of the stepping range. */
6515
6516 /* If we are stepping at the source level and entered the runtime
6517 loader dynamic symbol resolution code...
6518
6519 EXEC_FORWARD: we keep on single stepping until we exit the run
6520 time loader code and reach the callee's address.
6521
6522 EXEC_REVERSE: we've already executed the callee (backward), and
6523 the runtime loader code is handled just like any other
6524 undebuggable function call. Now we need only keep stepping
6525 backward through the trampoline code, and that's handled further
6526 down, so there is nothing for us to do here. */
6527
6528 if (execution_direction != EXEC_REVERSE
6529 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6530 && in_solib_dynsym_resolve_code (stop_pc))
6531 {
6532 CORE_ADDR pc_after_resolver =
6533 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
6534
6535 if (debug_infrun)
6536 fprintf_unfiltered (gdb_stdlog,
6537 "infrun: stepped into dynsym resolve code\n");
6538
6539 if (pc_after_resolver)
6540 {
6541 /* Set up a step-resume breakpoint at the address
6542 indicated by SKIP_SOLIB_RESOLVER. */
6543 struct symtab_and_line sr_sal;
6544
6545 init_sal (&sr_sal);
6546 sr_sal.pc = pc_after_resolver;
6547 sr_sal.pspace = get_frame_program_space (frame);
6548
6549 insert_step_resume_breakpoint_at_sal (gdbarch,
6550 sr_sal, null_frame_id);
6551 }
6552
6553 keep_going (ecs);
6554 return;
6555 }
6556
6557 if (ecs->event_thread->control.step_range_end != 1
6558 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6559 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6560 && get_frame_type (frame) == SIGTRAMP_FRAME)
6561 {
6562 if (debug_infrun)
6563 fprintf_unfiltered (gdb_stdlog,
6564 "infrun: stepped into signal trampoline\n");
6565 /* The inferior, while doing a "step" or "next", has ended up in
6566 a signal trampoline (either by a signal being delivered or by
6567 the signal handler returning). Just single-step until the
6568 inferior leaves the trampoline (either by calling the handler
6569 or returning). */
6570 keep_going (ecs);
6571 return;
6572 }
6573
6574 /* If we're in the return path from a shared library trampoline,
6575 we want to proceed through the trampoline when stepping. */
6576 /* macro/2012-04-25: This needs to come before the subroutine
6577 call check below as on some targets return trampolines look
6578 like subroutine calls (MIPS16 return thunks). */
6579 if (gdbarch_in_solib_return_trampoline (gdbarch,
6580 stop_pc, ecs->stop_func_name)
6581 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6582 {
6583 /* Determine where this trampoline returns. */
6584 CORE_ADDR real_stop_pc;
6585
6586 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6587
6588 if (debug_infrun)
6589 fprintf_unfiltered (gdb_stdlog,
6590 "infrun: stepped into solib return tramp\n");
6591
6592 /* Only proceed through if we know where it's going. */
6593 if (real_stop_pc)
6594 {
6595 /* And put the step-breakpoint there and go until there. */
6596 struct symtab_and_line sr_sal;
6597
6598 init_sal (&sr_sal); /* initialize to zeroes */
6599 sr_sal.pc = real_stop_pc;
6600 sr_sal.section = find_pc_overlay (sr_sal.pc);
6601 sr_sal.pspace = get_frame_program_space (frame);
6602
6603 /* Do not specify what the fp should be when we stop since
6604 on some machines the prologue is where the new fp value
6605 is established. */
6606 insert_step_resume_breakpoint_at_sal (gdbarch,
6607 sr_sal, null_frame_id);
6608
6609 /* Restart without fiddling with the step ranges or
6610 other state. */
6611 keep_going (ecs);
6612 return;
6613 }
6614 }
6615
6616 /* Check for subroutine calls. The check for the current frame
6617 equalling the step ID is not necessary - the check of the
6618 previous frame's ID is sufficient - but it is a common case and
6619 cheaper than checking the previous frame's ID.
6620
6621 NOTE: frame_id_eq will never report two invalid frame IDs as
6622 being equal, so to get into this block, both the current and
6623 previous frame must have valid frame IDs. */
6624 /* The outer_frame_id check is a heuristic to detect stepping
6625 through startup code. If we step over an instruction which
6626 sets the stack pointer from an invalid value to a valid value,
6627 we may detect that as a subroutine call from the mythical
6628 "outermost" function. This could be fixed by marking
6629 outermost frames as !stack_p,code_p,special_p. Then the
6630 initial outermost frame, before sp was valid, would
6631 have code_addr == &_start. See the comment in frame_id_eq
6632 for more. */
6633 if (!frame_id_eq (get_stack_frame_id (frame),
6634 ecs->event_thread->control.step_stack_frame_id)
6635 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6636 ecs->event_thread->control.step_stack_frame_id)
6637 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6638 outer_frame_id)
6639 || (ecs->event_thread->control.step_start_function
6640 != find_pc_function (stop_pc)))))
6641 {
6642 CORE_ADDR real_stop_pc;
6643
6644 if (debug_infrun)
6645 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
6646
6647 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6648 {
6649 /* I presume that step_over_calls is only 0 when we're
6650 supposed to be stepping at the assembly language level
6651 ("stepi"). Just stop. */
6652 /* And this works the same backward as frontward. MVS */
6653 end_stepping_range (ecs);
6654 return;
6655 }
6656
6657 /* Reverse stepping through solib trampolines. */
6658
6659 if (execution_direction == EXEC_REVERSE
6660 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6661 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6662 || (ecs->stop_func_start == 0
6663 && in_solib_dynsym_resolve_code (stop_pc))))
6664 {
6665 /* Any solib trampoline code can be handled in reverse
6666 by simply continuing to single-step. We have already
6667 executed the solib function (backwards), and a few
6668 steps will take us back through the trampoline to the
6669 caller. */
6670 keep_going (ecs);
6671 return;
6672 }
6673
6674 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6675 {
6676 /* We're doing a "next".
6677
6678 Normal (forward) execution: set a breakpoint at the
6679 callee's return address (the address at which the caller
6680 will resume).
6681
6682 Reverse (backward) execution. set the step-resume
6683 breakpoint at the start of the function that we just
6684 stepped into (backwards), and continue to there. When we
6685 get there, we'll need to single-step back to the caller. */
6686
6687 if (execution_direction == EXEC_REVERSE)
6688 {
6689 /* If we're already at the start of the function, we've either
6690 just stepped backward into a single instruction function,
6691 or stepped back out of a signal handler to the first instruction
6692 of the function. Just keep going, which will single-step back
6693 to the caller. */
6694 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6695 {
6696 struct symtab_and_line sr_sal;
6697
6698 /* Normal function call return (static or dynamic). */
6699 init_sal (&sr_sal);
6700 sr_sal.pc = ecs->stop_func_start;
6701 sr_sal.pspace = get_frame_program_space (frame);
6702 insert_step_resume_breakpoint_at_sal (gdbarch,
6703 sr_sal, null_frame_id);
6704 }
6705 }
6706 else
6707 insert_step_resume_breakpoint_at_caller (frame);
6708
6709 keep_going (ecs);
6710 return;
6711 }
6712
6713 /* If we are in a function call trampoline (a stub between the
6714 calling routine and the real function), locate the real
6715 function. That's what tells us (a) whether we want to step
6716 into it at all, and (b) what prologue we want to run to the
6717 end of, if we do step into it. */
6718 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6719 if (real_stop_pc == 0)
6720 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6721 if (real_stop_pc != 0)
6722 ecs->stop_func_start = real_stop_pc;
6723
6724 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6725 {
6726 struct symtab_and_line sr_sal;
6727
6728 init_sal (&sr_sal);
6729 sr_sal.pc = ecs->stop_func_start;
6730 sr_sal.pspace = get_frame_program_space (frame);
6731
6732 insert_step_resume_breakpoint_at_sal (gdbarch,
6733 sr_sal, null_frame_id);
6734 keep_going (ecs);
6735 return;
6736 }
6737
6738 /* If we have line number information for the function we are
6739 thinking of stepping into and the function isn't on the skip
6740 list, step into it.
6741
6742 If there are several symtabs at that PC (e.g. with include
6743 files), just want to know whether *any* of them have line
6744 numbers. find_pc_line handles this. */
6745 {
6746 struct symtab_and_line tmp_sal;
6747
6748 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6749 if (tmp_sal.line != 0
6750 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6751 &tmp_sal))
6752 {
6753 if (execution_direction == EXEC_REVERSE)
6754 handle_step_into_function_backward (gdbarch, ecs);
6755 else
6756 handle_step_into_function (gdbarch, ecs);
6757 return;
6758 }
6759 }
6760
6761 /* If we have no line number and the step-stop-if-no-debug is
6762 set, we stop the step so that the user has a chance to switch
6763 in assembly mode. */
6764 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6765 && step_stop_if_no_debug)
6766 {
6767 end_stepping_range (ecs);
6768 return;
6769 }
6770
6771 if (execution_direction == EXEC_REVERSE)
6772 {
6773 /* If we're already at the start of the function, we've either just
6774 stepped backward into a single instruction function without line
6775 number info, or stepped back out of a signal handler to the first
6776 instruction of the function without line number info. Just keep
6777 going, which will single-step back to the caller. */
6778 if (ecs->stop_func_start != stop_pc)
6779 {
6780 /* Set a breakpoint at callee's start address.
6781 From there we can step once and be back in the caller. */
6782 struct symtab_and_line sr_sal;
6783
6784 init_sal (&sr_sal);
6785 sr_sal.pc = ecs->stop_func_start;
6786 sr_sal.pspace = get_frame_program_space (frame);
6787 insert_step_resume_breakpoint_at_sal (gdbarch,
6788 sr_sal, null_frame_id);
6789 }
6790 }
6791 else
6792 /* Set a breakpoint at callee's return address (the address
6793 at which the caller will resume). */
6794 insert_step_resume_breakpoint_at_caller (frame);
6795
6796 keep_going (ecs);
6797 return;
6798 }
6799
6800 /* Reverse stepping through solib trampolines. */
6801
6802 if (execution_direction == EXEC_REVERSE
6803 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6804 {
6805 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6806 || (ecs->stop_func_start == 0
6807 && in_solib_dynsym_resolve_code (stop_pc)))
6808 {
6809 /* Any solib trampoline code can be handled in reverse
6810 by simply continuing to single-step. We have already
6811 executed the solib function (backwards), and a few
6812 steps will take us back through the trampoline to the
6813 caller. */
6814 keep_going (ecs);
6815 return;
6816 }
6817 else if (in_solib_dynsym_resolve_code (stop_pc))
6818 {
6819 /* Stepped backward into the solib dynsym resolver.
6820 Set a breakpoint at its start and continue, then
6821 one more step will take us out. */
6822 struct symtab_and_line sr_sal;
6823
6824 init_sal (&sr_sal);
6825 sr_sal.pc = ecs->stop_func_start;
6826 sr_sal.pspace = get_frame_program_space (frame);
6827 insert_step_resume_breakpoint_at_sal (gdbarch,
6828 sr_sal, null_frame_id);
6829 keep_going (ecs);
6830 return;
6831 }
6832 }
6833
6834 stop_pc_sal = find_pc_line (stop_pc, 0);
6835
6836 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6837 the trampoline processing logic, however, there are some trampolines
6838 that have no names, so we should do trampoline handling first. */
6839 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6840 && ecs->stop_func_name == NULL
6841 && stop_pc_sal.line == 0)
6842 {
6843 if (debug_infrun)
6844 fprintf_unfiltered (gdb_stdlog,
6845 "infrun: stepped into undebuggable function\n");
6846
6847 /* The inferior just stepped into, or returned to, an
6848 undebuggable function (where there is no debugging information
6849 and no line number corresponding to the address where the
6850 inferior stopped). Since we want to skip this kind of code,
6851 we keep going until the inferior returns from this
6852 function - unless the user has asked us not to (via
6853 set step-mode) or we no longer know how to get back
6854 to the call site. */
6855 if (step_stop_if_no_debug
6856 || !frame_id_p (frame_unwind_caller_id (frame)))
6857 {
6858 /* If we have no line number and the step-stop-if-no-debug
6859 is set, we stop the step so that the user has a chance to
6860 switch in assembly mode. */
6861 end_stepping_range (ecs);
6862 return;
6863 }
6864 else
6865 {
6866 /* Set a breakpoint at callee's return address (the address
6867 at which the caller will resume). */
6868 insert_step_resume_breakpoint_at_caller (frame);
6869 keep_going (ecs);
6870 return;
6871 }
6872 }
6873
6874 if (ecs->event_thread->control.step_range_end == 1)
6875 {
6876 /* It is stepi or nexti. We always want to stop stepping after
6877 one instruction. */
6878 if (debug_infrun)
6879 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
6880 end_stepping_range (ecs);
6881 return;
6882 }
6883
6884 if (stop_pc_sal.line == 0)
6885 {
6886 /* We have no line number information. That means to stop
6887 stepping (does this always happen right after one instruction,
6888 when we do "s" in a function with no line numbers,
6889 or can this happen as a result of a return or longjmp?). */
6890 if (debug_infrun)
6891 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
6892 end_stepping_range (ecs);
6893 return;
6894 }
6895
6896 /* Look for "calls" to inlined functions, part one. If the inline
6897 frame machinery detected some skipped call sites, we have entered
6898 a new inline function. */
6899
6900 if (frame_id_eq (get_frame_id (get_current_frame ()),
6901 ecs->event_thread->control.step_frame_id)
6902 && inline_skipped_frames (ecs->ptid))
6903 {
6904 struct symtab_and_line call_sal;
6905
6906 if (debug_infrun)
6907 fprintf_unfiltered (gdb_stdlog,
6908 "infrun: stepped into inlined function\n");
6909
6910 find_frame_sal (get_current_frame (), &call_sal);
6911
6912 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
6913 {
6914 /* For "step", we're going to stop. But if the call site
6915 for this inlined function is on the same source line as
6916 we were previously stepping, go down into the function
6917 first. Otherwise stop at the call site. */
6918
6919 if (call_sal.line == ecs->event_thread->current_line
6920 && call_sal.symtab == ecs->event_thread->current_symtab)
6921 step_into_inline_frame (ecs->ptid);
6922
6923 end_stepping_range (ecs);
6924 return;
6925 }
6926 else
6927 {
6928 /* For "next", we should stop at the call site if it is on a
6929 different source line. Otherwise continue through the
6930 inlined function. */
6931 if (call_sal.line == ecs->event_thread->current_line
6932 && call_sal.symtab == ecs->event_thread->current_symtab)
6933 keep_going (ecs);
6934 else
6935 end_stepping_range (ecs);
6936 return;
6937 }
6938 }
6939
6940 /* Look for "calls" to inlined functions, part two. If we are still
6941 in the same real function we were stepping through, but we have
6942 to go further up to find the exact frame ID, we are stepping
6943 through a more inlined call beyond its call site. */
6944
6945 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6946 && !frame_id_eq (get_frame_id (get_current_frame ()),
6947 ecs->event_thread->control.step_frame_id)
6948 && stepped_in_from (get_current_frame (),
6949 ecs->event_thread->control.step_frame_id))
6950 {
6951 if (debug_infrun)
6952 fprintf_unfiltered (gdb_stdlog,
6953 "infrun: stepping through inlined function\n");
6954
6955 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6956 keep_going (ecs);
6957 else
6958 end_stepping_range (ecs);
6959 return;
6960 }
6961
6962 if ((stop_pc == stop_pc_sal.pc)
6963 && (ecs->event_thread->current_line != stop_pc_sal.line
6964 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
6965 {
6966 /* We are at the start of a different line. So stop. Note that
6967 we don't stop if we step into the middle of a different line.
6968 That is said to make things like for (;;) statements work
6969 better. */
6970 if (debug_infrun)
6971 fprintf_unfiltered (gdb_stdlog,
6972 "infrun: stepped to a different line\n");
6973 end_stepping_range (ecs);
6974 return;
6975 }
6976
6977 /* We aren't done stepping.
6978
6979 Optimize by setting the stepping range to the line.
6980 (We might not be in the original line, but if we entered a
6981 new line in mid-statement, we continue stepping. This makes
6982 things like for(;;) statements work better.) */
6983
6984 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6985 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
6986 ecs->event_thread->control.may_range_step = 1;
6987 set_step_info (frame, stop_pc_sal);
6988
6989 if (debug_infrun)
6990 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
6991 keep_going (ecs);
6992 }
6993
6994 /* In all-stop mode, if we're currently stepping but have stopped in
6995 some other thread, we may need to switch back to the stepped
6996 thread. Returns true we set the inferior running, false if we left
6997 it stopped (and the event needs further processing). */
6998
6999 static int
7000 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7001 {
7002 if (!target_is_non_stop_p ())
7003 {
7004 struct thread_info *tp;
7005 struct thread_info *stepping_thread;
7006
7007 /* If any thread is blocked on some internal breakpoint, and we
7008 simply need to step over that breakpoint to get it going
7009 again, do that first. */
7010
7011 /* However, if we see an event for the stepping thread, then we
7012 know all other threads have been moved past their breakpoints
7013 already. Let the caller check whether the step is finished,
7014 etc., before deciding to move it past a breakpoint. */
7015 if (ecs->event_thread->control.step_range_end != 0)
7016 return 0;
7017
7018 /* Check if the current thread is blocked on an incomplete
7019 step-over, interrupted by a random signal. */
7020 if (ecs->event_thread->control.trap_expected
7021 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7022 {
7023 if (debug_infrun)
7024 {
7025 fprintf_unfiltered (gdb_stdlog,
7026 "infrun: need to finish step-over of [%s]\n",
7027 target_pid_to_str (ecs->event_thread->ptid));
7028 }
7029 keep_going (ecs);
7030 return 1;
7031 }
7032
7033 /* Check if the current thread is blocked by a single-step
7034 breakpoint of another thread. */
7035 if (ecs->hit_singlestep_breakpoint)
7036 {
7037 if (debug_infrun)
7038 {
7039 fprintf_unfiltered (gdb_stdlog,
7040 "infrun: need to step [%s] over single-step "
7041 "breakpoint\n",
7042 target_pid_to_str (ecs->ptid));
7043 }
7044 keep_going (ecs);
7045 return 1;
7046 }
7047
7048 /* If this thread needs yet another step-over (e.g., stepping
7049 through a delay slot), do it first before moving on to
7050 another thread. */
7051 if (thread_still_needs_step_over (ecs->event_thread))
7052 {
7053 if (debug_infrun)
7054 {
7055 fprintf_unfiltered (gdb_stdlog,
7056 "infrun: thread [%s] still needs step-over\n",
7057 target_pid_to_str (ecs->event_thread->ptid));
7058 }
7059 keep_going (ecs);
7060 return 1;
7061 }
7062
7063 /* If scheduler locking applies even if not stepping, there's no
7064 need to walk over threads. Above we've checked whether the
7065 current thread is stepping. If some other thread not the
7066 event thread is stepping, then it must be that scheduler
7067 locking is not in effect. */
7068 if (schedlock_applies (ecs->event_thread))
7069 return 0;
7070
7071 /* Otherwise, we no longer expect a trap in the current thread.
7072 Clear the trap_expected flag before switching back -- this is
7073 what keep_going does as well, if we call it. */
7074 ecs->event_thread->control.trap_expected = 0;
7075
7076 /* Likewise, clear the signal if it should not be passed. */
7077 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7078 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7079
7080 /* Do all pending step-overs before actually proceeding with
7081 step/next/etc. */
7082 if (start_step_over ())
7083 {
7084 prepare_to_wait (ecs);
7085 return 1;
7086 }
7087
7088 /* Look for the stepping/nexting thread. */
7089 stepping_thread = NULL;
7090
7091 ALL_NON_EXITED_THREADS (tp)
7092 {
7093 /* Ignore threads of processes the caller is not
7094 resuming. */
7095 if (!sched_multi
7096 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
7097 continue;
7098
7099 /* When stepping over a breakpoint, we lock all threads
7100 except the one that needs to move past the breakpoint.
7101 If a non-event thread has this set, the "incomplete
7102 step-over" check above should have caught it earlier. */
7103 if (tp->control.trap_expected)
7104 {
7105 internal_error (__FILE__, __LINE__,
7106 "[%s] has inconsistent state: "
7107 "trap_expected=%d\n",
7108 target_pid_to_str (tp->ptid),
7109 tp->control.trap_expected);
7110 }
7111
7112 /* Did we find the stepping thread? */
7113 if (tp->control.step_range_end)
7114 {
7115 /* Yep. There should only one though. */
7116 gdb_assert (stepping_thread == NULL);
7117
7118 /* The event thread is handled at the top, before we
7119 enter this loop. */
7120 gdb_assert (tp != ecs->event_thread);
7121
7122 /* If some thread other than the event thread is
7123 stepping, then scheduler locking can't be in effect,
7124 otherwise we wouldn't have resumed the current event
7125 thread in the first place. */
7126 gdb_assert (!schedlock_applies (tp));
7127
7128 stepping_thread = tp;
7129 }
7130 }
7131
7132 if (stepping_thread != NULL)
7133 {
7134 if (debug_infrun)
7135 fprintf_unfiltered (gdb_stdlog,
7136 "infrun: switching back to stepped thread\n");
7137
7138 if (keep_going_stepped_thread (stepping_thread))
7139 {
7140 prepare_to_wait (ecs);
7141 return 1;
7142 }
7143 }
7144 }
7145
7146 return 0;
7147 }
7148
7149 /* Set a previously stepped thread back to stepping. Returns true on
7150 success, false if the resume is not possible (e.g., the thread
7151 vanished). */
7152
7153 static int
7154 keep_going_stepped_thread (struct thread_info *tp)
7155 {
7156 struct frame_info *frame;
7157 struct gdbarch *gdbarch;
7158 struct execution_control_state ecss;
7159 struct execution_control_state *ecs = &ecss;
7160
7161 /* If the stepping thread exited, then don't try to switch back and
7162 resume it, which could fail in several different ways depending
7163 on the target. Instead, just keep going.
7164
7165 We can find a stepping dead thread in the thread list in two
7166 cases:
7167
7168 - The target supports thread exit events, and when the target
7169 tries to delete the thread from the thread list, inferior_ptid
7170 pointed at the exiting thread. In such case, calling
7171 delete_thread does not really remove the thread from the list;
7172 instead, the thread is left listed, with 'exited' state.
7173
7174 - The target's debug interface does not support thread exit
7175 events, and so we have no idea whatsoever if the previously
7176 stepping thread is still alive. For that reason, we need to
7177 synchronously query the target now. */
7178
7179 if (is_exited (tp->ptid)
7180 || !target_thread_alive (tp->ptid))
7181 {
7182 if (debug_infrun)
7183 fprintf_unfiltered (gdb_stdlog,
7184 "infrun: not resuming previously "
7185 "stepped thread, it has vanished\n");
7186
7187 delete_thread (tp->ptid);
7188 return 0;
7189 }
7190
7191 if (debug_infrun)
7192 fprintf_unfiltered (gdb_stdlog,
7193 "infrun: resuming previously stepped thread\n");
7194
7195 reset_ecs (ecs, tp);
7196 switch_to_thread (tp->ptid);
7197
7198 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7199 frame = get_current_frame ();
7200 gdbarch = get_frame_arch (frame);
7201
7202 /* If the PC of the thread we were trying to single-step has
7203 changed, then that thread has trapped or been signaled, but the
7204 event has not been reported to GDB yet. Re-poll the target
7205 looking for this particular thread's event (i.e. temporarily
7206 enable schedlock) by:
7207
7208 - setting a break at the current PC
7209 - resuming that particular thread, only (by setting trap
7210 expected)
7211
7212 This prevents us continuously moving the single-step breakpoint
7213 forward, one instruction at a time, overstepping. */
7214
7215 if (stop_pc != tp->prev_pc)
7216 {
7217 ptid_t resume_ptid;
7218
7219 if (debug_infrun)
7220 fprintf_unfiltered (gdb_stdlog,
7221 "infrun: expected thread advanced also (%s -> %s)\n",
7222 paddress (target_gdbarch (), tp->prev_pc),
7223 paddress (target_gdbarch (), stop_pc));
7224
7225 /* Clear the info of the previous step-over, as it's no longer
7226 valid (if the thread was trying to step over a breakpoint, it
7227 has already succeeded). It's what keep_going would do too,
7228 if we called it. Do this before trying to insert the sss
7229 breakpoint, otherwise if we were previously trying to step
7230 over this exact address in another thread, the breakpoint is
7231 skipped. */
7232 clear_step_over_info ();
7233 tp->control.trap_expected = 0;
7234
7235 insert_single_step_breakpoint (get_frame_arch (frame),
7236 get_frame_address_space (frame),
7237 stop_pc);
7238
7239 tp->resumed = 1;
7240 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7241 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7242 }
7243 else
7244 {
7245 if (debug_infrun)
7246 fprintf_unfiltered (gdb_stdlog,
7247 "infrun: expected thread still hasn't advanced\n");
7248
7249 keep_going_pass_signal (ecs);
7250 }
7251 return 1;
7252 }
7253
7254 /* Is thread TP in the middle of (software or hardware)
7255 single-stepping? (Note the result of this function must never be
7256 passed directly as target_resume's STEP parameter.) */
7257
7258 static int
7259 currently_stepping (struct thread_info *tp)
7260 {
7261 return ((tp->control.step_range_end
7262 && tp->control.step_resume_breakpoint == NULL)
7263 || tp->control.trap_expected
7264 || tp->stepped_breakpoint
7265 || bpstat_should_step ());
7266 }
7267
7268 /* Inferior has stepped into a subroutine call with source code that
7269 we should not step over. Do step to the first line of code in
7270 it. */
7271
7272 static void
7273 handle_step_into_function (struct gdbarch *gdbarch,
7274 struct execution_control_state *ecs)
7275 {
7276 struct compunit_symtab *cust;
7277 struct symtab_and_line stop_func_sal, sr_sal;
7278
7279 fill_in_stop_func (gdbarch, ecs);
7280
7281 cust = find_pc_compunit_symtab (stop_pc);
7282 if (cust != NULL && compunit_language (cust) != language_asm)
7283 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7284 ecs->stop_func_start);
7285
7286 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7287 /* Use the step_resume_break to step until the end of the prologue,
7288 even if that involves jumps (as it seems to on the vax under
7289 4.2). */
7290 /* If the prologue ends in the middle of a source line, continue to
7291 the end of that source line (if it is still within the function).
7292 Otherwise, just go to end of prologue. */
7293 if (stop_func_sal.end
7294 && stop_func_sal.pc != ecs->stop_func_start
7295 && stop_func_sal.end < ecs->stop_func_end)
7296 ecs->stop_func_start = stop_func_sal.end;
7297
7298 /* Architectures which require breakpoint adjustment might not be able
7299 to place a breakpoint at the computed address. If so, the test
7300 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7301 ecs->stop_func_start to an address at which a breakpoint may be
7302 legitimately placed.
7303
7304 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7305 made, GDB will enter an infinite loop when stepping through
7306 optimized code consisting of VLIW instructions which contain
7307 subinstructions corresponding to different source lines. On
7308 FR-V, it's not permitted to place a breakpoint on any but the
7309 first subinstruction of a VLIW instruction. When a breakpoint is
7310 set, GDB will adjust the breakpoint address to the beginning of
7311 the VLIW instruction. Thus, we need to make the corresponding
7312 adjustment here when computing the stop address. */
7313
7314 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7315 {
7316 ecs->stop_func_start
7317 = gdbarch_adjust_breakpoint_address (gdbarch,
7318 ecs->stop_func_start);
7319 }
7320
7321 if (ecs->stop_func_start == stop_pc)
7322 {
7323 /* We are already there: stop now. */
7324 end_stepping_range (ecs);
7325 return;
7326 }
7327 else
7328 {
7329 /* Put the step-breakpoint there and go until there. */
7330 init_sal (&sr_sal); /* initialize to zeroes */
7331 sr_sal.pc = ecs->stop_func_start;
7332 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7333 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7334
7335 /* Do not specify what the fp should be when we stop since on
7336 some machines the prologue is where the new fp value is
7337 established. */
7338 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7339
7340 /* And make sure stepping stops right away then. */
7341 ecs->event_thread->control.step_range_end
7342 = ecs->event_thread->control.step_range_start;
7343 }
7344 keep_going (ecs);
7345 }
7346
7347 /* Inferior has stepped backward into a subroutine call with source
7348 code that we should not step over. Do step to the beginning of the
7349 last line of code in it. */
7350
7351 static void
7352 handle_step_into_function_backward (struct gdbarch *gdbarch,
7353 struct execution_control_state *ecs)
7354 {
7355 struct compunit_symtab *cust;
7356 struct symtab_and_line stop_func_sal;
7357
7358 fill_in_stop_func (gdbarch, ecs);
7359
7360 cust = find_pc_compunit_symtab (stop_pc);
7361 if (cust != NULL && compunit_language (cust) != language_asm)
7362 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
7363 ecs->stop_func_start);
7364
7365 stop_func_sal = find_pc_line (stop_pc, 0);
7366
7367 /* OK, we're just going to keep stepping here. */
7368 if (stop_func_sal.pc == stop_pc)
7369 {
7370 /* We're there already. Just stop stepping now. */
7371 end_stepping_range (ecs);
7372 }
7373 else
7374 {
7375 /* Else just reset the step range and keep going.
7376 No step-resume breakpoint, they don't work for
7377 epilogues, which can have multiple entry paths. */
7378 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7379 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7380 keep_going (ecs);
7381 }
7382 return;
7383 }
7384
7385 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7386 This is used to both functions and to skip over code. */
7387
7388 static void
7389 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7390 struct symtab_and_line sr_sal,
7391 struct frame_id sr_id,
7392 enum bptype sr_type)
7393 {
7394 /* There should never be more than one step-resume or longjmp-resume
7395 breakpoint per thread, so we should never be setting a new
7396 step_resume_breakpoint when one is already active. */
7397 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7398 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7399
7400 if (debug_infrun)
7401 fprintf_unfiltered (gdb_stdlog,
7402 "infrun: inserting step-resume breakpoint at %s\n",
7403 paddress (gdbarch, sr_sal.pc));
7404
7405 inferior_thread ()->control.step_resume_breakpoint
7406 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7407 }
7408
7409 void
7410 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7411 struct symtab_and_line sr_sal,
7412 struct frame_id sr_id)
7413 {
7414 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7415 sr_sal, sr_id,
7416 bp_step_resume);
7417 }
7418
7419 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7420 This is used to skip a potential signal handler.
7421
7422 This is called with the interrupted function's frame. The signal
7423 handler, when it returns, will resume the interrupted function at
7424 RETURN_FRAME.pc. */
7425
7426 static void
7427 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7428 {
7429 struct symtab_and_line sr_sal;
7430 struct gdbarch *gdbarch;
7431
7432 gdb_assert (return_frame != NULL);
7433 init_sal (&sr_sal); /* initialize to zeros */
7434
7435 gdbarch = get_frame_arch (return_frame);
7436 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7437 sr_sal.section = find_pc_overlay (sr_sal.pc);
7438 sr_sal.pspace = get_frame_program_space (return_frame);
7439
7440 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7441 get_stack_frame_id (return_frame),
7442 bp_hp_step_resume);
7443 }
7444
7445 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7446 is used to skip a function after stepping into it (for "next" or if
7447 the called function has no debugging information).
7448
7449 The current function has almost always been reached by single
7450 stepping a call or return instruction. NEXT_FRAME belongs to the
7451 current function, and the breakpoint will be set at the caller's
7452 resume address.
7453
7454 This is a separate function rather than reusing
7455 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7456 get_prev_frame, which may stop prematurely (see the implementation
7457 of frame_unwind_caller_id for an example). */
7458
7459 static void
7460 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7461 {
7462 struct symtab_and_line sr_sal;
7463 struct gdbarch *gdbarch;
7464
7465 /* We shouldn't have gotten here if we don't know where the call site
7466 is. */
7467 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7468
7469 init_sal (&sr_sal); /* initialize to zeros */
7470
7471 gdbarch = frame_unwind_caller_arch (next_frame);
7472 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7473 frame_unwind_caller_pc (next_frame));
7474 sr_sal.section = find_pc_overlay (sr_sal.pc);
7475 sr_sal.pspace = frame_unwind_program_space (next_frame);
7476
7477 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7478 frame_unwind_caller_id (next_frame));
7479 }
7480
7481 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7482 new breakpoint at the target of a jmp_buf. The handling of
7483 longjmp-resume uses the same mechanisms used for handling
7484 "step-resume" breakpoints. */
7485
7486 static void
7487 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7488 {
7489 /* There should never be more than one longjmp-resume breakpoint per
7490 thread, so we should never be setting a new
7491 longjmp_resume_breakpoint when one is already active. */
7492 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7493
7494 if (debug_infrun)
7495 fprintf_unfiltered (gdb_stdlog,
7496 "infrun: inserting longjmp-resume breakpoint at %s\n",
7497 paddress (gdbarch, pc));
7498
7499 inferior_thread ()->control.exception_resume_breakpoint =
7500 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
7501 }
7502
7503 /* Insert an exception resume breakpoint. TP is the thread throwing
7504 the exception. The block B is the block of the unwinder debug hook
7505 function. FRAME is the frame corresponding to the call to this
7506 function. SYM is the symbol of the function argument holding the
7507 target PC of the exception. */
7508
7509 static void
7510 insert_exception_resume_breakpoint (struct thread_info *tp,
7511 const struct block *b,
7512 struct frame_info *frame,
7513 struct symbol *sym)
7514 {
7515 TRY
7516 {
7517 struct block_symbol vsym;
7518 struct value *value;
7519 CORE_ADDR handler;
7520 struct breakpoint *bp;
7521
7522 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7523 value = read_var_value (vsym.symbol, vsym.block, frame);
7524 /* If the value was optimized out, revert to the old behavior. */
7525 if (! value_optimized_out (value))
7526 {
7527 handler = value_as_address (value);
7528
7529 if (debug_infrun)
7530 fprintf_unfiltered (gdb_stdlog,
7531 "infrun: exception resume at %lx\n",
7532 (unsigned long) handler);
7533
7534 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7535 handler, bp_exception_resume);
7536
7537 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7538 frame = NULL;
7539
7540 bp->thread = tp->global_num;
7541 inferior_thread ()->control.exception_resume_breakpoint = bp;
7542 }
7543 }
7544 CATCH (e, RETURN_MASK_ERROR)
7545 {
7546 /* We want to ignore errors here. */
7547 }
7548 END_CATCH
7549 }
7550
7551 /* A helper for check_exception_resume that sets an
7552 exception-breakpoint based on a SystemTap probe. */
7553
7554 static void
7555 insert_exception_resume_from_probe (struct thread_info *tp,
7556 const struct bound_probe *probe,
7557 struct frame_info *frame)
7558 {
7559 struct value *arg_value;
7560 CORE_ADDR handler;
7561 struct breakpoint *bp;
7562
7563 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7564 if (!arg_value)
7565 return;
7566
7567 handler = value_as_address (arg_value);
7568
7569 if (debug_infrun)
7570 fprintf_unfiltered (gdb_stdlog,
7571 "infrun: exception resume at %s\n",
7572 paddress (get_objfile_arch (probe->objfile),
7573 handler));
7574
7575 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7576 handler, bp_exception_resume);
7577 bp->thread = tp->global_num;
7578 inferior_thread ()->control.exception_resume_breakpoint = bp;
7579 }
7580
7581 /* This is called when an exception has been intercepted. Check to
7582 see whether the exception's destination is of interest, and if so,
7583 set an exception resume breakpoint there. */
7584
7585 static void
7586 check_exception_resume (struct execution_control_state *ecs,
7587 struct frame_info *frame)
7588 {
7589 struct bound_probe probe;
7590 struct symbol *func;
7591
7592 /* First see if this exception unwinding breakpoint was set via a
7593 SystemTap probe point. If so, the probe has two arguments: the
7594 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7595 set a breakpoint there. */
7596 probe = find_probe_by_pc (get_frame_pc (frame));
7597 if (probe.probe)
7598 {
7599 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7600 return;
7601 }
7602
7603 func = get_frame_function (frame);
7604 if (!func)
7605 return;
7606
7607 TRY
7608 {
7609 const struct block *b;
7610 struct block_iterator iter;
7611 struct symbol *sym;
7612 int argno = 0;
7613
7614 /* The exception breakpoint is a thread-specific breakpoint on
7615 the unwinder's debug hook, declared as:
7616
7617 void _Unwind_DebugHook (void *cfa, void *handler);
7618
7619 The CFA argument indicates the frame to which control is
7620 about to be transferred. HANDLER is the destination PC.
7621
7622 We ignore the CFA and set a temporary breakpoint at HANDLER.
7623 This is not extremely efficient but it avoids issues in gdb
7624 with computing the DWARF CFA, and it also works even in weird
7625 cases such as throwing an exception from inside a signal
7626 handler. */
7627
7628 b = SYMBOL_BLOCK_VALUE (func);
7629 ALL_BLOCK_SYMBOLS (b, iter, sym)
7630 {
7631 if (!SYMBOL_IS_ARGUMENT (sym))
7632 continue;
7633
7634 if (argno == 0)
7635 ++argno;
7636 else
7637 {
7638 insert_exception_resume_breakpoint (ecs->event_thread,
7639 b, frame, sym);
7640 break;
7641 }
7642 }
7643 }
7644 CATCH (e, RETURN_MASK_ERROR)
7645 {
7646 }
7647 END_CATCH
7648 }
7649
7650 static void
7651 stop_waiting (struct execution_control_state *ecs)
7652 {
7653 if (debug_infrun)
7654 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
7655
7656 clear_step_over_info ();
7657
7658 /* Let callers know we don't want to wait for the inferior anymore. */
7659 ecs->wait_some_more = 0;
7660
7661 /* If all-stop, but the target is always in non-stop mode, stop all
7662 threads now that we're presenting the stop to the user. */
7663 if (!non_stop && target_is_non_stop_p ())
7664 stop_all_threads ();
7665 }
7666
7667 /* Like keep_going, but passes the signal to the inferior, even if the
7668 signal is set to nopass. */
7669
7670 static void
7671 keep_going_pass_signal (struct execution_control_state *ecs)
7672 {
7673 /* Make sure normal_stop is called if we get a QUIT handled before
7674 reaching resume. */
7675 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7676
7677 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
7678 gdb_assert (!ecs->event_thread->resumed);
7679
7680 /* Save the pc before execution, to compare with pc after stop. */
7681 ecs->event_thread->prev_pc
7682 = regcache_read_pc (get_thread_regcache (ecs->ptid));
7683
7684 if (ecs->event_thread->control.trap_expected)
7685 {
7686 struct thread_info *tp = ecs->event_thread;
7687
7688 if (debug_infrun)
7689 fprintf_unfiltered (gdb_stdlog,
7690 "infrun: %s has trap_expected set, "
7691 "resuming to collect trap\n",
7692 target_pid_to_str (tp->ptid));
7693
7694 /* We haven't yet gotten our trap, and either: intercepted a
7695 non-signal event (e.g., a fork); or took a signal which we
7696 are supposed to pass through to the inferior. Simply
7697 continue. */
7698 discard_cleanups (old_cleanups);
7699 resume (ecs->event_thread->suspend.stop_signal);
7700 }
7701 else if (step_over_info_valid_p ())
7702 {
7703 /* Another thread is stepping over a breakpoint in-line. If
7704 this thread needs a step-over too, queue the request. In
7705 either case, this resume must be deferred for later. */
7706 struct thread_info *tp = ecs->event_thread;
7707
7708 if (ecs->hit_singlestep_breakpoint
7709 || thread_still_needs_step_over (tp))
7710 {
7711 if (debug_infrun)
7712 fprintf_unfiltered (gdb_stdlog,
7713 "infrun: step-over already in progress: "
7714 "step-over for %s deferred\n",
7715 target_pid_to_str (tp->ptid));
7716 thread_step_over_chain_enqueue (tp);
7717 }
7718 else
7719 {
7720 if (debug_infrun)
7721 fprintf_unfiltered (gdb_stdlog,
7722 "infrun: step-over in progress: "
7723 "resume of %s deferred\n",
7724 target_pid_to_str (tp->ptid));
7725 }
7726
7727 discard_cleanups (old_cleanups);
7728 }
7729 else
7730 {
7731 struct regcache *regcache = get_current_regcache ();
7732 int remove_bp;
7733 int remove_wps;
7734 step_over_what step_what;
7735
7736 /* Either the trap was not expected, but we are continuing
7737 anyway (if we got a signal, the user asked it be passed to
7738 the child)
7739 -- or --
7740 We got our expected trap, but decided we should resume from
7741 it.
7742
7743 We're going to run this baby now!
7744
7745 Note that insert_breakpoints won't try to re-insert
7746 already inserted breakpoints. Therefore, we don't
7747 care if breakpoints were already inserted, or not. */
7748
7749 /* If we need to step over a breakpoint, and we're not using
7750 displaced stepping to do so, insert all breakpoints
7751 (watchpoints, etc.) but the one we're stepping over, step one
7752 instruction, and then re-insert the breakpoint when that step
7753 is finished. */
7754
7755 step_what = thread_still_needs_step_over (ecs->event_thread);
7756
7757 remove_bp = (ecs->hit_singlestep_breakpoint
7758 || (step_what & STEP_OVER_BREAKPOINT));
7759 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7760
7761 /* We can't use displaced stepping if we need to step past a
7762 watchpoint. The instruction copied to the scratch pad would
7763 still trigger the watchpoint. */
7764 if (remove_bp
7765 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7766 {
7767 set_step_over_info (get_regcache_aspace (regcache),
7768 regcache_read_pc (regcache), remove_wps,
7769 ecs->event_thread->global_num);
7770 }
7771 else if (remove_wps)
7772 set_step_over_info (NULL, 0, remove_wps, -1);
7773
7774 /* If we now need to do an in-line step-over, we need to stop
7775 all other threads. Note this must be done before
7776 insert_breakpoints below, because that removes the breakpoint
7777 we're about to step over, otherwise other threads could miss
7778 it. */
7779 if (step_over_info_valid_p () && target_is_non_stop_p ())
7780 stop_all_threads ();
7781
7782 /* Stop stepping if inserting breakpoints fails. */
7783 TRY
7784 {
7785 insert_breakpoints ();
7786 }
7787 CATCH (e, RETURN_MASK_ERROR)
7788 {
7789 exception_print (gdb_stderr, e);
7790 stop_waiting (ecs);
7791 discard_cleanups (old_cleanups);
7792 return;
7793 }
7794 END_CATCH
7795
7796 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7797
7798 discard_cleanups (old_cleanups);
7799 resume (ecs->event_thread->suspend.stop_signal);
7800 }
7801
7802 prepare_to_wait (ecs);
7803 }
7804
7805 /* Called when we should continue running the inferior, because the
7806 current event doesn't cause a user visible stop. This does the
7807 resuming part; waiting for the next event is done elsewhere. */
7808
7809 static void
7810 keep_going (struct execution_control_state *ecs)
7811 {
7812 if (ecs->event_thread->control.trap_expected
7813 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7814 ecs->event_thread->control.trap_expected = 0;
7815
7816 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7817 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7818 keep_going_pass_signal (ecs);
7819 }
7820
7821 /* This function normally comes after a resume, before
7822 handle_inferior_event exits. It takes care of any last bits of
7823 housekeeping, and sets the all-important wait_some_more flag. */
7824
7825 static void
7826 prepare_to_wait (struct execution_control_state *ecs)
7827 {
7828 if (debug_infrun)
7829 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
7830
7831 ecs->wait_some_more = 1;
7832
7833 if (!target_is_async_p ())
7834 mark_infrun_async_event_handler ();
7835 }
7836
7837 /* We are done with the step range of a step/next/si/ni command.
7838 Called once for each n of a "step n" operation. */
7839
7840 static void
7841 end_stepping_range (struct execution_control_state *ecs)
7842 {
7843 ecs->event_thread->control.stop_step = 1;
7844 stop_waiting (ecs);
7845 }
7846
7847 /* Several print_*_reason functions to print why the inferior has stopped.
7848 We always print something when the inferior exits, or receives a signal.
7849 The rest of the cases are dealt with later on in normal_stop and
7850 print_it_typical. Ideally there should be a call to one of these
7851 print_*_reason functions functions from handle_inferior_event each time
7852 stop_waiting is called.
7853
7854 Note that we don't call these directly, instead we delegate that to
7855 the interpreters, through observers. Interpreters then call these
7856 with whatever uiout is right. */
7857
7858 void
7859 print_end_stepping_range_reason (struct ui_out *uiout)
7860 {
7861 /* For CLI-like interpreters, print nothing. */
7862
7863 if (ui_out_is_mi_like_p (uiout))
7864 {
7865 ui_out_field_string (uiout, "reason",
7866 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7867 }
7868 }
7869
7870 void
7871 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7872 {
7873 annotate_signalled ();
7874 if (ui_out_is_mi_like_p (uiout))
7875 ui_out_field_string
7876 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7877 ui_out_text (uiout, "\nProgram terminated with signal ");
7878 annotate_signal_name ();
7879 ui_out_field_string (uiout, "signal-name",
7880 gdb_signal_to_name (siggnal));
7881 annotate_signal_name_end ();
7882 ui_out_text (uiout, ", ");
7883 annotate_signal_string ();
7884 ui_out_field_string (uiout, "signal-meaning",
7885 gdb_signal_to_string (siggnal));
7886 annotate_signal_string_end ();
7887 ui_out_text (uiout, ".\n");
7888 ui_out_text (uiout, "The program no longer exists.\n");
7889 }
7890
7891 void
7892 print_exited_reason (struct ui_out *uiout, int exitstatus)
7893 {
7894 struct inferior *inf = current_inferior ();
7895 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7896
7897 annotate_exited (exitstatus);
7898 if (exitstatus)
7899 {
7900 if (ui_out_is_mi_like_p (uiout))
7901 ui_out_field_string (uiout, "reason",
7902 async_reason_lookup (EXEC_ASYNC_EXITED));
7903 ui_out_text (uiout, "[Inferior ");
7904 ui_out_text (uiout, plongest (inf->num));
7905 ui_out_text (uiout, " (");
7906 ui_out_text (uiout, pidstr);
7907 ui_out_text (uiout, ") exited with code ");
7908 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
7909 ui_out_text (uiout, "]\n");
7910 }
7911 else
7912 {
7913 if (ui_out_is_mi_like_p (uiout))
7914 ui_out_field_string
7915 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7916 ui_out_text (uiout, "[Inferior ");
7917 ui_out_text (uiout, plongest (inf->num));
7918 ui_out_text (uiout, " (");
7919 ui_out_text (uiout, pidstr);
7920 ui_out_text (uiout, ") exited normally]\n");
7921 }
7922 }
7923
7924 /* Some targets/architectures can do extra processing/display of
7925 segmentation faults. E.g., Intel MPX boundary faults.
7926 Call the architecture dependent function to handle the fault. */
7927
7928 static void
7929 handle_segmentation_fault (struct ui_out *uiout)
7930 {
7931 struct regcache *regcache = get_current_regcache ();
7932 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7933
7934 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7935 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7936 }
7937
7938 void
7939 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7940 {
7941 struct thread_info *thr = inferior_thread ();
7942
7943 annotate_signal ();
7944
7945 if (ui_out_is_mi_like_p (uiout))
7946 ;
7947 else if (show_thread_that_caused_stop ())
7948 {
7949 const char *name;
7950
7951 ui_out_text (uiout, "\nThread ");
7952 ui_out_field_fmt (uiout, "thread-id", "%s", print_thread_id (thr));
7953
7954 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7955 if (name != NULL)
7956 {
7957 ui_out_text (uiout, " \"");
7958 ui_out_field_fmt (uiout, "name", "%s", name);
7959 ui_out_text (uiout, "\"");
7960 }
7961 }
7962 else
7963 ui_out_text (uiout, "\nProgram");
7964
7965 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
7966 ui_out_text (uiout, " stopped");
7967 else
7968 {
7969 ui_out_text (uiout, " received signal ");
7970 annotate_signal_name ();
7971 if (ui_out_is_mi_like_p (uiout))
7972 ui_out_field_string
7973 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7974 ui_out_field_string (uiout, "signal-name",
7975 gdb_signal_to_name (siggnal));
7976 annotate_signal_name_end ();
7977 ui_out_text (uiout, ", ");
7978 annotate_signal_string ();
7979 ui_out_field_string (uiout, "signal-meaning",
7980 gdb_signal_to_string (siggnal));
7981
7982 if (siggnal == GDB_SIGNAL_SEGV)
7983 handle_segmentation_fault (uiout);
7984
7985 annotate_signal_string_end ();
7986 }
7987 ui_out_text (uiout, ".\n");
7988 }
7989
7990 void
7991 print_no_history_reason (struct ui_out *uiout)
7992 {
7993 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
7994 }
7995
7996 /* Print current location without a level number, if we have changed
7997 functions or hit a breakpoint. Print source line if we have one.
7998 bpstat_print contains the logic deciding in detail what to print,
7999 based on the event(s) that just occurred. */
8000
8001 static void
8002 print_stop_location (struct target_waitstatus *ws)
8003 {
8004 int bpstat_ret;
8005 enum print_what source_flag;
8006 int do_frame_printing = 1;
8007 struct thread_info *tp = inferior_thread ();
8008
8009 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8010 switch (bpstat_ret)
8011 {
8012 case PRINT_UNKNOWN:
8013 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8014 should) carry around the function and does (or should) use
8015 that when doing a frame comparison. */
8016 if (tp->control.stop_step
8017 && frame_id_eq (tp->control.step_frame_id,
8018 get_frame_id (get_current_frame ()))
8019 && tp->control.step_start_function == find_pc_function (stop_pc))
8020 {
8021 /* Finished step, just print source line. */
8022 source_flag = SRC_LINE;
8023 }
8024 else
8025 {
8026 /* Print location and source line. */
8027 source_flag = SRC_AND_LOC;
8028 }
8029 break;
8030 case PRINT_SRC_AND_LOC:
8031 /* Print location and source line. */
8032 source_flag = SRC_AND_LOC;
8033 break;
8034 case PRINT_SRC_ONLY:
8035 source_flag = SRC_LINE;
8036 break;
8037 case PRINT_NOTHING:
8038 /* Something bogus. */
8039 source_flag = SRC_LINE;
8040 do_frame_printing = 0;
8041 break;
8042 default:
8043 internal_error (__FILE__, __LINE__, _("Unknown value."));
8044 }
8045
8046 /* The behavior of this routine with respect to the source
8047 flag is:
8048 SRC_LINE: Print only source line
8049 LOCATION: Print only location
8050 SRC_AND_LOC: Print location and source line. */
8051 if (do_frame_printing)
8052 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8053 }
8054
8055 /* Cleanup that restores a previous current uiout. */
8056
8057 static void
8058 restore_current_uiout_cleanup (void *arg)
8059 {
8060 struct ui_out *saved_uiout = (struct ui_out *) arg;
8061
8062 current_uiout = saved_uiout;
8063 }
8064
8065 /* See infrun.h. */
8066
8067 void
8068 print_stop_event (struct ui_out *uiout)
8069 {
8070 struct cleanup *old_chain;
8071 struct target_waitstatus last;
8072 ptid_t last_ptid;
8073 struct thread_info *tp;
8074
8075 get_last_target_status (&last_ptid, &last);
8076
8077 old_chain = make_cleanup (restore_current_uiout_cleanup, current_uiout);
8078 current_uiout = uiout;
8079
8080 print_stop_location (&last);
8081
8082 /* Display the auto-display expressions. */
8083 do_displays ();
8084
8085 do_cleanups (old_chain);
8086
8087 tp = inferior_thread ();
8088 if (tp->thread_fsm != NULL
8089 && thread_fsm_finished_p (tp->thread_fsm))
8090 {
8091 struct return_value_info *rv;
8092
8093 rv = thread_fsm_return_value (tp->thread_fsm);
8094 if (rv != NULL)
8095 print_return_value (uiout, rv);
8096 }
8097 }
8098
8099 /* See infrun.h. */
8100
8101 void
8102 maybe_remove_breakpoints (void)
8103 {
8104 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8105 {
8106 if (remove_breakpoints ())
8107 {
8108 target_terminal_ours_for_output ();
8109 printf_filtered (_("Cannot remove breakpoints because "
8110 "program is no longer writable.\nFurther "
8111 "execution is probably impossible.\n"));
8112 }
8113 }
8114 }
8115
8116 /* The execution context that just caused a normal stop. */
8117
8118 struct stop_context
8119 {
8120 /* The stop ID. */
8121 ULONGEST stop_id;
8122
8123 /* The event PTID. */
8124
8125 ptid_t ptid;
8126
8127 /* If stopp for a thread event, this is the thread that caused the
8128 stop. */
8129 struct thread_info *thread;
8130
8131 /* The inferior that caused the stop. */
8132 int inf_num;
8133 };
8134
8135 /* Returns a new stop context. If stopped for a thread event, this
8136 takes a strong reference to the thread. */
8137
8138 static struct stop_context *
8139 save_stop_context (void)
8140 {
8141 struct stop_context *sc = XNEW (struct stop_context);
8142
8143 sc->stop_id = get_stop_id ();
8144 sc->ptid = inferior_ptid;
8145 sc->inf_num = current_inferior ()->num;
8146
8147 if (!ptid_equal (inferior_ptid, null_ptid))
8148 {
8149 /* Take a strong reference so that the thread can't be deleted
8150 yet. */
8151 sc->thread = inferior_thread ();
8152 sc->thread->refcount++;
8153 }
8154 else
8155 sc->thread = NULL;
8156
8157 return sc;
8158 }
8159
8160 /* Release a stop context previously created with save_stop_context.
8161 Releases the strong reference to the thread as well. */
8162
8163 static void
8164 release_stop_context_cleanup (void *arg)
8165 {
8166 struct stop_context *sc = (struct stop_context *) arg;
8167
8168 if (sc->thread != NULL)
8169 sc->thread->refcount--;
8170 xfree (sc);
8171 }
8172
8173 /* Return true if the current context no longer matches the saved stop
8174 context. */
8175
8176 static int
8177 stop_context_changed (struct stop_context *prev)
8178 {
8179 if (!ptid_equal (prev->ptid, inferior_ptid))
8180 return 1;
8181 if (prev->inf_num != current_inferior ()->num)
8182 return 1;
8183 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8184 return 1;
8185 if (get_stop_id () != prev->stop_id)
8186 return 1;
8187 return 0;
8188 }
8189
8190 /* See infrun.h. */
8191
8192 int
8193 normal_stop (void)
8194 {
8195 struct target_waitstatus last;
8196 ptid_t last_ptid;
8197 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
8198 ptid_t pid_ptid;
8199
8200 get_last_target_status (&last_ptid, &last);
8201
8202 new_stop_id ();
8203
8204 /* If an exception is thrown from this point on, make sure to
8205 propagate GDB's knowledge of the executing state to the
8206 frontend/user running state. A QUIT is an easy exception to see
8207 here, so do this before any filtered output. */
8208 if (!non_stop)
8209 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
8210 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8211 || last.kind == TARGET_WAITKIND_EXITED)
8212 {
8213 /* On some targets, we may still have live threads in the
8214 inferior when we get a process exit event. E.g., for
8215 "checkpoint", when the current checkpoint/fork exits,
8216 linux-fork.c automatically switches to another fork from
8217 within target_mourn_inferior. */
8218 if (!ptid_equal (inferior_ptid, null_ptid))
8219 {
8220 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8221 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8222 }
8223 }
8224 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8225 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
8226
8227 /* As we're presenting a stop, and potentially removing breakpoints,
8228 update the thread list so we can tell whether there are threads
8229 running on the target. With target remote, for example, we can
8230 only learn about new threads when we explicitly update the thread
8231 list. Do this before notifying the interpreters about signal
8232 stops, end of stepping ranges, etc., so that the "new thread"
8233 output is emitted before e.g., "Program received signal FOO",
8234 instead of after. */
8235 update_thread_list ();
8236
8237 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8238 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8239
8240 /* As with the notification of thread events, we want to delay
8241 notifying the user that we've switched thread context until
8242 the inferior actually stops.
8243
8244 There's no point in saying anything if the inferior has exited.
8245 Note that SIGNALLED here means "exited with a signal", not
8246 "received a signal".
8247
8248 Also skip saying anything in non-stop mode. In that mode, as we
8249 don't want GDB to switch threads behind the user's back, to avoid
8250 races where the user is typing a command to apply to thread x,
8251 but GDB switches to thread y before the user finishes entering
8252 the command, fetch_inferior_event installs a cleanup to restore
8253 the current thread back to the thread the user had selected right
8254 after this event is handled, so we're not really switching, only
8255 informing of a stop. */
8256 if (!non_stop
8257 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
8258 && target_has_execution
8259 && last.kind != TARGET_WAITKIND_SIGNALLED
8260 && last.kind != TARGET_WAITKIND_EXITED
8261 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8262 {
8263 target_terminal_ours_for_output ();
8264 printf_filtered (_("[Switching to %s]\n"),
8265 target_pid_to_str (inferior_ptid));
8266 annotate_thread_changed ();
8267 previous_inferior_ptid = inferior_ptid;
8268 }
8269
8270 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8271 {
8272 gdb_assert (sync_execution || !target_can_async_p ());
8273
8274 target_terminal_ours_for_output ();
8275 printf_filtered (_("No unwaited-for children left.\n"));
8276 }
8277
8278 /* Note: this depends on the update_thread_list call above. */
8279 maybe_remove_breakpoints ();
8280
8281 /* If an auto-display called a function and that got a signal,
8282 delete that auto-display to avoid an infinite recursion. */
8283
8284 if (stopped_by_random_signal)
8285 disable_current_display ();
8286
8287 target_terminal_ours ();
8288 async_enable_stdin ();
8289
8290 /* Let the user/frontend see the threads as stopped. */
8291 do_cleanups (old_chain);
8292
8293 /* Select innermost stack frame - i.e., current frame is frame 0,
8294 and current location is based on that. Handle the case where the
8295 dummy call is returning after being stopped. E.g. the dummy call
8296 previously hit a breakpoint. (If the dummy call returns
8297 normally, we won't reach here.) Do this before the stop hook is
8298 run, so that it doesn't get to see the temporary dummy frame,
8299 which is not where we'll present the stop. */
8300 if (has_stack_frames ())
8301 {
8302 if (stop_stack_dummy == STOP_STACK_DUMMY)
8303 {
8304 /* Pop the empty frame that contains the stack dummy. This
8305 also restores inferior state prior to the call (struct
8306 infcall_suspend_state). */
8307 struct frame_info *frame = get_current_frame ();
8308
8309 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8310 frame_pop (frame);
8311 /* frame_pop calls reinit_frame_cache as the last thing it
8312 does which means there's now no selected frame. */
8313 }
8314
8315 select_frame (get_current_frame ());
8316
8317 /* Set the current source location. */
8318 set_current_sal_from_frame (get_current_frame ());
8319 }
8320
8321 /* Look up the hook_stop and run it (CLI internally handles problem
8322 of stop_command's pre-hook not existing). */
8323 if (stop_command != NULL)
8324 {
8325 struct stop_context *saved_context = save_stop_context ();
8326 struct cleanup *old_chain
8327 = make_cleanup (release_stop_context_cleanup, saved_context);
8328
8329 catch_errors (hook_stop_stub, stop_command,
8330 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8331
8332 /* If the stop hook resumes the target, then there's no point in
8333 trying to notify about the previous stop; its context is
8334 gone. Likewise if the command switches thread or inferior --
8335 the observers would print a stop for the wrong
8336 thread/inferior. */
8337 if (stop_context_changed (saved_context))
8338 {
8339 do_cleanups (old_chain);
8340 return 1;
8341 }
8342 do_cleanups (old_chain);
8343 }
8344
8345 /* Notify observers about the stop. This is where the interpreters
8346 print the stop event. */
8347 if (!ptid_equal (inferior_ptid, null_ptid))
8348 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8349 stop_print_frame);
8350 else
8351 observer_notify_normal_stop (NULL, stop_print_frame);
8352
8353 annotate_stopped ();
8354
8355 if (target_has_execution)
8356 {
8357 if (last.kind != TARGET_WAITKIND_SIGNALLED
8358 && last.kind != TARGET_WAITKIND_EXITED)
8359 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8360 Delete any breakpoint that is to be deleted at the next stop. */
8361 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8362 }
8363
8364 /* Try to get rid of automatically added inferiors that are no
8365 longer needed. Keeping those around slows down things linearly.
8366 Note that this never removes the current inferior. */
8367 prune_inferiors ();
8368
8369 return 0;
8370 }
8371
8372 static int
8373 hook_stop_stub (void *cmd)
8374 {
8375 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
8376 return (0);
8377 }
8378 \f
8379 int
8380 signal_stop_state (int signo)
8381 {
8382 return signal_stop[signo];
8383 }
8384
8385 int
8386 signal_print_state (int signo)
8387 {
8388 return signal_print[signo];
8389 }
8390
8391 int
8392 signal_pass_state (int signo)
8393 {
8394 return signal_program[signo];
8395 }
8396
8397 static void
8398 signal_cache_update (int signo)
8399 {
8400 if (signo == -1)
8401 {
8402 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8403 signal_cache_update (signo);
8404
8405 return;
8406 }
8407
8408 signal_pass[signo] = (signal_stop[signo] == 0
8409 && signal_print[signo] == 0
8410 && signal_program[signo] == 1
8411 && signal_catch[signo] == 0);
8412 }
8413
8414 int
8415 signal_stop_update (int signo, int state)
8416 {
8417 int ret = signal_stop[signo];
8418
8419 signal_stop[signo] = state;
8420 signal_cache_update (signo);
8421 return ret;
8422 }
8423
8424 int
8425 signal_print_update (int signo, int state)
8426 {
8427 int ret = signal_print[signo];
8428
8429 signal_print[signo] = state;
8430 signal_cache_update (signo);
8431 return ret;
8432 }
8433
8434 int
8435 signal_pass_update (int signo, int state)
8436 {
8437 int ret = signal_program[signo];
8438
8439 signal_program[signo] = state;
8440 signal_cache_update (signo);
8441 return ret;
8442 }
8443
8444 /* Update the global 'signal_catch' from INFO and notify the
8445 target. */
8446
8447 void
8448 signal_catch_update (const unsigned int *info)
8449 {
8450 int i;
8451
8452 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8453 signal_catch[i] = info[i] > 0;
8454 signal_cache_update (-1);
8455 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8456 }
8457
8458 static void
8459 sig_print_header (void)
8460 {
8461 printf_filtered (_("Signal Stop\tPrint\tPass "
8462 "to program\tDescription\n"));
8463 }
8464
8465 static void
8466 sig_print_info (enum gdb_signal oursig)
8467 {
8468 const char *name = gdb_signal_to_name (oursig);
8469 int name_padding = 13 - strlen (name);
8470
8471 if (name_padding <= 0)
8472 name_padding = 0;
8473
8474 printf_filtered ("%s", name);
8475 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8476 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8477 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8478 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8479 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8480 }
8481
8482 /* Specify how various signals in the inferior should be handled. */
8483
8484 static void
8485 handle_command (char *args, int from_tty)
8486 {
8487 char **argv;
8488 int digits, wordlen;
8489 int sigfirst, signum, siglast;
8490 enum gdb_signal oursig;
8491 int allsigs;
8492 int nsigs;
8493 unsigned char *sigs;
8494 struct cleanup *old_chain;
8495
8496 if (args == NULL)
8497 {
8498 error_no_arg (_("signal to handle"));
8499 }
8500
8501 /* Allocate and zero an array of flags for which signals to handle. */
8502
8503 nsigs = (int) GDB_SIGNAL_LAST;
8504 sigs = (unsigned char *) alloca (nsigs);
8505 memset (sigs, 0, nsigs);
8506
8507 /* Break the command line up into args. */
8508
8509 argv = gdb_buildargv (args);
8510 old_chain = make_cleanup_freeargv (argv);
8511
8512 /* Walk through the args, looking for signal oursigs, signal names, and
8513 actions. Signal numbers and signal names may be interspersed with
8514 actions, with the actions being performed for all signals cumulatively
8515 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8516
8517 while (*argv != NULL)
8518 {
8519 wordlen = strlen (*argv);
8520 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8521 {;
8522 }
8523 allsigs = 0;
8524 sigfirst = siglast = -1;
8525
8526 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8527 {
8528 /* Apply action to all signals except those used by the
8529 debugger. Silently skip those. */
8530 allsigs = 1;
8531 sigfirst = 0;
8532 siglast = nsigs - 1;
8533 }
8534 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8535 {
8536 SET_SIGS (nsigs, sigs, signal_stop);
8537 SET_SIGS (nsigs, sigs, signal_print);
8538 }
8539 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8540 {
8541 UNSET_SIGS (nsigs, sigs, signal_program);
8542 }
8543 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8544 {
8545 SET_SIGS (nsigs, sigs, signal_print);
8546 }
8547 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8548 {
8549 SET_SIGS (nsigs, sigs, signal_program);
8550 }
8551 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8552 {
8553 UNSET_SIGS (nsigs, sigs, signal_stop);
8554 }
8555 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8556 {
8557 SET_SIGS (nsigs, sigs, signal_program);
8558 }
8559 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8560 {
8561 UNSET_SIGS (nsigs, sigs, signal_print);
8562 UNSET_SIGS (nsigs, sigs, signal_stop);
8563 }
8564 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8565 {
8566 UNSET_SIGS (nsigs, sigs, signal_program);
8567 }
8568 else if (digits > 0)
8569 {
8570 /* It is numeric. The numeric signal refers to our own
8571 internal signal numbering from target.h, not to host/target
8572 signal number. This is a feature; users really should be
8573 using symbolic names anyway, and the common ones like
8574 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8575
8576 sigfirst = siglast = (int)
8577 gdb_signal_from_command (atoi (*argv));
8578 if ((*argv)[digits] == '-')
8579 {
8580 siglast = (int)
8581 gdb_signal_from_command (atoi ((*argv) + digits + 1));
8582 }
8583 if (sigfirst > siglast)
8584 {
8585 /* Bet he didn't figure we'd think of this case... */
8586 signum = sigfirst;
8587 sigfirst = siglast;
8588 siglast = signum;
8589 }
8590 }
8591 else
8592 {
8593 oursig = gdb_signal_from_name (*argv);
8594 if (oursig != GDB_SIGNAL_UNKNOWN)
8595 {
8596 sigfirst = siglast = (int) oursig;
8597 }
8598 else
8599 {
8600 /* Not a number and not a recognized flag word => complain. */
8601 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
8602 }
8603 }
8604
8605 /* If any signal numbers or symbol names were found, set flags for
8606 which signals to apply actions to. */
8607
8608 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8609 {
8610 switch ((enum gdb_signal) signum)
8611 {
8612 case GDB_SIGNAL_TRAP:
8613 case GDB_SIGNAL_INT:
8614 if (!allsigs && !sigs[signum])
8615 {
8616 if (query (_("%s is used by the debugger.\n\
8617 Are you sure you want to change it? "),
8618 gdb_signal_to_name ((enum gdb_signal) signum)))
8619 {
8620 sigs[signum] = 1;
8621 }
8622 else
8623 {
8624 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8625 gdb_flush (gdb_stdout);
8626 }
8627 }
8628 break;
8629 case GDB_SIGNAL_0:
8630 case GDB_SIGNAL_DEFAULT:
8631 case GDB_SIGNAL_UNKNOWN:
8632 /* Make sure that "all" doesn't print these. */
8633 break;
8634 default:
8635 sigs[signum] = 1;
8636 break;
8637 }
8638 }
8639
8640 argv++;
8641 }
8642
8643 for (signum = 0; signum < nsigs; signum++)
8644 if (sigs[signum])
8645 {
8646 signal_cache_update (-1);
8647 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8648 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
8649
8650 if (from_tty)
8651 {
8652 /* Show the results. */
8653 sig_print_header ();
8654 for (; signum < nsigs; signum++)
8655 if (sigs[signum])
8656 sig_print_info ((enum gdb_signal) signum);
8657 }
8658
8659 break;
8660 }
8661
8662 do_cleanups (old_chain);
8663 }
8664
8665 /* Complete the "handle" command. */
8666
8667 static VEC (char_ptr) *
8668 handle_completer (struct cmd_list_element *ignore,
8669 const char *text, const char *word)
8670 {
8671 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8672 static const char * const keywords[] =
8673 {
8674 "all",
8675 "stop",
8676 "ignore",
8677 "print",
8678 "pass",
8679 "nostop",
8680 "noignore",
8681 "noprint",
8682 "nopass",
8683 NULL,
8684 };
8685
8686 vec_signals = signal_completer (ignore, text, word);
8687 vec_keywords = complete_on_enum (keywords, word, word);
8688
8689 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8690 VEC_free (char_ptr, vec_signals);
8691 VEC_free (char_ptr, vec_keywords);
8692 return return_val;
8693 }
8694
8695 enum gdb_signal
8696 gdb_signal_from_command (int num)
8697 {
8698 if (num >= 1 && num <= 15)
8699 return (enum gdb_signal) num;
8700 error (_("Only signals 1-15 are valid as numeric signals.\n\
8701 Use \"info signals\" for a list of symbolic signals."));
8702 }
8703
8704 /* Print current contents of the tables set by the handle command.
8705 It is possible we should just be printing signals actually used
8706 by the current target (but for things to work right when switching
8707 targets, all signals should be in the signal tables). */
8708
8709 static void
8710 signals_info (char *signum_exp, int from_tty)
8711 {
8712 enum gdb_signal oursig;
8713
8714 sig_print_header ();
8715
8716 if (signum_exp)
8717 {
8718 /* First see if this is a symbol name. */
8719 oursig = gdb_signal_from_name (signum_exp);
8720 if (oursig == GDB_SIGNAL_UNKNOWN)
8721 {
8722 /* No, try numeric. */
8723 oursig =
8724 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8725 }
8726 sig_print_info (oursig);
8727 return;
8728 }
8729
8730 printf_filtered ("\n");
8731 /* These ugly casts brought to you by the native VAX compiler. */
8732 for (oursig = GDB_SIGNAL_FIRST;
8733 (int) oursig < (int) GDB_SIGNAL_LAST;
8734 oursig = (enum gdb_signal) ((int) oursig + 1))
8735 {
8736 QUIT;
8737
8738 if (oursig != GDB_SIGNAL_UNKNOWN
8739 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8740 sig_print_info (oursig);
8741 }
8742
8743 printf_filtered (_("\nUse the \"handle\" command "
8744 "to change these tables.\n"));
8745 }
8746
8747 /* The $_siginfo convenience variable is a bit special. We don't know
8748 for sure the type of the value until we actually have a chance to
8749 fetch the data. The type can change depending on gdbarch, so it is
8750 also dependent on which thread you have selected.
8751
8752 1. making $_siginfo be an internalvar that creates a new value on
8753 access.
8754
8755 2. making the value of $_siginfo be an lval_computed value. */
8756
8757 /* This function implements the lval_computed support for reading a
8758 $_siginfo value. */
8759
8760 static void
8761 siginfo_value_read (struct value *v)
8762 {
8763 LONGEST transferred;
8764
8765 /* If we can access registers, so can we access $_siginfo. Likewise
8766 vice versa. */
8767 validate_registers_access ();
8768
8769 transferred =
8770 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8771 NULL,
8772 value_contents_all_raw (v),
8773 value_offset (v),
8774 TYPE_LENGTH (value_type (v)));
8775
8776 if (transferred != TYPE_LENGTH (value_type (v)))
8777 error (_("Unable to read siginfo"));
8778 }
8779
8780 /* This function implements the lval_computed support for writing a
8781 $_siginfo value. */
8782
8783 static void
8784 siginfo_value_write (struct value *v, struct value *fromval)
8785 {
8786 LONGEST transferred;
8787
8788 /* If we can access registers, so can we access $_siginfo. Likewise
8789 vice versa. */
8790 validate_registers_access ();
8791
8792 transferred = target_write (&current_target,
8793 TARGET_OBJECT_SIGNAL_INFO,
8794 NULL,
8795 value_contents_all_raw (fromval),
8796 value_offset (v),
8797 TYPE_LENGTH (value_type (fromval)));
8798
8799 if (transferred != TYPE_LENGTH (value_type (fromval)))
8800 error (_("Unable to write siginfo"));
8801 }
8802
8803 static const struct lval_funcs siginfo_value_funcs =
8804 {
8805 siginfo_value_read,
8806 siginfo_value_write
8807 };
8808
8809 /* Return a new value with the correct type for the siginfo object of
8810 the current thread using architecture GDBARCH. Return a void value
8811 if there's no object available. */
8812
8813 static struct value *
8814 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8815 void *ignore)
8816 {
8817 if (target_has_stack
8818 && !ptid_equal (inferior_ptid, null_ptid)
8819 && gdbarch_get_siginfo_type_p (gdbarch))
8820 {
8821 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8822
8823 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8824 }
8825
8826 return allocate_value (builtin_type (gdbarch)->builtin_void);
8827 }
8828
8829 \f
8830 /* infcall_suspend_state contains state about the program itself like its
8831 registers and any signal it received when it last stopped.
8832 This state must be restored regardless of how the inferior function call
8833 ends (either successfully, or after it hits a breakpoint or signal)
8834 if the program is to properly continue where it left off. */
8835
8836 struct infcall_suspend_state
8837 {
8838 struct thread_suspend_state thread_suspend;
8839
8840 /* Other fields: */
8841 CORE_ADDR stop_pc;
8842 struct regcache *registers;
8843
8844 /* Format of SIGINFO_DATA or NULL if it is not present. */
8845 struct gdbarch *siginfo_gdbarch;
8846
8847 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8848 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8849 content would be invalid. */
8850 gdb_byte *siginfo_data;
8851 };
8852
8853 struct infcall_suspend_state *
8854 save_infcall_suspend_state (void)
8855 {
8856 struct infcall_suspend_state *inf_state;
8857 struct thread_info *tp = inferior_thread ();
8858 struct regcache *regcache = get_current_regcache ();
8859 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8860 gdb_byte *siginfo_data = NULL;
8861
8862 if (gdbarch_get_siginfo_type_p (gdbarch))
8863 {
8864 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8865 size_t len = TYPE_LENGTH (type);
8866 struct cleanup *back_to;
8867
8868 siginfo_data = (gdb_byte *) xmalloc (len);
8869 back_to = make_cleanup (xfree, siginfo_data);
8870
8871 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8872 siginfo_data, 0, len) == len)
8873 discard_cleanups (back_to);
8874 else
8875 {
8876 /* Errors ignored. */
8877 do_cleanups (back_to);
8878 siginfo_data = NULL;
8879 }
8880 }
8881
8882 inf_state = XCNEW (struct infcall_suspend_state);
8883
8884 if (siginfo_data)
8885 {
8886 inf_state->siginfo_gdbarch = gdbarch;
8887 inf_state->siginfo_data = siginfo_data;
8888 }
8889
8890 inf_state->thread_suspend = tp->suspend;
8891
8892 /* run_inferior_call will not use the signal due to its `proceed' call with
8893 GDB_SIGNAL_0 anyway. */
8894 tp->suspend.stop_signal = GDB_SIGNAL_0;
8895
8896 inf_state->stop_pc = stop_pc;
8897
8898 inf_state->registers = regcache_dup (regcache);
8899
8900 return inf_state;
8901 }
8902
8903 /* Restore inferior session state to INF_STATE. */
8904
8905 void
8906 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8907 {
8908 struct thread_info *tp = inferior_thread ();
8909 struct regcache *regcache = get_current_regcache ();
8910 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8911
8912 tp->suspend = inf_state->thread_suspend;
8913
8914 stop_pc = inf_state->stop_pc;
8915
8916 if (inf_state->siginfo_gdbarch == gdbarch)
8917 {
8918 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8919
8920 /* Errors ignored. */
8921 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8922 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
8923 }
8924
8925 /* The inferior can be gone if the user types "print exit(0)"
8926 (and perhaps other times). */
8927 if (target_has_execution)
8928 /* NB: The register write goes through to the target. */
8929 regcache_cpy (regcache, inf_state->registers);
8930
8931 discard_infcall_suspend_state (inf_state);
8932 }
8933
8934 static void
8935 do_restore_infcall_suspend_state_cleanup (void *state)
8936 {
8937 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
8938 }
8939
8940 struct cleanup *
8941 make_cleanup_restore_infcall_suspend_state
8942 (struct infcall_suspend_state *inf_state)
8943 {
8944 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
8945 }
8946
8947 void
8948 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8949 {
8950 regcache_xfree (inf_state->registers);
8951 xfree (inf_state->siginfo_data);
8952 xfree (inf_state);
8953 }
8954
8955 struct regcache *
8956 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8957 {
8958 return inf_state->registers;
8959 }
8960
8961 /* infcall_control_state contains state regarding gdb's control of the
8962 inferior itself like stepping control. It also contains session state like
8963 the user's currently selected frame. */
8964
8965 struct infcall_control_state
8966 {
8967 struct thread_control_state thread_control;
8968 struct inferior_control_state inferior_control;
8969
8970 /* Other fields: */
8971 enum stop_stack_kind stop_stack_dummy;
8972 int stopped_by_random_signal;
8973
8974 /* ID if the selected frame when the inferior function call was made. */
8975 struct frame_id selected_frame_id;
8976 };
8977
8978 /* Save all of the information associated with the inferior<==>gdb
8979 connection. */
8980
8981 struct infcall_control_state *
8982 save_infcall_control_state (void)
8983 {
8984 struct infcall_control_state *inf_status =
8985 XNEW (struct infcall_control_state);
8986 struct thread_info *tp = inferior_thread ();
8987 struct inferior *inf = current_inferior ();
8988
8989 inf_status->thread_control = tp->control;
8990 inf_status->inferior_control = inf->control;
8991
8992 tp->control.step_resume_breakpoint = NULL;
8993 tp->control.exception_resume_breakpoint = NULL;
8994
8995 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8996 chain. If caller's caller is walking the chain, they'll be happier if we
8997 hand them back the original chain when restore_infcall_control_state is
8998 called. */
8999 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9000
9001 /* Other fields: */
9002 inf_status->stop_stack_dummy = stop_stack_dummy;
9003 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9004
9005 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
9006
9007 return inf_status;
9008 }
9009
9010 static int
9011 restore_selected_frame (void *args)
9012 {
9013 struct frame_id *fid = (struct frame_id *) args;
9014 struct frame_info *frame;
9015
9016 frame = frame_find_by_id (*fid);
9017
9018 /* If inf_status->selected_frame_id is NULL, there was no previously
9019 selected frame. */
9020 if (frame == NULL)
9021 {
9022 warning (_("Unable to restore previously selected frame."));
9023 return 0;
9024 }
9025
9026 select_frame (frame);
9027
9028 return (1);
9029 }
9030
9031 /* Restore inferior session state to INF_STATUS. */
9032
9033 void
9034 restore_infcall_control_state (struct infcall_control_state *inf_status)
9035 {
9036 struct thread_info *tp = inferior_thread ();
9037 struct inferior *inf = current_inferior ();
9038
9039 if (tp->control.step_resume_breakpoint)
9040 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9041
9042 if (tp->control.exception_resume_breakpoint)
9043 tp->control.exception_resume_breakpoint->disposition
9044 = disp_del_at_next_stop;
9045
9046 /* Handle the bpstat_copy of the chain. */
9047 bpstat_clear (&tp->control.stop_bpstat);
9048
9049 tp->control = inf_status->thread_control;
9050 inf->control = inf_status->inferior_control;
9051
9052 /* Other fields: */
9053 stop_stack_dummy = inf_status->stop_stack_dummy;
9054 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9055
9056 if (target_has_stack)
9057 {
9058 /* The point of catch_errors is that if the stack is clobbered,
9059 walking the stack might encounter a garbage pointer and
9060 error() trying to dereference it. */
9061 if (catch_errors
9062 (restore_selected_frame, &inf_status->selected_frame_id,
9063 "Unable to restore previously selected frame:\n",
9064 RETURN_MASK_ERROR) == 0)
9065 /* Error in restoring the selected frame. Select the innermost
9066 frame. */
9067 select_frame (get_current_frame ());
9068 }
9069
9070 xfree (inf_status);
9071 }
9072
9073 static void
9074 do_restore_infcall_control_state_cleanup (void *sts)
9075 {
9076 restore_infcall_control_state ((struct infcall_control_state *) sts);
9077 }
9078
9079 struct cleanup *
9080 make_cleanup_restore_infcall_control_state
9081 (struct infcall_control_state *inf_status)
9082 {
9083 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
9084 }
9085
9086 void
9087 discard_infcall_control_state (struct infcall_control_state *inf_status)
9088 {
9089 if (inf_status->thread_control.step_resume_breakpoint)
9090 inf_status->thread_control.step_resume_breakpoint->disposition
9091 = disp_del_at_next_stop;
9092
9093 if (inf_status->thread_control.exception_resume_breakpoint)
9094 inf_status->thread_control.exception_resume_breakpoint->disposition
9095 = disp_del_at_next_stop;
9096
9097 /* See save_infcall_control_state for info on stop_bpstat. */
9098 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9099
9100 xfree (inf_status);
9101 }
9102 \f
9103 /* restore_inferior_ptid() will be used by the cleanup machinery
9104 to restore the inferior_ptid value saved in a call to
9105 save_inferior_ptid(). */
9106
9107 static void
9108 restore_inferior_ptid (void *arg)
9109 {
9110 ptid_t *saved_ptid_ptr = (ptid_t *) arg;
9111
9112 inferior_ptid = *saved_ptid_ptr;
9113 xfree (arg);
9114 }
9115
9116 /* Save the value of inferior_ptid so that it may be restored by a
9117 later call to do_cleanups(). Returns the struct cleanup pointer
9118 needed for later doing the cleanup. */
9119
9120 struct cleanup *
9121 save_inferior_ptid (void)
9122 {
9123 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
9124
9125 *saved_ptid_ptr = inferior_ptid;
9126 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
9127 }
9128
9129 /* See infrun.h. */
9130
9131 void
9132 clear_exit_convenience_vars (void)
9133 {
9134 clear_internalvar (lookup_internalvar ("_exitsignal"));
9135 clear_internalvar (lookup_internalvar ("_exitcode"));
9136 }
9137 \f
9138
9139 /* User interface for reverse debugging:
9140 Set exec-direction / show exec-direction commands
9141 (returns error unless target implements to_set_exec_direction method). */
9142
9143 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9144 static const char exec_forward[] = "forward";
9145 static const char exec_reverse[] = "reverse";
9146 static const char *exec_direction = exec_forward;
9147 static const char *const exec_direction_names[] = {
9148 exec_forward,
9149 exec_reverse,
9150 NULL
9151 };
9152
9153 static void
9154 set_exec_direction_func (char *args, int from_tty,
9155 struct cmd_list_element *cmd)
9156 {
9157 if (target_can_execute_reverse)
9158 {
9159 if (!strcmp (exec_direction, exec_forward))
9160 execution_direction = EXEC_FORWARD;
9161 else if (!strcmp (exec_direction, exec_reverse))
9162 execution_direction = EXEC_REVERSE;
9163 }
9164 else
9165 {
9166 exec_direction = exec_forward;
9167 error (_("Target does not support this operation."));
9168 }
9169 }
9170
9171 static void
9172 show_exec_direction_func (struct ui_file *out, int from_tty,
9173 struct cmd_list_element *cmd, const char *value)
9174 {
9175 switch (execution_direction) {
9176 case EXEC_FORWARD:
9177 fprintf_filtered (out, _("Forward.\n"));
9178 break;
9179 case EXEC_REVERSE:
9180 fprintf_filtered (out, _("Reverse.\n"));
9181 break;
9182 default:
9183 internal_error (__FILE__, __LINE__,
9184 _("bogus execution_direction value: %d"),
9185 (int) execution_direction);
9186 }
9187 }
9188
9189 static void
9190 show_schedule_multiple (struct ui_file *file, int from_tty,
9191 struct cmd_list_element *c, const char *value)
9192 {
9193 fprintf_filtered (file, _("Resuming the execution of threads "
9194 "of all processes is %s.\n"), value);
9195 }
9196
9197 /* Implementation of `siginfo' variable. */
9198
9199 static const struct internalvar_funcs siginfo_funcs =
9200 {
9201 siginfo_make_value,
9202 NULL,
9203 NULL
9204 };
9205
9206 /* Callback for infrun's target events source. This is marked when a
9207 thread has a pending status to process. */
9208
9209 static void
9210 infrun_async_inferior_event_handler (gdb_client_data data)
9211 {
9212 inferior_event_handler (INF_REG_EVENT, NULL);
9213 }
9214
9215 void
9216 _initialize_infrun (void)
9217 {
9218 int i;
9219 int numsigs;
9220 struct cmd_list_element *c;
9221
9222 /* Register extra event sources in the event loop. */
9223 infrun_async_inferior_event_token
9224 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9225
9226 add_info ("signals", signals_info, _("\
9227 What debugger does when program gets various signals.\n\
9228 Specify a signal as argument to print info on that signal only."));
9229 add_info_alias ("handle", "signals", 0);
9230
9231 c = add_com ("handle", class_run, handle_command, _("\
9232 Specify how to handle signals.\n\
9233 Usage: handle SIGNAL [ACTIONS]\n\
9234 Args are signals and actions to apply to those signals.\n\
9235 If no actions are specified, the current settings for the specified signals\n\
9236 will be displayed instead.\n\
9237 \n\
9238 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9239 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9240 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9241 The special arg \"all\" is recognized to mean all signals except those\n\
9242 used by the debugger, typically SIGTRAP and SIGINT.\n\
9243 \n\
9244 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9245 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9246 Stop means reenter debugger if this signal happens (implies print).\n\
9247 Print means print a message if this signal happens.\n\
9248 Pass means let program see this signal; otherwise program doesn't know.\n\
9249 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9250 Pass and Stop may be combined.\n\
9251 \n\
9252 Multiple signals may be specified. Signal numbers and signal names\n\
9253 may be interspersed with actions, with the actions being performed for\n\
9254 all signals cumulatively specified."));
9255 set_cmd_completer (c, handle_completer);
9256
9257 if (!dbx_commands)
9258 stop_command = add_cmd ("stop", class_obscure,
9259 not_just_help_class_command, _("\
9260 There is no `stop' command, but you can set a hook on `stop'.\n\
9261 This allows you to set a list of commands to be run each time execution\n\
9262 of the program stops."), &cmdlist);
9263
9264 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9265 Set inferior debugging."), _("\
9266 Show inferior debugging."), _("\
9267 When non-zero, inferior specific debugging is enabled."),
9268 NULL,
9269 show_debug_infrun,
9270 &setdebuglist, &showdebuglist);
9271
9272 add_setshow_boolean_cmd ("displaced", class_maintenance,
9273 &debug_displaced, _("\
9274 Set displaced stepping debugging."), _("\
9275 Show displaced stepping debugging."), _("\
9276 When non-zero, displaced stepping specific debugging is enabled."),
9277 NULL,
9278 show_debug_displaced,
9279 &setdebuglist, &showdebuglist);
9280
9281 add_setshow_boolean_cmd ("non-stop", no_class,
9282 &non_stop_1, _("\
9283 Set whether gdb controls the inferior in non-stop mode."), _("\
9284 Show whether gdb controls the inferior in non-stop mode."), _("\
9285 When debugging a multi-threaded program and this setting is\n\
9286 off (the default, also called all-stop mode), when one thread stops\n\
9287 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9288 all other threads in the program while you interact with the thread of\n\
9289 interest. When you continue or step a thread, you can allow the other\n\
9290 threads to run, or have them remain stopped, but while you inspect any\n\
9291 thread's state, all threads stop.\n\
9292 \n\
9293 In non-stop mode, when one thread stops, other threads can continue\n\
9294 to run freely. You'll be able to step each thread independently,\n\
9295 leave it stopped or free to run as needed."),
9296 set_non_stop,
9297 show_non_stop,
9298 &setlist,
9299 &showlist);
9300
9301 numsigs = (int) GDB_SIGNAL_LAST;
9302 signal_stop = XNEWVEC (unsigned char, numsigs);
9303 signal_print = XNEWVEC (unsigned char, numsigs);
9304 signal_program = XNEWVEC (unsigned char, numsigs);
9305 signal_catch = XNEWVEC (unsigned char, numsigs);
9306 signal_pass = XNEWVEC (unsigned char, numsigs);
9307 for (i = 0; i < numsigs; i++)
9308 {
9309 signal_stop[i] = 1;
9310 signal_print[i] = 1;
9311 signal_program[i] = 1;
9312 signal_catch[i] = 0;
9313 }
9314
9315 /* Signals caused by debugger's own actions should not be given to
9316 the program afterwards.
9317
9318 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9319 explicitly specifies that it should be delivered to the target
9320 program. Typically, that would occur when a user is debugging a
9321 target monitor on a simulator: the target monitor sets a
9322 breakpoint; the simulator encounters this breakpoint and halts
9323 the simulation handing control to GDB; GDB, noting that the stop
9324 address doesn't map to any known breakpoint, returns control back
9325 to the simulator; the simulator then delivers the hardware
9326 equivalent of a GDB_SIGNAL_TRAP to the program being
9327 debugged. */
9328 signal_program[GDB_SIGNAL_TRAP] = 0;
9329 signal_program[GDB_SIGNAL_INT] = 0;
9330
9331 /* Signals that are not errors should not normally enter the debugger. */
9332 signal_stop[GDB_SIGNAL_ALRM] = 0;
9333 signal_print[GDB_SIGNAL_ALRM] = 0;
9334 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9335 signal_print[GDB_SIGNAL_VTALRM] = 0;
9336 signal_stop[GDB_SIGNAL_PROF] = 0;
9337 signal_print[GDB_SIGNAL_PROF] = 0;
9338 signal_stop[GDB_SIGNAL_CHLD] = 0;
9339 signal_print[GDB_SIGNAL_CHLD] = 0;
9340 signal_stop[GDB_SIGNAL_IO] = 0;
9341 signal_print[GDB_SIGNAL_IO] = 0;
9342 signal_stop[GDB_SIGNAL_POLL] = 0;
9343 signal_print[GDB_SIGNAL_POLL] = 0;
9344 signal_stop[GDB_SIGNAL_URG] = 0;
9345 signal_print[GDB_SIGNAL_URG] = 0;
9346 signal_stop[GDB_SIGNAL_WINCH] = 0;
9347 signal_print[GDB_SIGNAL_WINCH] = 0;
9348 signal_stop[GDB_SIGNAL_PRIO] = 0;
9349 signal_print[GDB_SIGNAL_PRIO] = 0;
9350
9351 /* These signals are used internally by user-level thread
9352 implementations. (See signal(5) on Solaris.) Like the above
9353 signals, a healthy program receives and handles them as part of
9354 its normal operation. */
9355 signal_stop[GDB_SIGNAL_LWP] = 0;
9356 signal_print[GDB_SIGNAL_LWP] = 0;
9357 signal_stop[GDB_SIGNAL_WAITING] = 0;
9358 signal_print[GDB_SIGNAL_WAITING] = 0;
9359 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9360 signal_print[GDB_SIGNAL_CANCEL] = 0;
9361
9362 /* Update cached state. */
9363 signal_cache_update (-1);
9364
9365 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9366 &stop_on_solib_events, _("\
9367 Set stopping for shared library events."), _("\
9368 Show stopping for shared library events."), _("\
9369 If nonzero, gdb will give control to the user when the dynamic linker\n\
9370 notifies gdb of shared library events. The most common event of interest\n\
9371 to the user would be loading/unloading of a new library."),
9372 set_stop_on_solib_events,
9373 show_stop_on_solib_events,
9374 &setlist, &showlist);
9375
9376 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9377 follow_fork_mode_kind_names,
9378 &follow_fork_mode_string, _("\
9379 Set debugger response to a program call of fork or vfork."), _("\
9380 Show debugger response to a program call of fork or vfork."), _("\
9381 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9382 parent - the original process is debugged after a fork\n\
9383 child - the new process is debugged after a fork\n\
9384 The unfollowed process will continue to run.\n\
9385 By default, the debugger will follow the parent process."),
9386 NULL,
9387 show_follow_fork_mode_string,
9388 &setlist, &showlist);
9389
9390 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9391 follow_exec_mode_names,
9392 &follow_exec_mode_string, _("\
9393 Set debugger response to a program call of exec."), _("\
9394 Show debugger response to a program call of exec."), _("\
9395 An exec call replaces the program image of a process.\n\
9396 \n\
9397 follow-exec-mode can be:\n\
9398 \n\
9399 new - the debugger creates a new inferior and rebinds the process\n\
9400 to this new inferior. The program the process was running before\n\
9401 the exec call can be restarted afterwards by restarting the original\n\
9402 inferior.\n\
9403 \n\
9404 same - the debugger keeps the process bound to the same inferior.\n\
9405 The new executable image replaces the previous executable loaded in\n\
9406 the inferior. Restarting the inferior after the exec call restarts\n\
9407 the executable the process was running after the exec call.\n\
9408 \n\
9409 By default, the debugger will use the same inferior."),
9410 NULL,
9411 show_follow_exec_mode_string,
9412 &setlist, &showlist);
9413
9414 add_setshow_enum_cmd ("scheduler-locking", class_run,
9415 scheduler_enums, &scheduler_mode, _("\
9416 Set mode for locking scheduler during execution."), _("\
9417 Show mode for locking scheduler during execution."), _("\
9418 off == no locking (threads may preempt at any time)\n\
9419 on == full locking (no thread except the current thread may run)\n\
9420 This applies to both normal execution and replay mode.\n\
9421 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9422 In this mode, other threads may run during other commands.\n\
9423 This applies to both normal execution and replay mode.\n\
9424 replay == scheduler locked in replay mode and unlocked during normal execution."),
9425 set_schedlock_func, /* traps on target vector */
9426 show_scheduler_mode,
9427 &setlist, &showlist);
9428
9429 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9430 Set mode for resuming threads of all processes."), _("\
9431 Show mode for resuming threads of all processes."), _("\
9432 When on, execution commands (such as 'continue' or 'next') resume all\n\
9433 threads of all processes. When off (which is the default), execution\n\
9434 commands only resume the threads of the current process. The set of\n\
9435 threads that are resumed is further refined by the scheduler-locking\n\
9436 mode (see help set scheduler-locking)."),
9437 NULL,
9438 show_schedule_multiple,
9439 &setlist, &showlist);
9440
9441 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9442 Set mode of the step operation."), _("\
9443 Show mode of the step operation."), _("\
9444 When set, doing a step over a function without debug line information\n\
9445 will stop at the first instruction of that function. Otherwise, the\n\
9446 function is skipped and the step command stops at a different source line."),
9447 NULL,
9448 show_step_stop_if_no_debug,
9449 &setlist, &showlist);
9450
9451 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9452 &can_use_displaced_stepping, _("\
9453 Set debugger's willingness to use displaced stepping."), _("\
9454 Show debugger's willingness to use displaced stepping."), _("\
9455 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9456 supported by the target architecture. If off, gdb will not use displaced\n\
9457 stepping to step over breakpoints, even if such is supported by the target\n\
9458 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9459 if the target architecture supports it and non-stop mode is active, but will not\n\
9460 use it in all-stop mode (see help set non-stop)."),
9461 NULL,
9462 show_can_use_displaced_stepping,
9463 &setlist, &showlist);
9464
9465 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9466 &exec_direction, _("Set direction of execution.\n\
9467 Options are 'forward' or 'reverse'."),
9468 _("Show direction of execution (forward/reverse)."),
9469 _("Tells gdb whether to execute forward or backward."),
9470 set_exec_direction_func, show_exec_direction_func,
9471 &setlist, &showlist);
9472
9473 /* Set/show detach-on-fork: user-settable mode. */
9474
9475 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9476 Set whether gdb will detach the child of a fork."), _("\
9477 Show whether gdb will detach the child of a fork."), _("\
9478 Tells gdb whether to detach the child of a fork."),
9479 NULL, NULL, &setlist, &showlist);
9480
9481 /* Set/show disable address space randomization mode. */
9482
9483 add_setshow_boolean_cmd ("disable-randomization", class_support,
9484 &disable_randomization, _("\
9485 Set disabling of debuggee's virtual address space randomization."), _("\
9486 Show disabling of debuggee's virtual address space randomization."), _("\
9487 When this mode is on (which is the default), randomization of the virtual\n\
9488 address space is disabled. Standalone programs run with the randomization\n\
9489 enabled by default on some platforms."),
9490 &set_disable_randomization,
9491 &show_disable_randomization,
9492 &setlist, &showlist);
9493
9494 /* ptid initializations */
9495 inferior_ptid = null_ptid;
9496 target_last_wait_ptid = minus_one_ptid;
9497
9498 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
9499 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
9500 observer_attach_thread_exit (infrun_thread_thread_exit);
9501 observer_attach_inferior_exit (infrun_inferior_exit);
9502
9503 /* Explicitly create without lookup, since that tries to create a
9504 value with a void typed value, and when we get here, gdbarch
9505 isn't initialized yet. At this point, we're quite sure there
9506 isn't another convenience variable of the same name. */
9507 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9508
9509 add_setshow_boolean_cmd ("observer", no_class,
9510 &observer_mode_1, _("\
9511 Set whether gdb controls the inferior in observer mode."), _("\
9512 Show whether gdb controls the inferior in observer mode."), _("\
9513 In observer mode, GDB can get data from the inferior, but not\n\
9514 affect its execution. Registers and memory may not be changed,\n\
9515 breakpoints may not be set, and the program cannot be interrupted\n\
9516 or signalled."),
9517 set_observer_mode,
9518 show_observer_mode,
9519 &setlist,
9520 &showlist);
9521 }
This page took 0.241171 seconds and 4 git commands to generate.